
Chapter 5
Sintering and Densification
(I)—Conventional Sintering Technologies

5.1 Introduction

It is well known that, to produce ceramics, green bodies must be sintered at a certain
high temperature for a given time duration to develop required microstructure and
thus desired properties. In particular, transparent ceramics must be fully dense to
achieve maximum optical transmittance. Sintering process is governed by a number
of parameters, which can be used to build up interrelationships among processing,
microstructure, properties, and performance. Sintering behavior and microstructure
development have been extensively studied. Qualitative understandings include
driving forces of sintering, the mechanisms of densification, controlling factors,
such as particle size of precursor powders, sintering temperature, time duration and
applied pressure, electrical current, and so on.

Thermodynamics indicates that, during sintering process, there is always a
decrease in the free energy of the system. Driving forces of sintering are mainly
derived from the curvature of free surfaces of the precursor powders. External
pressures if applied could also be important driving force. Kinetics of matter
transport is concerned, because it determines the sintering time. Matter transport
takes place predominantly through the diffusion of atoms, ions or other charged
species. The paths of diffusion, corresponding to the mechanisms of diffusion,
determine the mechanisms of the sintering. The rate of diffusion is controlled the
type and concentration of defects. In this respect, defect chemistry, including defect
structures and concentrations of the defect, is an important subject related to sin-
tering. It is also necessary to predict the defect chemistry for different sintering
conditions, such as temperature, gaseous atmosphere and dopants. Fundamentals of
sintering of ceramics have been described systematically in the literature [1–18].
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5.2 Fundamental Aspects of Sintering

5.2.1 Driving Forces of Sintering

Sintering process is an irreversible process, during which the free energy of the
system is decreased. The sources responsible for such a decrease are called the
driving forces of sintering. There are three potential driving forces, (i) the curvature
of particle surfaces, (ii) externally applied pressure, and (iii) chemical reaction.

5.2.1.1 Surface Curvature

Surface curvature is always present as the driving force of sintering, while external
stress and chemical reaction may be absent. Therefore, surface curvature is the
primary driving force of sintering. For one mole of ceramic powder, comprising of
spherical particles with a radius a, the number of particles is given by:

N ¼ 3M
4pa3q

¼ 3Vm

4pa3
; ð5:1Þ

where ρ is density of the particles (materials), which are assumed to be pore-free,
M is molecular weight and Vm is molar volume. The surface area of the powder is
given by:

SA ¼ 4pa2N ¼ 3Vm

a
: ð5:2Þ

If γSV is used to stand for the specific surface energy, i.e., the surface energy per unit
area, of the particles, the surface free energy of the powder can be calculated by:

ES ¼ 3cSVVm

a
: ð5:3Þ

Therefore, ES is the quantity of the decrease in surface free energy of the
powder, if a fully dense body is formed from the one mole of particles, i.e., it is the
driving force of sintering.

5.2.1.2 External Pressure

External pressure can be applied to provide the driving force for sintering in
addition to surface curvature, which could be comparatively smaller in this case.
The pressure should be applied during the key state of sintering. There are two ways
to apply pressure: hot pressing and hot isostatic pressing. By applying an external
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pressure, work is done on compact of the powder. For 1 mol of particles, the work
done on the compact can be estimated by:

W ¼ paVm; ð5:4Þ

where pa is the applied pressure and Vm is molar volume of the materials.
W represents the driving force for densification due to the application of an external
pressure.

5.2.1.3 Chemical Reaction

Chemical reactions can provide driving force for sintering only when they have
contribution to the densification process. The change in free energy of a chemical
reaction is given by

DG0 ¼ �RT lnKeq; ð5:5Þ

where R is the gas constant (8.3 J mol−1), T is the absolute temperature, and Keq is
the equilibrium constant of the reaction. The value is much higher than the driving
force of external pressure.

5.2.2 Defects in Crystalline Solids

The driving forces for sintering are attributed to the transport of matter, through the
diffusion of atoms, ions or molecules in crystalline solids, due to the presence of
various defects related to their structural imperfections. Properties and concentra-
tions of defects control the rates of matter transport and thus determine the rates of
processes, such as sintering, grain growth, and creep. The presence of defects in
crystalline solids has structural reasons, i.e., the atoms or ions are not arranged in
their lattice sites, and chemical reasons, i.e., the deviation from the stoichiometric
composition. Structural defects in crystalline solids can be classified into three
groups: (i) point defects, (ii) line defects, and (iii) planar defects. Point defects are
associated with one lattice site and its close surroundings, such as missing atoms
called vacancies, interstitial atoms at the interstices between atoms, and substitu-
tional atoms on the sites that would normally be occupied by other types of atoms,
as shown schematically in Fig. 5.1 for an elemental solid, e.g., pure metal [1]. The
point defects in pure crystals, i.e., vacancies and interstitials, are called intrinsic or
native defects. Because ceramics can be treated as ionic solids, point defects have
more contributions than others to the defect chemistry.
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5.2.2.1 Point Defects and Defect Chemistry

Defects in ceramics can be charged, which are different from those in metals. For a
simple pure ionic oxide, with a stoichiometric formula of MO, consisting of a metal
(M) with valence of +2 and an oxygen (O) with valence of −2, the types of point
defects could be vacancies and interstitials of both the M and O, which can be either
charged or neutral. Besides the single defects, it is also possible for the defects to
associate with one another to form defect clusters. Electronic defects or valence
defects, consisting of quasi-free electrons or holes, are also observed in crystalline
solids. If there are impurities, e.g., solute atoms Mf, substitutional or interstitial
defects of Mf could be formed, which can also be either charged or neutral.

As multicomponent compounds, the compositions of ceramics can be nonstoi-
chiometric, if they are annealed in certain gaseous atmospheres, such as oxygen
with controlled partial pressures, which is driven by the tendency to approach an
equilibrium state with the surrounding environment. The consequence of the
equilibration is the deviation of the composition from stoichiometry and the vari-
ation in concentration of the defects. For instance, if MO is annealed at an envi-
ronment of low oxygen partial pressure, either oxygen-deficient oxide, i.e., MO1−x,
or metal excess oxide, i.e., M1+yO, could be formed. However, if it is annealed at
higher oxygen partial pressures, metal deficient oxide, i.e., M1–yO, could be
obtained, with metal vacancies to be the predominant defect. However, In this case,
it is quite difficult to form oxygen interstitial, due to the large size of the oxygen
ions.

Vacancy

Substitutional

Self-interstitial
Foreign 

interstitial atom

Fig. 5.1 Schematic showing various types of point defects in an elemental solid. Reproduced with
permission from [1]. Copyright © 2003, CRC Press
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Charged defects in solids have interactions with one another, which are similar
to the interactions among ions, sometimes involving electrons, in solutions. In the
solid-state cases, the crystals are considered to be a neutral medium, which can
dissolve the charged defects. Defect chemistry is to study the properties and
behaviors of point defects in solid materials. As stated earlier, according to their
originality, there are two types of defects: (i) intrinsic and (ii) extrinsic defects.
Intrinsic defects are thermally generated in pure compounds, while extrinsic defects
are produced by introduction impurities or treatment in gaseous atmospheres.

5.2.2.2 Kroger-Vink Notation

The description of point defects in ionic solids is well represented by a standard
notation, known as the Kroger-Vink notation. In this notation system, a defect,
which is defined with respect to the perfect lattice, is described by three parts: the
main symbol, a subscript, and a superscript. For instance, in the notation, MC

L , the
main symbol M represents the particular atom, or for a vacancy, it is V. The sub-
script L means the lattice site at which the defect is located. The superscript C
describes the effective charge or relative charge of the defect, which is equal to the
difference in valence between the species on the L site and the valence of the atom
that occupies the L site in the perfect lattice before the formation of the defect. The
effective charge could be: (i) positive, C = ·, (ii) negative, C = ′ or (iii) neutral,
C = ×. For electronic defects, a quasi-free electron is represented as e′, while a
missing electron or hole is represented as h·. Possible defects in Al2O3 are listed in
Table 5.1, by using the Kroger-Vink notation. Square brackets are used to represent
the concentration of defects, such as ½V��

O� and ½Ti�Al�. The concentrations of elec-
trons and holes, [e′] and [h·], are usually simplified as n and p, respectively.

5.2.2.3 Defect Reactions

Similarly to chemical reactions, the formation of defects or defect reactions can be
constructed according to the following three conservation rules, i.e., (i) mass
conservation or mass balance, (ii) electroneutrality or charge balance, and (iii) site
ratio conservation or site balance.

Table 5.1 Kroger-Vink
notation of potential defects in
Al2O3

Notation Defect

Al���i Al3+ ion at interstitial site

V000
Al Al3+ vacancy

V��
O O2− vacancy

Mg0Al Mg2+ replacing Al3+ at lattice site

Ti�Al Ti4+ replacing Al3+ at lattice site

e′ Electron

h· Hole
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A mass balance should be maintained so that mass is neither created nor
destroyed in the defect reaction. Vacancies have zero mass, while the effect of
electronic defects on the mass balance is neglected. The crystal must be electrically
neutral in the defect reaction, which means that, the sum of the positive effective
charges should be equal to the sum of the negative effective charges, for the whole
reaction. The ratio of the number of regular cation sites to the number of regular
anion sites in the crystal must be constant in the defect reaction. For example, in the
compound MO2, the ratio of the regular M and O sites must always have the ratio of
1:2. Sites may be created or destroyed in the defect reaction, but site ratio in the
regular lattice cannot be changed.

For instance, if MgO is used to dope Al2O3, because the ionic radii of Mg2+ and
Al3+ with coordination number of six are very close, the Mg ions can enter the
lattice of Al2O3 to form solid solution as substitutional defects. Al2O3 has the
corundum structure, in which one-third of the octahedral sites formed by the close-
packed O ions are vacant, so that it is also highly possible for the Mg ions to sit on
the interstitial sites. The defects with lower energy are more favorable. In Al2O3, the
cation sites and anion sites have a number ratio of 2:3. If substitutional defects are
formed, every two Mg atoms on cation sites will replace two Al sites and two O
sites are involved. In this case, the third O site should be a vacancy for site
conservation. Therefore, on the basis of mass and site balance, the defect reaction is
given by:

2MgO ������!Al2O3 2MgAl þ 2OO þ VO: ð5:6Þ

When the defects are fully ionized, with conservation of electroneutrality, there is:

2MgO ������!Al2O3 2Mg0Al þ 2O�
O þ V��

O: ð5:7Þ

Therefore, all mass, charge, and site ratio are balanced.
If Al interstitials are formed, instead of O vacancies, the defect reaction is

given by:

3MgO ������!Al2O3 3Mg0Al þ 3O�
O þ Al���i : ð5:8Þ

In this equation, the mass and site ratio are not balanced, so that it is invalid. If
the Mg ions take interstitial sites, there is the following defect reaction:

3MgO ������!Al2O3 3Mg��i þ 3O�
O þ 2V000

Al: ð5:9Þ

Furthermore, if Mg is self-compensated to form both substitutional and inter-
stitial defects, the reaction is given by:
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3MgO ������!Al2O3 2Mg0Al þMg��i þ 3O�
O : ð5:10Þ

Although the formation of interstitials does not create new crystal sites, they
must be considered for mass and charge conservations.

5.2.2.4 Concentration of Defects

The concentration of defects can be derived from statistical thermodynamics point
of view, but it is more convenient treat the formation of defects as a chemical
reaction, so that equilibrium constant of mass action can be applied. For a general
reaction, in which the reactants A and B lead to products C and D, the equation is
given by:

aAþ bB $ cC þ dD; ð5:11Þ

where a, b are the numbers of moles of the reactants while c and d are those of the
products. At a given temperature, when the reaction reaches an equilibrium state, if
it is assumed that the activities of the reactants and products are equal to their
concentrations, according to the law of mass action, there is an equation that
governs the interrelationship among the reactants and products, as following:

K ¼ ½C�c½D�d
½A�a½B�b ; ð5:12Þ

where the square brackets are used to represent the concentrations and K is called
the equilibrium constant. The constant K is given by the Arrhenius equation as
follows:

K ¼ exp
�DG
RT

� �
; ð5:13Þ

where ΔG is the Gibbs free energy change of the reaction, R is the gas constant, and
T is absolute temperature. In defect reactions, concentrations of the defects are
usually expressed as fractions of sites, when using Eqs. (5.12) and (5.13). If the
concentrations of the defects are sufficiently low, concentrations of the ions at their
regular lattice sites are taken as unity. When a reaction involves gas phases, their
partial pressures will be used as the concentrations of the gases.

5.2.2.5 Intrinsic Defects

There are two typical intrinsic defects in ionic crystals: (i) Schottky defect and (ii)
Frenkel defect.
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When a cation and an anion are taken away from their regular lattice sites to an
external surface, an extra perfect crystal is formed and a pair of vacancies is left
behind, which are called Schottky defect, as shown schematically in Fig. 5.2 [1]. To
meet the requirement of electroneutrality balance of the crystal, vacancies must be
formed in the stoichiometric ratio.

For simple oxide MO, if the defects are assumed to be fully ionized, the defect
formation reaction can be written as:

M�
M þ O�

O $ V00
M þ V��

O þM�
M þ O�

O : ð5:14Þ

Here, M�
M and O�

O on both sides of the equation can be canceled out, so that the
net reaction can be simplified as:

0 $ V00
M þ V��

O; ð5:15Þ

where 0 means that the defects are created from a perfect lattice, which also can be
written as null of nil. When the reaction reaches equilibrium, according to the law
of mass action, there is:

KS ¼ ½V00
M�½V��

O� ¼ exp
�DGS

RT

� �
; ð5:16Þ

where KS is the equilibrium constant and ΔGS is the Gibbs free energy change of
the formation of Schottky defects. For electroneutrality balance, there is
½V00

M� ¼ ½V��
O�, so that the concentrations of the defects are given by:

Fig. 5.2 Schematic diagram
illustrating the formation of a
Schottky defect. Reproduced
with permission from [1].
Copyright © 2003, CRC Press
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½V00
M� ¼ ½V��

O� ¼ exp
�DGS

2RT

� �
: ð5:17Þ

When an ion leaves its regular lattice site and stays at an interstitial site, leaving
behind a vacant site, Frenkel defect is formed, as shown schematically in Fig. 5.3
[1]. For a simple oxide MO, if the defects are assumed to be fully ionized, the
formation of a Frenkel defect at the cation site can be expressed as:

M�
M $ M��

i þ V00
M: ð5:18Þ

The equilibrium constant of the reaction is given by:

KF ¼ ½M��
i �½V00

M� ¼ exp
�DGF

RT

� �
: ð5:19Þ

Eletroneutrality balance requires that the concentration of metallic interstitial
should be equal to that of the metallic vacancy, i.e., ½M��

i � ¼ ½V00
M�. In this case, the

concentrations of the defects can be calculated by the following equations:

½M��
i � ¼ ½V00

M� ¼ exp
�DGF

2RT

� �
: ð5:20Þ

Similar equations can be obtained as the Frenkel defects are formed at anion
sites. However, anion Frenkel defects are rarely encountered, because anions have
relatively large sizes, i.e., there are no interstitial sites for them to stay. Also, the
formation of cation and anion Frenkel defects is not controlled by the requirement
of electroneutrality balance, so that the concentration of cation interstitial may not

Fig. 5.3 Schematic diagram
showing the formation of a
Frenkel defect. Reproduced
with permission from [1].
Copyright © 2003, CRC Press
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be necessarily equal to that of anion interstitial. In other words, cation and anion can
form interstitials independently.

5.2.2.6 Extrinsic Defects

As stated earlier, extrinsic defects are formed due to external influences, such as
gaseous atmosphere environment which is usually responsible for nonstoichiometry
in composition and impurities which can be intentionally incorporated such as
dopants or unintentionally introduced such as impurities.

Nonstoichiometry

Equilibration of ionic solids with an ambient gaseous environment, e.g., metal
oxide versus oxygen, can have a significant effect on the structure and behavior of
defects. Oxides with elements of fixed valency, such as MgO, Al2O3, and ZrO2, are
not easily to deviate from the stoichiometry, while those with elements having
variable valence, such as NiO, CoO, FeO, SnO2, and TiO2, could be deviated from
the stoichiometry.

At a given temperature and composition, oxides are always in equilibrium with a
specific oxygen partial pressure or tend to give out or take up oxygen until new
equilibrium is reached. When oxides release oxygen, reduction reaction occurs,
oxygen vacancies could be created in the lattice, in which with the electrons are
liberated within the solid. The overall reaction can be written as:

O�
O $ 1

2
O2ðgÞ þ V��

O þ 2e0: ð5:21Þ

The creation of the oxygen vacancies will change the number ratio to cation to
anion, i.e., nonstoichiometry is present. The equilibrium constant for the reaction is
given by:

KR ¼ n2½V��
O�p1=2O2

¼ K0
R exp

�DGR

RT

� �
; ð5:22Þ

where the concentration of the oxygen gas is the partial pressure, K0
R is the equi-

librium constant, and ΔGR is the free energy change of the reduction. For elec-
troneutrality balance, there is n ¼ 2½V��

O�, so that the concentration of oxygen
vacancy can be derived from Eq. (5.22), given by:

½V��
O� ¼

KR

4

� �1=3

p�1=6
O2

: ð5:23Þ
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When the oxides take up oxygen, oxidation reaction takes place, which can be
treated as the consumption of oxygen vacancies, with the charge being balanced by
combining with an electron, thus leading to a missing electron or hole in the valence
band, with defect reaction being expressed as:

1
2
O2ðgÞ þ V��

O $ O�
O þ 2h�: ð5:24Þ

The equilibrium constant is given by:

KO ¼ p2

½V��
O�p1=2O2

¼ K0
O exp

�DGO

RT

� �
: ð5:25Þ

Because oxidation and reduction are reversed reactions each other, which are
actually the same process from the thermodynamic point of view, their reaction
equations are dependent mutually. For example, if the reduction reaction of
Eq. (5.21) is combined with the intrinsic electronic defect equilibrium:

0 ¼ e0 þ h�; ð5:26Þ

which leads to the oxidation reaction of Eq. (5.24). Therefore, the oxidation and
reduction reactions can be expressed in a number of different ways, the use of them
is determined mainly by the consideration of convenience. For instance, oxidation
can also be treated as the creation of oxygen lattice and cation vacancies. When
their charges are combined with electrons, holes are formed in the valence band.
For simple oxide MO, the reaction can be written as:

1
2
O2ðgÞ $ O�

O þ V00
M þ 2h�: ð5:27Þ

Equation (5.27) can be obtained by adding the Schottky reaction to Eq. (5.24).

Effects of Dopants

Dopants, also known as solutes, with low concentrations, can significantly influence
the sintering of ceramics. Dopants sometimes are necessary to create functionalities
of ceramics. When the cation valence is different from that of the host cation, the
dopant is called aliovalent dopant, whereas if the cation has the same valence as that
of the host, it is called an isovalent dopant. For aliovalent dopants, when the valence
of the solute cation is higher than that of the host cation, the dopant is known as a
donor, otherwise, it is called a acceptor. Therefore, if Al2O3 is host, TiO2 and MgO
are donor and acceptor, respectively.
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When Al2O3 is incorporated into MgO, due to the similarity in ionic radii, it is
assumed that the Al will substitute for Mg, with charge balanced achieved by the
creation of a vacant Mg site, through the following equation:

Al2O3 ������!MgO
2Al�Mg þ V00

Mg þ 3O�
O : ð5:28Þ

If the intrinsic defects in MgO are assumed to be Schottky defects, according to
Eq. (5.16), there is:

½V��
O�½V00

Mg� ¼ KS: ð5:29Þ

The condition for charge balance is given by:

½Al�Mg� þ 2½V��
O� ¼ 2½V00

Mg�: ð5:30Þ

At very low concentration of Al2O3, ½Al�Mg� � ½V00
Mg�, so that there is:

½V��
O� ¼ ½V00

Mg� ¼ K1=2
S ; ð5:31Þ

which means that the concentration of the intrinsic defects are independent on the
concentration of Al2O3. In other words, the intrinsic defects are dominant.

When the concentration of Al2O3 in solid solution is increased, the extrinsic
defects begin to be dominant. The charge balance is given by:

½Al�Mg� ¼ 2½V00
Mg�: ð5:32Þ

If the Al2O3 is completely incorporated, the concentration of Al in solid solution is
equal to the total atomic concentration of Al, so that there is:

½Al�Mg� ¼ ½Al�: ð5:33Þ

Because Eq. (5.29) is applicable for the cation and anion vacancies, combination of
Eq. (5.29) with Eqs. (5.32) and (5.33) yields:

½V��
O� ¼

2KS

½Al� : ð5:34Þ

Furthermore, according to Eqs. (5.32) and (5.33), there also is following equation:

½V00
Mg� ¼

1
2
½Al�: ð5:35Þ
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Brouwer Diagram

The variation in concentration of defects as a function of temperature, oxygen
partial pressure or dopant concentration can be described semi-quantitatively in
terms of a double logarithmic plot, which is known as a Brouwer diagram.
Figure 5.4 shows a Brouwer diagram for the effects of Al2O3 dopant on the defect
chemistry of MgO, as discussed above [1]. Similar plots can be constructed for the
variations in concentration of defect with temperature or oxygen partial pressure.
The Brouwer diagram shows the net effect, when different defect reactions are
considered at the same time. Although there are unlimited number of defect reac-
tions that can be derived for a given system, the number of defects that must be
used to describe a given property that is related to defects, such as electrical
conductivity or sintering, is actually limited. Also, it is necessary to identify the
majority defects that determine the properties of the materials, as well as minority
defects that could be relevant to a specific property of interest. The main defects that
are usually considered in writing defect reactions include: (i) major intrinsic ionic
defects (Schottky or Frenkel), (ii) intrinsic electronic defects, (iii) oxidation or
reduction, and (iv) dopants. In addition, an equation for the electroneutrality con-
dition is always necessary.

