
Marco Bernardo
Einar Broch Johnsen (Eds.)

Tu
to

ria
l

LN
CS

 9
10

4

15th International School on Formal Methods
for the Design of Computer, Communication,
and Software Systems, SFM 2015
Bertinoro, Italy, June 15–19, 2015, Advanced Lectures

Formal Methods
for Multicore Programming

 123

Lecture Notes in Computer Science 9104

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Marco Bernardo • Einar Broch Johnsen (Eds.)

Formal Methods
for Multicore Programming
15th International School on Formal Methods
for the Design of Computer, Communication,
and Software Systems, SFM 2015
Bertinoro, Italy, June 15–19, 2015
Advanced Lectures

123

Editors
Marco Bernardo
Università di Urbino “Carlo Bo”
Urbino
Italy

Einar Broch Johnsen
University of Oslo
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-18940-6 ISBN 978-3-319-18941-3 (eBook)
DOI 10.1007/978-3-319-18941-3

Library of Congress Control Number: 2015938440

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume collects a set of papers accompanying the lectures of the 15th International
School on Formal Methods for the Design of Computer, Communication and Software
Systems (SFM). This series of schools addresses the use of formal methods in computer
science as a prominent approach to the rigorous design of the above-mentioned sys-
tems. The main aim of the SFM series is to offer a good spectrum of current research in
foundations as well as applications of formal methods, which can be of help to graduate
students and young researchers who intend to approach the field. SFM 2015 was
devoted to multicore programming and covered topics such as concurrency and
coordination mechanisms, architecture and memory models, and type systems. The five
papers of this volume represent the broad range of topics of the school.

The paper by Brandauer, Castegren, Clarke, Fernandez-Reyes, Johnsen, Pun, Tapia
Tarifa, Wrigstad, and Yang presents Encore, an object-oriented parallel programming
language specifically developed for supporting multicore computing and addressing
performance and scalability issues. Arbab and Jongmans show how to use Reo, a
language adhering to an interaction-centric model of concurrency, to coordinate mul-
ticore computing. Alglave’s paper discusses concurrent programming together with the
description of the execution models of the machines on which software is ran. Coppo,
Dezani-Ciancaglini, Padovani, and Yoshida provide an introduction to multiparty
session types, a class of behavioral types specifically targeted at describing protocols in
distributed systems based on asynchronous communication. Finally, the paper by
Castegren, Östlund, and Wrigstad proposes refined ownership types to reason about
correctness on a local scale, for fine-grained parallelism, and for coarse-grained
parallelism.

We believe that this book offers a useful view of what has been done and what is
going on worldwide in the field of formal methods for multicore programming. This
school was organized in collaboration with the EU FP7 project UpScale, whose support
we gratefully acknowledge. We wish to thank all the speakers and all the participants
for a lively and fruitful school. We also wish to thank the entire staff of the University
Residential Center of Bertinoro for the organizational and administrative support.

June 2015 Marco Bernardo
Einar Broch Johnsen

Contents

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 1
Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,
Einar Broch Johnsen, Ka I. Pun, S. Lizeth Tapia Tarifa, Tobias Wrigstad,
and Albert Mingkun Yang

Coordinating Multicore Computing . 57
Farhad Arbab and Sung-Shik T.Q. Jongmans

Modeling of Architectures . 97
Jade Alglave

A Gentle Introduction to Multiparty Asynchronous Session Types. 146
Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani,
and Nobuko Yoshida

Refined Ownership: Fine-Grained Controlled Internal Sharing 179
Elias Castegren, Johan Östlund, and Tobias Wrigstad

Author Index . 211

http://dx.doi.org/10.1007/978-3-319-18941-3_1
http://dx.doi.org/10.1007/978-3-319-18941-3_2
http://dx.doi.org/10.1007/978-3-319-18941-3_3
http://dx.doi.org/10.1007/978-3-319-18941-3_4
http://dx.doi.org/10.1007/978-3-319-18941-3_5

