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Abstract. It is often desirable to find markets or sale channels where an object,
e.g., a product, person or service, can be recommended efficiently. Since the ob-
ject may not be highly ranked in the global property space, PromoRank algorithm
promotes a given object by discovering promotive subspace in which the target
is top rank. However, the computation complexity of PromoRank is exponential
to the dimension of the space. This paper studies the impact of dimensionality
reduction algorithms, such as PCA or FA, in order to reduce the dimension size
and, as a consequence, improve the performance of PromoRank. This paper eval-
uate multiple dimensionality reduction algorithms to obtains the understanding
about the relationship between properties of data sets and algorithms such that an
appropriate algorithm can be selected for a particular data set. The evaluation re-
sults show that dimensionality reduction algorithms can improve the performance
of PromoRank while maintain an acceptable ranking accuracy.

1 Introduction

Online marketing becomes an important tool for business and organization [7]. Google1

and Amazon2, for instances, relies heavily on online marketing operations, e.g., online
advertisement, recommendation and fraud detection. For example, when a user search
for a specific term, Google will shows related products in GoogleAds. This can promote
the sell of the products because it reflects user’s interest [9]. This technique has been
used widely not only in business but also public sectors. For instance, when a client
borrows a book from a library, the library might want to suggest another related books to
them based on their interest. This approach can help boost service satisfiable of clients.

Ranking is a technique to carry out recommendation. It is used widely, for instance,
in many bookstores, where top selling books are shown on the front of the stores. This
can increase those books selling because people are tend to believe that, because so
many other customers already bought these books, they should be good. This is also
applied to many other fields in business as well, e.g., American Top Forty, Fortune 500,
or NASDAQ-100. Because the number of top ranking is limited, only those who are
the best on every dimensions can be in the list. Nevertheless, there are many cases that
when consider only a subset of the dimensions, some interesting objects can be found.
Consider the following example:

1 http://www.google.com
2 http://www.amazon.com
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Table 1. Example of multidimensional data

Genre Year Object Score

Science 2012 O1 0.9

Fiction 2012 O1 0.2

Fiction 2012 O2 0.8

Fiction 2011 O2 0.7

Science 2011 O2 0.5

Science 2012 O3 0.4

Fiction 2012 O3 0.8

Table 2. Target object O1’s subspaces and its ranks

Subspace Rank Object Count

{*} 3 3

{Genre=Science} 1 3

{Genre=Fiction} 3 3

{Year=2012} 2 3

{Genre=Science, Year=2012} 1 2

{Genre=Fiction, Year=2012} 3 3

Example 1. (Product Recommendation) It is impossible that Donald Knuth’s The Art
of Computer Programming series can be in the top list of all books in Amazon store.
However, when consider only computer science books with readership toward college
students, this book will be ranked on the top list. So, this book series should be recom-
mended only in that particular category and readership.

Example 2. (Online Advertisement) a company wants to promote its product through
online advertisement channel, e.g., Google’s AdSense. However, the company does not
have enough budget to promote the product in all market. However, when consider the
sale statistics, the company observe that such product is well accepted by New England
market.Therefore, the company can buy advertisement specifically to such market.

From the example, the data space is breakdown into subspaces, e.g., instead of all
categories, only New York is considered; hence, the target object, e.g, the salesman,
can be the top rank, i.e., top-R, in only some of the subspace. This subspace where the
target object is the top rank is called promotive subspace.

Table 1 shows a concrete example of a multi-dimensional data set. From the table,
there are one object dimension, Object, with three target objects, O1,O2,O3. There are
two subspace dimensions, Genre and Year, and a score dimension, Score. Consider O1

as the target object to promote, Table 2 lists O1’s 6 subspaces and the corresponding
rank and object count in each subspace. The rank is derived from the sum-aggregate
score of all objects in the subspace. For example, in {Science, 2012}, O1 ranks 1st
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because the score of O1 : 0.9>O2 : 0.5>O3 : 0.4. Object count is the number of objects
in that subspace. Thus {Science, 2012} is a promotive subspace of O1.