5.2.2.7 Defect Chemistry and Sintering

With the above discussion, it is summarized that the concentration of the point
defects and thus the rate of matter transport through in crystal solids can be con-
trolled by controlling three variables: (i) temperature, (ii) oxygen partial pressure,
i.e., the gaseous atmosphere, and (iii) concentration of dopants. In the system of
Al2O3-doped MgO discussed above, if the sintering rate of MgO is controlled by
the diffusion of oxygen vacancies, the addition of Al2O3 will decrease the sintering
rate, according to Eq. (5.34). However, if the diffusion of Mg vacancy is the rate-

Fig. 5.4 Brouwer diagram
for MgO doped with Al2O3.
The defect concentrations are
shown as a function of the
concentration of Al.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press
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controlling mechanism, the presence of Al2O3 will increase the sintering rate, as
demonstrated by Eq. (5.35). The factors that affect the sintering rate could be much
more complicated in real systems. Also, the mechanisms of rate-controlling of
sintering in most cases have not been clarified until now. Furthermore, there could
be more than one mechanism during the sintering of a given material system and
the rates of transport related to the different mechanisms can be changed with
various conditions. There are also other factors, such as particle packing homo-
geneity, particle size, and size distributions, which could have significant effects on
the rates of sintering.

5.2.3 Diffusion in Crystalline Solids

5.2.3.1 Fick’s Laws of Diffusion

In the theory of solid-state diffusion, it is usually assumed that the movement of a
diffusing species is driven by the gradients in concentration, irrespective with the
atomic nature of crystal structure and atomic defects. The concentration can vary as
a function of distance and time. When the concentration is changed with time, the
diffusion process is described mathematically by the Fick’s first law, i.e., the flux of
the diffusing species J, which is defined as the number of items crossing per unit
area normal to the direction of flux per second, is proportional to the concentration
gradient dC/dx, which takes place in the direction of decreasing concentration. The
one-dimensional Fick’s first law is given by:

Jx ¼ �D
dC
dx

: ð5:36Þ

The proportionality D is a constant, which is known as the diffusion coefficient
or diffusivity, with a unit of m2 s−1 (SI) or cm2 s−1. The diffusion coefficient is a
property of materials, which is the most useful parameter to characterize the rate of
diffusive mass transport, showing a strong dependence on temperature. Although it
is also a function of composition, if the diffusing species are significantly diluted, it
can be assumed to be independent on the composition.

In practical experiments, it is difficult to maintain a concentration to be inde-
pendent of time. Therefore, it is more often to characterize the change in concen-
tration as a function of time t, thus leading to Fick’s second law. For one dimension,
the Fick’s second law is given by:

dC
dt

¼ D
d2C
dx2

: ð5:37Þ

The Fick’s second law can be derived from the first law, together with the
principle of matter conservation. For one-dimension, a region between the two
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planes [x1, (x1 + dx)] can be considered, as shown in Fig. 5.5 [1]. Figure 5.5a shows
the solute concentration C as a function of distance x. Because dC/dx at x1 is larger
than dC/dx at (x1 + dx), J(x1) will be larger than J(x1 + dx), as shown schematically
in Fig. 5.5b. Also, because J(x1) > J(x1 + dx), if matter conservation is applied, the
solute concentration in the region between x1 and x1 + dx should increase.
Considering a volume element with unit area normal to the x axis and dx in
thickness, the rate of change of concentration is given by:

dC
dt

� �
x1

dx ¼ Jðx1Þ � Jðx1 þ dxÞ: ð5:38Þ

If dx is small, J(x1 + dx) can be related to J(x1) through the following equation:

Jðx1 þ dxÞ ¼ Jðx1Þ þ dJ
dx

� �
x1

dx: ð5:39Þ

By substituting Eq. (5.39) into Eq. (5.38) and using Eq. (5.36) for J, there is:

dC
dt

¼ � dJ
dx

¼ � d
dx

�D
dC
dx

� �
¼ D

d2C
dx2

: ð5:40Þ

x

x

C

J

x1 x1 + dx

J(x1)

J(x1 + dx)

(a)

(b)

Fig. 5.5 Concentration
C versus distance x (a) and
the resulting flux J versus
distance (b). Reproduced with
permission from [1].
Copyright © 2003, CRC Press
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Equation (5.37) can be solved with certain boundary conditions that are determined
by experiments.

For instance, a common technique to measure diffusion coefficient D is to
deposit a very thin layer of a radioactive isotope (or mass isotope) on a flat surface
of a thick sample, which is then annealed at a given temperature for a given time
duration. By measuring the concentration of the diffusing species as a function of
distance, the diffusion coefficient can be determined. In this case, the experimental
system is a semi-infinite solid. If the initial thickness of the radioisotope layer is
sufficiently small as compared with the diffusing distance of the radioisotope, the
solution of Eq. (5.37) is given by:

C ¼ C0

ðpD�tÞ1=2
exp

�x2

4D�t

� �
; ð5:41Þ

where C is the concentration at a distance x from the surface, t is the annealing time,
and C0 is the initial concentration in moles per unit area of the radioisotope, i.e., at
t = 0. D* is the diffusion coefficient of the radioisotope, which is known as the tracer
diffusion coefficient.

5.2.3.2 Atomistic Diffusion Processes

Figure 5.6 schematically shows the diffusion of an atom at atomic level, the atom
undergoes periodic jumping from one lattice site to another site via an intermediate
stage of higher energy, which separates the sites that the atom sits before and after
the diffusion process [1]. The energy barrier that must be overcome by the atom at
the intermediate state before the jumping takes place is called activation energy.
This periodic jumping experienced by the atoms is similar to a Brownian motion,
which occurs in a random way over the lattice sites. Therefore, it is also called
random diffusion, which can be described similarly to a random-walk problem, in
order to determine the relationship between the macroscopic diffusion coefficients
and the jump frequencies and jump distances of the atoms.

There are two adjacent planes, A and B, apart with a distance λ, in a crystalline
solid that has a concentration gradient along the x axis, as shown schematically in
Fig. 5.7 [1]. There are nA diffusing atoms per unit area in plane A and nB in plane
B. Only he jumps to the left and right, i.e., those causing a change in position along
the x axis, are considered. In this case, the probability P that an atom will have
sufficiently high energy to overcome the energy barrier q is given by:

P ¼ exp � q
kT

� �
; ð5:42Þ

where k is the Boltzmann constant and T is the absolute temperature. The number of
atoms per unit area of plane A that have sufficient energy to overcome the energy
barrier from A to B at any instant is nAP = nAexp(–q/kT). If the atoms vibrate about
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Fig. 5.6 Schematic diagram showing the sequence of configurations when an atom jumps from
one lattice site to another (a–c) and the corresponding change in the free energy of the lattice (d).
Reproduced with permission from [1]. Copyright © 2003, CRC Press
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λ

Fig. 5.7 Planes of atoms with
a gradient in their
concentration. Reproduced
with permission from [1].
Copyright © 2003, CRC Press
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their mean positions at a frequency v, and assuming that the vibration frequency is
the same in all six orthogonal directions, the flux of the atoms, i.e., the number
jumping across unit area per second, from A to B is (v/6)nAexp(–q/kT). Similarly,
the flux of atoms from B to A is (v/6)nBexp(–q/kT). Therefore, the net flux of atoms
from A to B is therefore given by:

J ¼ v
6
ðnA � nBÞ exp �q

kT

� �
: ð5:43Þ

If λ is the distance between the two adjacent planes, nA − nB can be related to
their concentrations, which is the number of the atoms per unit volume, with nA/
λ = CA and nB/λ = CB. In this case, the flux is given by:

J ¼ vk
6
ðCA � CBÞ exp �q

kT

� �
: ð5:44Þ

If it is assumed that the change in C is sufficiently slow, there will be
CA − CB = λ(dC/dx), so that Eq. (5.44) becomes:

J ¼ vk2

6
exp

�q
kT

� � dC
dx

: ð5:45Þ

This equation is identical to the Fick’s first law, with the diffusion coefficient D to
be given by:

D ¼ vk2

6
exp

�q
kT

� �
: ð5:46Þ

Because q is a too small quantity for most diffusing atoms, larger quantities
Q = NAq and R = NAk are usually used, where Q is the activation energy per mole,
NA is the Avogadro number, and R is the gas constant. Additionally, the term νλ2/6
is usually represented by D0, so that there is:

D ¼ D0
�Q
RT

� �
: ð5:47Þ

In this equation, D has an exponential dependence on temperature, which also
has activation energy in the units of J mol−1. Data for the diffusion coefficients of
various ceramics can be found in open literatures and handbooks.

Note that the activation energy q is equal to Δh − TΔs, where Δh is the enthalpy
and Δs is the entropy for atomic diffusion, Eq. (5.46) then becomes:

D ¼ vk2

6
exp

Ds
k

� �
exp

�Dh
kT

� �
; ð5:48Þ
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which is compared with Eq. (5.47), leading to the following expression:

D ¼ vk2

6
exp

Ds
k

� �
: ð5:49Þ

Generally, the vibration frequency of atoms about their mean positions, which is
usually known as the Debye frequency, is about 1013–1014 s−1 and λ ≈ 0.2 nm, so
νλ2/6 ≈ 10−7 m2 s−1. The values of D0 for diffusion by the interstitial and vacancy
mechanisms are in the range of 10−7–10−3 m2 s−1 [1]. In addition, it has been
reported that, for a given group of materials, the values of D0 and Q/RTm, with Tm
being the melting temperature, are almost the same [19].

5.2.3.3 Diffusion Mechanisms

The types of defects determine the path of matter transport, while the diffusion
along the major paths is responsible for the major mechanisms of matter transport.
There are three main diffusion types: (i) lattice diffusion (also called volume or bulk
diffusion), (ii) grain boundary diffusion, and (iii) surface diffusion.

Lattice Diffusion

Lattice diffusion is related to the movement of point defects over the lattice of
crystal solids. Lattice diffusion has vacancy mechanism or interstitial mechanism,
depending on the type of defects, vacancy or interstitial, which are most important
lattice diffusion mechanisms.

Figure 5.8 shows an example of diffusion by vacancy mechanism, where an
atom at a normal lattice site diffuses by exchanging its position with a vacant site
[1]. The movement direction of the atom is opposite to that of the vacancy, so that
the diffusion of the atom can be tracked, so is the diffusion of the vacancy.
Although the diffusion coefficients of the atoms and the vacancies are closely
related, they are not necessarily equal to each other. This is because an atom can
only jump if a vacancy is located at a lattice site adjacent to it, whereas a vacancy
can jump to any of the nearest neighbor sites. As a result, the number of atomic
jumps is proportional to the fraction of the sites occupied by vacancies, Cv. The
atomic diffusion coefficient Da and the vacancy diffusion coefficient Dv are related
by the following equation:

Da ¼ CvDv: ð5:50Þ

As discussed above, the concentration of vacancy is determined by temperature,
atmosphere and dopants. It is worth mentioning that the flux of vacancies must be
compensated by an equal and opposite flux of atoms for vacancy diffusion.
Otherwise, the vacancies will be accumulates and form pores in the crystal solids.
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In fact, pores can be formed during the interdiffusion of two atoms that have
significantly different diffusion coefficients.

Sufficiently small dopants or regular atoms can take interstitial sites of the lattice.
When they move to neighboring interstitial sites, interstitial diffusion takes place, as
shown schematically in Fig. 5.8b, which can be described by the following
equation:

Da ¼ CiDi; ð5:51Þ

where Di is now the interstitial diffusion coefficient and Ci is the concentration of
the interstitial atoms. This is similar to that of Eq. (5.50).

When the lattice is heavily distorted, interstitial diffusion becomes difficult, so
that another diffusion mechanism is present, which is known as interstitialcy
mechanism. Interstitialcy diffusion is facilitated by exchanging position between an
atom at the regular lattice site with a neighboring interstitial atom, as shown
schematically in Fig. 5.8. They can be different types of atoms.

There is another type of lattice diffusionmechanism, called direct exchange or ring
mechanism. As shown schematically in Fig. 5.8d, during this diffusion, atoms
exchange their positions through rotation in a circle way. There are no any defects
involved in this diffusion. This is a multiatomic action. However, this mechanism is

Interstitial 
atom

Interstitial 
atom

Vacancy

(a)

(b)

(c)

(d)

1 2
4 3

4 1
3 2

Fig. 5.8 Lattice diffusion by
a vacancy mechanism,
b interstitial mechanism,
c interstitialcy mechanism,
and d ring mechanism.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press
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rarely observed in ionic crystalline solids, due to the tremendous momentary dis-
tortion coupled with the large energy changes arising from the electrostatic repulsion.

Grain Boundary Diffusion

The presence of grain boundaries is one of the most distinct characteristics of
polycrystalline ceramics. Grain boundaries are regions that separate the crystals or
grains from one another, with lattice mismatching and disordering. Due to the
highly defective nature of the grain boundaries, they are expected to have faster
diffusion than lattice diffusion in the adjacent grains. Grain boundaries usually have
widths of 0.5–1 nm. If the width of grain boundaries is assumed to be a constant,
the volume fraction of the grain boundaries will increase with decreasing grain size.
Therefore, the rate of grain boundary diffusion has been related to grain size.

Surface Diffusion

As discussed before, the free surface of a crystalline solid is not a perfectly flat
plane, which could contain vacancies, terraces, kinks, edges, and adatoms. The
migration of vacancies and the movement of adatoms facilitate the mechanisms of
surface diffusion. The diffusion process is usually confined to a thin layer near the
surface with a thickness of 0.5–1 nm.

Comparison of Diffusion Coefficients

The atoms on the surface are less tightly bound, because they have fewer neighbors
than those within the bulk of the lattice. As a result, the activation energy for
surface diffusion is less than that for lattice diffusion, which has been confirmed by
the available experimental data. Due to its lower activation energy, surface diffusion
becomes more and more important as the temperature is decreased, which has a
significant effect on sintering. It has often been demonstrated that the diffusion
coefficients of lattice diffusion Dl, grain boundary diffusion Dgb, and surface dif-
fusion Ds increase in the order of Dl < Dgb < Ds, while the corresponding activation
energies decrease in the order of Ql > Qgb > Qs. However, these relations are only
used as a general trend, which may not be correct for all cases or any case.

5.2.3.4 Types of Diffusion Coefficients

In the literature, there are diffusion coefficients that have been used to describe the
diffusion characteristics of a particular species, such as atom, interstitial, or
vacancy, a particular diffusion path, such as lattice, grain boundary, or surface
diffusion, or a particular process, such as chemical diffusion or ambipolar diffusion.
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There are various diffusion coefficients: (i) self-diffusion coefficient, (ii) tracer
diffusion coefficient, (iii) lattice diffusion coefficient, (iv) grain boundary diffusion
coefficient, (v) surface diffusion coefficient, (vi) defect diffusion coefficients, and
(vii) chemical, effective or interdiffusion coefficient.

Self-diffusion coefficient Dself is the diffusion coefficient of the host atoms or
ions in random diffusion, which is one of the important diffusion coefficients related
to sintering. For lattice diffusion by the vacancy or interstitial mechanisms, Dself is
given by Eq. (5.50) or (5.51).

Tracer diffusion coefficient Dself is usually difficult to directly measure. As stated
earlier, it is more convenient to measure the diffusion coefficient of a radioactive or
mass isotope. This measured coefficient is called the tracer diffusion D*, which is
close to but not the same as Dself, because the motion of the tracer atoms is not in a
completely random manner. Successive jumps are mutually correlated, so that every
jump is dependent on the previous one. Therefore, Dself and D* can be related by
the following equation:

D� ¼ fDself ; ð5:52Þ

where f is a correlation factor that depends on the crystal structure and the diffusion
mechanism. The values for f are in the range 0.6–1.

Lattice diffusion coefficient Dl represents any diffusion process over the lattice of
crystal solids. Grain boundary diffusion coefficient, Dgb or Db, describes the dif-
fusions in the grain boundaries. Surface diffusion coefficient Ds is to characterize
the diffusions over a free surface. Defect diffusion coefficient is used to describe the
diffusion of a particular type of defect, such as Dv for diffusion coefficient of a
vacancy and Di for diffusion coefficient of an interstitial. The diffusion coefficient of
a defect is given by Eq. (5.46) or (5.48), which is independent of its concentration.
Chemical diffusion coefficient is also known as effective or interdiffusion coeffi-
cient. This coefficient ~D is for the diffusion due to the presence of a gradient in
chemical composition or chemical potential, simply because ions will migrate to
response any chemical gradient. Interdiffusion takes place when two components of
a solid solution migrate in opposite directions down their coupled chemical
potential gradients.

5.2.4 Chemical Potential

As discussed previously, matter transport is due to the flux of atoms or vacancies
driven by gradients in the concentration, which can be described by using the Fick’s
first law. This special case of mass transport is not applicable to those with other
types of driving forces, such as gradients in pressure, electric potential, and so on.
To address this issue, it is necessary to use chemical potential, instead of concen-
tration gradients, as driving force of the diffusions. Definition and description of
chemical potential can be found in various textbooks.
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5.2.4.1 Chemical Potential

For a phase with a given amount of mass and composition, at variable temperature
T and pressure p, as an infinitesimal reversible process occurs, the change in the
Gibbs free energy is given by:

dG ¼ @G
@T

� �
p
dT þ @G

@p

� �
T
dp ¼ �SdT þ Vdp; ð5:53Þ

where S is the entropy and V the volume of the system. For a phase of variable
compositions, consisting of m chemical constituents, in which there are n1 mol of
the substance A1, n2 mol of A2, …, nm moles of Am, the change in the Gibbs free
energy is now given by:

dG ¼ @G
@T

� �
p;n1;n2;...;nm

dT þ @G
@p

� �
T ;n1;n2;...;nm

dp

þ @G
@n1

� �
p;T ;n2;n3;...;nm

dn1 þ � � � þ @G
@nm

� �
p;T ;n2;n3;...;nm�1

dnm:
ð5:54Þ

Because the first two terms on the right-hand side of the equation are at constant
mass and composition, Eq. (5.53) can be used. In this case, when a small amount of
one constituent, e.g., dnk moles of the kth constituent, is introduced into the phase,
with T, p, and the other n’s remaining constant, the effect on the Gibbs free energy
can be expressed as:

lk ¼
@G
@nk

� �
p;T ;n1;n2;...;nk�1nkþ1;...;nm

; ð5:55Þ

where μk is called the chemical potential of the kth constituent. Equation (5.54) can
now be rewritten as:

dG ¼ �SdT þ Vdpþ
Xm
i

lidni: ð5:56Þ

If the number of moles of a phase is increased, while T, p, and the composition are
kept unchanged, Eq. (5.56) becomes:

dGT;p ¼
X
i

lidni: ð5:57Þ
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Because the μi is dependent only on T, p, and composition and they must be kept to
be constant, Eq. (5.57) can be integrated to yield:

G ¼
X
i

lini: ð5:58Þ

For a pure substance, Eq. (5.58) can be reduced to:

G ¼ ln; ð5:59Þ

which means that the chemical potential is the Gibbs free energy per mole at the
given temperature and pressure.

5.2.4.2 Chemical Potential of Gas Mixtures

For 1 mol ideal gas at constant temperature T, there is:

@T
@p

� �
T
¼ V ¼ RT

p
; ð5:60Þ

where R is the gas constant and p is the pressure.
Integration of Eq. (5.60) yields:

GðT ; pÞ ¼ G0ðTÞ þ RT ln p; ð5:61Þ

where G0 is the Gibbs free energy at standard pressure at the temperature, which is
used as a reference to calculate Gibbs free energy change. The general expression
for chemical potential now is given by:

lðT ; pÞ ¼ l0ðTÞ þ RT ln p: ð5:62Þ

For a mixture of ideal gases at constant temperature T and a constant total pressure,
following Eq. (5.62), we can write for each component:

liðT; pÞ ¼ l0;iðTÞ þ RT ln pi; ð5:63Þ

where pi is the partial pressure of the ith component. To be more useful, the Gibbs
free energy or the chemical potential of a particular component is usually related to
its concentration, which is defined as:

Ci ¼ niP
ni

¼ pi
p
; ð5:64Þ

where ni is the number of moles of each component in the mixture and p is the total
gas pressure of the system. Equation (5.63) can now be rewritten as:
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liðT ; p;CiÞ ¼ l0;iðT ; pÞ þ RT lnCi; ð5:65Þ

Real gases have deviation from the behavior of ideal gas. If the deviation is suf-
ficiently small, Eqs. (5.63)–(5.65) can be used for satisfactory estimations.

