
 

© Springer International Publishing Switzerland 2015 
H. Unger et al. (eds.), Recent Advances in Information and Communication Technology 2015, 

215

Advances in Intelligent Systems and Computing 361, DOI: 10.1007/978-3-319-19024-2_22 
 

Detect the Daily Activities and In-house Locations  
Using Smartphone 

Sittichai Sukreep, Pornchai Mongkolnam, and Chakarida Nukoolkit  

School of Information Technology  
King Mongkut’s University of Technology Thonburi  

Bangkok 10140, Thailand 
{sittichai.s,pornchai,chakarida}@sit.kmutt.ac.th  

Abstract. Falls are a key cause of significant health problems, especially for el-
derly people who live alone. Falls are a leading cause of accidental injury and 
death. To help assist the elderly, we propose a system to detect daily activities 
and in-house location of a user by means of a smartphone’s sensor and Wi-Fi 
access points. We applied data mining techniques to classify activity detection 
(e.g., sitting, standing, lying down, walking, running, walking up/downstairs, 
and falling) and in-house location detection. Health risk level configurations 
(threshold model) are applied for unhealthy activity detection with an alarm 
sounding and also short messages sent to those who have responsibility such as 
a caregiver or a doctor. Moreover, we provide various forms of easy to under-
stand visualization for monitoring and include health risk level summary, daily 
activity summary, and in-house location summary. 
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1 Introduction 

Fall accidents can cause severe health problems and can happen to anybody. The 
World Health Organization (WHO) reported in 2012 that falls were the second lead-
ing cause of accidental injuries and deaths worldwide; 424,000 individuals died from 
falls (1,160 persons/day), and over 80% of such deaths occurred in low and middle 
income countries [1-3].  

Currently, the world is changing toward ageing societies. More elderly people live 
alone rather than with their families. When those people fall during their daily activi-
ties, they cannot help themselves. Without anybody taking notice and providing help, 
their injuries could be fatal. Therefore, timely assistance and care may reduce the 
severity of the injuries.  

We aimed to improve the detection of Activities of Daily Living (ADL) and in-
house location in real-time, using a smartphone’s accelerometer sensor, three in-
home’s Wi-Fi access points (APs), and data mining classification methodology. We 
provided monitoring and warning of health risk levels. Moreover, we created various 
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data visualization tools for generating frequently used in-house locations and provid-
ing summarized health risk level reports. 

2 Related Work 

There are several systems available which detect daily activities and indoor locations. 
However, those systems or methods require rather sophisticated hardware or infra-
structure.  This has motivated our work to overcome their shortcomings. 

In 2013, Jian et al. [4] developed an automatic fall warning system. This system 
used an accelerometer and gyroscope sensors attached to a vest or other garment and 
collected the activities and fall data from elderly people. Daniel et al. [5] proposed a 
methodical algorithm which classified 11 activities and posture transitions (i.e., stand, 
sit, sit to stand, stand to sit, bend down, bend up, walking, lying, lying to sit, sit to 
lying, and bent) using an inertial tri-axial accelerometer located on the waist. The 
support vector machine (SVM) algorithm was used for classifications. Several re-
searchers established elderly people received injuries or in some cases death from 
falling [6-16]. In addition, more recent research has focused on activity or movement 
detection by using smartphones or sensors such as accelerometer or gyroscope. 

In 2014, Stephen et al. [16] developed a system for rehabilitation and diagnoses to 
understand the patients’ activities (e.g., walk or sit) by carrying a phone in different 
positions, including belt, pocket, hand, and bag. The authors used a smartphone’s 
accelerometer and SVM classifier to classify the activities. Guiry et al. [17] proposed 
a method to accurately detect human activities, including sitting, standing, lying, 
walking, running, and cycling using two accelerometers and to compare activity 
recognition classifiers using C4.5, CART, SVM, Multi-Layer Perceptrons and Naïve 
Bayes with accuracies as high as 98%. Quoc et al. [18] developed a wireless sensor 
system and algorithm to identify falls such as forward fall, backward fall, and sideway 
fall (left and right) by using ADXL345 (3-axis digital accelerometer sensor) and 
ITG3200 (3-axis digital gyroscope sensor), MCU LPC17680 (ARM 32-bit cortex 
M3), and Wi-Fi module RN13. Paliyawan et al. [19] developed a prolonged sitting 
detection system for office worker syndrome by using Kinect. 

