
Parallel Objects for Multicores: A Glimpse
at the Parallel Language ENCORE

Stephan Brandauer1, Elias Castegren1, Dave Clarke1(B),
Kiko Fernandez-Reyes1, Einar Broch Johnsen2, Ka I. Pun2,

S. Lizeth Tapia Tarifa2, Tobias Wrigstad1, and Albert Mingkun Yang1

1 Department of Information Technology, Uppsala University, Uppsala, Sweden
dave.clarke@it.uu.se

2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. The age of multi-core computers is upon us, yet current pro-
gramming languages, typically designed for single-core computers and
adapted post hoc for multi-cores, remain tied to the constraints of a
sequential mindset and are thus in many ways inadequate. New pro-
gramming language designs are required that break away from this old-
fashioned mindset. To address this need, we have been developing a new
programming language called Encore, in the context of the European
Project UpScale. The paper presents a motivation for the Encore lan-
guage, examples of its main constructs, several larger programs, a for-
malisation of its core, and a discussion of some future directions our work
will take. The work is ongoing and we started more or less from scratch.
That means that a lot of work has to be done, but also that we need not
be tied to decisions made for sequential language designs. Any design
decision can be made in favour of good performance and scalability. For
this reason, Encore offers an interesting platform for future exploration
into object-oriented parallel programming.

1 Introduction

Nowadays the most feasible way for hardware manufacturers to produce proces-
sors with higher performance is by putting more parallel cores onto a single
chip. This means that virtually every computer produced these days is a parallel
computer. This trend is only going to continue: machines sitting on our desks
are already parallel computers, and massively parallel computers will soon be
readily at our disposal.

Most current programming languages were defined to be sequential-by-default
and do not always address the needs of the multi-core era. Writing parallel pro-
grams in these languages is often difficult and error prone due to race conditions
and the challenges of exploiting the memory hierarchy effectively. But because
every computer will be a parallel computer, every programmer needs to become

Partly funded by the EU project FP7-612985 UpScale: From Inherent Con-
currency to Massive Parallelism through Type-based Optimisations (http://www.
upscale-project.eu).

c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 1–56, 2015.
DOI: 10.1007/978-3-319-18941-3 1

http://www.upscale-project.eu
http://www.upscale-project.eu

2 S. Brandauer et al.

a parallel programmer supported by general-purpose parallel programming lan-
guages. A major challenge in achieving this is supporting scalability, that is,
allowing execution times to remain stable as both the size of the data and avail-
able parallel cores increases, without obfuscating the code with arbitrarily com-
plex synchronisation or memory layout directives.

To address this need, we have been developing the parallel programming lan-
guage Encore in the context of the European Project UpScale. The project
has one ambitious goal: to develop a general purpose parallel programming lan-
guage (in the object-oriented vein) that supports scalable performance. Because
message-based concurrency is inherently more scalable, UpScale takes actor-
based concurrency, asynchronous communication, and guaranteed race freedom
as the starting points in the development of Encore.

Encore is based on (at least) four key ingredients: active object parallelism
for coarse-grained parallelism, unshared local heaps to avoid race conditions and
promote locality, capabilities for concurrency control to enable safe sharing, and
parallel combinators for expressing high-level coordination of active objects and
low-level data parallelism. The model of active object parallelism is based on that
of languages such as Creol [21] and ABS [20]. It requires sequentialised execution
inside each active object, but parallel execution of different active objects in the
system. The core of the local heaps model is a careful treatment of references
to passive objects so that they remain within an active object boundary. This
is based on Joëlle [13] and involves so-called sheep cloning [11,29] to copy argu-
ments passed to methods of other active objects. Sheep cloning is a variant of
deep cloning that does not clone references to futures and active objects. Capa-
bilities allow these restrictions to be lifted in various ways to help unhinge inter-
nal parallelism while still guaranteeing race free execution. This is done using
type-based machinery to ensure safe sharing, namely that no unsynchronised
mutable object is shared between two different active objects. Finally, Encore
includes parallel combinators, which are higher-order coordination primitives,
derived from Orc [22] and Haskell [30], that sit both on top of objects providing
high-level coordination and within objects providing low-level data parallelism.

This work describes the Encore language in a tutorial fashion, covering
course-grained parallel computations expressible using active objects, and fine-
grained computations expressible using higher-order functions and parallel
combinators. We describe how these integrate together in a safe fashion using
capabilities and present a formalism for a core fragment of Encore.

Currently, the work on Encore is ongoing and our compiler already achieves
good performance on some benchmarks. Development started more or less from
scratch, which means not only that we have to build a lot of infrastructure, but
also that we are free to experiment with different implementation possibilities
and choose the best one. We can modify anything in the software stack, such as
the memory allocation strategy, and information collected about the program
in higher levels can readily be carried from to lower levels—contrast this with
languages compiled to the Java VM: source level information is effectively lost in
translation and VMs typically do not offer much support in controlling memory
layout, etc.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 3

Encore has only been under development for about a year and a half, con-
sequently, anything in the language design and its implementation can change.
This tutorial therefore can only give a snapshot of what Encore aspires to be.

Structure. Section 2 covers the active object programming model. Section 3 gen-
tly introduces Encore. Section 4 discusses active and passive classes in Encore.
Section 5 details the different kinds of methods available. Section 6 describes
futures, one of the key constructs for coordinating active objects. Section 7 enu-
merates many of the commonplace features of Encore. Section 8 presents a
stream abstraction. Section 9 proposes parallel combinators as a way of express-
ing bulk parallel operations. Section 10 advances a particular capability system
as a way of avoiding data races. Section 11 illustrates Encore in use via exam-
ples. Section 12 formalises a core of Encore. Section 13 explores some related
work. Finally, Sect. 14 concludes.

2 Background: Active Object-Based Parallelism

Encore is an active object-based parallel programming language. Active objects
(Fig. 1), and their close relation, actors, are similar to regular object-oriented
objects in that they have a collection of encapsulated fields and methods that
operate on those fields, but the concurrency model is quite different from what
is found in, for example, Java [16]. Instead of threads trampling over all objects,
hampered only by the occasional lock, the active-object model associates a
thread of control with each active object, and this thread is the only one able to
access the active object’s fields. Active objects communicate with each other by
sending messages (essentially method calls). The messages are placed in a queue
associated with the target of the message. The target active object processes the
messages in the queue one at a time. Thus at most one method invocation is
active at a time within an active object.

Method calls between active objects are asynchronous. This means that when
an active object calls a method on another active object, the method call returns
immediately—though the method does not run immediately. The result of the
method call is a future, which is a holder for the eventual result of the method

Fig. 1. Active Object-based Parallelism

4 S. Brandauer et al.

call. The caller can do other work immediately, and when it needs the result
of the method call, it can get the value from the future. If the value is not yet
available, the caller blocks.

Futures can be passed around, blocked on (in various ways), or have addi-
tional functionality chained on them. This last feature, available in Javascript
for instance, allows the programmer to chain multiple asynchronous computa-
tions together in a way that makes the program easy to understand by avoiding
callbacks.

Actors are a similar model to active objects (though often the terminology
for describing them differs). Two features are more commonly associated with
active objects. Firstly, active objects are constructed from (active) classes, which
typically are composed using inheritance and other well-known object-oriented
techniques. This arguably makes active objects easier to program with as they are
closer to what many programmers are used to. Secondly, message sends (method
calls) in active objects generally return a result, via a future, whereas message
sends in actors are one-way and results are obtained via a callback. Futures
are thus key to making asynchronous calls appear synchronous and avoid the
inversion of control associated with callbacks.

Weakness of Active Objects. Although active objects have been selected as the
core means for expressing parallel computation in Encore, the model is not
without limitations. Indeed, much of our research will focus on ways of overcom-
ing these.

Although futures alleviate the problem of inversion of control described above
in problem, they are not without code. Waiting on a future that had not been
fulfilled can be expensive as it involves blocking the active object’s thread of
control, which may then prevent other calls depending in the active object to
block. Indeed, the current implementation of blocking on a future in Encore is
costly.

A second weakness of active objects is that, at least in the original model, it
is impossible to execute multiple concurrent method invocations within an active
object, even if these method invocations would not interfere. Some solutions to
this problem have been proposed [19] allowing a handful of method invocations
to run in parallel, but these approaches do not unleash vast amounts of paral-
lelism and they lack any means for structuring and composing the non-interfering
method invocations. For scalability, something more is required. Our first ideas
in this direction are presented in Sect. 9.

3 Hello ENCORE

Encore programs are stored in files with the suffix .enc by convention and are
compiled to C. The generated C code is compiled and linked with the Encore

run-time system, which is also written in C. The compiler itself is written in
Haskell, and the generated C is quite readable, which significantly helps with
debugging.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 5

To get a feeling for how Encore programs look, consider the following simple
program (in file hello.enc) that prints “Hello, World!” to standard output.

1 #! /usr/bin/env encorec -run
2 class Main
3 def main() : void {
4 print("Hello, World!")
5 }

The code is quite similar to modern object-oriented programming languages
such as Scala, Python or Ruby. It is statically typed, though many type anno-
tations can be omitted, and, in many cases, the curly braces { and } around
classes, method bodies, etc. can also be omitted.

Ignoring the first line for now, this file defines an active class Main that has
a single method main that specifies its return type as void. The body of the
method calls print on the string “Hello, World!”, and the behaviour is as
expected.

Every legal Encore program must have an active class called Main, with a
method called main—this is the entry point to an Encore program. The run-
time allocates one object of class Main and begins execution in its Main method.

The first line of hello.enc is optional and allows the compiler to automati-
cally compile and run the program (on Unix systems such as Mac OS X). The file
hello.enc has to be runnable, which is done by executing chmod u+x hello.enc
in the shell. After making the program executable, entering ./hello.enc in the
shell compiles and executes the generated binary, as follows:

$./hello.enc
Hello, World!

An alternative to the #! /usr/bin/env encorec -run line is to call the
compiler directly, and then run the executable:

$ encorec hello.enc
$./hello
Hello, World!

4 Classes

Encore offers both active and passive classes. Instances of active classes, that is,
active objects, have their own thread of control and message queue (cf. Sect. 2).
Making all objects active would surely consume too many system resources and
make programming difficult, so passive objects are also included in Encore. Pas-
sive objects, instances of passive classes, do not have a thread of control. Passive
classes are thus analogous to (unsynchronised) classes in mainstream object-
oriented languages like Java or Scala. Classes are active by default: class A.
The keyword passive added to a class declaration makes the class passive:
passive class P. Valid class names must start with an uppercase letter. (Type
parameters start with a lower case letter.) Classes in Encore have fields and

6 S. Brandauer et al.

methods; there is a planned extension to include traits and interfaces integrating
with capabilities (cf. Sect. 10).

A method call on an active object will result in a message being placed in
the active object’s message queue and the method invocation possibly runs in
parallel with the callee. The method call immediately results in a future, which
will hold the eventual result of the invocation (cf. Sect. 6). A method call on a
passive object will be executed synchronously by the calling thread of control.