5.2.4.3 Chemical Potential of Solids and Liquids

The chemical potential of solid and liquid solutions can be defined as an expression
similar to Eq. (5.63), in which the pi is replaced by a new term ai, called the activity.
In this case, the chemical potential is given by:

li ¼ l0;i þ RT ln ai: ð5:66Þ

The activity of pure liquids and solids, under some specified standard conditions
of temperature and pressure, is considered to be unity. The activity of a component
in mixture systems is expressed as:

ai ¼ aiCi; ð5:67Þ

where αi is called the activity coefficient and Ci is the concentration of the com-
ponent, which is usually described as mole fraction. The chemical potential of the
ith species in liquid or solid solutions is therefore given by:

li ¼ l0;i þ RT lnðaiCiÞ: ð5:68Þ

For ideal solutions, αi = 1.

5.2.4.4 Chemical Potential of Atoms and Vacancies in Crystals

It is assumed that vacancies are the only defects in a crystal of a pure element. If the
numbers of the atoms and vacancies are Na and nv, the total number of lattice sites
in the crystal is N = Na + nv. As a result, the Gibbs free energy of the crystal can be
expressed as:

G ¼ U þ nvgþ pV � TS; ð5:69Þ

where U is the internal energy of the crystal and g is the energy required form the
vacancy. The configurational entropy of the crystal can be obtained by using the
Boltzmann relation, which in this case can be written as:

S ¼ k ln
ðNa þ nvÞ!
Na!nv!

� �
; ð5:70Þ

5.2 Fundamental Aspects of Sintering 315



where k is the Boltzmann constant. The chemical potential of the atoms is defined as:

la ¼
@G
@Na

� �
T ;p;nv

: ð5:71Þ

The factorials in Eq. (5.70) can be simplified by using the Stirling approxima-
tion, which is then applied to Eq. (5.71), leading to the following equation:

la ¼ l0;a þ pXa þ k ln
Na

Na þ nv

� �
; ð5:72Þ

where μ0,a is a reference value or standard value and Ωa is the volume of an atom,
which is defined as:

Xa ¼ @V
@Na

� �
T ;p;nv

: ð5:73Þ

If Ca is the fraction of lattice sites occupied by the atoms in the crystal, then
Eq. (5.71) can be written as:

la ¼ l0;a þ pXa þ k lnCa: ð5:74Þ

This equation means that the chemical potential of atoms in a crystal is
dependent on the pressure and the atomic concentration. It is also noted that if the
concentration of the vacancy is sufficiently low, the last term on the right-hand side
of Eqs. (5.72) and (5.74) can be neglected.

The chemical potential of the vacancies is defined as:

lv ¼
@G
@nv

� �
T ;p;Na

: ð5:75Þ

Similar to the procedure used for μa, the chemical potential of the vacancies is
given by:

lv ¼ l0;v þ pXv þ k lnCv; ð5:76Þ

where Cv is the concentration of the vacancy, which is the fraction of lattice sites
occupied by the vacancies. Although the volume of a vacancy Ωv, can be different
from the volume of an atom Ωa, the rigid lattice approximation can be used to
assume that Ωa = Ωv = Ω, which makes it more convenient for further analysis.
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5.2.4.5 Curved Surface

Chemical potentials of the atoms and vacancies beneath curved surfaces are dif-
ferent when the curvatures of the surfaces are different. This difference in chemical
potential provides a driving force for the diffusional flux of atoms, in order to
reduce the free energy of the system. The understanding of the dependence of
chemical potential of atoms on curvature is especially important to the under-
standing of sintering.

For a pure element solid with adjoining convex and concave surfaces, it is
assumed that vacancies are the only type of point defects in the solid. The surface
area of the convex surface will be decreased, if the volume of the region beneath it
is reduced, which can be achieved by reducing the concentration of the vacancies.
Because a decrease in surface area means a decrease in contribution of the surface
to the total free energy of the system, the concentration of the vacancy under
convex surface is lower than that beneath a flat surface. Similarly, the concentration
of the vacancy beneath the concave surface is higher than that under a flat surface.
Therefore, the difference in the concentration of the vacancy results in a diffusional
flux of vacancies from the concave region to the convex region, while a diffusional
flux of atoms from the convex region to the concave region will be observed
accordingly.

On a smoothly curved surface, when an infinitesimal hump is creased on the
surface by taking atoms from beneath the surface and adding them to the surface,
the change in surface free energy is approximately given by:

d
Z

cSVdS
� �

¼
Z

dðcSVÞdS0 þ
Z

cSVdðdSÞ; ð5:77Þ

where δ means a small change in a quantity, γSV is the specific surface energy, and
dS is the change in surface area. It is assumed that the surface is uniform and
isotropic, so that the first term on the right-hand side of Eq. (5.77) is zero, while the
term δ(dS) is given by:

dðdSÞ ¼ ðsecw� 1ÞdS0 þ dz
1
R1

þ 1
R2

� �
dS0; ð5:78Þ

where R1 and R2 are the two principal radii of curvature at dS0. If Δy is small, R1

and R2 can be considered to be constant over the hump. The first term on the right-
hand side of Eq. (5.78) can be neglected. When it is put into Eq. (5.77), the
following equation can be obtained:

d
Z

cSVdS
� �

¼ cSV
1
R1

þ 1
R2

� �
dv; ð5:79Þ

where δv is the volume of the hump.
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The change in the volume term of the free energy due to the creation of the small
hump is given by:

dGv ¼ �pdv þ lv
dv
X
; ð5:80Þ

where p is the mean hydrostatic pressure in the crystal just beneath the surface, μv is
the chemical potential of a vacancy, and δv/Ω represents the number of vacancies
created by the transfer of atoms to the hump. In equilibrium, the sum of the energy
changes defined by Eqs. (5.79) and (5.80) should be zero, so that the following
equation is derived:

lv ¼ pXþ cSV
1
R1

þ 1
R2

� �
X: ð5:81Þ

If the curvature K of the surface is defined as:

K ¼ 1
R1

þ 1
R2

; ð5:82Þ

where K > 0 for a convex surface. Putting K into Eq. (5.81) yields:

lv ¼ ðpþ cSVKÞX: ð5:83Þ

Generally, chemical potential is measured relative to a reference value μ0,v, and
μv contains a term of vacancy concentration. The chemical potential of vacancy μv,
with curvature, pressure and concentration, is given by:

lv ¼ l0;v þ ðpþ cSVKÞXþ kT lnCv: ð5:84Þ

Similarly, the chemical potential of the atoms can be expresses by:

la ¼ l0;a þ ðpþ cSVKÞXþ kT lnCa: ð5:85Þ

Because Ca is usually is very small, the last term can be taken as zero.
In Eqs. (5.84) and (5.85), because Ca and Cv are generally very low, the last

terms can be neglected. Therefore, μa and μv are determined essentially by the
hydrostatic pressure in the solid and the curvature of the surface. Since the cur-
vature term γSVK has the same units as pressure or stress, the curvature, and applied
pressure effects can be treated with same formulation for the analysis of sintering.

5.2.5 Diffusional Flux Equations

For theoretical analysis of sintering, it is necessary to establish the equations for
diffusional mass transport. These equations can be solved when subject to
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appropriate boundary conditions. There are two equivalent formulations for sin-
tering: diffusion of atoms or diffusion of vacancies.

In an elemental solid, if the influence of the flux of the neutral atoms can be
neglected, the flux of the atoms in one dimension can be expressed as:

Jx ¼ �Lii
dl
dx

; ð5:86Þ

where the coefficients Lii are called transport coefficients and μ is the chemical
potential. By comparing this equation with the Fick’s first law, i.e., Equation (5.36),
there is:

Lii ¼ D
dC
dl

: ð5:87Þ

According to the relation between chemical potential and concentration given in
Eq. (5.68), there is:

l ¼ l0 þ kT lnðaCÞ; ð5:88Þ

where α is the activity coefficient. For this equation, dC/dμ can be derived, which is
put into Eq. (5.87), there is:

Lii ¼ DiC
kT

; ð5:89Þ

where Di is given by:

Di ¼ D 1þ d ln a
d lnC

� ��1

: ð5:90Þ

For an ideal system, α is independent of concentration, i.e., ln α does not vary
with ln C, so that the second term in the brackets in Eq. (5.90) is zero. By putting
Eq. (5.89) into Eq. (5.86), the atomic flux equation can be derived as follows:

Jx ¼ �DiC
kT

dl
dx

; ð5:91Þ

where Di is given by Eq. (5.90).

5.2.5.1 Atomic Flux

In a pure elemental solid, if the point defects are only vacancies, the total number of
lattice sites will not be changed, when the atoms or vacancies diffuse from one
region to another. Within a given region, the changes in number of atoms and the
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number of vacancies are equal and in opposite direction. The diffusional flux is
dependent on the gradients, μa − μv, which follows Eq. (5.91), given by:

Ja ¼ �DaCa

XkT
dðla � lvÞ

dx
; ð5:92Þ

where Da is the atomic self-diffusion coefficient, k is the Boltzmann constant and Ca

is the fraction of lattice sites occupied by the atoms. With appropriate boundary
conditions, the diffusion response can be derived from Eq. (5.92).

5.2.5.2 Vacancy Flux

Because the atomic flux in sintering is equal and opposite to the vacancy flux, there is:

Ja ¼ �Jv; ð5:93Þ

where Jv is given by:

Jv ¼ �DvCv

XkT
dlv
dx

¼ �Dv

X
dCv

dx
; ð5:94Þ

where Dv is the vacancy diffusion coefficient. To determine Jv, it is necessary to
have an expression of Cv. If Cv is the equilibrium concentration, there is:

@G
@nv

� �
T ;p;Na

¼ 0; ð5:95Þ

so that μv = 0. It is assumed that no externally applied pressure is applied, by putting
μv = 0 into Eq. (5.84), there is:

Cv ¼ C0;v exp � cSVKX
kT

� �
; ð5:96Þ

where C0,v is a reference value, which the vacancy concentration under a flat
surface. If γSVKΩ ≪ kT, Eq. (5.82) becomes:

Cv ¼ C0;v 1� cSVKX
kT

� �
: ð5:97Þ

Under the equilibrium condition, there is:

Ja ¼ Dv

X
dCv

dx
; ð5:98Þ
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where Cv is given by Eq. (5.97), which is a fraction of the lattice sites that are
occupied by the vacancies.

5.2.6 Vapor Pressure of Curved Surfaces

During sintering process, there is an important matter transport through evaporation
and condensation. The rate of the transport is proportional to the equilibrium vapor
pressure over the surface, which has been related to the value of Ca − μv beneath the
surface. If a number dNa of atoms is taken away from the vapor and added to the
surface, with a corresponding decrease in the number of vacancies beneath the
surface. The free energy change due to this virtual operation must be zero, so that
there is:

lvap ¼ la � lv; ð5:99Þ

where μvap is the chemical potential of the atoms in the vapor phase. The vapor
pressure is proportional to exp(μvap/kT), so that there is:

pvap ¼ p0 exp
la � lv � l0

kT

� �
; ð5:100Þ

where p0 is a reference value of the vapor pressure, corresponding to the standard
value of chemical potential, μ0, which is generally the value over a flat surface.
According to Eqs. (5.84), (5.85) and (5.96), there is:

la � lv ¼ l0 þ cSVKX: ð5:101Þ

When Eq. (5.101) is put into Eq. (5.100), there is:

pvap ¼ p0 exp
cSVKX
kT

� �
; ð5:102Þ

This is called the Kelvin equation. If γSVKΩ ≪ kT, it becomes:

pvap ¼ p0 1þ cSVKX
kT

� �
: ð5:103Þ

This equation means that, the vapor pressure of a given system under isothermal
conditions increases with increasing curvature of the surface.
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5.2.7 Diffusion in Ionic Crystals—Ambipolar Diffusion

In above discussion, all the diffusing species have been assumed to be uncharged
atoms or vacancies, so that electrostatic effects on the diffusion are not involved,
while in practical polycrystalline ceramics, the motion of charged species, such as
ions, has significant contribution to matter transport. It is also expected that different
ions will have different diffusion rates. When a matter transport occurs from a given
source to a given sink, the stoichiometry and electroneutrality of the solid must be
preserved in the different regions of the solid, as shown in Fig. 5.9 [1]. Other effects
may also have influences on the diffusion. For instance, if the system is subject to
an external electric field, the ions will migrate in response to the electric field,
besides the diffusion along the concentration gradient. In fact, even no external field
is applied, external fields could be formed by the ions themselves, which in turn can
influence their motion.

A diffusing species can have a charge zi, e.g., zi = +2 for a doubly charged
magnesium ion, zi = +3 for a triply charged aluminum ion, and zi = −2 for a doubly
charged oxygen ion, and so on. In a region with an electric potential of /, the
chemical potential of an ion is increased by an amount of zie/, where e is the
magnitude of the electron charge. Without the presence of an externally pressure,
according to Eq. (5.74), the chemical potential of an ion is given by:

li ¼ l0;i þ kT lnCi þ zie/; ð5:104Þ

where Ci is the fraction of sites occupied by the ions in the crystal. When this
equation is differentiated with respect to x and is put into Eq. (5.91), the flux of the
ions is given by:

Jix ¼ �Di
dCi

dx
� BiCizieE; ð5:105Þ

Diffusion 
path

Transported 
matter

O
2-

(fast)

M
2+

(slow)

Pore

Fig. 5.9 Schematic diagram illustrating that the diffusion of ions in an ionic solid must be coupled
to preserve the stoichiometry and electroneutrality of the solid. Reproduced with permission from
[1]. Copyright © 2003, CRC Press
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where Di is the diffusion coefficient of the ions, E = d/=dx is the electric field
strength, and Bi = Di/kT is the ionic mobility. The first term on the right-hand side of
Eq. (5.105) is the diffusion term given by the Fick’s first law, while the second term
is due to the ion migration caused by the electric field.

Equation (5.105) can be applied to a system, which has two different types of
diffusing ions. One type has a positive charge z+ and the other type has a negative
charge z–, corresponding to metal ions and oxygen ions in a metal oxide respec-
tively. If no net current flows through the system, the electrical current density
should be zero, so that there is:

zþJþ ¼ �z�J�: ð5:106Þ

By considering J+ and J–, according to Eq. (5.105), there is:

� zþDþ
dCþ
dx

þ BþCþz2þeE
� �

¼ z�D�
dC�
dx

þ B�C�z2�eE: ð5:107Þ

Rearranging Eq. (5.107) leads to an equation for E, given by:

E ¼ � 1
eðBþCþz2þ þ B�C�z2�Þ

zþDþ
dCþ
dx

þ z�D�
dC�
dx

� �
: ð5:108Þ

According to electroneutrality, there is:

Cþzþ ¼ �C�z�: ð5:109Þ

By differentiating Eq. (5.109) and multiplying by D+, there will be:

zþDþ
dCþ
dx

¼ �z�Dþ
dC�
dx

: ð5:110Þ

When Eq. (5.110) is put into Eq. (5.108), there is:

E ¼ � 1
eð�BþzþC�z� þ B�z�C�z�Þ ðD� � DþÞ dC�

dx
: ð5:111Þ

When Eq. (5.111) for E is put into Eq. (5.105), the flux of the negative ions is
given by:

J� ¼ �B�z�Dþ � BþzþD�
B�z� � Bþzþ

dC�
dx

: ð5:112Þ
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By replacing the ionic mobility Bi with Di/kT, Eq. (5.112) becomes:

J� ¼ �DþD�ðzþ � z�Þ
Dþzþ � D�z�

dC�
dx

: ð5:113Þ

When Eqs. (5.106) and (5.109) are put into Eq. (5.113), there is:

Jþ ¼ �DþD�ðzþ � z�Þ
Dþzþ � D�z�

dCþ
dx

: ð5:113Þ

By analogy with the Fick’s first law, an effective diffusion coefficient can be
defined, which is given by:

~D ¼ DþD�ðzþ � z�Þ
Dþzþ � D�z�

: ð5:115Þ

If all ions are fully ionized in Al2O3, the diffusing species are Al3+ and O2−, so
that the effective diffusion coefficient is given by:

~D ¼ 5DAl3þDO2�

3DAl3þ þ 2DO2�
: ð5:116Þ

Now, if DO2� � DAl3þ , there is:

~D ¼ 5
2
DAl3þ ; ð5:117Þ

while if DAl3þ � DO2� , there is:

~D ¼ 5
3
DO2� : ð5:118Þ

Equations (5.117) and (5.118) imply that the rate of matter transport is deter-
mined by the ion that diffuses more slowly, while the motion of the slower ion is
accelerated by faster diffusing ions. Therefore, the concentration gradient of the
faster diffusing ion is decreased faster than that of the slower diffusing ion.
Generally, only a small amount of such diffusion can build up a large potential
gradient. The potential gradient has the same sign as the concentration gradient, so
that it decreases the transport rate of the faster ions and increases the transport rate
of the slower ions. The potential occurs is set up at the point, where the two fluxes
are related by Eq. (5.106). The coupled diffusion of charged species is also called
ambipolar diffusion. It has played important roles in determining the mass transport
process during the sintering, as well as other mass transport processes, such as creep
behaviors of materials.
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On the one hand, the slower or slowest diffusing species determine the rate of
matter transport. On the other hand, if each ion has multiple diffusion paths, e.g.,
lattice diffusion and grain boundary diffusion, matter transport will take place
through the fastest path. Therefore, the rate-controlling mechanism is determined by
the slowest diffusing species along the fastest path. Other factors include the dif-
ferences in the effective area and path length for mass transport, which should be
considered when evaluating the rate-controlling mechanism of a diffusion process.

If the lattice and grain boundary coefficients are additive, for a pure oxide MxOy,
the effective or ambipolar diffusion coefficient is given by [20–23]:

~D ¼ ðxþ yÞðDM
l þ pdgbDM

gb=GÞðDO
l þ pdgbDO

gb=GÞ
yðDM

l þ pdgbDM
gb=GÞ þ xðDO

l þ pdgbDO
gb=GÞ

; ð5:119Þ

where δgb is the width of the grain boundary and G is the grain size. Both the
effective lattice and grain boundary diffusion coefficients for one of the species are
included. Equation (5.119) indicates that the slowest effective diffusion coefficient
is the rate-controlling factor, whereas within each term, the faster one of the two
paths dominates, i.e., the rate-controlling mechanism is determined by the slowest
diffusing species coupled with its fastest path.

5.3 Solid-State and Viscous Sintering

5.3.1 Brief Description

Sintering processes can be classified into four groups: (i) solid-state sintering, (ii)
liquid-phase sintering, (iii) viscous sintering, and (iv) vitrification. Sintering phe-
nomena in polycrystalline materials are much more complex than those in viscous
sintering of amorphous materials, because of the possibility of matter transport
paths and the presence of grain boundaries. Matter transport in solid-state sintering
can occur through at least six different paths, which determine the mechanisms of
sintering. In practice, more than one mechanism could be present at any stage of
sintering. Therefore, analysis of sintering rates and the determination of the sin-
tering mechanisms becomes more difficult. The most important occurrences related
to the grain boundaries are grain growth and pore growth during sintering, which is
as coarsening. The coarsening process provides an alternative route to facilitate the
reduction in free energy of the powder system. As a consequence, it reduces the
driving force for densification. Therefore, there is a competition between sintering
(densification) and coarsening.
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5.3.2 Sintering Mechanisms

Diffusional transport of matter along specific paths facilitates the sintering of
polycrystalline ceramics, through corresponding mechanisms. Matter is transported
from the regions of higher chemical potential to the regions of lower chemical
potential, with the former and latter known as the source and the sink of matter.
There are at least six different mechanisms that govern the sintering of polycrys-
talline ceramics. Figure 5.10 shows potential mechanisms for the sintering of three
spherical particles [24]. The consequence of the sintering is the bonding and growth
of the necks between adjacent particles, leading to strengthening of the powder
compact.