Liu et al. [20] developed a technique and system for surveying wireless indoor po-
sitioning. Premchaisawatt [21] proposed machine learning techniques for enhancing 
indoor position in an experiment area of 30x10 meter2 with 77.32% accuracy. 
Zhongtang et al. [22] developed an in-house location detection system with an exper-
iment area of 16x29 meter2 and with 5 marked spots. 

3 Methodology 

3.1 System’s Overview 

We propose a system which classifies falls, basic daily movement activities, and  
in-house location detection, and provides health risk feedback with several easy to 
understand visualizations. The system obtains input data from a smartphone’s accel-
erometer sensor and the Wi-Fi signal strength from 3 APs in real-time. Detection of 
the daily activities and in-house locations are done using data mining classification as 
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shown in Fig. 1(a). Knowing the activities and locations, an alarm sounds and SMS is 
sent when a high risk situation or unhealthy condition is detected. The system can  
also provide summary reports on the safety level of the user’s activities and in-house 
locations. 
 

 

Fig. 1. (a) System’s Architecture and (b) Accelerometer’s Sensor Coordinates 

3.2 Daily Activity Detection Algorithm 

We develop an Android application for collecting acceleration data from a 
smartphone sensor and use a Windows application for processing the data. The 
smartphone sends the acceleration data of occurred movements to a server. The data 
are obtained by a tri-axial accelerometer as X, Y, and Z coordinates as shown in Fig. 
1(b). The system supports 7 activities (sitting, standing, lying down, walking, running, 
walking up/downstairs, and falling) and 4 selectable positions for the smartphone (i.e., 
waist, leg, front trouser’s pocket, and arm). It is necessary that the smartphone be 
attached to one of those positions. 

The method we use is based on machine learning. We divide the activity detections 
into two parts. First, in an offline phase, we build a learning system by letting the 
users perform activities and collecting the data when they are performed. After that 
we clean and prepare the data, extract their features, compare the classifiers provided 
by WEKA [23], including decision tree (J48), naïve Bayes, support vector machine 
(SVM) and k-nearest neighbor (KNN), and select the optimal classifier. Second, in a 
real-time phase, we use the program developed for the Android smartphone to classify 
the 7 daily activities. 
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Fig. 2. Sensor’s Velocity of Different Activities 

3.2.1   Offline Training Model of Daily Activities 
The velocity data from the accelerometer’s sensor shows that different activities have 
different signal patterns. For example, the velocity of running is greater than sitting, 
standing, and lying down as shown in Fig. 2.  

We collected the data from 25 human subjects in about 120,000 frames. We re-
quested the subjects to perform 7 activities (i.e., sitting, standing, lying down, walk-
ing, running, walking up/downstairs, and falling) and repeat each activity three times. 
Each time took about 10 seconds, and all of them included four smartphone positions 
(i.e., waist, leg, front trouser’s pocket, and arm). The Euclidian method was used to 
compute a rate of change of velocity. We used it to calculate the slope between two 
points of the accelerometer’s sensor data. We collected the data, cleaned, prepared, 
and then extracted the features using the Euclidian method as shown in Equation (1). 
,ሺ݅ܿܿܣ  ݆ሻ =  ඥሺܺi − Xjሻଶ +  ሺܻ݅ − ܻ݆ሻଶ + ሺZi − Zjሻଶ  ,              (1) 
 
where Acc(i, j)  represents the accelerometer from the ith and jth records, and X, Y, 
and Z represent the coordinates. 

We trained the data using WEKA with various classifiers such as decision tree 
(J48), naïve Bayes, support vector machine (SVM), and k-nearest neighbor (KNN). 
Then we compared the results and chose the optimal classifier.   

