
© Springer International Publishing Switzerland 2015
Y. Demazeau et al. (Eds.): PAAMS 2015, LNAI 9086, pp. 40–52, 2015.
DOI: 10.1007/978-3-319-18944-4_4

Agent-Based Distributed Analytical Search

Subrata Das(), Ria Ascano, and Matthew Macarty

Machine Analytics, Cambridge, MA, USA
sdas@machineanalytics.com

Abstract. We describe here an agent-based Distributed Analytical Search
(DAS) tool to search and query distributed “big data” sources regardless of da-
ta’s location, content or format. DAS semantically analyzes natural language
queries from a web-based user interface. It automatically translates the query to
a set of sub-queries by deploying a combination of planning and traditional da-
tabase query optimization techniques. It then generates a query plan represented
in XML and guide the execution by spawning intelligent agents with various
types of wrappers as needed for distributed sites. The answers returned by the
agents are merged appropriately and return them to the user. We have demon-
strated DAS using a variety of data sources that are distributed and heterogene-
ous. The tool is the prime product of our company with big enterprises as our
target market.

1 Introduction

Big data is generally stored in relational databases, such as Oracle, DB2, SQL Server,
and MySQL, and in data warehouses such as Terradata. This data is generally hetero-
geneous and distributed, making it difficult to query accurately and quickly for analyt-
ics (Das, 2014). Although big data environments are in the process of migrating to the
scalable, fault-tolerant cloud environment, the cloud remains experimental in nature,
due to its lack of adequate data security and the unrealized need for a query tools
utilizing the Map Reduce paradigm (Dean and Ghemawat, 2008). As a result, data
remains distributed in many formats, both structured and unstructured, and only non-
essential data is currently stored in the cloud. What is needed is an approach to query
distributed sources maintaining autonomy of individual data sources (Widom, 1996).
We have developed an agent-based Distributed Analytical Search (DAS) tool to fulfill
this gap.

DAS will allow end users to query distributed data sources in natural language
without having to know the source formats and locations. In the government space,
most distributed archives and databases, such as NASA’s DAAC and the DoD’s
DCGS, are autonomously maintained. Additionally, our personal communications
with personnel from big retailers such as Sears and Walmart reveal that their databas-
es are also highly distributed and heterogeneous with less than 10% residing in cloud
environments, and that it takes almost a day for an analyst to extract data from rele-
vant sources after the request is placed. Our approach will allow analysts to query
data sources directly in natural language and will reduce this one-day turnaround time
to within seconds.

 Agent-Based Distributed Analytical Search 41

DAS searches distributed structured and unstructured “big data” sources by seman-
tically analyzing natural language queries regardless of data’s location, content
or format. DAS accepts natural language queries from a web-based user interface,
deploying “intelligent agents” to scan unrelated data sources and return answers to
support the decision-making process. DAS is format-agnostic. DAS allows users to
perform distributed search within the cloud without users needing to already know the
format or locations of individual data sources. In addition, it is not necessary for these
data stores to be traditional relational, nor do they need to be on the same network.
Agent-assembled data is analyzed for underlying trends. This is a non-trivial exercise,
with agents building and executing queries based on natural language user input. Se-
cured Agents will build temporary tables from multiple unrelated data sources by
taking computations to data sources, thus avoiding large downloads. We are uniquely
positioned in this market place.

In summary, DAS answers queries through the following stages:

• Accepts a search query from a user in natural language via a web interface.
• Automatically translates the query to a set of sub-queries by deploying a com-

bination of planning and traditional database query optimization techniques.
• Generates a query plan represented in XML and guide the execution by

spawning intelligent agents with wrappers as needed for distributed sites.
• Merges the answers returned by the agents and return them to the user.

Our approach is innovative because no other currently available technology can
query distributed data sources, and its extreme need is justified above. Our natural
language query translation, using hybrid deep linguistics processing and machine
learning, and the plan generation along with XML representation and distributed ex-
ecution, is unique and is Machine Analytics’ trade secrets.