4.1 Object Construction and Constructors

Objects are created from classes using new, the class name and an optional
parameter list: new Foo(42). The parameter list is required if the class has an
init method, which is used as the constructor. This constructor method cannot
be called on its own in other situations.

4.2 Active Classes

The following example illustrates active classes. It consists of a class Buffer
that wraps a Queue data structure constructed using passive objects (omitted).
The active object provides concurrency control to protect the invariants of the
underlying queue, enabling the data structure to be shared. (In this particu-
lar implementation, taking an element from the Buffer is implemented using
suspend semantics, which is introduced in Sect. 7.)

1 passive class Data { ... }
2 class Buffer
3 queue : Queue;
4

5 def init()
6 this.queue = new Queue()
7

8 def put(item : Data) : void
9 this.queue.enqueue(item)

10

11 def take() : Data {
12 while this.queue.empty() {
13 suspend;
14 };
15 this.queue.dequeue()
16 }

Fields of an active object are private; they can only be accessed via this,
so the field queue of Buffer is inaccessible to an object holding a reference to a
Buffer object.

4.3 Passive Classes

Passive classes in Encore correspond to regular (unsynchronised) classes in
other languages. Passive classes are used for representing the state of active
objects and data passed between active objects. Passive classes are indicated
with the keyword passive.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 7

1 passive class Person {
2 name : string
3 age : int
4

5 def init(name : string, age : int) {
6 this.name = name;
7 this.age = age;
8 }
9 }

In passive classes, all fields are public:
1 class Main
2 def main() : void
3 let p = new Person("Dave", 21) in
4 print("Hello {}\n", p.name) -- prints"Hello Dave"

4.4 Parametric Classes

Classes can take type parameters. This allows, for example, parameterised pairs
to be implemented:

1 passive class Pair<a, b>
2 fst : a
3 snd : b
4 def init(fst_ : a, snd_ : b) : void {
5 this.fst = fst_;
6 this.snd = snd_
7 }

This class can be used as follows:
1 class Main
2 def main() : void
3 let pair = new Pair<int,string>(65,"a") in
4 print("({},{})\n", pair.fst, pair.snd)

Currently, type parameters are unbounded in Encore, but this limitation will
be removed in the future.

4.5 Traits and Inheritance

Encore is being extended with support for traits [14] to be used in place of
standard class-based inheritance. A trait is a composable unit of behaviour that
provides a set of methods and requires a set of fields and methods from any class
that wishes to include it. The exact nature of Encore traits has not yet been
decided at time of writing.

A class may be self-contained, which is the case for classes shown so far and
most classes shown in the remainder of this document, or be constructed from
a set of pre-existing traits. The inclusion order of traits is insignificant, and
multiple ways to combine traits are used by the type system to reason about
data races (cf. Sect. 10). Below, the trait Comparator implementation requires
that the including class defines a cmp method, and provides five more high-level
methods all relying on the required method.

8 S. Brandauer et al.

1 trait Comparator<t>
2 require def cmp(t): int;
3

4 def equal(v:t) : bool
5 this.cmp(v) == 0
6

7 def lessThan(v:t) : bool
8 this.cmp(v) < 0
9 def lessThanOrEqual(v:t) : bool

10 this.cmp(v) <= 0
11

12 def greaterThan(v:t) : bool
13 this.cmp(v) > 0
14 def greaterThanOrEqual(v:t) : bool
15 this.cmp(v) >= 0

Traits enable trait-based polymorphism—it is possible, for instance, to write
a method that operates on any object whose class includes the Comparator trait:

1 def contains(p:person, ps:[Comparator<Person>]) : bool
2 let
3 found = false
4 size = |ps|
5 i = 0
6 in {
7 while not found and i < size
8 {
9 if ps[i].equal(p) then found = true;

10 i = i + 1;
11 }
12 return found;
13 }

For more examples of traits, see Sect. 10.

5 Method Calls

Method calls may run asynchronously (returning a future) or synchronously
depending primarily on whether the target is active or passive. The complete
range of possibilities is given in the following table:

Synchronous Asynchronous

Active objects get o.m() o.m()
Passive objects o.m() —

this (in Active) this.m() let that = this in that.m()

Self calls on active objects can be run synchronously—the method called is
run immediately—or asynchronously—a future is immediately returned and the
invocation is placed in the active object’s queue.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 9

Sometimes the result of an asynchronous method call is not required, and
savings in time and resources can be gained by not creating the data structure
implementing the future. To inform the compiler of this choice, the . in the
method call syntax is replaced by a !, as in the following snippet:

1 cart ! add_item(item)

6 Futures

Method calls on active objects run asynchronously, meaning that the method
call is run potentially by a different active object and that the current active
object does not wait for the result. Instead of returning a result of the expected
type, the method call returns an object called a future. If the return type of
the method is t, then a value of type Fut t is returned to the caller. A future
of type Fut t is a container that at some point in the future will hold a value
of type t, typically when some asynchronous computation finishes. When the
asynchronous method call finishes, it writes its result to the future, which is said
to be fulfilled. Futures are considered first class citizens, and can be passed to
and returned from methods, and stored in data types. Holding a value of type
Fut t gives a hint that there is some parallel computation going on to fulfil this
future. This view of a future as a handle to a parallel computation is exploited
further in Sect. 9.

Several primitive operations are available on futures:

– get: Fut t -> t waits for the future to be fulfilled, blocking the current
active object until it is; returns the value stored in the future.

– await: Fut t -> void waits for the future to be fulfilled, without blocking
the current active object, thus other methods can run; does not return a
value.1

– chaining: ~~> : Fut t -> (t -> t’) -> Fut t’ takes a closure to run on
the result when the future is fulfilled; returns another future that will contain
the result of running the closure.

These operations will be illustrated using following the classes as a basis. These
classes model a service provider that produces a certain product:

1 passive class Product { ... }
2 class Service {
3 def provide(): Product {
4 new Product()
5 }

The next subsections provide several implementations of clients that call on the
service provider, create an instance of class Handle to deal with the result, and
pass the result provided by the service provider to the handler.
1 This design should change, so that await will become more similar to get, but with

a different effect on the active object.

10 S. Brandauer et al.

6.1 Using the get operation

When the get operation is applied to a future, the current active object blocks
until the future is fulfilled, and when it has been, the call to get returns the
value stored in the future.

Consider the following client code.
1 class Handler { ... }
2 class Client
3 service : Service
4

5 def run() : void {
6 let fut = service.provide()
7 handler = new Handler()
8 in {
9 handler.handle(get fut);

10 ...
11 }
12 }

In method run of Client, the call to service.provide() results in a future of
type Fut Product (line 6). In line 9, the actual Product object is obtained using
a call to get. If the future had already been fulfilled, the Product object would
be returned immediately. If not, method and the active object block, preventing
any progress locally until the future is fulfilled.

6.2 Using the await command

One of the problems with calling get on a future is that it can result in the entire
active object being blocked—sometimes this is desirable to ensure than internal
invariants hold, but it can result in costly delays, for example, if the method
called involves a time-consuming calculation. During that time, the whole active
object can make no progress, which would also block other active objects that
need its services.

An alternative, when it makes sense, is to allow the active object to process
other messages from its message queue and resume the current method call
sometime after the future has been fulfilled. This is exactly what calling await
on a future allows.

Command await applies to a future and waits for it to be fulfilled, blocking
the current method call but without blocking the current active object. The call
to await does not return a value, so a call to get is required to get the value.
This call to get is guaranteed to succeed without blocking.

The following code provides an alternative implementation to the method
run from class Client above using await:2

1 def run() : void {
2 let fut = service.provide()
3 handler = new Handler()

2 Ideally, this should be: handler.handle(await fut). Future versions of Encore will
support this semantics.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 11

4 in {
5 await fut;
6 handler.handle(get fut);
7 ...
8 }
9 }

In this code, the call await fut on line 5 will block if the future fut is unfulfilled;
other methods could run in the same active object between lines 5 and 6. When
control returns to this method invocation, execution will resume on line 6 and
the call to get fut is guaranteed to succeed.

6.3 Using Future Chaining

The final operation of futures is future chaining (fut ∼∼> g) [24]. Instead of
waiting for the future fut to be fulfilled, as is the case for get and await,
future chaining attaches a closure g to the future to run when the future is
fulfilled. Future chaining immediately returns a future that will store the result
of applying the closure to the result of the original future.

The terminology comes from the fact that one can add a further closure onto
the future returned by future chaining, and add a additional closure onto that,
and so forth, creating a chain of computations to run asynchronously. If the code
is written in a suitably stylised way (e.g., one of the ways of writing monadic code
such as Haskell’s do-notation [30]), then the code reads in sequential order—no
inversion of control.

Consider the following alternative implementation of the run method from
class Client above using future chaining:

1 def run() : void {
2 let fut = service.provide()
3 handler = new Handler()
4 in {
5 fut ~~> (\(prod: Producer) -> handler.handle(prod)) -- future chaining
6 ...
7 }
8 }

In the example above, the closure defined on line 5 will be executed as soon as
the future from service.provide() (line 2) is fulfilled.

A chained closure can run in one of two modes, depending on what is accessed
within the closure. If the closure accesses fields or passive objects from the sur-
rounding context, which would create the possibility of race conditions, then it
must be run in attached mode, meaning that the closure when invoked will be
run by the active object that lexically encloses it. The closure in the example
above needs to run in attached mode as it accesses the local variable handle. In
contrast, a closure that cannot cause race conditions with the surrounding active
object can be run in detached mode, which means that it can be run indepen-
dently of the active object. To support the specification of detached closures, the
notion of spore [26], which is a closure with a pre-specified environment, can be
used (cf. Sect. 7.6). Capabilities (Sect. 10) will also provide means for allowing
safe detached closures.

12 S. Brandauer et al.

7 Expressions, Statements, and so Forth

Encore has many of the language features one expects from a general purpose
programming language. Some of these features are described (briefly) in the
following subsections.

7.1 Types

Encore has a number of built in types. The following table presents these, along
with typical literals for each type:

Type Description Literals

void The unit value ()
string Strings “hello”
int Fixed-precision integers 1, -12
uint Unsigned, fixed-precision integers 42
real Floating point numbers 1.234, -3.141592
bool Booleans true, false
Fut t Futures of type t —

Par t Parallel computations producing type t —

Stream t functional streams of type t —

t -> t’ functions from type t to type t’ \x -> x * 2
[t] arrays of type t [1,2,3,6], but not []

The programmer can also introduce two new kinds of types: active class types
and passive classes types, both of which can be polymorphic (cf. Sect. 4).

