
© Springer International Publishing Switzerland 2015 
Y. Demazeau et al. (Eds.): PAAMS 2015, LNAI 9086, pp. 131–141, 2015. 
DOI: 10.1007/978-3-319-18944-4_11 

Echo State Networks for Feature Selection  
in Affective Computing 

P. Koprinkova-Hristova1, L. Bozhkov2, and P. Georgieva3() 

1 Institute of Information and Communication Technologies,  
Bulgarian Academy of Sciences, Sofia, Bulgaria 
2 Technical University of Sofia, Sofia, Bulgaria 

3 DETI/IEETA, University of Aveiro, Aveiro, Portugal 
petia@ua.pt 

Abstract. The Echo State Networks (ESNs) are dynamical structures designed 
initially to facilitate learning in Recurrent Neural Networks which are normally 
applied for time series modeling. In this paper we show that the ESN reservoirs 
can serve as an effective feature selection procedure that improved the discrim-
ination of human emotion valence from EEG signals, a task that belongs to the 
research field of affective computing. A number of supervised and unsupervised 
machine learning techniques provided with the new feature vector extracted 
from ESN reservoir states were comparatively studied with respect to their dis-
crimination accuracy. This novel application serves as a proof of concept for the 
possibility of extending the usability of the ESNs in classification or clustering 
frameworks. 
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1 Introduction 

Echo State Networks (ESN) represent a class of recurrent neural networks (RNN) 
where the so called “reservoir computing” approach for training is formulated, [15]. 
The key idea of this biologically inspired approach is to mimic structures in human 
brain that seem to be composed by randomly connected dynamic non-linear neurons 
called reservoir whose output is usually linear combination of the current states of the 
reservoir neurons. The main advantage of the ESN is the simplified training algorithm 
since only weights of the connections from the reservoir to the readout neurons are 
subject to training. Thus instead of gradient descent learning much faster least squares 
method can be used. 

Although the reservoir connections and their weights are randomly generated, in 
order to prevent improper behavior of ESN, the reservoir needs to possess the so 
called “echo state property” as formulated in [5]. The basic rule formulation is: the 
effect of input disturbances should vanish gradually in time, that means the dynamic 
reservoir must be stable. According to this rule, a reservoir weight matrix with  
spectral radius below one needs to be generated. However as pointed out in [15] this 
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condition will not guaranty ESN stable behavior in general. Therefore, many task-
dependent recipes for improvement of reservoir connections were proposed. 

Since one of the laws of thermodynamics says that any stable stationary state has a 
local maximum of entropy [3], it can be expected that maximization of entropy at the 
ESN reservoir output could increase its stability. This motivated several works pro-
posing ESN reservoir improvement by its entropy maximization [16]. Other authors 
proposed the biologically motivated algorithm called Intrinsic Plasticity (IP) based on 
mechanisms of changing neural excitability in response to the distribution of the input 
stimuli [18], [19]. In [6] we have shown that in fact IP training achieves balance be-
tween maximization of entropy at the ESN reservoir output and its concentration 
around the pre-specified mean value increasing at the same time reservoir stability. 
During the investigations in [6] another interesting effect was observed: the reservoir 
neurons equilibrium states were concentrated in several regions. Then a question 
arose: is it possible to use this effect for classification or clustering purposes too? This 
initiated development of the proposed here algorithm for multidimensional data clas-
sification and clustering. 

Since ESN are dynamic structures designed initially for time series modeling, us-
ing them for static data classification/clustering might seem odd. However the idea for 
using RNNs in this way is not new. There are examples in the literature like neural 
systems possessing multi-stable attractors [2] that perform temporal integration aimed 
at discrimination between multiple alternatives. In other works [1, 4] unsupervised 
learning procedures that minimize given energy function were proposed aiming at 
achievement of network equilibrium states that reflect given data structure. 

Concerning ESN applications for classification or clustering, there are only few 
works available. In [20] it was proposed for the first time to use ESN as feature ex-
traction stage of image classification. Their role was to “draw out” silent underlying 
features of the data to be used further to train a feedforward neural network classifier. 
In [17] the idea to exploit equilibrium states of the ESN reservoir in order to design 
multiple-clusters ESN reservoirs was proposed. It was inspired by complex network 
topologies imitating cortical networks of the mammalian brain. In [14] it was reported 
that using another kind of IP algorithm in combination with Spike-time Dependent 
plasticity (STDP) of synaptic weights changes the connectivity matrix of the network 
in such a way that the recurrent connections capture the peculiarities of the input  
stimuli so that the network activation patterns can be separated by an unsupervised 
clustering technique. 

