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Abstract. Activity Recognition (AR) research is growing and plays a major 
role in various fields. The approach of using wearable sensors for AR is well-
accepted, as it compensates the need to install cameras in image processing ap-
proach which can lead to privacy violation. Using wearable sensors can suffer 
from one disadvantage – sensor displacement. There have been a number of re-
search which studies sensor displacement problem. However, the conclusion 
cannot be made as which classifier is better than another in recognizing dis-
placement data, as the prior experiments were performed under different condi-
tions and focused on different parts of the body. This work aims to evaluate 
recognition performance of different algorithms – SVM, C4.5, and Naïve Bayes 
– on ideal-placement and displacement data on whole body activities, by adopt-
ing REALDISP dataset to make such evaluation. The accuracy of all algorithms 
on ideal placement data was above 90%, where SVM yielded the highest accu-
racy. Displacement data were tested against classification models constructed 
from ideal-placement data. The results shows that there was a dramatic drop in 
recognition performance. The accuracy of all algorithms on displacement data 
was between 50-60%, and C4.5 could handle displacement data the best. 

Keywords: Activity Recognition, Sensor Displacement, Naïve Bayes, SVM, 
C4.5. 

1 Introduction 

Activity Recognition (AR) is an active research area in recent years. It plays a major 
role in diverse applications. In pervasive healthcare, AR supports preventive or chron-
ic healthcare, cognitive assistance, and elderly monitoring [1, 2]. In security, AR sup-
ports the identification of terrorist actions and threats, or monitoring individual’s  
activities in security sensitive areas, such as hospitals, and banks [3]. On mobile de-
vices, AR supports user’s activities monitoring, and enabling screen rotation [4]. 

According to Ugulino et. al, there are two approaches commonly used for activity 
recognition: image processing and the use of wearable sensors [1]. Image processing 
approach does not require users to put an equipment on their bodies; however,  
this approach encounters some limitations, including the requirement to install camer-
as, and image quality which can be affected by environmental conditions, such as 
lighting [1]. The installation of cameras may controversially violate user’s privacy 
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[1]. The second approach for AR is the use of wearable sensors. This approach com-
pensates the limitations of image processing approach [1]. Even though this approach 
requires users to wear the equipment through a period of time, general public is more 
likely to accept it [1], as the equipment can be easily turned-off or removed [2]. 
Wearable sensors also offer real-time activity information for AR [2].  

Despite having many strengths, using wearable sensors for activity recognition can 
suffer from one major disadvantage – sensor displacement. The implementation of 
wearable sensors requires the equipment to be attached at predefined positions, and 
the classification model is built by assuming constant sensor positions [5]. However, 
this can hardly be maintained in real-life condition. As a result, the model may fail to 
classify the activities from the sensor data. Misclassification may lead to unwanted 
consequence; for instance, it could be very dangerous in elderly pervasive healthcare 
system if the classifier failed to recognize elderly falling. Displacement of sensors can 
be caused by either sensor loose fitting or displacing by the users themselves [5].  

There have been a number of research which studies the sensor displacement; some 
of them proposes heuristics to improve classifier’s robustness. The research may, 
however, focus on different parts of the body or a different set of activities. For in-
stance, Chavarriaga et. al [6] study the effects of sensor displacement and propose an 
unsupervised adaptive classifier to tackle the problem. The experiment in this study 
focused on three activity scenarios: HCI gestures, fitness, and daily living scenarios. 
The sensors were installed on an participant’s arm in HCI gesture scenario, on a leg in 
fitness scenario, and on both arms and the back in daily living scenario [6]. Kunze and 
Lukowicz investigate the effect of displacement on onbody activity recognition sys-
tems [7]. They presented a set of heuristics which increase the robustness of the 
recognition with the respect of sensor displacement [7]. In the experiment, they fo-
cused on locomotion activities (e.g. walking, running, walking up hill, biking, etc) 
and gym exercise activities (e.g. shoulder press, arm extension, arm curl, etc). The 
sensors were installed participant’s legs in locomotive activity experiment, and the 
sensors were installed on the arms in gym exercise experiment [7]. 