Parallel Objects for Multicores: A Glimpse
at the Parallel Language ENCORE

Stephan Brandauer1, Elias Castegren1, Dave Clarke1(B),
Kiko Fernandez-Reyes1, Einar Broch Johnsen2, Ka I. Pun2,

S. Lizeth Tapia Tarifa2, Tobias Wrigstad1, and Albert Mingkun Yang1

1 Department of Information Technology, Uppsala University, Uppsala, Sweden
dave.clarke@it.uu.se

2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. The age of multi-core computers is upon us, yet current pro-
gramming languages, typically designed for single-core computers and
adapted post hoc for multi-cores, remain tied to the constraints of a
sequential mindset and are thus in many ways inadequate. New pro-
gramming language designs are required that break away from this old-
fashioned mindset. To address this need, we have been developing a new
programming language called Encore, in the context of the European
Project UpScale. The paper presents a motivation for the Encore lan-
guage, examples of its main constructs, several larger programs, a for-
malisation of its core, and a discussion of some future directions our work
will take. The work is ongoing and we started more or less from scratch.
That means that a lot of work has to be done, but also that we need not
be tied to decisions made for sequential language designs. Any design
decision can be made in favour of good performance and scalability. For
this reason, Encore offers an interesting platform for future exploration
into object-oriented parallel programming.

1 Introduction

Nowadays the most feasible way for hardware manufacturers to produce proces-
sors with higher performance is by putting more parallel cores onto a single
chip. This means that virtually every computer produced these days is a parallel
computer. This trend is only going to continue: machines sitting on our desks
are already parallel computers, and massively parallel computers will soon be
readily at our disposal.

Most current programming languages were defined to be sequential-by-default
and do not always address the needs of the multi-core era. Writing parallel pro-
grams in these languages is often difficult and error prone due to race conditions
and the challenges of exploiting the memory hierarchy effectively. But because
every computer will be a parallel computer, every programmer needs to become

Partly funded by the EU project FP7-612985 UpScale: From Inherent Con-
currency to Massive Parallelism through Type-based Optimisations (http://www.
upscale-project.eu).

c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 1–56, 2015.
DOI: 10.1007/978-3-319-18941-3 1

http://www.upscale-project.eu
http://www.upscale-project.eu

2 S. Brandauer et al.

a parallel programmer supported by general-purpose parallel programming lan-
guages. A major challenge in achieving this is supporting scalability, that is,
allowing execution times to remain stable as both the size of the data and avail-
able parallel cores increases, without obfuscating the code with arbitrarily com-
plex synchronisation or memory layout directives.

To address this need, we have been developing the parallel programming lan-
guage Encore in the context of the European Project UpScale. The project
has one ambitious goal: to develop a general purpose parallel programming lan-
guage (in the object-oriented vein) that supports scalable performance. Because
message-based concurrency is inherently more scalable, UpScale takes actor-
based concurrency, asynchronous communication, and guaranteed race freedom
as the starting points in the development of Encore.

Encore is based on (at least) four key ingredients: active object parallelism
for coarse-grained parallelism, unshared local heaps to avoid race conditions and
promote locality, capabilities for concurrency control to enable safe sharing, and
parallel combinators for expressing high-level coordination of active objects and
low-level data parallelism. The model of active object parallelism is based on that
of languages such as Creol [21] and ABS [20]. It requires sequentialised execution
inside each active object, but parallel execution of different active objects in the
system. The core of the local heaps model is a careful treatment of references
to passive objects so that they remain within an active object boundary. This
is based on Joëlle [13] and involves so-called sheep cloning [11,29] to copy argu-
ments passed to methods of other active objects. Sheep cloning is a variant of
deep cloning that does not clone references to futures and active objects. Capa-
bilities allow these restrictions to be lifted in various ways to help unhinge inter-
nal parallelism while still guaranteeing race free execution. This is done using
type-based machinery to ensure safe sharing, namely that no unsynchronised
mutable object is shared between two different active objects. Finally, Encore
includes parallel combinators, which are higher-order coordination primitives,
derived from Orc [22] and Haskell [30], that sit both on top of objects providing
high-level coordination and within objects providing low-level data parallelism.