Thus, given a target object, the goal is to find subspace with large promotiveness,
i.e., subspace where the target object is top-R. For example, observe that O1, which is
ranked third in all dimensions ({*}), should be promote in subspace {Science} because it
is the first rank. In other words, {Science} is a promotive subspace of O1. The problem
of finding large promotiveness subspace is formally defined in section 2.

PromoRank [10] proposes to use subspace ranking for promoting a target object by
finding a subspace where the target object is in Top-R ranking. Section 3 discusses
PromoRank in detail. However, the computation complexity of PromoRank is expo-
nential to the dimension size, this paper proposes to use dimensionality reduction algo-
rithms, such as principal component analysis (PCA) and factor analysis (FA), to reduce
the number of dimensions before performing PromoRank. This approach is explained
in Section 4. Dimensionality reduction in recommendation system, in generally, has
been studied for many years, e.g., in [1, 5, 8]. In particular, a dimensionality reduc-
tion algorithm, i.e., PCA, is used successfully to reduce the subspace ranking used in
PromoRank [6]. This paper further investigate this approach by comparing the impact
of three well known dimensionality reduction algorithms on the performance of Pro-
moRank on different datasets. The evaluation in Section 5 shows that different algo-
rithms are suitable to different datasets, based on the datasets’ properties.

2 Problem Definition

Consider a d-dimensional data set D with the size of n, each tuple in D has d sub-
space dimension A = {A1,A2, ...,Ad}, object dimension Io and score dimension Is.
Let dom(Io) =O is the complete set of objects and dom(Is) =R+. Let S = {a1,a2, ...,ad},
where ai ∈ Ai or ai = ∗ (∗ refers to any value) is a subspace of A. In Table 1, O =
{O1,O2,O3},A = {Agenre,Ayear}. An example of S is {Genre=Science, Year=2012}

As a consequence, S induces a projection ofDS ⊆D and a subspace of object OS ⊆
O. For example, when S = {Genre = S cience,Year = 2012}, OS = {O1,O3}.

For a d-dimensional data, all subspaces can be group into 2d cuboids. Thus, S be-
longs to a d′-dimensional cuboidA′ denoted by A′1A′2...A

′
d′ , iff S has non-star values in

these d′ dimensions and star values in the other d−d′ dimensions.
Then, for a given target object tq ∈ O, Sq = {S q|tq ∈ OS q } is the set of target sub-

space where tq occurs. For example, O1 in Table 2 has 6 target subspaces, as in Table
1, subspace {2011} is not a target subspace because O1 does not occur in it.

There are many ways to measure the promotiveness of objects in each subspace.
One way to measure the promotiveness is percentile-rank, calculated from inverse of
the rank of the target object in the subspace times distinct object count, i.e.,

P = Rank−1 ·Ob jCount. (1)

For example, in Table 2, promotiveness of subspace {Genre=Fiction} is 1
3 ·3= 1 while

the promotiveness of subspace {Genre=Science, Year=2012} is 1
1 ·2 = 2.

Finally, the definition of the promotion query problem is, given data set D, target
object tq, and promotiveness measure P, find the top-R subspaces with the largest pro-
motiveness values.
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This promotion query is a challenging problem because it has a combinatorial na-
ture, the number of combination of subspace with multiple dimensions can increase
exponentially. The brute-force approach that enumerates all subspaces and compute the
promotiveness in each subspace is prohibitive.

3 PromoRank Algorithm

To address the aforementioned challenge, promotion analysis through ranking (Pro-
moRank) [10] utilizes the concept of subspace ranking, i.e., ranking in only selected
dimensions. PromoRank consists of two phases: aggregation and partition. Algorithm
1, shows the pseudo-code of PromoRank [10].