The rest of the paper is organized as follows: Section 1 describes briefly the web-
based querying interface and our approach to natural language query translation to
SQL. Section 2 describes the query planning and optimization techniques. Section 3
describes in detail the agent-based query execution strategy. We conclude the paper
with our future plan with DAS. For the purpose of illustrating DAS functionalities,
throughout the paper we will be using a small example database consisting of two
tables. Figure 1 shows the tables SALUTE and Mobility, with some sample rows as
examples. These example tables are stored at multiple sites. The distributed query
execution as described above therefore avoids downloading large volumes of Mobili-
ty and SALUTE (size-activity-location-unit-time-equipment) data records from these
remote tables to the host site. An example query in this context that we will using
throughout the paper is “Show Salute platforms from NAIs with mobility no go.”

Fig. 1. SALUTE and Mobility tables with some example rows

NAI FROM ACTIVITY EQUIPMENT TIME SIZE

47 JSTARS Milling Vehicles 14:20 40-60

65 UAV Emplaced BMP 18:12 ?

91 LRS Meeting AK 47 10:30 100-200

20 IMINT Digging Truck 05:10 1

… … … … … …

NAI Mobility

47 Slow Go

23 No Go

49 Go

43 Go

… …

SALUTE NAI-Mobility

42 S. Das et al.

2 User Interface and Natural Language Querying

Currently the user will find the web-based interface by visiting a URL. For example
in a typical installation on one of our servers, the user can access interface and current
functionality of DAS via the following URL: 192.168.0.101:8080/Agent7.
The user will be presented with the single page application a screenshot of which can
be seen in Figure 2. The screenshot demonstrates the current iteration of the UI with
control panel on the left.

Fig. 2. DAS web-based use interface

The user will select first a domain from a dynamic list of possible domains. This
list is populated at load time based on output from the DAS application that the inter-
face accesses via an AJAX call. Once a domain is selected, the user will begin typing
a natural language query in the textbox below the domain selection. After a query has
been completed the user will click the translate button displayed below the query
textbox as shown in Figure 2. This initiates an AJAX call to the DAS translation
class, which in turn makes calls to internal dependencies that will translate natural
language query into SQL.

DAS automatically translates a natural language query to its equivalent SQL repre-
sentation to be executed against structured data (e.g. Giordani and Moschitti, 2012).
We are making use of the publicly available Stanford parser and the dependency rela-
tions (de Marneffe, et al., 2010) that it generates from a given sentence representing a
user query in the context of a given database. The algorithm also makes use of the
underlying database scheme and its content. The algorithm exploits the structure of
the database to generate a set of candidate SQL queries, which we rerank with a heu-
ristics based ranking algorithm developed in-house. In particular we use linguistic

 Agent-Based Distributed Analytical Search 43

dependencies in the natural language question and the metadata to build a set of
plausible SELECT, WHERE and FROM clauses enriched with meaningful joins.

Once the translation is complete, possible SQL queries are returned to the user via
another AJAX callback. DAS returns all of the possible translations of the original
natural-language-like query, using a proprietary algorithm to rank the translations.
The list of translated queries that the user is presented with is displayed in rank order
as shown in Figure 2. However, the “correct” translation in terms of relevancy is not
always ranked highest due to the ambiguity of natural language.

The user can select any translation (first one is by default) by clicking on it and
then click the execute button below the list of SQL translations. This action initiates
AJAX calls to DAS classes responsible for planning and executing the query using
direct cloud based queries to nodes on the network and agent based queries to nodes
on the network where this is appropriate. At this point DAS starts by preparing an
execution plan whereby subqueries are created and optimized prior to execution. In
the UI presentation layer, the user is presented with the XML-based plan that DAS
will execute. Figure 2 illustrates a portion of this plan, hiding a significant portion,
which the user is able to scroll through both horizontally and vertically if desired to
examine the order of execution.

