
Chapter 8
Grain Growth and Microstructure
Development

8.1 Introduction

The properties of a ceramics are determined by its chemical composition intrinsi-
cally and microstructure extrinsically. For ceramics with a given composition,
microstructure means the overall feature, which reflects its grain size and mor-
phology, grain size distribution, porosity, pore size and distribution, type and
quality of grain boundaries, as well as the nature and distribution of second-phases,
and so on. For most applications, especially optical transparency, microstructural
control means to achieve full densification, narrow distribution of grain size, least
contamination, and so on [1, 2]. The microstructure of a ceramics is directly related
the quality of the green compact, which is dependent on the properties of the
precursor powder, as well as the consolidation method used to form the green body.
Therefore, the control of microstructure of ceramics is a systematic engineering.
When all other conditions have been fixed, controlling microstructure during the
sintering process becomes especially important. Densification is almost inevitably
accompanied by the growth of both grains and pores, which is known as micro-
structure coarsening. Densification process has been discussed previously; this
chapter focuses on coarsening process and the interrelationship between densifi-
cation and coarsening, in terms of microstructural control.

Although various factors have their influence on microstructure of a ceramics,
the effect of grain growth is the most pronounced. There are two types of grain
growth: normal and abnormal grain growth (AGG). Normal grain growth (NGG)
means that the increase in grain size follows a trend of expected magnification,
while the grain shapes have no significant change. In contrast, AGG is characterized
by the presence of a limited number of extremely large grains, which are formed at
the expense of the smaller ones surrounding them. AGG is usually thought to have
a destructive effect on microstructure of ceramics, unless it is a specific requirement.
Theoretical and experimental results indicate that the key to control the micro-
structure or avoid the AGG is to decrease the grain growth rate, but increase the
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densification rate. Strategies to achieve this include homogeneous packing of fine
particles with a narrow size distribution, doping with secondary phase particles, use
of liquid-phase sintering, application of external pressure and employment of new
sintering techniques, e.g., spark plasma sintering or SPS.

8.2 General Concepts

8.2.1 Features of Grain Growth

Grain growth is to mean the dynamic increase in average grain size of a given
ceramic system, which usually takes place at high temperatures during calcining
and sintering processes. It is understood that an increase in grain size should be at
the expense of smaller grains that surround relatively large growing ones. In other
words, the consequence of grain growth is the decrease in the total number of
grains. Statistical data indicated that only one eighth of the grains could survive
when the average grain size of the system doubles every time. Therefore, grain
growth is also called coarsening.

8.2.2 Microscopic Features of Grain Growth

Ceramics consist of crystalline grains and noncrystalline or disordered grain
boundaries, which are defined as the regions between adjacent grains. Figure 8.1
shows schematically a section across two adjacent grains [3]. In most ceramics, the
thickness of the grain boundary is 0.5–1 nm. Grain growth takes place through the
diffusion of atoms or ions over less than an interatomic distance from one side of the
boundary to the other side. As a result, one grain grows at the expense of other smaller
ones. Generally, the atoms migrate from the convex surface to the concave surface,
because the chemical potential of the atoms at the convex surface is higher than that of
the atoms at the concave surface, as discussed in previous chapters. Due to the flux,
the boundary moves toward its center of curvature, as shown in Fig. 8.2 [4].

8.2.3 Driving Force of Grain Growth

Because the atoms or ions in disordered grain boundaries have higher energy than
those in the bulk of crystalline grains. A specific energy, known as grain-boundary
energy, γgb, is usually used to characterize the grain boundaries. The decrease in the
energy through the reduction of the total area of the grain boundaries is the driving
force of grain growth. Therefore, grain growth is also accompanied by the reduction
in volume fraction of grain boundaries.
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8.2.4 Abnormal Grain Growth

As mentioned above, there are two types of grain growth experienced by ceramics:
(i) normal grain growth and (ii) abnormal grain growth. AGG is also known as
several other names, including exaggerated grain growth, discontinuous grain

Fig. 8.1 Classic picture of a
grain boundary and its
migration. The boundary
migrates from left to right as
the atoms diffuse from the
convex side of the boundary
to the concave side.
Reproduced with permission
from [3]. Copyright © 2007,
Springer
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Fig. 8.2 Movement of the
grain boundaries toward their
center of curvature.
Reproduced with permission
from [4]. Copyright © 2003,
CRC Press
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growth, or secondary crystallization. NGG is more like a simple magnification in
average grain size, without significant change in grain size distribution, so that it is
generally known as scaling or self-similarity property. However, when AGG
occurs, the ceramics would have a distinctive variation in microstructure, with the
presence of extremely large grains that are embedded in a matrix of smaller ones.
Therefore, a bimodal distribution is usually observed. The microstructures of the
ceramics are generally characterized by nearly equiaxial grains. In some cases,
grains with an elongated or plate-like morphology are observed, which usually is
called anisotropic grain growth. Anisotropic grain growth in most cases is only
observed in ceramics with special crystal structures. Representative SEM images
and photograph of NGG and AGG of BaTiO3 ceramics, which could be controlled
through the variation of oxygen partial pressure during sintering, are shown in
Fig. 8.3 [5].

Fig. 8.3 SEM images and photograph of the BaTiO3 ceramics: a normal grain growth, b,
c abnormal grain growth, and d abnormal anisotropic grain growth. Reproduced with permission
from [5]. Copyright © 2006, Elsevier
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8.2.5 Grain Growth Control

At least two reasons can be used to support the control of grain growth during
sintering of ceramics. On the one hand, as the grain size is increased, the diffusion
distance of matter transport is increased. Therefore, grain growth has a negative
effect on densification. On the other hand, many properties of ceramics are directly
determined by their grain size, especially mechanical strengths [1]. For instance,
fracture strength of ceramics generally increases with decreasing grain size, G,
following the relation of K1c ∞ 1/G1/2 [6–8]. In this respect, control of grain growth
while not sacrificing optical performance is still a challenge in the fabrication of
transparent ceramics. Similarly, magnetic and electrical properties of ceramics are
determined and also have close relation with their grain sizes.

As discussed previously, densification of ceramics is attributed to the flux of
matter from the grain boundaries or source to the pores or sinks. When the sintering
is governed by diffusion mechanisms, the rate of densification is dependent on grain
size G, through the following equation:

1
q
dq
dt

¼ K
Gm

; ð8:1Þ

where K is a temperature-dependent constant, while the exponent has different
values for different densification mechanisms, e.g., with m = 3 for lattice diffusion
and m = 4 for grain-boundary diffusion.

Therefore, to have a high densification rate, there should be a short diffusion
distance between the source of matter and the sink, i.e., the grain size must remain
as small as possible. This is the reason why nanosized powders have high sinter-
ability. Equation (8.1) also indicates that as the grain growth rate is increased, the
densification rate would be decreased. As a result, prolonged sintering time is
required to achieve the desired density, which in turn could trigger the occurrence
of AGG. Once AGG takes place, the pores would be trapped inside the grains and
thus cannot be removed. Therefore, grain growth control is an effective technique to
achieve high densification rate. Generally, AGG should be avoided, but it is also
useful in certain occasion, i.e., growth of single crystals from ceramic matrix, as
discussed later.

8.3 Ostwald Ripening and LSW Theory

Ostwald ripening is defined as the coarsening of particles in a solid or liquid.
Almost all grain growth and pore growth during sintering of ceramics can be
described by the using Ostwald ripening. Figure 8.4 shows a system with spherical
particles with different radii dispersed in a medium, in which the particles have
certain level of solubility [4].

8.2 General Concepts 523



As stated before, chemical potential of the atoms under the surface of a sphere
with a radius a is given by:

l ¼ l0 þ
2cX
a

; ð8:2Þ

where μ0 is the chemical potential of the atoms under a flat surface, γ is the specific
energy of the interface between the sphere and the medium and Ω is the atomic
volume. The atoms under the surface of the sphere have higher chemical potential
and thus higher solubility in the surrounding medium than the atoms under a flat
surface. If solutions are assumed to be ideal, chemical potential and concentration
can be related by the following expression:

kT ln
C
C0

� �
¼ l� l0 ¼

2cX
a

; ð8:3Þ

where C is concentration of the solute surrounding a particle with radius of a, C0 is
the concentration over a flat surface, k is the Boltzmann constant, and T is the
absolute temperature. If ΔC = C − C0 is small, ln(C/C0) ≈ ΔC/C0, so that Eq. (8.3)
becomes

DC
C0

¼ 2cX
kTa

: ð8:4Þ

The smaller the particles, the higher the solute concentration around the particles
will be. As a result, there is always a net flux of matter from the smaller particles to
the larger ones, i.e., the smaller particles are continuously dissolved, while the
particles keep growing, which is driven by the reduction in the interfacial area
between the particles and the medium. This process is known as Ostwald ripening.

(a)

(b)

Fig. 8.4 Coarsening of particles in a medium by matter transport from the smaller particles to the
larger ones. The rate of coarsening is controlled by two mechanisms: a reaction at the interface
between the particles and the medium and b diffusion through the medium. Reproduced with
permission from [4]. Copyright © 2003, CRC Press
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8.3.1 LSW Theory

The theory of Ostwald ripening is also known as the LSW theory [9–12]. The LSW
theory is used to describe the coarsening process of idealized systems with three
conditions. Firstly, a particle grows at a rate that is the same as the atomic flux at its
surface. Secondly, the particles have a continuous size distribution. Lastly, the total
volume or mass of the particles follows mass conservation.

Besides the above three basic conditions, there are also other assumptions: (i) the
precipitate and the medium are isotropic fluids, (ii) the precipitates are spherical
particles, (iii) the number of precipitates is sufficiently large to ensure continuous
distribution of radius of the precipitates, (iv) radius of the precipitate is the only
factor to determine the solute concentration at the surface of the precipitate, (v)
nucleation and precipitate coalescence are neglected, and (vi) the total volume of
the system is infinite.

The rate of coarsening is controlled by two mechanisms, i.e., interface reaction
mechanism and diffusion-controlled mechanism, as shown in Fig. 8.4. For interface
reaction mechanism, coarsening rate is controlled either by the solubility of the
particles into the medium or the deposition of the solute onto the particle surfaces.
For diffusion-controlled mechanism, the diffusion of atoms through the medium to
combine with larger particles is the controlling step.

8.3.2 Interface Reaction Mechanism

In this case, it is assumed that the rate of transfer of atoms is proportional to the
difference between the solute concentration around a precipitate with radius, a,
which is given by Eq. (8.4) and the average concentration of the solute, C*, which is
defined as the concentration that is in equilibrium with a precipitate with radius, a*,
which is kept unchanged. Also, the change in C* with increasing a* is neglected.
Therefore, the rate of change in the radius of the precipitate is given by [4]:

da
dt

¼ �aTX Ca � C�ð Þ; ð8:5Þ

where αT is a transfer constant, while the negative sign in the equation is used,
because Ca − C* is positive for smaller precipitates, whereas the radius, a,
decreases with time. If the total volume of the precipitates is constant, there is

4p
X
i

a2i
dai
dt

¼ 0: ð8:6Þ
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The summation means that all the precipitates in the system are included.
Equation (8.5) can be rewritten as follows:

da
dt

¼ aTX C� � C0ð Þ � Ca � C0ð Þ½ �; ð8:7Þ

By putting Eq. (8.7) into Eq. (8.6), there isX
i

a2i C� � C0ð Þ ¼
X
i

a2i Cai � C0ð Þ: ð8:8Þ

By putting Cai � C0 ¼ DC and ΔC from Eq. (8.4) into Eq. (8.8), there is

C� � C0 ¼ 2cXC0

kT

P
aiP
a2i

: ð8:9Þ

By putting Eq. (8.9) into Eq. (8.7), there is

da
dt

¼ 2aTcX
2C0

kT

P
aiP
a2i

� 1
a

� �
: ð8:10Þ

Let a� ¼ P
a2i =

P
ai, Eq. (8.10) becomes:

da
dt

¼ 2aTcX
2C0

kT
1
a�

� 1
a

� �
: ð8:11Þ

Equation (8.11) indicates that the rate of change in the radius of the precipitate is
proportional to the difference between the critical precipitate curvature and the
actual precipitate curvature.