3.2.2   Real-Time Activity Classification 
We applied our optimal classifier, the KNN model (using 3 nearest neighbors for 
classification), on our system for detecting various kinds of activities. The system 
collected the acceleration data (the X, Y and Z coordinates) from the smartphone in 
real-time every 0.2 second. The data were processed as the input of the KNN model, 
and then the system predicted the activities. 

3.2.3   Noise Filtering 
Acceleration of movement data from the accelerometer’s sensor can be adversely 
affected by the abrupt transitions in activity detection and interference. We used the 
following method to prevent this problem. For example, when the user changed an 
activity immediately from one activity to another, such as from sitting to standing, the 
system would accept the state change from sitting to standing only when the activity 
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transition state had been continuously changed for more than 5 frames (~1 second). 
Otherwise, the state change would be rejected and it remained as the previous activity. 

3.3 In-house Location Detection Algorithm 

Our in-house location detection algorithm used the Wi-Fi signal strength to position 
the user’s whereabouts. We developed an Android’s application for collecting the Wi-
Fi signal strength levels from 3 APs. APs were set up on the same side of the house 
because we could reduce interferences and consider only one side of the Wi-Fi signal 
coverage as shown in Fig. 3(a). 

The algorithm used for classifying the in-house locations was based on machine 
learning. We divided our in-house location detection into two phases. First, in offline 
phase, we collected the data in the two-story house (with 24 marked locations). We 
collected the signal strength 50 frames for each marked location and repeated 10 
times around those spots. A data mining process was used to clean and prepare the 
data, and extract the features. We then compared four classifiers, including decision 
tree (J48), naive Bays, support vector machine (SVM) and k-nearest neighbor (KNN) 
and chose the optimal one. Second, in a real-time phase, we developed the system to 
detect in-house locations and evaluated the accuracy. 

3.3.1   Offline Training Model for Location Detection 
The Wi-Fi signal strength data from APs showed that different locations had different 
values. We used 3 APs for the in-house location detections, and we experimented 
with them in the two-story house. The house had an area of 3.5x10.5 meter2 on both 
floors as shown in Fig. 3(b). 

 

Fig. 3. (a) Signal Strength and Positions of Access Points and (b) Marked In-house Locations 

We collected the data from 24 marked spots (11 spots on the first floor and 13 
spots on the second floor) as shown in Fig. 3(b). The distance between each spot was 
about 2 meters, both vertically and horizontally. We used the smartphone to collect 
the Wi-Fi signal strength data also known as Received Signal Strength Indication 
(RSSI) from 3 APs. For each marked spot we collected the data 10 times, and each 
time we collected 50 frames/spot. So we had data equal to 50x10x24 = 12,000 frames 
in total. The data underwent a data mining process. They were cleaned and prepared, 
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and the features were extracted by the Euclidian method. The Euclidian calculation 
involved two parts. First, we calculated signal strength from the first AP and the se-
cond AP as shown in Fig. 4(a) using Equation (2). Second, we calculated it from the 
second AP and the third AP as shown in Fig. 4(b) using Equation (3). 

 

Fig. 4. Signal Strength from (a) First AP and Second AP and (b) second AP and third AP 

,ሺܹ1݁ܿ݊ܽݐݏ݅ܦ ܹ2ሻ =  ඥሺܹ1 − P1ሻଶ + ሺܹ2 − ܲ2ሻଶ  ,              (2) ݁ܿ݊ܽݐݏ݅ܦሺܹ2, ܹ3ሻ =  ඥሺܹ2 − P2ሻଶ + ሺܹ3 − ܲ3ሻଶ  ,                (3) 
 
where W1, W2, and W3 represent the mean value of signal strength from the 1st , 6th 
and 11th marked spot, and P1, P2, and P3 represent the signal strength from APs. 

We trained the data using WEKA with four classifiers, including decision tree 
(J48), naive Bays, support vector machine (SVM) and k-nearest neighbor (KNN). 
Then we compared the results of those classifiers and chose the optimal one. 

