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Abstract. Binary particle swarm optimization (BinPSO) is introduced as a  
population-based random search algorithm for discrete binary optimization 
problems. A number of BinPSO variants have been introduced in the literature 
and showed performance improvements over the original BinPSO algorithm. 
However, no detailed performance comparison between these BinPSO variants 
has been found in the current literature. In this paper, a more thorough perfor-
mance comparison study on the BinPSO variants in terms of convergence 
speed, solution quality and performance stability is presented. The BinPSO va-
riants are further compared with a newly adopted cooperative BinPSO variant. 
The performance evaluation is conducted using De Jong’s test functions, sever-
al complex multimodal functions, and a real-world engineering problem, name-
ly optimization of the detection performance of cooperative spectrum sensing in 
cognitive radio networks. Results show that most of the BinPSO variants exhi-
bit excellent performance on solving De Jong’s test functions while the cooper-
ative BinPSO variant performs better on the complex multimodal problems and 
the real-world engineering problem. Overall, the cooperative BinPSO variant 
shows the most promising performance, especially in terms of solution quality 
and performance stability. 

Keywords: Particle swarm optimization · Binary particle swarm optimization · 
Convergence · Stability · De Jong’s test functions · Multimodal functions 

1 Introduction 

Particle swarm optimization (PSO) is a population-based random search algorithm 
inspired from the social behavior of bird flocking [8]. Compared to other evolutionary 
algorithms, the implementation of PSO algorithms is relatively simple as it requires 
fewer parameters to adjust. In the past decade, PSO algorithms have been successfully 
applied to solve many real-world problems, including those requiring autonomous 
real-time adaptation [5, 13, 16, 18, 21]. 
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The original PSO algorithm can only be applied to solve optimization problems 
that are in the continuous-valued (floating-point) domain. In order to solve discrete 
binary optimization problems, a binary particle swarm optimization (BinPSO) algo-
rithm is proposed in [9]. The BinPSO algorithm retains the same advantages of the 
original PSO algorithm proposed in [8] and it allows for solving optimization prob-
lems of discrete binary nature. The BinPSO algorithm has been modified and imple-
mented to solve several real-world problems [1, 14, 15, 17, 20].     

In the literature, various studies have been carried out to continue improving the 
performance of BinPSO algorithms for global optimization. These studies have led to 
several new variants such as Novel BinPSO (NBinPSO) [11], Essential BinPSO 
(EPSO) [2] and Modified BinPSO (MBinPSO) [12]. Most of these studies employ the 
BinPSO algorithm proposed in [9] as the only benchmark. Comparison between the 
recent BinPSO variants in various performance aspects is not provided in these stu-
dies, hence leaving the progress of the BinPSO development unclear. As such, a per-
formance comparison study on BinPSO would be useful to the readers as it would 
give insights about the recent development of BinPSO in various aspects. 

The objective of this paper is to investigate the performance of various BinPSO va-
riants proposed in the literature in terms of solution quality, convergence speed and 
performance stability. These BinPSO variants are further compared with a BinPSO 
algorithm enhanced with the cooperative approach in [19]. This is to investigate the 
potential of cooperative approaches to improve the BinPSO performance, which may 
spark researchers’ interest to further explore into these approaches. The performance 
comparison is conducted using De Jong’s test functions [3], which consist of several 
unimodal and simple multimodal optimization problems, and a number of complex 
multimodal functions, which contain large numbers of suboptimal solutions. In addi-
tion, a real-world application problem is used to evaluate the BinPSO variants. 

The rest of the paper is organized as follows: Section 2 introduces PSO and re-
views several recent BinPSO variants. In Section 3, performance evaluation of the 
recent BinPSO variants presented and discussed. Finally, Section 4 provides a number 
of concluding remarks about the performance evaluation and highlights potential 
future work. 

2 Particle Swarm Optimization 

2.1 Continuous PSO 

In PSO, a group of particles travels through the search space of a given optimization 
problem to look for the optimal solution. This group of particles is referred to as a 
swarm. The position of each particle represents a candidate solution for the optimiza-
tion problem. The basic working principle of the PSO algorithm is to allow all par-
ticles travelling in the search space in such a way that the movement of these particles 
is dependent on their personal and past experiences. In the PSO algorithm, the veloci-
ty and position update equations of each particle are given as [8]: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )txtyrctxtyrctvtv ijjijijijij −+−+=+ ˆ1 2211  (1) 
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where xij(t) and vij(t) are the position and velocity of the i-th particle in the j-th dimen-
sion at the t-th iteration respectively, c1 and c2 are acceleration constants, r1 and r2 are 
uniformly distributed random values ranging in [0, 1], yij(t) is the personal best (pbest) 
position, which is the best position found by the i-th particle in the j-th dimension at 
the t-th iteration while ŷj(t) is the global best (gbest) position, which is the best posi-
tion found by the entire swarm in the j-th dimension at the t-th iteration.  