Pore

1. Surface diffusion
2. Lattice diffusion (from 

surface)
3. Vapor transport
4. Grain boundary diffusion
5. Lattice diffusion (from 

grain boundary)
6. Plastic flow

1

Grain boundary
2

3

4

56
T T

Fig. 5.10 Six distinct mechanisms can contribute to the sintering of a consolidated mass of
crystalline particles: 1 surface diffusion (SD), 2 lattice diffusion from the surface, 3 vapor transport,
4 grain boundary diffusion, 5 lattice diffusion from the grain boundary, and 6 plastic flow. Only
mechanisms 1 to 3 lead to densification, but all cause the necks to grow and so influence the rate of
densification. Reproduced with permission from [24]. Copyright © 2007, Springer
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All the mechanisms can be classified into two groups: (i) densifying mechanisms
and (ii) nondensifying mechanisms, depending on whether they can cause shrink-
age or densification of the compact. Nondensifying mechanisms include surface
diffusion, lattice diffusion from the particle surfaces to the neck, and vapor trans-
port, i.e., mechanisms 1, 2, and 3, which lead to neck growth without densification.
In contrast, grain boundary diffusion and lattice diffusion from the grain boundary
to the pore, i.e., mechanisms 4 and 5, are densifying mechanisms, which are the
most important contributions to densification of polycrystalline ceramics. Diffusion
from the grain boundary to the pore is benefit to both neck growth and densifica-
tion. Similarly, plastic flow by dislocation motion, i.e., mechanism 6, also leads to
neck growth and densification, but it is more pronounced in the sintering of metal
powders. The nondensifying mechanisms reduce the curvature of the neck surface,
i.e., the driving force for sintering, so as to reduce the rate of the densifying
mechanisms. Therefore, they must be taken into account when discussing the
sintering of ceramics. The diffusion of the different ionic species discussed above
also has effect on the rate of densification.

Because amorphous materials, such as glasses, have no grain boundaries, their
neck growth and densification are caused by viscous flows and the deformation of
the particles. In practice, the paths of matter flows are not clearly defined. The
geometrical changes caused by the viscous flow could be complex, in which the
equations for matter transport can only be established with significantly simplified
assumptions. The sintering mechanisms of polycrystalline and amorphous solids are
summarized in Table 5.2.

5.3.3 Grain Boundary Effects

Polycrystalline materials have grain boundaries, while amorphous materials
haven’t, which has been one of the most distinct difference form each other. The
grain boundaries determine the equilibrium shapes of the pores and the grains in
polycrystalline ceramics. Figure 5.11 shows a hypothetical pore that is enclosed by
three grains [1]. The forces must balance at the junctions where the surfaces of the
pores meet the grain boundary. These forces are usually represented by the tension
at the interfaces, i.e., the tension in the solid–vapor interface and the tension in the

Table 5.2 Sintering mechanisms of polycrystalline and amorphous solid materials

Mechanism Source of matter Sink of matter Densifying Nondensifying

Surface diffusion Surface Neck ×

Lattice diffusion Surface Neck ×

Vapor transport Surface Neck ×

Grain boundary diffusion Grain boundary Neck ×

Lattice diffusion Grain boundary Neck ×

Plastic/viscous flow Dislocations Neck ×
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grain boundary. Similar to the surface tension of liquids, a tension is present due to
the increase in energy caused by the increase in the area of the interfaces. At the
junction, the tension at the solid–vapor interface is tangential to the interfaces, while
that in the grain boundary is along the plane of the boundary. The balance of the
forces leads to the following expression:

cgb ¼ 2cSV cos
w
2

� �
; ð5:120Þ

where ψ is the dihedral angle. While some sintering models consider such dihedral
angles [3], it is more common to assume that the pores are sphere holes, i.e.,
ψ = 180° or γgb = 0.

During the sintering of polycrystalline materials, the decrease in energy due to
the elimination of free surface area is partly compensated by the energy due to the
creation of new grain boundary area, as shown in Fig. 5.10. Therefore, the driving
force of sintering is lower than that calculated by using Eq. (5.3), where the grain
boundaries are neglected. If ΔASV and ΔAgb are used to represent the changes in the
free surface area and grain boundary area, respectively, the change in energy of the
system is given by:

DE ¼ cSVDASV þ cgbDAgb; ð5:121Þ

Pore

ψ

γ
SV

γ
SV

γ
gb

Fig. 5.11 The equilibrium
shapes of the pores in
polycrystalline solids are
governed by the balance
between the surface and
interfacial forces at the point
where the grain boundary
intersects the pore. γSV is the
surface tension, γgb is the
grain boundary tension, and ψ
is the dihedral angle.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press
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where γSV is the specific surface energy and γgb is the specific grain boundary
energy. The system will evolve toward an equilibrium state governed by the con-
dition of |γgbΔAgb| = |γSVΔASV|. If there is |γgbΔAgb| > |γSVΔASV|, the change in
energy ΔE in Eq. (5.120) is positive. As a result, the solid–vapor surface area tends
to increase, i.e., the pores tend to grow.

The presence of the grain boundaries provides an additional opportunity for the
system to decrease energy, which is the decrease in the total grain boundary energy.
Grain growth is usually accompanied by pore growth, with the overall process
being termed as coarsening, which is present concurrently with sintering. Due to the
extreme complexity, there is still no a theory of sintering that is able to analyze
three-dimensional behaviors of particles and interaction among the particles, as well
the concurrent densification and coarsening related to the various transport mech-
anisms. In most cases, densification and grain growth are analyzed separately.

5.3.4 Theory of Sintering

Various approaches have been used in the theoretical analysis of sintering.
Analytical models are among the earlier attempts to develop quantitative modelings
of sintering [21]. The analytical models have provided the basis for the current
understanding of sintering, although simple geometry and single mechanism are
often assumed. The scaling laws provide a reliable guidance for understanding the
dependence of sintering mechanisms on particle size, i.e., scale [25]. Numerical
simulations are effective methods, because they can be used to analyze more
realistic and complicated geometries and the occurrence of multiple mechanisms.
However, numerical methods have high requirement in calculations. The topo-
logical models can be used to understand the evolution of microstructure, due to
their capability to predict the sintering kinetics. The statistical models and the
phenomenological equations have received much less attention [20]. Sintering maps
are attempted to demonstrate the changes in the sintering behavior and mechanisms
under different conditions, such as temperature and particle size, which have similar
limitations to the analytical models.

5.3.5 Scaling Laws

The scaling laws deal with the effect of change in scale on microstructural devel-
opment during sintering [25]. During the sintering of a powder compact, the particle
size is the most fundamental scaling parameter. The scaling laws do not assume a
specific geometrical model, but with assumptions that (i) the particle size of the
powder system remains the same and (ii) the geometrical changes remain similar.
Two systems are geometrically similar, so that the linear dimension of all of the
features, such as grains and pores, of system 1, Dsys(1) is equal to a numerical factor
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times the linear dimension of the corresponding features in system 2, Dsys(2), i.e.,
there is:

Dsysð1Þ ¼ kDsysð2Þ; ð5:122Þ

where λ is the numerical factor. Therefore, a simple magnification can be used to
relate one system to the other, as shown schematically in Fig. 5.12 [1].

5.3.5.1 Derivation

Figure 5.13 shows a simple system with two spheres in contact, to demonstrate the
derivation of the scaling laws [1]. If it takes a time Δt1 to produce a certain
microstructural change, e.g., the growth of a neck to a certain radius X1, in system 1,
it is necessary to derive the time Δt2 taken by system 2 to produce a geometrically
similar change. For geometrically similar changes, the initial radius of the particle
and the neck radius of the two systems are related by:

R2 ¼ kR1; X2 ¼ kX1: ð5:123Þ

The time taken to produce a certain change by diffusional flow of matter can be
expressed as:

Dt ¼ V
JAX

; ð5:124Þ

Fig. 5.12 An example of two geometrically similar systems consisting of a random arrangement
of circles. The systems differ only in scale and involve a simple magnification of one relative to the
other. Reproduced with permission from [1]. Copyright © 2003, CRC Press
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where V is the volume of the matter transported, J is the flux, A is the cross-
sectional area over which the matter is transported, and Ω is the atomic volume.
Accordingly, there is:

Dt2
Dt1

¼ V2J1A1

V1J2A2
: ð5:125Þ

Equation (5.125) can be used to consider matter transport by volume diffusion.
The volume of the matter transported is proportional to R3, where R is the radius

of the sphere shown in Fig. 5.13 [1]. As a result, V2 is proportional to (λR)3, or
V2 = λ3V1. For lattice diffusion, the area over which the matter diffuses is propor-
tional to R2. Therefore, A2 is proportional to (λR)2, or A2 = λ2A1. The flux J is
proportional to rl, which is the gradient of chemical potential. For a curved
surface with a radius of curvature r, μ varies as a function of 1/r. Therefore, J varies
with rð1=rÞ or 1/r2. Because J2 is proportional to 1/(λr)2, there is J2 = J1/λ

2.
Therefore, the parameters for lattice diffusion are:

V2 ¼ k3V2; A2 ¼ k2A1; J2 ¼ J1=k
2; ð5:126Þ

which are put into Eq. (5.125), yielding:

Dt2
Dt1

¼ k3 ¼ R2

R1

� �3

: ð5:127Þ

Therefore, according to Eq. (5.127), the time taken to produce geometrically
similar changes by a lattice diffusion mechanism increases as the cube of the
particle size. The scaling laws for the other mass transport mechanisms can be

R1

X1

R2

X2

(a) (b) Fig. 5.13 Geometrically
similar models consisting of
two spheres in contact. The
linear dimensions of system 2
are a factor λ times those of
system 1. a System 1,
b system 2. Reproduced with
permission from [1].
Copyright © 2003, CRC Press
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derived in a similar manner [25]. The laws can also be expressed in the following
general form:

Dt2
Dt1

¼ km ¼ R2

R1

� �m

; ð5:128Þ

where m is an exponent that depends on the mechanisms of sintering. The values of
m for different sintering mechanisms are listed in Table 5.3.

5.3.5.2 Application and Limitation

The scaling laws can be used to determine the dependence of the relative rates of
sintering by the different mechanisms on the particle size of the powder, which
useful in controlling the microstructures during the sintering of ceramics. As
mentioned earlier, some mechanisms lead to densification while others do not.
Therefore, in order to achieve high density, it is necessary to increase the rates of
the densifying mechanisms and decrease those of the nondensifying mechanisms.

To determine the relative rates of the different mechanisms, it is more useful to
express Eq. (5.128) in terms of rate. For a given change, the rate is inversely
proportional to the time, so that Eq. (5.128) can be written as:

ðRateÞ2
ðRateÞ1

¼ k�m: ð5:129Þ

For a given powder system, if it is assumed that grain boundary diffusion and
vapor transport (evaporation/condensation) are the dominant mass transport
mechanisms, the rates of sintering by these two mechanisms vary with the scale of
the system with the following relations:

ðRateÞgb 	 k�4; ð5:130Þ

and

ðRateÞec 	 k�2: ð5:131Þ

Table 5.3 Exponents for
Herring’s scaling laws
described by Eq. (5.128)

Sintering mechanism Exponent (m)

Surface diffusion 4

Lattice diffusion 3

Vapor transport 2

Grain boundary diffusion 4

Plastic flow 1

Viscous flow 1
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The variation of the rates of sintering with λ for the two mechanisms is shown in
Fig. 5.14 [1]. The crossover point of the two lines is arbitrary, but it does not affect
the validity of the results. For small λ, i.e., as the particle size is small, the rate of
sintering by grain boundary diffusion is higher than that by vapor transport.
However, the rate of sintering by vapor transport dominates for large λ, i.e., for
large particle sizes. According to the scaling laws, small particle size is beneficial to
densification, when grain boundary diffusion and vapor transport are the dominant
mechanisms. If surface diffusion and lattice diffusion are the dominant mechanisms,
similar treatment indicates that surface diffusion is enhanced as the particle size is
decreased. This principle is applicable to other combinations, such as lattice dif-
fusion versus grain boundary diffusion and surface diffusion versus grain boundary
diffusion.

In the derivation of the scaling laws, on general approach and simple physical
principles are employed. Because the geometric details of the powder system are
not involved in the derivation, the laws are applicable to particles of any shape and
to all stages of the sintering process. However, the scaling laws also have limita-
tions. During the derivation, the particle sizes of each powder system are assumed
to be unchanged during the sintering, while the microstructural changes are geo-
metrically similar in the two systems. The second assumption is a key limitation of
the scaling laws, because it is difficult to be achieved in real powder systems. For
the scaling laws to be valid, the two systems should be identical in chemical
composition so that the mass transport coefficients are the same.

It is noted that the exponent m in Eq. (5.128) or Eq. (5.129) is related to the
mechanism of sintering, the measurement of m could provide information on the
mechanism of sintering. In practice, determination of the mechanism is a chal-
lenging, due to several reasons. One of the major problems is the presence of
multiple mechanisms. Therefore, the exponent that is measured experimentally
could be an overall result of several mechanisms. Moreover, the sintering mecha-
nism can vary with the size of the particles.
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Fig. 5.14 Schematic diagram
of the relative rates of
sintering by grain boundary
diffusion and by evaporation/
condensation as a function of
the scale (i.e., particle size) of
the system. Reproduced with
permission from [1].
Copyright © 2003, CRC Press
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5.3.6 Analytical Methods

In the analytical models, the mass transport equations of different mechanisms are
solved analytically to derive the equations of the sintering kinetics, in which a
relatively simple and idealized geometry for the powder system is assumed.
However, the microstructure of a real powder compact changes continuously,
especially during the sintering. Therefore, it is difficult to find a single geometrical
model that can describe the entire process and ensure the simplicity of analysis. To
address this issue, the sintering process has to be conceptually divided into different
independent stages. At each stage, an idealized geometry that has a rough similarity
with the microstructure of the powder system can be assumed.

5.3.6.1 Stages of Sintering

Sintering process can be divided into three sequential stages: (i) initial stage, (ii)
intermediate stage and (iii) final stage. In some analyses, an extra stage, zero stage,
is included, which describes the instantaneous contact of the particles, when they
are first brought together due to the elastic deformation in response to surface
energy reduction at the interfaces [26]. A stage represents an interval of time or
density, over which the microstructure is assumed to be reasonably well defined.
For polycrystalline materials, Fig. 5.15 shows the idealized geometrical structures
to represent the three stages [27, 28].

Initial Stage

The initial stage is characterized by a rapid interparticle neck growth through
diffusion, vapor transport, plastic flow or viscous flow. The large differences in
initial surface curvature among different particles are eliminated at this stage. Also,
shrinkage or densification could be observed if the neck growth is due to the
densifying mechanisms. For a powder with spherical particles, the initial stage is
represented as the transition from Fig. 5.15a, b [27]. The initial stage is not finished
until the radius of the neck between the particles reaches 0.4–0.5 of the particle
radius. For a powder compact with an initial density of 0.5–0.6 of the theoretical
density, this stage will contribute a linear shrinkage of 3–5 %, i.e., the density is
increased to about 0.65 of the theoretical, if the densifying mechanisms are
dominant.

Intermediate Stage

The intermediate stage starts when the pores reach their equilibrium shapes,
according to the surface and interfacial tensions. The pores are still continuous. The
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structure is usually idealized, by assuming that the pores are arranged as a spaghetti-
like array and located along the grain edges, as shown in Fig. 5.15c [27].
Densification is assumed to take place only due to the shrinkage of the pores.
Finally, the pores become unstable and pinch off and only those isolated pores are
retained in the sintered body. At this point, the final stage is about to begin. The
intermediate stage is the main contribution to the sintering process, which is ended
at the relative density of 0.9.

Final Stage

The microstructural development in the final stage can occur in several ways. In a
simplest case, the final stage begins when the pores pinch off and there are only
isolated pores located at corners of the grains, as shown schematically in Fig. 5.15d.

Fig. 5.15 Idealized models for the three stages of sintering. a Initial stage: Model structure
represented by spheres in tangential contact. b Near the end of the initial stage: Spheres have
begun to coalesce. The neck growth illustrated is for center-to-center shrinkage of 4 %.
c Intermediate stage: Dark grains have adopted the shape of a tetrakaidecahedron, enclosing white
pore channels at the grain edges. d Final stage: Pores are tetrahedral inclusions at the corners
where four tetrakaidecahedra meet. Reproduced with permission from [27]. Copyright © 1961,
American Institute of Physics
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In this case, the pores are assumed to have shrunk continuously and most likely
disappear altogether. Main parameters of the three sintering stages are summarized
in Table 5.4.

5.3.6.2 Analytical Models

In analytical models, it is assumed that the particles in the initial powder compact
are spherical with the same size and uniform packing, which is called the geo-
metrical model [6]. With appropriate boundary conditions, the remainder of the
powder system is considered as a continuum, having the same macroscopic prop-
erties, such as shrinkage and densification rate, as the isolated unit. The equations of
the sintering kinetics can be derived from the established mass transport equations,
which are solved under appropriate boundary conditions.

5.3.6.3 Initial Stage Models

Geometrical Parameters

The model of two equal-sized spheres, with radius of a, in contact is used for the
initial stage, which is known as the two-sphere model. Two slightly different
geometries are used represent the nondensifying mechanisms and the densifying
mechanisms, respectively. The two-sphere model for the densifying mechanisms
shows shrinkage, i.e., interpenetration of the two spheres, and thus neck growth.
The neck is assumed to be circular with a radius X and a surface having a circular
cross section with a radius r, which means that that the grain boundary energy is
assumed to be zero. The main geometrical parameters of the model are the principal
radii of curvature of the neck surface r and X, the area of the neck surface A, and the
volume of material transported into the neck V, with r ≈ X2/4a, A ≈ π2X3/2a, and
V ≈ πX4/8a. The parameters of the nondensifying model are only slightly different
from those of densifying the model, with r ≈ X2/2a, A ≈ π2X3/a, and V ≈ πX4/2a.

Table 5.4 Parameters related to the three sintering stages of polycrystalline solids

Stage Microstructure Relative
density

Model

Initial Rapid interparticle neck
growth

*0.65 Two monosized spheres in contact

Intermediate Equilibrium pore shape
with continuous porosity

0.65–0.9 Tetrakaidecahedron with cylindrical
pores of the same radius along the edges

Final Equilibrium pore shape
with isolated porosity

>0.9 Tetrakaidecahedron with spherical
monosized pores at the corners of grains
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Kinetic Equations

Matter transport through diffusion can be described in terms of the flux of atoms or
the counterflow of vacancies. The approach based on the counterflow of vacancies
driven by a vacancy concentration gradient has been used predominantly in the
early development of sintering theory, which is discussed in this subsection first.
More general approach based on the flux of atoms driven by a chemical potential
gradient will be presented later. The following discussion is started with the
mechanism of grain boundary diffusion.

According to Eq. (5.98), the flux of atoms into the neck can be determined, and
thus the volume of matter transported into the neck per unit time is given by

dV
dt

¼ JaAgbX; ð5:132Þ

where Agb is the cross-sectional area over which the diffusion takes place. Grain
boundary diffusion is assumed to occur over a constant thickness δgb, so that
Agb = 2πXδgb, where X is the radius of the neck. By combining Eqs. (5.98) and
(5.132) and substituting Agb with 2πXδgb, there is:

dV
dt

¼ Dv2pXdgb
dCv

dx
: ð5:133Þ

Because the neck radius increases radially in the direction orthogonal to a line
joining the centers of the spheres, a one-dimensional solution is adequate. It is
assumed that the concentration of vacancy between the neck surface and the center
of the neck is constant, so that dCv/dx = ΔCv/X, where ΔCv is the difference in
vacancy concentration between the neck surface and the center of the neck. If the
concentration of vacancy at the center of the neck is assumed to be equal to that
under a flat stress-free surface Cv,0, according to Eq. (5.97), there is

DCv ¼ Cv � Cv;0 ¼ Cv;0cSVX
kT

1
r1

þ 1
r2

� �
; ð5:134Þ

where r1 and r2 are the two principal radii of curvature of the neck surface. Because
there is r1 = r and r2 = −X and if it is also assumed that X � r, Eq. (5.133) becomes

dV
dt

¼ 2pDvCv;0dgbcSVX
kTr

; ð5:135Þ

By using the relations of V and r, and letting the grain boundary diffusion
coefficient Dgb to be equal to DvCv,0, there is
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pX3

2a
dX
dt

¼ 2pDgbdgbcSVX
kT

4a
X2 : ð5:136Þ

Rearranging the equation yields

X5dX ¼ 16DgbdgbcSVXa
2

kT
dt: ð5:137Þ

By integrating and applying the boundary conditions X = 0 at t = 0, Eq. (5.137)
becomes

X6 ¼ 96DgbdgbcSVXa
2

kT
t: ð5:138Þ

Equation (5.138) can also be rewritten as

X
a
¼ 96DgbdgbcSVX

kTa4

� �1=6

t1=6: ð5:139Þ

Equations (5.138) and (5.139) predict that the ratio of the neck radius to the
sphere radius increases as a function of t1/6.

For this densifying mechanism, the linear shrinkage, defined as the change in
length ΔL divided by the original length L0, can also be found, which is given by

DL
L0

¼ � h
a
¼ � r

a
¼ � X2

4a2
; ð5:140Þ

where h is half the interpenetration distance between the two spheres. With
Eq. (5.139), the following equation can be obtained:

DL
L0

¼ � 3DgbdgbcSVX
2kTa4

� �1=3

t1=3; ð5:141Þ

which means that the shrinkage increase as a function of t1/3.
The mechanism of viscous flow is discussed as follows. For this mechanism,

matter transport is governed by the concept of Frenkel’s energy balance, i.e., the
rate of energy dissipation by the viscous flow is equal to the rate of the energy
gained by the reduction in surface area, i.e., ðRateÞdis ¼ ðRateÞgain.

