
Chapter 7
Sintering and Densification of Transparent
Ceramics

7.1 Introduction

There are various sintering techniques that can be used to fabricate transparent
ceramics. Conventional sintering techniques include vacuum sintering, hot pressing
(HP), and hot isostatic pressing (HIP), while spark plasma sintering (SPS) is more
popular than microwave sintering in the new sintering technique category. Every
method has its own advantages and disadvantages. Different methods can be
combined to offer higher sintering efficiency. The selection of sintering technique is
also dependent on materials.

7.2 Vacuum Sintering

Vacuum sintering refers to a sintering process technique carried out with a vacuum
equipment at a high vacuum level to achieve desired densification. Vacuum sin-
tering has been widely used to fabricate various transparent ceramics, including
garnet [1–7], spinel [8–11], alumina [12, 13], and rare earth sesquioxides ceramics,
such as Y2O3 [14–18], Sc2O3 [19], pyrochlore oxides [20, 21], and so on.

When using vacuum sintering to fabricate YAG ceramics, the procedure usually
consists of vacuum sintering followed by air annealing [22–38]. For example,
transparent polycrystalline Nd:YAG ceramics can be synthesized by using solid-
state reactive sintering the mixture of Al2O3, Y2O3, and Nd2O3 in a tungsten mesh-
heated vacuum furnace (M60, Centorr Vacuum) at 5 × 10−6 Torr during holding
[35]. Fully dense transparent samples with average grain sizes of *50 μm were
obtained at 1800 °C. The sintering temperature was slightly affected by the con-
centration of Nd. A small amount of SiO2 doping lowered the sintering temperature
by *100 °C. SiO2 is usually introduced by using tetraethyl orthosilicate (TEOS).
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After sintering, the specimens were annealed at 1400 °C for 2 h in air for
decoloring.

The first YAG transparent ceramics for laser applications was prepared by using
vacuum sintering [5]. High-purity fine Al2O3 and Y2O3 powders presynthesized by
using wet chemical methods, with the composition of YAG, were mixed with ethyl
silicate as a solution of 0.5 wt% in ethyl alcohol, by using ball milling. After
milling, the dried powder mixture was compacted by using isostatic pressing at
140 MPa. The pressed pellets were sintered at 1600–1850 °C at 1.3 × 10−3 Pa.
Optical properties, microhardness, and thermal conductivity of the YAG ceramics
sintered at 1800 °C were comparable with those of YAG single crystals.

Highly transparent polycrystalline Er3+:Y3Al5O12 (Er:YAG) ceramics with Er3+

ion concentrations of 1–90 % were prepared by using solid-state reaction combined
with vacuum sintering technique [22]. Commercial powders of α-Al2O3, Y2O3, and
Er2O3 with purity of >99.99 % were thoroughly mixed by using ball milling,
according to Er:YAG compositions with different contents of Er, together with a
trace of TEOS as sintering aid. The powder mixtures were dry-pressed at 3T to form
pellets with a diameter of 25 mm, which were isostatically cold-pressed at
250 MPa. The pellets were vacuum sintered at temperatures of up to 1800 °C for
different time durations at 10−3 Pa, after which they were annealed at 1450 °C for
20 h in air.

Figure 7.1 shows photographs of the mirror-polished Er:YAG transparent
ceramics with different Er contents of from 1 to 90 %. With increasing content of
Er, the specimens appeared pinker and pinker, due to the light absorption of Er3+ at
the visible band. All the Er:YAG ceramics exhibited excellent optical properties.

Fig. 7.1 Photographs of the
mirror-polished Er:YAG
ceramics with different
contents of Er (from left to
right): a 1, 5, 10, and 15 at.%
and b 30, 50, 70, and 90 at.%.
Reproduced with permission
from [22]. Copyright © 2011,
Elsevier
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EPMA images of the ceramics with 1 and 90 % Er are shown in Fig. 7.2. Both
samples were very compact with very few pores. No secondary phases were
observed both at the grain boundaries and in the inner grains. Average grain size of
the 1 % Er:YAG ceramics was about 30 μm. The 90 % Er:YAG sample had a larger
average grain size, probably due to the large particle size of starting Er2O3 powder.
The high-resolution TEM (HRTEM) image indicated that the grain boundaries of
the ceramics were clean and narrow, with a width of about 1 nm, thus leading to
much negligible optical scattering.

It was found that there was a strong dependence of grain sizes on the location of
the samples with green bodies formed by using uniaxial pressing with die, which
actually indicated the presence of distributions in density of the green bodies. As
mentioned before, cold isostatic pressing can only increase the density of the green
body by <10 % and the density distribution of the green bodies would not be
affected significantly. For two-directional pressing, the middle part of the green
body possessed the lowest density, thus leading to largest grains after sintering. The
grain size increased from the center part to the ends of the cylinder sample. For one-
directional pressing, the density of the green body decreased from the top end to the
bottom end. Figure 7.3 shows the scenario of one-directional pressing [22]. This
observation is an agreement with previous discussion on ceramic powder packing.

Microstructural evolution during vacuum sintering of Nd:YAG transparent
ceramics has been systematically studied [1]. Through microstructural observations,
the microstructural maps and grain size density and grain size–pore size sintering
trajectories of Nd:YAG ceramics, as a function of silica content, were established.
For densities higher than 99.7 %, the occurrence of intragranular porosity was
correlated to a critical pore radius of 0.16 μm. The presence of silica favored the
formation of intragranular pores, which was attributed to the increase in the grain
growth rate, as compared with the densification. An analytical model was estab-
lished by coupling the analytical laws derived from sintering trajectories and the
classical theory of light diffusion, which could be used to correlate the micro-
structural features of the transparent Nd:YAG ceramics to their optical properties.

Fig. 7.2 Electron probe micro-analyzer (EPMA) images of the Er:YAG ceramics: a 1 % and
b 90 %. Reproduced with permission from [22]. Copyright © 2011, Elsevier
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Submicrometer α-Al2O3 (purity >99.99 %), Y2O3 (purity >99.99 %), and Nd2O3

(purity >99.99 %) powders were mixed to form the Y2.94Nd0.06Al5O12 (2 at.% Nd:
YAG), by using ball milling in water with an organic dispersant and SiO2 (purity
>98 %) as sintering aid with contents of up to 0.3 wt%. Reactive sintering was
conducted in a tungsten mesh-heated furnace at vacuum of ≤10−2 Pa and tem-
peratures of 1000–1800 °C for different times durations, at heating/cooling rate of
5 °C min−1.

Figure 7.4 shows SEM images of the undoped and 0.1 wt% SiO2-doped Nd:
YAG ceramics sintered at vacuum for 5 h at temperatures in the range of 1580–
1730 °C [1]. Three types of microstructures could be observed, depending on the
experimental parameters and the doping. Type one was porous microstructure, with
the presence of open pores, having relative density (ρ) ranging from 60 to 90 % and
submicrometer grain sizes of about 500 nm, as shown in Fig. 7.4a. Type two was
dense microstructure, containing some closed intergranular pores, with relative
density ranging from 90 to 99 % and micrometer grain sizes of about 1 μm, as
illustrated in Fig. 7.4b. Type three was fully dense microstructure, with an average
grain size of >1 μm, as seen in Fig. 7.4c–f. In the third-type microstructure,
intragranular pores could occasionally be observed, as demonstrated in Fig. 7.4d. It

Fig. 7.3 Demonstration of the relationship between density and grain size distribution in a
representative sample with green body formed by using one-directional axial press. Reproduced
with permission from [22]. Copyright © 2011, Elsevier
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was shown that significant grain growth occurred at the final stage of the densifi-
cation, i.e., with ρ > 85 %. The comparisons, between Fig. 7.4c–e, and d–f, indi-
cated that the doping of 0.1 wt% of silica had no significant effect on overall
microstructural profiles of the Nd:YAG ceramics, but could decrease the sintering
temperature by about 50 °C correspondingly.

Sintering trajectories, i.e., grain size (G) versus relative density (ρ), of the
undoped and silica-doped samples sintered for 2 h at 1450–1800 °C, are shown in
Fig. 7.5 [11]. It was observed that grain size increased at a very slow rate until the

Fig. 7.4 SEM images of the undoped Nd:YAG ceramics sintered at vacuum for 5 h at
temperatures of 1580 °C (a), 1630 °C (b), 1680 °C (c), and 1730 °C (d), as well as the 0.1 wt%
SiO2-doped Nd:YAG ceramics sintered for 5 h at 1630 °C (e) and 1680 °C (f). Reproduced with
permission from [1]. Copyright © 2013, John Wiley & Sons
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relative density approached 99 %. However, after that, there was a sharp increase in
grain size. The presence of silica could promote grain growth and densification.

Transmittance spectra of the samples with a thickness of 2.5 mm, labeled with
their corresponding pore volume densities, are shown in Fig. 7.6a [11]. Obviously,
the baseline of transmittance increased with decreasing volume density of the pores,
demonstrating the optical scattering effect of pores in the Nd:YAG ceramics.
Photographs of the corresponding Nd:YAG ceramic samples are shown in
Fig. 7.6b. Analytical model indicated that the attenuation coefficient could be linked
to the volume density of pores. It was concluded that once having similar values in
pore volume density, e.g., <3 × 103 cm3, Nd:YAG ceramics could have similar
optical properties of their single-crystal counterparts. This study provided a useful
reference to other transparent ceramic materials.