Fig. 1 shows the PSO algorithm for solving a maximization problem, where P de-
notes the swarm, Ns is the swarm size, n is the number of dimensions (i.e., number of 
decision variables), f(.) is the objective function of the maximization problem, xi = 
[xi1, xi2, …, xin], yi = [yi1, yi2, …, yin] and ŷi = [ŷi1, ŷi2, …, ŷin] [19]. Each particle is 
first initialized at a random position in the search space of the problem. In each itera-
tion, the velocity of each particle is updated using Eq. (1) followed by the position 
update using Eq. (2). After the updates, the new position of each particle will be eva-
luated using the objective function. If the solution found by a particle in an iteration 
provides a better objective function value than the previous iteration, this solution will 
be updated as the pbest position. Similarly, if the pbest position of a particle at current 
iteration is better than the gbest position, the gbest position will be replaced by the 
pbest position. This process is repeated until a certain stopping criterion is met. 

 
Create and initialize an n-dimensional cPSO: P 
repeat: 
   for each particle i ϵ [1..Ns]: 
      if f(P.xi) > f(P.yi) 
         then P.yi = P.xi 
      if f(P.yi) > f(P.ŷi) 
         then P.ŷi = P.yi  
      Perform PSO updates on P using Eqs. (1) and (2)                     
      endfor 
until the stopping criterion is met 

Fig. 1. Pseudocode of the PSO algorithm [19] 

The topology of particles, i.e., their neighborhood structure can be modified to im-
prove the performance. Various topologies have been proposed such as the global best 
(Gbest) model and the local best (Lbest) model [10]. In the Gbest model, all particles 
are neighbors to each other whereas in the Lbest model, each particle has two neigh-
bors only. For further reading of topologies, readers may refer to [10]. 

2.2 Binary PSO 

The first BinPSO algorithm proposed in [9] has a similar pseudocode compared to the 
original continuous-valued PSO algorithm except that the position update equation is 
replaced by: 
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where r3 is a uniformly distributed random value ranging in [0, 1] and the sigmoid 
function of vij(t) is defined as [9]: 
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In the BinPSO algorithm, xij(t), yij(t) and ŷj(t) take only the binary values; that is zero 
or one, while the vij(t) remains continuous-valued. Unlike the PSO algorithm in [8], 
vij(t) in the BinPSO algorithm represents the probability of xij(t) approaching the value 
of one. Moreover, vij(t) is limited by a maximum velocity, Vmax. The practical value of 
Vmax was suggested to be ±4 [7]. It is noteworthy that the sigmoid function in Eq. (4) 
is used to normalize the vij(t) so that its value is restricted within the range [0, 1]. 

In [11], the behavior of the parameters of the BinPSO algorithm is said to be de-
viated from that of the original PSO algorithm [8], leading to difficulties in choosing 
the appropriate parameter settings. To address these difficulties, the study in [11] 
proposed the NBinPSO algorithm in which a set of rules are introduced to update the 
position and velocity of each particle such that they imitate more closely to those of 
the original PSO algorithm. In addition, an inertia weight w is added to the particles’ 
velocity to preserve the direction each of them has previously travelled.  

The study in [2] exploits another approach for the same issues pointed in [11] by 
reformulating the particles’ velocity and position update equations into probabilistic 
ones, deriving a new BinPSO variant known as Essential BinPSO (EPSO). Moreover, 
adopting the concept of ant colony optimization, a queen informant particle is added 
to further improve the search capability of the EPSO algorithm. As the queen infor-
mant particle will leave some pheromones in its previously travelled path in each 
iteration, this enhances the solution exploration and exploitation at the beginning and 
the end of the EPSO algorithm operation, respectively. This new EPSO variant is 
known as EPSOq. 