With the parameters shown in Fig. 5.16 and assuming that the radius of the
sphere remains roughly constant during the viscous flow, the decrease in the surface
area of the two spheres is given by

S0 � S ¼ 8pa2 � 4pa2ð1þ cos hÞ; ð5:142Þ
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which means that the material removed from the plane of contact is uniformly
distributed over the surface of the sphere, instead of accumulating at the neck. For
small values of θ, i.e., for small neck radius, cosθ ≈ 1 − θ2/2, so that Eq. (5.142)
becomes

S0 � S ¼ 2pa2h2: ð5:143Þ

The rate of change in energy due to the reduction in surface area can be
expressed as

_Es ¼ �cSV
dS
dt

¼ 4pa2cSV
d
dt

h2

2

� �
; ð5:144Þ

where γSV is the specific surface energy of the solid–vapor interface. According to
Frenkel, the rate of energy dissipation by the viscous flow between the two spheres
is given by

_Ev ¼ 16
3
pa3g _u2; ð5:145Þ

where η is the viscosity of the glass state and _u is the velocity of motion for the
viscous flow which is given by

_u ¼ 1
a
d
dt

ah2

2

� �
¼ d

dt
h2

2

� �
: ð5:146Þ

This equation is derived with the assumption that the flow is uniform along the
axis joining the centers of the spheres, rather than concentrated near the neck. By
putting Eq. (5.146) into Eq. (5.145) for _u, with _Es ¼ _Ev, there is:

16
3
pa3g _u

d
dt

h2

2

� �
¼ 4pa2cSV

d
dt

h2

2

� �
: ð5:147Þ

X
a

θ

Fig. 5.16 Geometrical parameters of the two-sphere model used in the derivation of the initial
stage equation for viscous sintering by Frenkel. Reproduced with permission from [1]. Copyright
© 2003, CRC Press
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Accordingly, the following relationship is obtained:

_u ¼ 3
4
cSV
ga

: ð5:148Þ

By putting Eq. (5.148) into Eq. (5.147) for _u and integrating with the boundary
conditions of θ = 0 at t = 0, there is

h2 ¼ 3
2

cSV
ga

� �
t: ð5:149Þ

Because θ = X/a, where X is the neck radius, from Eq. (5.149), there is

X
a
¼ 3cSV

2ga

� �1=2

t1=2: ð5:150Þ

The equation for the shrinkage by this densifying mechanism can be also readily
derived.

Equations for initial stage of sintering have been intensively studied in the open
literature [20, 21, 29–32]. With the equations for neck growth and the densifying
mechanisms, shrinkage can be expressed in the following general forms:

X
a

� �m

¼ H
an

t; ð5:151Þ

DL
L0

� �m=2

¼ � H
2man

t; ð5:152Þ

where m and n are numerical exponents that are dependent on the mechanisms of
the sintering and H is a function that describes the geometrical and material
parameters of the powder system. With the assumptions made in each model, the
values for m, n, and the numerical constant in H have been derived for various
models [33, 34].

According to the equations of neck growth, it is observed that the plot of log
(X/a) versus log(t) is a straight line, with the slope to be 1/m. Therefore, so by fitting
experimental data with the theoretical models, the values of m will be obtained.
Similarly, shrinkage can be analyzed, if it takes place during the sintering process.
Usually, simple systems, such as two spheres, one sphere on a plate, or two wires
for neck growth and compacts of spherical particles for shrinkage, are used to
collect experimental data for validation of the theoretical models. Because m is
dependent on the mechanism of sintering, it is easily concluded that the value of
m can be used to identify the mechanism of sintering. However, due to the
assumption of single dominant mass transport mechanism in the models, this is
prediction is not valid for practical material systems.
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Also, the descriptions derived with the two-sphere geometry model cannot be
simply applied to real powder compacts, unless the particles are spheres with the same
size that are packed uniformly. The most effective approach is the assumption of a
linear array of spheres for the powders with size distributions [35]. For the dihedral
angle model, only when the dihedral angle is larger than 150°, the assumption that
that the grain boundary energy is zero can be used as a good approximation [36].
Other assumptions, such as the redistribution ofmatter transport to the neck, have also
been confirmed to be too simple for real sintering process [37].

5.3.6.4 Intermediate Stage Models

Geometrical Model

For the geometrical model of the intermediate stage, the powder is assumed to
consist of a space-filling array of equal-sized tetrakaidecahedra as the particles [27].
The pores are cylindrical, with axis of the cylinder coinciding with the edge of the
tetrakaidecahedra, as shown in Fig. 5.15c. The tetrakaidecahedron with cylindrical
pores along its edges is taken as the unit cell of the structure. Figure 5.17 shows a
tetrakaidecahedron, which is derived from an octahedron by trisecting each edge
and joining the points to remove the six edges. The resulting structure has 36 edges,
24 corners, and 14 faces of 8 hexagonals and 6 squares. The volume of the tetra-
kaidecahedron is given by

Vt ¼ 8
ffiffiffi
2

p
l3p; ð5:153Þ

where lp is the edge length of the tetrakaidecahedron. Because each pore is shared
by three tetrakaidecahedras, if r is the radius of the pore, the total volume of the
pores per unit cell is given by

Fig. 5.17 A
tetrakaidecahedron from a
truncated octahedron shown
by the dark lines. Reproduced
with permission from [27].
Copyright © 1961, American
Institute of Physics
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Vp ¼ 1
3
ð36pr2lpÞ: ð5:154Þ

The porosity of the unit cell, Vp/Vt, is therefore given by

Pc ¼ 3p

2
ffiffiffi
2

p r
lp

� �2

: ð5:155Þ

Because it has been assumed in the model that the pore geometry is uniform, the
nondensifying mechanisms are not present. This is attributed to the fact that the
chemical potential is the same everywhere on the surface of the pores. Therefore,
only two densifying mechanisms should be considered: lattice diffusion and grain
boundary diffusion.

Sintering Equations of Lattice Diffusion

The cylindrical pores along the edges enclose each face of the tetrakaidecahedron,
as shown in Fig. 5.18a. Because the vacancy flux from the pores terminates on the
faces of the boundary, as shown in Fig. 5.18b, it can be assumed the diffusion is
radial from a circular vacancy source while the shape effects on the corner of the
tetrakaidecahedron is neglected [27]. To remain the boundary to be flat, the vacancy
flux per unit area of the boundary should be the same over the whole boundary. The
diffusion flux field can be treated as that of the temperature distribution in a surface-
cooled and electrically heated cylindrical conductor. The flux per unit length of the
cylinder can be expressed as

J
l
¼ 4pDvDC; ð5:156Þ

where Dv is the vacancy diffusion coefficient and ΔC is the difference in concen-
tration of vacancy between the pore or source and the boundary or sink. There are
also several other assumptions. First, the flux equation with the dependence on the
radius of the pore is not affected by the convergence of the flux to the boundary.
Second, the width of the flux field, which is equivalent to l in Eq. (5.156), should be
to the diameter of the pore. Third, the flux is increased by a factor of 2, due to the
freedom of the vacancy diffusion flux that diverges initially, so as to provide
additional available area.

With these assumptions, Eq. (5.156) becomes

J ¼ 2ð4pDvDCÞ2r: ð5:157Þ
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Because there are 14 faces in a tetrakaidecahedron and each face is shared by
two grains, the volume flux per unit cell will be given by

dV
dt

¼ 14
2
J ¼ 112pDvDC: ð5:158Þ

Because of the cylindrical pore in the intermediate stage, the two principal radii
of curvature are r and ∞, so that ΔC is given by

DC ¼ Cv;0cSVX
kTr

: ð5:159Þ

By putting Eq. (5.159) into Eq. (5.158), Dl = DvCv,0, where Dl is the lattice
diffusion coefficient, there is

l
p

l
x

x

r

rx

J
b

J
v

(a)

(b)

Fig. 5.18 a Schematic of the
hexagonal neck for
intermediate stage sintering
equations of polycrystalline
ceramics. b The section
shows a cut through the neck
with the atomic flux paths for
grain boundary and lattice
diffusion. Reproduced with
permission from [1].
Copyright © 2003, CRC Press
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dV ¼ 112pDlcSVX
kT

dt: ð5:160Þ

The integral of dV is equal to the porosity given by Eq. (5.154), which isZ
dV ¼ 12pr2lp



r
r0
: ð5:161Þ

By comparing with Eq. (5.160), there is

r2


0
r 
 �10

DlcSVX
lpkT

t





tf
t

; ð5:162Þ

where tf is the time when the pore disappears. By dividing both sides of the
equation by lp

2 and evaluating the integrand, the following expression can be
obtained:

Pc 
 r2

l2p

 10DlcSVX

l3pkT
ðtf � tÞ: ð5:163Þ

The model valid until the pores are pinched off and then isolated.
The sintering equations are commonly expressed with densification rates.

Porosity P and relative density ρ are related by P = 1 − ρ, therefore, by differen-
tiating Eq. (5.163) with respect to time, there is

d
dt
ðPcÞ ¼ � dq

dt

 � 10DlcSVX

l3pkT
: ð5:164Þ

If lp is assumed to be equal to the grain size G and the densification rate is
expressed in the form of volumetric strain rate, Eq. (5.164) becomes

1
q
dq
dt


 10DlcSVX
qG3kT

: ð5:165Þ

This equation indicates that the densification rate at a given density is dependent
inversely on the cube of the grain size, which is in agreement with the prediction by
the Herring’s scaling law.

Sintering Equations of Grain Boundary Diffusion

The geometrical model for lattice diffusion can be modified to derive the flux
equations for grain boundary diffusion, which is
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Pc 
 r2

l2p

 2DgbdgbcSVX

l4pkT

 !2=3

t2=3: ð5:166Þ

Similarly, Eq. (5.166) can be expressed as

1
q
dq
dt


 4
3

DgbdgbcSVX

qð1� qÞ1=2G4kT
: ð5:167Þ

At a given density, the densification rate due to the grain boundary diffusion is
inversely proportional to the fourth power of the grain size, which is also coincident
with predictions given by the scaling law.

5.3.6.5 Final Stage Models

For the final stage sintering models, the powder system is treated as an array of equal-
sized tetrakaidecahedra with spherical pores with the same size located at the corners,
as shown in Fig. 5.15d. The tetrakaidecahedron has 24 pores, with one at each corner,
Because each pore is shared by four tetrakaidecahedra, the pore volume for every one
tetrakaidecahedron is Vp = (24/4)(4/3)πr3, with r being the radius of the pore.
According to Eq. (5.153), the porosity per tetrakaidecahedron is given by

Ps ¼ 8pr3

8
ffiffiffi
2

p
l3p
¼ pffiffiffi

2
p r

lp

� �3

: ð5:168Þ

To be more convenient, the unit cell of the idealized structure can be treated as a
thick-walled spherical shell of solid material, with a single pore of radius r to be
located at the center, as shown in Fig. 5.19 [1]. The outer radius b of the spherical
shell is defined in such a way that the average density of the unit cell is equal to the
density of the powder system, which is

q ¼ 1� r
b

� �3
: ð5:169Þ

The volume of the solid phase in the unit cell is (4/3)π(b3 − r3). Because a unit
cell contains only one pore, the number of pores per unit volume of the solid phase
is given by

N ¼ 3
4p

1� q
qr3

: ð5:170Þ

Similar assumptions are made for the final sintering stage, so that nondensifying
mechanisms can be neglected, which is similar to that in the intermediate stage
model [27, 38]. The procedure to derive the sintering equations for the intermediate
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sintering stage can be used for the final stage, but with the atomic flux equation
being assumed to be due to the diffusion between concentric spherical shells. The
equation in terms of porosity is given by

Ps ¼ 6pffiffiffi
2

p DlcSVX
l3pkT

ðtf � tÞ; ð5:171Þ

where Ps is the porosity at a time t, Dl is the lattice diffusion coefficient, γSV is the
specific energy of the solid–vapor interface, Ω is the atomic volume, lp is the edge
length of the tetrakaidecahedron that is assumed to be equal to the grain size, k is
the Boltzmann constant, T is the absolute temperature, and tf is the time when all the
pores disappear. Equation (5.171) is almost the same as Eq. (5.163), with only a
very small difference in the value of the numerical constant. As for the final stage
sintering equation due to the grain boundary diffusion, the equation should be
similar to Eq. (5.166).

5.3.7 Numerical Simulation of Sintering

Because analytical models are based on intensive assumptions, numerical simula-
tions have been developed to provide a more comprehensive description of sin-
tering. For example, in analytical models, it is assumed that the cross section of the
neck surface is a circle to be tangential to both the grain boundary and the spherical

ρ = 1 – (r/b)
3

r

b

Fig. 5.19 A porous solid
during the final stage of
sintering can be modeled by
constructing a spherical shell
centered on a single pore. The
outer radius b is chosen such
that the density of the shell
matches that of the porous
solid. Reproduced with
permission from [1].
Copyright © 2003, CRC Press
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surface of the particle, which usually known as circle approximation. In practice,
the surface curvature is always changed at the point of tangent between the neck
surface and the spherical surface of the particle, so that there should be an abrupt
change in chemical potential. Also, analytical models cannot deal with the sintering
governed by two or more mechanisms.

5.3.7.1 Sintering

Numerical simulations of sintering with diffusion mechanisms, such as surface
diffusion and rain boundary diffusion, have been conducted and reported in the
literature [39–43]. In such simulations, the three-dimensional real powder systems
are simplified to two-dimensional geometrical models.

Figure 5.20 shows a model consisting of a row of cylinders with same radius,
whose neck contours are shown in Fig. 5.21 [40]. Two situations are simulated for
matter transport by (i) surface diffusion only and (ii) both surface diffusion and
grain boundary diffusion, as shown in Fig. 5.21a, b, respectively. It is found that
numerical simulation predicts undercutting and a continuous change in curvature of
the neck surface, which is different from that given by the analytical models with
the circle approximation. The region of the neck surface influenced by the matter
transport also extends far beyond that predicted by the circle approximation.
However, if both the surface diffusion and grain boundary diffusion are considered,
the extension is less pronounced.

There have also been reports on numerical simulation of the initial stage of
sintering, involving grain boundary, lattice, and surface diffusion at the same time
[36]. However, this simulation also uses the circle approximation for the neck
surface. Furthermore, the chemical potential gradients for the grain boundary dif-
fusion and the lattice diffusion are assumed to be the same. The validity of
numerical simulation has been compared with other methods [44, 45].

Grain 
boundary

Neck contour

Y

H(Y)
L

K
1

K
2

X

Fig. 5.20 Geometry of the
neck formed between two
cylindrical particles during
sintering. Reproduced with
permission from [40].
Copyright © 1979, Elsevier
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Numerical simulation with finite element modeling has been used to study
viscous sintering [42, 43, 46–50]. It is predicted that the flow is axially downward
and radially outward near the neck, with most of the energy dissipated near the
neck, which is in a qualitative agreement with the Frenkel model [46, 48]. Another
example is the simulation of the sintering of two rigid particles that are coated with
an amorphous layer, as shown in Fig. 5.22 [51]. Similar finite element modeling is
used in this study. The simulation results indicate that full density can be achieved
at a rate comparable to a packing of particles without a rigid core, if the coatings are
sufficiently thick.

s

a

(a) (b)

a

s

Circle 
approx.

Computer result

Surface diffusion Surface and gb diffusion

Circle 
approx.

Computer result

Fig. 5.21 Contours of necks
between cylinders for
sintering by a surface
diffusion and b simultaneous
surface and grain boundary
diffusion. From Ref. [27].
Reproduced with permission
from [40]. Copyright © 1979,
Elsevier

Fig. 5.22 Finite element
simulation of viscous
sintering of two rigid particles
coated with an amorphous
layer. Reproduced with
permission from [51].
Copyright © 1994, John
Wiley & Sons
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5.3.8 Phenomenological Sintering Equations

Phenomenological approach is the development of empirical equations that can be
used to fit the experimental data of sintering, in terms of density or shrinkage, as a
function of time. Phenomenological sintering equations are useful to some
numerical models, when equations for densification of a powder system are nec-
essary. There is a simple expression that can be used to fit sintering and hot pressing
data, which is given by

q ¼ q0 þ K ln
t
t0
; ð5:172Þ

where ρ0 is the density at an initial time t0, ρ is the density at time t, and K is a
temperature-dependent parameter, which is known as semi-logarithmic law. Using
rate equation of Coble’s intermediate or final stage model for sintering through
lattice diffusion, e.g., Eq. (5.165), there is [27]

dq
dt

¼ ADlcSVX
G3kT

; ð5:173Þ

where A is a constant that is dependent on the stage of sintering. If it is assumed that
the grains grow following a cubic law, i.e.,

G3 ¼ G3
0 þ at 
 at; ð5:174Þ

and that the initial grain size is very small, i.e., G3 � G3
0, Eq. (5.173) can be

simplified as

dq
dt

¼ K
t
; ð5:175Þ

where K = ADlγSV/(αkT). Integration of Eq. (5.175) leads to Eq. (5.172), which is
expected to be valid for both the intermediate and final stages of sintering, because
Eq. (5.174) has the same form for both sintering stages.

In most cases, if grain growth is significantly prohibited, shrinkage data can be
fitted by the following equation:

DL
L0

¼ Kt1=b; ð5:176Þ

where K is a temperature-dependent parameter and β is an integer. This equation
has the same form as the initial stage shrinkage equations derived from the ana-
lytical models.
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There are also various empirical sintering equations that can be found in the
open literature. One of them is as follows:

V0 � Vt

V0 � Vf
¼ Ktn; ð5:177Þ

where V0 is the initial volume of the powder compact, Vt is the volume after
sintering for time t, Vf is the volume of the fully dense solid, and K is a temperature-
dependent parameter. Depending on materials, n has values between 0.5 and 1.0.
Another equation is as follows:

VP
t

VP
0
¼ ð1þ C1mtÞ�1=m; ð5:178Þ

where VP
0 is the initial pore volume of the compact, VP

t is the pore volume after
sintering for time t, while C1 and m are constants. Although these empirical
equations are successful in fitting various experimental sintering data, it is difficult
for the fitted parameters to have physical meanings [52]. Therefore, it is necessary
to be careful when using these empirical equations, before any meaningful
understanding is available.

5.3.9 Sintering Diagrams

As discussed earlier, more than one mechanism commonly operates simultaneously
during the sintering of polycrystalline systems. Besides the numerical simulations
that can provide theoretical frameworks for the analysis of sintering with multiple
mechanisms, sintering diagrams are even more practical approaches [33, 34].
Sintering diagrams demonstrate the dominant mechanism of sintering and the net
rate of neck growth, for a given temperature and neck size, or density, to show the
densification.

To construct a sintering diagram, it is necessary to have neck growth equations
for specified geometrical models, usually geometrical models discussed above, and
data of the material properties, such as diffusion coefficients, surface energy, and
atomic volume, which included in the equations [33]. Numerical methods are used
to construct the sintering diagrams, with the assumption that the total neck growth
rate is the sum of all the neck growth rates for the individual mechanisms. In this
respect, sintering diagrams are very close to the analytical models discussed earlier.
In practice, a slight variation in the characteristics of the powders can cause sig-
nificant changes in the material parameters, e.g., diffusion coefficients, so that each
system should have its specific sintering diagrams.
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5.3.10 Sintering at Pressures

The application of an external stress or pressure to the powder system during
heating has been widely used to promote the sintering of ceramics. Various tech-
niques have been developed for such a purpose, which can be classified into three
types: (i) hot pressing, (ii) hot isostatic pressing, and (iii) hot forging. There have
been models for hot pressing by considering the diffusional mass transport under
the driving forces of surface curvature and applied stress [53].

5.3.10.1 Hot Pressing Models

Analytical sintering models are based on the idealized models for the three stages of
sintering shown in Fig. 8.8. Because the vacancy concentration under the neck
surface is not affected by the external stress, Eq. (5.134) is still valid, i.e., there is

DCv ¼ Cv � Cv;0 ¼ Cv;0cSVX
kT

1
r1

þ 1
r2

� �
¼ Cv;0cSVXK

kT
; ð5:179Þ

where K is the curvature of the pore surface. For the initial stage of sintering, K = 1/
r = 4a/X2, while for the intermediate and final stages, K = 1/r and 2/r, respectively,
where r is the radius of the pores, a is the radius of the particles, and X is the radius
of the neck. The stress pa applied to the powder compact produces a stress pe on the
grain boundaries. Due to the presence of the pores, pe is higher than pa, which can
be expressed as

pe ¼ /pa; ð5:180Þ

where / is a factor, which is also known as the stress intensification factor. The
compressive stress on the grain boundary means that the concentration of vacancy
is less than that of a flat stress-free boundary, so that there is

DCv;b ¼ �Cv;0peX
kT

¼ �Cv;0/paX
kT

: ð5:181Þ

In the two-sphere model at the initial stage of sintering, / is usually assumed to be
equal to the area of the sphere projected onto the punch of the hot pressing die
divided by the cross-sectional area of the neck, i.e., / = 4a2/πX2, while in those at
the intermediate and final stages, it is supposed that / = 1/ρ, where ρ is the relative
density of the body to be sintered.