The idea described in this paper was motivated initially from stability analysis of 
ESN and proposed for the first time in [7]. It exploits similar reservoir properties  
reported by other works but looking from a different point of view: to consider com-
binations between steady states of each two neurons in the reservoir as numerous  
two-dimensional projections of the original multidimensional data fed into the ESN 
input; next to use these low dimensional projections for classification or clustering of 
the original multidimensional data. The ESN feature selection methodology proposed 
in [7] was successfully tested on a number of different data sets [8-13] to solve  
clustering problems.  
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In this paper we go further and apply it for the first time to a binary classification 
problem. We also compare classification and clustering technique for discrimination 
of positive and negative emotional states of multiple subjects.  

2 Echo State Networks Basics 

The basic structure of an ESN, presented in Fig. 1, consists of a reservoir of randomly 
connected dynamic neurons with sigmoid nonlinearities fres (usually hyperbolic tangent): 

( ) ( ) ( )( )1res in resr k f W in k W r k= + −
                     (1) 

and a linear readout fout (usually identity function) at the output: 

( ) ( ) ( )( )out outout k f W in k r k=   
                      

 (2) 

Here k denotes discrete time instant; in(k) is a vector of network inputs, r(k) - a 
vector of the reservoir neurons states and out(k) – a vector of network outputs; nin, 

nout and nr are the dimensions of the corresponding vectors in, out and r respectively; 

Wout is a trainable nout × (nin+nr) matrix; Win and Wres are nr × nin 
 and nr × nr 

matrices that are randomly generated and are not trainable. In some applications direct 
connection from the input to the readout is omitted. 

 

Fig. 1. Echo state network basic structure 

The key idea is that having rich enough reservoirs of nonlinearities will allow to 
approximate quite complex nonlinear dependence between input and output vectors 
by tuning only the linear readout weights. Hence the training procedure is simplified 
to solving in one step Least Squares task [5]. 

Although this idea seems to work well, it appears that initial tuning of reservoir 
connections to the data that will be fed into the ESN helps to improve its properties. 
In [18], [19] was proposed a reservoir tuning approach called “intrinsic plasticity” 
(IP). It is aimed at maximization of information transmission through the ESN that is 
equivalent to its output entropy maximization. Motivation of this approach is related 
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to known biological mechanisms that change neural excitability according to the dis-
tribution of the input stimuli. The authors proposed a gradient method for adjusting 
the biases and an additional gain term aimed at achieving the desired distribution of 
outputs by minimizing the Kullback-Leibler divergence: 

( ) ( )( ) ( ) ( )
( ), log

p r
D p r p r p r

KL d p r
d

 
 =
 
 


                   

 (3) 

That is a measure for the difference between the actual p(r) and the desired pd(r) 
probability distribution of reservoir neurons output r. Since the commonly used trans-
fer function of neurons is the hyperbolic tangent, the proper target distribution that 
maximizes the information at the output according to [18] is the Gaussian one with a 
prescribed small variance σ and a zero mean μ: 
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Hence equation (3) can be rearranged as follows: 

( ) ( )( ) ( ) ( )( )
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+−+−= rErHrprpD dKL              (5) 

Where H(r) is entropy, the last term is constant and the second one determines the 
deviation of the output from the desired mean value. Thus minimization of (5) will 
lead to compromise between entropy maximization and minimization of distance 
between μ and r. 

In order to achieve those effects two additional reservoir parameters - gain a and 
bias b (both vectors with nr size) - are introduced as follows: 

( ) ( ) ( ) ( ) ( )( )1res in resr k f diag a W in k diag a W r k b= + − +           (6) 

The IP training is a procedure that adjusts vectors a and b using gradient descent. 

3 Affective Computing and Data Set Description 

We consider learning to discriminate emotional states of human subjects, based on 
their brain activity observed via Event Related Potentials (ERPs). ERPs are transient 
components in the EEG generated in response to a stimulus. ERPs were collected 
while subjects were viewing high arousal images with positive or negative emotional 
content. This problem is important because such classifiers constitute “virtual sen-
sors” of hidden emotional states, which are useful in psychology science research and 
clinical applications [21], [22].  

A total of 26 female volunteers participated in the study. The signals were recorded 
while the volunteers were viewing high arousal images with positive and negative 
valence. For each image, signals from 21 EEG channels were sampled at 1000Hz and 
stored (see Table 1). The signals were recorded while the volunteers were viewing 
pictures selected from the International Affective Picture System (IAPS) repository.  
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A total of 24 high arousal (IAPS rating> 6) images with positive valence (M=7.29 +/- 
0.65) and negative valence (M=1.47 +/- 0.24) were selected. Each image was presented 
3 times in a pseudo-random order and each trial lasted 3500 ms: during the first 750 
ms, a fixation cross was presented, then one of the images was presented during 500 
ms and at last a black screen appeared during 2250 ms. The raw EEG signals were first 
filtered (band-pass filter between 0.1 and 30Hz.), eye-movement corrected, baseline 
compensated and segmented into epochs using NeuroScan software. The single-trial 
signal length is 950 ms with 150ms before the stimulus onset. The ensemble average 
for each condition (positive/negative valence) was also computed and filtered using a 
Butterworth filter of 4th order with passband [0.5-15] Hz. Thus, the filtered ensemble 
average signals cover the frequency band ranges corresponding to Delta ([0.5 -4] Hz), 
Theta ([4 -8] Hz) and Alpha neural activity ([8 -12] Hz).  