In [12], the MBinPSO algorithm is proposed based on the genotype-phenotype 
concept where the velocity and the position of the particle are replaced by the  
so-called genotype and phenotype particle. The genotype particle is updated using 
Eqs. (1) and (2) with their respective xij(t) being replaced by the phenotype and geno-
type particles. The phenotype particle is updated using Eqs. (3) and (4) with xij(t) 
being replaced by the genotype particle. This modification allows the new position of 
each particle to take into account its previous position in the velocity and position 
update, which is not the case for the original BinPSO algorithm. Moreover, a bit 
change mutation feature is incorporated into the algorithm to mutate the genotype 
particle for better solution exploration. 

In [19], a cooperative approach is proposed to enhance the ability of the PSO algo-
rithm in solving high-dimensional optimization problems. This cooperative approach 
can be applied to any PSO algorithm, in fact, not limited to BinPSO. The idea of the 
cooperative approach is to decompose the candidate solution vector, which consists of 
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all decision variables, into a number of component vectors, denoted by K. Each com-
ponent vector is optimized by a separate swarm. In order to evaluate a component 
vector from a particular swarm, a context vector function is defined to compose this 
component vector with other component vectors from other swarms and form a global 
solution vector. The context vector function, b(k, z) is defined as follows [19]: 

 ( )yyzyyzb ˆ. ..., ,ˆ. , ,ˆ. ..., ,ˆ.),( 111 Kkk PPPPk +−≡  (5) 

where Pk.ŷ denotes the best component vector found by the k-th swarm where k = 1, 
2, …, K, and z denotes the component vector of the k-th swarm, which is to be eva-
luated. Using this context vector function, a candidate solution vector is reformed 
which can then be evaluated by the objective function. By applying the cooperative 
approach to the BinPSO algorithm, the pseudocode of the cooperative BinPSO 
(CBinPSO) algorithm can be presented in Fig. 2 where nb is the number of binary-
valued decision variables. It is noteworthy that K = K1 + K2 swarms are created with 
each of the first K1 swarms optimizing  Knb decision variables and each of the 

next K2 swarms optimizing  Knb decision variables. K1 and K2 are separately calcu-

lated because nb may not always be evenly divided by K. Then, each swarm runs the 
BinPSO algorithm independently and evaluates its solution vectors using Eq. (5). 

 
define 
b(k, z) ≡ ( P1.ŷ, …, Pk-1.ŷ, z, Pk+1.ŷ, …, PK.ŷ) 
K1 = nb mod K  
K2 = K – (nb mod K)  

Initialize K1  Knb -dimensional PSOs: Pk, k ϵ [1..K1] 

Initialize K2  Knb -dimensional PSOs: Pk, k ϵ [(K1+1)..K] 

repeat: 
   for each swarm k ϵ [1..K]: 

      for each particle i ϵ [1..Ns]: 
         if f(b(k, Pk.xi)) > f(b(k, Pk.yi)) 
            then Pk.yi = Pk.xi 
         if f(b(k, Pk.yi)) > f(b(k, Pk.ŷi)) 
           then Pk.ŷi = Pk.yi 

            Perform BinPSO updates on Pk using Eqs. (1), (3) and (4)   
     endfor 
endfor 
until the stopping condition is met 

Fig. 2. Pseudocode of the CBinPSO algorithm 

3 Performance Evaluation 

The performance of various BinPSO variants is investigated in terms of solution qual-
ity, performance stability and convergence speed. The solution quality achieved by 
the BinPSO variants implies how well their ability in finding optimal solutions. The 
performance stability indicates the ability of the BinPSO variants in maintaining con-
sistent performance in such a way that the solutions found in each run do not differ 
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significantly compared to those found in other runs. The convergence speed shows 
how fast the BinPSO variants can converge to a solution. Intuitively, an effective and 
efficient optimization algorithm would demonstrate high solution quality, high per-
formance stability and fast convergence speed. Using these performance aspects, the 
following BinPSO variants have been evaluated and compared: BinPSO [9], BinPSO 
[11], EPSO [2], EPSOq [2], MBinPSO [12] and CBinPSO [19]. 

Additionally, two different topologies, i.e., Gbest and Lbest models are applied to 
the BinPSO, EPSO, EPSOq and Modified BinPSO algorithms.  