The evolution of the system of precipitates can be described by using a distri-
bution function f(a, t), with which f(a, t) da represents the fractional number of
precipitates in the radium range of (a, a + da). The distribution function must satisfy
the continuity equation:

df
dt

þ @

@a
f

da
dt

� �� �
¼ 0: ð8:12Þ

From the solution of the coupled differential Eqs. (8.11) and (8.12), it is found
that the rate of the coarsening reaches a steady state, so that the precipitate size
distribution remains stationary against time, after a prolonged duration of coars-
ening process. When a reduced size, s = a/a*, is used to represent the radius of the
precipitate, the distribution function will have the following forms [4]:
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f ðs; tÞ � s
2

2� s

� �5

exp � 3s
2� s

� �
; for 0\s\2;

¼ 0; for s[ 2:

8<
: ð8:13Þ

This asymptotic distribution is independent on the initial distribution of the
system before the coarsening starts. In this case, the average radius, �a; which is the
arithmetic mean radius, is given by �a ¼ ð8=9Þa�; while the maximum particle
radius is 2a*. The critical radius in this steady-state coarsening regime increases
parabolically through the following equation:

a�ð Þ2 � a�0
� �2¼ aTC0cX

2

kT

� �
t: ð8:14Þ

8.3.3 Diffusion-Controlled Mechanism

Similar procedure can be used to derive the coarsening rate governed by the dif-
fusion mechanism. The rate of change in the particle radius, which is related to the
diffusive flux at the precipitate surface, is given by [4, 13]:

da
dt

¼ �DX
dC
da

; ð8:15Þ

where D is the diffusion coefficient of the solute atoms in the medium.
For a dilute dispersion of particles, Eq. (8.15) can be rewritten as follows:

da
dt

¼ DX
C� � Ca

a

� �
¼ 2DcX2C0

kTa
1
a�

� 1
a

� �
: ð8:16Þ

From the solution of the coupled differential Eqs. (8.12) and (8.16), the distri-
bution function for steady-state coarsening has the following forms [4, 13]:

f ðs; tÞ � s2
3

3þ s

� �7=3 3=2
3=2� s

� �11=3

exp
�s

3=2� s

� �
; for 0\s\3=2;

¼ 0; for s[ 3=2:

8<
:

ð8:17Þ

The distribution function is also independent of the initial size distribution, but
the average radius �a should be equal to a*, while the maximum particle radius is
equal to 3a*/2. For the mechanism of diffusion control, the critical or average radius
in the steady-state coarsening regime increases with time following a cubic law,
which is given by:
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a�ð Þ3� a�0
� �3¼ 8DC0cX

2

9kT

� �
t: ð8:18Þ

8.3.4 Deviation and Modification of LSW Theory

Deviations have been found in the predictions of the LSW theory. For instance, a
practical system could have broader and more symmetrical steady-state distribution
in diffusion-controlled coarsening. Also, the rate constant predicted by the LSW
theory is often different from the experimental observations. In addition, volume
fraction of the precipitates sometimes should be included, which is assumed to have
no effect in the LSW theory [14–16]. It is found that as the volume fraction
increases, the rate constant is increased while the size distribution function is
broadened with increasing volume fraction of the precipitates [17]. Further modi-
fications have made the LSW theory to be more agreement with experimental
results [15, 18].

8.3.5 Time-Dependent Ostwald Ripening

Before the scaling regime mentioned above is reached, the distribution function
varies with time. The precipitates could have a modified Gaussian distribution of
sizes, which is given by [19]:

YðaÞ ¼ a2 exp �ða� amÞ2
2a2w

" #
; ð8:19Þ

where the parameters am and aw are the position of the maximum and width of the
distribution, respectively.

By using the distributions with varying am and aw, the variation in the properties
of the distribution with time can be analyzed. For the distributions with a broad
width, the standard deviation of the distribution decreases to the characteristic
steady-state value, whereas for the distributions with a narrow width, the standard
deviation increases to the steady-state value. We may interpret this behavior during
the transient regime to mean that the scaling regime acts as a strong attractor for the
evolution of the precipitate size distribution.
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8.4 Topological and Interfacial Tensions

In most theories, grains and grain boundaries are treated as isolated items. However,
a real dense polycrystalline solid consists of a space-filling array of grains, where
have certain topological requirements of space filling and local requirements for
equilibrium of the interfacial tensions. Figure 8.5 shows a two-dimensional section
through a dense polycrystalline solid [3]. The structure consists of vertices joined
by edges, also called sides, which surround faces.

It is assumed that the face at infinity is not counted, the numbers of faces F,
edges E, and vertices V follow the Euler’s equation:

F � E þ V ¼ 1: ð8:20Þ

For stable topological structures, i.e., those in which the topological features are
not changed by small deformations, the number of edges that intersect at a vertex is
3. For isotropic grain-boundary energies, i.e., grain boundaries have the same value
of γgb, if the grain-boundary tensions are balanced, the edges meet at an angle of
120°. In this case, if N is the number of sides, a hexagon with N = 6 has plane sides,
while a polygon with N > 6 will have concave sides, whereas those with N < 6 have
convex sides. Since the grain boundary migrates toward its center of curvature,
grains with N > 6 tend to grow, while those with N < 6 tend to shrink.

Fig. 8.5 Sketch of a section through a dense polycrystalline solid. The sign of the curvature
changes as the number of sides increases from less than six to more than six. The arrows indicate
the direction in which the boundaries migrate. Reproduced with permission from [3]. Copyright ©
2007, Springer
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In three dimension, the faces surround cells, if the cell at infinity is not counted,
there is

F � E þ V � C ¼ 1; ð8:21Þ

where C is the number of cells. If the interfacial energies are assumed to be
isotropic, the surfaces meet in groups of three at angles of 120° for interfacial
tension to be balanced, along lines which themselves meet in groups of four
mutually at an angle of 109.5°. This is the angle subtended by straight lines joining
the corners of a regular tetrahedron. No regular polyhedron with plane sides has
exactly this angle between its edges. The nearest approach to space filling by a
regular plane-sided polyhedron is obtained with tetrakaidecahedra arranged on a
body-centered cubic lattice, but even with this structure, the angles are not exactly
those required and the boundaries must become curved to satisfy local equilibrium
at the vertices. In general, real grains are arranged randomly and also have different
sizes.

8.5 Normal Grain Growth in Dense Solids

8.5.1 The Burke and Turnbull Model

NGG in dense polycrystalline solids has been extensively studied in the open
literature [20, 21]. The driving force for grain growth process in earlier models is
considered to be the pressure gradient across the grain boundary that facilitates the
transport of mass, whereas chemical potential gradient is used as the driving force
in the later ones [22]. In the Burke and Turnbull model, an isolated part of the grain
boundary is considered, with the assumption that the grain growth equation derived
from the analysis describes the average behavior of the system. It is also assumed
that the grain-boundary energy γgb is isotropic and independent on the crystallo-
graphic direction, with a constant grain-boundary width γgb.

If the instantaneous rate of grain growth is used to represent the average rate of
grain-boundary migration vb, also known as grain-boundary velocity, there is

vb � dG
dt

; ð8:22Þ

where G is the average grain size. The average rate of grain-boundary migration vb
can be represented by the product of the driving force for the grain-boundary
migration Fb and the grain-boundary mobility Mb, so that there is

vb ¼ MbFb; ð8:23Þ
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where Mb includes all effects related to the mechanism of migration. The pressure
difference across the grain boundary is given by the equation of Young and
Laplace:

Dp ¼ cgb
1
r1

þ 1
r2

� �
; ð8:24Þ

where γgb is the specific grain-boundary energy, i.e., energy per unit area and r1 and
r2 are the principal radii of curvature of the boundaries. If the radius of the boundary
is assumed to be proportional to the average grain size G, there is

1
r1

þ 1
r2

¼ a
G
; ð8:25Þ

where α is a geometrical constant that is determined by the shape of the boundary. If
the driving force for the atomic diffusion across the grain boundary is equal to the
gradient in the chemical potential, there is

Fb ¼ dl
dx

¼ d
dx

ðXDpÞ ¼ 1
dgb

Xcgba

G
; ð8:26Þ

where Ω is the atomic volume and dx = δgb is the width of the grain boundary. From
Eq. (4.92), the atomic flux across the boundary is given by

J ¼ Da

XkT
dl
dx

¼ Da

XkT

Xcgba

dgbG
; ð8:27Þ

where Da is the atomic diffusion coefficient across the grain boundary. Therefore,
the grain-boundary velocity becomes

vb � dG
dt

¼ XJ ¼ Da

kT
X
dgb

acgb
G

: ð8:28Þ

Pressure difference across the grain boundary, αγgb/G, can also be used as the
driving force, so that vb is expressed as follows:

vb � dG
dt

¼ Mb
acgb
G

� 	
: ð8:29Þ

By comparing Eqs. (8.28) and (8.29), Mb can be defined by the following
expression:

Mb ¼ Da

kT
X
dgb

� �
: ð8:30Þ

8.5 Normal Grain Growth in Dense Solids 531

http://dx.doi.org/10.1007/978-3-319-18956-7_4


Integrating Eq. (8.29) yields:

G2 � G2
0 ¼ Kt; ð8:31Þ

where G0 is the initial grain size, i.e., G = G0, at t = 0, while K is a temperature-
dependent growth factor, which is given by

K ¼ 2acgbMb: ð8:32Þ

Equation (8.31) is the parabolic grain growth law, with the same form as the
LSW equation for interface reaction-controlled Ostwald ripening given in
Eq. (8.14). The growth factor K as a function of temperature T can be described by
using the Arrhenius equation, i.e., K = K0 exp(−Q/RT), where K0 is a constant, R is
the gas constant and Q is the activation energy of the grain growth.

The boundary mobility Mb is determined by the diffusion coefficient Da for the
atomic migrates across the grain boundary of the pure material, which is called
intrinsic boundary mobility. In ionic solids, because both cations and anions could
diffuse, Da is the diffusion coefficient of the species that are rate-limiting or lowest.
In real ceramics, various drag forces, such as segregated solutes, inclusions, pores,
and second-phase films, can be applied to the grain boundary. As a result, exper-
imental boundary mobility is lower than the Mb given by Eq. (8.30) in most cases.

8.5.2 Mean-Field Theory

In mean-field theory, the change in size of an isolated grain is considered, which is
embedded in an environment that represents the average effect of all the other grains
[23]. In this theory, the rate of grain growth is related to the radius a through the
following equation:

da
dt

¼ a1cgbMb
1
a�

� 1
a

� �
; ð8:33Þ

where α1 is a geometrical factor that is equal to 1/2 for two dimension and 1 for
three dimension, a is the radius of circle or sphere that has the same area or volume
as the grain, and a* is a critical grain size, i.e., if a > a*, the grain grows, while if
a < a*, the grain shrinks.

Equation (8.33) is similar to the LSW equation of Eq. (8.11), where the rate of
change in the radius of the grain in Ostwald ripening is controlled by the interface
reaction, so that the critical radius for the rate of change is given by [23]:

d a�ð Þ
dt

¼ 1
2
a1cgbMb: ð8:34Þ
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If it is assumed that the terms on the right-hand side of Eq. (8.34) are not varied
with time, integration of the equation gives rise to parabolic grain growth kinetics,
which is analogous to the Eq. (8.31). In addition, the size distribution during the
steady-state grain growth can be expressed by the following equation [23]:

f ðs; tÞ ¼ ð2eÞb bs

ð2� sÞ2þb exp
�2b
2� s

� �
; ð8:35Þ

where s is called reduced size, that is equal to a/a*; e is the base of the natural
logarithm, i.e., e = 2.718, while β = 2 for two dimension and 3 for three dimension.
The distribution predicted by using this equation has a sharp peak [24].

The mean-field approach has been further developed [25, 26]. If the grain size
distribution is assumed to be lognormal and time-independent when plotted as a
function of the reduced size s ¼ a=�a; where �a is the average grain size, similar
parabolic growth kinetics could be obtained [25]. Alternatively, a random walk
process is used to model the motion of grain boundary, by attributing the drift to
larger average sizes to the fluctuation of the grain size. In this case, the grain growth
kinetics is also parabolic, while a time invariant grain size distribution function can
be obtained as follows [26]:

f ðs; tÞ ¼ As exp � s2

2

� �
; ð8:36Þ

where A is a constant, with certain distribution functions [24, 27].
Therefore, all the theories indicate that the NGG in polycrystalline solids can be

treated as the Ostwald ripening governed by the interface reaction mechanism.
However, in practice, the grain growth data cannot be always described by the
parabolic law, so that a general grain growth equation is used:

Gm � Gm
0 ¼ Kt; ð8:37Þ

where the exponent m is usually in the range of 2–4, which is dependent on
temperature to a certain degree. Although m = 3 has been observed in most
ceramics, it could be attributed to different mechanisms.