7.2 Expression Sequences

Syntactically, method bodies, while bodies, let bodies, etc. consist of a single
expression:

1 def single() : void
2 print"a single expression needs no curly braces"

In this case, curly braces are optional.
1 def curly() : void {
2 print".. but it CAN use them!"
3 }

If several expressions need to be sequenced together, this is done by sepa-
rating them by semicolons and wrapping them in curly braces. The value of a
sequence is the value of its last expression. A sequence can be used wherever an
expression is expected.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 13

1 def multiple() : int {
2 print"multiple";
3 print"expressions";
4 print"are wrapped by { ... }";
5 print"and separated by ’;’";
6 2
7 }

7.3 Loops

Encore has two kinds of loops: while and repeat loops. A while loop takes a
boolean loop condition, and evaluates its body expression repeatedly, as long as
the loop condition evaluates to true:

1 let i = 0 in
2 while i < 5 {
3 print("i={}\n",i);
4 i = i + 1
5 }

This prints:

i=0
i=1
i=2
i=3
i=4

The repeat loop is syntax sugar that makes iterating over integers simpler.
The following example is equivalent to the while loop above:

1 repeat i <- 5
2 print("i={}\n",i)

In general,
1 repeat i <- n
2 expr

evaluates expr for values i = 0, 1, . . . , n − 1.

7.4 Arrays

The type of arrays of type T is denoted [T]. An array of length n is created
using new [T](n). Arrays are indexed starting from 0. Arrays are fixed in size
and cannot be dynamically extended or shrunk.

Array elements are accessed using the bracket notation: a[i] accesses the
ith element. The length of an array is given by |a|. Arrays can be constructed
using the literal notation [1, 2, 1+2].

The following example illustrates the features of arrays:
1 class Main
2 def bump(arr: [int]): void
3 repeat i <- |arr|

14 S. Brandauer et al.

4 arr[i] = arr[i] + 1
5

6 def main(): void {
7 let a = [1,2,3] in {
8 this.bump(a);
9 repeat i <- |a|

10 print a[i];
11 let b = new [int](3) in {
12 b[0] = 0;
13 b[1] = a[0];
14 b[2] = 42 - 19;
15 };
16 repeat i <- |b|
17 print b[i];
18 }
19 }

The expected output is

2
3
4
0
2
23

7.5 Formatted Printing

The print statement allows formatted output. It accepts a variable number
of parameters. The first parameter is a format string, which has a number of
holes marked with {} into which the values of the subsequent parameters are
inserted. The number of occurrences of {} must match the number of additional
parameters.

The following example illustrates how it works.
1 class Main
2 def main() : void {
3 let i = 0 in {
4 while i < 5 {
5 i = i+1;
6 print("{} * {} = {}\n", i, i, i*i);
7 }
8 }
9 }

The output is:

$./ex_printing.enc
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 15

7.6 Anonymous Functions

In Encore, an anonymous function is written as follows:
1 \(i : int) -> 10 * i

This function multiplies its input i by 10.
The backslash \ (syntax borrowed from Haskell, resembling a lambda) is

followed by a comma separated list of parameter declarations, an arrow -> and
an expression, the function body. The return type does not need to be declared
as it is always inferred from the body of the lambda.

In the example below, the anonymous function is assigned to the variable
tentimes and then later applied—it could also be applied directly.

1 let tentimes = \(i : int) -> 10 * i in
2 print(tentimes(10)) -- prints 100

Anonymous functions are first-class citizens and can be passed as arguments,
assigned to variables and returned from methods/functions. Types of functions
are declared by specifying its arguments types, an arrow ->, and the return
type. For example, the type of the function above is int ->int. Multi-argument
functions have types such as (int, string)->bool.

The following example shows how to write a higher-order function update
that takes a function f of type int->int, an array of int’s and applies the
function f to the elements of the array data, updating the array in-place.

1 def update(f: int -> int, data: [int]): void {
2 repeat i <- |data|
3 data[i] = f(data[i]);
4 }
5

6 class Main
7 def main(): void {
8 let xs = [2,3,4,1] in
9 update(\(data: int) -> data + 1, xs)

10 }

Closures as specified above can capture variables appearing in their surround-
ing lexical context. If a closure is run outside of the context in which it is defined,
then data races can occur. A variation on closures exists that helps avoid this
problem.

Encore provides a special kind of anonymous function called a spore [26].
A spore must explicitly specify the elements from its surrounding context that
are captured in the spore. The captured elements can then, more explicitly, be
controlled using types, locks or cloning to ensure that the resulting closure can
be run outside of the context in which the spore is defined. Spores have an
environment section binding the free variables of the sport to values from the
surrounding context, and a closure, which can access only those free variables
and its parameters.

1 class Provider
2 service: Service
3

4 def provide(): Data -> Product {

16 S. Brandauer et al.

5 spore {
6 let x = clone this.service in -- set up environment for closure
7 \(y: Data) -> x.produce(y) -- the closure
8 }
9 }

In this code snippet, the only variables in scope in the closure body are x and y.
The field service, which would normally be visible within the closure (in Scala
or in Java if it were final), is not accessible. It is made accessible (actually, a
clone of its contents), via variable x in the environment section of the spore.

7.7 Polymorphism and Type Inference

At the time of writing, Encore offers some support for polymorphic classes,
methods and functions. Polymorphism in Encore syntactically resembles other
well-established OOP languages, such as Java. Type variables in polymorphic
classes, methods and/or functions must be written using lower case.

The following example shows how to write a polymorphic list:
1 passive class List<t>
2 data: t
3 next: List<t>
4

5 def init(data: t): void
6 this.data = data
7

8 def append(data: t): void {
9 let next_item = new List<t>(this.data) in {

10 next_item.next = this.next;
11 this.data = data;
12 this.next = next_item;
13 }
14 }
15 -- other methods
16

17 class Main
18 def main(): void {
19 let l = new List<int> in {
20 l.append(3);
21 l.append(4);
22 }
23 }

7.8 Module System

Currently, Encore supports a rudimentary module system. The keyword import
followed by the name of a module imports the corresponding module. The name
of the module must match the name of the file, excluding the .enc suffix. The
compiler looks for the corresponding module in the current directory plus any
directories specified using the -I pathlist compiler flag.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 17

Assume that a library module Lib.enc contains the following code:
1 class Foo
2 def boo(): void {
3 print"^-^"
4 }

This module can be imported using import Lib as illustrated in the following
(file Bar.enc):

1 import Lib
2

3 class Main
4 def main(): void {
5 let
6 f = new Foo
7 in
8 f.boo()
9 }

Here Bar.enc imports module Lib and can thus access the class Foo.
Currently, the module system has no notion of namespaces, so all imported

objects needs to have unique names. There is also no support for cyclic imports
and qualified imports, so it is up to the programmer to ensure that each file is
only imported once.

7.9 Suspending Execution

The suspend command supports cooperative multitasking. It suspends the cur-
rently running method invocation on an active object and schedules the invoca-
tion to be resumed after all messages in the queue have been processed.

1 class Pi
2 def calculate_digits(digits: int): double {
3 -- perform initial calculations
4 ...
5 suspend;
6 -- continue performing more calculations
7 ...
8 }
9

10 class Main
11 def main(): void {
12 let pi = new Pi() in {
13 pi.calculate_decimals(100000000000);
14 }
15 }

The example computes a large number of digits of π. The method calculate
digits calls suspend to allow other method calls to run on the Pi active object.
This is achieved by suspending the execution of the current method call, placing
a new message in its message queue, and then releasing control. The message
placed in the queue is the continuation of the suspended method invocation,
which in this case will resume the suspended method invocation at line 6.

18 S. Brandauer et al.

7.10 Embedding of C Code

Encore supports the embedding of C code. This is useful for wrapping C
libraries to import into the generated C code and for experimenting with imple-
mentation ideas before incorporating them into the language, code generator,
or run-time. Two modes are supported: top-level embed blocks and embedded
expressions.

Note that we do not advocate the extensive use of embed. Code using embed
is quite likely to break with future updates to the language.

Top-Level Embed Blocks. Each file can contain at most one top-level embed
block, which has to be placed before the first class definition in the file. This
embed block consists of a header section and an implementation section, as in
the following example:

1 embed
2 int64_t sq(int64_t);
3 body
4 int64_t sq(int64_t n) {
5 return n*n;
6 }
7 end

The header section will end up in a header file that all class implementations
will include. The implementation section will end up in a separate C file. The
sq function declaration must be included in the header section, otherwise the
definitions in the body section would not be accessible in the generated C code.

Embedded Expressions. An embed block can appear anywhere where an expres-
sion can occur. The syntax is:

1 embed encore-type C-code end

When embedding an expression, the programmer needs to assign an encore type
to the expression. Encore will assume that this type is correct. The value of an
embedded expression is the value of the last C-statement in the embedded code.

Encore variables can be accessed from within an embed block by wrapping
them with #{ }. For instance, local variable x in Encore code is accessed using
#{x} in the embedded C. Accessing fields of the current object is achieved using
C’s arrow operator. For instance,this->foo accesses the field this.foo.

The following example builds upon the top-level embed block above:
1 class Main
2 def main() : void {
3 let x = 2 in
4 print(embed int sq(#{x}); end)
5 }

The embedded expression in this example promises to return an int. It calls the
C-function sq on the local Encore variable x.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 19

Embedding C Values as Abstract Data Types. The following pattern allows
C values to be embedded into Encore code and treated as an abstract type,
in a sense, where the only operations that can manipulate the C values are
implemented in other embedded blocks. In the following code example, a type D
is created with no methods or fields. Values of this type cannot be manipulated
in Encore code, only passed around and manipulated by the corresponding C
code.

1 passive class D
2

3 passive class LogArray
4 size:int
5 slots:D
6 def init(size:int) : void
7 embed void -- initialise element of type D
8 this->slots = pony_alloc(size * sizeof(void*));
9 for (int i = 0; i < size; ++i) ((pony_actor_t**)this->slots)[i] = NULL;

10 this->size = size;
11 end
12 def write(i:int, v:LogEntry) : void
13 embed void -- modify element of type D
14 ((void **)this->slots)[i] = v;
15 end
16 def read(i:int) : LogEntry
17 embed LogEntry --- read element of type D
18 ((void **)this->slots)[i];
19 end
20 def size() : int
21 this.size

Mapping ENCORE Types to C Types. The following table documents how
Encore’s types are mapped to C types. This information is useful when writing
embedded C code, though ultimately having some detailed knowledge of how
Encore compiles to C will be required to do anything advanced.

Encore type C type

string (char *)
real double
int int64 t
uint uint64 t
bool int64 t
〈an active class type〉 (encore actor t *)
〈a passive class type〉 (CLASSNAME data *)
〈a type parameter〉 (void *)

20 S. Brandauer et al.

8 Streams

A stream in Encore is an immutable sequence of values produced asynchro-
nously. Streams are abstract types, but metaphorically, the type Stream a can
be thought of as the Haskell type:

1 type Stream a = Fut (Maybe (St a))
2 data St a = St a (Stream a)

That is, a stream is essentially a future, because at the time the stream is
produced it is unknown what its contents will be. When the next part of contents
are known, it will correspond to either the end of the stream (Nothing in Haskell)
or essentially a pair (Just (St e s)) consisting of an element e and the rest of
the stream s.