Using the parameters for K and /, the variations of ΔCv,p and ΔCv,b can be
obtained [53]. For hot pressing, the difference in the concentration of vacancy
between the neck surface and the grain boundary is given by ΔC = ΔCv,p − ΔCv,b,
therefore, for the initial stage, there is
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DC ¼ C0X4a
kTX2 cSV þ paa

p

� �
: ð5:182Þ

This equation indicates that, at the initial stage, ΔC for hot pressing is similar to
that for normal sintering, but γSV + paa/π is used instead of γSV. Because pa and
a are constant, hot pressing equations can be derived from the sintering equations
by simply changing γSV into γSV + paa/π.

Creep equations can be appropriately modified as models of intermediate and
final stages of sintering. For simplicity, the matter transport during creep of a dense
solid is considered first. For a pure single crystal solid with cubic structure, which is
a rod with a cross section of length L. Normal stresses pa are applied to the rod on
the sides, as shown in Fig. 5.23a. It is assumed that self-diffusion within the crystal

p
a

(b)

p
a

(c)

p
a

Atomic 
flux

(a)

Fig. 5.23 a A single crystal subjected to a uniaxial stress, showing the direction of atomic flux. A
representative grain in polycrystalline solids, showing the expected atomic flux by lattice diffusion
(b) and grain boundary diffusion (c). a, c Reproduced from [1]. Copyright © 2003, CRC Press.
b Reproduced with permission from [54]. Copyright © 1950, American Institute of Physics
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solid causes it to deform, i.e., creep, so as to relieve the stresses [54]. During the
creep, the atoms diffuse from interfaces subjected to a compressive stress, where
they have a higher chemical potential, toward those regions subjected to a tensile
stress, where they have lower chemical potential. This concept of creep can be
extended to polycrystalline ceramics, i.e., the self-diffusion within the individual
grains causes atoms to diffuse from the grain boundaries under compression toward
the boundaries under tension, as shown in Fig. 5.23b. Creep by lattice diffusion is
usually known as Nabarro-Herring creep, with the creep rate being given by

_ec ¼ 40
3
DlXpa
G2kT

; ð5:183Þ

where Dl is the lattice diffusion coefficient, Ω is the atomic volume, pa is the applied
stress, G is the grain size, k is the Boltzmann constant, and T is the absolute
temperature. The creep rate is a linear strain rate, defined as (1/L)dL/dt, where L is
the length of the solid and t is time.

As shown in Fig. 5.23c, creep in ceramics can also be caused by the diffusion
along the grain boundaries, with the creep equation being given by [55, 56]:

_ec ¼ 47:5DgbdgbXpa
G3kT

; ð5:184Þ

where Dgb is the grain boundary diffusion coefficient and δgb is the thickness of the
grain boundaries. In Eqs. (5.183) and (5.184), the creep rate is linearly dependent
on pa, which has different dependences on the grain size and different numerical
constants.

If the applied stress is sufficiently high, dislocations could be produced in some
ceramics, which can facilitate matter transport as a mechanism of sintering, with
creep rate given by

_ec ¼ ADlb
kT

pa
l

� �n

; ð5:185Þ

where A is a numerical constant, D is diffusion coefficient, μ is the shear modulus,
and b is the Burgers vector, while the exponent n is dependent on the mechanism of
the dislocation motion, with values in the range of 3–10.

Hot pressing equations can be derived from the creep equations with certain
modifications. In practices, sintering data are usually present as density versus time
to obtain densification rate. Because sintering compacts are porous before they are
fully densified, the creep equations developed for dense solids should be modified
to be suitable for hot pressing equations. First, the creep rate that is a linear strain
rate should be related to the densification rate which is a volumetric strain rate.
Second, the porosity should be compensated. In hot pressing, the mass M of the
powder and the cross-sectional area A of the die, are constants, while the density
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D increases and the sample thickness L decreases, with the relation of D and
L being given by

M
A

¼ LD ¼ L0D0 ¼ LfDf ; ð5:186Þ

where the subscripts 0 and f stand for the initial and final states. Differentiating
Eq. (5.186) with respect to time gives

L
dD
dt

þ D
dL
dt

¼ 0: ð5:187Þ

Rearranging Eq. (5.187), there is:

� 1
L
dL
dt

¼ 1
D
dD
dt

¼ 1
q
dq
dt

; ð5:188Þ

where ρ is relative density. Equation (5.188) indicates that the densification rate is
related to the linear strain rate of the body during the hot pressing. The linear strain
rate can be measured directly by monitoring movement of the punch during the hot
pressing.

In Coble’s initial stage hot pressing model, the effective stress applied to the
grain boundaries, pe, is related to the externally applied stress, pa, which is by
Eq. (5.180). In that model, the total driving force (DF) is a linear combination of
two effects: (i) external applied stress and (ii) surface curvature, which determines
the densification rate, and it is

DF ¼ pe þ cSVK ¼ pa/þ cSVK; ð5:189Þ

where K is the curvature of the pore, which is equal to 1/r for intermediate stage
model and 2/r for final stage model of the sintering. When this DF is used to replace
the applied stress pa in the creep equations for dense solids, hot pressing equations
for sintering can be derived.

The modified creep equations should be further elaborated for real scenario of
hot pressing sintering of ceramics, due to the differences between the two processes,
such as those in the atomic flux field and the path length for diffusion. For example,
in the creep models, the atomic flux is terminated at the grain boundaries under
tension, while in hot pressing it is terminated at the surfaces of pores. During the
creep of dense solids, because the grain size is not changed, the areas of grain
boundaries are kept unchanged. However, during the hot pressing sintering, but
both the areas of the grain boundaries and the path length for diffusion are increased
with time.
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5.3.10.2 Hot Pressing Mechanisms

There is no significant difference in mechanism between the normal sintering and
hot pressing sintering. However, due to the application of an external stress, the
densifying mechanisms are largely enhanced, while the nondensifying mechanisms
are almost not affected. Therefore, it is not necessary to consider all the nonden-
sifying mechanisms. This difference in the effect of the applied stress can be used to
identify the mechanisms of densification, on the one hand, while on the other hand,
new densification mechanisms could be brought out.

Figure 5.24 shows a schematic cross-sectional view of a representative system,
consisting of three grains with an ideal hexagonal shape [1]. This diagram can be
used to describe the overall shape change of powder compacts during hot pressing.
Within the hot pressing die with fixed diameter, the powder compact would contract
only in the direction of the external pressure, thus leading to flattening of the grains,
as shown in Fig. 5.24, which is accompanied by sliding of grains and grain
boundaries. Therefore, the major mechanisms that govern the sintering during hot
pressing include rearrangement, lattice diffusion, grain boundary diffusion, viscous
flow, plastic deformation through dislocation motion and grain boundary sliding.

If the applied stress is much higher than the driving force due to the curvature,
the densification rate during hot pressing can be expressed as

1
q
dq
dt

¼ HD/n

GmkT
pna ; ð5:190Þ

Grain boundary 
sliding

Applied 
pressure

Grain

Pore

Fig. 5.24 Sketch illustrating the change in shape of the grain that occurs during hot pressing. The
grains are flattened in the direction of the applied pressure. When matter transport occurs by
diffusion, grain boundary sliding is necessary to accommodate the change in grain shape.
Reproduced with permission from [1]. Copyright © 2003, CRC Pressing
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where H is a numerical constant, D is the diffusion coefficient of the rate-controlling
species, / is the stress intensification factor, G is grain size, k is the Boltzmann
constant, T is absolute temperature, while the exponents m and n are dependent on
the mechanism of the densification. For example, lattice diffusion mechanism has
m = 2 and n = 1, while for grain boundary diffusion, there are m = 3 and n = 1.

Equation (5.190) indicates that the plot of densification rate versus pa can be
used to derive the exponent n, so that the mechanism of densification can be
identified. The applied pressures for commonly used hot pressing are 10–50 MPa,
with which n ≈ 1 is usually observed for many ceramics, corresponding to the
diffusion mechanism for densification [57, 58]. High values of n are occasionally
observed, indicating the possibility of dislocation mechanisms [59, 60]. The
dominant densification mechanism can be varied with the applied pressure, tem-
perature, and grain size. Similar to the sintering maps discussed above, there are
also hot pressing maps to demonstrate the dominant mechanisms versus processing
conditions.

5.3.11 Stress Intensification Factor

As mentioned before, there is an important factor, /, in the hot pressing models,
which is known as stress intensification factor or stress multiplication factor. It is
used to relate the mean stress applied to the grain boundary, pe, to the externally
applied stress, pa. The significance of / is such that while pa is the stress that is
measured, pe is its counterpart that influences the rate of matter transport. The factor
/ is geometrically dependent on the porosity and the shape of the pores of the
ceramic compacts.

When a hydrostatic pressure pa is applied to the external surface of a powder
compact, it can be represented by using a model, as shown schematically in
Fig. 5.25a [1]. In this case, the applied pressure exerts a load on the surface of the
solid, which is Fa = ATpa, where AT is the total external cross-sectional area of the
solid, including areas pores. Due to presence of porosity at the grain boundaries, the
actual grain boundary area Ae is smaller than the total external area. If a force
balance is maintained across any plane of the solid, the following expression is
valid:

paAT ¼ peAe: ð5:191Þ

Therefore, stress intensification factor is given by

/ ¼ pe
pa

¼ AT

Ae
: ð5:192Þ

If the pores are assumed to be spherical and randomly distributed in a porous solid,
the factor / can be obtained through the following steps. It is assumed that there is
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an arbitrary plane through the solid, with the area fraction of porosity in the plane
being equal to the volume fraction of porosity in the solid. If AT is unity, there is
Ae = 1 − P, where P is the porosity of the solid. Because 1 − P is also equal to the
relative density, there is the following relation:

/ ¼ 1
q
: ð5:193Þ

This equation is valid for polycrystalline ceramics with equilibrium shapes of the
isolated pores to be nearly spherical, i.e., dihedral angles are larger than 150°. Once
the pores become nonspherical, the expression of / could have very complicated
form. If the shapes of the pores are dramatically changed, as shown in Fig. 5.25b
[1], although the volume is the same, the value of / could be changed, because it is
now dependent on not only the porosity but also the shape of the pores. When the
pore shape is not spherical, the dihedral angles are reduced, so that the actual area of
the grain boundary is decreased, therefore, / will be decreased.

An analysis of simulation results of a continuous network of pores with equi-
librium shapes indicates that / can be approximated using a simple expression,
which is [59, 61, 62]:

/ ¼ expðaPÞ; ð5:194Þ

where α is a factor that is dependent on the dihedral angle and P is the porosity. The
factor α can be determined with simulation results, while the equation has been
verified by some experimental results. However, further studies are necessary to
increase the significance of / [63–66].

Pore Pore

p
a(a) p
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p
e
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e
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Fig. 5.25 a The effective stress applied to the grain boundary pe is higher than the externally
applied stress pa, due to the presence of the pores at the grain boundaries. The stress intensification
factor / is defined as the ratio of the total external area to the actual grain boundary area. b / is
dependent on the porosity and the pore shape, with stronger dependence on porosity for pores with
smaller dihedral angles, e.g., elliptical pores. Reproduced with permission from [1]. Copyright ©
2003, CRC Press
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5.3.12 Sintering Stress

The densification rate for the diffusion-controlled mechanisms may be expressed as
a general form, which is given by

1
q
dq
dt

¼ � 3
L
dL
dt

¼ 3
gq

ðpa/þ rÞ; ð5:195Þ

where (1/L)dL/dt is the linear strain rate of the sintering compact, ηρ has the
dimensions of a viscosity that can be called densification viscosity, while σ is the
effective stress applied to the atoms under the pore surface, which is given by the
Young and Laplace equation:

r ¼ cSV
1
r1

þ 1
r2

� �
; ð5:196Þ

where r1 and r2 are the two principal radii of curvature of the pore surface. The
quantity σ is the thermodynamic driving force for sintering. It has the units of a
pressure or stress, which is usually known as sintering pressure or sintering
potential. The equation of σ is actually more complex for polycrystalline ceramics,
because the pores are in contact with the grain boundaries. It has two contributions,
one from the pores and the other from the grain boundaries [67]. For an idealized
final stage microstructure, where the pores and grains are assumed to be spherical in
shape, σ is given by [68]

r ¼ 2cgb
G

þ 2cSV
r

; ð5:197Þ

where γgb is the specific energy of the grain boundary, G is the grain size, and r is
the radius of the pore. The driving force for sintering is also influenced by the
dihedral angle and the mass transport mechanism, which has been calculated for a
simple geometry, consisting of a line of spherical particles [69].

Another form of Eq. (5.195) is

1
q
dq
dt

¼ 3/
gq

ðpa þ RÞ; ð5:198Þ

where R ¼ r=/ has the units of stress, which known as sintering stress. Because Σ
has a linear relationship with the externally applied stress pa, it can be used to
represent the equivalent externally applied stress, with an effect on sintering as same
as those of the curved surfaces of pores and grain boundaries.
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5.3.13 Alternative Sintering Equations

Besides those discussed above, the sintering equations can be derived in an alter-
native way by solving the differential equations of the atomic flux that is subject to
appropriate boundary conditions [70].

5.3.13.1 Grain Boundary Diffusion

A simple geometrical model consisting of spherical particles with a diameter a,
arranged as a simple cubic pattern, as shown in Fig. 5.26a, is used to derive the
sintering equations for the mechanism of grain boundary diffusion [70]. It is

(a)

(b)

Cell face
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a

Pore Pore

-X +X
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δ
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Fig. 5.26 a Schematic of the
cell surrounding a spherical
particle showing the neck or
grain boundary section with
an adjoining particle.
Reproduced with permission
from [70]. Copyright © 1991,
John Wiley & Sons.
b Geometrical parameters for
matter transport through grain
boundary diffusion.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press
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assumed that the grain boundary is flat, with a constant width δgb, as shown in
Fig. 5.26b [1]. From Eq. (5.92), the flux of atoms as a function of distance along the
neck can be expressed as

jðxÞ ¼ � Dgb

XkT
rl; ð5:199Þ

where Dgb is the grain boundary diffusion coefficient, Ω is the atomic volume, k is
the Boltzmann constant, T is the absolute temperature, and μ is the chemical
potential of the atoms. The total number of atoms crossing the neck at a radius x per
unit time is given by

JðxÞ ¼ 2pxdgbjðxÞ ¼ � 2pxDgbdgb
XkT

rl: ð5:200Þ

Because the displacement of the boundary must be independent of x, the rate to
approach of the centers of the particle, dy/dt, is related to J(x) through the following
expression:

JðxÞ ¼ px2

X
dy
dt

: ð5:201Þ

From Eqs. (5.200) and (5.201), there is

dl
dx

¼ �2Ax; ð5:202Þ

where

A ¼ � kT
4Dgbdgb

dy
dt

: ð5:203Þ

Integrating Eq. (5.202) yields:

lðxÞ ¼ �Ax2 þ B; ð5:204Þ

where B is a constant. The chemical potential μ is related to the normal stress
applied to the boundary σ by μ = σΩ, so that Eq. (5.204) becomes

rðxÞ ¼ �Ax2 þ B
X

; ð5:205Þ

where the constants A and B can be derived from the corresponding boundary
conditions. For the first boundary condition, the stresses must be balanced at
x = X and x = −X. According to the definition of sintering stress, the effects of the
pores and grain boundaries are replaced by using an equivalent external stress Σ.
Therefore, the stress applied to the surface of the pore should be equal to zero. In
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this case, the second boundary condition is σ = 0 at x = ±X. Substituting either of
them into Eq. (5.205) yields

B ¼ Ax2: ð5:206Þ

The second boundary condition also means that the average stress applied to the
grain boundary is equal to /R, where / is the stress intensification factor. This
condition can be expressed as

1
pX2

Z2p
0

Zx
0

rðxÞdxdh ¼ /R: ð5:207Þ

Substituting σ(x) and integrating the equation yield

�AX2

2
þ B ¼ X/R: ð5:208Þ

Together with Eq. (5.206), there are

A ¼ X/R
X2 ; B ¼ 2X/R: ð5:209Þ

From Eq. (5.200), the total flux at the surface of the neck between two particles
is thus given by

JðXÞ ¼ 8pDgbdgb/R
kT

: ð5:210Þ

When J(X) is related to the shrinkage of the system, the total volume transported
out of one neck in a time Δt is given by

DV ¼ �JðXÞXDt ¼ pX2Da; ð5:211Þ

where Δa is the corresponding change in the center-to-center distance between the
particles. The total volumetric shrinkage in all three orthogonal directions is given by

DV
V

¼ 3Da
a

; ð5:212Þ

and because V = a3, the rate of change of the cell volume is given by

dV
dt

¼ DV
Dt

¼ 3a2
Da
Dt

: ð5:213Þ
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From Eq. (5.211), Δa/Δt is obtained, which is put into Eq. (5.213), there is

dV
dt

¼ �3a2
JðXÞX
pX2 : ð5:214Þ

By definition, / ¼ a2=ðpX2Þ, so that the instantaneous volumetric strain rate is
given by

1
V
dV
dt

¼ � 3JðXÞX/
a3

: ð5:215Þ

The linear densification strain rate _eq is defined as (−1/3 V) dV/dt, which is used
to substitute J(X) in Eq. (5.210), there is

_eq ¼ 8pDgbdgbX
a3kT

/2R: ð5:216Þ

5.3.13.2 Lattice Diffusion

The sintering equation for lattice diffusion can be derived in a similar way. The
linear densification strain rate can also be derived from Eq. (5.216) by replacing
πDgbδgb with 2XDl, where Dl is the lattice diffusion coefficient [71]. Because there
is / ¼ a2=ðpX2Þ, the linear densification strain rate is given by

_eq ¼ 16DlX

p1=2a2kT
/3=2R: ð5:217Þ

5.3.13.3 General Isothermal Sintering Equation

For matter transport by diffusion, a general equation for the linear densification
strain rate can be expressed as

_eq ¼ H1DX/
ðmþ1Þ=2

GmkT
ðRþ phÞ; ð5:218Þ

where H1 is a numerical constant that is dependent on the geometry of the model, ph
is the hydrostatic component of an externally applied stress, G is the particle or
grain size, k is the Boltzmann constant, T is the absolute temperature, and Ω is the
atomic volume. At the same time, D = Dgbδgb and m = 3 for grain boundary
diffusion, while D = Dl and m = 2 for lattice diffusion.
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5.4 Liquid-Phase Sintering

5.4.1 Brief Introduction

The sintering processes discussed above are all solid-state sintering, in which the
materials remain in solid state throughout the sintering process. However, if there is
a liquid phase present during the sintering, the sintering process can be significantly
enhanced, which is known as liquid-phase sintering [72]. Usually, liquid-phase
sintering is used to enhance densification rates, achieve accelerated grain growth, or
produce specific grain boundary properties. The distributions of the liquid phase
and the resulting solidified phases produced on cooling after densification are
critical to achieving the required properties of the sintered ceramics. In most cases,
the amount of liquid formed during sintering should be small, which can make it
quite difficult to precisely control the composition of the liquid.

Liquid-phase sintering is more effective for ceramics that have a high degree of
covalent bonding, and thus are difficult to densify through solid-state sintering. A
disadvantage of liquid-phase sintering is the formation of glassy intergranular phase
due to the solidification of the liquid phase, which could degrade the properties of
the final ceramics. Because optical properties are especially sensitive as compared
with other properties, it should be very careful when using liquid-phase sintering to
process transparent ceramics.

A related process is called activated sintering, in which the additives segregate
at grain boundaries to enhance the mass transport rates and thus accelerate
densification. If sufficient amount of liquid is present with contents in the range of
25–30 vol.%, rearrangement of the solid phase coupled with liquid flow can lead to
a fully dense material. Such large volume fractions of liquid are rarely used in
transparent ceramics. In this case, the sintering process is known as vitrification.

5.4.2 Characteristics of Liquid-Phase Sintering

5.4.2.1 Densification Enhancement

The enhancement in densification during the liquid-phase sintering can be attributed
to the (i) enhanced rearrangement of particles due to surface wetting effect and (ii)
enhanced matter transport through the liquid due to its low viscosity. The micro-
structural characteristics of liquid-phase sintering can be compared with those of
solid-state sintering by using the idealized two-sphere model, as shown in Fig. 5.27
[1]. If the liquid phase can wet the particles and has sufficient quantity to cover the
particle surfaces, all the particles are separated one another by a liquid layer, which
can greatly decrease the friction between every two adjacent particles. As a result,
the particles would have higher mobility, thus making their rearrangement more
easily. In contrast, solid-state sintering has no such effect. For grain boundary
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diffusion, the rate of diffusion for solid-state sintering is controlled by the product of
the grain boundary diffusion coefficient Dgb and the grain boundary thickness δgb,
whereas that for liquid-phase sintering is determined by the product of the diffusion
coefficient DL of the species in the liquid and the thickness of the liquid layer δL.
Because δL > δgb and DL > Dgb, δLDL ≫ δgbDgb, i.e., the liquid can promote matter
transport.