Algorithm 1. PromoRank(tq,S ,D,OS,d0)

Input: target object tq, subspace S , data set D, object set in current

subspace OS, current partition dimension d0
Output: Top-R promotive subspaces Results
1: Results ←∅
2: if |D| <minsup∨ tq � O then
3: return
4: end if

5: Compute Rank and P
6: Enqueue (S , P) to Results
7: for d′ ← d0 +1 to d do

8: Sort D based on d′-th dimension

9: for all value v in d′-th dimension do
10: S ′ ← S ∪{d′ : v}
11: PromoRank(S ′, DS ′, OS ′, d′)
12: end for
13: end for

In aggregation phase, if the size of data set is not less than a threshold (minsup) and
tq is in the given current subspace, then, promotiveness P of a subspace S is computed
and kept in Results priority queue. From Algorithm 1, Rank and P of the target object
are computed for the input subspace S (Line 5). In particular, Rank can be measured
from the rank of the target object in the subspace and P is calculated using Equation 1.
Then, S and P are inserted into the priority queue, where P is the key (Line 6). This
priority queue maintains the top-R results.

In partition phase, the input data is iteratively processed for an addition dimension
(d′). Then, for each distinct value on the d′-th dimension, a new subspace is defined
and processed recursively. In particular, the input data D is sorted according to the d′-
dimension (Line 8). Then,D can be projected into multiple partition, corresponding to
the distinct values on the d′-t dimension. A new subspace S ′ is defined for each partition
(Line 10). Then, PromoRank recursively computes over subspace S ′ (Line 9).
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At each recursion, the aggregation phase runs in O(|D|+ |O|) and the partition phase
runs in O(|D|). Given that there are d dimension, the number of recursion will be 2d.
Thus, the computational complexity of this algorithm is O(2d(|D|+ |O|)).

4 Dimensionality Reduction for PromoRank

In order to further improve PromoRank, this paper proposes to reduce the number of
dimensions (d) of the data set. From the computational complexity of PromoRank, re-
duce dimensions should impact the performance greatly [2,3]. Moreover, this approach
can be performed as a pre-processing for PromoRank; thus, it can be combined with the
pruning approaches. However, not all reduction algorithms can be applied to all data
set, this paper further investigate this approach by comparing multiple algorithms to
find suitable algorithm for a data set with particular parameters.

Given a d-dimensional data set D with subspace dimension A, a dimensionality
reduction algorithm, such as PCA and FA, reduces the number of dimension to d∗,
such that d∗ < d, and a reduced data set D∗ is produced with subspace dimension A∗.
Please note that, it does not necessary thatA∗ ⊂A because the dimensionality reduction
algorithm might generate a new dimension forA∗. In other words, there might exists a
subspace S ∗ = {a∗1,a∗2, ...,a∗d∗} fromA∗ where a∗i � A j for any A j ∈ A.

Thus, the top-R promotive subspace from PromoRank with original data set might
differ from the top-R promotive subspace with reduced data set. As a consequence,
they cannot be compared directly. In order to handle this, a simple mapping scheme
is proposed based on the relationship between the original dimensions and reduced
dimensions. Suppose that two original subspace dimensions, Ai and A j, are reduced
to a new subspace dimension A∗k. Consequently, for a top-R promotive subspace con-
tains a∗k ∈ A∗k , it will be compared with a subspace that has ai ∈ Ai and/or a j ∈ Ai;
together with the common other subspace dimensions. For example, let’s assume that
the original dimensions are {City, Country, Year}; then, after a dimensional reduction
algorithm is performed on the data set, the new dimensions are {Location, Year} where
Location is reduced from City and Country. Thus, if PromoRank considers a subspace
{location=Lanna} where Lanna is reduced from Chiang Mai and Thailand, then, the
subspace {location=Lanna} will be compared with the subspace {City=Chaing Mai},
{Country=Thailand} and {City=Chiang Mai, Country=Thailand}.

Nevertheless, performing dimensionality reduction algorithms incurs extra compu-
tational cost.However, dimensionality reduction algorithms such as PCA and FA have
lower computational complexity than PromoRank. For instance, PCA that use Cyclic
Jacobi’s method has complexity of O(d3+d2n) [4]. The polynomial complexity of PCA
is much lower than the exponential complexity of PromoRank. The experimental results
in Section 5.5 confirms that the extra computational cost from a dimensionality reduc-
tion algorithm is lower than the performance gain from reducing dimensions.
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5 Experimental Evaluation

To investigate the impact of dimensionality reduction algorithm on data sets, an ex-
perimental evaluation with four data sets, namely, Top US private collage3, NBA4,
Amazon affiliate income5 and Market analysis6, was carried out.

