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Abstract. A distributed net-centric environment consist of a large variety of  
data fusion nodes, where each node represents a sensor, software program, ma-
chine, human operator, warfighter, or a combat unit. Fusion nodes can be con-
ceptualized as intelligent autonomous agents that communicate, coordinate, and 
cooperate with each other in order to improve their local situational awareness 
(SA), and to assess the situation of the operational environment as a whole. In 
this paper, we describe how we model this net-centric SA problem using a dis-
tributed belief propagation paradigm. A local fusion node maintains the joint 
state of the set of variables modeling a local SA task at hand using Bayesian 
network (BN) fragments. Local fusion nodes communicate their beliefs and 
coordinate with each other to update their local estimates of the situation and 
contribute to the global SA of the environment. We have implemented the 
propagation paradigm to determine threat out of terrorist dirty bombs with 
agents searching unstructured intelligence reports for evidence and assessing 
local situations via BN fragments. The paradigm is a part of our company’s cut-
ting-edge predictive analytics products offering to solve enterprise distributed 
big data search problem. 

1 Introduction 

The concept of distributed fusion (Hall et al., 2012) refers to decentralized processing 
environments consisting of autonomous sensor nodes, and additional processing 
nodes without sensors, if necessary, to facilitate message communication, data sto-
rage, relaying, information aggregation, and assets scheduling. Some of the advantag-
es of distributed fusion are reduced communication bandwidth, distribution of 
processing load, aggregation of distributed and proprietary knowledge sources, and 
improved system survivability from a single point failure. The distributed fusion con-
cept naturally fits within the net-centric multi-agent paradigm.  

As a concrete example of distributed fusion, consider the decentralized processing 
environment as shown in Figure 1 (left). In this example, we assume there is a high-
value target within a region of interest, and that the designated areas A and B sur-
rounding the target are considered to be the most vulnerable. These two areas must be 
under surveillance in order to detect any probing activities, which indicate a possible 
attack threat. The sensor coverage in areas A and B, shown in grey, is by an infrared 
sensor (MASINT) and a video camera (IMINT), respectively. In addition, a human 
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observer (HUMINT) is watching the area in common between A and B. There are two 
local fusion centers for the two areas to detect any probing activity. The infrared sen-
sor has wireless connectivity with the local fusion center for area A, whereas the vid-
eo camera has wired connectivity with the local fusion center for area B for streaming 
video. Moreover, the human observer communicates wirelessly with both local fusion 
centers. Each of the two local centers fuses the sensor data it receives in order to iden-
tify any possible probing activity. The centers then pass their assessments (i.e., high-
er-level abstraction, rather than raw sensor information, thus saving bandwidth) to 
another fusion center that assesses the overall threat level, based on the reports of 
probing activities and other relevant prior contextual information.  

 
Fig. 1. (left) An example distributed fusion environment; (right) A centralized BN model for 
situation assessment 

In a centralized fusion environment, where observations from IMINT, HUMINT, 
and MASINT are gathered in one place and fused, a BN model, such as the one in 
Figure 1 (right), can be used for an 
overall SA. This model handles depen-
dence among sensors and fusion centers 
via their representation in nodes and 
interrelationships. A probing activity at 
an area will be observed by those sen-
sors covering the area, and the lower 
half of the BN models this. For exam-
ple, MASINT and HUMINT reports 
will be generated due to a probing activ-
ity at area A. Similarly, IMINT and 

HUMINT reports will be generated due 
to a probing activity at area B. The 
upper half of the BN models the threat of an attack based on the probing activities at 
areas A and B, together with other contextual information. 