3.3.2   Real-Time Testing Model 
KNN was used as our optimal classifier for the in-house location detection. The signal 
strength data were collected in real-time every three seconds and were calculated by  
the Euclidian method. The data were processed as input data of the KNN model, and 
then the system predicted the in-house locations as shown in Fig. 5. 

 

Fig. 5. In-house Location Detection 
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4 Experiment and Results 

4.1 Experiment Setup 

In our test, we set up the 3 APs in a two-story house. The house floor area was ap-
proximately 3.5x10.5 meter2. There were 24 marked spots, with 11 marked points on 
the first floor and 13 marked points on the second floor. All 3 APs were on the first 
floor and on the same wall. All activities and in-house locations were covered. Ten 
volunteers were asked to perform various activities, using a Samsung Galaxy S5 
phone equipped with the accelerometer and Wi-Fi signal receiver. 

4.2 Data Collection 

4.2.1   Activity Data Collection 
We collected the accelerometer data for the 7 activities (sitting, standing, lying down, 
walking, running, walking up/downstairs, and falling). The activities were performed 
by 10 volunteers. We let the volunteers with the attached smartphones move freely 
from one position to another position. The smartphone was attached to four different 
positions, including the front trouser pocket, arm, leg, and waist. 

The volunteers performed activities 10 seconds (~5 frames/second) for normal ac-
tivities without fall and 3 times for falling. So there was a total of 12,580 frames for 
testing. All data were saved to a database server in real-time. 

4.2.2   In-house Location Data Collection 
We collected location data from the Wi-Fi signal strength of the smartphone. We 
requested the volunteers to stand at the marked spots for collecting the data. At each 
marked spot, 50 frames were collected and saved to the database. There were 24x50 = 
1,200 frames per volunteer. So there was a total of 1,200x10 = 12,000 frames alto-
gether.  

4.2.3   Evaluation 

4.2.3.1   Activity Detection Evaluation. The accelerometer data that we collected 
from the volunteers were feature-extracted and evaluated using the KNN (K=3) model 
and recorded an average accuracy of 97.48% of all activities combined. The accuracy 
of each activity is listed in Table 1. 
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Table 1. Accuracy of Activity Detection 

No. Gender Age Weight 
(kg.) 

Height 
(cm.) 

Sit Stand Lie-down Walk Run Walk 
Up/Downstairs 

Fall 

1 Male 43 60 167 100.00 100.00 100.00 92.69 98.02 88.94 100.00 

2 Female 24 54 152 100.00 100.00 100.00 95.79 99.50 89.24 100.00 

3 Female 48 80 158 100.00 99.03 99.04 94.62 100.00 91.23 100.00 

4 Male 63 45 165 100.00 99.01 100.00 93.84 100.00 88.33 100.00 

5 Female 36 73 165 100.00 100.00 100.00 92.73 98.48 92.89 100.00 

6 Female 60 69 155 98.57 100.00 99.50 92.56 98.50 88.09 100.00 

7 Female 38 58 157 100.00 100.00 98.58 93.12 99.04 92.69 100.00 

8 Female 45 65 167 98.04 99.02 98.05 95.85 100.00 93.75 100.00 

9 Male 42 68 170 99.51 100.00 99.04 95.81 95.00 94.69 100.00 

10 Male 50 60 172 100.00 100.00 99.03 91.96 98.53 91.11 100.00 

Average (%) 99.61 99.71 99.32 93.90 98.71 91.10 100.00 

4.2.3.2   Location Detection Evaluation. The in-house location data which we  
collected from the volunteers were feature-extracted and evaluated using the KNN  
(k = 3) model. We evaluated each marked spot (F01-F24) and recorded an average 
accuracy of about 94.11%. The accuracy table is shown in Table 2. 