8.5.3 Topological Analysis

Topological requirements of space filling, which are neglected by the theories of grain
growth, have an argument that the volume of a shrinking grain must be shared with all
the grains in the structure [28]. Therefore, the changes in topological parameters, such
as the numbers of faces, edges and vertices, must also be shared with the other grains.
Two constants of grain growth, i.e., sweep constant θ and structure gradient σ, have
been introduced. The sweep constant is defined as the number of grains that are lost
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when the grain boundaries throughout the structure sweep through an equivalent unit
volume of the solid. There is some doubt about whether the sweep constant is indeed
constant [29]. The structure gradient is defined as follows:

r ¼ MVSV
NV

; ð8:38Þ

where MV, SV, and NV are the curvature, surface area, and number of grains,
respectively, per unit volume of the solid. Available experimental data have con-
firmed that σ is indeed constant.

In the kinetics of grain growth, the mean boundary is equal to the product of the
mobility of the grain boundary and the force applied to it, which is given by

vb ¼ MbcgbMV: ð8:39Þ

With a unit volume of the solid, the volume sweeps out per unit time is vbSV,
while the number of grains that are lost per unit time is θvbSV, according to the
definition of the sweep constant. The total volume transferred from the grains that
are going to disappear to the grains that are remained per unit time is θvbSVG, where
VG is the average volume of the grains. The rate of increase in the average volume
per grain can be derived by:

dVG

dt
¼ hvbSVVG

NV
; ð8:40Þ

where NV, the number of grains per unit volume, is equal to 1/VG. When SV and vb
are substituted with those derived from Eqs. (8.38) and (8.39), Eq. (8.40) becomes

dVG

dt
¼ Mbcgbhr

NV
: ð8:41Þ

If it is assumed that the terms on the right-hand side of Eq. (8.41) are constant,
integrating Eq. (8.41) yields:

VG � VGo ¼
Mbcgbhr

NV

� �
t; ð8:42Þ

where VG0 and NV0 are the average grain volume and the average number of grains
at t = 0. Experimental data indicate that VG indeed has a linear dependence on time.

8.5.4 Simulation of Normal Grain Growth

Computer simulations have been used to explore the complexities of grain growth
[21]. Two-dimensional models are usually used to simulate grain growth, either for
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direct simulation where a boundary network is constructed [30–32] or for statistical
approach in which ensemble probabilities for a collection of grains are determined
from a series of interrelated equations to find the behaviors of typical grain types
[21, 22]. The probabilistic models can include both the topological requirements of
space filling and the detailed local effects of grain-boundary curvature in the sim-
ulations. The microstructure is mapped out onto a discrete lattice, in which each
lattice site is assigned a number between 1 and Q, corresponding to the orientation
of the grain in it [27]. Generally, a sufficiently large value of Q (>30) is selected to
limit the impingement of grains of the same orientation. The grain-boundary seg-
ment is defined in between two sites with different orientations.

For two dimension, the average area per grain �A is related to the average grain
size G. After an initial simulation of a shrinking circular grain embedded in an
infinite matrix, i.e., Q = 2, which is similar to the mean-field approach, it is found
that the growth of the grain size with time can be described by the following
equation:

�A� �A0 ¼ Kt; ð8:43Þ

where �A0 is the initial area of the grain and K is a constant. Therefore, the grain
growth kinetics of the isolated grains is parabolic, which is in agreement with the
prediction by the mean-field theories and the Burke–Turnbull theory.

For an interconnected network of polycrystalline grains, the kinetics is on longer
parabolic. Grain growth exponent obtained in the simulations is m = 2.44, which is
different from that value predicted by the mean-field theories, i.e., m = 2 [27]. In the
mean-field theories, the driving force for grain growth is the reduction of the
curvature or area of the boundary, whereas in the lattice models used in the sim-
ulations, the curvature is discretely allocated as kinks on the boundary, which can
be eliminated by two mechanisms. First mechanism is the meeting and annihilation
of two kinks with same orientation but opposite signs, which means that the grain
growth is driven only by curvature. It is similar to the simulation of a circular grain
embedded in an infinite matrix. The second mechanism is related to the adsorption
of a kink at a vertex where more than two grains meet, which requires the presence
of vertices. Vertices can reduce the curvature without causing grain growth by
absorbing the kinks. Therefore, the growth is slower as compared to that of the
circular grain in the infinite matrix, so that the value of m is relatively high.

8.6 Abnormal Grain Growth

As stated previously, the presence of extremely large grains is detrimental to full
densification and thus some properties of ceramics. Therefore, in order to control
AGG, it is necessary to understand its mechanism.
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8.6.1 Origins of Abnormal Grain Growth

The occurrence of AGG is often attributed to nonuniform the distribution of particle
size in the starting powders. Equation (8.35) indicates that a steady-state normal
grain size distribution has a maximum or cut-off grain size, which means that AGG
would take place if there are grains that are larger than twice the average size in two
dimension. However, theoretical models can hardly predict AGG. For example, it is
found in a Monte Carlo simulation that although there are large grains at certain
stages, they would not grow abnormally, if the system is isotropic with uniform
grain-boundary energy and mobility, as shown in a systematic study [33–35]. This
is because the normal grains will grow at higher rates, so that the large or abnormal
grains are eventually included in the normal size distribution.

When there is a large grain with a radius a is embedded in a matrix of fine
normal grains, similar to Eq. (8.11), its growth rate can be expressed as [36]

da
dt

¼ 2cgbMb
1
a�

� 1
a

� �
; ð8:44Þ

where a* is the critical radius at which a grain neither grows nor shrinks. Therefore,
the relative growth rate of the large grain is given by

d
dt

a
a�

� 	
¼ 1

a�ð Þ2 a�
da
dt

� a
da�

dt

� �
: ð8:45Þ

Because the number of the fine normal grains is much larger than that of the
abnormal grain, the time dependence of a* can be described in a similar way to that
given by Eq. (8.14):

da�

dt
¼ cgbMb

2a�
: ð8:46Þ

Putting Eqs. (8.44) and (8.46) into Eq. (8.45) yields

d
dt

a
a�

� 	
¼ � cgbMb

2aa�
a
a�

� 2
� 	2

: ð8:47Þ

Equation (8.47) indicates that the relative growth rate of the large grain is always
negative, except for the case of a = a*, for which it is zero. Therefore, those
abnormal grains, i.e., with grain sizes of a > 2a*, will not grow to a size that is
significantly outside the normal grain size range, due to the upper limit of 2a*.
Moreover, due to their irregularities in shape and fluctuations in size, they cannot
remain unchanged in size at exactly 2a*, after they are included in the normal grain
size distribution. Instead, they tend to shrink. As a result, size difference is not a
sufficient condition to initiate AGG in isotropic systems.
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Both computer simulations and theoretical analysis have demonstrated that AGG
most likely occurs in anisotropic systems, i.e., the grain-boundary energy and
mobility are variable [37–40]. Once the boundaries have a higher mobility and/or a
lower energy than the surrounding matrix grains, AGG is triggered. It has been
observed that the abnormal grain embedded in a fine-grained matrix could be 6
times larger than the average size, which has a mobility 7.5 times that of the fine
grains [37]. According to prediction, the abnormal grain grows faster than the
average-sized grains in the surrounding matrix.

The properties of grain boundaries can be varied in several ways in practical
ceramics. One of the characteristics is the structure and mis-orientation of the grain
boundary. Special or low-angle grain boundaries, which are formed when two
grains have only a slight mis-orientation relative to one another, possess a lower
energy than general boundaries that have high mis-orientation angles. Transfer of
matter from the surrounding grains to the low-energy boundaries promotes AGG.
Alternatively, low-energy grain boundaries are generally believed to have low
mobility, so growth is slow normal to and rapid parallel to the low-energy
boundaries, often resulting in faceting and anisotropic abnormal growth.

During the sintering process of ceramics, there could be happenings, such as the
release of solutes, formation of secondary phases, and the presence of pores from
moving grain boundaries, which bring out a sudden increase in the boundary
mobility, thus leading to AGG. The formation of liquid phases has also been
acknowledged to be a cause of AGG, because the boundary mobility can be sig-
nificantly increased due to the presence of the liquid films at the grain boundaries.
This is the reason why AGG is easily observed in liquid-phase sintering [41].
Inhomogeneities in physical properties and chemical compositions, e.g., inhomo-
geneous packing and nonuniform distribution of dopants and secondary phases,
result in inhomogeneous microstructures, which is another major cause of AGG,
because the local microstructural heterogeneity creates differences in the boundary
mobility and energy.

8.6.2 Applications of Abnormal Grain Growth

As mentioned above, it is desirable to prevent AGG. However, if AGG can be well
controlled, it is also useful for several ceramic materials. For example, in situ
growth of anisotropic abnormal grains in a fine-grained matrix, with controlled size
distributions, has been used to increase the fracture toughness of SiC, Si3N4, Al2O3,
and mullite ceramics [42–48]. Preferential alignment of growing anisotropic grains
has been employed to fabricate ceramic materials with textured microstructure,
which is also called template grain growth (TGG) [49–56].

Another application of AGG is to obtain single crystals through ceramic pro-
cessing. Previously, various single crystals, such as ferrites and ferroelectrics, have
been obtained by using this technique [57–60]. More importantly, this method has
also been used to convert ceramics to solid-state laser single crystals [61–63].
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Desirably, monodispersed starting powders should be used, so as to form a fine-
grained matrix with a narrow size distribution. At the same time, a large seed crystal
with high quality is embedded into the fine-grained matrix. The system is then
annealed at high temperatures, so that the seed crystal will grow into the powder
matrix through the migration of its boundary. Under proper conditions, the entire
sample could be grown into a single grain, i.e., single crystal.

The derivation of single crystals from polycrystalline ceramics by sintering is
known as solid-state crystal growth (SSCG) [64]. A schematic diagram of the
single-crystal sintering method is shown in Fig. 8.6. First, a polycrystalline Nd:
YAG ceramic material with a relative density of over 95 % was prepared. Then, one
face was polished and contacted with a seed crystal, which could be single-crystal
YAG with any crystal orientation of h111i; h100i and h110i. When the seeded
ceramics was heated at a high temperature (below the melting point) of over 1700 °C,
single crystallization occurred in the solid state due to continuous grain growth.
When the surface energy of the fine grains of polycrystalline ceramic (Ep) is much
greater than that of the seed crystal (Es) (i.e., Ep ≫ Es), the fine grains tend to
change to a thermodynamically stable condition at higher temperature. As a result,
fine grains are absorbed into the seed crystal, and grain growth occurs continuously.
Finally, the polycrystalline materials change to single-crystal materials in a solid-
state condition.

A trace amount of solid SiO2, which in most cases is in the form of colloidal
silica, was added to prepare Nd:YAG sintered bodies. Then, they were heat treated
at 1780 °C for various soaking times: 0, 2, and 5 h. Reflected microscopic images
are shown in Fig. 8.7. Upon reaching the sintering temperature, the microstructure
was still characterized by grains with a uniform size distribution. However, as the
sintering time was increased to 2 h, a few of abnormal grains with diameters of up
to 1 mm were observed. As the sintering was further increased to 5 h, the abnormal

Fig. 8.6 Illustration of the production of single-crystal ceramic material by the sintering
(nonmelting) conversion method. Reproduced with permission from [61]. Copyright © 2007,
Elsevier
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grain sizes were largely increased. In this case, the silica acted as both a seed crystal
and an accelerator of the grain growth. In solid-state crystal growth, the formation
and growth of abnormal grains provides the driving force for continuous
crystallization.

The relationship between the heat treatment temperature and rate of crystal
growth has been studied. Crystallization started at about 1700 °C, and the crystal
growth rate increased with an increase in heat treatment temperature. In this
experiment, a maximum growth rate of 1.7 mm h−1 was reached. Using the CZ
method, the rate of crystal growth is generally about 0.2 mm h−1. Therefore, greater
or equivalent growth rate can be realized using the SSCG method.