Transparent alumina ceramics with high transmission have been developed by
using a rapid vacuum sintering processing at a lower sintering temperature and
shorter time duration, as compared with the conventional pressureless sintering
[13]. The alumina sintered at 1670 °C for 5 min exhibited a residual porosity of as
low as 0.002 %, thus showing a real in-line transmission of 64 % at of 1100 nm.
The sintering time had an effect on the densification and transparency of the alu-
mina ceramics sintered at 1650 °C.

A high-purity commercial α-Al2O3 (99.99 %) was mixed with 0.1 wt% MgO
(99.99 %, 30 nm) as sintering aid by using ball milling with high-purity alumina
balls. The milled and dried mixture was made into pellets with diameter of 15 mm
and thickness of 2 mm at a uniaxial pressure of 200 MPa. The green pellets were
presintered at 1200 °C for 2 h in muffle furnace and finally sintered in vacuum at
1500–1700 °C for 0–30 min, at a heating rate of 100 °C min−1, which was followed
by a natural cooling. All sintered samples were mirror-polished on both surfaces
and thermally etched at 1400 °C for 1 h in air.

Fig. 7.5 G–ρ sintering
trajectories of the undoped
and silica-doped Nd:YAG
ceramics sintered at vacuum
for 2 h at temperatures
ranging from 1450 to 1800 °C.
Reproduced with permission
from [1]. Copyright © 2013,
John Wiley & Sons
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SEM images of the ceramics sintered at different temperatures are shown in
Fig. 7.7 [13]. Porosities of the samples sintered at 1570, 1600, 1650, and 1670 °C
for 5 min were 1.256, 0.705, 0.075, and 0.002 %, with corresponding average grain
sizes of 3.54, 5.47, 8.55, and 11.14 μm, respectively. Both the grain size and
density of the samples were increased with increasing sintering temperature. A total
of 1600 °C was the critical temperature for complete densification, above which all
the samples demonstrated a homogeneous microstructure with clear grain bound-
aries and without abnormal grain growth.

Figure 7.8 shows SEM images of the samples sintered at 1650 °C for different
time durations [13]. All samples exhibited very high density, homogeneous
microstructure, and clear grain boundary, although residual pores at triple junction
points of grain boundary were occasionally observed. It was found that prolonged
sintering time resulted in an increase in pore size.

During the rapid vacuum sintering, the densification process of the transparent
alumina can be attributed to the presence of a temperature gradient in the sample
and the formation of nonequilibrium grain boundaries [39, 40]. The nonequilibrium
grain boundaries had higher energy, thus providing a stronger driving force for
grain growth. At the same time, due to the large thickness of the nonequilibrium
grain boundaries, the grain-boundary mobility was decreased. Therefore, densifi-
cation was maintained, while grain growth was suppressed.

Fig. 7.6 a Optical
transmittance spectra of the
0.3 wt% SiO2-doped Nd:
YAG transparent ceramics
with different pore volume
densities (Cn) after sintering at
vacuum (samples thickness
was 2.5 mm). b Photographs
of the Nd:YAG ceramics
corresponding to the samples
in (a). Reproduced with
permission from [1].
Copyright © 2013, John
Wiley & Sons
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The mechanism for the improvement in transparency of vacuum sintered Y2O3

ceramics due to the addition of ZrO2 has been analyzed [41]. Y2O3 (99.999 %) and
ZrO2 (99.99 %,) with an average particle size of 1 μm were mixed, according to the
formula of (Y1−xZrx)2O3 (x = 0–0.10), by using a ball milled in absolute ethyl
alcohol with agate balls. After milling and drying, pellets with 20 mm in diameter
were formed with stainless steel at 15 MPa and then isostatically pressed at
250 MPa. Sintering was conducted at 1800 °C for 15 h in vacuum.

Combined with sintering kinetics, thermodynamics, and experimental results,
the mechanism of ZrO2 in improving the transparency of Y2O3 ceramic was clar-
ified. The addition of ZrO2 led to the formation of ZrO2–Y2O3 binary system with
decreased melting point, thus reducing the sintering temperature. The radius of Zr4+

is 0.80 Å, which is close to that of Y3+ (0.90 Å), so that there was only very small
lattice distortion when Y3+ was substituted with Zr4+.

At the final stage of sintering, grains with large size and low surface energy tend
to grow at the expense of the surrounding smaller grains, which is known as
discontinuous or exaggerated grain growth. During this process, due to the high
mobility of grain boundaries, pores are easily trapped in grains, which is harmful to

Fig. 7.7 SEM images of the alumina ceramics sintered for 5 min at different temperatures:
a 1570 °C, b 1600 °C, c 1650 °C, and d 1670 °C. Reproduced with permission from [13].
Copyright © 2012, John Wiley & Sons
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the transparency. Due to its high melting point (2715 °C), ZrO2 is prone to form
solid solution at the grain boundaries, so as to reduce the grain-boundary mobility.
At the same time, secondary recrystallization could occur, due to the solute drag
mechanism, which would be beneficial to the elimination of pores and the
homogenization of grain sizes, two critical factors to ensure high optical trans-
mittance of the Y2O3 ceramics.

It is well known that the diffusion coefficient of O2− is much higher than that of
Y3+ in pure Y2O3. Therefore, cation diffusion is the rate-controlling step of grain-
boundary migration, i.e., the diffusion of ½Y���

i � dominates the grain-boundary
mobility [42]. There are following defects and defect reactions in Y2O3.

For Schottky defects, there is:

Y2O3 , 2V000
Y þ 3V��

O: ð7:1Þ

For Frenkel defects, there are:

OO , O00
i þ V��

O; ð7:2Þ

Fig. 7.8 SEM images of the alumina ceramics sintered at 1650 °C for different time durations:
a 0 min, b 10 min, c 20 min, and d 30 min. Reproduced with permission from [13]. Copyright ©
2012, John Wiley & Sons
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YY , V000
Y þ Y���

i : ð7:3Þ

After doping with ZrO2, there is:

2ZrO2 �!Y2O32Zr�Y þ O00
i þ 3OO: ð7:4Þ

As a result, when every two Zr4+ ions were substituted, one O
00
i was produced, so

that ½V000
Y� was increased, while ½Y���

i � was decreased. The decrease in ½Y���
i � resulted in

a reduction in grain-boundary mobility and sintering rate, which ensured the escape
of pores and densification of the ceramics. For example, average grain size of the
ZrO2-doped ceramics was about 15 μm, which was much smaller than those widely
reported in the open literature. In terms of optical performance of the transparent
ceramics, 3 at.% ZrO2 was the optimized doping concentration.

7.3 Hot Pressure (HP) Sintering

Hot pressure (HP) sintering is a high-pressure low-strain-rate powder metallurgy
process, which is used to form a powder or powder compact at a temperature that is
sufficiently high to induce sintering and creep processes. This is achieved by the
simultaneous application of heat and pressure. Densification at high pressure pro-
ceeds through the rearrangement of particles and plastic flow at the particle con-
tacts. HP is mainly used to fabricate hard and brittle materials. As a result, HP has
become an important technique to obtain transparent ceramics.

In 1977, transparent spinel with small grain size (1–2 μm) was prepared by using
low-temperature (1400 °C) and high-pressure (70 MPa) hot pressing [43].
Transparent magnesia–alumina spinel ceramics were prepared from equimolar
mixture of the oxides, which were derived from Mg(OH)2 and Al(OH)3 after cal-
cining at 900 °C for 2 h and 1400 °C for 2 h, respectively. Formation of spinel from
the oxide mixture was accompanied with a volume expansion of about 7.9 %,
which was suppressed by applying a pressure of >330 kg cm−2 at 950 °C, so as to
promote the densification of the spinel ceramics. A step heating schedule was used,
i.e., hot-pressing technique at 770 kg cm−2 at 1300 and 1350 °C for 0.5 h and
1400 °C for 1 h. The transparent spinel ceramics exhibited optical transmittance of
35–75 % in the visible range and 75–85 % in the IR range.

Since then, HP became a widely used technique to prepare transparent spinel
ceramics. For example, HP process was used to fabricate MgAl2O4 transparent
ceramics, with a nearly 100 % densification [44]. Spinel powders for the production
of transparent polycrystalline ceramic windows were produced by using both the
traditional ceramic solid-state reaction and solgel methods. Among them, the
powders produced from the reaction of organomagnesium compounds with surface
modified boehmite precursors were best to produce high-quality transparent spinel
ceramics. The powder synthesis method allowed fine control over the particle size,
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size distribution, purity, and stoichiometry. The process involved the formation of a
boehmite solgel from the hydrolysis of aluminum alkoxides. The boehmite nano-
particles were treated through a surface modification with carboxylic acids. The
surface modified boehmite nanoparticles were then used to make a precursor
powder of pure phase spinel through metal exchange at room temperature with
magnesium acetylacetonate.