Table 2. Confusion Matrix Showing Accuracy of In-house Location Detections 

Marked Spot F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 Accuracy 

F01 98.80 0.00 0.80 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.80 

F02 0.00 96.02 0.20 2.19 1.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.02 

F03 2.65 1.43 92.87 0.20 2.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.87 

F04 0.00 1.06 0.00 92.39 0.42 5.50 0.63 0.00 0.00 0.00 0.00 0.00 92.39 

F05 0.80 3.99 2.00 0.20 92.42 0.20 0.20 0.00 0.20 0.00 0.00 0.00 92.42 

F06 0.18 0.73 0.91 2.73 0.73 94.36 0.36 0.00 0.00 0.00 0.00 0.00 94.36 

F07 0.00 1.67 0.42 1.88 3.55 2.92 86.85 1.04 1.67 0.00 0.00 0.00 86.85 

F08 0.00 0.00 0.00 0.00 0.00 0.00 2.88 88.89 3.29 0.62 4.12 0.00 88.89 

F09 0.19 0.00 0.00 0.00 1.33 0.19 3.05 3.05 91.24 0.00 0.95 0.00 91.24 

F10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.21 0.00 98.79 0.00 0.00 98.79 

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.25 2.43 1.42 92.90 0.00 92.90 

F12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 95.61 95.61 

Marked Spot F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 Accuracy 

F12 0.60 0.60 1.80 0.20 0.40 0.00 0.80 0.00 0.00 0.00 0.00 0.00 95.61 

F13 96.79 0.20 1.80 0.00 0.20 0.00 0.20 0.00 0.00 0.00 0.00 0.00 96.79 

F14 1.41 93.33 0.40 0.20 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.33 

F15 3.59 0.80 91.43 0.00 1.59 0.00 1.59 0.00 0.00 0.00 0.00 0.00 91.43 

F16 0.00 0.00 0.00 96.89 0.97 0.00 1.95 0.00 0.00 0.00 0.00 0.00 96.89 

F17 2.43 1.77 4.86 2.65 86.31 0.00 1.10 0.00 0.00 0.00 0.00 0.00 86.31 

F18 0.00 0.00 0.00 0.00 0.00 99.56 0.00 0.44 0.00 0.00 0.00 0.00 99.56 

F19 0.89 0.89 3.12 0.67 4.45 0.00 89.31 0.00 0.00 0.00 0.00 0.00 89.31 

F20 0.00 0.00 0.00 0.00 0.00 1.22 0.00 98.09 0.70 0.00 0.00 0.00 98.09 

F21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.05 97.26 1.05 0.42 0.21 97.26 

F22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 3.21 95.99 0.00 0.00 95.99 

F23 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 1.23 0.62 96.54 0.86 96.54 

F24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 1.39 1.98 96.03 96.03 

Average (%) 94.11 

 
 



 Detect the Daily Activities and In-house Locations Using Smartphone 223 

 

It could be seen that some locations were misclassified because the signal strength 
from APs were affected by the surrounding environment, such as door opening, door 
closing, or postures of the volunteers; therefore, data from the signal strength could 
change, resulting in misclassified locations. 

5 Conclusions and Future Work 

In this paper, we propose a practical and affordable system using a smartphone’s ac-
celerometer sensor and the Wi-Fi signal strength from APs to detect and visualize the 
in-house locations and daily activities such as sitting, standing, lying down, walking, 
running, walking upstairs and downstairs, and falling. We apply data mining tech-
niques for those daily activities and in-house locations of the user. The changes of 
activities and in-house locations are detected by the threshold model. We provide an 
easy to use and understand user interface and visualization to monitor the activities 
and in-house location in real-time by displaying the related information on a separate 
monitoring computer screen. Moreover, our system can warn the user when his or her 
health risk level exceeds the preset level. The achieved accuracy of activity detections 
is 97.48%, and the accuracy of the in-house location detections is 94.11%. Moreover, 
our proposed system can detect the fall activity, the detection of which is crucial for 
one’s well-being, with 100% accuracy. In addition, our proposed system is much 
easier to set up than previous systems. 

We hope to use this system with elderly people in order to track their daily physi-
cal movement activities so that we can learn more about them, e.g., used at home, 
nursing homes, or hospitals; for example, some elderly may prefer sitting idly on the 
couch while watching television. Some might spend more time in the bedroom than in 
the kitchen. This information is very helpful to family members and healthcare pro-
viders, particularly in an ageing society. 
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