In Encore this metaphor is realised, imperfectly, by making the following
operations available for the consumer of a stream:

– get: Stream a -> a — gets the head element of the (non-empty) stream,
blocking if it is not available.

– getNext: Stream a -> Stream a — returns the tail of the (non-empty)
stream. A non-destructive operator.

– eos: Stream a -> Bool — checks whether the stream is empty.

Streams are produced within special stream methods. Calling such methods
results immediately in a handle to the stream (of type Stream a). Within such a
method, the command yield becomes available to produce values on the stream.
yield takes a single expression as an argument and places the corresponding
value on the stream being produced. When the stream method finishes, stream
production finishes and the end of the stream marker is placed in the stream.

The following code illustrate an example stream producer that produces a
stream whose elements are of type int:

1 class IntSeq
2 stream start(fr : int, to : int) : int {
3 while fr <= to {
4 yield fr;
5 fr = fr+1
6 };
7 }

The following code gives an example stream consumer that processes a stream
stored in variable str of type Stream int.

1 class Main
2 def main() : void
3 let
4 lst = 0
5 str = (new IntSeq).start(1,1000000)
6 in {
7 while not eos str {
8 lst = get str;

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 21

9 str = getNext str;
10 };
11 print lst
12 }

Notice that the variable str is explicitly updated with a reference to the tail of
the stream by calling getNext, as getNext returns a reference to the tail, rather
than updating the object in str in place—streams are immutable, not mutable.

9 Parallel Combinators

Encore offers preliminary support for parallel types, essentially an abstraction
of parallel collections, and parallel combinators that operate on them. The com-
binators can be used to build pipelines of parallel computations that integrate
well with active object-based parallelism.

9.1 Parallel Types

The key ingredient is the parallel type Par t, which can be thought of as a
handle to a collection of parallel computations that will eventually produce zero
or more values of type t—for convenience we will call such an expression a parallel
collection. (Contrast with parallel collections that are based on a collection of
elements of type t manipulated using parallel operations [31].) Values of Par
t type are first class, thus the handle can be passed around, manipulated and
stored in fields of objects.

Parallel types are analogous to future types in a certain sense: an element
of type Fut t can be thought of as a handle to a single asynchronous (possibly
parallel) computation resulting in a single value of type t; similarly, an element
of type Par t can be thought of as a handle to a parallel computation resulting
in multiple values of type t. Pushing the analogy further, Par t can be thought
of as a “list” of elements of type Fut t: thus, Par t ≈ [Fut t].

Values of type Par t are assumed to be ordered, thus ultimately a sequence
of values as in the analogy above, though the order in which the values are
produced is unspecified. Key operations on parallel collections typically depend
neither on the order the elements appear in the structure nor the order in which
they are produced.3

9.2 A Collection of Combinators

The operations on parallel types are called parallel combinators. These adapt
functionality from programming languages such as Orc [22] and Haskell [30]
to express a range of high-level typed coordination patterns, parallel dataflow
pipelines, speculative evaluation and pruning, and low-level data parallel com-
putations.
3 An alternative version of Par t is possible where the order in the collection is not

preserved. This will be considered in more detail in future experiments.

22 S. Brandauer et al.

The following are a representative collection of operations on parallel types.4

Note that all operations are functional.

– empty: Par t. A parallel collection with no elements.
– par: (Par t, Par t) ->Par t. The expression par(c, d) runs c and d in

parallel and results in the values produced by c followed (spatially, but not
temporally) by the values produced by d.

– pbind: (Par t, t ->Par t’) -> Par t’. The expression pbind(c,f)
applies the function f to all values produced by c. The resulting nested par-
allel collection (of type Par (Par t’)) is flattened into a single collection (of
type Par t’), preserving the order among elements at both levels.

– pmap: (t -> t’, Par t) -> Par t’ is a parallel map. The expression
pmap(f,c) applies the function f to each element of parallel collection c in
parallel resulting in a new parallel collection.

– filter: (t ->bool, Par t) -> Par t filters elements. The expression filter
(p, c) removes from c elements that do not satisfy the predicate p.

– select: Par t -> Maybe t returns the first available result from the parallel
type wrapped in tag Just, or Nothing if it has no results.5

– selectAndKill: Par t -> Maybe t is similar to select except that it also
kills all other parallel computations in its argument after the first value has
been found.

– prune: (Fut (Maybe t) ->Par t’, Par t) -> Par t’. The expression
prune(f, c) creates a future that will hold the result of selectAndKill(c)
and passes this to f. This computation in run in parallel with c. The first
result of c is passed to f (via the future), after which c is terminated.

– otherwise: (Par t, () ->Par t) ->Par t. The expression otherwise
(c, f) evaluates c until it is known whether it will be empty or non-empty.
If it is not empty, return c, otherwise return f().

A key omission from this list is any operation that actually treats a parallel col-
lection in a sequential fashion. For instance, getting the first (leftmost) element
is not possible. This limitation is in place to discourage sequential programming
with parallel types.

9.3 From Sequential to Parallel Types

A number of functions lift sequential types to parallel types to initiate parallel
computation or dataflow.
4 As work in parallel types and combinators is work in progress, this list is likely to

change and grow.
5 Relies on Maybe data type: in Haskell syntax data Maybe a = Nothing | Just a.

Data types are at present being implemented. An alternative to Maybe is to use Par
restricted to empty and singleton collections. With this encoding, the constructors for
Maybe become Nothing = empty, Just a = liftv a (from Sect. 9.3), and the destruc-
tor, maybe :: b -> (a -> b) -> Maybe a -> b in Haskell, is defined in Encore as
def maybe(c: b, f: a->b, x: Maybe a) = otherwise(pmap(f, x), \() -> c).

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 23

– liftv :: t -> Par t converts a value to a singleton parallel collection.
– liftf :: Fut t -> Par t converts a future to a singleton parallel collection

(following the Par t ≈ [Fut t] analogy above).
– each :: [t] -> Par t converts an array to a parallel collection.

One planned extension to provide a better integration between active objects
and parallel collections is to allow fields to directly store collections but not as a
data type but, effectively, as a parallel type. Then applying parallel operations
would be more immediate.

9.4 ... and Back Again

A number of functions are available for getting values out of parallel types. Here
is a sample:

– select :: Par t -> Maybe t, described in Sect. 9.2, provides a way of getting
a single element from a collection (if present).

– sum :: Par Int -> Int and other fold/reduce-like functions provide opera-
tions such as summing the collection of integers.

– sync :: Par t -> [t] synchronises the parallel computation and produces a
sequential array of the results.

– wsync :: Par t -> Fut[t] same as sync, but instead creates a computation
to do the synchronisation and returns a future to that computation.

9.5 Example

The following code illustrates parallel types and combinators. It computes the
total sum of all bank accounts in a bank that contain more than 10,000 euros.

The program starts by converting the sequential array of customers into a
parallel collection. From this point on it applies parallel combinators to get the
accounts, then the balances for these accounts, and to filter the corresponding
values. The program finishes by computing a sum of the balances, thereby moving
from the parallel setting back to the sequential one.

1 import party
2

3 class Main
4 bank : Bank
5 def main(): void {
6 let
7 customers = each(bank.get_customers()) -- get customers objects
8 balances =
9 filter(\(x: int) -> { x > 10000 }, -- filter accounts

10 pmap(\(x: Account) -> x.get_balance()), -- get all balances
11 pbind(customers,
12 \(x : Customer) -> x. get_accounts())) -- get all accounts
13 in
14 print("Total: {}\n", sum(balances))
15 }

24 S. Brandauer et al.

9.6 Implementation

At present, parallel types and combinators are implemented in Encore as a
library and the implementation does not deliver the desired performance. In
the future, Par t will be implemented as an abstract type to give the com-
piler room to optimise how programs using parallel combinators are translated
into C. Beyond getting the implementation efficient, a key research challenge
that remains to be addressed is achieving safe interaction between the parallel
combinators and the existing active object model using capabilities.

10 Capabilities

The single thread of control abstraction given by active objects enables sequen-
tial reasoning inside active objects. This simplifies programming as there is no
interleaving of operations during critical sections of a program. However, unless
proper encapsulation of passive objects is in place, mutable objects might be
shared across threads, effectively destroying the single thread of control.

A simple solution to this problem is to enforce deep copying of objects when
passing them between active objects, but this can increase the cost of mes-
sage sending. (This is the solution adopted in the formal semantics of Encore

presented in Sect. 12.) Copying is, however, not ideal as it eliminates cases of
benign sharing of data between active objects, such as when the shared data
is immutable. Furthermore, with the creation of parallel computation inside
active objects using the parallel combinators of Sect. 9, more fine-grained ways
of orchestrating access to data local to an active object is required to avoid race
conditions.

These are the problems addressed by the capability type system in Encore.6

10.1 Capabilities for Controlling of Sharing

A capability is a token that governs access to a certain resource [27]. In an
attempt to re-think the access control mechanisms of object-oriented program-
ming systems, Encore uses capabilities in place of references and the resources
they govern access to are objects, and often entire aggregates. In contrast to how
references normally behave in object-oriented programming languages, capabil-
ities impose principles on how and when several capabilities may govern access
to a common resource. As a consequence, different capabilities impose different
means of alias control, which is statically enforce at compile-time.

In Encore capabilities are constructed from traits, the units of reuse from
which classes can be built (cf. Sect. 4.5). Together with a kind, each trait forms
a capability, from which composite capabilities can be constructed. A capability
provides an interface, essentially the methods of the corresponding trait. The
capability’s kind controls how this interface can be accessed with respect to
6 Note that at the time of writing, the capability system has not been fully imple-

mented.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 25

Capability

Exclusive
Shared

LockedAtomic Immutable

Safe Unsafe

Lock-Free Active Stable

Subordinate

Optimistic Pessimistic Oblivious

Fig. 2. The hierarchy of capabilities. Leaf nodes denote concrete capabilities, non-leaves
categorise.

avoiding data-races. Capabilities are combined to form classes, just as traits do,
which means that the range of capabilities are specified at class definition, rather
than at object creation time.

From an object’s type, it is immediately visible whether it is exclusive to a
single logical thread of control (which trivially implies that accesses to the object
are not subject to data races), shared between multiple logical threads (in which
case freedom from data races must be guaranteed by some concurrency control
mechanism), or subordinate to some other object which protects it from data
races—this is the default capability of a passive class in Encore. The active
capability is the capability kind of active classes in Encore. Figure 2 shows the
different capabilities considered, which will be discussed below.7

10.2 Exclusive Capabilities

Exclusive capabilities are exclusive to a single thread of control. exclusive capa-
bilities implement a form of external uniqueness [12] where a single pointer is
guaranteed to be the only external pointer to an entire aggregate. The uniqueness
of the external variable is preserved by destructive reads, that is, the variable
must be nullified when read unless it can be guaranteed that the two aliases are
not visible to any executing threads at the same time.