The appearance of heavily doped Nd:YAG single crystals, with doping con-
centrations of 2.4, 3.6, and 4.8 %, prepared by the SSCG method is shown in
Fig. 8.8a. A typical reflected (polarized) microscopic image of a near growth
interface of a 2.4 % Nd:YAG sample is shown in Fig. 8.8b. It was confirmed that
grain growth occurred from a seed crystal toward polycrystalline directions. It

Fig. 8.7 Variation in microstructure of Nd:YAG ceramics doped with a small amount of SiO2

sintered at 1780 °C for 0, 2, and 5 h. Reproduced with permission from [61]. Copyright © 2007,
Elsevier

(a) (b)

Fig. 8.8 a Photographs of the 2.4, 3.6, and 4.8 at % Nd:YAG ceramics after heat treatment for
single crystallization. b Microstructure of the 2.4 at.% Nd:YAG ceramic sample at the interface
between the single crystal and polycrystal. Reproduced with permission from [61]. Copyright ©
2007, Elsevier
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should be noted that heavily doped Nd:YAG single crystal can be produced by the
SSCG method. Using the CZ (melt-growth) method, the segregation coefficient of
Nd ions in the YAG host crystal is very small, and it is difficult to dope more than
1 at % Nd ions homogeneously into the YAG host crystal. In the case of the SSCG
method, since there is no solid–liquid interface, the concept of segregation is not
relevant for this solid process. In this process, polycrystalline grains are gradually
absorbed into the seed single crystal.

Therefore, if the composition of each polycrystalline Nd:YAG grain is very
homogeneous in the ceramic, then the homogeneity of the grown single-crystal
ceramics will also be very high. Transmission electron microscopy (TEM) image
and energy dispersive spectroscopy (EDS) analysis have been used to study the
growth interface between single crystal and polycrystalline part. There was no
boundary phase or secondary phase near the growth interface, and the growth
interface was very similar to the grain boundary of the host polycrystalline
ceramics. The EDS analysis results, however, showed a trace amount of Si (SiO2) at
the growth interface and at the grain boundaries, but not in the crystal grains.
Studies on the crystal growth mechanisms are still under investigation, but it is
certain that the Si component is closely involved in the growth mechanism.

Figure 8.9 shows XRD patterns of normal polycrystalline Nd:YAG ceramic, and
the SSCG-grown single-crystal ceramics with h111i and h110i crystal orientations.
In the case of normal sintered Nd:YAG ceramic without the seed crystal, random
crystal orientations were observed. But in the case of the SSCG-grown single-
crystal ceramics, the crystal orientations were the same as the seed crystal.
Therefore, it was confirmed that single crystallization by sintering is technologically
possible.

SSCG-grown Cr4+:YAG single-crystal ceramic could be well bonded with a
h100i-oriented seed crystal. Using this technology, it is possible to dope various
types of laser active ions. This material was grown at 1700 °C, and the crystal
growth rate was 4 mm h−1. The crystal growth rate can be controlled mainly using

Fig. 8.9 XRD patterns of the polycrystalline (a), h111i (b) and h110i (c) seeded Nd:YAG
samples. The characteristic peaks of the h111i and h110i seeded crystals are confirmed.
Reproduced with permission from [61]. Copyright © 2007, Elsevier
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(i) the seed crystal orientation, (ii) the grain size of the polycrystalline ceramic, and
(iii) the heat treatment temperature. The maximum growth rate achieved was
5 mm h−1.

Laser performance of the SSCG-grown Nd:YAG single-crystal ceramic and that
of pore-free normal Nd:YAG polycrystalline ceramic, with Nd concentration of
2.4 at.%, have been compared. A Ti:sapphire laser was used as an excitation source.
A 99.9 % reflection mirror and an output mirror with 5 % transmission were used.
The laser gain media samples were AR coated, but the laser oscillation test was
performed without optimizing the laser resonator. Both samples reached a slope
efficiency of almost 60 %, but the single-crystal ceramic showed about 6 % higher
efficiency than the polycrystalline ceramic. This improvement was probably
because scattering due to grain boundaries does not occur in the single-crystal
ceramic material. Since the single-crystal ceramic materials produced by the SSCG
method have no grain boundaries, it is considered that this kind of material is the
best quality for laser materials.

Various garnet crystals of Nd-doped (Y,Gd,La,Lu)3(Sc,Al)5O12 were grown
from Nd-doped (Y,Gd,La,Lu)3(Sc,Al)5O12 polycrystalline precursors, by using
controlled AGG at temperatures between 1750 and 1850 °C [65]. The composition
of the expected Nd-doped (Y,Gd,La,Lu)3(Sc,Al)5O12 single crystal was Nd0.01:
(Y0.85La0.05Lu0.05Gd0.05)2.99:(Sc0.3Al0.7)5O12. The Nd-doped (Y,Gd,La,Lu)3(Sc,
Al)5O12 precursor materials were prepared using stoichiometric amounts of the
following analytical grade reagents: yttrium oxide (Y2O3), scandium oxide (Sc2O3),
lanthanum oxide (La2O3), lutetium oxide (Lu2O3), gadolinium oxide (Gd2O3),
neodymium oxide (Nd2O3), aluminum nitrate hydrate (Al(NO3)3·9H2O), nitric acid
(HNO3), and ammonia (NH3·4H2O).

Y2O3, Sc2O3, La2O3, Lu2O3, Gd2O3, and Nd2O3 were dissolved in nitric acid.
Aluminum nitrate was dissolved in distilled water. The two solutions were then
mixed together. An appropriate amount of the mixture was stirred for 3 h at the
same temperature. In the following step, ammonia (NH3·4H2O) was added drop-
wise to the above-described solutions as a precipitator with continuous stirring. The
sediment was washed several times using deionized water and then filtered. The
sediment was then dried in an oven for 24 h at 100 °C.

The sediment was ground in an agate mortar, sieved, placed in alumina cruci-
bles, and burned for 2 h at 850 °C in air (heating rate of 1 °C min−1). The powder
was compacted into pellets with diameter of 20 mm at 20–30 MPa and was then
cold-isostatically pressed at 200 MPa. The localized codoping of the disks was
achieved by applying colloidal SiO2 with 15 wt% in H2O to one point of each disk.
The codoped disks were allowed to dry for at least 5 min prior to sintering. After
sintering at 1750–1850 °C for 20 h under a H2 atmosphere without pressure in a
tungsten wire furnace, the specimens were cut and double-polished to 1 mm in
thickness for spectral analysis.

The samples obtained were transparent. Figure 8.10 shows a photograph of a
Nd-doped (Y,Gd,La,Lu)3(Sc,Al)5O12 single crystal produced using the solid-state
single-crystal conversion (SCC) process [65]. The size of the single crystal of
Nd-doped (Y,Gd,La,Lu)3(Sc,Al)5O12 was approximately 4 mm and thickness was
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0.8 mm. The relative density was 99.8 %. Figure 8.11 shows an SEM image of
interface between the grown single-crystal and the polycrystalline ceramics [65].
The grains of the polycrystalline ceramics were equiaxed, with an average grain
size of *30 μm. Many residual pores with small sizes at the grain boundaries and
within the grain interiors could be observed. Single crystals with a maximum size of
4 mm and promising optical performances could be obtained by using this method.

Yttrium aluminum garnet (YAG) ceramics with stoichiometric Y2O3:
Al2O3 = 3:5 ratio, as well as with excessive either Y2O3 or Al2O3 of up to 5 mol%,
were compared, in order to study the composition effect of YAG on crystal growth
behavior during the SSCG process [62]. This work was carried out, because pre-
vious results doped yttrium aluminum garnet Y3Al5O12 (YAG) ceramics were
contradictory, in terms of crystal growth rate with respect to compositions of the
YAG studies.

Fig. 8.10 Photograph of the
mixed-metal garnet single
crystal by using solid-state
ceramic conversion process
(polished sample with
thickness = 0.8 mm).
Reproduced with permission
from [65]. Copyright © 2014,
Elsevier

Fig. 8.11 SEM image of
interface between the
polycrystalline and the as-
prepared single-crystal
part. Reproduced with
permission from [65].
Copyright © 2014, Elsevier

542 8 Grain Growth and Microstructure Development



All the ceramics were prepared through solid-state reaction of nanopowders of
Y2O3 and Al2O3, which were synthesized by using chemical precipitation from
yttrium nitrate and ammonium–aluminum sulfate with ammonium bicarbonate
solution as precipitant. All mixed powders were compacted at uniaxial pressure
20 MPa first and further consolidated by using CIP at 200 MPa into pellets with
diameter of 10 mm and thickness of 2 mm. The samples were then sintered in
vacuum at 1730–1750 °C for 5–10 h. Besides the stoichiometric 3:5 composition,
excessive Y2O3, or Al2O3 were from 0.2 to 5 mol%. 0.8 mol% of Nd2O3 was
included in some samples.

(111) YAG-polished crystal seed plates with 200-nm SiOx layers deposited on
them by magnetron sputtering were pressed onto polished ceramic disks [66].
Thermal annealing was conducted at 1800–1850 °C or 1890 °C for 10–12 in, in
N2 + 5 % O2, at heating/cooling rates of 150 °C h–1. Slices of 1 mm thick,
perpendicular to the seed–ceramics contacting surfaces, were cut from the samples
after thermal annealing, with both sides to be polished.

Figure 8.12 shows photographs of representative samples. Stoichiometric
ceramics samples were transparent, samples with 1 % excess Y2O3 or Al2O3 were
translucent, and those with 3 % and more excess oxides were opaque. Grain size in
all samples was about 20 μm. Porosity increased slightly with increasing contents of
the excessive oxides.

Figure 8.13 shows SEM image of the grown crystal after thermal etching. Grain
boundaries were clearly observed in etched ceramic part, while newly grown single-

Fig. 8.12 a Photographs of
representative YAG:Nd and
YAG ceramics. Every sample
differs from its neighbors by
1 mol% excessive Y2O3 (1Y,
2Y) or Al2O3 (1A, 2A), while
“0” means stoichiometric Y/
Al ratio of 3:5. b Porosity
(vol.%) as a function of Y/Al
ratio for pure and Nd-doped
YAG ceramics with different
levels of excessive oxides.
Reproduced with permission
from [62]. Copyright © 2013,
Elsevier

8.6 Abnormal Grain Growth 543



crystal part has no grain boundaries. Experimental results indicated that the growth
rates of the samples with excessive Al2O3 were higher that of the stoichiometric
sample. The sample with 5 % excessive Al2O3 at 1890 °C exhibited the highest
growth rate of 0.15 mm h–1, which was about higher than that of stoichiometric
sample by nearly 20 times.

Nonuniform growth was observed in central part of the sample with 1.5 mol%
excessive Y2O3, as shown in Fig. 8.14. The central part had a higher growth rate

Fig. 8.13 SEM image of the
grown crystal after thermal
etching to show the grain
boundaries in the ceramics,
without boundary being
observed in the grown crystal.
Reproduced with permission
from [62]. Copyright © 2013,
Elsevier

Fig. 8.14 Nonuniform growth of the crystal layer in the center part of the YAG ceramics with
1.5 mol% excessive Y2O3. Diagram of the layered structure is shown at the top panel 1 seed YAG
crystal, 2 ceramics, 3 SiOx layer, and 4 grown crystal layer. Reproduced with permission from
[62]. Copyright © 2013, Elsevier
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than the rest area by about three times, which was different from normal growth
behavior, i.e., such growths are from outer parts toward central part. The anomaly
was attributed to possible nonuniform contact at the seed crystal–ceramics interface.
In addition, there is no difference in SSCG rate between undoped and 0.8 mol% Nd-
doped samples.

The effect of contact between the seed crystal and the ceramics on the SSCG
growth efficiency has been examined. One example is shown in Fig. 8.15, where the
two edges of same seed had different contacting qualities, i.e., one was better than
the other. Poor contact led to slow growth rate and the formation of pores, as shown
Fig. 8.15a. In contrast, high-quality contact resulted in high growth rate and reduced
number of pores, as demonstrated in Fig. 8.15b.

EDS measurement results indicated that, in direction perpendicular to the seed-
ceramic interface, some local regions possessed enrichment in Y or Al after
annealing at temperatures of >1800 °C. The number and dimension of such regions
increased with increasing content of excessive Y2O3 and Al2O3 in the initial
compositions. Meanwhile, the Y–Al ratio was very close to the stoichiometric ratio
of 3:5 in other areas. These either Y or Al enriched regions could participate the
formation of liquid phase with SiOx, which promoted crystal conversion and pore
elimination. This interesting issue deserves further investigation.