3.1 Benchmark Functions 

In the performance evaluation, De Jong’s test functions [3] and three complex multi-
modal functions [12] are employed as the benchmark problems. These functions are 
given as follows: 
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mensions. Also, it is noteworthy that f6 - f8 are minimization problems. To show eval-
uation consistency with De Jong’s test functions, i.e., f1 - f5 which are maximization 
problems, f6 - f8 are converted into equivalent maximization problems by multiplying 
the achieved fitness value with -1 [6]. 

3.2 Experimental Setup  

Since all the decision variables in De Jong’s test functions are continuous-valued, 
they need to be converted to binary-valued variables before being employed by the 
BinPSO algorithms. In this study, a binary encoding scheme that is commonly used to 
perform the conversion in genetic algorithms (GAs) is used. In this scheme, a user-
defined resolution factor (RF), which is the smallest continuous value represented by 
a bit, is used to determine the number of bits required to represent a continuous-
valued decision variable of a given optimization problem. Given an RF, the number of 
bits per continuous-valued decision variable, Nb can be obtained as: 
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where the xmax and xmin denote the maximum and minimum boundary values of the 
given search space, respectively. After finding Nb, the conversion between conti-
nuous-valued and binary-valued decision variables can be performed using: 
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b
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where xc is the value of the continuous-valued decision variable and xb is the decimal 
value of the binary equivalent of xc. Then, xb is converted to its binary equivalent in 
the form of bitstring consisting of Nb bits. After that, all the bitstrings are concate-
nated to a single bitstring, forming a solution vector which consists of n × Nb binary-
valued decision variables. In this study, the RFs chosen for each test function is given 
in Table 1.  

As the CBinPSO algorithm contains multiple swarms while other BinPSO variants 
contain only one swarm, the number of iterations is not accurate as a processing time 
measure. This is because, in one iteration, the CBinPSO algorithm spends a number 
of function evaluations (FEs) equivalent to K swarms multiplied by the number of 
particles of one swarm whereas other BinPSO variants spend only a number of FEs 
equivalent to the number of particles of one swarm in one iteration. Thus, the number 
of FEs is used as the processing time measure for a fair complexity comparison.  
The total number of FEs is given as FE = NtNsK for the CBinPSO algorithm and  
FE = NtNs for other BinPSO variants, where Nt is the number of iterations.  
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Table 1. Parameter settings of test functions and their global maxima 

F Function Name n RF Nb nb Domain [xmin, xmax]n Global Maxima 
f1 Sphere 3 0.01 10 30 [−5.12, 5.12]n 78.64 
f2 Rosenbrock 2 0.001 12 24 [−2.048, 2.048] n 3905.93 
f3 Step 5 0.01 10 50 [−5.12, 5.12] n 55.0 
f4 Noisy Quadric 30 0.01 8 240 [−1.28, 1.28] n 1248.2 
f5 Foxholes 2 0.001 17 34 [−65.536, 65.536] n 500.0 
f6 Rastrigin 30 0.01 10 300 [-5.12, 5.12] n 0 
f7 Ackley 30 0.1 10 300 [-30, 30] n 0 
f8 Griewank 30 0.1 13 390 [-300, 300] n 0 

 
For  f1 - f5, the simulation parameters are set as follows: Ns, FE and the number of 

simulation repetitions are set to 20, 4000 and 20, respectively. For  f6 - f8, Ns, FE and 
the number of simulation repetitions are set to 40, 40000 and 30, respectively. The 
mutation rate of the MBinPSO algorithm is set to 0.3, 0.7, 0.5, 0.7, 0.7, 0.0, 0.0 and 
0.4 for for f1, f2, f3, f4, f5, f6, f7 and f8, respectively as in [12]. Additionally, K is set to n 
of each test function for the CBinPSO algorithm (see Table 1). The rest of the para-
meters of the BinPSO, NBinPSO, EPSO and EPSOq, and MBinPSO algorithms are 
set as in [7], [11], [2] and [12], respectively. 

3.3 Results and Discussion 

Table 2 tabulates the mean and standard deviation of the objective function values 
achieved by each BinPSO variant on the test functions where the values in bold indi-
cate the best results. Overall, the CBinPSO algorithm attains the best solution quality 
as it optimizes most of the test functions. The NBinPSO, EPSO and EPSOq algo-
rithms can only obtain optimal solutions for f1, f2, f4 and f5. Other BinPSO variants do 
not perform well on all the test functions. As such, the CBinPSO algorithm is general-
ly the best algorithm in terms of solution quality for both unimodal and multimodal 
optimization problems. On the other hand, the NBinPSO, EPSO and EPSOq algo-
rithms is only suitable for unimodal and simple multimodal problems.  