Different from the conventional sintering process which usually requires high
sintering temperatures (>1600 °C), HP process is able to achieve desired densifi-
cation at relatively low temperature, which is therefore also called low-temperature
high-pressure (LTHP) process. Due to its low-temperature requirement, it can be
used to develop nanosized ceramics [45–48]. The sintering mechanism at high
pressures is entirely different from that at ambient pressure [45]. High pressure can
suppress the grain growth and initiate plastic deformation to eliminate pores and/or
additional phases existing in triple junctions of the grains. However, the conven-
tional sintering process is controlled by grain growth to avoid imperfections
between grain boundaries when preparing transparent ceramics.

High-resolution transmission electron microscopy (HRTEM) and selected area
electron diffraction (SAED) of two selected samples, sintered at 4.0 GPa at 600 °C
and 4.0 GPa at 1100 °C, are shown in Fig. 7.9 [45]. The average grain size observed
from Fig. 7.9a was about 40 nm. The nanostructured profile of the sample was
confirmed by the corresponding SAED pattern. The HRTEM image showed a clear
grain boundary without any secondary phase and/or in-between phases, as dem-
onstrated in Fig. 7.9b. The clean grain boundaries had no contribution to scattering,
which was responsible for the high transparency of the MgAl2O4 ceramics sintered
at 4.0 GPa at 600 °C.

As the sintering temperature was increased to 1100 °C, the grain/crystallite size
increased significantly, so that the nanostructured profile was lost due to the grain
growth, as illustrated in Fig. 7.9c. It is also found that the crystals have a wider
particle size distribution, probably due to the presence of a temperature gradient in
the sample. Consequently, imperfections, nonuniform crystallites and irregular
grain boundaries, were present, which would pose negative effects on optical
transparency of the ceramics. The HRTEM image of MgAl2O4 ceramics sintered at
4.0 GPa at 1100 °C taken along the [332] zone axis, shown in Fig. 7.9d, together
with the corresponding SAED pattern, indicated a highly crystallized feature of the
sample, demonstrating the grain growth of the materials at 1100 °C.

Therefore, the formation temperature of the transparent MgAl2O4 spinel
ceramics could be significantly reduced, if sufficiently high pressure is available. As
the pressure is in the range of 2–5 GPa, very low sintering temperatures of 500–
700 °C can lead to nanosized transparent spinel ceramics [46]. The nanosized
ceramics were highly transparent even though their relative densities are less than
99 %, due to the low or negligible light scattering from the nanosized grains and
pores. The LTHP process is able to densify nanosized powders without significant
grain growth, which becomes a key advantage for the development of transparent
ceramics, as discussed above. It is of special interest when mechanical strength is an
important requirement.
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Another example is the development of a nanocrystalline spinel ceramics with
50 % increase in hardness by using hot pressing [49]. It is well accepted that
mechanical strength and hardness of a material can be increased by decreasing its
grain size, as described by the empirical Hall–Petch relationship [50, 51]. Based on
this principle, an integrated approach was developed by using nanosized spinel
powder, combined with high-pressure and low-temperature sintering to fabricate
fully dense and high-purity nanocrystalline ceramics with nanometer-sized grains.
The Hall–Petch relationship was confirmed by the hardness of the transparent spinel
ceramics with grain sizes down 28 nm. As a result, the nanosized spinel ceramics

Fig. 7.9 a TEM image showing microstructure of the MgAl2O4 nanocrystalline transparent
ceramics sintered at 4.0 GPa and 600 °C for 30 min. The corresponding SAED pattern in the inset
proved the characteristics of the polycrystalline nanograins. b HRTEM image of the MgAl2O4

nanoceramics. c TEM image showing microstructure of the MgAl2O4 ceramics sintered at 4.0 GPa
at 1100 °C for 30 min, with an average grain size of the smaller crystallites to be ∼500 nm.
d HRTEM image of the MgAl2O4 ceramics sintered at 4.0 GPa/1100 °C taken along the [332]
direction, with the corresponding SAED pattern shown as the inset. Reproduced with permission
from [45]. Copyright © 2010, Elsevier
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exhibited a 50 % increase in hardness without a decline in fracture resistance. More
importantly, the nanocrystalline spinel ceramics had near theoretical optical
transparency.

Figure 7.10 shows a schematic diagram of the high-pressure high-temperature
sample holder [49]. Spinel powders were pressed into green compacts without
binder within glove box in an evacuable die at 1900 kg cm−2. The ejected green
compacts were mechanically sealed in a metal capsule. The sealed sample capsule
was inserted into the high-pressure assembly, which consisted of a partially sintered
ZrO2 container saturated with CsCl in the shape of a rectangular cuboid with
truncated edges, a graphite heater, mica, and molybdenum heater contacts. K-type
thermocouples were inserted through both high-pressure cell assembly lids. A
pressed boron nitride tablet isolated the exposed thermocouple junction from the
metal sample capsule. High-pressure experiments were performed in a pressless
split-sphere apparatus (BARS) equipped with an 8–6-type multi-anvil system. After
about 25 min pressurization to 2 GPa, samples were sintered at temperatures from
740 to 845 °C for 15 min. The nanosized spinel ceramics are transparent in the
visible spectrum, without major absorption bands from ultraviolet to short-infrared
wavelengths. The maximum transmission was about 81 % at infrared wavelengths
of 1200–1350 nm.

The fact that the ceramics were fully dense and of high quality, without residual
porosity or obvious grain growth, was further confirmed by the SEM and TEM
images, as shown in Figs. 7.11 and 7.12 [49]. SEM images of the polished surface
of the ceramics derived from the 200 nm powder and the same 30.8 nm nano-
crystalline ceramics are shown in Fig. 7.11a, b, respectively. Any potential vari-
ability in the sintering environment has been eliminated, because the samples were
sintered in the same sample capsule at 2 GPa and 795 °C. Fine pores were present
in the submicron sample, while very few features, which included a surface scratch
and dust particles, were present at similar magnification for the nanocrystalline

Fig. 7.10 Schematic of the high-pressure cell assembly. Reproduced with permission from [49].
Copyright © 2014, Elsevier
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ceramics. At higher magnifications, a submicron grain structure was observed in the
coarse ceramics and abnormally large grains were present along with the porous
structure. The grain structures of the nanocrystalline ceramics are clearly demon-
strated by the TEM images, as shown in Figs. 7.11d and 7.12.

Figure 7.12 shows TEM images of different grain-boundary regions of the
nanosized spinel ceramics [49]. There were nanoscale grains where the crystalline
lattice extended into the boundary, as shown in Fig. 7.12a, d. Also, grain bound-
aries decorated with a small, *1 nm, amorphous phase region were observed, as
shown in Fig. 7.12b. Such amorphous phases were also present at the junctions of
three grains, as shown in Fig. 7.11c. Noticing the highly transparent characteristics
of the nanosized sample, the slight fraction of amorphous phase at the grain
boundaries had negligible influence on its optical properties and density.

Similar process was also used to develop yttrium aluminum garnet (Y3Al5O12,
YAG) transparent ceramics with nanosized grains [52]. In this study, a high-
pressure cell was used, where disk samples were placed in a capsule made of NaCl,
both to ensure the quasi-hydrostatic compression of the sample and prevent its
contact with the graphite heater. The whole structure was then contained in the
pyrophyllite high-pressure cell. The sample temperature in the high-pressure cell

Fig. 7.11 Microstructures of the porous and fully dense spinel ceramics produced by sintering at
2 GPa and 795 °C. a and c SEM micrographs of the porous submicron structure of spinel ceramic
derived from 200-nm-sized spinel powder. b SEM and d TEM images of the microstructure of the
fully dense nanosized spinel ceramics. Reproduced with permission from [49]. Copyright © 2014,
Elsevier
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was measured directly by using a standard Ni–Cr/Ni–Si thermocouple. The cell
pressure was monitored by using a calibrated oil pressure meter. Desired pressures
were first applied to the samples before raising the temperature. The pressure range
was 2.0–5.0 GPa, and temperature range was 300–500 °C, with holding time of
30 min. After that, the pressure was released first, and then, the samples were
cooled down to room temperature at a rate of 15 °C min−1. By doing in this way,
the residual stress of the samples could be released in order to avoid the happening
of cracking. Optimized processing parameters for transparent YAG ceramics were
5 GPa and 450 °C.

One of the characteristics of HP is freedom to optimize the sintering parameters,
which has been demonstrated when HP sintering was used to fabricate transparent
Y2O3 ceramics [53, 54]. For instance, stepwise process has been reported to fab-
ricate Eu:Y2O3 transparent ceramics [54]. The program included a high-temperature
ramp at constant pressure and a pressure ramp at constant high temperature. After a
dwell at 1150 °C to outgas the samples, a pressure of 10 MPa was applied, followed
by a temperature ramp to 1580 °C at a heating rate of 8 °C min−1. After a 30 min
dwell at constant temperature and pressure, the pressure was raised to 40 MPa at a

Fig. 7.12 TEM images of the fully dense nanosized spinel ceramics produced by sintering at
2 GPa and 795 °C. a and b Different areas revealing that some grain boundaries contain *1-nm
amorphous phase regions. c An amorphous triple junction with the inset showing the fast Fourier
transform of the main figure. d Image from a region containing nanotwins. Reproduced with
permission from [49]. Copyright © 2014, Elsevier
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rate of 0.4 MPa min−1. With this stepwise application of pressure, optimized
temperature was 1580 °C.