Temporal features (amplitudes and latencies) are extracted from the filtered,  
segmented and ensemble averaged ERP data. Starting by the localization of the first 
minimum after time t=0s, the features are defined as a sequence of the local positive 
and negative picks, and their respective latencies (time of occurrence). Twelve tem-
poral features are stored (Table 2) corresponding to the amplitudes of the first three 
local minimums (Amin1, Amin2, Amin3), the first three local maximums (Amax1, Amax2, 
Amax3), and their associated latencies (Lmin1, Lmin2, Lmin3, Lmax1, Lmax2, Lmax3). 

Table 1. Channels 

Nº EEG Channels 
1 Ch 1 (FP1) 
2 Ch 2 (FPz) 
3 Ch 3 (FP2) 
4 Ch 4 (F7) 
5 Ch 5 (F3) 
6 Ch 6 (Fz) 
7 Ch 7 (F4) 
8 Ch 8 (F8) 
9 Ch 9 (T7) 
10 Ch 10 (C3) 
11 Ch 11 (Cz) 
12 Ch 12 (C4) 
13 Ch 13 (T8) 
14 Ch 14 (P7) 
15 Ch 15 (P3) 
16 Ch 16 (Pz) 
17 Ch 17 (P4) 
18 Ch 18 (P8) 
19 Ch 19 (O1) 
20 Ch 20 (Oz) 
21 Ch 21 (O2) 

 

Table 2. Features 

Nº Features 
1 Amin1(A1)  
2 Amax1 
3 Amin2 
4 Amax2 
5 Amin3 
6 Amax3 
7 Lmin1 
8 Lmax1 
9 Lmin2 
10 Lmax2 
11 Lmin3 
12 Lmax3 
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As a result, the initial feature set is a matrix X with dimension of 252 columns (21 
channels x12 features) and 52 lines (the ensemble averaged positive and negative 
labeled trials of 26 subjects). The ESN-based features selection discussed in the next 
section is applied on the normalized feature matrix  

( )

( )

X mean X
X

std X

−=                                (7) 

4 ESN for Feature Selection  

The original feature matrix (7) was processed via ESN reservoir following the proce-
dure developed in [8-13]. The two-step algorithm is outlined in Table 3: 

Step 1: IP tuning of the ESN reservoir using original feature data set; 

Table 3. Algorithm to obtain the new feature vector as a vector of equilibrium states of neurons 
in the ESN reservoir 

 
 
The structure of ESN was determined according to the size of the original feature 

matrix (7) so that the size of the ESN input vector corresponds to the number of the 
original features (in this case 252 features). Since we explore only the reservoir out-
put, the size of the readout doesn’t matter and it was set to one. The size of the reser-
voir varies starting from 10 up to 500 neurons in order to study its influence on the 
accuracy of the emotion valence discrimination. Our experimental results with 10, 30, 
50, 100, 150, 300 and 500 neurons are visualized in the next section. The IP tuning 
was done by presenting one by one the feature vector of all training examples to the 
ESN input over a predefined number of iterations (we used 10 iterations) and adjust-
ing the gain and the bias terms using gradient rules from [18]. 

in(1:features number,1:examples number)=original_features; 
nin=features number; nout=1; nr=chosen number; 

esn=generate_esn(nin, nout, nr); 

for it=1:number of IP iterations 
 for i=1:examples number 

esn=esn_IP_training(esn, in(:,i)); 
 end 
end 
for i=1:examples number 
 r(0)=0; 
 for k=1:chosen number of steps 
  r(k)=sim_esn(esn, in(:,i),r(k-1)); 
 end 
 re(i)=r(k); 

end 
esn_features=re; 
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Step 2: Calculating of the equilibrium states of all reservoir neurons.  

Since it is hard to solve analytically the equation for equilibrium states correspond-
ing to each input data inc: 

( ) ( )( )tanh in resr diag a W in diag a W r b
e c e
= + + , 

the equilibrium states re were determined by simulations for a previously chosen 
number of steps until reaching of steady state (in our experiments 25 steps were 
enough). The achieved reservoir neurons equilibrium states were kept as the new 
feature vector called further esn_features. 

5 Emotion Valence Discrimination – Experimental Results 

In this section we use the ESN extracted features (esn_features) in order to discrimi-
nate the positive and negative emotion valence applying supervised (classification) or 
unsupervised (clustering) learning techniques. Two approaches related with the new 
feature space were studied: 

Approach 1: Using all possible 2D combinations between equilibrium states re(i) and 

re(j) of every two neurons i and j from the ESN reservoir as a 2D feature vector. 