A Java version of PromoRank was developed and tested on a computer with an Intel
Core2 Duo 3GHz processor and 4GB of memory. The pruning optimization of Pro-
moRank was disabled in the evaluation to remove the impact on the result.

This evaluation investigates three well-known dimensionality reduction algorithms,
namely, principal component analysis (PCA), factor analysis (FA) and linear discrimi-
nant analysis (LDA). They reduces the number of variables, i.e., dimensions, by measur-
ing the correlation among them. Then, the variables that highly correlate with the others
are removed or combined into new variables. The differences among them are mainly
the method that each of them use for correlate data, e.g., LDA does not order correlated
dimensions by their variance, as in PCA, but instead focuses on class separability. The
evaluation was performed on two parts; first part compares the Top-R promotive sub-
space of dimensional-reduced data sets and original data sets with PromoRank. For all
data set, only top-5 promotive subspaces of each target object are considered. The re-
sult of this part is presented in Section 5.1, 5.2, 5.3 and 5.4 for Top US private college,
NBA, Market Analysis data set and Amazon affiliate income, respectively. This part
compares the performance of each algorithms for reducing dimensions of the data set.
The second part, presented in Section 5.5, investigates the performance improvement
from the dimensionality reduction.

5.1 Top US Private College Data Set

This data set consists of 100 tuples with 8 subspace dimensions, namely State, Enroll-
ment, Admission Rate, Admission Ratio, Student/faculty Ratio, 4yrs Graduated Rate,
6yrs Graduated Rate and Quality Rank. This data set contains quantitative data, e.g.,
6yrs Graduation Rate, which cannot be used in PromoRank directly because, from
Section 2, a subspace dimension has to be a set. Thus, quantitative data have to be
converted to categorical data first. In this paper, the number of categories is set to ten.
Each quantitative data will be linearly assigned to a category based on its value.

The result of PCA shows that there are two new principle components, i.e., dimen-
sions, that represents four original dimensions, namely, Grad Rate and Ratio. Grad Rate
strongly correlates, i.e., has low variance, with 4yrs Grad Rate and 6yrs Grad Rate. Ra-
tio, on the other hand, strongly correlates with Admission Ratio and Admission Rate.
For FA, there is a strong collation between 4yrs Graduation Rate and 6yrs Graduation
Rate, so the former one is removed. Finally, LDA reduces the number of dimensions
from ten to six.

3 http://mathforum.org/workshops/sum96/data.collections/
datalibrary/data.set6.html

4 http://www.basketballreference.com
5 http://wps.prenhall.com/esm mcclave statsbe 9/18/4850/
1241836.cw/index.html

6 http://www.stata.com

http://mathforum.org/workshops/sum96/data.collections/datalibrary/data.set6.html
http://mathforum.org/workshops/sum96/data.collections/datalibrary/data.set6.html
http://www.basketballreference.com
http://wps.prenhall.com/esm_mcclave_statsbe_9/18/4850/1241836.cw/index.html
http://wps.prenhall.com/esm_mcclave_statsbe_9/18/4850/1241836.cw/index.html
http://www.stata.com
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Table 3. Subspace ranking of Top US private college data set