HP sintering process is a very unique and feasible technique to prepare trans-
parent electro-optic ceramics, including PLZT [55–57], PZN–PLZT [58] and
PMN–PT [56, 59–61], and other ferroelectric ceramics [62], which contain volatile
element Pb. In the early 1970s, (Pb, La)(Zr, Ti)O3 (PLZT) transparent ferroelectric
ceramics were synthesized by using HP [43]. The transparent PLZT ferroelectric
ceramic materials have found a variety of electrooptic applications. They were
prepared from mixed oxides by using hot-pressing sintering at 1100 °C for 16 h at
2000 psi. Transmission measurements in the visible and infrared showed that these
materials exhibited a nearly constant response from the absorption edge of 0.37 μm
to ∼6 μm. The highest transmission values were observed for compositions con-
taining >8 at.% La. Specific compositions exhibited electro-optic memory, con-
ventional linear, and quadratic electrooptic effects, with performances comparable
with those of single crystals.

Highly transparent ceramics of La-doped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3

(PMN–PT) were fabricated by using a two-stage sintering method [59]. Green
pellets were first sintered in an oxygen atmosphere (OA) at different temperatures,
which were then hot pressed (HP) at temperatures of >1000 °C for more than 8 h at
pressures of 50–100 MPa. The ceramics prepared in this way exhibited a trans-
parency of as high as 65 % at infrared wavelength. Large quadratic electro-optic
coefficient of 66 × 10−16 (m/v)2 was obtained, which was the highest value reported
in the literature for the ceramics with similar compositions.

The precursor powder with a composition of La-doped PMN–PT 3/75/25 was
synthesized by using the columbite precursor method, starting with PbO, MgO,
Nb2O5, TiO2, and La2O3, in which small amount of excessive PbO was used to
promote the densification through liquid-phase sintering. The powder was made
into pellets by using uniaxial pressing. The pellets were first sintered in an OA at
different temperatures. The sintered pellets were then hot pressed (HP) at a tem-
perature of >1000 °C for more than 8 h at pressures of 50–100 MPa. In the OA–HP
two-stage sintering method, the OA sintering temperatures were different:
(A) 1150 °C, OA–HP; (B) 1200 °C, OA–HP; and (C) 1230 °C, OA–HP.

The PMN–PT ceramics exhibited a transparency of as high as 65 % in infrared
region, as shown in Fig. 7.13a. SEM images of PMN–PT 3/75/25 ceramics sintered
with different schedules are shown in Fig. 7.13b, c. All samples showed trans-
granular fracture character, which was attributed to the increased homogeneity
between grain boundary and grain, as well as firm conjunct strength of grains
caused by the liquid phase that was formed during the sintering. It was found that
the sample with more transgranular fracture had higher transparency, which sug-
gested that grain boundary with an increased homogeneity and firm strength would
have reduced reflection and scattering of light. This observation once again indi-
cates that the quality of grain boundary plays a more important role in determining
optical properties of transparent ceramics, as discussed previously.
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HP process was found to be the most feasible method to prepare transparent or
translucent α-sialon ceramics [63, 64], which could not be achieved by using the
conventional pressless sintering. Single-phase α-sialon ceramics with high optical
transmittance have been prepared by using hot pressing [63]. HP was also used to
tailor grain morphologies and preferential texturing microstructures of α-sialon
ceramics [64–66]. Other examples include translucent MgO ceramics fabricated by
using hot-pressing, with nanopowder of MgO containing 2–4 % LiF as a sintering
aid [67]. HP process has even been used to prepare fluoride ceramics (CaF2), such
as transparent Yb:CaF2 ceramics [68, 69].

7.4 Hot Isostatic Pressure (HIP) Sintering

Hot isostatic pressing (HIP) is a fabrication process that is used to reduce the
porosity of metals and increase the density of various ceramic materials [70–74].
The HIP process subjects a component to both elevated temperature and isostatic
gas pressure in a high-pressure containment vessel. The chamber is heated, causing
the pressure inside the vessel to increase. Many systems use associated gas

Fig. 7.13 Transmission curves of the PMN–PT 3/75/25 ceramics with a thickness of 0.5 mm
(a) and SEM images of the samples sintered with different schedules: b sample A, c sample B, and
d sample C. Reproduced with permission from [59]. Copyright © 2010, John Wiley & Sons
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pumping to achieve the desired pressure levels. Pressure is applied to the material
from all directions.

Materials are hot isostatically pressed (HIPed) in order to achieve the maximum
possible densification, which has become a key technique to achieve high optical
transmittance. To reduce the fabrication cost, hot isostatic pressing is usually used
as the last step, although it has been proved to be a critical step to prepare high-
quality transparent ceramics. This is simply because HIP involves sophisticates
equipment and critical experimental conditions.

HIP process has been widely used to synthesize transparent armor ceramics,
such as alumina (Al2O3) [75–79], YAG [80–83], and spinel (MgAl2O4) [84–88].
HIP process can be combined with HP. Hot pressing followed by hot isostatic
pressing (HIP) proved to be more feasible to fabricate transparent MgAl2O4

ceramics was widely used [84, 85, 88]. Nowadays, HIP process is also used to
synthesize cubic sesquioxide ceramics, including Y2O3 [89], Sc2O3 [90], and
Lu2O3 [91]. In these cases, vacuum sintering to remove closed pores with a sub-
sequent HIP step was usually employed, which provided an alternate processing
route to the fabrication of fully dense sesquioxide ceramics with less possibility for
contamination and reduction than hot pressing.

A simple method has been established to achieve nearly 100 % relative density
of α–alumina ceramics by using hot isostatic pressing (HIP) [75]. In this study,
transparencies of the samples were correlated to their grain size and residual
porosity. A commercially available α-alumina powder was wet milled in order to
realize de-agglomeration. After that, the average particle size of the powder was
100–150 nm. Suspensions with ∼75 wt% solid with any organic additive were cast
with a nylon filter (pore diameter = 0.2 μm) to form green bodies. The wet bodies
were dried at 65 °C for 15 h and then calcined at 600 °C for 30 min in vacuum of
<1 mbar. Then, the samples were sintered naturally in vacuum of *10−6 mbar at
temperatures of about 1200 °C for 2–17 h. The samples with porosities of <10 %
were subject to HIP at about 1200 °C at 170 MPa in argon for 3–5 h. The HIP
furnace was made of molybdenum. The densities of the HIP processed samples
were measured with a very precise method, by measuring mass of the ceramics
outside and inside water, which were then compared with the density of alumina
single crystal to obtain relative densities.

Figure 7.14 shows porosity values of the samples after natural sintering in
vacuum versus the treatment temperature and time [75]. With a constant treatment
time, the porosity always increases as the sintering temperature is decreased. It was
found in this work that if the porosity was higher than 8 %, the HIP treatment was
not workable. The samples sintered at 1200 and 1220 °C; time duration of 2 h was
sufficient. However, the samples sintered at 1170 and 1185 °C should be kept for
17 h to decrease the porosity to be <4 %.

In addition, the treatment temperature and time also showed their effects on grain
size of the samples, as shown in Fig. 7.15 [75]. As stated earlier, the grain size of
the starting powder was 100–150 nm. After the treatments at 1200 and 1220 °C for
2 h, the grain size was <400 nm, which was close to that of the sample sintered at
1170 °C for 17 h. However, after sintering at 1185 °C for 17 h, the grain size was
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Fig. 7.14 Total porosity versus the natural sintering temperature, for different treatment times, at
the pressure of ∼10−6 mbar. Reproduced with permission from [75]. Copyright © 2011, Elsevier

Fig. 7.15 Grain sizes of the ceramics versus the natural sintering (NS) temperature: (square) after
natural sintering, (triangle) after HIP at 1180 °C and 170 MPa for 3 h, (disc) after HIP at 1200 °C
and 170 MPa for 3 h, and (star) after HIP at 1180 °C and 170 MPa for 5 h. The HIPed ceramic
values are placed versus the temperature of the corresponding natural sintering. Reproduced with
permission from [75]. Copyright © 2011, Elsevier
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>600 nm. The HIP treatment led to an increase in grain size. The increase in grain
size after the HIP processing was simply based on the grain size of the samples after
the natural sintering. For a given natural sintering temperature, the variation in the
HIP condition had relatively less effect on the grain size as compared with that of
the natural sintering.

Figure 7.16 shows relative densities of the samples [75]. It was observed that the
effect of the natural sintering temperature was also quite obvious. At the same HIP
condition, the higher the natural sintering temperature, the weaker the effect of HIP on
the relative density would be. The samples naturally sintered at 1170 and 1185 °C
followed by HIP at 1180 °C for 3 h and the sample sintered at 1200 °C followed by
HIP at 1180 °C for 5 h exhibited almost the same relative density of 0.9985, while the
different in their grain sizes was quite large, i.e., between 580 and 1300 nm.
Therefore, this achievement implies that high relative densities can be realized, while
grain growth can be well controlled at the same time. It is believed to be also
applicable to other transparent ceramic materials.