This work describes the Encore language in a tutorial fashion, covering
course-grained parallel computations expressible using active objects, and fine-
grained computations expressible using higher-order functions and parallel
combinators. We describe how these integrate together in a safe fashion using
capabilities and present a formalism for a core fragment of Encore.

Currently, the work on Encore is ongoing and our compiler already achieves
good performance on some benchmarks. Development started more or less from
scratch, which means not only that we have to build a lot of infrastructure, but
also that we are free to experiment with different implementation possibilities
and choose the best one. We can modify anything in the software stack, such as
the memory allocation strategy, and information collected about the program
in higher levels can readily be carried from to lower levels—contrast this with
languages compiled to the Java VM: source level information is effectively lost in
translation and VMs typically do not offer much support in controlling memory
layout, etc.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 3

Encore has only been under development for about a year and a half, con-
sequently, anything in the language design and its implementation can change.
This tutorial therefore can only give a snapshot of what Encore aspires to be.

Structure. Section 2 covers the active object programming model. Section 3 gen-
tly introduces Encore. Section 4 discusses active and passive classes in Encore.
Section 5 details the different kinds of methods available. Section 6 describes
futures, one of the key constructs for coordinating active objects. Section 7 enu-
merates many of the commonplace features of Encore. Section 8 presents a
stream abstraction. Section 9 proposes parallel combinators as a way of express-
ing bulk parallel operations. Section 10 advances a particular capability system
as a way of avoiding data races. Section 11 illustrates Encore in use via exam-
ples. Section 12 formalises a core of Encore. Section 13 explores some related
work. Finally, Sect. 14 concludes.

2 Background: Active Object-Based Parallelism

Encore is an active object-based parallel programming language. Active objects
(Fig. 1), and their close relation, actors, are similar to regular object-oriented
objects in that they have a collection of encapsulated fields and methods that
operate on those fields, but the concurrency model is quite different from what
is found in, for example, Java [16]. Instead of threads trampling over all objects,
hampered only by the occasional lock, the active-object model associates a
thread of control with each active object, and this thread is the only one able to
access the active object’s fields. Active objects communicate with each other by
sending messages (essentially method calls). The messages are placed in a queue
associated with the target of the message. The target active object processes the
messages in the queue one at a time. Thus at most one method invocation is
active at a time within an active object.

Method calls between active objects are asynchronous. This means that when
an active object calls a method on another active object, the method call returns
immediately—though the method does not run immediately. The result of the
method call is a future, which is a holder for the eventual result of the method

Fig. 1. Active Object-based Parallelism

4 S. Brandauer et al.

call. The caller can do other work immediately, and when it needs the result
of the method call, it can get the value from the future. If the value is not yet
available, the caller blocks.

Futures can be passed around, blocked on (in various ways), or have addi-
tional functionality chained on them. This last feature, available in Javascript
for instance, allows the programmer to chain multiple asynchronous computa-
tions together in a way that makes the program easy to understand by avoiding
callbacks.

Actors are a similar model to active objects (though often the terminology
for describing them differs). Two features are more commonly associated with
active objects. Firstly, active objects are constructed from (active) classes, which
typically are composed using inheritance and other well-known object-oriented
techniques. This arguably makes active objects easier to program with as they are
closer to what many programmers are used to. Secondly, message sends (method
calls) in active objects generally return a result, via a future, whereas message
sends in actors are one-way and results are obtained via a callback. Futures
are thus key to making asynchronous calls appear synchronous and avoid the
inversion of control associated with callbacks.

Weakness of Active Objects. Although active objects have been selected as the
core means for expressing parallel computation in Encore, the model is not
without limitations. Indeed, much of our research will focus on ways of overcom-
ing these.