In a decentralized environment, as illustrated in Figure 2, each of the three fusion 
centers contains only a fragment of the above BN model. Local fusion centers A  
and B assess probing activities based on their local model fragments, and send their 
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assessments to the global fusion center via messages. The global fusion center then 
uses its own models to determine the overall attack threat. If the same HUMINT re-
port is received by both local fusion centers, the process has to ensure that this com-
mon information is used only once; otherwise, there will be a higher-than-actual level 
of support for a threat to be determined by the global fusion model. This is called the 
data incest problem in a distributed fusion environment, which is the result of re-
peated use of identical information. Pedigree needs to be traced, not only to identify 
common information, but also to assign appropriate trust and confidence to data 
sources. An information graph (Liggins et al., 1997), for example, allows common 
prior information to be found. 

For situation and threat assessment in a distributed net-centric environment, each 
node is an agent representing (Das, 2010) a sensor, software program, machine, hu-
man operator, warfighter, or a unit. A fusion node maintains the joint state of the set 
of variables modeling a local SA task at hand. Informally, the set of variables main-
tained by a fusion node is a clique (maximal sets of variables that are all pairwise 
linked), and the set of cliques in the environment together form a clique network to be 
transformed into a junction tree, where the nodes are the cliques. Thus the cliques of a 
junction tree are maintained by local fusion nodes within the environment. Local fu-
sion nodes communicate and coordinate with each other to improve their local esti-
mates of the situation, avoiding the repeated use of identical information. 

A junction tree can also be obtained by transforming (Jensen, 2001) a Bayesian Be-
lief Network (BN) (Pearl, 1988; Jensen, 2001; Das, 2008b) model representing a 
global SA model in the context of a mission, thereby contributing to the development 
of a Common Tactical Picture (CTP) of the mission via shared awareness. Each cli-
que is maintained by a local fusion node. Inference on such a BN model for SA relies 
on evidence from individual local fusion nodes. We make use of the message-passing 
inference algorithm for junction trees that naturally fits within distributed NCW envi-
ronments. A BN structure with nodes and links is a natural fit for distributing tasks in 
a NCW environment at various levels of abstraction and hierarchy. BNs have been 
applied extensively for centralized fusion (e.g., Jones et al., 1998; Wright et al., 2002; 
Das et al., 2002a; Mirmoeini and Krishnamurthy, 2005; Su et al., 2011) where domain 
variables are represented by nodes. 

2 Related Work 

There are approaches along these lines, namely Distributed Perception Networks 
(DPN) (Pavlin et al., 2006) and Multiply Section Bayesian Networks (MSBN) (Xiang 
et al., 1993), but the proposed approach leverages existing algorithms and reduces the 
overall message flow to save bandwidth. Please refer to Paskin and Guestrin (2004) 
for a more detailed account of a junction tree-based distributed fusion algorithm along 
the lines of the one presented here. The algorithm presented later in the paper, in addi-
tion, optimizes the choice of junction tree to minimize the communication and com-
putation required by inference. 

There is an abundance of work in the area of distributed agent-based target track-
ing and, more generally, in the area of distributed fusion. In general, a distributed 
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processing architecture for estimation and fusion consists of multiple processing 
agents. Here we mention only some of them. 

Horling et al. (2001) developed an approach to real-time distributed tracking, 
where the environment is partitioned into sectors to reduce the level of potential inte-
raction between agents. Hughes and Lewis (2009) investigated the Track-Before-
Detect (identify tracks before applying thresholds) problem using multiple intelligent 
software agents. Martin and Chang (2005) developed a tree based distributed data 
fusion method for ad hoc networks, where a collection of agents share and fuse data 
in an ad hoc manner for estimation and decision making. 

Graphical Bayesian belief networks have been applied extensively by the fusion 
community to perform situation assessment (Das et al., 2002). A network structure, 
modeling a situation assessment problem, with nodes and links is a natural fit for 
distributing tasks at various levels of abstraction and hierarchy, where nodes represent 
agents with message flows between agents along the links. An approach along these 
lines has been adopted by Pavlin et al. (2006). Mastrogiovanni et al. (2007) developed 
a framework for collaborating agents for distributed knowledge representation and 
data fusion based on the idea of an ecosystem of interacting artificial entities. Mobile 
agents have also been employed for distributed fusion. 