Target Original Data Set FA PCA LDA

Object Subspaces Ranks Subspaces Ranks Subspaces Ranks Subspaces Ranks

{*} 1 {*} 1 {*} 1 {*} 1

CalTech {State=CA} 1 {State=CA} 1 {State=CA 1 {State=CA} 1

{4yrs Grad R.=70%} 1 {4yrs Grad R.=70%} - {Grad R.=85%} 1 {Grad R.=85%} 1

{6yrs Grad R.=90%} 1 {6yrs Grad R.=90%} 1 {Grad R.=85%} 1 {Grad R.=85%} 1

{*} 2 {*} 2 {*} 2 {*} 2

Rice {Enrollment=2} 1 {Enrollment=2} 1 {Enrollment=2} 1 {Enrollment=2} 1

Uni. {Enrollment=2, 1 {Enrollment=2, 1 {Enrollment=2, 1 {Enrollment=2,

6yrs Grad R.=90%} 6yrs Grad R.=90%} Grad R.=85%} Grad R.=85%} 1

{6yrs Grad R.=90%} 2 {6yrs Grad R.=90%} 2 {Grad R.=85%} 2 {Grad R.=85%} 1�

{*} 3 {*} 3 {*} 3 {*} 3

William {State=MA} 1 {State=MA} 1 {State=MA} 1 {State=MA} 1

College {Student/Fac. Rt.=80%} 1 {Student/Fac. Rt.=80%} 1 {Student/Fac. Rt.=80%} 1 {Ratio=40%} 1

{4yrs Grad R.=90%, 1 {6yrs Grad R.=100%} 1 {Grad R.=95%} 1 {Grad R.=95%} 2 �

6yrs Grad R.=100%}

Table 3 compares ranks (marked as Ranks) of Top-5 promotive subspaces (marked
as Subspaces) from the original US private college data set and reduced data sets
of three target objects. With Williams College as the target object, when the Top-5
promotive subspace of original data are {4yrs Graduation Rate=90%, 6yrs Gradua-
tion Rate=100% }. In the PCA reduced data, the comparable subspace is {Graduation
Rate=95%} . First of all, these two subspaces are compared because Graduation Rate
is the principle component of 4yrs Graduation Rate and 6yrs Graduation Rate. Then,
to map these two subspaces, the average of the original data set categories, i.e. 95, is
assigned to the reduced data set category. As a consequence, it is possible that , when
compared with the other object in O, the rank of the target object in the reduced sub-
space can be different from the original subspace. The differences are marked by a star
symbol. However, this mismatch is infrequently happened. Therefore, the result shows
that the ranking of Top-5 promotive subspace is mostly maintained even after the di-
mensionality reduction is performed on the data. The results show that LDA, which can
reduce the number of dimension (from ten to six) the most, maintains an acceptable
ranking result compared with the original one. Thus, LDA is the most preferred for this
data set.

5.2 NBA Data Set

This data set consists of 4,051 tuples with 12 subspace dimensions, namely First Name,
Last Name, Year, Career Stage, Position, Team, Games, Minutes, Assists, Block,
Turnover and Coach. The result from PCA and FA dictates that 6 dimensions, Game,
Minutes, Assists, Block, TurnOver and Coach can be removed. Thus, after dimensional
reduction, the reduced data set contains only six subspace dimensions, namely, First
Name, Last Name, Year, Career Stage, Position and Team. On the other hand, LDA can-
not be applied to this data set because the classification criterion cannot be met. In other
words, LDA cannot distinguish between independent and dependent variables.

Table 4 shows results from NBA data set. After six dimensions are removed, the
Top-5 promotive subspaces are hardly change in this data set. In particular, the result of
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Table 4. Subspace ranking of NBA data set

Target Original Data Set FA PCA LDA

Object Subspaces Ranks Subspaces Ranks Subspaces Ranks Subspaces Ranks

{*} 1 {*} 1 {*} 1

Kareem {Pos.=Center} 1 {Pos.=Center} 1 {Pos.=Center} 1

Abdul- {League=N} 1 {League=N} 1 {League=N} 1 N/A

Jabbar {Team=LA Lakers, 1 {Team=LA Lakers, 1 {Team=LA Lakers, 1

Year=1978} Year=1978} Year=1978}
{*} 2 {*} 2 {*} 2

Michael {Pos.=Forward} 1 {Pos.=Forward} 1 {Pos.=Forward} 1

Jordan {League=N} 2 {League=N} 2 {League=N} 2 N/A

{Team=Utah Jazz} 1 {Team=Utah Jazz} 1 {Team=Utah Jazz} 1

{*} 251 {*} 251 {*} 251

LeBorn {Car. Stg.=Young, 4 {Car. Stg.=Young, 4 {Car. Stg.=Young, 8�

James Pos.=Guard} Pos.=Guard} Pos.=Guard} N/A

{Car. Stg.=Young} 14 {Car. Stg.=Young} 14 {Car. Stg.=Young} 14

{League=N} 233 {League=N} 233 {League=N} 258�

FA does not change at all. This result show that, there are some data set that cannot be
improved by LDA. So, FA and PCA are the only available choices for such data set.