This approach actually maps the original feature data set into a bigger space of reser-
voir equilibriums, i.e. we first expand the feature data set and then select the best 2D 
projections among all possible combinations.  

Approach 2: Using all reservoir equilibrium states esn_features as the new feature 
vector. 

In contrast to the first approach, Approach 2 maps the original feature data set into 
a smaller size reservoir and thus the new feature set has a smaller dimension. This 
approach is analog to the PCA (Principal Component Analysis) where a feature re-
duction is first performed before the classification or clustering.  

In the next section Approach 1 and Approach 2 are applied to two basic clustering 
algorithms, k-means and fuzzy C-means (FCM).  

5.1 Data Clustering 

In Fig. 2 are summarized the discrimination accuracies of k-means and FCM. It 
should be noted that Approach 1 produces a variety of 2D feature sets and in Fig.2 are 
presented the accuracy results only for the best 2D feature sets. Among the huge 
number of 2D feature combinations, only few of them achieve these results. For com-
parative purposes we also present the clustering accuracy of k-means and FCM using 
the original feature matrix (7). 

From Fig. 2 it can be concluded that for all reservoir sizes (nr=10, 30, 50, 100, 150, 
300, 500) the best clustering was obtained with Approach 1 (a combination of 2D  
 



138 P. K.-Hristova et al. 

 

Fig. 2. Accuracy of all clustering algorithms using different features sets 

feature sets). The clustering accuracy using all ESN reservoir states (esn_features) 
seems comparable and even worse (especially in the case of bigger reservoir size) 
than those obtained by direct clustering of the original features. Higher the reservoir 
size is, better is the clustering accuracy in the 2D feature scenario which goes close to 
80%. Another interesting observation is that FCM outperforms k-means clustering 
when directly applied to the original feature matrix, while using the ESN extracted 
features seem to make both approaches similar. In the case of using all esn_features 
k-means outperforms slightly FCM while in the case of 2D feature vector both algo-
rithms achieve similar accuracy. 

5.2 Data Classification 

The same ENS models were tested for the case of supervised learning to discriminate 
the two emotion valences. In order to eliminate the problem of choosing the “wrong” 
or the “lucky” model, we applied a number of standard classifiers, namely Linear 
Discriminant Analysis (LDA), k-Nearest Neighbors (kNN), Naïve Bayes (NB),  
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Support Vector Machines (SVM) and Decision Trees (DT). Due to the limited num-
ber of examples (only 26 subjects), cross validation with leave-one-out subject is 
adopted. In order to increase the statistical confidence of the obtained results, classifi-
cation based on the majority votes of the classifiers (LD, kNN, NB, SVM, and DT) 
was also done. We call this hierarchical classification methodology VOTE.  

 

Fig. 3. Accuracy of all classification algorithms using different features sets 

The results in Fig.3 show the same tendency of better accuracy for increasing number 
of neurons in the ENS reservoir. The intuition behind this is that higher the reservoir 
size, more binary combinations of neurons are produced and thus the probability of 
getting a good feature selection increases. An interesting observation but difficult to 
explain is the fact that the VOTE classifier does not always produce the best classifi-
cation. In previous studies [23] we have obtained quite encouraging results with 
VOTE classifier in the framework of different feature selection scenarios. However, 
for bigger reservoir size, VOTE improves and approaches the expected performance.  

Another interesting observation is the surprisingly good performance of the kNN 
and DT classifiers. Finally, comparing the bars in Fig.2 and Fig.3, it can be concluded 
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that the supervised learning (classification) outperforms significantly the unsuper-
vised (clustering) approach, which is not a surprising result.  

6 Conclusions 

In this paper we propose the ESN as a mechanism for feature selection in two scena-
rios: i) map the original features into an expanded feature space defined by the num-
ber of the reservoir neurons (more neurons than ENS inputs) and choose the best 
combination of two neurons (2D projection) as the new features; ii) map the original 
features into a reduced feature space defined by the number of the reservoir neurons 
(less neurons than ENS inputs) and use all of them as the new features. Both scenarios 
were tested on the challenging problem of affective computing based on brain neural 
data (ERPs). In the 2D projection scenario it is always possible to find a combination 
of features that will cluster or classify the data with reasonable accuracy (close to 
80% for the clustering and close to 89% for the classification task).  

The computational complexity is however an unavoidable problem particularly 
when the reservoir size increases. Moreover from the very big number of neuron 
combinations (for example 124750 combinations for nr=500) only few of them reveal 
to be the proper choice.  

Nevertheless, these proof of concept results encourage us to further test the ESN as 
a feature selection step prior to data classification/clustering in other applications.  
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