Mobile agents are able to travel between nodes of a network in order to make use 
of resources that are not locally available. Mobile agents enable the execution code to 
be moved to the data sites, thus save the network bandwidth and provide an effective 
way to overcome network latency. Qi et al. (2001) developed an infrastructure for 
Mobile-agent-based Distributed Sensor Networks (MADSNs) for multisensor data 
fusion. Bai et al. (2005) developed a Mobile Agent-Based Distributed Fusion 
(MADFUSION) system for decision making in Level 2 Fusion. The system environ-
ment consists of a peer-to-peer ad-hoc network in which information may be dynami-
cally distributed and collected via publish/subscribe functionality. Jameson’s Grape-
vine architecture (2001) for data fusion integrates intelligent agent technology, where 
an agent generates the information needs of the peer platform it represents. Gerken et 
al. (2003) embedded intelligent agents into the Mobile Commander’s Associate 
(MCA) decision aiding system to improve the situational awareness of the command-
er by monitoring and alerting based on the information gathered. 

2.1 Implementation 

Our approach to complex analytics1 in our product is to make use of a computational 
model and its mobile agent-based distributed belief propagation presented in this pa-
per. Figure 3 presents a Bayesian network model to help in assessing the level of a 
dirty-bomb threat from a rogue nation. In our model, the site maintaining the root 
node (for example) continually updates the state (i.e., the probability distribution) of 
an overall threat based on evidence it receives from its child node, representing terror-
ism indication and warning, which in turn receives evidence of indications and warn-
ings from its four children, namely, planning, acquisition, making, and deployment. 
The state of these nodes can be maintained by various sites based on the evidence 
received from their children nodes. This hierarchical breakdown process continues, 
and model fragments are determined. A fragment is defined here as a connected  

                                                           
1 Analytics and data fusion are two sides of the same coin (Das, 2014) 
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sub-network of the entire belief network model. For the purpose of our demonstration 
we assume all the fragments are two levels deep as shown in Figure 3. 

 
Fig. 3. Some fragmented models distributed across remote sites 

The specific strategy for evaluating a fragment at a remote site is determined based 
on the site’s capability of accumulating evidence from multiple sources. Figure 4 
shows the current state of the interface for controlling and monitoring the distributed 
execution, with nine list components for the following nine purposes respectively: 

1. Text area where the analyst poses a full or partial analytics query in key words. 
2. Lists all the model fragments stored in a directory such as the ones from the BN 

in Figure 3, filters the models based on the analyst query, and lets user select one. 
3. The selected dependent model fragments based on the user selection that are to 

be distributed and maintained across remote sites.  
4. Publishes available http addresses of the remote sites running Aglets servers to 

host computation. 
5. Lists search nodes of the fragments (same as the list of model fragments above). 
6. Provides probability distributions corresponding to the search nodes as model 

fragments. 
7. Graphically display a selected fragment from the library. 
8. Displays messages that are received and also the evidence that are found. 
9. Overall assessment of threat which is 0.25 based on evidence searched so far. 

Users can dispatch fragments individually by selecting a fragment from the area 
marked 3 to a remote site selected from the area marked 4 by pressing the Dispatch 
Agent button. Users can also dispatch all fragments at once just by pressing the Ran-
dom Dispatch button. Evidence on a child node at a remote site can be set by selecting 
the node in the area marked 6 and then by pressing the button Set Evidence. Various 
messages will be passed among fragments as described earlier in the section on com-
plex analytics. These messages will be displayed in the area marked 8. The probabili-
ty distributions of each child node will be updated in areas marked by 6. To start  
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execution of the analytics model, a user dispatches all fragments at once by pressing 
the Random Dispatch button in the analytics interface. 