The performance of the EPSOq algorithm (with GBest) on De Jong’s test functions 
is generally more stable compared to other BinPSO variants, as shown in Table 2. Its 
stability on f3 is outperformed by only the CBinPSO algorithm. On the other hand, the 
CBinPSO algorithm demonstrates more stable performance on f6 and f8, compared to 
other BinPSO variants. Additionally, as the CBinPSO algorithm is the only one that 
finds near-optimal solutions to the multimodal problems, i.e., f6 - f8, its comparison 
against other BinPSO variants in terms of performance stability is thus trivial. 

Fig. 3(a)-(e) shows the convergence performance of the BinPSO variants in max-
imizing the De Jong’s test functions. The NBinPSO, EPSO and EPSOq algorithms 
converge within 300 FEs to the optimal solutions for f1, f2, f4 and f5, which are the 
fastest among all the other BinPSO variants. Although these BinPSO variants also 
converge within 300 FEs for f3, they converge to a suboptimal solution. This implies 
that the BinPSO variants are vulnerable to the local optimums of f3 and likely to be 
trapped in these values. The CBinPSO algorithm converges slower than the NBinP-
SO, EPSO and EPSOq algorithms for f1 - f5. This is because the CBinPSO algorithm 
spends more FEs in each iteration. In particular, the CBinPSO algorithm is unable to 
reach convergence for f4 because the number of FEs given is insufficient to converge. 
The BinPSO and MBinPSO algorithms converge to local optimums of all the test 
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functions, thus it is trivial to compare them with other BinPSO variants in terms of 
convergence speed. In summary, the NBinPSO, EPSO and EPSOq are more time-
efficient for solving unimodal and simple multimodal problems. 

Table 2. Mean and standard deviation of the achievable fitness scores  

PSOs f1 f2 f3 f4 
BinPSO–Gbest 77.94±8.767×10-1 3749±1.116×102 53.30±8.645×10-1 735.5±5.623×101 
BinPSO–Lbest 78.12±4.897×10-1 3529±3.986×102 53.55±1.234×100 792.6±6.779×101 
NBinPSO 78.64±1.458×10-14 3905±4.665×10-13 44.65±2.277×100 1248±2.956×10-1 
EPSO–Gbest 78.64±1.458×10-14 3905±4.665×10-13 41.50±2.856×100 1248±2.938×10-1 
EPSO–Lbest 78.64±1.458×10-14 3905±4.665×10-13 41.10±2.673×100 1248±2.939×10-1 
EPSOq–Gbest 78.64±1.458×10-14 3905±4.665×10-13 42.00±2.733×100 1248±2.850×10-1 
EPSOq–Lbest 78.64±1.458×10-14 3905±4.665×10-13 42.10±2.593×100 1248±2.887×10-1 
MBinPSO–Gbest 74.75±1.553×100 3733±8.859×101 48.00±7.255×10-1 554.0±2.813×101 
MBinPSO–Lbest 74.02±1.851×100 3736±8.318×101 48.60±1.231×100 543.4±2.067×101 
CBinPSO  78.64±1.458×10-14 3901±4.181×100 55.00±0.000×100 1248±1.664×101 
PSOs f5 f6 f7 f8 
BinPSO–Gbest 499.9±3.559×10-6 -349.8±2.881×101 -20.17±6.100×10-2 -151.5±1.640×101 
BinPSO–Lbest 499.9±1.416×10-6 -384.4±3.063×101 -20.14±4.670×10-2 -229.3±1.767×101 
NBinPSO 499.9±2.916×10-13 -400.4±2.636×101 -20.62±8.200×10-2 -225.3±2.392×101 
EPSO–Gbest 499.9±2.916×10-13 -423.2±2.013×101 -19.99±1.475×10-1 -231.2±2.682×101 
EPSO–Lbest 499.9±2.916×10-13 -404.1±2.683×101 -19.94±2.703×10-4 -231.2±2.134×101 
EPSOq–Gbest 499.9±2.916×10-13 -410.7±2.275×101 -20.16±2.778×10-1 -233.5±1.716×101 
EPSOq–Lbest 499.9±2.916×10-13 -409.7±3.073×101 -19.94±7.754×10-4 -224.5±2.336×101 
MBinPSO–Gbest 499.9±6.199×10-6 -43.88±7.944×100 -15.45±3.918×100 -149.9±1.044×101 
MBinPSO–Lbest 499.9±6.783×10-6 -378.9±1.947×101 -20.06±1.698×10-1 -147.5±1.198×101 
CBinPSO 499.9±3.604×10-13 -0.668±2.803×10-1 -0.875±3.760×10-2 -0.164±1.831×10-1 