Highly transparent 8 mol% Y2O3–ZrO2 (8YSZ) ceramics were fabricated by an
improved hot isostatic pressing method [92]. Combined with presintering treatment,
microstructures, such as positional difference in residual pores, inter-, or intra-
granular pores, of the 8YSZ ceramics could be well controlled. Commercially
available 8 mol% Y2O3–ZrO2 powder was used as a starting material. Green bodies
were formed by using cold isostatic pressing method. Pellets with diameter of
20 mm and thickness of 3 mm were made by die pressing at 50 MPa and then
isostatically cold-pressed at 200 MPa. The green bodies were presintered in an

Fig. 7.16 Relative density (τ) after HIP treatment versus the natural sintering temperature. The
HIP parameters are indicated for each data. Reproduced with permission from [75]. Copyright ©
2011, Elsevier
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alumina tube furnace in air. The heating rate was 100 °C h−1, and the holding time
was 2 h at temperatures of <1650 °C. The presintered samples were finally treated
by using hot isostatic pressing, at temperatures of 1350–1750 °C for 1 h in argon
gas at pressure of 150 MPa. The temperature and pressure were simultaneously
raised at a heating rate of 500 °C h−1.

According to the experimental results, a microstructure model for pore elimi-
nation during the hot isostatic pressing has been proposed to illustrate micro-
structural evolution of a green body, as shown in Fig. 7.17 [92]. At low presintering
temperatures, small intergranular pores are surrounded with fine grains. The
intergranular pores transform to intragranular ones when the presintering temper-
atures are sufficiently high to facilitate grain growth. It is suggested that such
intergranular pores are easily removed during the hot isostatic pressing. On the one
hand, fine grains have large plastic deformability, which is favorite for pores to
shrink at the hot isostatic pressures [93]. On the other hand, it is well known that
high-temperature plastic deformability is increased with decreasing grain size
[94, 95]. Also, the rapid migration closed gas is through grain boundaries. Small
grain size means more grain boundaries, thus being beneficial to the shrinkage of
pores. The model has been found to be applicable to many other oxide ceramics
[96, 97].

Fig. 7.17 Microstructure model for pore elimination during the sintering of hot isostatic pressing.
Reproduced with permission from [92]. Copyright © 2008, John Wiley & Sons
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The feasibility of HIP can be further demonstrated by the following examples.
Fully dense transparent garnet ceramics were derived cold-pressed green bodies that
were subsequently vacuum sintered, with residual porosity being removed by hot
isostatic pressing [98]. It was reported that hot isostatic pressing (HIPing) could be
used to enhance the electrical and optical properties of PNNZT (50.0/15.5/34.5)
[99]. After hot isostatic pressing at 1100 °C, the density was increased to >99 %.
Transparent mullite ceramics could be obtained by pressureless sintered combined
with hot isostatically pressed (HIP) [100]. In the HIPed mullite, with porosity of
<1 %, a transmittance of 40 % was observed in the VIS range and up to 80 % in
NIR. Transparent Yb:CaF2 ceramics could be fabricated by sintering and hot-
pressing powders that were derived by a soft chemistry process [101]. There are
also reports to use HIP process to consolidate hydroxyapatite (HAp) filter-cakes
[102]. HAp ceramics were fully densified at 800 °C after 2 h when a hot isostatic
pressure of 100 MPa was used. Besides, transparent α-sialon ceramics [103],
transparent magnesium oxide (MgO) ceramics [104], and transparent La2Hf2O7

(LHO) ceramics [105] were also fabricated by using HIP process.

7.5 SPS Processed Transparent Ceramics

Various transparent ceramics, such as alumina (Al2O3) [106–112], yttrium alumi-
num garnet (YAG) [113, 114], sesquioxides [115–120], ZrO2 [121–123], MgO
[124], MgAl2O4 [125–127], mullite [128, 129], hydroxyapatite (HAp) [130, 131],
other complex oxide compunds [132], and nonoxides (e.g., AlN) [133], have been
processed by using SPS. Also, SPS has been demonstrated to be an effect method to
fabricate electro-optic ceramics, including lanthanum-doped lead zirconate stannate
titanate (PLZSnT) antiferroelectric ceramics, PbZrO3–PbTiO3–Pb(Zn1/3Nb2/3)O3

(PZ–PT–PZN) ferroelectric ceramics [134], and lanthanum-doped lead zirconate
titanate (Pb0.92La0.08(Zr0.65Ti0.35)0.98O3, PLZT) ceramics [135]. Processing of these
transparent ceramics by using the conventional sintering is a significant challenge,
due to the content of volatile element (Pb). More recently, transparent BaTiO3 and
SrTiO3 ceramics, as well as their solid solutions, Ba1-xSrxTiO3 (or BST in short),
which can never be obtained by using the conventional sintering techniques, have
been achieved by using SPS [136, 137].

The effects of SPS processing parameters on microstructure and optical perfor-
mance of Al2O3 ceramics have been studied [138]. Commercial α-Al2O3 powder,
with a purity of 99.99 % and an average particle size of 0.15 μm, was used directly in
this study. Compacted samples were heated to 1150 °C at a uniaxial pressure of
80 MPa by using a SPS machine (SPS-1050, Sumitomo) with a pulse duration of
3.4 ms. Heating was conducted in a sequent way, with twelve DC pulses (40.8 ms)
followed by zero current for 6.8 ms. The heating rate from 600 to 1150 °Cwas varied
between 2 and 100 °C min−1. Temperature was measured with an optical pyrometer
focused on a nonthrough hole (1 mm in diameter and 2 mm in depth) of the graphite
die. After holding for 20 min at the sintering temperature and subsequent annealing at
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1000 °C for 10 min, the sintered disk was about 30 mm in diameter and 3 mm in
thickness. In addition, for the heating rates of 8 and 50 °C min−1, sintering time was
varied between 0 and 5 h, in order to examine the grain growth behavior. The
mechanical pressure was unloaded before annealing.

It was found that, with the sintering parameters stated above, grain size of the
final products increased with increasing heating rate. For example, the sample
heated at 10 °C min−1 had an average grain size of 0.29 μm, while the one heated at
100 °C min−1 showed a grain size of 0.55 μm. SEM images of representative
samples are shown in Fig. 7.18 [138]. This observation is in contrast to common
trend in conventional furnace sintering. It was attributed to the high defect con-
centration produced by rapid heating and the associated rapid deformation during
densification. The defects produced by both rapid heating and deformation would
be responsible for the accelerated grain growth, which was further demonstrated in
Fig. 7.19. As the temperature just reached 1150 °C, the two heating rates led to
samples with almost the same grain size. However, as the sintering time was
increased, the grain size of the sample sintered at 50 °C min−1 became much larger

Fig. 7.18 Microstructures of
the alumina sintered at a
heating rate of a 2 °C min−1

and b 100 °C min−1.
Reproduced with permission
from [138]. Copyright ©
2009, Elsevier
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than that of the one sintered at 8 °C min−1. The effect of heating rate on porosity
was normal, i.e., porosity increased with increasing heating rate.

Figure 7.20 shows photographs of the Al2O3 ceramics sintered at 1150 °C for
20 m with different heating rates, while tier in-line transmission curves are shown in
Fig. 7.21 [138]. It is clearly demonstrated that the heating rate should be as low as
possible in order to achieve high optical transparency. However, in practice, a trade-
off is necessary, because low heating rate means high energy consumption.

SPS technique even can be used to fabricate samples with special shapes, such as
hemispherical domes. For instance, transparent polycrystalline alumina domes have
been obtained by combining sintering and forming into one step in minutes [139].
In contrast, fabrication of such items by using the convention sintering technology
requires hours. Therefore, SPS provides an unprecedented opportunity to make
optically transparent domes at much lower cost, in this respect. In addition, alumina
transparent ceramics processed by using SPS have relatively finer grains, due to the
rapid heating rate and short sintering time duration.

It is possible to further optimize the sintering effectiveness and efficiency when
using SPS. For example, a two-step pressure profile was used to demonstrate the
feasibility of SPS in processing MgAl2O4 [140]. At a low preload pressure, 5 MPa,
with a normal fast heating rate of 100 °C min−1, samples could have high in-line
transmittance of 51 % at 550 nm and 85 % at 2000 nm. Sintering was carried out in

Fig. 7.19 Grain growth
behaviors at 1150 °C for two
different heating rates.
Reproduced with permission
from [138]. Copyright ©
2009, Elsevier

Fig. 7.20 Alumina ceramics sintered by SPS at a heating rate of a 2 °C min−1, b 5 °C min−1,
c 10 °C min−1, d 25 °C min−1, e 50 °C min−1, and f 100 °C min−1. All samples are 0.9 mm thick
and are put on a transparent polystyrene plate 24 mm above the text. Reproduced with permission
from [138]. Copyright © 2009, Elsevier
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vacuum (4–6 Pa) with a Dr. Sinter 2050 SPS apparatus (Sumitomo Coal Mining
Company Ltd., Japan). The temperature was increased to 600 °C within 3 min and
then further increased to 1250 °C in 6 min, while the final sintering temperature of
1300 °C was reached in 1 min. The sintering time at the final stage for all exper-
iments was 3 min. Five preload pressures, i.e., P1 = 5, 10, 20, 30, 50, and 100 MPa,
were used in the experiment. Photographs of the samples are shown in Fig. 7.22.
Obviously, the samples prepared at P1 of 30, 50, and 100 MPa have a darker
discoloration core of about 8 mm in size at their center [140]. The discoloration was
attributed to the dislocations formed during the fast densification. Figure 7.23
shows in-line transmittance curves of the samples. It was concluded that a preload

Fig. 7.21 In-line
transmission of the alumina
sintered at 1150 °C for
20 min. The sample thickness
is about 0.9 mm. Reproduced
with permission from [138].
Copyright © 2009, Elsevier

Fig. 7.22 Photographs of the transparent MgAl2O4 ceramics sintered at 1300 °C for 3 min at
different preloaded pressures (P1): 5 MPa (1.79 mm), 10 MPa (1.99 mm), 20 MPa (1.82 mm),
30 MPa (1.89 mm), 50 MPa (1.82 mm), and 100 MPa (1.60 mm). The samples were 15 mm above
the paper, and thicknesses of the samples are indicated in parentheses. Reproduced with
permission from [140]. Copyright © 2009, Elsevier
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pressure P1 should not be >20 MPa, so as to obtain acceptable optical transmittance
approaching the theoretical limit in the wavelength range of >1000 nm.