Exclusive capabilities greatly simplify ownership transfer—passing an exclu-
sive capability as an argument to a method on another active object requires the
nullification of the source variable, which means that all aliases at the source to
the entire aggregate are dead and that receiver has sole access to the transferred
object.
7
Encore may eventually not include all kinds of capabilities presented here, this is
a matter under consideration.

26 S. Brandauer et al.

10.3 Shared Capabilities

A shared capability expresses that the object is shared and, in contrast to exclusive
capabilities, some dynamic means is required to guarantee data-race freedom.

The semantics of concurrent accesses via a shared capability is governed by
the sharing kind. The list below overviews the semantics of concurrent accesses
of safe (first six) and unsafe capabilities.

Active. Active capabilities denote Encore’s active classes. They guarantee race-
freedom through dynamic, pessimistic concurrency control by serialising all its
inside computation.

Atomic. Atomic capabilities denote object references whose access is managed
by a transaction. Concurrent operations either commit or rollback in a stan-
dard fashion. From a race-freedom perspective, atomic capabilities can be freely
shared across Encore active objects.

An interesting question arises when considering the interaction between trans-
actions and asynchronous message passing: can asynchronous messages “escape” a
transaction? Since asynchronous messages are processed by other logical threads
of control, they may be considered a side-effect that is impossible to roll-back.
Some ways of resolving this conundrum are:

1. Forbidding asynchronous message sends inside transactions. Problem:
Restricts expressivity.

2. Delaying the delivery of asynchronous message sends to commit-time of a
transaction. Problem: Reduces throughput/increases latency.

3. Accepting this problem and leaving it up to programmer’s to ensure the
correctness of their programs when transactions are mixed with asynchronous
message passing. Problem: Not safe.

Immutable. Immutable capabilities describe data that is always safely acces-
sible without concurrency control. Immutability is “deep”, meaning that state
can be observably modified through an immutable reference, though a method
in an immutable object can mutate state created within the method or of its
arguments. Immutable capabilities can be freely shared across Encore active
objects without any need for copying.

Locked. Each operation via a locked capability requires prior acquisition of a lock
specific for the resource. The lock can be reentrant (analogous to a synchronised
method in Java), a readers-writer lock, etc. depending on desired semantics.

LockFree. The implementations of behaviours for this capability must follow
a certain protocol for coordinating updates in a lock-free manner. Lock-free
programming is famously subtle, because invariants must be maintained at all
times, not just at select commit-points. As part of the work on Encore, we
are implementing a type system that enforces such protocol usage on lock-free
capabilities [8].

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 27

Stable. Stable capabilities present an immutable view of otherwise mutable
state. There are several different possible semantics for stable capabilities: read-
only references—capability cannot be used to modify state, but it may witness
changes occurring elsewhere; fractional permissions—if a stable capability is
available, no mutable alias to an overlapping state will be possible, thereby avoid-
ing read-write races; or readers-writer locks—a static guarantee that a readers-
writer lock is in place and used correctly.

Unsafe. As the name suggest, unsafe capabilities come with no guarantees with
respect to data races. Allowing unsafe capabilities is optional, but they may be
useful to give a type to embedded C code.

10.4 Subordinate Capabilities

A subordinate capability is a capability that is dominated by an exclusive or
shared capability, which means that the dominating capability controls access
to the subordinate. In Encore, passive objects are subordinate capabilities by
default, meaning they are encapsulated by their enclosing active object. This
corresponds to the fact that there can be no “free-standing” passive objects in
Encore, they all live on the local heap of some active object.

Encapsulation of subordinate objects is achieved by disallowing them to be
passed to non-subordinate objects. A subordinate capability is in this respect
similar to the owner annotation from ownership types [10,38].

Some notion of borrowing can be used to safely pass subordinate objects
around under some conditions [13].

10.5 Polymorphic Concurrency Control

Capabilities allow for polymorphic concurrency control through the abstract
capabilities shared, safe, optimistic, pessimistic and oblivious. This allows a
library writer to request that a value is protected from data races by some
means, but not specify those means explicitly. For example:

1 def transfer(from:safe Account, to:safe Account, amount:int) : void
2 to.deposit(from.withdraw(amount))

This expresses that the calls on from and to are safe from a concurrency
stand-point. However, whether this arises from the accounts using locks, trans-
actions or immutability is not relevant here.

Accesses through safe capabilities are interesting because the semantics of dif-
ferent forms of concurrency control requires a small modicum of extra work at
run-time. For example, if from is active, then from.withdraw() should (implic-
itly) be turned into get from.withdraw(), or if we are inside an atomic capabil-
ity and to is a locked capability, then the transfer transaction should be extended
to also include to.deposit(), and committing the transaction involves being
able to grab the lock on to and release it once the transaction’s log has been
synchronised with the object.

The exact semantics of the combinations are currently being worked out.

28 S. Brandauer et al.

10.6 Composing Capabilities

A single capability is a trait plus a mode annotation. Mode annotations are
the labels in Fig. 2. Leaves denote concrete modes, i.e., modes that can be used
in the definition of a capability or class. Remaining annotations such as safe,
pessimistic etc. are valid only in types to abstract over concrete annotations, or
combinations of concrete annotations.

Capabilities can be composed in three different ways: conjunction C1 ⊗ C2,
disjunction C1 ⊕ C2, and co-encapsulation C1〈C2〉.

A conjunction or a disjunction of two capabilities C1 and C2 creates a com-
posite capability with the union of the methods of C1 and C2. In the case of
a disjunction, C1 and C2 may share state without concurrency control. As a
result, the same guard (whether it is linearity, thread-locality, a lock, etc.) will
preserve exclusivity of the entire composite. In the case of a conjunction, C1 and
C2 must not share state, except for state that is under concurrency control. For
example, they may share a common field holding a shared capability, as long as
neither capability can write the field. The conjunction of C1 and C2, C1 ⊗ C2,
can be unpacked into its two sub-capabilities C1 and C2, creating two aliases to
the same object that can be used without regard for the other.

In contrast to conjunction and disjunction, co-encapsulation denotes a nested
composition, where one capability is buried inside the other, denoted C1〈C2〉.
The methods of the composite C1〈C2〉 are precisely those of C1, but by exposing
the nested type C2 in the interface of the composite capability, additional oper-
ations on the type-level become available. Co-encapsulation is useful to preserve
linearity of nested capabilities. For example, unless C3 is exclusive, the capabil-
ity C3〈C1 ⊗ C2〉 can be turned into C3〈C1〉⊗ C3〈C2〉 which introduces aliases to
C3 but in a way that only disjoint parts of the nested capability can be reached.

Capabilities of different kinds may be used in disjunctions and conjunctions.
A capability with at least one exclusive component must be treated linearly to
guarantee race-freedom of its data. A capability with at least one subordinate
component will be contained inside its enclosing class. There are vast possibil-
ities to create compositions of capabilities, and we are currently investigating
their possible uses and interpretations. For example, combinations of active and
exclusive capabilities allow operating on an active object as it if was a passive
object until the exclusive capability is lost, after which the active object can
be freely shared. This gives powerful control over the initialisation phase of an
object. As another example, conjunctions of active capabilities could be used to
express active objects which are able to process messages in parallel.

10.7 Implementing a Parallel Operation on Disjoint Parts of Shared State

Figures 3, 4, 5, and 6 show how the capabilities can be used to construct a simple
linked list data structure of exclusive pairs, which is subsequently “unpacked”
into two (logical) immutable lists of disjoint cells which are passed to different
objects, and later re-packed into a single mutable list of pairs again. Support for
unstructured packing and unpacking is important in Encore as communication

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 29

Fig. 3. Two different implementations of pairs from the same building blocks. WeakPair
uses conjunction (⊗) and StrongPair disjunction (⊕).

across active objects has a more flexible control flow than calls on a single stack,
or fork-join style parallelism.

The trait keyword introduces a new trait which requires the presence of
zero or more fields in any class that includes it. Figure 3 illustrates a trait Cell
that requires a mutable field value in any including class.

The compositions of cells into WeakPair and StrongPair have different reuse
stories for the Cell trait. The cells of a WeakPair may be independently updated
by different threads whereas the cells of a StrongPair always belong to the same
thread and are accessed together.

For simplicity, we employ a prime notation renaming scheme for traits to
avoid name clashes when a single trait is included more than once.

Figure 4 shows how three capabilities construct a singly linked list. The links
in the list are subordinate objects, and the elements in the list are typed by
some exclusive parameter P. The capabilities of the List class are Add, Del and
Get. The first two are exclusive and the last is stable.

The Add and Del capabilities can add and remove exclusive P objects from
the list. (Since these objects are exclusive, looking them up, removes them from
the list to maintain linear access.) Since Add and Del share the same field first
with the same type, they are not safe to use separately in parallel, so their com-
bination must be a disjunction. If they had been, for example, locked capabilities
instead, they would have protected their internals dynamically, so in this case,
a conjunction would be allowed.

30 S. Brandauer et al.

Fig. 4. A list class. P above is a type parameter which allows deep unpacking of the
object.

Linearity of exclusive capabilities is maintained by an explicit destructive
read, the keyword consumes. The expression consume x returns the value of x,
and updates x with null, logically in one atomic step.

The Get capability overlaps with the others, but the requirement on the field
first is different: it considers the field immutable and its type stable through

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 31

Fig. 5. Definition of the link class with a stable iterator capability to support non-
destructive parallel iteration over elements in the list.

the Iterator capability (cf. Fig. 5). As the Get capability’s state overlaps with
the other capabilities, their composition must be in the form of a disjunction.

Inside the Get trait, the list will not change—the first field cannot be
reassigned and the Iterator type does not allow changes to the chain of links.
The Get trait however is able to perform reverse borrowing, which means it is
allowed to read exclusive capabilities on the heap non-destructively and return
them, as long as they remain stack bound. The stack-bound reference is marked
by a type wrapper, such as S(P).

The link capabilities used to construct the list are shown in Fig. 5; they are
analogous to the capabilities in List, and are included for completeness.

Finally, Fig. 6 shows the code for unpacking a list of WeakPairs into two logi-
cal, stable lists of cells that can be operated on in parallel. The stable capability
allows multiple (in this case two) active objects to share part of the list structure
with a promise that the list will not change while they are looking.

On a call to start() on a Worker, the list of WeakPairs is split into two in
two steps. Step one (line 10–11) turns the List disjunction into a conjunction
by jailing the Add and Del components which prevents their use until the list is
reassembled again on line 35. Step two (line 12) turns the iterator into two by
unpacking the pair into two cells.

32 S. Brandauer et al.

Fig. 6. Parallel operations on a single list of pairs using unpack and re-packing. Note
that this code would not type check for var a: List<StrongPair> as StrongPair is
built from a disjunction that does not allow unpacking.