Once the plan has been created by DAS, we will know how many queries will be
executed at a maximum, and this number will be presented to the user. In some in-
stances the number of queries planned will not be the same as the number of queries
executed. This is primarily due to the fact that some nodes may be unavailable when
contacted by an agent. Since it is a basic assumption that nodes will be or become
unavailable for querying, DAS can and does continue the execution on available
nodes. When this occurs we believe it is relevant to the user to know that not all nodes
can be queried at the moment. The user is presented with a new statistic so s/he are
alerted to the fact that not all queries will be executed and by extension that some
nodes on the network are not available. However should unavailable nodes become
available during the course of execution, they will be included in the execution. It
should be possible to provide the user with a list of unavailable nodes in future itera-
tions. In Figure 2, in the status summary panel, we can see that 20 queries were
planned in this run, but only 8 actually executed, with partial results displayed in the
Query Results panel.

Continuous communication between the UI and DAS is maintained via AJAX call
throughout the execution process, and as soon as 200 results are available, they are
displayed to the user. DAS continues to run and the user is presented with updates on
the status of the query. When the user clicks the Next or Prev button a graphic is dis-
played to indicate that new results are being fetched.

Based on the number of queries that will execute, the user is also presented with a
near-real-time “percent complete” statistic and graphic. This graphic and number are
replaced with the word “Completed” once all results are available. It should be possi-
ble to provide the user with an estimate of time to completion as well. The user is
currently given the ability to toggle through results by means of “Next” and “Prev”
buttons. Additionally a link is provided to the directory where result files are stored,
should the user with to view or download raw result files.

44 S. Das et al.

3 Query Planning and Optimization

Query planning (Das et al., 2002 & 2005) involves generating a set of sub-queries
from a given user query based on the data source locations that have parts of the
required information to answer the query. The optimization process then generates an
efficient ordering of execution among these sub-queries. We first create an example to
illustrate the concept of query planning and optimization.

Once a natural language query is translated into its equivalent SQL query, we au-
tomatically decompose the output SQL query into a query plan composed of subque-
ries to be executed at distributed sites where data reside. Our implementation makes
use of the two tables, Sites and Columns. The table Sites stores the physical location
of tables and the table Columns stores the descriptions of columns and the user privi-
leges.

We have focused on planning and optimizing “select-before-join” type of queries
as shown below. Below is an example of this type of planning and optimization. The
query here (a translation of the original query posed in natural language via the web
interface) finds the equipment/vehicles that are operating in a ‘no go’ named area of
interest (NAI):

select s.equipment, t.mobility
from s in salute, t in nai-mobility
where s.location = t.location and t.mobility = ‘no go’

The optimization technique helps to identify the selection sub-query as follows to
generate a temporary intermediate relation:

select t.mobility
from t in nai-mobility
where t.mobility = ‘no go’

The executive agent sends an agent to execute the query at the site where terrain
mobility information by NAIs is located. The results are then carried by two other
agents in a temporary relation to the two sites of the SALUTE databases. The same
query that are executed at the two SALUTE data sites are as follows:

select s.equipment, temp.mobility
from s in salute
where s.location = temp.location

The results are brought back by the agents and merged and presented to the user
via the user interface. This kind of optimization avoids downloading the join relations
to the user’s local environment.

Our target is general query planning and optimization beyond just the limited opti-
mization described above. Consider a family of surveillance platforms (e.g., JSTARS,
UAV, and AWACS) and assume that an extraordinary tactical event is reported (e.g.,
enemy tank T-80 is identified at the named area of interest NAI-68) in the SALUTE
format prepared from the UAV mission during the interval (t1, t2). For an analysis
through comparison, the analyst needs to access the intelligence data of that location
for the interval (t1, t2) from other surveillance platforms as well as the information
about terrain and weather during that period. The query involves access from various
repositories containing intelligence and environmental data. A high-level user query
to retrieve only the intelligence data in this regard will look like the following:

 Agent-Based Distributed Analytical Search 45

select s.*
from s in salute
where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

Note that neither the repository nor the wrapper is mentioned in the query. If
salute0 and salute1 are the only two tables respectively at repositories r0 and r1 con-
taining SALUTE reports from the surveillance platforms, the above query will be
translated as follows:

select s.*
from s in union {salute0, salute1}
where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time