Abnormal grain growth (AGG) can also be used to directly convert polycrys-
talline Al2O3 (PCA) ceramics into single crystals, without using seeds. For

Fig. 8.15 Lateral growth of
the crystals in the ceramics
with 4.7 mol% excessive
Y2O3: a low rate of lateral
growth and b high rate of
lateral growth. (1 seed YAG
crystal, 2 ceramic, and 3 SiOx

layer). Reproduced with
permission from [62].
Copyright © 2013, Elsevier
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example, more than 30–40 % of polycrystalline, MgO-doped Al2O3 tubes were
converted into single crystals of sapphire by AGG in the solid state at a high
temperature of 1880 °C [67]. Most crystals were 4–10 cm in length in the tubes
with wall thicknesses of 1/2 and 3/4 mm and outer diameters of 5 and 7 mm,
respectively, with their c-axes being oriented ∼90° and 45° to the tube axis. The
AGG was initiated, due to the low values of MgO concentration of about 50 ppm in
the bulk. The unconverted parts had grains with millimeter sizes. The difference in
grain structures between the converted and the unconverted tubes was attributed to
nonuniform concentration of MgO in the extruded tubes.

The growth front of the migrating crystal boundary possessed nonuniform
shapes, while the interface between the single crystal and the polycrystalline matrix
contained “curved” boundary segments, characterizing typical AGG in a single-
phase material. The average velocity of most migrating crystal boundaries was as
high as 1.5 cm h−1. The average grain-boundary mobility at 1880 °C was estimated
to be 2 × 10−10 m3 (N s)–1, which was the highest value for Al2O3 and was higher
than the calculated intrinsic mobility by a factor of 2.5. Such a conversion could on
take place, when a codopant of CaO, La2O3, or ZrO2 was used at concentrations of
several hundred ppm.

A commercial alumina powder, mixed with 620 ppm of MgO using magnesium
nitrate as a precursor and appropriate amounts of organic binder and lubricant, was
used to extrude tubes. The alumina powder had a specific surface area of 8.8 m2 g−1

and median particle size of 0.31 μm. Tubes of 100 cm in length were extruded,
which were dried for 16 h at 100 °C and prefired at 1050 °C in air to remove
organic binders. Finally, the tubes were sintered at 1880 °C in H2 for different time
durations. The average concentrations of MgO (CMgO) and impurities were mea-
sured in sintered PCA tubes by using wet chemical analysis.

Figure 8.16 shows CMgO and grain size the samples as a function of sintering
time duration [67]. After sintering 3 h, the CMgO in the PCA decreased from the
initial value of 660 ppm to about 380 ppm. The MgO content continued to decrease
to 40–55 ppm after sintering form 9 h, which showed no further significant decrease
thereafter when tubes were converted to single crystals. The solid-state crystal
conversion (SSCC) event was started at about 9 h, which was found to be related
with very low CMgO of 50 ppm. Due to their very low levels, the concentrations of
impurities had no obvious effects on the SSCC event.

The average grain size of the polycrystalline matrix increased rapidly from
0.3 μm in the green tube to about 30 μm in the sample sintered at 1880 °C for 3 h.
After that, the grains slowly increased from 30 to 60 μm, as the sintering time was
increased from 3 to 18 h. The sizes of the largest grains in the polycrystalline
regions were about twice the average grain size, indicating that the event was still
NGG. The average size of the “surface” grains on the outer diameter (OD) surface
of the sample sintered for 9 h was 65 μm, which was larger than the interior grain
size of 50 μm by about 30 %. In this sample, the largest surface grains were 200–
250 μm, 3–4 times larger than the average grain size. It means that the largest
surface grains started to grow abnormally, while those in the sample interior and on
the inner diameter (I)D surface of the sintered tube still experienced NGG.
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Figure 8.17a shows a detailed image of the single crystal/PCA interface [67].
The interfacial boundary between the single crystal and the polycrystalline matrix
with an average grain size of *30 μm consisted of many “curved” boundary
segments, indicative of typical AGG. There were two distinctive types of surface
features in newly grown single crystals. The surface sapphire crystal undulations

Fig. 8.16 Average MgO concentration and grain size in PCA tubes with 5 mm OD as a function
of sintering time at 1880 °C. Reproduced with permission from [67]. Copyright © 2002, John
Wiley & Sons

(a) (b)

Fig. 8.17 a Typical interface between a growing single crystal and the PCA matrix on the OD
surface. b Optical micrograph of the interface showing the “ghost” structure in the single-crystal
region. Reproduced with permission from [67]. Copyright © 2002, John Wiley & Sons
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appeared to be preexisting on the PCA material before conversion, which was even
more visible in Fig. 8.17b. Also, single or groups of isolated PCA grains were
observed the grown crystal. These isolated grains were Al2O3 grains that were mis-
oriented with the grown crystal. This is a low-cost process of SSCC that could be
used to convert complex shapes of polycrystalline ceramics into single crystals
through AGG, which is believed to be applicable to other materials and thus
deserves further investigation.

Another example is on the conversion of polycrystalline MgO-doped Al2O3

tubes to single-crystal sapphire with the codoping of SiO2 [68]. The intentional
codoping with SiO2 before sintering was used to trigger the occurrence of AGG,
leading to full conversion of tube surfaces to single crystal without adversely
affecting the densification. The degree of surface conversion was strongly depen-
dent on experimental parameters, such as sintering temperature and codoping level.
Surface-converted tubes had excellent physical properties, including good thermal
cycling resistance and optical properties.

Figure 8.18a shows microstructure of an MgO-doped PCA tube without cod-
oping with SiO2, which was sintered at an optically calibrated temperature of
1886 °C for 4 h [68]. The grains were equiaxed with an average grain size of
*30 μm, while small-sized residual pores both at the grain boundaries and in grain
interiors could be observed. The tube exhibited good translucency. Microstructure
of an MgO–SiO2-codoped Al2O3 tube sintered at 1886 °C for 4 h is shown in
Fig. 8.18b. It was found that the localized codoping of one end of prefired MgO-
doped Al2O3 tubes with a very small amount of colloidal SiO2 before sintering led

(a) (b)

Fig. 8.18 Optical micrographs of the microstructure: a an MgO-doped PCA tube (not codoped)
sintered at 1886 °C for 4 h and b an MgO–SiO2-codoped Al2O3 tube (10 μL SiO2) sintered at
1886 °C for 4 h, in which codoping of one end of the tube with colloidal SiO2 before sintering
resulted in full densification followed by the full conversion of the surface to single crystal.
Reproduced with permission from [68]. Copyright © 2004, John Wiley & Sons
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to the full conversion of the tube surface to single-crystal sapphire. The remaining
core was still dense PCA. Nearly 1/4 of the length of the tube (*4 mm) were fully
converted to single crystal across the entire thickness of the tube wall. The
remaining length of the tube at the other end was converted in the surface regions
of *200 μm in thickness, a central of PCA core region of 300 μm in thickness was
enveloped by the single-crystal layers. Figure 8.19 shows high magnification graphs
of the MgO–SiO2-codoped Al2O3 tube of Fig. 8.18b, near to (a) and away from the
codoped end (b), respectively.

Mechanism of the conversion to single crystals from an MgO-doped PCA pre-
cursor has been studied [69]. The single crystals were grown through controlled
AGG at temperatures between 1670 and 1945 °C. It was observed that CaO impu-
rities segregated at the boundary between the single crystal and the polycrystalline
matrix, at which a thin layer of wetting intergranular film was formed. The presence
of this film facilitated to produce highly mobile grain boundaries that were required
to trigger the single-crystal conversion. The measured grain-boundary mobilities
agreed well with the values calculated from the data for a grain boundary containing
a film with properties of bulk glass. It was found that the highest grain-boundary
mobility was an extrinsic effect, rather than intrinsic behavior of the materials.

The samples were prefired Al2O3 tubes doped with 500 ppm MgO, with an inner
diameter (ID) of 1.25 mm, an outer diameter (OD) of 3.30 mm, and a length of
30 mm. Sintering was conducted in a refractory metal furnace, in which the samples
were placed vertically on the end of a 0.1-mm-diameter molybdenum wire.
Sintering conditions were N2–5 %H2 at 1945 °C, N2–7 %H2 at 1840 °C, N2–10 %
H2 at 1800 °C, and pure H2 at 1670 °C for 0–2 h.

Fig. 8.19 Optical micrographs that show magnified views of the MgO–SiO2-codoped Al2O3 tube
in Fig. 3, a near to and b away from the codoped end. Reproduced with permission from [68].
Copyright © 2004, John Wiley & Sons
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Single crystals with sizes of up to 30 mm could be grown reproducibly. The size
of the single crystals was only limited by the size of the hot zone of the furnace.
Figure 8.20 shows an image of the interface between a grown single crystal and the
polycrystalline matrix [69]. Such boundaries were found to be curved at all scales
and rough on the atomic scale. AGG took place after a certain while at the sintering
temperatures. An intergranular film with a thickness of 10–20 nm was observed at
the grain boundaries in quenched samples. Figure 8.21 shows a diffuse dark-field
image of the boundary, indicating that the film was amorphous. The thickness of

Fig. 8.20 Polished and
etched interface between a
growing single crystal and the
polycrystalline region.
Reproduced with permission
from [69]. Copyright © 2007,
John Wiley & Sons

Fig. 8.21 Diffuse dark-field
image of an intergranular film
on the boundary of a growing
single crystal that was
quenched during growth.
Reproduced with permission
from [69]. Copyright © 2007,
John Wiley & Sons
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film varied only very slightly from individual boundary to the other. Chemical
analysis of EDS suggested that calcium is the only detectable segregant at the grain
boundary. The normal grains in front of the growing single crystal did not contain
such a film. Therefore, the mechanism of the SSCC in polycrystalline alumina is
due to the rapid diffusion through an intergranular film that behaves in a manner
similar to bulk glass, rather than intrinsic grain growth.

The principle and the current status of solid-state conversion of single crystals
from polycrystalline precursors have been well summarized recently [70]. As dis-
cussed before, NGG has a linear dependence on boundary migration with respect to
the driving force. Figure 8.22 shows schematically the free energy state of an atom
across a boundary. When there is an energy barrier Δg*, i.e., activation energy for
diffusion, and an energy difference of the atom, Δg, i.e., the driving force, between
the two states on grain I and grain II, a net atomic flux between them results in the
migration of the boundary. For a system in which the energy difference between the
two adjacent grains comes from a nonzero curvature of the boundary, i.e., curva-
ture-driven boundary migration is present, the driving force is expressed as the
capillary energy, so that the mobility varies as an exponential function of the
activation energy. In this diffusion-controlled boundary migration, it is assumed that
the energy state of the atom is only position-dependent, gI on grain I and gII on
grain II.

It is acknowledged that boundary migration involves at least two steps: (i) jump
of atoms from one grain to its adjacent one—diffusion across the boundary and then
(ii) attachment onto the adjacent grain—interface reaction. In this case, the
migration is governed by the slower step, either diffusion or interface reaction [71,
72]. In all the conventional mechanisms, the migration has been assumed to be
controlled only by the diffusion. However, if the free energy state for the attachment

Fig. 8.22 Schematic demonstrating the energy state of atoms, gI and gII, on the surfaces of two
adjacent grains, grain I and grain II, with an atomically disordered boundary. The energy states of
an atom before and after jumping across the boundary are the same as those on grain I and grain II,
gI and gII. Δg* is the activation energy for atom diffusion across the boundary and Δg is the driving
force for atom diffusion. Reproduced with permission from [70]. Copyright © 2015, John Wiley &
Sons
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of the atom is increased to a level that is higher than the original state, the atom will
detach and jump back to the original grain, with the free energy diagram shown in
Fig. 8.23a. The migration of the boundary is thus governed by a stable attachment,
which means that the interface reaction is similar to the case of the two-dimensional
nucleation on a single crystal. If the energy increase for the attachment of an atom
on a flat surface is lower than the driving force, as shown in Fig. 8.23b, the attached
atom will be stable and will not return to the original grain. In this case, the
diffusion of atoms governs the overall kinetics.

According to the mean-field concept for boundary migration, every individual
grain has its own driving force, depending on its size relative to the average size, so
that the driving force for growth of grains in a polycrystalline system has a dis-
tribution, with the largest grain having the maximum value, Δgmax [71, 72]. Grain
growth behavior is then governed by the value of Δgmax relative to Δgc. The
principle of microstructural evolution is deduced for solid/liquid two-phase systems
with the coupling effect of Δgmax and Δgc. Totally, there are four types of grain
growth behavior: (i) normal grain growth (NGG) if Δgc = 0, (ii) pseudo-normal
grain growth (PNGG) if 0 < Δgc ≪ Δgmax, (iii) abnormal grain growth (AGG) if
0 < Δgc ∼ Δgmax, and (iv) stagnant grain growth (SGG) if Δgmax ≪ Δgc.