Figure 7.24 shows SEM image of the samples processed at 5 MPa and 100 MPa
[140]. It was found that both samples exhibited uniform microstructures, which
implied that the application of a prepressure had no significant effect on micro-
structure of the final product. No residual pores were observed on surface the
thermally etched sample, while only a very few pores were found by using TEM
observation. Average grain sizes of the 5 and 100 MPa samples were 600–700 nm.
No significant difference in grain size was observed between the discoloration
center and the clean rim. It was attributed to the fact that the temperature gradient
was <30 °C in the 12 mm graphite die in the experiment, which was not sufficiently
large to lead to energy difference, so that the grain size was not affected.

Transparent Y2O3 ceramics have been fabricated by using SPS at moderate
temperature and pressure [119]. It was found that sintering temperature had a
significant effect on densification, microstructure, optical, and mechanical proper-
ties of the Y2O3 ceramics. Very high-purity Y2O3 powder (99.999 %) was used as
the starting material. Before SPS processing, the powder was ball milled in ethanol
with ZrO2 balls for 12 h and then calcined at 1273 K in air for 7.2 ks. SPS-210 LX
model SPS setup was used to densify the Y2O3 powder. The temperature was first
increased to 873 K in 180 s and to 1373 K in 300 s and then held for 300 s. After
that, the temperature was further increased to 1373–1823 K at a heating rate of
0.17 K s−1 and maintained at each temperature for 2.7 ks. A pressure of 10 MPa
was preloaded between room temperature and 1373 K, which was increased to
100 MPa at >1373 K for final sintering. Post-annealing was carried out at
1123–1423 K for 21.6 ks in air.

Fig. 7.23 In-line transmittance spectra of the polycrystalline MgAl2O4 sintered by SPS at
different preload pressures P1. The theoretical transmittance of a single-crystal MgAl2O4 was
calculated based on the refraction index as a function of wavelength. Reproduced with permission
from [140]. Copyright © 2009, Elsevier
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Relative density of the sample was 98 % after sintering at 1373 K, while fully
dense ceramics with relative density of above 99 % were achieved after sintering at
1473–1823 K. The average grain size was slightly increased from 0.24 to 0.32 μm
as the sintering temperature was increased from 1473 to 1573 K. After sintering at
1823 K, the grain size was increased to 1.97 μm [119].

Transmittance spectra of the Y2O3 ceramics SPS sintered at 1573 K before and
after annealing at 1123–1423 K for 21.6 ks are shown in Fig. 7.25 [119]. As the
annealing temperature was increased, transmittance of the samples was increased
gradually. The optimized annealing temperature was 1323 K, as shown in
Fig. 7.25b. The ultraviolet absorption edge was blue-shifted from 308 to 256 nm, as
the annealing temperature was increased from 1123 to 1223 K. No significant
change was observed after annealing at higher temperatures of up to 1423 K.

Figure 7.26 shows transmittance spectra of Y2O3 bodies sintered at 1473–
1773 K after annealing at 1323 K for 21.6 ks in air, together with those that were
calculated with the refractive index of Y2O3 single crystal [119]. Transmittance of
the Y2O3 ceramics was increased greatly after annealing. The sample sintered at
1573 K exhibited highest transmittance of 55.0 and 81.7 % at λ = 550 and 2000 nm.

Fig. 7.24 The microstructure of transparent MgAl2O4 sintered by SPS at 1300 °C for 3 min at
different pressures of P1: a and b 5 MPa and c and d 100 MPa. a and c SEM images taken near
edge of the samples. b and d SEM images taken at the discolored center. Reproduced with
permission from [140]. Copyright © 2009, Elsevier
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The one sintered at 1573 K after annealing reached nearly 99 % of the theoretical
value in the infrared region, as shown in Fig. 7.26a. This temperature was much
lower than those required by other sintering techniques.

Vickers hardness (HV) and fracture toughness of the annealed Y2O3 ceramics as a
function of sintering temperature are shown in Fig. 7.27a, while relationship between
HV and grain size is illustrated in Fig. 7.27b [119]. HV of the Y2O3 ceramics sintered

Fig. 7.25 a Transmittance spectra of the Y2O3 ceramics before and after annealing at 1123–
1423 K for 21.6 ks using the samples sintered at 1573 K. b Transmittance at λ = 550 and 2000 nm
as a function of annealing temperature. Reproduced with permission from [119]. Copyright ©
2012, Elsevier

Fig. 7.26 a Transmittance spectra of the Y2O3 ceramics sintered at 1473–1773 K after annealing
at 1323 K. b Transmittance at λ = 550 and 2000 nm as a function of sintering temperature. The
dashed line indicates transmittance calculated from the refractive index of Y2O3 single crystal.
Reproduced with permission from [119]. Copyright © 2012, Elsevier

494 7 Sintering and Densification of Transparent Ceramics



at 1373 K was 8.3 GPa. It was sharply increased to *17.2 GPa after sintering at
1573 K. A maximum value of*17.5 GPa was achieved at the sintering temperature
of 1623K. After that, the value ofHV steadily decreased to*14GPa after sintering at
1923 K. Fracture toughness was in the range of 1.0–1.5 MPa m1/2, which was not
significantly influenced by sintering temperature, especially over 1573–1823 K. HV

of the Y2O3 ceramics showed a linear relationship with d−1/2, i.e., the Hall–Petch
relation. The fact thatHV increases with d−1/2 in ceramics has been explained in terms
of the reduced free path for dislocations as the grain size is decreased [141].

Transparent YAG ceramics have been fabricated by using SPS (Dr. Sinter 2050)
and commercial YAG powder as starting material [114]. The YAG powder was of
nonagglomerated spherical shaped particles with average particle diameter of
34 ± 17 nm and lognormal particle size distribution. Graphite foils (Grafoil) were
used as spacers between the sample to be sintered and the graphite die and the
punches. A preloaded pressure of 100 MPa was applied before the heating was
started. The pressure was maintained during the whole heating process and at the
SPS temperatures during the sintering. The temperature was increased to 600 °C
within 3 min, after which it was raised to sintering temperatures at a heating rate of
100 °C min−1.

During the densification of nanocrystalline powder compacts by using cold
pressing, it is very common that large pores could be entrapped, due to the
agglomeration of the fine particles. Remove of such pores during pressureless
sintering and densification is quite difficult, due to the presence of the junctions
with high dihedral angles at the pore–grain boundaries. However, the SPS compact
of YAG at 900 °C exhibited particles with homogeneous distribution and pores
with comparable size with the particle sizes, as shown in Fig. 7.28 [114]. This was
mainly because the YAG powder had no agglomeration. Such homogeneous and

Fig. 7.27 a Vickers hardness and fracture toughness of the Y2O3 ceramics annealed at 1323 K as
a function of sintering temperature. b Vickers hardness as a function of the inverse square root of
grain size. Reproduced with permission from [119]. Copyright © 2012, Elsevier
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small pore size could not result in full densification when using pressureless sin-
tering, because many pores had high coordination numbers. However, this problem
could be addressed by using SPS, due to the application of pressures. Pressures
would assist the closure of such pores through grain sliding.

Figure 7.29 shows SEM images of the samples sintered at higher temperatures
[114]. The sample sintered at 1250 °C was still opaque, while the one sintered at
1400 °C had been transparent. Both samples showed homogeneous microstructure.
Relative density of the YAG samples was increased significantly from 83 to
99.6 %, although the temperature range was as narrow as 150 °C. Grain size in this
temperature range was increased in a parabolic manner. Significant grain growth
was observed at the temperatures of above 1400 °C. The grain growth behaviors
below and above 1400 °C were different [114].