 
Fig. 4. Distributed analytics interface 

3 Distributed Fusion Environments 

As shown in Figure 5, a 
typical distributed fusion 
environment is likely to 
contain a variety of fusion 
nodes that do a variety of 
tasks: 

• Process observations 
generated from a clus-
ter of heterogeneous 
sensors (e.g., the local 
fusion centers A and B 
in Figure 1, and nodes  
labeled 5 and 9 in Fig-
ure 5). 

• Process observations generated from a single sensor (e.g., nodes labeled 11, 12, 
and 13 in Figure 5). 
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• Perform a task (e.g., Situation Assessment (SA) and Threat Assessment (TA), 
Course of Action (COA) generation, planning and scheduling, Common Tactical 
Picture (CTP) generation, collection management) based on information received 
from other sensors in the environment and from other information stored in data-
bases (e.g., nodes labeled 1, 2, 3, 4, 6, 7, and 10 in Figure 5). 

• Relay observations generated from sensors to other nodes (e.g., the node labeled 
8 in Figure 5). 

As shown in Figure 5, a fusion node receives values of some variables obtained ei-
ther from sensor observations (X variables) or via information aggregation by other 
nodes (A variables). Such values can also be obtained from databases. For example, 
the fusion center labeled 6 receives values of the variables A2, X5, and X6 from the 
cluster fusion node labeled 9, and values of the variable X3 from a database. Note that 
an arrow between two nodes indicates the flow of information in the direction of the 
arrow as opposed to a communication link. The existence of an arrow indicates the 
presence of at least a one-way communication link, though not necessarily a direct 
link, via some communication network route. For example, there is a one-way com-
munication link from node 3 to node 1. A reverse communication link between these 
two nodes will be necessary in implementing our message-passing distributed fusion 
algorithm to be presented later. 

Each node (fusion center, cluster fusion, relay switch, or local fusion) in a distributed 
fusion environment has knowledge of the states of some variables, called local variables, 
as shown in Figure 6 (ignore red cross for now). For example, the fusion node labeled 6 
has knowledge of the 
X variables X3, X5, 
and X6, and A va-
riables A2 and A3. 
The node receives 
values of the variables 
A2, X5, and X6 from 
the node labeled 9, and 
the variable X3 from a 
database. The node 
generates values of the 
variable A3 via some 
information aggrega-
tion operation. On the 
other hand, fusion node 9 receives measurements X4, X5, and X6 from a cluster of sen-
sors and generates A2; fusion node 8 relays values of the variables X10, X1, and X12 to 
other nodes; and fusion node 12 obtains measurements of X8 from a single sensor. 

There are four possible distributed fusion environments: centralized, hierarchical, 
peer-to-peer, and grid-based. In a centralized environment, only the sensors are distri-
buted, sending their observations to a centralized fusion node. The centralized node 
combines the sensor information to perform tracking or SA. In a hierarchical envi-
ronment, the fusion nodes are arranged in a hierarchy, with the higher-level nodes 
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processing results from the lower-level nodes and possibly providing some feedback. 
The hierarchical architecture will be natural for applications where situations  
are assessed with an increasing level of abstraction along a command hierarchy, start-
ing with the tracking of targets at the bottom level. Considerable savings in communi-
cation effort can be achieved in a hierarchical fusion environment. In both peer-to-
peer and grid-based distributed environments, every node is capable of communicat-
ing with every other node. This internode communication is direct in the case of a 
peer-to-peer environment, but some form of “publish and subscribe” communication 
mechanism is required in a grid-based environment.  

4 Algorithm for Distributed Belief Propagation 

As mentioned in the introduction, there are two ways in which we can accomplish SA 
in a distributed environment: 1) each local fusion node maintains the state of a set of 
variables; 2) there is a BN model for global SA. 