In order for solid-state conversion of single crystals, grain growth in the matrix
should be suppressed. Preferably, the condition of Δgmax < Δgc should be main-
tained during the conversion, while the driving force for the growth of the seed
crystal, Δgseed, should be larger than Δgc. Therefore, it is necessary to adjust Δgmax

and Δgc. The maximum driving force is determined by the average grain size and
the grain size distribution. As a result, the properties of the initial powder determine
the magnitude of Δgmax at the beginning of the sintering. The critical driving force
Δgc is dependent on temperature, doping, and atmosphere, e.g., oxygen partial
pressure. In solid-state conversion experiments, the seed crystal can be placed either

Fig. 8.23 Schematic of the energy state of an atom before and after jumping across a boundary
with an atomically ordered structure, for the cases of the energy increase of the attached atom
a larger and b smaller than the driving force for atom diffusion, Δg. Reproduced with permission
from [70]. Copyright © 2015, John Wiley & Sons

552 8 Grain Growth and Microstructure Development



on top of the sintered polycrystalline ceramics or embedded within the powder
compact, as schematically shown in Fig. 8.24 [70]. The seed crystal can also be
created through nucleation from the polycrystalline matrix by using temperature
gradient or dopant.

8.7 Grain-Boundary Mobility

For single-phase solids, the grain-boundary mobility Mb is called intrinsic boundary
mobility, which is defined by Eq. (8.30), so that the grain growth is controlled by
the diffusion of the atoms in the grains across the grain boundary. In this case, the
effects of various other factors, such as dopants, impurities, secondary phases and
pore, which are almost always present in ceramics, on the rate of atom diffusion
across the grain boundary, are neglected. In practice, boundary mobilities obtained
from experimental grain growth data are usually significantly lower than the
intrinsic mobility predicted by the theories.

Fig. 8.24 Schematics
illustrating the solid-state
conversion of single crystals
by a diffusion bonding and
b embedding of a seed crystal.
Reproduced with permission
from [70]. Copyright © 2015,
John Wiley & Sons
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8.7.1 Effect of Fine Second-Phase Particles

It is assumed that a polycrystalline solid contains randomly dispersed fine second-
phase particles, also known as fine inclusions or precipitates, which are insoluble
and immobile in the system. When a grain boundary encounters a fine particle
during its movement driven due to its curvature, it will be pinned by the particle,
while the rest portion of the grain boundary continues to move. The grain boundary
will break away only as the rest portion has moved for a sufficiently far distance.
Therefore, if the grain boundary encounters a sufficient number of particles, it could
be entirely pinned, i.e., the motion of the grain boundary is completely inhibited.
This scenario can be described by using two models.

If the pinning particles are assumed to be monosized, spherical, insoluble,
immobile and randomly distributed in the polycrystalline solid, for a grain
boundary with principal radii of curvature, a1 and a2, the driving force per unit area
for the motion of the grain boundary is given by [73]:

Fb ¼ cgb
1
a1

þ 1
a2

� �
: ð8:48Þ

If both a1 and a2 are proportional to the grain size G, there is

Fb ¼
acgb
G

; ð8:49Þ

where α is a geometrical shape factor, e.g., α = 2 for a spherical grain. When the
grain boundary intersects a particle, it is dragged by the particle, as shown in
Fig. 8.25a, b. Due to the dragging effect of the particle, the grain boundary needs
additional work to migrate, as compared to a particle-free boundary, i.e., there is a
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Fig. 8.25 Interaction of a grain boundary with an immobile particle. a Approach of the boundary
toward the particle. b Interaction between the grain boundary and the particle leading to a retarding
force on the boundary. c Detailed geometry of the particle–grain boundary interaction. Reproduced
with permission from [4]. Copyright © 2003, CRC Press
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retarding force applied to the grain boundary. If r is the radius of the inclusion, as
shown in Fig. 8.26c, the retarding force of the particle applied to the boundary is
given by

Fr ¼ cgb cos hð2pr sin hÞ: ð8:50Þ

Therefore, the retarding force is the product of the perimeter of contact and the
grain-boundary tension, which is in an opposite direction to that of the grain-
boundary migration. At θ = 45°, sinθcosθ = 1/2, so that the retarding force is
maximized, which is given by

Fmax
r ¼ prcgb: ð8:51Þ

If there are NA inclusion particles per unit area in the grain boundary, the
maximum retarding force per unit area of the boundary is given by

Fmax
d ¼ NAprcgb: ð8:52Þ

Although it is difficult to determine NA, it is related to NV, the number of
inclusions per unit volume, which is given by

NA ¼ 2rNV: ð8:53Þ

If the volume fraction of the inclusions in the solid is f, there is

NV ¼ f
ð4=3Þpr3 : ð8:54Þ
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Fig. 8.26 Sketch of the solute drag effect produced by the segregation of dopants to the grain
boundaries. a Symmetrical distribution of the dopant in the region of a stationary grain boundary.
b For a moving boundary, the dopant distribution becomes asymmetrical if the diffusion coefficient
of the dopant atoms across the boundary is different from that of the host atoms. The asymmetrical
distribution produces a drag on the boundary. cBreakaway of the boundary from the dopant leaving a
solute cloud behind. Reproduced with permission from [4]. Copyright © 2003, CRC Press

8.7 Grain-Boundary Mobility 555



When NA in Eq. (8.52) is substituted with NV determined by Eqs. (8.53) and
(8.54), the retarding force becomes:

Fmax
d ¼ 3f cgb

2r
: ð8:55Þ

The net driving force per unit area of the grain boundary is thus given by

Fnet ¼ Fb � Fmax
d ¼ cgb

a
G
� 3f
2r

� �
: ð8:56Þ

When Fnet = 0, the grain boundary stops migrating, which occurs if the following
equation is valid:

G ¼ GL ¼ 2a
3
r
f
; ð8:57Þ

where GL is called the limiting grain size. Equation (8.57) is also known as the
Zener relationship [73], which means that the limiting grain size is proportional to
the size of the inclusion particle and inversely proportional to the volume fraction of
inclusion particle. Although there have been various modifications to the Zener
model, the dependence of GL on f is the same [74–77].

Monte Carlo computer simulation has been modified to analyze NGG of single-
phase solids that are dispersed with fine secondary phase particles that are assumed
to be monosized, spherical, insoluble, immobile, and randomly distributed [34, 78–
80]. It is found that the grain growth is finally limited at a specific size. During the
growing of the grains, the microstructures have the characteristics of NGG, with the
same grain size distribution and growth exponent as those of the systems without
the secondary phase inclusions. Comparatively, the simulated microstructures for
NGG with the presence of inclusions possess grains with irregular shapes.

It is also revealed that both the time used to reach the limiting grain size and the
value of the limiting grain size decrease with increasing volume fraction of the
secondary phase particles, f. Furthermore, when the total number of inclusions is
constant, the fraction of inclusions /p that are located at the grain boundaries
decreases with time. This occurrence becomes more and more pronounced, with
decreasing volume fraction of the secondary phase particles, f. The limiting grain
size GL is given by

GL ¼ KS
r

upf
� �1=3 ; ð8:58Þ

where KS is a constant and r is radius of the inclusions. Comparatively, the Zener
model overestimates the driving force for grain growth, because the effect of the
inclusions on the curvature of the boundary is neglected, while only the work to

556 8 Grain Growth and Microstructure Development



drag the inclusion is considered. Disagreement is occasionally observed between
the simulation results and experimental data, demonstrating the complicated situ-
ations of real materials [81–88].

8.7.2 Effect of Dopants–Solute Drag

Dopant is also called solute, which is dissolved as solid solution in polycrystalline
solids. If there is an interaction potential for the solute to be attracted to or repelled
from the grain boundary, the solute atoms or ions will have a nonuniform distri-
bution at the grain boundaries. The interaction could be due to lattice strain energy
caused by size mismatch between the solute and host ions and/or electrostatic
potential energy for aliovalent solutes.

When the grain boundary is at a stationary state, the concentration profiles of the
solute ions at both sides of the boundary are symmetrical, as shown in Fig. 8.26a.
Because the forces of interaction at the two sides are balanced, the net force of
interaction is zero. Once the boundary starts to migrate, the profiles of the dopant
concentration at both sides will become asymmetrical, because the diffusion rate of
the solute ions across the boundary is different from that of the host diffusion, as
shown in Fig. 8.26b. This asymmetry of dopant concentration profile produces a
retarding force or drag applied to the grain boundary, so as to decrease the driving
force for migration of the boundary. When the driving force for the migration of the
grain boundary is sufficiently high, the boundary will break away from the solute,
which also known as solute cloud, as shown in Fig. 8.26c. In this case, mobility of
the grain boundary is close to its intrinsic value. Various models have been
developed to describe grain-boundary migration with solute drag [89–93].

The chemical potential of the solute atoms in the near grain-boundary region is
given by

l ¼ kT lnCðxÞ þ UðxÞ þ U0; ð8:59Þ

where C(x) and U(x) are concentration and energy functions of x, while U0 is a
constant, such that U(∞) = 0. At steady-state conditions, the composition profile of
the solute can be described by the following equation:

dC
dt

¼ �vb
dC
dx

: ð8:60Þ

According to diffusion equation, the flux of the solute atoms is given by

J ¼ �DbC
XkT

dl
dx

; ð8:61Þ
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where Db is the diffusion coefficient for the solute atoms across the grain boundary.
According to Eq. (8.59), Eq. (8.61) can be rewritten as follows:

J ¼ �Db

X
dC
dx

þ DbC
XkT

dU
dx

: ð8:62Þ

The concentration profile of the solute can now be calculated from the conti-
nuity, which is given by

dJ
dx

þ 1
X
dC
dt

¼ 0; ð8:63Þ

where the boundary conditions are dC/dx = 0, dU/dx = 0, and C(x) = C∞ at x = ∞.
The concentration C∞ can be taken as that in the interior of the grain. Therefore, C
(x) must satisfy the equation:

Db
dC
dx

þ DbC
kT

dU
dx

þ vbðC � C1Þ ¼ 0: ð8:64Þ

The solute atom applies a force −(dU/dx) to the grain boundary, so that the net
force applied by all the solute atoms is given by

Fs ¼ �NV

Z1
�1

½CðxÞ � C1� dU
dx

dx; ð8:65Þ

where NV is the number of host atoms per unit volume. In the analysis, the C
(x) derived from Eq. (8.64) is used to calculate Fs with Eq. (8.65). It is found that
there is an approximate solution that is valid for both low and high boundary
velocities, which is given by:

Fs ¼ aC1vb
1þ b2v2b

; ð8:66Þ

where the parameters α and β are given by the following expressions:

a ¼ 4NVkT
Z1
�1

sinh2½UðxÞ=2kT �
DbðxÞ dx; ð8:67Þ

a

b2
¼ NV

kT

Z1
�1

dU
dx

� �
DbðxÞdx: ð8:68Þ

In this case, α is the solute drag per unit velocity and per unit dopant concen-
tration in the low boundary velocity limit, while 1/β is the drift velocity of impurity
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atom moving across the grain boundary. According to Eq. (8.67), solutes with
either attractive or repulsive interaction energy, with the same magnitude, will
apply a similar drag force to the grain boundary.

The total drag force on the boundary is the sum of the intrinsic drag Fb and the
drag due to the dopant atoms Fs, which is given by

F ¼ Fb þ Fs ¼ vb
Mb

þ aC1vb
1þ b2v2b

; ð8:69Þ

where Mb is the intrinsic boundary mobility defined by Eq. (8.30). With the low
boundary velocity limit, because the term β2vb

2 in Eq. (8.69) can be neglected,
there is

vb ¼ F
1=Mb þ aC1

: ð8:70Þ

At the beginning, the mobility due to solute drag is constant. However, as the
velocity increases, the grain boundary continually separates from the solute. When
the velocity becomes sufficiently high, the boundary will migrate at its intrinsic
velocity. Therefore, a transition is observed from the solute drag-limited velocity to
the intrinsic velocity, over a range of driving forces [94–96].