Given the fact that repositories r0 and r1 are at different locations, the following
two sub-queries will be generated corresponding to the above query:
select s.* select s.*
from s in salute0 from s in salute1
where s.location = ‘NAI-68’ and where s.location = ‘NAI-68’ and
s.time =< t1 and t2 =< s.time s.time =< t1 and t2 =< s.time

The above two sub-queries will be executed in parallel through wrappers w0 and
w1 respectively. Not every sub-query will return a result, because the SALUTE report
within a repository might not contain a reading of the surveillance platform s at that
particular time interval (t1, t2). We generate an efficient query execution order based
on several traditional query optimization strategies including a typical “select before
join” type

4 Agent-Based Query Execution

The final step in carrying out a
user’s request for data is per-
formed by the Query Execu-
tion module. The Query Ex-
ecution module controls all
aspects of agent creation, mi-
gration, data retrieval, and
collaboration. These topics
will be discussed in the follow-
ing subsections. The module
receives a list of sub-queries
from the Planning and Optimi-
zation systems and generates a
series of mobile agents to carry
out these sub-queries. For each
agent, the module creates an
itinerary of the various sites to be visited and the data retrieval and processing tasks to
be executed at each site. Each mobile agent is then spawned and the system waits for

Fig. 3. Plan Agent spawning Query Agents processing
information from several databases

46 S. Das et al.

the return of each agent with its associated data. Upon return, the system performs
any required data joining, processing, and formatting before displaying the results to
the user.

Our mobile agent approach as shown in Figure 3 created multiple Plan Agents and
Query Agents as part of the Query Execution module. These mobile agents were built
on top of the Aglets 2.02 API along with Tahiti server running on the Java 1.7. But
we now have replaced Aglets with our in-house mobile agent platform. Aglets is a
Java mobile agent platform and library. An aglet is a Java agent that is able to auto-
nomously and spontaneously move from one host to another. The Plan Agents and
Query Agents inherit the properties of an Aglet.

Different types of execution mobilities exist (Jansen and Karygiannis, 1999) cor-
responding to the possible variations of relocating code and state information, includ-
ing the values of instance variables, the program counter, execution stack, etc. For
example, a simple agent written as a Java applet has mobility of code through the
movement of class files from a web server to a web browser. However, no associated
state information is conveyed. In contrast, Aglets, developed at IBM Japan, builds
upon Java to allow the values of instance variables, but not the program counter or
execution stack, to be conveyed along with the code as the agent relocates. A stronger
form of mobility allows Java threads to be conveyed along with the agent's code dur-
ing relocation. DAS design allows relocation of code information and state informa-
tion.

Detailed architectural diagrams of the Query Execution module will be shown and
discussed in the next subsection.

4.1 Query Execution Architecture

Figure 4 (left) shows the diagrams of the Query Execution Module. The two main
parts are JSP Server and the Aglets Agent Servers. The Query Execution Module
integrates with the Web-based Analyst Interface component and the Planning and
Optimization System Module. A user-submitted natural query will be processed by
the JSP Server and passed on to the Planning and Optimization systems.

Planning and Optimization systems are customized Java Objects that can process
the transformation from a Natural Language Query and produce a plan of action in
XML format. The user may then choose a desired transformation SQL and pass it
back to the JSP Server to create a plan of action in XML format. The XML file that
was created will be processed by the Plan Agent as shown in Figure 4 (right). The
figure also shows the roles of the Agents that were customized from the Aglets API.
The Plan XML file was read and processed. The Plan Agent creates Query Agents
based on the number of queries obtained from the plan XML file. This XML file con-
tains a plan of action created from a catalogue of available databases. Changing the
availability of databases in the catalogue will reflect on the plan created in XML.

The Query Agents are then dispatched to the remote computers containing the
desired databases. The Query Agents perform all computations locally where the
databases reside. Query Agents can be sent to remote machines and process SQL
commands to different databases on those machines. The databases that we used for

 Agent-Based Distributed Analytical Search 47

testing were MySQL and Derby. One of the advantages of using agents is that the
database needs not be open to outside connection. Since the agent had been sent to the
remote machine, the agent has the ability to query the database locally. Query Agent
also has the ability to create temporary database tables and carry out any standard
SQL command.