Regarding the previous studies, the conclusion cannot be made as which classifier 
is better than others for recognizing sensor displacement data, as the experiments 
were performed under different conditions and were focusing on different parts of the 
body or different sets of activities. In addition, none of the studies has explicitly de-
scribed performance degradation of the classifier on ideal-placement and displace-
ment data. Therefore, this current work aims to examine performance of three popular 
recognition algorithms – SVM, C4.5, and Naïve Bayes – on ideal-placement and dis-
placement data on whole body activities, by adopting REALDISP dataset to make 
such evaluation. The main objective is to evaluate which of the algorithms would 
outperform others on the displacement problem. 

2 Related Works  

2.1 REALDISP Dataset 

REALDISP (REAListic sensor DISPlacement) dataset lends itself as a benchmark 
dataset for activity recognition, whether in ideal, real-life, or extreme displacement 
conditions.  
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The dataset was collected to investigate the effects of sensor displacement in ac-
tivity recognition [8], which can be either caused by loose fitting of sensors or dis-
placement by users themselves. This dataset was created by Banos et. al [5, 9]. The 
dataset was built upon three scenarios: ideal-placement, self-placement, and induced-
displacement [8]. The dataset covers a wide range of physical activities and locations 
of wearable sensors [9]. 

Ideal-Placement data was generated when the sensors were positioned to prede-
fined locations by the instructor (i.e. research team). The data from ideal-placement 
can be considered as the training set for the recognition model [10]. Self-Placement 
data was induced when the users place the sensors on their body parts specified by the 
research team. Data from self-placement may slightly differ from the ideal-placement 
one; however, the difference is considered to be too trivial [10]. Induced-
Displacement occurred when the sensors were misplaced by rotations or translations 
with respect to the ideal setups. In REALDISP dataset, the induced-displacement data 
was generated by intentionally displacement of sensors by the research team [10].  

Activity data were collected from 17 subjects. Thirty-three physical activities were 
included in the dataset, as listed in table 1. 

Table 1. Activity Set 

# Activity # Activity # Activity 

1 Walking 12 Waist rotation 23 Shoulders high  

amplitude rotation 

2 Jogging 13 Waist bends 24 Shoulders low ampli-

tude rotation 

3 Running 14 Reach heels backwards 25 Arms inner rotation 

4 Jump Up 15 Lateral bend 26 Knees to the breast 

5 Jump Front & Back 16 Lateral bend arm up 27 Heels to the back side 

6 Jump Sideways 17 Repetitive forward stretching 28 Knees bending 

7 Jump legs/arms 

opened/closed 

18 Upper trunk and lower body 

opposite twist 

29 Knees bend forward 

8 Jump rope 19 Arms lateral elevation 30 Rotation on the knees 

9 Trunk twist (arms out-

stretched) 

20 Arms frontal elevation 31 Rowing 

10 Trunk twist   (elbows 

bended) 

21 Frontal hand claps 32 Elliptic bike 

11 Waist bends forward 22 Arms frontal crossing 33 Cycling  

 
The measurement of the whole body was measured in activities 1 – 3, 5 – 8, and 31 

– 33 [10]. Activities focused on trunk were measured in activity 9 – 18, upper extrem-
ities in 19 – 25, and lower extremities in activity 26 – 29 [10]. All activities were 
measured by 9 sensors; each of which measured four sensor modalities: acceleration, 
rate of turn (gyroscope), magnetic field, and orientation [9]. Each sensor provided tri-
directional measurements; except for orientation that was measured in quaternion 
format [10]. The sensors were installed on nine different parts of the subject’s body: 
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1) left calf, 2) left thigh, 3) right calf, 4) right thigh, 5) back, 6) left lower arm, 7) left 
upper arm, 8) right lower arm, and 9) right upper arm [9]. Altogether, this makes up 
117 attributes. 

2.2 Recognition Algorithms 

This section gives an overview of algorithms used for the comparison in this paper. 
The algorithms are selected based on the survey of activity recognition algorithms 
conducted by Ugulino et. al [1]. They are three algorithms which are commonly used 
for recognition tasks: SVM, C4.5, and Naïve Bayes. 