According to Eq. (8.70), the boundary mobility M′b is equal to vb/F, which can
be expressed in terms of the intrinsic component Mb and the solute drag com-
ponent Ms:

M0
b ¼

1
Mb

þ 1
Ms

� ��1

; ð8:71Þ

where Ms = 1/αC∞. If the solute segregates at the grain boundary and the center of
the boundary contributes most significantly to the drag effect, α can be expressed by
the following equation:

a ¼ 4NVkTdgbQ
Db

; ð8:72Þ

where Q is a partition coefficient (>1) for the dopant to distribute between the
boundary region and the interior of the grain, such that the solute concentration in
the boundary region is QC∞. Therefore, mobility due to the solute drag is given by

Ms ¼ Db

4NVkTdgbQC1
: ð8:73Þ

This equation indicates that the presence of dopants is the most effective way to
reduce the boundary mobility if the diffusion coefficient of the rate-limiting species
Db is low and the segregated solute concentration QC∞ is high.
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8.8 Grain Growth and Pore Evolution

Densification is accompanied by grain growth, while migration of the boundaries
during the grain growth leads to coalescence of the pores, so that the average size of
the pores also increases, as shown in Fig. 8.27 [3]. Both the grain growth and pore
coalescence contribute to the coarsening at the later stages of sintering of ceramics.

8.8.1 Thermodynamics of Pore–Boundary Interactions

Whether a pore shrinks or not is determined by the free energy change that
accompanies the change in pore size. If the pore shrinks, there will be a decrease in
the free energy due to the decrease in the pore surface area, while there is also an
increase due to the increase in the grain-boundary area. If the pore shrinks, the
former (decrease) must be larger than the latter (increase). The equilibrium shape of
the pore is determined by the dihedral angle ψ, which is defined by

cos
w
2
¼ cgb

2cSV
; ð8:74Þ

where γSV and γgb are the interfacial tensions at the pore surface and in the grain-
boundary interface, respectively.

In two dimensions, a pore can have a dihedral angle ψ = 120°, which is sur-
rounded by N other grains. The number N is called the pore coordination number
(CN). Similar to the case of a grain surrounded by other grains, if N = 6, the pore has
straight sides; otherwise, it has convex sides for N < 6 and concave sides for N > 6, as
shown in Fig. 8.28. The surface of the pore will move toward its center of curvature,
so the pore with N < 6 will shrink, whereas the one with N > 6 will expand. The pore
is metastable for N = 6, so that the number is called critical pore CN, or Nc.
Accordingly, if the pores have convex sides, i.e., N < 6, the decrease in the pore

Fig. 8.27 Schematic
illustration of grain growth
accompanied by pore
coalescence. Reproduced with
permission from [3].
Copyright © 2007, Springer
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surface energy is larger than the increase in the grain-boundary energy. In contrast, if
the pores have concave sides (N > 6), the decrease in pore surface energy is smaller
than the increase in grain-boundary energy. For the metastable pores (N = 6), the
increase in grain-boundary energy is balanced by the decrease in pore surface energy.

The geometrical considerations can be extended to three dimensions, in which the
pore is a polyhedron [97]. Taking rs as the radius of curvature of the circumscribed
sphere around a polyhedral pore surrounded by grains, the ratio of the radius of
curvature of the pore, r to rs, depends both on the dihedral angle and the pore CN.
When the surfaces of the pore become flat (r = ∞), the pore is metastable. As a
result, the pore neither grows nor shrinks. In this case, the ratio rs/r is zero, with
which Nc is defined. For example, when a pore has a dihedral angle of 120°, Nc = 12.
Therefore, a pore with N < 12 will shrink, while the one with N > 12 will expand.
However, theoretical analysis indicated that, in practice, the pore with N > Nc will
grow to a limited size and then stop, instead of grow continuously [98, 99].

Therefore, when powder is poorly compacted, the compact will contain pores
that are larger than the grain size. In this case, it is very difficult to densify the
compact, especially when the pores have low dihedral angles, due to the large CN.
In order to avoid this problem, it is necessary to prepare compacts with high green
density and uniform pore size distribution, by using advanced techniques, such as
cold isostatic pressing and colloidal methods for compaction.

Grain Grain

Grain

Pore

Pore

(b)

Metastable pore

Pore shrink

(c)

Pore growing

Grain

Grain
Pore

(a)

Fig. 8.28 Pore stability in twodimensions for a dihedral angle of 120° : a shrinking pore,bmetastable
pore and c growing pore. Reproduced with permission from [4]. Copyright © 2003, CRC Press
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8.8.2 Kinetics of Pore-Boundary Interactions

With the definition of the pore mobility, it is possible to analyze the influence of the
interactions between the pores and the grain boundaries on the kinetics of grain
growth. There are two cases that can be considered: (i) the pore becomes separated
from the boundary and (ii) the pore remains attached to the boundary.

When vp < vb, pore separation will be observed, and this condition can also be
written as follows:

FpMp\FMb; ð8:75Þ

where F is the effective driving force on the boundary. If Fd is the drag force
exerted by a pore, then the balance of the forces requires that Fd is equal and
opposite to Fp. Considering unit area of the boundary in which there are NA pores,
Eq. (8.75) can be written as follows:

FpMp\ Fb � NAFp
� �

Mb; ð8:76Þ

where Fb is the driving force on the pore-free boundary due to its curvature.
Rearranging Eq. (8.76), the condition for pore separation can be expressed as
follows:

Fb [NAFp þ FpMp

Mb
: ð8:77Þ

The condition for pore attachment to the boundary is vp = vb, which can also be
written as follows:

FpMp ¼ Fb � NAFp
� �

Mb: ð8:78Þ

Putting vp = FpMp = vb Eq. (8.78) and rearranging, there is

vb ¼ Fb
MpMb

NAMb þMp
: ð8:79Þ

Two limiting conditions can be defined. When NAMb ≫ Mp, there is

vb ¼ FbMp

NA
: ð8:80Þ

The effective driving force on the boundary is F = Fb−NAFp, and from Eq. (8.78),
there isF= vp/Mb. From vp = vb =FbMp/NA, there isF=FbMp/NAMb≪Fb. The driving
force on the boundary is almost balanced by the drag of the pores, while the boundary
migration is limited by the pore mobility. This condition is referred to as pore control.
The other limiting condition is NAMb ≪ Mp, in which case:
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vb ¼ FbMb: ð8:81Þ

The drag exerted by the pores is NAFp = NA(FbMb/Mp) ≪ Fb. The presence of
the pores has almost no effect on the boundary velocity, which is a condition known
as boundary control.

8.8.3 Grain Growth Kinetics

With the simplified model for nearly spherical isolated pores on the grain boundary,
the equations for the grain growth kinetics can be derived, if it is assumed that the
grain growth is controlled by the pore mobility, i.e., pore control. If pore migration
occurs through surface diffusion, there is

vb � dG
dt

¼ Fb

NA

DsdsX
pkTr4

: ð8:82Þ

Taking Fb ≈ 1/G, NA ≈ 1/X2 ≈ 1/G2, where X is the interpore distance, and
assuming that the coarsening is due to the grain growth and pore coalescence, so
that r ≈ G. Rearranging Eq. (8.82) gives

dG
dt

¼ K1

G3 ; ð8:83Þ

where K1 is a constant at a given temperature. Integration of Eq. (8.83) yields

G4 ¼ G4
0 þ K2t; ð8:84Þ

where G0 is the grain size at t = 0 and K2 is a constant. Similarly, grain growth
equations can be derived by the same procedure for the other mechanisms.

Using the general form of the grain growth equation, Gm = G0
m + Kt, the

exponent m for the various mechanisms can be obtained. Except for the mechanism
involving solution of second-phase particles (m = 1), the m values lie in the range
2–4. In many ceramics, m = 3 has been reported. Therefore, this value can corre-
spond to at least five mechanisms. In other words, the m values determined from
grain growth data cannot be reliably used to imply physical significance.

8.9 Simultaneous Densification and Grain Growth

In solid-state sintering, the processes of densification and grain growth (coarsening)
are usually discussed separately. However, at the final stage of sintering, the two
processes take place simultaneously with their rates have mutual influence. To fully
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understand and control the sintering process, it is necessary to consider both den-
sification and coarsening and their interaction. Because each process by itself is
already, it is unrealistic to have a theoretical model that is able to predict the
coupling of densification and coarsening. Therefore, in practice, simpler approaches
are generally employed to have a qualitative understanding of the interaction. As a
reference, two models are discussed in this part: (i) Brook model and (ii) Yan,
Cannon and Chowdhry model.

Various theoretical models to describe simultaneous densification and grain
growth, as well as the transition to AGG, have been well established [100, 101]. It
is assumed that an idealized final-stage microstructure consists of a nearly spherical
pore on at isolated grain boundary, the considerations in this case include the
transition from pore drag-controlled boundary migration to intrinsic or solute drag
boundary migration, with the pores either attached or separated from the boundary,
which are as functions of grain size G and pore size 2r. As mentioned earlier, there
are two limiting cases: pore control and boundary control. The conditions that
separate these two cases are represented by a curve, called the equal mobility curve,
and defined by the condition that the pore mobility is equal to the boundary
mobility, which is,

NAMb ¼ Mp: ð8:85Þ

If the pore migration occurs through surface diffusion, the appropriate relations
for Mb and Mp can be derived. If NA ≈ 1/X2, where X is the interpore distance, and
X ≈ G, Eq. (8.82) gives

Gem ¼ Dap
Dsdsdgb

� �1=2

r2; ð8:86Þ

where Gem is the grain size at the condition of the equal mobility. Using logarithmic
axes plot G versus 2r, the equal mobility condition is represented by a straight line
with a slope of 2.

In determining the conditions for separation of the boundary from the pore, the
maximum force exerted by the grain boundary on a pore to drag it along is given by
Eq. (8.51), which is

Fmax
p ¼ prcgb: ð8:87Þ

The maximum velocity for the pore is therefore given by:

vmax
p ¼ MpF

max
p : ð8:88Þ
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If the velocity of the boundary with the attached pore exceeds vmax
p ; separation

will occur. The limiting condition for separation can therefore be written as follows:

vb ¼ vmax
p : ð8:89Þ

Substituting for vb in Eq. (8.79), there is

MbMp

NAMb þMp
Fb ¼ MpF

max
b : ð8:90Þ

When NA ≈ 1/X2, there is

Gsep ¼ pr
X2 þ

Dsdsdgb
Daar3

� ��1

; ð8:91Þ

where Gsep is the grain size when the boundary separates from the pore. If X ≈ G,
Eq. (8.91) can be written as

Dsdsdgb
Daar3

� �
G2

sep � Gsep þ pr ¼ 0: ð8:92Þ

The solution to this quadratic equation determines the separation curve.
It is to be expected that factors such as grain size distribution, the number of

pores at the grain boundaries, and the dihedral angle all have effect on the simple
relationships between the grain-boundary curvature and pore size for the separation
condition [98, 99]. In a refined model, it is demonstrated that when pore separation
occurs, the assumption of X ≈ G is not valid [102–105]. The effect of dihedral angle
has also been considered [106–108]. As shown in Fig. 8.29, the effective area of the
boundary intersected by a pore with a constant volume increases as the dihedral
angle decreases, resulting in greater pore drag and less boundary separating from
the pore [106].

The effects of a grain size distribution and solute drag have also been incor-
porated into the basic model [109, 110]. The critical density at which pore sepa-
ration occurs is significantly lower for the powder compacts with a wide
distribution of particle size than for the powder with a narrow size distribution.
Separation of only a fraction of the pores from the boundary is sufficient to cause
AGG, which is different from the assumption in the simple analysis that all pores
should separate from the boundaries.

Another theoretical analysis of simultaneous densification and grain growth is
the Yan, Cannon and Chowdhry model [110]. In this model, the final-stage
microstructure is assumed to consist of tetrakaidecahedral grains with spherical
pores at the grain corners, the dependences of the achievable final density and the
extent of coarsening on the ratio of the coarsening rate to the densification rate can
be determined. The instantaneous rate of change in the pore radius r is given by:
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dr
dt

¼ dr
dt

� �
P
þ dr

dt

� �
G
; ð8:93Þ

where the first term on the right-hand side is the rate of change in the pore size at
constant porosity, due to the coarsening process, which is a positive value, while the
second term is the rate of change at constant grain size, due to the densification
process, which is a negative value. For a coarsening process involving grain growth
and pore coalescence, there is

dr
dt

¼ r
G

dG
dt

� �
P
þ dr

dt

� �
G
: ð8:94Þ

Fig. 8.29 Schematic of the distortion that accompanies the motion of pores attached to grain
boundaries and the atomic flux from the leading surface to the trailing surface. Reproduced with
permission from [106]. Copyright © 1983, John Wiley & Sons. Adopted from permission from
[3]. Copyright © 2007, Springer
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Since dG/dr = (dG/dt)/(dr/dt), there is

dG
dr

¼ dG=dt
ðr=GÞðdG=dtÞ þ ðdr=dtÞG

: ð8:95Þ

This equation can be written as follows:

d lnG
d ln r

¼ C
C� 1

; ð8:96Þ

where Γ is the ratio of the coarsening rate to the densification rate, which is
given by:

C ¼ �ðr=GÞðdG=dtÞ
ðdr=dtÞG

: ð8:97Þ

In this case, Γ is calculated by assuming specific models for densification and
grain growth, where only one densification mechanism and one coarsening
mechanism are dominant.