Fig. 4. (left) Query Execution architecture part 1 (JSP Server); (right) Query Execution archi-
tecture part 2 (Aglets Agent Servers)

We designed custom codes with the assumption that we have sufficient privileges
to modify one or more databases involved in the query as well as permissions to read
the corresponding tables across the network. These written codes have automated
access to user defined queries obtained from the Planning and Optimization systems.
The combined processed results, according to the query plan, from heterogeneous
data from multiple sources are sent back to the Plan Agent, who will then save them
into an XML format. The resulting XML files are visualized as single or multiple
merged results.

4.2 Agent Creation

Plan Agent was created by inheriting the properties of an Aglet. The Aglet class is
provided by the Aglets API. Aglets need to be hosted by an agent host such as a Tahi-
ti server. Plan Agent was instantiated within an Aglet Context that performs the role
of sending messages to other Agents. The Aglet Context was created by the Tahiti
Server which has a network daemon whose job is to listen to the network for other
agents. Incoming agents are received and inserted into the context by the daemon. The
Context provides all agents with a uniform initialization and execution environment.

One of the challenges faced by mobile agents is that a Tahiti server with the ability
to host a query agent needs to be present in the destination database machine. To re-
spond to this challenge we have developed the option for the plan agent to create
query agents that will have the ability to query multiple databases without dispatching
them to the different machines. Having this additional feature will enable the Plan
Agent to combine results from machines that can host Agents as well as machines that
cannot host Agents. One of the test scenarios involved multiple databases residing on
different servers with different database software. For example we have four servers
on machines a, b, c, and d, with MySQL, Derby, CloudBase, and Accumulo, and with
different operating systems such as Ubuntu and Windows. Different servers refer to

48 S. Das et al.

distinct physical machines or multiple virtual machines using different physical hard-
ware. The key point is that there are multiple installations of the database software.

Another challenge that the query agents face includes what to do if the destination
machine is temporarily unavailable. Should the program crash, or should it proceed
and produce partial results from other available machines? The Query Agents had
been designed to detect if the destination machine specified on the plan XML file has
become unavailable. The program will complete, produce fewer results, and report to
the user that some database sites are unavailable. Destination machines may become
unavailable due to loss of network connections, availability of the Tahiti Servers,
power outage, or incorrect or change of user access at a particular site, among other
reasons. The Query Agent will send a message to the Plan Agent regarding the un-
availability of the destination host. The final result will consist of a single result XML
file containing the merged results obtained from the available databases. The user
interface will display the results on the web browser as a result table. Status reports
including availability or unavailability of databases have been made available to the
user. Sources of information are also displayed as part of the results.

4.3 Agent Migration

The Plan Agent can create, monitor, coordinate, retract, dispatch, and dispose Query
Agents as needed. A Query Agent can be dispatched to a specific host (which itself
hosts a database on the network) to visit and perform a specific function, computation,
or query. Once an agent completes its tasks, it can send messages to other agents to
perform other tasks such as creating temporary database tables or merging query re-
sults from different database tables. Agents also send messages to other agents to
verify that they have reached their destinations and have completed their tasks. The
Plan Agents have the ability to decide what path to take and what actions to perform
as they gather data from the nodes that the Query Agent visits.

The Plan Processor reads XML files and stores the information in the form of Se-
rialized objects (Java classes that can be converted into bytes and be sent over the
wire). The instance of this class is saved and can be restored upon arrival to a destina-
tion. Serialization allows the persistence of an object from memory to a sequence of
bits, and deserialization enables the reading of the data to recreate the object.

Plan Agent will create multiple Query Agents that can calculate and carry vital in-
formation while “hopping” to and from different machines. The number of Query
Agents created depends upon the number of queries in the XML document. Multiple
queries can be processed in parallel or sequentially in a distributed manner. Query
Agents are deployed to different machines based on the plan XML file to process
information from the remote databases. MySQL and Derby Test Databases were con-
figured and used for testing.