The jail construct is used to temporarily render part of a disjunction inaces-
sible. In the example, Add<WeakPair> ⊕ Del<WeakPair> ⊕ Get<Cell> is turned
into J(Add<WeakPair> ⊕ Del<WeakPair>) ⊗ Get<Cell>. The latter type allows
unpacking the exclusive reference into two, but since one cannot be used while
it is jailed, the exclusivity of the referenced object is preserved.

The lists of cells are passed to two workers (itself and other) that perform
some work, before passing the data back for reassembly (line 32).

11 Examples

A good way to get a grip on a new programming language is to study how it is
applied in larger programs. To this end, three Encore programs, implementing a

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 33

thread ring (Sect. 11.1), a parallel prime sieve (Sect. 11.2), and a graph generator
following the preferential attachment algorithm (Sect. 11.3), are presented.

11.1 Example: Thread Ring

Thread Ring is a benchmark for exercising the message passing and scheduling
logic of parallel/concurrent programming languages. The program is completely
sequential, but deceptively parallel. The corresponding Encore program (Fig. 7)
creates 503 active objects, links them forming a ring and passes a message con-
taining the remaining number of hops to be performed from one active object
to the next. When an active object receives a message containing 0, it prints its
own id and the program finishes.

Fig. 7. Thread ring example

34 S. Brandauer et al.

In this example, the active objects forming the ring are represented by the
class Worker, which has field id for worker’s id and next for the next active
object in the ring. Method init is the constructor and the ring is set up using
method setNext. The method run receives the number of remaining hops, checks
whether this is larger than 0. If it is, it sends an asynchronous message to the next
active object with the number of remaining hops decrement by 1. Otherwise, the
active object has finished and prints its id.

11.2 Example: Prime Sieve

This example considers an implementation of the parallel Sieve of Eratosthenes
in Encore. Recall that the Sieve works by filtering out all non-trivial multiples
of 2, 3, 5, etc., thereby revealing the next prime, which is then used for further
filtering. The parallelisation is straightforward: one active object finds all primes
in

√
N and uses M filter objects to cancel out all non-primes in (chunks of) the

interval [
√

N,N]. An overview of the program is found in Fig. 8 and the code
is spread over Figs. 9, 10, 11 and 12. Which each filter object finally receives
a “done” message, they scan their ranges for remaining (prime) numbers and
report these to a special reporter object that keeps a tally of the total number
of primes found.

Fig. 8. Overview of the parallel prime sieve. The root object finds all primes in [2,
√
N]

and broadcasts these to filter objects that cancel all multiples of these in some ranges.
When a filter receives the final “done” message, it will scan its range for remaining
(prime) numbers and report these to an object that keeps a tally.

The listing of the prime sieve program starts by importing libraries. The
most important library component is a bit vector data type, implemented as a

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 35

Fig. 9. Prime Sieve (a). The Reporter class collects the reports from all filter active
objects and summarises the (number of) primes found.

thin Encore wrapper around a few lines of C to flip individual bits in a vec-
tor. Figure 9 shows the class of the reporter object that collects and aggregates
the results of all filter active objects. When it is created, is it told how many
candidates are considered (e.g., all the primes in the first 1 billion natural num-
bers), and as every filter reports in, it reports the number of primes found in the
number of candidates considered.

The main logic of the program happens in the Filter class. The filter objects
form a binary tree, each covering a certain range of the candidate numbers
considered. The lack of a math library requires a home-rolled power function
(pow() below) and an embedded C-level sqrt() function (Lines 105–106).

The main filter calls the found prime() function with a prime number. This
causes the program to propagate the number found to its children (line 77).
This allows them to process the number in parallel with the active object doing
a more lengthy operation in cancel one(), namely iterating over its bit vector
and cancelling out all multiples of the found prime.

Once the main active object has found all the primes in
√

N , it calls root
done() which is propagated in a similar fashion as found prime(). Finally, the
done() method is called on each filter active object, which scans the bit vector
for any remaining numbers that have not been cancelled out. Those are the
prime numbers which are sent to the reporter.

11.3 Example: Preferential Attachment

Preferential attachment is a model of graph construction that produces graphs
whose node degrees have a power law distribution. Such graphs model a number
of interesting phenomena such as the growth of the World Wide Web or social
networks [3,6].

36 S. Brandauer et al.

Fig. 10. Prime Sieve (b). The Filter class (continued in next figure) is the main work
horse of this program.

The underlying idea of preferential attachment is that nodes are added incre-
mentally to a graph by establishing connections with existing nodes, such that
edges are added from each new node to a random existing node with probability
proportional to the degree distribution of the existing nodes. Consequently, the
better connected a node is, the higher the chance new nodes will be connected
to it (thereby increasing the chance in the future that more new nodes will be
connected to it).

The preferential algorithm is based on two parameters: n the total number
of nodes in the final graph and k the number of unique edges connecting each

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 37

Fig. 11. Prime Sieve (c). The Filter class (continued from previous figure) is the main
work horse of this program.

newly added node to the existing graph. A sequential algorithm for preferential
attachment is:

1. Create a fully connected graph of size k (the clique). This is a completely
deterministic and all the nodes in the initial graph will be equally likely to
be connected to by new nodes.

2. For i = k+1, . . . , n, add a new node ni, and randomly select k distinct nodes
from n1, . . . , ni−1 with probability proportional to the degree of the selected
node and add the edges from ni to the selected nodes to the graph.

One challenge is handling the probabilities correctly. This can be done by storing
the edges in an array of size ≈n × k, where every pair of adjacent elements in
the array represents an edge. As an example, consider the following graph and
its encoding.

38 S. Brandauer et al.

Fig. 12. Prime Sieve (d). The Main class sets up the program and finds all the primes
in the first

√
N (here hard coded to 1 billion) candidates.

Fig. 13. High-level design of the parallel preferential attachment.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 39

The number of times a node appears in this array divided by the size of
the array is precisely the required probability of selecting the node. Thus, when
adding new edges, performing a uniform random selection from this array is
sufficient to select target nodes.

In the implementation a simple optimisation is made. Half of the edge infor-
mation is statically known—that is (ignoring the clique), for each n > k, the
array will look like the following:

The indices where the edges for node n will be stored can be calculated in
advance, and thus these occurrences of n need not be stored, and the amount of
space required can be halved.

Parallelising preferential attachment is non-trivial due to the inherent tempo-
rality in the problem: the correctness (with respect to distinctness) of all random
choices for an addition depends on the values selected for earlier nodes. However,
even though a node may not yet appear in some position in the array, it is possi-
ble to compute in parallel a candidate for the desired for all future nodes. Then
these can gradually be fulfilled (out of order) and the main challenge is ensuring
that distinctness of edges is preserved. This is done by checking whenever new
edges are added and randomly selecting again when a duplicate edge is added.

The naive implementation shown here attempts to parallelise the algorithm
by creating A active objects each responsible for the edges of some nodes in the
graph. Every active object proceeds according to the algorithm above, but with
non-overlapping start and stop indexes. If a random choice picks an index that
is not yet filled in, a message is sent to the active object that owns that part of
the array with a request to be notified when that information becomes available.

The requirement that edges are distinct needs to be checked whenever a new
edge is added. If a duplicate is found, the algorithm just picks another random
index. With reasonably large graphs (say 1 million nodes with 20 edges each),
duplicate edges is rare, but the scanning is still necessary, and this is more costly
in the parallel implementation compared to the sequential one, because in the
sequential algorithm all edges are available at the time the test for duplicates is
made, but this is not the case in the parallel algorithm.

Figure 13 shows a high-level overview of the implementation. The colour-
coded workers own the write rights to the equi-coloured part of the array.
A green arrow denotes read rights, a red array denotes write rights. The middle
worker attempts to the edge at index 3 in the array, which is not yet determined.
This prompts a request to the (left) worker that owns the array chunk to give

40 S. Brandauer et al.

this information once the requested value becomes available. Once this answer
is provided, the middle active object writes this edge into the correct place, pro-
vided it is not a duplicate, and forwards the results to any active object that
has requested it before this point.

The Encore implementation of preferential attachment is fairly long and
can be found in Appendix A.

12 Formal Semantics

This section presents the semantics of a fragment of Encore via a calculus called
μEncore. The main aim of μEncore is to formalise the proposed concurrency
model of Encore, and thereby establish a formal basis for the development of
Encore and for research on type-based optimisations in the UpScale project.
μEncore maintains a strong notion of locality by ensuring that there is no
shared data between different active objects in the system.

Fig. 14. Syntax of µEncore. Terms like e and x denote (possibly empty) lists over the
corresponding syntactic categories, square brackets [] denote optional elements.

12.1 The Syntax of µENCORE

The formal syntax of μEncore is given in Fig. 14. A program P consists of inter-
face and class declarations followed by an expression e which acts as the main
block.8 The types T includes Booleans bool (ignoring other primitive types), a
type void (for the () value), type Fut T for futures, interfaces I, passive classes
C, and function types T → T . In μEncore, objects can be active or passive.
Active objects have an independent thread of execution. To store or transfer
local data, an active object uses passive objects. For this reason, interfaces IF
and classes CL can be declared as passive. In addition, an interface has a name
I and method signatures Sg and class has a name C, fields x of type T , and
methods M . A method signature Sg declares the return type T of a method with
8 µEncore supports interfaces, though Encore does not yet. Encore with combine

interfaces with traits.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 41

name m and formal parameters x of types T . M defines a method with signa-
ture Sg , and expressions e. When constructing a new object of a class C by a
statement new C(e), the new object may be either active or passive (depending
on the class).

Expressions include, variables (local variables and fields of objects), values,
sequential composition e1; e2, assignment, skip (to make semantics easier to
write), if, let, and while constructs. Expressions may access the fields of an
object, the method’s formal parameters and the fields of other objects. Values
v are expressions on a normal form, let-expressions introduce local variables.
Cooperative scheduling in μEncore is achieved by explicitly suspending the
execution of the active stack. The statement suspend unconditionally suspends
the execution of the active method invocation and moves this to the queue.
The statement await e conditionally suspends the execution; the expression e
evaluates to a future f , and execution is suspended only if f has not been fulfilled.

Communication and synchronisation are decoupled in μEncore. In contrast
to Encore, μEncore makes explicit in the syntax the two kinds of method call:
e
 m(e) corresponds to a synchronous call and e�m(e) corresponds to an asyn-
chronous call. Communication between active objects is based on asynchronous
method calls o�m(e) whose return type is Fut T , where T corresponds to the
return type of the called method m. Here, o is an object expression, m a method
name, and e are expressions providing actual parameter values for the method
invocation. The result of such a call is a future that will hold the eventual result
of the method call. The caller may proceed with its execution without block-
ing. Two operations on futures control synchronisation in μEncore. The first
is await f , which was described above. The second is get f which retrieves the
value stored in the future when it is available, blocking the active object until it
is. Futures are first-class citizens of μEncore. Method calls on passive objects
may be synchronous and asynchronous. Synchronous method calls o
m(e) have
a Java-like reentrant semantics. Self calls are written this�m(e) or this
m(e).