In the first case, we start with a distributed fusion environment such as the one 
shown in Figure 5. Our distributed SA framework in this case has four steps: 1) Net-
work formation; 2) Spanning tree formation; 3) Junction tree formation; and 4) Mes-
sage passing. The nodes of the sensor network first organize themselves into a net-
work of fusion nodes, similar to the one shown in Figure 6. Each fusion node has 
partial knowledge of the whole environment. This network is then transformed into a 
spanning tree (a spanning tree of a connected, undirected graph, such as the one in 
Figure 6, is a tree composed of all the vertices and some or all of the edges of the 
graph), so that neighbor nodes establish high-quality connections. In addition, the 
spanning tree formation algorithm optimizes the communication required by inference 
in junction trees. The algorithm can recover from communication and node failures by 
regenerating the spanning tree. Figure 6 with (red crosses indicating link severed) 
describes a spanning tree obtained from the network in Figure 5. The decision to sever 
the link between nodes 4 and 6, as opposed to between nodes 3 and 6, can be miti-
gated using the communication bandwidth and reliability information in the cycle of 
nodes 1, 3, 6, and 4. 

Using pairwise communication-link information sent between neighbors in a span-
ning tree, the nodes compute the information necessary to transform the spanning tree 
into a junction tree for the inference problem. Finally, the inference problem is solved 
via message-passing on the junction tree. 

During the formation of a spanning tree, each node chooses a set of neighbors, so 
that the nodes form a spanning tree where adjacent nodes have high-quality commu-
nication links. Each node’s clique is then determined as follows. If i is a node and j is 
a neighbor of i, then the variables reachable to j from i, ijR , are defined recursively as 

( ) { }
ij i ki

k nbr i j

R D R
∈ −

=   

where iD  is the set of local variables of node i. A base case corresponds to a leaf 

node, which is simply a collection of a node’s local variables. If a node has two sets 
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of reachable variables to two of its neighbors that both include some variable V, then 
the node must also carry V to satisfy the running intersection property of a junction 

tree. Formally, node i computes its clique iC  as ( ),
i i ji ki

j k nbr i
j k

C D R R
∈

≠

= ∩
 

A node i can also compute its separator set ij i jS C C= ∩ with its neighbor j using 

reachable variables 
as ij i jiS C R= ∩ . 

Figure 7 shows 
the junction tree 
obtained from the 
spanning tree in Fig-
ure 6. The variables 
reachable to a leaf 
node, for example, 
fusion node 9, are its 
local variables

2 4 5 6, , ,A X X X . The 

variables reachable to 
an intermediate node, 
for example, fusion 
node 1, from its neighboring nodes 3 and 4 are 

{ }
{ }

31 1 2 3 1 2 3 4 5 6

41 3 5 6 7 7 8 9 10 11 12

, , , , , , , ,

, , , , , , , , ,

R A A A X X X X X X

R A A A A X X X X X X

=

=
 

The local variable of the fusion node 1 is { }1 1 2 4 7, , ,D A A A A= . Therefore, its cli-

que is { }1 1 2 3 4 7, , , ,C A A A A A= . The formation of a suitable junction tree from a BN 

model for SA is the only part of our distributed fusion approach that is global in na-
ture. 

4.1 Junction Tree Construction and Inference 

The moral graph of a BN is obtained by adding a link between any pair of variables 
with a common “child,” and dropping the directions of the original links in the BN. 
An undirected graph is triangulated if any cycle of length greater than 3 has a chord, 
that is, an edge joining two nonconsecutive nodes along the cycle. The nodes of a 
junction tree for a graph are the cliques in the graph (maximal sets of variables that 
are all pairwise linked).  

Once we have formed a junction tree from either of the above two cases, such as 
the one in Figure 7, a message-passing algorithm then computes prior beliefs of the 
variables in the network via an initialization of the junction tree structure, followed by 
evidence propagation and marginalization. The algorithm can be run asynchronously 
on each node responding to changes in other  nodes’ states. Each time a node i rece-
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ives a new separator variables message from a neighbor j, it recomputes its own cli-
que and separator variables messages to all neighbors except j, and transmits them if 
they have changed from their previous values. Here we briefly discuss the algorithm, 
and how to handle evidence by computing the posterior beliefs of the variables in the 
network. 