SVM 
SVM (Support Vector Machines) is a supervised learning algorithm used for binary 
classification of both linear and non-linear data [11]. When data are linearly separa-
ble, SVM would search for maximum marginal hyperplane, or a decision boundary 
that best separate the tuples of one class from another. Hyperplane with larger margin 
is expected to be more accurate in classification [11]. When data are not linearly sepa-
rable, SVM uses a nonlinear mapping to transform the original data into a higher di-
mension feature space. Then, SVM searches for a linear separating hyperplane in the 
new feature space [11].  

C4.5 
C4.5 is an algorithm for decision tree induction, presented in the year 1993 [12]. C4.5 
uses top-down approach to construct a classification model. It starts with all training 
tuples at the root node of the tree, then an attribute would be selected to partition the 
tuples [13]. The process would be repeated as the tree is being built [11].  

An attribute selection measure is required to select the attribute that best split the 
tuples [11]. Attribute selection measure is a heuristic for selecting the splitting criteri-
on that best separate the tuples of class-labeled training tuples into individual classes 
[11]. Specifically, the attribute that yields ‘pure’ partitions would be selected. A pure 
partition means that all tuples in that particular partition belong to the same class [11]. 
In other words, the selected attribute minimizes an information entropy applied to 
tuple partition [13]. For C4.5, it uses gain ratio as splitting criteria; the splitting would 
stop when the number of instances to be split is below the threshold.  

Naïve Bayes 
Naïve Bayes classification, or simple Bayesian Classifier, is in the family of Bayes 
Classification methods [11]. Classifiers in this family are statistical classifiers; mean-
ing that they can predict membership probabilistic [11]. Naïve Bayes, like other 
Bayesian Classifiers, is based on Bayes’ Theorem [11].  

Naïve Bayes presumes conditionally independence of the classes. It determines the 
probability that an instance would belong to a particular class - posterior probability 
(i.e. P(Ci|X)). Posterior probability is calculated from another three prior probability 
values: P(Ci), P(X), and P(X|Ci). P(Ci) is the probability that an instance belongs to 
class Ci, regardless of X. P(X) is the probability that an instance has attribute values 
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X, regardless of Ci. P(X|Ci) is the probability that an instance has attribute values X, 
given an instance belongs to class Ci [11]. P(Ci|X) is calculated by the following  
equation: 

                                                  P Ci|X =
P X|Ci P Ci

P(X)
                                           (1) 

3 Comparative Experiments 

3.1 Methodology 

Although REALDISP contains activity data from 17 subjects, only some subjects had 
the data on both ideal-placement scenario and displacement scenario. In this paper, 
data from subject number 2 were selected for the analysis, as the data on both scenar-
ios of this subject were available.  

In this paper, only whole body activities were selected for the analysis. There were 
altogether 10 activities, including: 1) Walking, 2) Jogging, 3) Running, 4) Jump front 
and back (jump 1), 5) Jump Sideways (jump 2), 6) Jump legs/arms open/closed (jump 
3), 7) Jump rope (jump 4), 8) Rowing, 9) Elliptic bike, and 10) Cycling. 

Ideal-placement data were used to construct classification models by using classifi-
cation algorithms described in section 2.2. Ten-fold cross validation was employed  
in every model construction. Sensor displacement dataset was used to test against  
the constructed models, to examine the effect of sensor displacement on activity 
recognition.  

3.2 Results 

This section describes the recognition performance of SVM, C4.5, and Naïve Bayes 
algorithms on ideal-placement data and displacement data. Confusion matrices for 
recognition performance under each condition for each algorithm are also provided. 

Ideal Placement  
The recognition performance of each algorithm on ideal-placement data was highly 
accurate. There were some differences; however, they were very small. 

Table 2. Ideal-Placement Recognition Accuracy  

SVM C4.5 Naïve Bayes 
99.95% 99.61% 91.73% 

 
The accuracy of SVM is the highest among the three algorithms (99.95%). Accura-

cy of C4.5 is slightly lower than that of SVM (99.61%). The accuracy of Naïve Bayes 
is the lowest, compared to the other two algorithms (91.73%). Confusion matrix of 
each algorithm is elaborated as follows: 
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Table 3. Confusion Matrix (SVM) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

15976 0 0 0 0 0 0 0 0 0 Walking 
0 15124 7 0 0 0 0 0 0 0 Jogging 
0 13 11656 0 0 0 0 0 0 0 Running 