Anonymous functions and future chaining Anonymous functions are available
in μEncore in the form of spores [26]. A spore spore x′ = e′ in λ(x : T) → e : T
is a form of closure in which the dependencies on local state e′ are made explicit;
i.e., the body e of the lambda-function does not refer directly to variables outside
the spore. Spores are evaluated to create closures by binding the variables x′

to concrete values which are controlled by the closure. This ensures race-free
execution even when the body e is not pure. The closure is evaluated by function
application e(e) where the arguments e are bound to the variables x of the spore,
before evaluating the function body e. Closures are first class values. Future
chaining e1 � e2 allows the execution of a closure e2 to be spawned into a
parallel task, triggered by the fulfilment of a future e1.

12.2 Typing of µENCORE

Typing judgments are on the form Γ � e : T , where the typing context Γ maps
variables x to their types. (For typing the constructs of the dynamic semantics,
Γ will be extended with values and their types.) Write Γ � e : T to denote that

42 S. Brandauer et al.

Γ � ei : Ti for 1 ≤ i ≤ |e|, assuming that |e| = |T |. Types are not assigned to
method definitions, class definitions and the program itself; the corresponding
type judgements simply express that the constructs are internally well-typed by
a tag “ok”.

Auxiliary definitions. Define function typeOf(T,m) such that: (1) typeOf(T,m)
= T → T ′ if the method m is defined with signature T → T ′ in the class or
interface T ; (2) typeOf(T, x) = T ′ if a class T has a field x declared with type T ′;
and (3) typeOf(C) = T → C where T are the types of the constructor arguments.
Further define a predicate active(T) to be true for all active classes and interfaces
T and false for all passive classes and interfaces. By extension, let active(o) =
active(C) if o is an instance of C.

Subtyping. Let class names C of active classes also be types for the type analysis
and let be the smallest reflexive and transitive relation such that

– T void for all T ,
– C I ⇐⇒ ∀m ∈ I · typeOf(C,m) typeOf(I,m)
– T T

′ ⇐⇒ n = length(T) = length(T
′
) and Ti T ′

i for 1 ≤ i ≤ n
– T1 → T2 T ′

1 → T ′
2 ⇐⇒ T ′

1 T1 ∧ T2 T ′
2

A type T is a subtype of T ′ if T T ′. The typing system of μEncore is given
in Fig. 15 and is mostly be standard. Note that rule T-Spore enforces that all
dependencies to the local state to be explicitly declared in the spore.

12.3 Semantics of µENCORE

The semantics of μEncore is presented as an operational semantics in a context-
reduction style [15], using a multi-set of terms to model parallelism (from from
rewriting logic [25]).

Run-Time Configurations. The run-time syntax of μEncore is given in Fig. 16.
A configuration cn is a multiset of active objects (plus a local heap of passive
objects per active object), method invocation messages and futures. The associa-
tive and commutative union operator on configurations is denoted by whitespace
and the empty configuration by ε.

An active object is given as a term g(active, hp, q) where active is the method
invocation that is executing or idle if no method invocation is active, hp a
multiset of objects, and q is a queue of suspended (or not yet started) method
invocations.

An object obj is a term o(σ) where o is the object’s identifier and σ is an
assignment of the object’s fields to values. Concatenation of such assignments is
denoted σ1 ◦ σ2.

In an invocation message m(o, v, hp, f), m is the method name, o the callee,
v the actual parameter values, hp a multiset of objects (representing the data
transferred with the message), and f the future that will hold the eventual result.
For simplicity, the futures of the system are represented as a mapping fut from
future identifiers f to either values v or ⊥ for unfulfilled futures.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 43

Fig. 15. The type system for µEncore.

Fig. 16. Run-time syntax; here, o and f are identifiers for objects and futures, and x is
the name of a variable.

44 S. Brandauer et al.

The queue q of an active object is a sequence of method invocations (task).
A task is a term t(fr ◦ sq) that captures the state of a method invocation as
sequence of stack frames {σ|e} or {σ|E} (where E is an evaluation context,
defined in Fig. 18), each consisting of bindings for local variables plus either the
expression being run for the active stack frame or a continuation (represented
as evaluation context) for blocked stack frames. eos indicates the bottom of the
stack. Local variables also include a binding for this, the target of the method
invocation. The bottommost stack frame also includes a binding for variable
destiny to the future to which the result of the current call will be stored.

Expressions e are extended with a polling operation e? on futures that eval-
uates to true if the future has been fulfilled or false otherwise. Values v are
extended with identifiers for the dynamically created objects and futures, and
with closures. A closure is a dynamically created value obtained by reducing a
spore-expression (after sheep cloning the local state). Further assume for sim-
plicity that default(T) denotes a default value of type T ; e.g., null for interface
and class types. Also, classes are not represented explicitly in the semantics, but
may be seen as static tables of field types and method definitions. Finally, the
run-time type Closure marks the run-time representation of a closure. To avoid
introducing too many new run-time constructs, closures are represented as active
objects with an empty queue and no fields.

The initial configuration of a program reflects its main block. Let o be an
object identifier. For a program with main block e the initial configuration con-
sists of a single dummy active object with an empty queue and a task executing
the main block itself: g(t({this �→ 〈Closure, o〉|e} ◦ eos), o(ε), ∅).

A Transition System for Configurations. Transition rules transform configu-
rations cn into new configurations. Let the reflexive and transitive transition
relation → capture transitions between configurations. A run is a possibly ter-
minating sequence of configurations cn0, cn1, . . . such that cni → cni+1. Rules
apply to subsets of configurations (the standard context rules for configurations
are not listed). For simplicity we assume that configurations can be reordered to
match the left hand side of the rules, i.e., matching is modulo associativity and
commutativity as in rewriting logic [25].

Auxiliary functions. If the class of an object o has a method m, let bind(m, o, v)
and abind(m, o, v, f) return a frame resulting from the activation of m on o with
actual parameters v. The difference between these two functions is that the abind
introduces a local variable destiny bound to 〈T, f〉 where T is the return type of
the frame. If the binding succeeds, the method’s formal parameters are bound
to v. The function select(q, fut) schedules a task which is ready to execute from
the task queue q which belongs to an active object g with g(idle, hp, q). The
function atts(C, o) returns the initial field assignment σ of a new instance o of
class C in which the fields are bound to default values. The function init(C)
returns an activation of the init method of C, if defined. Otherwise it returns
the empty task {ε|()}. The predicate fresh(n) asserts that a name n is globally

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 45

unique (where n may be an identifier for an object or a future). The definition
of these functions is straightforward but requires that the class table is explicit
in the semantics, which we have omitted for simplicity.

Sheep cloning. Given an object identifier v and a heap hp, let lookup(v, hp)
return the object corresponding to v in hp. Given a list of object identifiers v
and a heap hp, let rename(v, hp, σ) return a mapping that renames all passive
objects reachable from v in hp. Given a list of object identifiers v and a heap hp,
copy(v, hp, transfer) returns the sub-heap reachable from v in hp. The formal
definitions of these functions are given in Fig. 17. Sheep cloning combines the
rename and copy functions.

Fig. 17. Sheep cloning: deep renaming and copying of passive objects.

Transition rules. The transition rules of μEncore are presented in Figs. 20
and 21. Let a denote the map of fields to values in an object and l to denote map
of local variables to values in a (possibly blocked) frame. A context reduction
semantics decomposes an expression into a reduction context and a redex, and
reduces the redex (e.g., [15,28]). A reduction context is denoted by an expression
E with a single hole denoted by •, while an expression without any holes is
denoted by e. Filling the hole of a context E with an expression e is denoted by
E[e], which represents the expression obtained by replacing the hole of E with
e. In the rules, an expression E[e] consisting of a context E and a redex e is
reduced to E[e′], possibly with side effects. Here the context E determines the
hole where a reduction may occur and e is the redex located in the position of

46 S. Brandauer et al.

Fig. 18. Context reduction semantics of µEncore: the contexts.

Fig. 19. Context reduction semantics of µEncore: the redexes.

that hole. The contexts of our semantics are given in Fig. 18 and the redexes in
Fig. 19.

Basic rules. Rule Skip consumes a skip in the active task. Rules Assign1 and
Assign2 assign a value v to a variable x in the local variables l or in the fields
a, respectively. In the rules, the premise l(this) = o looks up the corresponding
object. Rule Variable1 reads the value of a local variable or a field of the object
executing the frame. Rule Variable2 reads the value of the field of another object
in the same local heap. Rules Cond1 and Cond2 cover the two cases of conditional
expression. Rule Let associates a value v to a local variables x and uses it in
the expression e. Rule While unfolds the while loop into a conditional. Rule
Sequential discards the value v in an expression of the form v; e and continues
the evaluation the expression e.

Suspension and activation. Rule Suspend enables cooperative scheduling and
moves the active task to the queue q, making the active task idle. Rule Await

unfolds into a conditional. Rules Poll-Future1 and Poll-Future2 test whether
the future f has been resolved. If f is not resolved, the active task suspends.
Otherwise, the await expression is reduced to a skip. Rule Activate schedules
a task from the task queue q by means of the select function. Since the schedu-
lability of a task may depend on a future, select uses the map of futures fut .

Asynchronous method calls. Rule Remote-Async-Call sends an invocation mes-
sage to an object o, with a return address f and sheep copied actual parameter
values. The cloned objects hp′ are transferred with the method invocation. (Nota-
tion v σ and hp σ denote the recursive application of the substitution σ to v and
hp, respectively). The identifier of the new future is added to fut with a ⊥ value
indicating that it has not been fulfilled. In rule Remote-Bind-Mtd, the function
abind(m, o, v̄, f) binds a method call in the class of the callee o. This results in a
new task in the queue of the active object o. In the frame fr , the local variable
this is bound to o and destiny is bound to f . The heap hp′ transferred with the
message extends the heap hp of the active object. Rule Local-Async-Call puts
a new task with a single frame fr on the queue q. As before, a new future f
is created and associated to the variable destiny in fr , the identifier of the new
future is added to fut with a ⊥ value. Rule Async-Return places the final value

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 47

Fig. 20. Semantics for µEncore (1).

of a task into the associated future, making the active task idle. Rule Read-Fut

dereferences a future f from the maps of futures fut .

Synchronous method calls. In rule Sync-Call, method m is called on a local
object o, with actual parameters v. The function bind(m, o′, v′) binds the call in
the class of o, resulting in a frame fr . The new frame extends the stack, and the
previously active frame becomes blocked. In rule Sync-Return, the active frame

48 S. Brandauer et al.

Fig. 21. Semantics for µEncore (2).

only contains a single value. The frame is popped form the stack, and the value
is passed to the blocked frame below which becomes active.