Although futures alleviate the problem of inversion of control described above
in problem, they are not without code. Waiting on a future that had not been
fulfilled can be expensive as it involves blocking the active object’s thread of
control, which may then prevent other calls depending in the active object to
block. Indeed, the current implementation of blocking on a future in Encore is
costly.

A second weakness of active objects is that, at least in the original model, it
is impossible to execute multiple concurrent method invocations within an active
object, even if these method invocations would not interfere. Some solutions to
this problem have been proposed [19] allowing a handful of method invocations
to run in parallel, but these approaches do not unleash vast amounts of paral-
lelism and they lack any means for structuring and composing the non-interfering
method invocations. For scalability, something more is required. Our first ideas
in this direction are presented in Sect. 9.

3 Hello ENCORE

Encore programs are stored in files with the suffix .enc by convention and are
compiled to C. The generated C code is compiled and linked with the Encore

run-time system, which is also written in C. The compiler itself is written in
Haskell, and the generated C is quite readable, which significantly helps with
debugging.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 5

To get a feeling for how Encore programs look, consider the following simple
program (in file hello.enc) that prints “Hello, World!” to standard output.

1 #! /usr/bin/env encorec -run
2 class Main
3 def main() : void {
4 print("Hello, World!")
5 }

The code is quite similar to modern object-oriented programming languages
such as Scala, Python or Ruby. It is statically typed, though many type anno-
tations can be omitted, and, in many cases, the curly braces { and } around
classes, method bodies, etc. can also be omitted.

Ignoring the first line for now, this file defines an active class Main that has
a single method main that specifies its return type as void. The body of the
method calls print on the string “Hello, World!”, and the behaviour is as
expected.

Every legal Encore program must have an active class called Main, with a
method called main—this is the entry point to an Encore program. The run-
time allocates one object of class Main and begins execution in its Main method.

The first line of hello.enc is optional and allows the compiler to automati-
cally compile and run the program (on Unix systems such as Mac OS X). The file
hello.enc has to be runnable, which is done by executing chmod u+x hello.enc
in the shell. After making the program executable, entering ./hello.enc in the
shell compiles and executes the generated binary, as follows:

$./hello.enc
Hello, World!

An alternative to the #! /usr/bin/env encorec -run line is to call the
compiler directly, and then run the executable:

$ encorec hello.enc
$./hello
Hello, World!

4 Classes

Encore offers both active and passive classes. Instances of active classes, that is,
active objects, have their own thread of control and message queue (cf. Sect. 2).
Making all objects active would surely consume too many system resources and
make programming difficult, so passive objects are also included in Encore. Pas-
sive objects, instances of passive classes, do not have a thread of control. Passive
classes are thus analogous to (unsynchronised) classes in mainstream object-
oriented languages like Java or Scala. Classes are active by default: class A.
The keyword passive added to a class declaration makes the class passive:
passive class P. Valid class names must start with an uppercase letter. (Type
parameters start with a lower case letter.) Classes in Encore have fields and

6 S. Brandauer et al.

methods; there is a planned extension to include traits and interfaces integrating
with capabilities (cf. Sect. 10).

A method call on an active object will result in a message being placed in
the active object’s message queue and the method invocation possibly runs in
parallel with the callee. The method call immediately results in a future, which
will hold the eventual result of the invocation (cf. Sect. 6). A method call on a
passive object will be executed synchronously by the calling thread of control.

4.1 Object Construction and Constructors

Objects are created from classes using new, the class name and an optional
parameter list: new Foo(42). The parameter list is required if the class has an
init method, which is used as the constructor. This constructor method cannot
be called on its own in other situations.

4.2 Active Classes

The following example illustrates active classes. It consists of a class Buffer
that wraps a Queue data structure constructed using passive objects (omitted).
The active object provides concurrency control to protect the invariants of the
underlying queue, enabling the data structure to be shared. (In this particu-
lar implementation, taking an element from the Buffer is implemented using
suspend semantics, which is introduced in Sect. 7.)