SPS time duration had effect on densification and grain growth of YAG
ceramics. For example, as the SPS duration was increased from 3 to 6 min, the
relative density was increased tremendously, especially at lower temperatures, e.g.,
<1300 °C, as shown in Fig. 7.30 [114]. Therefore, if the sintering duration was

Fig. 7.28 Low (a) and high
(b) magnification SEM
images of the samples derived
from the YAG compact
subjected to SPS for 3 min at
900 °C and 100 MPa, which
were further annealed at 900 °C
for 5 h. Homogeneous
distribution of the particles
and pores with comparable
sizes could be observed.
Reproduced with permission
from [114]. Copyright ©
2007, Elsevier
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increased from 3 to 6 min, the sintering temperature could be reduced by about 75 °C,
for a given relative density. After 6 min sintering at 1350 °C, transparent YAG
ceramics could be obtained. It was worth mentioning that the sample sintered for
6 min at 1300 °C had higher density than the one sintered to 3 min at 1350 °C,
which indicated the negative effect of grain growth on densification during SPS. In
this case, the densification was governed by the atomic transport processes at
surface of the particles and particle–particle interfaces. Densification and grain
growth by grain rotation and sliding would convert the originally high-angle grain
boundaries to low-angle grain boundaries that in turn are annealed out by short-
circuit diffusion. TEM observations verified the presence of such low-angle grain
boundaries in dense ceramics was confirmed by TEM analysis, as shown in
Fig. 7.31 [114]. In addition, Fig. 7.30 also indicated the effect of pressure.

In another study, it was found that the way to treat the precursor powder had
significant effect on performance of YAG ceramics by using SPS [142]. When
sintering YAG synthesised by using reverse-strike co-precipitation with SPS, the
precursor powder was calcined at 1000 °C and dispersed by using ball milling with

Fig. 7.29 SEM images of
fracture surfaces of YAG
ceramics after SPS for 3 min
at 100 MPa at different
temperatures: a 1250 °C and
b 1450 °C. Reproduced with
permission from [114].
Copyright © 2007, Elsevier

7.5 SPS Processed Transparent Ceramics 497



Fig. 7.30 Relative density of the YAG powder compacts after SPS for 3 and 6 min at 50 and
100 MPa, as a function sintering temperature. Reproduced with permission from [114]. Copyright
© 2007, Elsevier

Fig. 7.31 TEM image of the YAG ceramics after SPS for 3 min at 1400 °C and 100 MPa. The
high-angle grain boundaries appeared as straight lines. The low-angle grain boundaries (arrowed)
appeared to be curvy due to the strain field caused by dislocations. Nanometer-sized residual pores
were present at the grain-boundary junctions. Reproduced with permission from [114]. Copyright
© 2007, Elsevier
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α-alumina (BMA) or zirconia (BMz) balls or ultrasonication (US). All the three
dispersed powders could be consolidated by using SPS to nearly theoretical density,
but only the US powder was optically transparent, as shown in Fig. 7.32.

Fig. 7.32 Photographs of the
samples derived from
powders of BMZ (a), BMA

(b), and US (c) after thermal
annealing. Reproduced with
permission from [142].
Copyright © 2013, Elsevier
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The 1-mm-thick transparent sample possessed a transmittance of about 60 % at
600 nm. According to Raman spectroscopy, it was found that there were some
phonon vibrational shifts, which implied that minor secondary phases could be have
introduced due to the contamination from the milling media. Such minor secondary
phases could not be detectable by using XRD, because of their very small quantity.
This result further indicates that special carefulness is important when processing
transparent ceramics.

Recently, SPS has been used to prepare pyrochlore transparent ceramics,
including Lu2Ti2O7 [143, 144], Lu2Hf2O7 [145], and Lu3NbO7 [146, 147], which is
still a challenge by using other sintering techniques. Figure 7.33 shows photograph
and transmittance curves of transparent Lu2Ti2O7 pyrochlore ceramics, which was
synthesized by using SPS through reactive sintering directly from Lu2O3 and TiO2

oxide precursors at 1723 K for 45 min [143]. The annealed ceramics demonstrated a
transmittance of 72 % at wavelength of 2000 nm and 40 % transmittance at 550 nm.
The average grain size was 14.5 μm with uniform microstructure. Representative
results of Lu3NbO7 transparent ceramics, fabricated by using SPS, are shown in
Figs. 7.34 and 7.35 [147].

Another distinctive advantage of SPS is its ability to processing the transparent
ceramics containing elements that are unstable in air, such as nitrogen (N), phos-
phorus (P), and fluorine (F). Examples include AlON [148] and Yb3+-doped
Sr5(PO4)3F [149]. More significantly, Sr5(PO4)3F is a hexagonal crystal, instead of
cubic ones as required according to the general understanding on transparent
ceramics, as discussed previously. 20 mol% Yb3+-doped Sr5(PO4)3F nanopowder
was synthesized by using a co-precipitation method, with Sr(NO3)2, Yb(NO3)3,
(NH4)2HPO4, and NH4F as starting materials [149]. Solution containing 0.03 M Sr
(NO3)2 and 0.0013 M Yb(NO3)3 was mixed with solution of 0.013 M NH4F and
0.04 M (NH4)2HPO4 to precipitate the precursor particles. The powder was ball
milled for 20 h using ethanol as a solvent first and then dried at 70 °C and sieved

Fig. 7.33 Transmittance spectra of Lu2Ti2O7 sintered at 1723 K for 45 min in different ranges:
a 190–2500 nm and b 2.5–8.5 μm. The inset is photograph of the transparent ceramics.
Reproduced with permission from [143]. Copyright © 2011, Elsevier
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with a 200 mesh screen. The powder was finally put into graphite mold and then
separated by foil and BN spraying coatings from the mold. The sample was sintered
in a FCT System SPS facility, at a heating rate of 50 °C min−1 from RT to 1050 °C
at a loading pressure of 100 MPa for 8 min. A trance of second phase, Sr9Yb(PO4)7,
was found in the sintered ceramics, which could be suppressed by using a small
amount of SrF2.

Photographs of representative Yb3+-doped Sr5(PO4)3F transparent ceramics are
shown in Fig. 7.36 [149]. A TEM image of the ceramics is also included in the
figure. It was found that almost no porosity could be observed in the SPS-sintered
sample. The grain sizes were ranged from 40 to 200 nm, with an average value of
about 150 nm. In-line optical transmittance spectrum indicated that the Sr5(PO4)3F:
Yb ceramics had a strong absorption in the range of 850–980 nm, showing high
potential to be high-power laser material. The transmittance near the emission
wavelength was above 74 % at 1000 nm.

Fig. 7.34 Photographs of the Lu3NbO7 ceramics SPS sintered at 1500 °C and annealed at various
temperatures in air for 6 h: a 750 °C, b 850 °C, c 950 °C, and d 1050 °C. Reproduced with
permission from [147]. Copyright © 2013, Elsevier

Fig. 7.35 Transmittance
curves of the Lu3NbO7

ceramics SPS sintered at
1450 °C and annealed at
various temperatures in air for
6 h: a 750 °C, b 850 °C,
c950 °C,d1050 °C, e1150 °C,
and f 1250 °C. Reproduced
with permission from [147].
Copyright © 2013, Elsevier
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7.6 MW-Processed Transparent Ceramics

The use of MW sintering to fabricate transparent ceramics is relatively less popular
currently. Transparent ceramics that have been processed by using MW sintering
include Al2O3 [150–152], YAG [153], AlON [154], and mullite [155]. MW sin-
tering has been shown to be an effective technique to produce transparent ceramics
as compared with the conventional sintering technologies.

First example discussed in this section is MW-processed Al2O3 transparent
ceramics reported by Cheng et al. [150]. High-purity (99.99 %) commercial Al2O3

powder with average particle size of 0.15 μm was used as precursor. A total of
0.05 wt% of MgO was incorporated through a wet-chemical route with Mg
(NO3)2·5H2O as sintering promoter. Green pellets, with relative densities of

Fig. 7.36 Photographs (top)
and TEM image (bottom) of
the Yb3+-doped Sr5(PO4)3F
transparent ceramics
processed by using SPS.
Reproduced with permission
from [149]. Copyright ©
2012, John Wiley & Sons
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52–54 %, were prepared by dry pressing uniaxially, followed by cold isostatic
pressing at 280 MPa. The compacted pellets were preheated at 1100 °C for 2 h in a
resistance furnace to burn out the binder. Microwave sintering was carried out using
a TE103 single-mode microwave applicator that was coupled with a 1.5-kW
microwave generator operating at 2.45 GHz for small samples with diameters of
<12.7 mm and a multi-mode microwave applicator with a 6-kW microwave power
source for large samples with diameters of up to 25.4 mm. Ultrahigh-purity
hydrogen under ambient pressure was used as sintering atmosphere.

Figure 7.37 shows photograph of a representative transparent Al2O3 ceramics
that was microwave sintered at 1750 °C for 45 min [150]. In the reported experi-
mental range, optical transmittance of the samples was slightly increased with
increasing sintering time. Figure 7.38 shows SEM images of the samples micro-
wave sintered at 1750 °C for different time durations. All samples exhibited uni-
form microstructure and grain size, with almost 100 % relative density, i.e.,
3.97 g cm−3. As the sintering time was increased from 15 to 45 min, the average
grain size was increased from 20 to 40 μm.

Some microwave sintered transparent Al2O3 samples were post-sintered in
microwave field at 1850–1880 °C for 2 h under ultrahigh-purity hydrogen (H2)
atmosphere, in order to convert the polycrystalline ceramics to single crystals. The
processing is schematically shown in Fig. 7.39 [150]. A 9.5-mm-diameter Al2O3

disk, which was an as-sintered transparent sample by using MW sintering at 1750 °C
for 30 min and supported by a high-purity Al2O3 tube, was placed in the single-mode
microwave cavity to apply microwave post-sintering treatment. It was found that the
temperatures at the center and periphery of the Al2O3 disk could be slightly different,
due to the cooling effect of the flowing H2 on the peripheral area.