4.4 Agent Retrieval

Using agents, it is possible to leave data where it resides and to only extract the re-
quired data on demand. The user writes a query in his own words and submits it using

 Agent-Based Distributed Analytical Search 49

the web based user interface. From the user’s perspective, one query produces one
combined answer and the complexities of the process have been hidden. The original
data has not been moved nor modified. Only relevant data had been extracted and
passed through the network.

Several databases were loaded with gigabytes of data. A Plan Processor Java Ob-
ject was designed and implemented to enable carrying huge data streams across the
wires. A new scenario was developed and a series of tests were carried out to query
new tables containing large amounts of data with a huge number of results that were
carried across the wires. The testing was successful and gigabytes of data were ob-
tained from a remote computer.

The Plan Agent has the ability to create Query Agents that can travel autonomous-
ly through the network, providing an increased fault tolerance. The agents’ ability to
travel through the network and carry data along with them enables these agents to
individually process queries in parallel and/or in sequence. The query execution mod-
ule will not crash with a single point of failure and the query process may continue
even if individual machines fail or become unavailable.

New computers or new database source may be added to the network. This feature
offers better scalability of the module. We have created a data site table stored where
users may add or delete existing data sources. The Plan Agent has the ability to auto-
matically increase the creation of Query Agents that can be dispatched to different
computers. The ability to have the Query Agents travel through the system and ex-
ecute their code using the host’s resources allows for dynamic load sharing and auto-
matic data processing.

5 Experimental Results

Figure 5 shows the DAS demo implementation environment that we have created. We
have set up three database servers to emulate storing and serving big data from a va-
riety of environments, including
Hadoop-based cloud and a tra-
ditional database server. These
servers are connected via a
router providing fixed IP ad-
dresses to these servers, thus
creating local area network. The
servers are connected by a
common maintenance terminal
for configurations.

We have also developed the
option to directly query the
databases specified on the plan
XML document without sending Fig. 5. Agent collaboration

50 S. Das et al.

the Agents to the remote locations. A comparison between direct querying and the
sending the Agents was developed. Sources of Query Agent delay were found and the
code has been restructured to eliminate or minimize runtime inefficiency.

The table below shows a comparison between distributed and centralized database
as well as direct parallel querying and sending the Agents to remote locations. It took
less than half the time to retrieve 2.1 million records from three distributed databases
than the same amount of records from one centralized database. There is not much
difference between the direct parallel approaches as opposed to sending the mobile
agents remotely.

 Direct Mobile Agent

Centralized DB
(2.1M records returned)

7 min 43 sec 7 min 32 sec

Distributed in 3 DB
(0.7M each)
(2.1M records returned)

3 min 22 sec 3 min 12 sec

Plan Agents and Query Agents have been configured to run on both Windows and
Ubuntu Operating systems. MySQL containing huge amounts of data has also been
installed on both platforms. The Ubuntu machine had been expanded from its current
capacity of 30 gigabytes storage to 450 gigabytes of space to accommodate big data
for traditional SQL databases and Hadoop, CloudBase, and Accumulo. Precautions
were taken to ensure that the original data were protected, and the expansion was been
carried out without loss of data. Precautionary measures included backing up relevant
files and information. Testing is being done on different machines to ensure that the
DAS system can operate in a heterogeneous environment.

The ability to have multiple clients querying from different browsers or different
machines has been designed and implemented. A unique session directory is created
when a user chooses a particular translated query to execute. The plan XML docu-
ment and all the other relevant documents that are related to this particular query will
be contained in this unique session directory. Relevant files include the status XML
file and the partial and merged results.

The limits of our system have been continuously subjected to stress testing by
sending huge data results across the wires. Gigabytes of data have been loaded across
several data sources. Up to 3 million result objects per remote data source have been
sent through the wires. There were no issues with using the mobile Agents and we run
into heap space issues with the direct approach. Major refactoring was implemented
to accommodate the migration of huge data results into different machines. We con-
tinue to encounter heap space issues as we increase data and several steps were taken
to improve. Memory management is continuously monitored and managed.