1 passive class Data { ... }
2 class Buffer
3 queue : Queue;
4

5 def init()
6 this.queue = new Queue()
7

8 def put(item : Data) : void
9 this.queue.enqueue(item)

10

11 def take() : Data {
12 while this.queue.empty() {
13 suspend;
14 };
15 this.queue.dequeue()
16 }

Fields of an active object are private; they can only be accessed via this,
so the field queue of Buffer is inaccessible to an object holding a reference to a
Buffer object.

4.3 Passive Classes

Passive classes in Encore correspond to regular (unsynchronised) classes in
other languages. Passive classes are used for representing the state of active
objects and data passed between active objects. Passive classes are indicated
with the keyword passive.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 7

1 passive class Person {
2 name : string
3 age : int
4

5 def init(name : string, age : int) {
6 this.name = name;
7 this.age = age;
8 }
9 }

In passive classes, all fields are public:
1 class Main
2 def main() : void
3 let p = new Person("Dave", 21) in
4 print("Hello {}\n", p.name) -- prints"Hello Dave"

4.4 Parametric Classes

Classes can take type parameters. This allows, for example, parameterised pairs
to be implemented:

1 passive class Pair<a, b>
2 fst : a
3 snd : b
4 def init(fst_ : a, snd_ : b) : void {
5 this.fst = fst_;
6 this.snd = snd_
7 }

This class can be used as follows:
1 class Main
2 def main() : void
3 let pair = new Pair<int,string>(65,"a") in
4 print("({},{})\n", pair.fst, pair.snd)

Currently, type parameters are unbounded in Encore, but this limitation will
be removed in the future.

4.5 Traits and Inheritance

Encore is being extended with support for traits [14] to be used in place of
standard class-based inheritance. A trait is a composable unit of behaviour that
provides a set of methods and requires a set of fields and methods from any class
that wishes to include it. The exact nature of Encore traits has not yet been
decided at time of writing.

A class may be self-contained, which is the case for classes shown so far and
most classes shown in the remainder of this document, or be constructed from
a set of pre-existing traits. The inclusion order of traits is insignificant, and
multiple ways to combine traits are used by the type system to reason about
data races (cf. Sect. 10). Below, the trait Comparator implementation requires
that the including class defines a cmp method, and provides five more high-level
methods all relying on the required method.

8 S. Brandauer et al.

1 trait Comparator<t>
2 require def cmp(t): int;
3

4 def equal(v:t) : bool
5 this.cmp(v) == 0
6

7 def lessThan(v:t) : bool
8 this.cmp(v) < 0
9 def lessThanOrEqual(v:t) : bool

10 this.cmp(v) <= 0
11

12 def greaterThan(v:t) : bool
13 this.cmp(v) > 0
14 def greaterThanOrEqual(v:t) : bool
15 this.cmp(v) >= 0

Traits enable trait-based polymorphism—it is possible, for instance, to write
a method that operates on any object whose class includes the Comparator trait:

1 def contains(p:person, ps:[Comparator<Person>]) : bool
2 let
3 found = false
4 size = |ps|
5 i = 0
6 in {
7 while not found and i < size
8 {
9 if ps[i].equal(p) then found = true;

10 i = i + 1;
11 }
12 return found;
13 }

For more examples of traits, see Sect. 10.