Object creation. Rule New-Active-Object creates a an active object with a
unique identifier o′ and a new local heap. The fields of o′ are given default
values by atts(C, o′). The active task of the new active object is the constructor
init(C, f), where the local variable this binds to 〈C, o′〉 and destiny binds to
〈Fut C, f〉.9 Passive object are created in a similar way, except that the class
constructor is executed by the calling thread (cf. Rule New-Passive-Object).

9 In Encore the constructor does not run asynchronously.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 49

Closures. In rule Create-Closure, a closure is created from a spore by sheep
cloning any references to the passive objects of enclosing active object. Note
that values inside closures are also sheep copied, even if this has already been
done when they were created, to ensure that if the closure is passed out of the
active object, it is passed with a fresh sheep clone of its passive objects. Rule
Lambda-App reduces a closure to a let-expression when it is applied to values.

Future chaining. Future chaining creates a new dummy active object in which
the closure can execute in parallel with the current active object. The closure
blocks waiting for the value of it needs from f to begin execution, and will return
its own value to another future f ′.

12.4 Run-Time Typing

Assume a typing context CT (C) that maps fields of each class C to their declared
types. The class table also includes a class Closure such that CT (Closure) = ε.
The run-time type system (Fig. 22) facilitates the type preservation proof for
μEncore.

Fig. 22. Type system for µEncore run-time states.

50 S. Brandauer et al.

Lemma 1. If a program IF CL e is well-typed, then there is a Γ such that the
initial run-time state of this program is well-typed: Γ � s({this �→ 〈Closure, o〉|e}◦
eos, o(ε), ∅) ok.

Lemma 2 (Sheep lemma). Assume that Γ � hp ok and let σ be a substitution
such that dom(σ) ⊆ dom(Γ), ran(σ) ∩ dom(Γ) = ∅. Let Γ ′ = {y �→ T |σ(x) =
y ∧ Γ (x) = T} Then Γ ◦ Γ ′ � hp σ ok.

Lemma 3 (Type preservation). If Γ � cn ok and cn → cn ′ then there exists a
Γ ′ such that Γ ⊆ Γ ′ and Γ � cn ′ ok

Theorem 1. Let P be a program in μEncore, with an initial state cn. If Γ �
P ok and cn → cn′, there is a typing environment Γ ′ such that Γ ⊆ Γ ′ and
Γ ′ � cn′ ok.

Proof. Follows directly from Lemmas 1–3.

13 Related Work

Encore is based on the concurrency model provided by active objects and actor-
based computation, where software units with encapsulated thread of control
communicate asynchronously. Languages based on the actor model [1,2] take
asynchronous messages as the communication primitive and focus on loosely
coupled processes with less synchronisation. This makes actor languages concep-
tually attractive for parallel programming programming. Rather than the pure
asynchronous message passing model of actor systems, active objects adopts
method calls as asynchronous messages combined with futures to deliver results.
Futures were devised as a means to reduce latency by synchronising at the lat-
est possible time. Futures were discovered by Baker and Hewitt in the 70s [5],
and rediscovered after around 10 years and introduced in languages such as
ABCL [40,41], Argus [24], ConcurrentSmalltalk [39], and MultiLisp [18] and later
in Alice [33], Oz-Mozart [36], Concurrent ML [32], C++ [23] and Java [37], often
as libraries. Nowadays, active object and actor-based concurrency is increasingly
attracting attention due to its intuitive and compositional nature, which can lead
to good scalability in a parallel setting. Modern example languages or frame-
works include Erlang [4], ProActive [7], Scala Actors [17], Kilim [34], Creol [21],
ABS [20], Akka [35], Habanero-Java [9], among others.

Encore has a clear distinction between active and passive objects, such
that passive objects as a default are only locally accessible. This is ensured in
μEncore by means of sheep cloning [11] and paves the way for capability type
systems for sharing, as first investigated in Joëlle [13]. Encore further features
spores, originally proposed for Scala [26]. Although spores in Encore need not
be pure, they are combined with sheep cloning to preserve race-free execution as
a default. Future versions of spores in Encore will utilise capabilities for more
fine-grained control.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 51

14 Conclusion

Programming parallel computers is hard, but as all future computers will be
parallel computers doing so will be a necessary skill of all programmers. New
programming models and languages are required to support programmers in
writing applications that are safe and exploit the available parallel computing
resources. Encore aims to answer this challenge by provided active-object based
parallelism combined with additional mechanisms such as parallel combinators
and capabilities for safely expressing other forms of parallelism. This paper gave
an overview of Encore, including the semantics of its core, along with a number
of examples showing how to use the language.

Work on Encore has really only just begun. In the future we will be imple-
menting and improving language constructs for expressing different kinds of par-
allelism and for controlling sharing, data layout and other deployment related
concerns. We will continue improving the run-time system, developing libraries
and tool support, and exploring case studies. In the near future, we plan to con-
vert the compiler to open source. When this happens—or even beforehand, if
you are keen—, you are more than welcome to contribute to the development of
Encore.

A Code for Preferential Attachments

52 S. Brandauer et al.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 53

54 S. Brandauer et al.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. J. Funct. Program. 7(1), 1–72 (1997)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, Raleigh (2007)

5. Baker Jr, H.C., Hewitt, C.: The incremental garbage collection of processes. SIG-
PLAN Not. 12(8), 55–59 (1977)

6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

7. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. Inf.
Comput. 207(4), 459–495 (2009)

8. Castegren, E., Wrigstad, T.: Capable: capabilities for scalability. In: IWACO 2014
(2014)

9. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures of
old X10. In: Probst, C.W., Wimmer, C. (eds.) Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ 2011, pp.
51–61. ACM, Kongens Lyngby, Denmark, 24–26 August 2011

10. Clarke, D.: Object ownership and containment. Ph.D. thesis, School of Computer
Science and Engineering, University of New South Wales, Australia (2002)

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 55

11. Clarke, D., Noble, J., Wrigstad, T. (eds.): Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification. LNCS, vol. 7850. Springer, Heidelberg
(2013)

12. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

13. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal ownership for active
objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008)

14. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

15. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

16. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification,
3rd edn. Addison-Wesley Professional, Reading (2005)

17. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

18. Halstead Jr, R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

19. Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 90–104. Springer,
Heidelberg (2013)

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

21. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 35–58 (2007)

22. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 1–25. Springer, Heidelberg (2009)

23. Lavender, R.G., Schmidt, D.C.: Pattern Languages of Program Design 2. Chapter
Active Object: An Object Behavioral Pattern for Concurrent Programming.
Addison-Wesley Longman Publishing Co., Inc, Boston (1996)

24. Liskov, B.H., Shrira, L.: Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In: Wise, D.S. (ed.) Proceedings of the SIG-
PLAN Conference on Programming Lanugage Design and Implementation (PLDI
1988), pp. 260–267. ACM, Atlanta, GE, USA (1988)

25. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96, 73–155 (1992)

26. Miller, H., Haller, P., Odersky, M.: Spores: a type-based foundation for closures in
the age of concurrency and distribution. In: Jones, R. (ed.) ECOOP 2014. LNCS,
vol. 8586, pp. 308–333. Springer, Heidelberg (2014)

27. Miller, M.S.: Robust composition: towards a unified approach to access control and
concurrency control. Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006

28. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

29. Noble, J., Clarke, D.G., Potter, J.: Object ownership for dynamic alias protec-
tion. In: TOOLS Pacific 1999: 32nd International Conference on Technology of
Object-Oriented Languages and Systems, pp. 176–187. IEEE Computer Society,
Melbourne, Australia, 22–25 November 1999

56 S. Brandauer et al.

30. Peyton Jones, S., et al.: The Haskell 98 language and libraries: the revised report.
J. Funct. Program. 13(1), 0–255 (2003)

31. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A Generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

32. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press,
Cambridge (1999)

33. Rossberg, A., Botlan, D.L., Tack, G., Brunklaus, T., Smolka, G.: Alice Through
the Looking Glass, Munich, Germany. Trends in Functional Programming, vol. 5,
pp. 79–96. Intellect Books, Bristol (2006). ISBN 1-84150144-1

34. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

35. The Akka Project. Akka (2015). http://akka.io/
36. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-

ming. MIT Press, Cambridge (2004)
37. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proceedings of the

Object Oriented Programming, Systems, Languages, and Applications (OOPSLA
2005), pp. 439–453. ACM Press, New York, NY, USA (2005)

38. Wrigstad, T., Pizlo, F., Meawad, F., Zhao, L., Vitek, J.: Loci: simple thread-locality
for Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 445–469.
Springer, Heidelberg (2009)

39. Yokote, Y., Tokoro, M.: Concurrent programming in ConcurrentSmalltalk. In:
Yonezawa, A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming, pp.
129–158. The MIT Press, Cambridge, Mass. (1987)

40. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. Series in Computer
Systems. The MIT Press, Cambridge (1990)

41. Yonezawa, A., Briot, J.-P., Shibayama, E:. Object-oriented concurrent program-
ming in ABCL/1. In: Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA 1986) (1986). Sigplan Not. 21(11):258–268
(1986)

http://akka.io/

	Parallel Objects for Multicores: A Glimpse at the Parallel Language ENCORE
	1 Introduction
	2 Background: Active Object-Based Parallelism
	3 Hello ENCORE
	4 Classes
	4.1 Object Construction and Constructors
	4.2 Active Classes
	4.3 Passive Classes
	4.4 Parametric Classes
	4.5 Traits and Inheritance

	5 Method Calls
	6 Futures
	6.1 Using the get operation
	6.2 Using the await command
	6.3 Using Future Chaining

	7 Expressions, Statements, and so Forth
	7.1 Types
	7.2 Expression Sequences
	7.3 Loops
	7.4 Arrays
	7.5 Formatted Printing
	7.6 Anonymous Functions
	7.7 Polymorphism and Type Inference
	7.8 Module System
	7.9 Suspending Execution
	7.10 Embedding of C Code

	8 Streams
	9 Parallel Combinators
	9.1 Parallel Types
	9.2 A Collection of Combinators
	9.3 From Sequential to Parallel Types
	9.4 ... and Back Again
	9.5 Example
	9.6 Implementation

	10 Capabilities
	10.1 Capabilities for Controlling of Sharing
	10.2 Exclusive Capabilities
	10.3 Shared Capabilities
	10.4 Subordinate Capabilities
	10.5 Polymorphic Concurrency Control
	10.6 Composing Capabilities
	10.7 Implementing a Parallel Operation on Disjoint Parts of Shared State

	11 Examples
	11.1 Example: Thread Ring
	11.2 Example: Prime Sieve
	11.3 Example: Preferential Attachment

	12 Formal Semantics
	12.1 The Syntax of ENCORE
	12.2 Typing of ENCORE
	12.3 Semantics of ENCORE
	12.4 Run-Time Typing

	13 Related Work
	14 Conclusion
	A Code for Preferential Attachments
	References