0 0 0 3603 6 0 0 0 0 0 Jump 1 
0 0 0 12 3644 0 0 0 0 0 Jump 2 
0 0 0 0 0 3785 1 0 0 0 Jump 3 
0 0 0 0 0 1 2022 0 0 0 Jump 4 
0 0 0 0 0 0 0 8203 0 0 Rowing 
0 0 0 0 0 0 0 0 10040 0 E. Bike 
0 0 0 0 0 0 0 0 0 11111 Cycling 

 
 
Table 3 describes the confusion matrix of classification results of SVM on ideal-

placement data. Recognition accuracy on walking, rowing, elliptic bike, and cycling 
was 100% accurate. There was some instances in running and jogging activities that 
were misclassified as one another, and some particular jumping activities that were 
classified as other types of jumping. 

Table 4. Confusion Matrix (C4.5) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

15975 0 1 0 0 0 0 0 0 0 Walking 
2 15003 125 0 0 0 0 0 0 0 Jogging 
0 131 11538 0 0 0 0 0 0 0 Running 

0 0 0 3594 7 7 1 0 0 0 Jump 1 
0 0 2 16 3636 2 0 0 0 0 Jump 2 
0 0 1 8 4 3763 10 0 0 0 Jump 3 
0 0 0 2 1 9 2011 0 0 0 Jump 4 
0 0 0 0 0 0 0 8203 0 0 Rowing 
0 0 0 0 0 0 0 0 10040 0 E. Bike 
0 0 0 0 0 0 0 0 0 11111 Cycling 

 
 
Table 4 describes the confusion matrix of classification results of C4.5 on ideal-

placement data. Recognition accuracy on rowing, elliptic bike, and cycling was 100% 
accurate. In walking activity, only one instance was misclassified as running. Similar 
to the results of SVM, some instances of jogging were classified as running, while 
some instances of running were classified as jogging. Some instances in a particular 
jumping activity was misclassified for other jumping activities. 
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Table 5. Confusion Matrix (Naïve Bayes) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

15840 136 0 0 0 0 0 0 0 0 Walking 
2 11612 3519 0 0 0 0 0 0 0 Jogging 
0 3191 8477 0 1 0 0 0 0 0 Running 

0 0 0 3541 65 0 3 0 0 0 Jump 1 
0 0 0 62 3588 6 0 0 0 0 Jump 2 
8 0 0 24 7 3747 0 0 0 0 Jump 3 
0 0 0 0 9 8 2006 0 0 0 Jump 4 
0 0 0 0 0 0 0 8194 9 0 Rowing 
0 0 0 0 0 0 0 0 10040 0 E. Bike 
0 0 0 0 0 0 0 0 0 11111 Cycling 

 
 
Table 5 describes the confusion matrix of classification results of Naïve Bayes on 

ideal-placement data. Recognition accuracy on elliptic bike, and cycling was 100% 
accurate. In walking activity, 136 instances were misclassified as running. In Naïve 
Bayes, many instances of jogging were classified as running, while many instances of 
running were classified as jogging. Similar to the results from the other two algo-
rithms, some instances in a particular jumping activity was misclassified for other 
jumping activity. Misclassification in jogging, running, and all jumping activities was 
similar to that of C4.5.   

Displacement 
The recognition performance on displacement data dramatically dropped on every 
algorithm. The recognition accuracy is described in table 6. 

Table 6. Sonsor Displacement Recognition Accuracy  

SVM C4.5 Naïve Bayes 
52.10% 60.78% 56.43% 

 

When the constructed models were tested against sensor displacement data, C4.5 
was most accurate (60.78%). The accuracy of Naïve Bayes was at 56.43%. The accu-
racy of SVM was the lowest (52.10%), even it was the highest when recognizing the 
ideal-placement one. 

Table 7 describes the confusion matrix of classification results of SVM on dis-
placement data. There was no 100% recognition accuracy on any of the activities. 
Although the misclassification percentage was high, the misclassified instances were 
not widely spread.  