The Yan, Cannon and Chowdhry model has been modified by including the
conditions to separate the boundary from the pore [111, 112]. The calculated results

Sep.

Sep.

Mg doped

Undoped

Fig. 8.30 Grain size–density map for Al2O3, illustrating the effect of raising the surface diffusion
coefficient by a factor of 4, reducing the lattice diffusion coefficient by a factor of 2, and reducing the
grain-boundary mobility by a factor of 34. This has the effect of flattening the grain size–density
trajectory and raising the separation region to larger grain sizes, thereby making it possible to sinter
to full density. Reproduced with permission from [112]. Copyright © 1990, John Wiley & Sons
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for Al2O3, where the densification is controlled by lattice diffusion, while the grain
growth or coarsening is controlled by surface diffusion-controlled pore drag, are
shown in Fig. 8.30 [112]. Due to the combined features of grain size versus density
trajectory and the conditions for separation, the treatment is effective to discuss the
influence of dopants, temperature, and other variables on microstructural evolution.
It is observed that the separation region is shifted to larger grain sizes, when MgO is
used as a dopant. This is because the presence of MgO decreases the grain-
boundary mobility of Al2O3. As a result, the grain size versus density trajectory
bypasses the separation region. Flattening of the trajectory means that densification
rate is increased, while the grain growth rate is suppressed. In addition, the tra-
jectory can also be flattened by controlling the heating steps during the sintering,
e.g., two-step sintering, as discussed later.

8.10 Strategies to Control Microstructure of Ceramics

Most applications of ceramics require products with high-density and controlled
(small) grain size [110, 113–117]. The discussion of the previous section indicates
that when suitable processing procedures are employed, such an end point is
achievable through fabrication routes that have the effect of increasing the ratio of
the densification rate to the grain growth (coarsening) rate or avoiding the sepa-
ration region (abnormal grain growth). The principles governing these fabrication
routes are discussed as follows.

8.10.1 Sintering at External Pressures

When compared to sintering, hot pressing produces an increase in the driving force
for densification. For an equivalent microstructure, the dependence of the densifi-
cation rate on the driving force can be written as follows:

_qhp �ðRþ paÞ; _qs �R; ð8:98Þ

where the subscripts in _qhp and _qs stand for hot pressing and normal sintering,
respectively, Σ is the sintering stress and pa is the applied pressure. Since the grain-
boundary mobility is not changed, there is

_Ghp � _Gs: ð8:99Þ

When pa ≫ Σ, there is _q= _G
� �

hp� _q= _G
� �

s: Therefore, by using hot pressing, it is

possible to produce ceramics with high density coupled with small grain size, due to
the ability to increase the value of _q= _G: This is the simple reason why HP, HIP, and
SPS could be used to produce ceramics with high densification and small grain sizes.
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8.10.2 Use of Dopants and Inclusions

The effects of dopants on microstructure of ceramics are important but complex. If
the dopants segregate at the grain boundary, they will reduce the boundary mobility
by the so-called solute drag effect. In this case, there is _Gdoped\ _Gundoped: Dopants
can also influence the densification process, although this effect is usually relatively
weaker compared to the effect on grain growth rate. The effectiveness of dopants is
reflected by the ability to reduce the value of _G or that to increase the value of _q= _G:

The role of inclusions sometimes is similar to that of dopants. If the drag on the
grain boundary is sufficiently strong, the boundary could be pinned. Similarly, their
effect on densification is not very significant. The effectiveness of inclusions is
almost the same as that of dopants, in terms of _G or _q= _G:

It has been that similar dopants could have different and even opposite effects on
grain growth. One example has been shown for AlON transparent ceramics doped
with Y2O3 and La2O3 [118]. In this study, γ-AlON powder was mixed with different
concentrations of Y2O3 (99.99 % purity) and La2O3 (99.99 % purity) by using high-
energy ball milling. The mixtures were then dried and passed through a 200-mesh
sieve. Cylindrical pellets with a diameter of 20 mm and a thick of 4 mm were
pressed at a uniaxial pressure of 5 MPa and then isostatically pressed at a pressure
of 200 MPa. The pellets with a relative density of about 50 % were pressureless
sintered at 1820–1950 °C for different durations in nitrogen.

Figure 8.31 shows optical transmittance and grain size of the AlON transparent
ceramics, as a function of concentration of Y2O3 and La2O3 [118]. The grain size
increased gradually with increasing concentration of Y2O3 from 0.06 to 0.19 wt%,
which means that the presence of Y3+ enhanced the mobility of grain boundary.
This was probably attributed to the formation of Y2O3–Al2O3 liquid phase at the
grain boundaries, which significantly enhanced the mass transfer of the samples
during the sintering process, because of the increase in the liquid diffusion coeffi-
cient. In contrast, the grain size decreased with increasing content of La2O3, as
shown in Fig. 8.31b, i.e., La3+ acted as a grain-boundary inhibitor. Although two
possible reasons, i.e., pore drag and particle pinning mechanisms, could be
employed to explain the observation, given the fact that the doping level was
relatively low, the particle pinning was not likely to be the key mechanism.
Therefore, dragging effect of the solute ions La3+ along the pore-free sections of the
boundaries was the grain growth inhibition mechanism.

The different effects of the two dopants could be combined to form a codopant
for AlON. On the one hand, a small amount of La3+ could largely decelerate the
mass transfer and hence suppressed the grain growth. At the same time, a low grain-
boundary mobility would be more effective for the pores to escape along the grain
boundaries instead of from interior of the grains. On the other hand, a large quantity
of Y3+ accelerated the mass transfer during the sintering process, which thus
facilitated the migration atoms toward pores and enhanced the elimination of pores.
An optimized codoping was 0.12 wt% Y2O3 plus 0.09 wt% La2O3.
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8.10.3 Use of Fine Particles with Uniform Packing

Uniformly compacted fine powders have small pores with low CN (i.e., N < Nc).
The densification rate for such a system is higher than for a similar system with
heterogeneous packing. Furthermore, if the particle size distribution is narrow, the
driving force for grain growth due to the curvature of the boundary is small. The
effectiveness of this route can therefore be interpreted in terms of an increase in the
value of _q= _G:

8.10.4 Control of Firing Schedule

When a powder system has a higher activation energy for densification than that for
grain growth, it is possible to heat it up quickly to a sufficiently high temperature to
achieve a high densification without significant grain growth, i.e., _q= _G: With this

Fig. 8.31 Reproduced with
permission from [118].
Copyright © 2015, Elsevier
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principle, new sintering strategies to control grain size and microstructure have
emerged, including two-step [116, 117] and multiple-step sintering [119, 120].
Especially, two-step sintering has been widely used to process transparent ceramics
[121–127].

Figure 8.32 shows representatively schematic diagrams of normal single-step
and two-step sintering [128]. The heating and cooling rates were 100 °C h–1, which
can be varied according to the properties of materials or specific requirements.
Usually, the first-step temperature (T1) is higher than the second-step temperature
(T2). There are various combinations of the two temperatures, thus providing high
flexibility and feasibility.

A successful instance has been demonstrated for Y2O3 ceramics [116]. The
green body was first heated to a higher temperature to achieve an intermediate
density and then cooled down a lower temperature, at which the sample was held
until it was fully densified. For pure nanosized Y2O3, the sample was first heated to
1310 °C and then cooled to 1150 °C, full density was achieved after holding for
20 h, during which there was no grain growth. For different compositions, the
scheme should be different.

The key to the two-step sintering is to get a sufficiently high starting density during
the first step. It has been shown that, when the density of a ceramic compact is above
70%, all pores become subcritical and unstable against shrinkage. These pores can be
readily filled, so long as it is allowed by the grain-boundary diffusion, even though
the particle network is frozen. Generally, densities of >75 % are sufficient to maintain
the second-step sintering. The absence of grain growth in second-step sintering can

Fig. 8.32 Heating programs
of a single and b two-step
sintering methods.
Reproduced with permission
from [128]. Copyright ©
2012, Elsevier
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be attributed to kinetics. Grain growth is significantly dynamic, so that the micro-
structure of the sintered body constantly refreshes. As mentioned earlier, one eighth
of all grains would survive when the size of the grains doubles every time. Such an
evolution could be an origin of enhanced kinetics. This is the reason why the final-
stage sintering always is accompanied by a rapid grain growth. In the two-step
sintering, the microstructure form in the first-step sintering at the higher temperature
is “frozen” and in the second-step sintering at a lower temperature. In this case, the
kinetics is slowed down, but it is still sufficient for densification.

A two-step sintering method, in which the sample was first heat to 1800 °C
without dwelling and cooled 1600 °C by holding for 8 h, was used to fabricate
transparent YAG ceramics in vacuum (10−3 Pa) [125]. The YAG powder was
synthesized, from Y(NO3)3·6H2O (>99.9 % purity) and Al(NO3)3·9H2O (>99.9 %
purity), by using a coprecipitation method with ammonium hydrogen carbonate as
the precipitant. The as-synthesized YAG powders were ball milled with 0.5 wt%
sintering aid tetraethoxysilane (TEOS) for 12 h. The milled powders were dry-
pressed at 10 MPa into Φ20 mm pellets and then cold-isostatically pressed at
200 MPa. The pressed samples were presintered at 1000 °C for 10 h in air. Finally,
the powder compacts were sintered in a molybdenum wire-heated vacuum furnace
by using a two-step sintering schedule at a vacuum of 10−3 Pa.

Fig. 8.33 SEM images of the ceramics sintered with different schemes: a two-step sintering
(1800 °C for 0 h + 1600 °C for 8 h), b single-step sintering at 1800 °C for 0 h, c single-step
sintering at 1600 °C for 8 h and d single-step sintering at 1800 °C for 0 h. The images of a–c were
from fractured surfaces, while that of d was from polished surface. Reproduced with permission
from [125]. Copyright © 2012, Elsevier
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During the two-step sintering, the samples were first heated to 1800 °C without
soaking, but immediately cooled down and held at 1600 °C for 8 h, i.e., 1800 °C for
0 h + 1600 °C for 8 h. The sintered samples were annealed at 1450 °C for 6 h in air.
Two single-step sintering schemes, 1800 and 1600 °C, were included for com-
parison. For the 1800 °C scheme, the samples were rapidly heated to the sintering
temperature and immediately cooled down to room temperature. For the 1600 °C
scheme, the samples were sintering at the temperature for 8 h.

Figure 8.33 shows microstructures of samples sintered with different schemes
[125]. As shown in Fig. 8.33a, the two-step sintered sample exhibited a dense and
pore-free microstructure, consisting of uniform grains of about 4 μm without AGG.
However, the single-step sintered samples at 1800 °C for 0 h and 1600 °C for 8 h, as
shown in Fig. 8.33b, c, respectively, possessed obvious pores. After reaching 1800 °C,
a sufficiently high density was achieved so sustain the two-step sintering, as shown
in Fig. 8.33d. The second-step sintering at 1600 °C for 8 h was sufficient to promote
the grain-boundary diffusion through the continuous framework formed during the
first-step sintering, while effectively suppressing the grain-boundary migration.

8.10.5 Use of Liquid-Phase Sintering

A second-phase that forms a liquid at the firing temperature can provide a fast
diffusion path for densification but grain growth by the Ostwald ripening process
may also be enhanced. In this case, high density is normally accompanied by
appreciable grain growth. This commonly used fabrication approach is the subject
of the next chapter.

8.11 Concluding Remarks

Grain and microstructural development during solid-state sintering of polycrystal-
line ceramics are governed by basic principles. With simple models, equations for
kinetics of NGG could be derived, which, however, are usually for the analysis of
an isolated grain boundary or a single grain, without considering the topological
requirements of space filling. Computer simulations are playing an increasing role
in this aspect. The reduction of uniform grain-boundary energy cannot be used to
explain AGG. Two possible reasons have been acknowledged: (i) there is a local
driving force that is higher than that due to the geometry or (ii) the boundary
mobility of a growing grain is higher than that of ordinary boundaries. AGG should
be avoided in general ceramic processing, but it can be utilized specifically to
realize solid-state crystal conversion from polycrystalline ceramics. Various strat-
egies could be explored to obtain transparent ceramics with high density, together
with controlled grain size and desired microstructure.
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