5.4.2.2 Driving Force for Densification

Because the liquid wets and spreads over the solid surfaces, pores will be formed in
the liquid. The reduction of the liquid–vapor interfacial area provides the driving
force for shrinkage or densification of the compact. If the pore in the liquid is
assumed to be spherical with radius of r, the pressure difference across the curved
surface is given by the Young and Laplace equation:

Dp ¼ � 2cLV
r

; ð5:218Þ

where γLV is the specific surface energy of the liquid–vapor interface. The pressure
applied to the liquid phase is lower than that applied to the pore, which leads to a
compressive capillary stress to the particles. Therefore, the effect of the compressive
stress due to the liquid is equivalent to the application of an external hydrostatic
pressure to the system, as the driving force for sintering.

5.4.2.3 Formation of Liquid Phase

The formation of liquid phase during the liquid-phase sintering is schematically
shown in Fig. 5.28 [73]. It is started from a mixture of two powders, i.e., the major
component and an additive. The additive is molten to liquid phase or reacts with the

(a) (b) 

Grain 
boundary

Liquid layer

Atomic path

Liquid

Atomic path

PorePore Pore

Fig. 5.27 Schematic diagrams of the idealized two-sphere model showing microstructural
characteristics of a solid-state sintering and b liquid-phase sintering. Reproduced with permission
from [1]. Copyright © 2003, CRC Press
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major component to form a eutectic liquid. If it is preferred to form eutectic liquids,
the additive and the firing conditions should be properly selected. Due to the small
quantity of the liquid phase, the structure of the compact can be well remained,
because the particles are held together by the capillary stress created by the liquid.
However, the system has lower effective viscosity than its counterparts without a
liquid phase. If the liquid is present throughout the sintering process, it is called
persistent liquid-phase sintering, where the liquid precipitates at grain boundaries as
glass phase after the sintering. Otherwise, it is called transient liquid-phase sin-
tering, in which the liquid might disappear due to (i) incorporation into the solid

Pore

Initial state of 
mixed powders

Solid state

Additive

Rearrangement

Solution-reprecipitation

Final densification

Fig. 5.28 Schematic of the microstructure variation in a liquid-phase sintering, starting with
mixed powders, and pores between the particles. During heating the particles are sintered, but
when a melt forms and spreads, the solid grains rearrange. Subsequent densification is
accompanied by coarsening. In many cases, there is pore annihilation as diffusion in the liquid
to accelerate the change in grain shape, so that pores are removed. Reproduced with permission
from [73]. Copyright © 2009, Springer
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phase to form solid solutions, (ii) formation of crystal phase through crystallization,
or (iii) evaporation.

5.4.2.4 Microstructures

The ceramics fabricated using liquid-phase sintering contains two phases, i.e., (i)
the major phase of crystalline grains and (ii) the grain boundary phase resulting
from the liquid. In most cases, the grain boundary phase is amorphous. The quantity
of the liquid phase determines the characteristics of the grain boundaries and thus
the properties of the grains, such as grain shape, size, and morphology.

5.4.3 Stages of Liquid-Phase Sintering

Because chemical reactions between the particles and the liquid phase can be
neglected, the sintering rate is mainly controlled by the interfacial energies. In this
case, liquid-phase sintering generally has three stages, as shown in Fig. 5.28 [73].
The first stage is the rearrangement of the particles caused by the capillary stress
gradients due to the redistribution of the liquid phase. At the second stage, the
compact experiences densification, through the solution-re/precipitation process.
Finally, the compact undergoes grain coarsening and further densification before
the whole sintering is finished.

5.4.4 Thermodynamic and Kinetic Factors

Several kinetic and thermodynamic factors, as well as processing parameters,
determine the microstructures of the ceramics by using liquid-phase sintering.

5.4.4.1 Wetting and Spreading of the Liquid

The capability of the liquid to wet and spread over the surface of the solid particle
determines the effectiveness of liquid-phase sintering. The wetting capability of a
liquid is dependent on its surface tension, i.e., lower the surface tension, the high
the wetting capability the liquid has, which is usually characterized by a parameter,
known as contact angle.

The contact angle is determined by the various interfacial energies of the solid–
liquid–vapor systems, which is demonstrated using a droplet of liquid on the sur-
face of a flat solid, as shown schematically in Fig. 5.29. When the specific energies
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of the liquid–vapor, solid–vapor, and solid–liquid interfaces are represented with
γLV, γSV, and γSL, respectively, at equilibrium state, there is

cSV ¼ cSL þ cLV cos h: ð5:219Þ

Therefore, the contact angle is given by

cos h ¼ cSV � cSL
cLV

: ð5:220Þ

5.4.4.2 Dihedral Angle

Figure 5.30 shows a two-dimensional diagram for a liquid in contact with the corner
of two grains, where the grain boundaries intersect the surface of the liquid [73].
The angle between the solid–liquid interfacial tensions is defined as dihedral angle.
Similar to Eq. (5.220), the dihedral angle can be obtained by the following
expression:

cos
w
2
¼ cSS

2cSL
: ð5:221Þ

The solid–solid interfacial tension γSS is the same as the interfacial tension in the
grain boundary γgb in the solid-state sintering.

The penetration of the liquid into the grain boundary is described by the dihedral
angle ψ, which is determined by the ratio γSS/γSL. With γSS/γSL < 2, the dihedral
angle has values of 0–180° and the liquid cannot penetrate the grain boundary, as
shown in Fig. 5.31 [74]. In this case, solid-state processes are actually dominant.
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Fig. 5.29 Wetting behavior
between a liquid and a solid
showing a good wetting,
b poor wetting, and
c complete wetting for a
liquid with a contact angle
of θ
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Fig. 5.30 Dihedral angle ψ for a liquid at a grain boundary. Reproduced with permission from
[73]. Copyright © 2009, Springer
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Fig. 5.31 Sketches of two particle contact geometries for various dihedral angles (and interfacial
energy ratios). During liquid-phase sintering, the stable neck size to grain size ratio is determined
by the equilibrium dihedral angle. Reproduced with permission from [74]. Copyright © 2001,
Springer
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Therefore, γSS/γSL = 2 is the critical value for complete penetration of the liquid into
the grain boundary. If γSS/γSL > 2, Eq. (5.221) is not valid, indicating an entire
penetration of the grain boundary. In other words, γSS/γSL > 2 corresponds to the
fact that the total specific energy of the two solid–liquid interfaces is lower than that
of the solid–solid interface. As a result, the overall energy of the system is
decreased due to the penetration of the grain boundary by the liquid. The conse-
quence of the complete penetration is the reduction in mechanical strength of the
system.

Shape of the liquid and the grains are closely related to the dihedral angle. It has
been accepted that the interfacial tensions at the three-grain junctions in a granular
structure are in a balanced state, which determines the equilibrium distribution of
second phases [75]. If the system is assumed to have no porosity, the shape of the
liquid phase at equilibrium can be derived [61, 62, 76, 77]. Figure 5.32 shows two-
dimensional shapes of a small quantity of liquid phase within the three-grain
junctions with different dihedral angles [73]. With ψ = 0, the liquid entirely pen-
etrates the grain boundary, so that there is no solid–solid contact. With increasing ψ,
the penetration depth of the liquid phase along the grains decreases, while the

Solid

Solid Solid

180º 150º 120º

60º 30º 0º

Fig. 5.32 At low liquid contents, the liquid phase forms pockets at the triple points where three-
grain boundaries meet. The shape of the liquid pocket is dependent on the dihedral angle.
Reproduced with permission from [73]. Copyright © 2009, Springer
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amount of solid–solid contact, i.e., grain boundary area, increases accordingly. At
ψ = 60°, the liquid is still able to be present along the three-grain edges to a very
low degree. Once ψ is larger than 60°, the liquid phase is entirely isolated at the
junction region of the grains.

5.4.4.3 Effect of Solubility

In a solid–liquid two phase system, the solid can be dissolved in the liquid and the
liquid can also be dissolved in the solid. A high solubility of the solid in the liquid will
facilitate potentially a high mass transport rate through the liquid layer, which is the
basic requirement of liquid-phase sintering. However, the dissolving of the liquid in
the solid is totally prevented, otherwise the compact would be severely swelling due
to the formation of transient liquid phases. The effect of solubility on densification
and swelling of the compact is demonstrated schematically in Fig. 5.33 [73].

Base

Additive 
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compact

Densification Swelling

Pores
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B
/S

A
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S
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Fig. 5.33 Schematic diagram
comparing the effects of
solubility on densification or
swelling during liquid-phase
sintering, with SA and SB
being solubility of the base
and additive, respectively.
Reproduced with permission
from [73]. Copyright © 2009,
Springer
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The solubility is also affected by particle size of the compact. If the solubility is
assumed to be equivalent to concentration, the relationship between the solute
concentration and radius of the particle is given by

ln
S
S0

� �
¼ 2cSLX

kTa
; ð5:222Þ

where S is the solubility of the particle with a radius a in the liquid, S0 is the
equilibrium solubility of the solid in the liquid at planar interface, γSL is the specific
energy of the solid–liquid interface, Ω is the atomic volume, k is the Boltzmann
constant, and T is the absolute temperature. Equation (5.222) clearly indicates that
the solubility increases with decreasing radius of the particle, due to the formation
of a mass reservoir. This is the reason why matter transport always takes place from
small particles to large particles. Such a process is known as Ostwald ripening.
Additionally, rough regions of the particles have smaller radius of curvature and
thus tend to be dissolved, whereas irregularities or defects between adjacent par-
ticles, such as pits and crevices, have negative radii of curvature, which have
significantly low solubility, thus leading to precipitate in those regions.

5.4.4.4 Capillary Forces

When a liquid completely wets a solid, a compressive stress created due to the
pressure deficit in the liquid that is defined by Eq. (5.218) will be applied to the
particle. It has been shown that several factors, including contact angle, volume of
the liquid, separation of the particles, and the particle size, have influences on the
magnitude and nature of the compressive stress. The effects of these factors on the
capillary force applied by the liquid can be evaluated by the idealized two-sphere
model. The two-sphere particles in the model have same radius a, which are sep-
arated by a distance h by a liquid with a contact angle, as shown in schematically in
Fig. 5.34 [73]. The shape of the liquid meniscus is called a nodoid. The analytical
solution for the shape is in terms of elliptical integrals. Because the calculations of
the meniscus shape and the capillary force are very complicated, it is assumed to
have a circular shape, with the liquid meniscus being part of a circle. In this case,
the pressure difference across the liquid–vapor meniscus is given by

Dp ¼ cLV
1
Y
� 1

r

� �
; ð5:223Þ

where Y and r are the principal radii of curvature of the meniscus.
The force applied to the two spheres is the resultant contribution of two factors:

(i) the pressure difference Δp across the liquid–vapor meniscus and (ii) the surface
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tension of the liquid [61, 78, 79]. Therefore, at point A in Fig. 5.34, the force
equation can be expressed as:

F ¼ �pX2Dpþ 2pXcLV cos b; ð5:224Þ

where F is positive when the force is compressive.
Putting Δp Eq. (5.224) and letting X = asin α, there is

F ¼ �pa2cLV
1
Y
� 1

r

� �
sin2 aþ 2pacLV sin a cos b: ð5:225Þ

The distance between the two spheres is given by

h ¼ 2½r sin b� að1� cos aÞ�; ð5:226Þ

while the angles are related by the following expression:

aþ bþ h ¼ p=2: ð5:227Þ

By putting Eq. (5.227) into Eq. (5.226) and rearranging, there is

r ¼ hþ 2að1� cos aÞ
2 cosðhþ aÞ : ð5:228Þ

The positive radius of curvature of the meniscus is given by

Y ¼ a sin a� r½1� sinðhþ aÞ�: ð5:229Þ

h

X
a

Y
θ

β

α

r
A

Fig. 5.34 Geometrical parameters for an idealized model of two spheres separated by a liquid
bridge. Reproduced with permission from [73]. Copyright © 2009, Springer
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Putting Eq. (5.228) into Eq. (5.229) yields

Y ¼ a sin a� hþ 2að1� cos aÞ
2 cosðhþ aÞ ½1� sinðhþ aÞ�: ð5:230Þ

The volume of the liquid bridge is thus given by

V ¼ 2pðr3 þ r2YÞ cosðhþ aÞ � ½p=2� ðhþ aÞ�f g þ pY2r cosðhþ aÞ: ð5:231Þ

Equation (5.224) reveals that F is a function of the interparticle distance h for a
given volume fraction of the liquid, which can be used to identify the inter-rela-
tionship between the contact angle and the efficiency of the particle rearrangement
processes. It is found that a small contact angle is always desirable to achieve high
degree of densification.

5.4.5 Grain Boundary Films

As discussed above, the presence of the liquid layer applies a compressive capillary
force to the particles. The liquid layer evolves during the sintering process. Once
the densification through the solution-precipitation mechanism starts, the thickness
of the liquid layer gradually decreases with time. When the liquid capillary becomes
too narrow for the liquid to flow, the solution-precipitation nearly stops. In this
case, the rate of reduction in thickness of the liquid layer due to viscous flow will
compete with the rate of densification. Therefore, because the flow of the liquid
though the capillary is sufficiently slow, there is a thin layer of the liquid to be
remained after densification, which has a thickness of 0.5–2 nm for most ceramics.

The theory for two flat plates separated by a liquid layer has been used to
calculate the rate of reduction in thickness of the liquid layer that separates two-
sphere particles during the liquid-phase sintering [80]. The rate of approach of two
plates separated by a Newtonian viscous liquid is expressed as [81]

dh
dt

¼ � 2ph5

3gA2h20
F; ð5:232Þ

where h is the thickness of the liquid layer at time t, h0 is the initial thickness of the
liquid layer, F is the compressive force applied to the plates, η is the viscosity of the
liquid, and A is the contact area between the liquid and the plate. The application of
Eq. (5.232) to the liquid-phase sintering is shown as the model in Fig. 5.35, in
which two spheres are held together through a liquid bridge due to the capillary
force [1]. In practice, it is more convenient to use the time that is taken by the liquid
to be depleted. Letting y = h/h0 and integrating Eq. (5.232), the time for y to be zero
is given by
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tf ¼ 3gA2

8ph20F
1
y4

� 1
� �

: ð5:233Þ

This equation indicates that the time for y = 0 is tf = ∞. In other words, there will
always be liquid to be remained between the particles. However, when the liquid
layer is too thin, e.g., several nm, other effects, such as structural and chemical
forces and charge interactions, will become dominant instead of viscous flow. The
equilibrium thickness of the liquid layer between adjacent grains can be explained
in terms of the balance between two forces, i.e., (i) the attractive van der Waals
forces of the grains and (ii) the short-range repulsive forces due to the resistance to
deformation of the liquid phase [82].

5.4.6 Mechanisms of Liquid-Phase Sintering

Similarly, the mechanisms of liquid-phase sintering can be described by dividing
the process into three stages. The first stage involves the redistribution of the liquid

X

2s

h

a

Fig. 5.35 Parameters of an
idealized two-sphere model
separated by a liquid layer of
thickness h used to analyze
the change in the thickness of
the layer during sintering.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press

374 5 Sintering and Densification (I)—Conventional Sintering Technologies



phase and rearrangement of the particles, the second stage is densification process
through solution reprecipitation, while the third/last stage is known as Oswald
ripening.

5.4.6.1 Stage 1

The capillary pressures developed during the liquid-phase sintering of fine particles
forces the particles to rearrange as the viscosity of the system is still sufficiently
low. Due to the presence of gradients in capillary pressure, the liquid phase will
flow from regions with larger pores to regions with smaller pores, which is called
liquid-phase redistribution, which has been confirmed experimentally in various
systems [83]. Generally, the liquid phase fills from small pores to large pores.

A two-dimensional model of circular particles has been developed to describe
the liquid redistribution behaviors, which assumes that the chemical potential of the
liquid in all the pores in a given particle array is the same at equilibrium [84]. When
an atom is located under the surface of a liquid–vapor meniscus, with an average
radius of curvature r, its chemical potential is given by

l ¼ l0 þ
cLVX
r

; ð5:234Þ

where μ0 is the chemical potential of the atom under a flat surface, γLV is the liquid–
vapor surface energy, and Ω is the atomic volume. Therefore, the assumption of
same chemical potential implies that the radius of the liquid menisci should be the
same.

Figure 5.36 shows the two-dimensional model of liquid-phase redistribution,
which is a regular array of circles with threefold coordinated pores and without
shrinkage occurs [84]. The liquid phase can be redistributed in two ways. At very
low volume fractions, the liquid phase is usually distributed evenly in the necks
formed by the particles, as shown in Fig. 5.36a. There is a critical volume fraction,
below which the distribution of the liquid phase is not affected the by the volume
fraction and above which some of the pores are entirely filled with the liquid, as
shown in Fig. 5.36b. This distribution is attributed to the requirement of minimizing
the surface area. Therefore, the amount of the liquid phase located at the necks is
not increased with increasing volume fraction of the liquid phase, because the
increased amount of the liquid phase is all used to fill the pores. The range of the
liquid volume for even distribution of the liquid in the necks decreases with
increasing contact angle. Once some of the pores are filled, it is highly possible to
form inhomogeneous liquid-phase distributions, such as that shown in Fig. 5.36c,
which cannot be back to the homogeneous distribution.

Figure 5.37 shows the model with pores of both threefold and sixfold coordi-
nations, which is used to mimic the inhomogeneously packed powder systems that
are encountered in practical applications [84]. The results of free energy
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calculations, e.g., the fraction of the particles forming the sixfold coordinated pores
as a function of the volume fraction of the liquid phase, can be used to describe the
liquid-phase distribution behaviors.

Fig. 5.36 Possible equilibrium configurations that can be adopted by a liquid in a close-packed
two-dimensional array of particles with same size. a Isolated necks filled with liquid, b fraction of
pores completely filled with liquid with homogeneous distribution, and c with inhomogeneous
distribution. Reproduced with permission from [84]. Copyright © 1986, John Wiley & Sons

Fig. 5.37 Example of a two-dimensional arrangement of pores that contains threefold and sixfold
coordinated pores. Reproduced with permission from [84]. Copyright © 1986, John Wiley & Sons
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It is found that the pores in the simple model are sequentially filled. In a real
powder compact, the pores have a wide size distribution. In this case, the filling of
the pores is started from those with smallest coordination number, because they
have highest surface to volume ratios, so that largest solid–vapor interfacial areas
are eliminated for a given volume of liquid. However, in practice, not all small
pores can be filled, because the liquid might not be able to access to some of them.
In addition, if particles to create the liquid phase are too large, huge voids will be
left when the particles are molten. Therefore, in this respect, it is desirable to have
powders with uniform particle size and homogeneous mixing of basic components
and additives.

Once the liquid phase is formed, particles will start to rearrange almost immedi-
ately, which is finished in a few minutes. This rearrangement is responsible for the
initial densification and affects the initial microstructure of the compact, which could
have significant influence on further densification and microstructure development.
Theoretical analysis of the rearrangement, especially for compacts with randomly
packed particles, remains a challenge until now [85–88]. A simple kinetic relation-
ship to describe the shrinkage as a function of time has been developed, by assuming
that the surface tension forces to drive the densification are balanced by the viscous
forces that resist the rearrangement, which is given by [89, 90]

DL
L0

	 t1þy; ð5:235Þ

where ΔL is the change in length, L0 is the original length, and y is a positive
constant that is less than one.

The rearrangement process usually experiences two stages: primary rearrange-
ment and secondary rearrangement. Primary rearrangement is a rapid process nearly
immediately after the formation of the liquid phase, due to the surface tension
forces of the liquid bridge applied to the particles. At this stage, if γSS/γSL > 2, the
liquid can penetrate the grain boundaries, leading to fragmentation of the particles.
The fragmented particles will further experience a rearrangement process, which is
known as the secondary rearrangement. The secondary rearrangement is slower
than the primary one, because it is dependent on the dissolving rate of the grain
boundaries.

Full densification can be achieved through the rearrangement, if the content of
the liquid phase is sufficiently high. The relative quantities of the solid and the
liquid required for full densification is determined by the rearranged density of the
particles. For a powder compact with a relative density of 60 %, i.e., 40 % porosity,
if the particles rearrange to 64 % relative density through the rearrangement, full
densification is achieved, when the liquid volume fraction is 36 %. Otherwise,
further processes, e.g., solution-precipitation, are necessary to obtain full densifi-
cation. In practice, rearrangement to full densification is quite rare, because the
liquid-phase content is usually low, e.g., <5 vol.%. Moreover, the particles gen-
erally have irregular shapes.
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5.4.6.2 Stage 2

With the gradual diminishment of the rearrangement process, solution precipitation
starts to be dominant process, leading to further densification and coarsening. The
densification and coarsening take place concurrently, which could be accompanied
by accommodation in grain shape if the liquid phase has a small volume fraction. At
the same time, coarsening and grain-shape accommodation are contributed by the
coalescence of small grains in contact with large grains, besides the solution-
precipitation. There are two models for densification: (i) contact flattening and (ii)
Ostwald ripening.