Table 8 describes the confusion matrix of classification results of C4.5 on dis-
placement data. There was no 100% recognition accuracy on any of the activities. 
Misclassification was very disperse on every activities; except for rowing, which was 
misclassified for only another two activities. 
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Table 7. Confusion Matrix (SVM) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

15999 0 0 0 3190 2263 3858 2672 31 4 Walking 
0 15126 5 0 2945 1670 5203 3082 0 0 Jogging 
0 12 11699 58 2870 2621 6438 1390 9 0 Running 

2 70 165 3613 266 578 1849 536 0 256 Jump 1 
73 46 494 9 3968 196 1942 329 0 457 Jump 2 
0 0 517 6 255 4509 1778 885 0 5 Jump 3 
0 0 0 0 0 953 2586 443 0 0 Jump 4 
0 0 0 0 0 1721 0 13405 0 0 Rowing 
0 0 27 77 4236 63 4533 6426 10040 0 E. Bike 
0 40 0 1263 200 0 5090 10604 0 11111 Cycling 

Table 8. Confusion Matrix (C4.5) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

18388 149 1757 963 287 5657 0 7 481 328 Walking 
14 15281 3014 0 1318 7947 213 0 244 0 Jogging 
9 599 18012 0 1198 4481 46 87 579 86 Running 

287 451 40 3757 38 224 1282 13 804 439 Jump 1 
293 396 19 4776 3660 353 1198 24 977 117 Jump 2 
128 288 731 238 492 5206 726 39 0 77 Jump 3 
598 11 33 89 0 555 2412 10 267 7 Jump 4 

0 0 0 0 0 0 0 8246 4790 2090 Rowing 
226 700 1169 0 29 3720 0 68 19064 426 E. Bike 
3184 190 5832 0 3 50 5 823 4824 13397 Cycling 
 

Table 9. Confusion Matrix (Naive Bayes) 

Walking Jogging Running Jump 1  Jump 2 Jump 3 Jump 4 Rowing E. Bike Cycling  

16225 3839 958 0 0 0 0 91 6904 0 Walking 
0 14249 9820 0 4 189 8 12 3749 0 Jogging 
0 4072 17299 0 9 1049 16 17 2635 0 Running 

0 251 1457 3553 79 596 2 4 1393 0 Jump 1 
0 332 1518 74 3640 598 0 1 1351 0 Jump 2 
8 47 2927 23 15 4709 0 12 184 0 Jump 3 
0 67 613 1 47 697 2009 1 547 0 Jump 4 
0 181 2457 0 0 0 0 11546 941 1 Rowing 
0 2857 7154 0 0 0 0 7 15384 0 E. Bike 
0 864 7328 0 0 3 0 2726 6275 11112 Cycling 
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Table 9 describes the confusion matrix of classification results of Naïve Bayes on 
displacement data. There was no 100% recognition accuracy on any of the activities. 
Misclassification was very disperse on every activities. 

4 Conclusion and Future Works 

4.1 Conclusions 

Activity Recognition (AR) plays a major role in various fields; for instance, pervasive 
health care, security, and wearable and mobile devices. The approach of using weara-
ble sensors for AR is well-accepted, as it compensates the need to install cameras in 
image processing approach which can lead to privacy violation. Using wearable sen-
sors for activity recognition can suffer from one disadvantage – sensor displacement. 
There have been a number of research that studies sensor displacement problem. 
However, the conclusion cannot be made as which classifier is better than another in 
recognizing displacement data, as the prior experiments were performed under differ-
ent conditions and focused on different part of the body. This paper showed the 
recognition performance evaluation of SVM, C4.5, and Naïve Bayes – on ideal-
placement and displacement data on whole body activities, by adopting REALDISP 
dataset to make such comparison.   

Ideal placement data were employed to construct classification models. Displace-
ment data were tested against the models, to examine the effects of sensor displace-
ment on classification accuracy of each algorithm. 

Recognition performance of all algorithms on ideal placement data was highly ac-
curate. The accuracy of SVM on this dataset was at 99.95%, which was the highest 
among the three algorithms. Recognition accuracy of C4.5 was at 99.61%, while that 
of Naïve Bayes was at 91.73%. On ideal placement dataset, some misclassification 
patterns can be spotted. On jogging and running data, these two activities were mis-
classified for one another. There were also some misclassification occurred among the 
four jumping activities. 