For f6 - f8, the NBinPSO, EPSO and EPSOq algorithms prematurely converge with-
in 5000 FEs to solutions at which the achievable fitness scores are significantly lower 
than their global maximum, as shown in Fig. 3(f)-(g). This indicates that these BinP-
SO variants suffer from premature convergence for complex multimodal problems 
and hence they are not suitable for such problems. Though the BinPSO and MBinPSO 
algorithms achieve better solutions for the complex multimodal functions, they need 
more FEs to reach convergence. The CBinPSO algorithm converges to near-optimal 
solutions after around 15000 FEs for f6 and f7 and after 5000 FEs for f8, which is rea-
sonably fast. This shows that the CBinPSO algorithm is more time-efficient for solv-
ing complex multimodal functions. 

3.4  Real-World Engineering Problem 

In this section, the BinPSO variants are tested on a real-world application, which is 
the cooperative spectrum sensing problem in a cognitive radio network. This problem  
is to maximize the probability of detecting the occupancy of a primary wireless chan-
nel by a group of secondary or cognitive radio users as in [4]. For this problem, the 
number of cognitive radio users is set to 20, each weighting coefficient is binary-
encoded with RF = 0.0001, and the other network parameter settings follow those in 
[4]. For the CBinPSO algorithm, K is set to 20. For the MBinPSO algorithm, the  
 
 



 Performance Investigation on Binary Particle Swarm Optimization 151 

        
(a)    (b)     

 
(c)    (d) 

 
(e)    (f) 

 
(g)    (h) 

Fig. 3. Convergence performance on (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7 and (h) f8 
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mutation rate is set to 0.5. For all the BinPSO variants, Ns, FE and the number of 
simulation repetitions are set to 40, 3000 and 100, respectively. Other BinPSO para-
meters are the same as in the previous section.  

The CBinPSO algorithm is shown to achieve the best solution quality and perfor-
mance stability, as shown in Table 3. In Fig. 4, the EPSO algorithm attains the highest 
convergence speed while the CBinPSO and MBinPSO algorithms are the Overall, the 
CBinPSO algorithm is generally the best performer due to its high solution quality 
and stability. Although its convergence speed is slow, it almost reaches convergence 
in the given number of FEs. 

Table 3. Mean and standard deviation achieved for the cooperative spectrum sensing problem 

PSO 
BinPSO NBin

PSO 

EPSO EPSOq MBinPSO CBin-
PSO Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest 

Result 
0.591 

± 
0.014 

0.589 
± 

0.014 

0.651 
± 

0.036 

0.751 
± 

0.037 

0.747 
± 

0.038 

0.655 
± 

0.050 

0.655 
± 

0.056 

0.740 
± 

0.037 

0.675 
± 

0.089 

0.858 
± 

0.004 

 

 

Fig. 4. Convergence performance 

4 Conclusion and Future Works 

In this paper, we have investigated the performance of various BinPSO variants in 
terms of solution quality, performance stability and convergence speed. The NBinP-
SO, EPSO and EPSOq algorithms are more suitable for solving unimodal and simple 
multimodal problems due to their high solution quality, stability and convergence 
speed on such problems, compared to other BinPSO variants. Although the CBinPSO 
algorithm can also achieve high solution quality on the problems, the NBinPSO, 
EPSO and EPSOq algorithms are more processing time-efficient. On the other hand, 
the CBinPSO algorithm is more suitable for solving complex multimodal problems as 
it achieves high solution quality and stability with reasonably fast convergence, com-
pared to other BinPSO variants. The CBinPSO algorithm also performs well on the 
cooperative spectrum sensing problem in cognitive radio networks. Overall, the 
CBinPSO algorithm is the most promising candidate for various types of problems. 



 Performance Investigation on Binary Particle Swarm Optimization 153 

Nevertheless, improvement on the convergence speed of CBinPSO algorithm is still 
required when applied to other real-time applications.  
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