Due to presence of the compressive capillary force, the solubility at the contact
points between the particles is higher than that at other surfaces of the particles [89,
90]. Because of this difference in solubility, matter transport occurs from the contact
points to other places, so as to form a flat contact region, as shown in Fig. 5.38 [1].
With increasing radius of the contact region, the stress along the interface decreases,
so that the densification slows down. The rate of the matter transport is controlled
by the slower one of the two mechanisms: (i) diffusion through the liquid layer and
(ii) solution-precipitation via interface reaction.

The rate control by diffusion through the liquid layer can be described by using
the two spherical particle model. The two particles have the same radius a, if each
sphere is dissolved away along the center-to-center line by a distance h to form a
circular contact region with radius X, these parameters can be related through the
following expression:

h 
 X2

2a
: ð5:236Þ

The volume of material removed from each sphere is given by V ≈ X2h/2, which
is combined with Eq. (5.236), there is

V 
 pah2: ð5:237Þ
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2h
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(a) (b)Fig. 5.38 Idealized two-
sphere model for densification
by contact flattening.
Reproduced with permission
from [1]. Copyright © 2003,
CRC Press
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Similar to the intermediate stage of solid-state sintering, the flux from the
boundary per unit thickness is given by

J ¼ 4pDLDC; ð5:238Þ

where DL is the diffusion coefficient for the solute atom in the liquid and ΔC is the
difference in solute concentration between the contact region, C and at flat stress-
free surface, C0. If the thickness of the liquid layer is δL, the rate of consumption of
the solid is given by

dV
dt

¼ dLJ ¼ 4pDLdLDC: ð5:239Þ

If ΔC is small, there is

DC
C0

¼ pX
kT

; ð5:240Þ

where p is the local stress applied to an atom, Ω is volume of the atom, k is the
Boltzmann constant, and T is absolute temperature. The capillary pressure Δp due
to a spherical pore in the liquid is given by Eq. (5.218), which is equivalent to an
externally applied hydrostatic pressure so that the resulting interparticle force is
equal to that produced by the liquid layer. Because the area of the contact region is
smaller than that of the rest of the particles, the local pressure is magnified at the
contact area. If a simple force balance is assumed, the local pressure p at the contact
region is given by

pX2 ¼ k1Dpa
2; ð5:241Þ

where k1 is a geometrical constant. When Eq. (5.241) is combined with Eqs. (5.218)
and (5.236), there is

p ¼ k1
cLVa
rh

: ð5:242Þ

It is assumed that the radius of the pore is proportional to the radius of the sphere,
i.e., r = k2a, where k2 is assumed to remain constant during sintering, Eq. (5.242)
becomes

p ¼ k1
k2

cLV
h

: ð5:243Þ
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According to Eqs. (5.238), (5.240) and (5.243), there is

dV
dt

¼ 4pk1DLdLC0XcLV
k2hkT

: ð5:244Þ

Because dV/dt is also equal to (2πah) dh/dt according to Eqs. (5.237) and
(5.244) can also be rewritten as

h2dh ¼ 2k1DLdLC0XcLV
k2akT

dt: ð5:245Þ

With the boundary condition of h = 0 at t = 0, integration of Eq. (5.245) yields

h ¼ 6k1DLdLC0XcLV
k2akT

� �1=3

t1=3: ð5:246Þ

Because there is h/a = ΔL/L0 = –(1/3)ΔV/V0 for small ΔL/L0, where ΔL/L0 and
ΔV/V0 are the linear shrinkage and the volumetric shrinkage of the powder compact,
respectively, the following expression can be obtained

�DL
L0

¼ � 1
3
DV
V0

¼ 6k1DLdLC0XcLV
k2a4kT

� �1=3

t1=3: ð5:247Þ

This equation indicates that, if the diffusion through the liquid layer is the rate-
controlling step, the shrinkage increases as functions of time as t1/3, starting particle

size as a−4/3 and thickness of the liquid layer as d1=3L .
If the interface reaction is the rate-controlling mechanism, in which the solid

phase is dissolved into the liquid phase through reaction, the rate of mass transport
is proportional to the contact area and the increased activity of the solid phase at the
contact region due to the capillary pressure, which is given by

dV
dt

¼ k3pX
2ða� a0Þ ¼ 2pk3haðC � C0Þ; ð5:248Þ

where k3 is the rate constant of the phase boundary reaction, while a and a0 are
activities of the solid phase at the contact region and at flat surface, which are equal
to their corresponding concentrations. In a similar way for the diffusion control, the
shrinkage of the interface reaction control is given by

�DL
L0

¼ � 1
3
DV
V0

¼ 2k1k3C0XcLV
k2a2kT

� �1=2

t1=2: ð5:249Þ

This equation means that the shrinkage is proportional to t1/2 and 1/a.
The second mechanism of densification, i.e., densification accompanied by

Ostwald ripening, can be described with an idealized model as shown in Fig. 5.39
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[73]. The smaller grains are dissolved into the liquid phase and then precipitate onto
the larger grains from the contact points, thus facilitating shrinkage or densification.
By assuming the Ostwald ripening to be diffusion controlled, the shrinkage rate can
be expressed by the following expression [61]:

�DL
L0

¼ � 1
3
DV
V0

¼ 48DLC0XcLV
a3kT

� �1=3

t1=3: ð5:250Þ

The content of the liquid phase plays a key role in determining whether there is
grain-shape accommodation or not in a liquid-phase sintering. In a given system,
there is a critical content of the liquid phase, below which grain-shape accommo-
dation occurs, while above the grain-shape accommodation is absent. When the
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Fig. 5.39 Conceptual outline of the changes associated with solution-reprecipitation densification
where both grain growth (Ostwald ripening) and grain-shape accommodation act to release liquid
to fill residual pores. Reproduced with permission from [73]. Copyright © 2009, Springer
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content of the liquid phase is not sufficiently high to fill all the pores between the
particles, if the particles have rounded or spheroidal shape, grain-shape accommo-
dation takes place, which produces particles with polyhedral shapes with flat contact
surfaces, so that the particles will have amore efficient packing. In this case, the liquid
phase will be released from the well-packed regions to flow into the pores.

From energy point of view, grain-shape accommodation only occurs when the
energy of the system is decreased because of it. For a given volume, the compact
made of particles with polyhedral shapes has a larger surface area than that con-
sisting of spherical particles. Therefore, only when the decreased interfacial energy
caused by the filling of the pores is more than the increased interfacial energy due to
the formation of the polyhedral particles, the grain-shape accommodation can take
place. If the amount of the liquid phase is sufficiently high, the capillary pressure is
too low to drive contact flattening. As a result, shape accommodation is much less
pronounced, so that the particles remain to be spheroidal.

Coalescence-induced coarsening takes place when grains are pulled together due
to the capillary force produced by the liquid phase [69, 91]. Coalescence usually
experiences three steps: (i) contact formation between the grains, (ii) neck growth,
and (iii) migration of the grain boundary, as shown schematically in Fig. 5.40 [73].

As shown in Fig. 5.41 [73], this curvature r depends on the dihedral angle ψ, and
grain sizes G1 and G2 (G1 > G2) as

r ¼ cos
w
2

� �
G1G2

G1 � G2

� �
ð5:251Þ

Different mechanisms have been observed in coalescence, including solid-state
grain boundary migration, liquid-film migration, and solution-precipitation through
the liquid, as shown in Fig. 5.42 [73]. For small dihedral angle, liquid only partially
penetrates the grain boundary. In this case, the grain boundary energy is increased
during the movement of the boundary, so that coalescence is impeded. However,
the small grain is absorbed by large grain through solution precipitation, which
overcomes the energy barrier. For large dihedral angles, the liquid cannot penetrate
the grain boundary, so that coalescence will become dominant. The larger the
difference in size between the particles, the stronger the coalescence will be.
Therefore, coalescence is most pronounced during the earlier period of the solution-
precipitation process.

Liquid Liquid Liquid

Solid Solid Solid

(a) (b) (c) 

Fig. 5.40 Schematic diagram showing the grain growth by coalescence of small and large grains.
Reproduced with permission from [73]. Copyright © 2009, Springer
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Contact flattening is the first mechanism, which can be sketched in Fig. 5.43a
[73]. A compressive force at the grain contacts from the wetting liquid pulls the
grains together. This capillary stress causes preferential dissolution of solid at the
contact point with reprecipitation at regions away from the contact. Densification
results from the grain center-to-center motion [92]. The key step is solid diffusion in
the liquid to areas away from the contact zone. For small grains, the contact zone
stresses are quite large, so contact flattening tends to dominate LPS [93]. However,
contact flattening does not explain grain growth and the decrease in the number of
grains. When grain growth is inhibited there is less grain-shape accommodation
[94–96].

Liquid

Solid

Solid

G
1 G

2

r

ψ

Fig. 5.41 The radius of curvature r of the grain boundary between contacting grains depends on
the dihedral angle ψ and the grain size ratio (G1/G2). A large ratio induces a high curvature that
aids rapid grain coalescence during liquid-phase sintering. Reproduced with permission from [73].
Copyright © 2009, Springer

Fig. 5.42 Coalescence between two contacting grains by possible mechanisms: a solid-state grain
boundary motion of curved grain boundaries, b liquid-film migration with diffusion across the film
from the small to large grain, c solution reprecipitation from the small grain to the large grain
through the surrounding liquid, and d small grain rotation to a lattice coincidence orientation
where there is no grain boundary. Reproduced with permission from [73]. Copyright © 2009,
Springer
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The second densification mechanism involves dissolution of small grains with
reprecipitation on large grains. Small grains disappear while large grains grow and
undergo shape accommodation. Diffusion in the liquid is the controlling transport
mechanism, as sketched in Fig. 5.43b [73]. This mechanism does not involve
shrinkage, so it is not an explanation for densification, except that grain-shape
accommodation enables better packing of the solid.

The third mechanism involves growth of the intergrain contact by diffusion
along the liquid-wetted grain boundary [97–99], which is shown representatively in
Fig. 5.43c [73]. The contact zone enlarges to change the grain shape with simul-
taneous shrinkage of the grains. This does not involve grain coarsening, but it does
require a cooperative redistribution process of the mass deposited where the grain
boundary intersects the liquid [37].

These three mechanisms are different in the source of the solid and in the
detailed transport path, but they together can be used to explain grain-shape
accommodation, grain growth, and densification. Grain growth takes place along
with densification. Grain size and density tend to follow a common trajectory for
most liquid-phase sintering systems, showing more rapid grain growth when pores
are eliminated. Although neck growth is initially active, it is not sufficient to explain
all microstructural developments. In addition, contact flattening and small grain
dissolution are coupled to explain the microstructure and density progression that
are typically observed during liquid-phase sintering.

(a) (b) (c)

Liquid Liquid Liquid

Fig. 5.43 The three mechanisms of grain-shape accommodation and neck growth during solution
reprecipitation controlled densification of liquid-phase sintering: a contact flattening, b dissolution
of small grains, and c solid-state bonding. Reproduced with permission from [73]. Copyright ©
2009, Springer
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5.4.6.3 Stage 3

At stage 3, densification slows down while coarsening becomes the dominant
process. For γSS/γSL > 2, the grains are completely separated by the liquid layer. If
ψ > 0, a rigid skeleton is gradually formed due to the solid–solid contacts. As a
result, the isolated pores present in the liquid phase cannot be eliminated. The
formation of the solid–solid contacts triggers solid-state sintering and coarsening.
However, solution precipitation is still dominant over solid-state transport pro-
cesses, because the matter transport through the liquid is much faster. Two events
are dominant at this stage: (i) densification through pore filling and (ii) micro-
structural coarsening.

At low concentrations of the liquid phase, the elimination of isolated pores is
continued at a reduced rate, due to the solution precipitation and grain-shape
accommodation. If the volume fraction of the liquid is sufficiently high, the filling
of the isolated pores could be discontinuous [95, 100]. In this case, grain growth,
rather than grain-shape accommodation, is responsible for the filling of the pores.

As shown in Fig. 5.44, a large pore remains unfilled because of the preferential
wetting of the necks between the particles [101]. As the grains continue to grow, the
liquid phase reaches a favorable condition for filling the pore as determined by the
curvature of the liquid–vapor meniscus [61, 76, 101]. From Fig. 5.45, the radius of
curvature of the meniscus is given by [101]

rm ¼ a
1� cos a
cos a

; ð5:252Þ

where a is the radius of the grain that is assumed to be spherical, so that rm
increases with increasing grain size. For zero contact angle, the critical point for
pore filling to occur is that rm is equal to the pore radius r, because after this point
rm cannot increase, so that the capillary pressure surrounding the pore will be
reduced. Liquid is drawn from the numerous menisci at the surface of the sample,
with very slight change in radii because only small volume of liquid is required to

(a) (b) (c)

Grain Liquid

Pore r

Fig. 5.44 Pore filling during the grain growth. A large pore is stable until grain growth increases
the liquid meniscus radius sufficiently for capillary refilling of the pore. Reproduced with
permission from [101]. Copyright © 1984, Springer
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fill the pore. If the contact angle is larger than zero, rm must lager than r to facilitate
the pore filling.

The most important theory to describe the Ostwald ripening mechanism for
microstructural coarsening in the liquid-phase sintering is the Lifshitz-Slyozov-
Wagner theory, usually known as the LSW theory. According to the LSW theory,
the increase in the average grain size G with time t is given by

Gm ¼ Gm
0 þ Kt; ð5:253Þ

where G0 is the initial average grain size, K is a temperature-dependent constant,
and the exponent m is dependent on the grain growth mechanism: m = 3 for
diffusion through the liquid layer and m = 2 for interface reaction. For many
ceramics, the exponent m is close to 3, implying that grain growth of ceramics is
most likely governed by diffusion coarsening mechanism.

According to Arrhenius equation, the solubility of the solid in the liquid and the
diffusion of the dissolved species through the liquid layer would increase with
increasing temperature. Therefore, the rate of coarsening usually increases with
increasing temperature. An increase in the dihedral angle leads to a decrease in the
contact area between the solid and the liquid, so that the grain boundary area is
increased accordingly. Obviously, matter transport through liquid is faster than
through solid-state diffusion. Therefore, a reduction in the solid–liquid contact area
means a reduced solution-precipitation process, thus leading to a reduction in the
rate of grain growth.

Given that the content of the liquid phase is sufficiently high to isolate the grains/
particles, decrease in volume fraction of the liquid phase means a decrease in
thickness of the liquid-phase layer and thus shorter diffusion distance. Therefore, it
is expected that the rate of matter transport would increase with decreasing content
of the liquid phase, so that the rate of grain growth is increased correspondingly

a

r

r
m

r
m

α

Pore

Grain

Fig. 5.45 Calculation model for pore refilling based on spherical grains surrounding the pore.
Pore refilling depends on the liquid meniscus radius exceeding the pore radius. Reproduced with
permission from [101]. Copyright © 1984, Springer
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[102]. Theories have been proposed to explain the dependence of grain growth on
volume fraction of liquid phase, one of them is as follows [103, 104]:

K ¼ Ki þ KL

V2=3
L

; ð5:254Þ

where KI and KL are the rate constant at infinite dilution, KL is a microstructure-
dependent parameter, and VL is the volume fraction of the liquid phase.

5.4.7 Hot Pressing with Liquid Phase

Liquid-phase sintering has also been applied to ceramics with hot pressing. Because
chemical potential of the atoms under the contact surfaces increases with increasing
stress, matter transport from the contact regions to the pores is enhanced, so that the
densification rate is increased [105].

The densification kinetics, with a solution-precipitation mechanism in which
diffusion through the liquid layer is rate-controlling, can be described similarly by
using the Coble’s equation for grain boundary diffusion-controlled solid-state sin-
tering, as discussed earlier. In this case, it is only necessary to replace the grain
boundary thickness δgb, the grain boundary diffusion coefficient Dgb and the solid–
vapor interfacial energy δSV with the thickness of the liquid layer δL, the diffusion
coefficient for the solute in the liquid DL and the liquid-vapor interfacial energy
δLV, respectively. As the applied pressure pa is much higher than the capillary
pressure due to the liquid meniscus, the densification rate is given by

1
q
dq
dt

¼ ADLdLX
G3kT

pa/; ð5:255Þ

where A is a geometrical constant, which is equal to 47.5 for the intermediate stage
of sintering, Ω is the atomic volume of the rate-controlling species, G is the grain
size, k is the Boltzmann constant, T is the absolute temperature, and / is the stress
intensification factor.

5.4.8 Phase Diagrams in Liquid-Phase Sintering

Phase diagrams play an important role in selecting the powder compositions and
sintering parameters for liquid-phase sintering. Because diagrams predict phases
that are at equilibrium state, the reaction kinetics during liquid-phase sintering are
often too fast for equilibrium to be achieved, so the phase diagrams should therefore
serve only as a guide.
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Figure 5.46 shows an idealized binary phase diagram, consisting of a major
component, i.e., B and a liquid-producing additive, i.e., A, in which desirable
composition and temperature characteristics for liquid-phase sintering have been
indicated [73]. Importantly, there should be a large difference in melting temper-
ature between the eutectic and the major component B. The system should have
compositions away from the eutectic point, so that the volume of the liquid phase is
increased gradually with temperature, so as to avoid the formation of all the liquid
in the short time span. Usually, the sintering temperature is slightly above the
eutectic temperature, which the composition of the system is in the (L + S2) region,
e.g., the dot shown in the figure.

5.4.9 Activated Sintering and Vitrification

When powder compacts containing small amounts of a eutectic-forming additive
are sintered, enhanced densification rates, as compared with that of the pure
powder, could be observed well before the eutectic temperature is reached. This
effect is generally known as activated sintering, which has been observed in various
materials with a wide range of additives [106–110]. Currently, there is no clear
difference in principles involved in activated sintering and liquid-phase sintering
from the activated systems with a small content of additives, e.g., <1 wt%, at a
sintering temperature below the eutectic temperature [111]. Although the mecha-
nism of activated sintering has not been clearly identified, if the additive segregates
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Fig. 5.46 Model binary phase diagram showing the composition and sintering temperature
associated with liquid-phase sintering in the L + S2 phase field. The favorable characteristics for
liquid-phase sintering include a suppression of the melting temperature, high solid solubility in the
liquid, and low liquid solubility in the solid. Reproduced with permission from [73]. Copyright ©
2009, Springer
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at the grain boundaries, enhanced subeutectic densification rates could be observed,
grain boundary transport rates are enhanced by the additive. The additive should
also be able to form low-melting phases or eutectic with the major component and
the major component should have a high solubility in the additive. When the grain
boundaries are rich in the eutectic-forming additive, their transport rates will be
enhanced, because of their relative melting points. For example, when ZnO was
added with Bi2O3, Bi-enriched intergranular amorphous films with a thickness
of *1 nm thick were formed. Because these amorphous films accelerated mass
transport, activated sintering was triggered [109].

If the densification of liquid-phase sintering is achieved due to the viscous flow
of a liquid that is able to fill up the pore spaces between the solid grains, it is
called vitrification [112–114]. The driving force for vitrification is the reduction of
solid–vapor interfacial energy, because the flow of the liquid covers the surfaces
of the solid. Traditional clay-based ceramics are usually densified through vitri-
fication. However, it is very unlikely to be observed in the processing of trans-
parent ceramics, because the content of liquid phase must be controlled to a
limited level.

5.5 Concluding Remarks

Matter transport during the sintering of polycrystalline ceramics takes place through
a thermally activated process, known as diffusion, with various paths in the solid,
corresponding to the different mechanisms of diffusion, i.e., (i) lattice, (ii) grain
boundary, and (iii) surface diffusion. The rate of atomic or ionic diffusion is
dependent on temperature and the concentration of defects in the solid. The con-
centration of defects can be controlled by doping or introducing impurities. Mass
transport during the sintering involves the flux of atoms and ions or the counterflow
of vacancies. The flux of the diffusing species is attributed to the gradients in
concentration in particular or in the chemical potential in general. The rate of
sintering and other mass transport processes are controlled by the slowest diffusing
species along its fastest path.

The sintering phenomena of polycrystalline ceramics are very complex, with
mass transport having at least six paths that determine the mechanisms of sintering.
There are also densifying mechanisms and nondensifying mechanisms. Analytical
models have been developed to describe the dependence of the sintering rate on
various variables, including particle size, temperature, and external pressure.
However, due to the drastic simplification used in their development, the models
can provide only a qualitative description of sintering. Numerical simulations are
more effective in analyzing the complexities of sintering.

The presence of liquid phase could enhance densification through grain rear-
rangement and faster matter transport. Liquid-phase sintering involves three over-
lapping stages, including (i) rearrangement of grains/particles, (ii) solution
precipitation, and (iii) Ostwald ripening. The efficiency of liquid-phase sintering is
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dependent on several parameters, e.g., low contact angle, low dihedral angle, high
solid solubility of the solid in the liquid, homogeneous packing of the particulate
solid, uniform distribution of the liquid-producing additive, and fine particle size.
Activated sintering and vitrification are unlikely encountered in transparent
ceramics due to the limited quantity of additives.
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