When the classification models constructed from ideal placement data were tested 
against displacement data, recognition performance dropped dramatically. Accuracy 
of SVM, C4.5, and Naïve Bayes decreased to 52.10%, 60.78%, and 56.43%, respec-
tively. Although the accuracy of SVM was the lowest, the misclassified instances 
were not widely spread like C4.5 and Naïve Bayes. 

In sum, the results of the current work illustrates how recognition accuracy can suf-
fer from sensor displacement, and also which algorithm is the most robust one in han-
dling displacement data. The results can lead to further improvement on recognition 
algorithm in dealing with sensor displacement data. 

4.2 Future Works 

Some future works may include the investigation on activities related to specific parts 
of the body (e.g. trunk, upper extremities, and lower extremities), as this work fo-
cused only on whole-body activities. Some other recognition algorithms can be em-
ployed to examine the effect of sensor displacement on recognition accuracy. Further 
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investigation can also be made on the activities that were likely to be classified for 
one another (e.g. jogging and running, and the set of jumping activities). 

References 

1. Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidiú, R., Fuks, H.: Wearable Computing: 
Accelerometers’ Data Classification of Body Postures and Movements. In: Barros, L.N.,  
Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS 
(LNAI), vol. 7589, pp. 52–61. Springer, Heidelberg (2012) 

2. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., 
Rahimi, A., Rea, A., Borriello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J.A., 
Lester, J., Wyatt, D., Haehnel, D.: The Mobile Sensing Platform: An Embedded Activity 
Recognition System. Journal of IEEE Pervasive Computing 7(2), 32–41 (2008) 

3. Muncaster, J., Ma, Y.: Activity Recognition using Dynamic Bayesian Networks with Au-
tomatic State Selection. In: IEEE Workshop on Motion and Video Computing, pp. 30–37. 
IEEE Computer Society, Washington, D.C. (2007) 

4. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity Recognition using Cell Phone Accel-
erometers. In: Sensor KDD 2010, pp. 74–82. ACM, New York (2011) 

5. Banos, O., Damas, M., Pomares, H., Rojas, I., Toth, M.A., Amft, O.: A Benchmark Da-
taset to Evaluate Sensor Displacement in Activity Recognition. In: Proceeding of the 14th 
International Conference on Ubiquitous Computing, pp. 1026–1035. ACM, New York 
(2012) 

6. Chavarriaga, R., Bayati, H., Millan, J.R.: Unsupervised Adaptation for Acceleration-Based 
Activity Recognition: Robustness to Sensor Displacement and Rotation. Pers. Ubiquit. 
Comput. 17, 479–490 (2014) 

7. Kunze, K., Lukowicz, P.: Dealing with Sensor Displacement in Motion-Based Onbody 
Activity Recognition Systems. In: Proceeding of the 10th International Conference on 
Ubiquitous Computing, pp. 20–29. ACM, New York (2008) 

8. Banos, O., Tóth, M.A., Amft, O.: REALDISP Activity Recognition Dataset,  
http://archive.ics.uci.edu/ml/datasets/ 
REALDISP+Activity+Recognition+Dataset 

9. Banos, O., Tóth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the Effects of 
Sensor Displacement in Wearable Activity Recognition. Sensors 14(6), 9995–10023 
(2014) 

10. Banos, O., Toth, M.A.: Realistic Sensor Displacement Benchmark Dataset. Dataset Manu-
al (2014) 

11. Han, J., Kamber, M., Pei, J.: Data Ming – Concepts and Techniques. Morgan Kaufmann, 
Massachusetts (2012) 

12. Rokach, L., Maimon, O.: Data Mining with Decision Trees – Theory and Applications. 
World Scientific, Singapore (2008) 

13. Kantardzic, M.: Data Mining – Concepts, Models, Methods, and Algorithms. IEEE Press, 
US (2003) 


	A Comparative Study on Sensor Displacement Effect on Realistic Sensor Displacement Benchmark Dataset
	1 Introduction
	2 Related Works
	2.1 REALDISP Dataset
	2.2 Recognition Algorithms

	3 Comparative Experiments
	3.1 Methodology
	3.2 Results

	4 Conclusion and Future Works
	4.1 Conclusions
	4.2 Future Works

	References