5.3 Stock Market Data Set

This data set consists of 5,891 tuples with 23 subspace dimensions, namely Company
Name, Industry Name, Ticket Symbol, SIC Code, Exchange Code, Size Class, Stock
Price, Price/Piece, Trading Volume, Market Price, Market Cap, Total Debt, Cash, FYE
Date, Current PE, Trailing PE, Firm Value, Enterprise Value, PEG Ratio, PS Ratio,
Outstanding, Revenues and Payout Ratio. Similar to the previous data set, this data set
is converted to categorical data with ten categories for each subspace dimension.

The result from PCA dictates that a subspace dimension, Price/Piece can be re-
moved, and there are two new principle components, namely, Price and Forward PE.
Price strongly correlates with Stock Price and Market Price. Forward PE, on the other
hand, strongly correlates with Current PE and Trailing PE. FA, on the other hand, can
reduce only one dimension. Stock Price and Market Price are highly correlated, so the
later is removed. Similar to the previous data set, LDA cannot improve this data set.

Table 5 shows results from Stock market data set. From the table, there is only few
differences between original and reduced data set, marked by a star in the table. Even
though, PCA incurs more changes than FA but they are small and acceptable. On the
contrarily, PCA can reduces three dimensions, compared with one of FA, so it should
perform more efficient. As a conclusion, in some data set, FA can reduce only a few
dimension, so, PCA performs better for such data set.

5.4 Amazon Affiliate Income Data Set

To verify the previous observation, the three algorithms was applied to another data
set, namely, Amazon affiliate income data set. This data set has 1,384 tuples and 12
dimensions, namely, Product Line, ASIN, Seller, Date Shipped, Prices, Real Prices,
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Table 5. Subspace ranking of Stock market data set

Target Original Data Set FA PCA LDA

Object Subspaces Ranks Subspaces Ranks Subspaces Ranks Subspaces Ranks

{*} 1 {*} 1 {*} 1

{Stock Price=$6, 1 {Stock Price=$6} 1 {Price=$6} 1

Bank of Mkt. Price=$6}
America {Size Class=10, 1 {Size Class=10, 1 {Size Class10, 1 N/A

FYE=31/12/2010} FYE=31/12/2010} FYE=31/12/2010}
{Current PE=20, 1 {Current PE=20, 1 {Current PE=20, 1

Trailling PE=12}, Trailling PE=12}, Trailling PE=12},
{*} 2 {*} 2 {*} 2

{Stock Price=$1, 1 {Stock Price=$1} 1 {Price=$1} 1

Greenshift Mkt. Price=$1} N/A

Corp {SIC Code=4953} 1 {SIC Code=4953} 1 {SIC Code=4953} 1

{Size Class=8, 2 {Size Class=8, 2 {Size Class=8, 2

FSE=31/12/2010} FSE=31/12/2010} FSE=31/12/2010}
{*} 3 {*} 3 {*} 3

AppTech {Stock Price=$0, 5 {Stock Price=$0} 1� {Price=$0} 1�

Corp Mkt. Price=$0} N/A

{Size Class=4} 1 {Size Class=4} 1 {Size Class=4} 1

{Ind. Nm.=Softw., 1 {Ind. Nm.=Softw., 1 {Ind. Nm.=Softw., 2�

Stock Price=$0} Stock Price=$0} Stock Price=$0}

Table 6. Subspace ranking of Amazon affiliate income data set

Target Original Data Set FA PCA LDA

Object Subspaces Ranks Subspaces Ranks Subspaces Ranks Subspaces Ranks

Mr. {*} 1 {*} 1 {*} 1

Spreads. {Seller=Amazon} 1 {Seller=Amazon} 1 {Seller=Amazon} 1

Excel {Date Shipped=Sep09} 7 {Date Shipped=Sep09} 7 {Date Shipped=Sep09} 7 N/A

2007 {Date Shipped=Nov09, 4 {Date Shipped=Nov09 4 {Date Shipped=Nov09 4

Library Items Shipped=1} Items Shipped=1} Items Shipped=1}
Excel {*} 2 {*} 2 {*} 2