As shown in Fig. 7.40, significant change in microstructure was observed in the
post-sintered Al2O3 sample that was microwave heated at 1880 °C for 30 min
[150]. It was demonstrated that the conversion of the polycrystalline ceramics to
single crystal could be achieved by using the microwave post-sintering process. The
peripheral area of the sample was still polycrystalline with average grain size of

Fig. 7.37 Photograph of a
representative highly
transparent Al2O3 ceramics
microwave sintered at 1750 °C
for 45 min. Reproduced with
permission from [150].
Copyright © 2002, Elsevier
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Fig. 7.38 SEM images of the
Al2O3 ceramics with 0.05 wt%
MgO microwave sintered at
1750 °C at a heating rate of
100 °C min−1 for different
time durations: a 15, b 30, and
c 45 min. Reproduced with
permission from [150].
Copyright © 2002, Elsevier
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30–40 μm, as shown at the top panel in Fig. 7.40, whereas the center part of the
post-sintered sample was converted into single crystal without the presence of grain
boundaries, i.e., the bottom panel of the figure. The converted sample exhibited an
enhanced transmittance by about 20 % as compared with the as-sintered ones,
showing the feasibility and advantage of MW sintering technique.

Another example of transparent Al2O3 was fabricated by using microwave
sintering at 2.54 GHz [151]. Figure 7.41 shows a schematic diagram of the
microwave sintering with a special designed insulating casket. The hole on the top
cover was used for infrared pyrometer. SiC powder was used as a microwave
absorber, acting as a low-temperature microwave susceptor to preheat the Al2O3

samples, because Al2O3 is a poor microwave absorber at room temperature.

Fig. 7.39 Schematic of the
microwave setup for solid-
state conversion of
polycrystalline Al2O3 sample
to single-crystal sapphire.
Reproduced with permission
from [150]. Copyright ©
2002, Elsevier

Fig. 7.40 SEM image of the Al2O3 sample microwave post-sintered at 1880 °C for 120 min,
showing microstructure development due to the conversion of polycrystalline to single-crystal
structure. Reproduced with permission from [150]. Copyright © 2002, Elsevier

7.6 MW-Processed Transparent Ceramics 505



The precursor alumina powder was doped with 350 ppm Y2O3 and 500 ppm
MgO. Binder was removed by heating to 650 °C at 5 °C min−1 with by using a
conventional furnace. The average green density of the tubes after binder removal
was 1.63 ± 0.01 g cm−3, i.e., 40.85 ± 0.35 % relative density. A multi-mode 6-kW,
2.45-GHz microwave furnace was used to sintering the samples. The sintering
temperature and heating rate of microwave sintering were controlled by adjusting
the input power. The sintering temperatures in the microwave furnace were mea-
sured by using digital infrared pyrometer.

Figure 7.42 shows density of the samples, for microwave and conventional
sintering, as a function of sintering temperature [151]. Without dwelling at the
sintering temperatures, microwave sintered Al2O3 samples reached relative density
of 95 % after sintering at 1350 °C, which was much lower than 1600 °C for the
conventionally heated samples. Also, the microwave sintered sample was almost
fully densified after sintering at 1400 °C, while the density of the sample sintered
through the conventional sintering was only about 50 %. Microwave sintering
reduced the temperature for the samples start to densify by about 300 °C.

It was found that both the microwave sintering and the conventional sintering
exhibited a similar grain growth behavior, as shown in Fig. 7.43 [151]. Therefore,
the enhancement in densification of Al2O3 by the microwave sintering was not due
to the fast heating rate. However, the microwave densification corresponded to
apparent activation energy of 85 ± 10 kJ mol−1, much lower than the value of

Fig. 7.41 Schematic diagram
of a microwave sintering with
specially designed insulating
casket. Reproduced with
permission from [151].
Copyright © 2003, John
Wiley & Sons
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520 ± 14 kJ mol−1 for the conventional sintering, meaning that the there was a
difference in densification mechanism between the two sintering techniques, which
deserves for further investigation.

A gyrotron-based system operating at a frequency of 24 GHz with microwave
power up to 6 kW has been used to develop YAG transparent ceramics through
reactive sintering from oxide precursors [153]. TEOS with contents of 0.3 and
0.5 wt% was used to provide SiO2 as sintering aid.

Figure 7.44 shows photograph and microstructure of representative sample
[153]. The sample contained 1.0 % Yb and 0.5 wt% TEOS and sintered at 1730 °C

Fig. 7.42 Density of the samples, sintered by using microwave sintering and conventional
sintering without holding at the sintering temperature, as a function of sintering temperature.
Reproduced with permission from [151]. Copyright © 2003, John Wiley & Sons

Fig. 7.43 Grain growth trajectories of the microwave sintered and conventionally sintered
samples. Reproduced with permission from [151]. Copyright © 2003, John Wiley & Sons

7.6 MW-Processed Transparent Ceramics 507



for 10 h. As shown in Fig. 7.44b, on the fracture surface, few pores were observed,
most of which were preferentially within the grains. The sample exhibited grain
sizes ranging from 5 to 20 μm, as shown by the polished and thermally etched
surface in Fig. 7.44c. It was also found that the content of TEOS had no significant
effect on grain size of the YAG transparent ceramics. Figure 7.44d indicated that
amorphous or crystalline phase enriched with SiO2 could be found at some triple
junctions or grain boundaries. Such phases might have been formed during the
thermal etching process, due to the diffusion of silicon through the grains toward
the grain boundaries.

As stated previously, the sintering behavior of various transparent ceramics,
including YAG, can be improved by using silica-containing sintering aid. In con-
ventional sintering, silica functions to form a liquid phase at about 1390 °C. The
liquid phase makes it easier for the particles to rearrange and enhances mass
transport by grain-boundary diffusion, so as to promote densification. During
cooling from the sintering temperature, secondary phases of Al2O3–Y2O3–SiO2,

Fig. 7.44 Photograph a and SEM images of the sample 1.0 % Yb:YAG with 0.5 wt% TOES
sintered at 1730 °C for 10 h: b fracture surface and b, c polished and thermally etched surface.
Reproduced with permission from [153]. Copyright © 2013, Elsevier
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either amorphous or crystalline, would be formed. The presence of such phases is
harmful to optical properties due to their light scattering. Therefore, a trade-off is
necessary to optimize the content of silica, i.e., promoting densification yet without
compromising optical performances.

One of the most distinctive features of the microwave sintering is that there is a
special behavior in microwave power in the initial stage of heating. For example, in
that study, there was a drop in microwave power as the temperature was above
700 °C [153]. It was attributed to the increase in microwave absorption of the
sample, due to the increase in their ionic conductivity. The microwave power was
also influenced by the exothermal reactions of the intermediate Y4Al2O9 and
YAlO3.

The formation of YAG through solid-state reaction is controlled by the diffusion
of Al3+ [156]. Such diffusion of Al3+ was enhanced by the microwave field, so that
the reaction temperature of YAG and its sintering temperature were decreased, as
evidenced by the pores entrapped in grains, as shown in Fig. 7.44b. Similarly, the
formation of the liquid phase was also promoted. In other words, the content of
sintering aids could be reduced when using microwave sintering, which however
needs further clarification.

The enhancement in mass transport of polycrystalline materials has been
explained by the so-called ponderomotive action of electromagnetic field on
charged particles [157, 158]. The theory suggested that the ponderomotive effect is
more effective in ionic crystalline materials with high microwave absorption and it
is maximized when the imaginary part and real parts of the complex dielectric
permittivity of the materials have very close values. It can be expected the
microwave processing parameters could be further optimized in such a way that all
diffusion processes would be operated concurrently during the densification of
powder compacts. In this case, the amount of sintering aids could be greatly
reduced or even completely avoided.

Besides, Roy et al. found that single-phase ALON could be synthesized from
Al2O3 and AlN by using microwave heating at 1650 °C for 1 h, while fully dense
and transparent ALON ceramics were obtained through microwave sintering at
1800 °C for 1 h [154]. A total transmission of 60 % was achieved for the polished
sample with a thickness of 0.6 mm. The microwave sintering was carried out by
using a homemade 1.5-kW, 2.45-GHz single-mode microwave applicator in
nitrogen (N2) flowing at ambient pressure. The heating rate was about 100 °C min−1

by controlling the incident microwave power.
Transparent mullite ceramics were developed by using microwave sintering at

about 1300 °C [155]. The microwave sintering was conducted by using a
2.45-GHz, 900-W microwave furnace. The samples were heated in the microwave
field directly from room temperature to 1300 °C and held at the temperature for
10 min, then allowed to cool down naturally. The results indicated that aerogel of
mullite stoichiometry, free of agglomeration and highly active, was key factor to
achieving transparent mullite ceramics.
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7.7 Concluding Remarks

Vacuum sintering is the most widely used technique to fabricate transparent
ceramics, due to its various advantages, such as simple processing, large size
product, and relatively cost-effectiveness. HP and HIP offer lower sintering tem-
peratures, so that transparent ceramics with fine-grained microstructures could be
obtained, which make them attractive in some applications requiring strong
mechanical performances.
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