The DAS Agents are constructed as lightweight processes, so that each process
tests a single vulnerability. As new vulnerabilities are detected and tests for these
vulnerabilities are developed, new agents can be added to the test suite. As the system
configuration changes, some agents can be retracted or disposed of if they are no
longer needed. Test suites can be fine-tuned for each individual node depending on its

 Agent-Based Distributed Analytical Search 51

configuration. This increases the efficiency of the testing as tests are performed only
when and where they are needed. A lightweight agent architecture makes the test suite
configurable for heterogeneous environments.

6 Conclusions and Future Directions

Our agent-based approach to distributed analytical search offers several advantages:
1) Databases need not be open to outside connections. Since the agent has been sent
to the remote machine, it has the ability to query the database locally; 2) Network
bandwidth usage is reduced because the Mobile agent moves computation code to
where the data resides; 3) The agents do not require a continuous connection between
machines and the clients can dispatch an agent into the network when the network
connection is healthy, and then it can go off-line. The network connection can be
reestablished later when the result from the remote host is ready; and 4) Agents oper-
ate asynchronously and autonomously and the user doesn’t need to monitor the agent
as it roams the internet. This saves time for the user, reduces communication costs,
and decentralizes network structure.

Future developments include researching possible security issues. We will investi-
gate the possibility of creating cooperating agents that can help reconfigure the net-
work to deny network services to certain nodes until they have been confirmed to be
in a safe state. Query Agents can monitor network events and cooperate with the Plan
Agents. For example, if one of the Agents detects suspicious activity on one computer
and notifies the rest of the network, the other agents may decide to challenge the
nodes by modifying the rights given to those agents.

Real time status reports will be continuously improved. We are researching means
to show the user a more detailed report on why data may or may not be available as
well as how long it will take to get data. The percentage of completion will be calcu-
lated as well as information on particular queries that will be abandoned because of
the unavailability of the database or its dependent database. The detailed status report
will also show whether an agent was available in the remote machine or a direct query
had been implemented.

More testing will be developed to ensure the robustness of the application. New
scenarios will be created for testing and more data sources will be explored, including
finding data that are publicly available through the internet. Different testing mechan-
isms will be studied in more detail to enable the system to have flexible capabilities.
New scenarios will be considered to test the limits of performance. Simultaneous
querying using multiple client machines will be tested and smarter Agents will be
designed and developed to operate on both Windows and Ubuntu Systems.

52 S. Das et al.

References

Das, S., Shuster, K., Wu, C.: ACQUIRE: agent-based complex QUery and information retrieval
engine. In: Proc. of the 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Sys-
tems, Bologna, Italy, July 2002

Das, S., Shuster, K., Wu, C., Levit, I.: Mobile Agents for Distributed and Heterogeneous In-
formation Retrieval. Journal of In Retrieval 8, 383–416 (2005). Springer Science

Das, S.: Computational Business Analytics. Chapman and Hall/CRC Press (2014)
de Marneffe, M.-C., et al.: Stanford typed dependencies manual: Revised for Stanford Parser v.

1.6.5 (2010)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communica-

tion of the ACM 51(1), 107–113 (2008)
Giordani, A., Moschitti, A.: Generating SQL queries using natural language syntactic depen-

dencies and metadata. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB
2012. LNCS, vol. 7337, pp. 164–170. Springer, Heidelberg (2012)

Jansen, W., Karygiannis, T.: Mobile Agent Security, NIST Special Publication 800-19 (1999)
Widom, J.: Integrating Heterogeneous Databases: Lazy or Eager?. ACM Computing

Surveys 28 (1996)

	Agent-Based Distributed Analytical Search
	1 Introduction
	2 User Interface and Natural Language Querying
	3 Query Planning and Optimization
	4 Agent-Based Query Execution
	4.1 Query Execution Architecture
	4.2 Agent Creation
	4.3 Agent Migration
	4.4 Agent Retrieval

	5 Experimental Results
	6 Conclusions and Future Directions
	References