2007 {Ref. Fee Rt.=6}, 3 {Ref. Fee Rt.=6}, 3 {Fee=7} 2 �

Power {Prod. Line=Books, 4 {Prod. Line=Books, 4 {Prod. Line=Books, 1� N/A

Prog. Ref. Fee Rt.=8, Ref. Fee Rt.=8, Ref. Fee Rt.=8,

With VBA Revenue=100} Revenue=100} Revenue=100}
{Seller=3rd Party} 5 {Seller=3rd Party} 5 {Seller=3rd Party} 5

Herman {*} 3 {*} 3 {*} 3

Miller {Seller=3rd Party} 1 {Seller=3rd Party} 1 {Seller=3rd Party} 1

Mirra {Seller=3rd Party, 2 {Seller=3rd Party, 2 {Seller=3rd Party, 1�

Chair; Date Shipped=Feb09, Date Shipped=Feb09, Date Shipped=Feb09,

Fully Items Shipped=1, Items Shipped=1, Items Shipped=1, N/A

Loaded; Ref. Fee Rt.=8} Ref. Fee Rt.=8} Fee=10}
Color; {Item Shipped=1, 2 {Item Shipped=1, 2 {Item Shipped=1, 1�

Graphite Ref. Fee Rt.=8, Ref. Fee Rt.=8, Fee=10,

Revenue=120} Revenue=120} Revenue=120}

Referral Fee Rate, Item Shipped, Revenue, Referral Fees and URL, Again, LDA cannot
be used to improve this data set because the classification criterion cannot be met. FA
can be used with this data set but it can remove only one dimension, i.e., Real Price.
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Table 7. Performance comparison

Date Set
Execution Time

Original Data Set with FA with PCA with LDA

Top Private College 2 seconds 1 second 1 second 1 second

NBA 20.5 minutes 16 minutes 15.2 minutes -

Stock Market 124 minutes 108 minutes 99 minutes -

Amazon Affiliate Income 36.5 minutes 29.3 minutes 21.1 minutes -

PCA indicates two new component, Prices and Fee. Prices is strongly correlated with
Prices and Real Prices in the original data set while Fee is strongly correlated with
Referral Fee Rate and Referral Fees.

Even though, PCA incurs more changes in Top-5 promotive subspace ranking that
FA, but the changes are small and acceptable. Therefore, PCA is preferred for this data
set because it can reduce more dimensions thatn FA.

5.5 Performance Improvement

This section shows the performance of PromoRank. Table 7 shows the comparison be-
tween the execution time of PromoRank on the original data set and the execution time
of PCA, FA and LDA to produce reduced data sets plus the execution time of Pro-
moRank on the reduced data sets. The result shows that the dimensionality reduction
algorithm can improve performance of PromoRank, for about 25% on a large data set.

6 Conclusion

Dimensionality reduction algorithms are introduced to reduce the dimensions of data set
in order to improve the performance of PromoRank algorithm. The results confirm that
the dimensionality reduction algorithm can reduce the execution time of PromoRank up
to 25% while mostly maintains the ranking result. In particular, when a data set can met
the classification criterion of LDA, then LDA is the best choices in terms of the number
of reduced dimensions. However, if LDA is not eligible, FA should be evaluated next
to see the number of dimensions it can reduce. If it can reduce many, then it is the next
best choices. Finally, if FA can reduce only one or two dimensions, PCA should be the
best choice because, in general, PCA can reduce more dimensions than FA.
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