A junction tree maintains a joint probability distribution at each node, cluster, or 
separator set in terms of a belief potential, which is a function that maps each instan-
tiation of the set of variables in the node into a real number. The belief potential of a 
set of variables X will be denoted as Xϕ , and ( )X xϕ  is the number onto which the 

belief potential maps x. The probability distribution of a set of variables X is just the 
special case of a potential whose elements add up to 1. In other words, 

( ) ( )X 1
x x

x p xϕ
∈ ∈

= = 
X X

 

The marginalization and multiplication operations on potentials are defined in a 
manner similar to the same operations on probability distributions. 

Belief potentials encode the joint distribution ( )p X  of the BN according to the 

following: 

( )
C

S

i

j

i

j

p
φ

φ
=

∏
∏

X  

where Ci
ϕ  and S j

ϕ  are the cluster and separator set potentials, respectively. We have 

the following joint distribution for the junction tree in Figure 7: 

( ) 1 2 13

13 14 24 35 12 13

1 9 1 12
S S S S S

...
,..., , ,...,

...
C C C

p A A X X
φ φ φ

φ φ φ φ φ
=  

where iC  represents the variable in clique i and ij i jS C C= ∩  represents the separator 

set between nodes i and j. It is imperative that a cluster potential agrees with its 
neighboring separator sets on the variables in common, up to marginalization. This 
imperative is formalized by the concept of local consistency. A junction tree is locally 
consistent if, for each cluster C and neighboring separator set S, the following holds: 

C S
C\S

φ φ= . To start initialization, for each cluster C and separator set S, set the fol-

lowing: C S1, 1φ φ← ← . Then assign each variable X to a cluster C that contains X 

and its parents ( )pa X . Then set the following: ( )( )C C |p X pa Xφ φ← . 

When new evidence on a variable is entered into the tree, it becomes inconsistent 
and requires a global propagation to make it consistent. The posterior probabilities 
can be computed via marginalization and normalization from the global propagation. 
If evidence on a variable is updated, the tree requires re-initialization. Next, we 
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present initialization, normalization, and marginalization procedures for handling 
evidence. 

As before, to start initialization, for each cluster C and separator set S, set the follow-
ing: C S1, 1φ φ← ← . Then assign each variable X to a cluster C that contains X and its 

parents ( )pa X , and then set the following: ( )( )C C | , 1Xp X pa Xφ φ λ← ← , where 

Xλ  is the likelihood vector for the variable X. Now, perform the following steps for 

each piece of evidence on a variable X: 

– Encode the evidence on the variable as a likelihood new
Xλ . 

– Identify a cluster C that contains X (e.g., one containing X and its parents). 

– Update as follows: ,
new

newX
C C X X

X

λφ φ λ λ
λ

← ←  

Now perform a global propagation using the two recursive procedures  
Collect Evidence and Distribute Evidence. Note that if the belief potential of  
one cluster C is modified, then it is sufficient to unmark all clusters and call  
only Distribute Evidence(C). The potential Cϕ  for each cluster C is now ( ),p eC , 

where e denotes evidence incorporated into the tree. Now marginalize C into  
the variable as ( ) C

C\{ }

,
X

p X e φ=  . Compute posterior ( )|p X e  as follows: 

( ) ( )
( )

( )
( )

, ,
|

,
X

p X e p X e
p X e

p e p X e
= =


. 

To update evidence for each variable X on which evidence has been obtained, first 
update its likelihood vector. Then initialize the junction tree by incorporating the ob-
servations. Finally, perform global propagation, marginalization, etc. 

5 Conclusions 

We have presented an agent based approach to distributed belief propagation in net-
centric environments. The approach provides the foundation of the company’s  pre-
dictive analytics products. We are currently enhancing the product with agent-based 
approach distributed semantic search to find evidence to propagate in Bayesian net-
work fragments. We are investigating the best way to make use of any types of local 
model fragments such as rules, neural networks, and decision trees. 
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