5 Method Calls

Method calls may run asynchronously (returning a future) or synchronously
depending primarily on whether the target is active or passive. The complete
range of possibilities is given in the following table:

Synchronous Asynchronous

Active objects get o.m() o.m()
Passive objects o.m() —

this (in Active) this.m() let that = this in that.m()

Self calls on active objects can be run synchronously—the method called is
run immediately—or asynchronously—a future is immediately returned and the
invocation is placed in the active object’s queue.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 9

Sometimes the result of an asynchronous method call is not required, and
savings in time and resources can be gained by not creating the data structure
implementing the future. To inform the compiler of this choice, the . in the
method call syntax is replaced by a !, as in the following snippet:

1 cart ! add_item(item)

6 Futures

Method calls on active objects run asynchronously, meaning that the method
call is run potentially by a different active object and that the current active
object does not wait for the result. Instead of returning a result of the expected
type, the method call returns an object called a future. If the return type of
the method is t, then a value of type Fut t is returned to the caller. A future
of type Fut t is a container that at some point in the future will hold a value
of type t, typically when some asynchronous computation finishes. When the
asynchronous method call finishes, it writes its result to the future, which is said
to be fulfilled. Futures are considered first class citizens, and can be passed to
and returned from methods, and stored in data types. Holding a value of type
Fut t gives a hint that there is some parallel computation going on to fulfil this
future. This view of a future as a handle to a parallel computation is exploited
further in Sect. 9.

Several primitive operations are available on futures:

– get: Fut t -> t waits for the future to be fulfilled, blocking the current
active object until it is; returns the value stored in the future.

– await: Fut t -> void waits for the future to be fulfilled, without blocking
the current active object, thus other methods can run; does not return a
value.1

– chaining: ~~> : Fut t -> (t -> t’) -> Fut t’ takes a closure to run on
the result when the future is fulfilled; returns another future that will contain
the result of running the closure.

These operations will be illustrated using following the classes as a basis. These
classes model a service provider that produces a certain product:

1 passive class Product { ... }
2 class Service {
3 def provide(): Product {
4 new Product()
5 }

The next subsections provide several implementations of clients that call on the
service provider, create an instance of class Handle to deal with the result, and
pass the result provided by the service provider to the handler.
1 This design should change, so that await will become more similar to get, but with

a different effect on the active object.

10 S. Brandauer et al.

6.1 Using the get operation

When the get operation is applied to a future, the current active object blocks
until the future is fulfilled, and when it has been, the call to get returns the
value stored in the future.

Consider the following client code.
1 class Handler { ... }
2 class Client
3 service : Service
4

5 def run() : void {
6 let fut = service.provide()
7 handler = new Handler()
8 in {
9 handler.handle(get fut);

10 ...
11 }
12 }

In method run of Client, the call to service.provide() results in a future of
type Fut Product (line 6). In line 9, the actual Product object is obtained using
a call to get. If the future had already been fulfilled, the Product object would
be returned immediately. If not, method and the active object block, preventing
any progress locally until the future is fulfilled.

6.2 Using the await command

One of the problems with calling get on a future is that it can result in the entire
active object being blocked—sometimes this is desirable to ensure than internal
invariants hold, but it can result in costly delays, for example, if the method
called involves a time-consuming calculation. During that time, the whole active
object can make no progress, which would also block other active objects that
need its services.

An alternative, when it makes sense, is to allow the active object to process
other messages from its message queue and resume the current method call
sometime after the future has been fulfilled. This is exactly what calling await
on a future allows.

Command await applies to a future and waits for it to be fulfilled, blocking
the current method call but without blocking the current active object. The call
to await does not return a value, so a call to get is required to get the value.
This call to get is guaranteed to succeed without blocking.

The following code provides an alternative implementation to the method
run from class Client above using await:2

1 def run() : void {
2 let fut = service.provide()
3 handler = new Handler()

2 Ideally, this should be: handler.handle(await fut). Future versions of Encore will
support this semantics.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 11

4 in {
5 await fut;
6 handler.handle(get fut);
7 ...
8 }
9 }

In this code, the call await fut on line 5 will block if the future fut is unfulfilled;
other methods could run in the same active object between lines 5 and 6. When
control returns to this method invocation, execution will resume on line 6 and
the call to get fut is guaranteed to succeed.

6.3 Using Future Chaining

The final operation of futures is future chaining (fut ∼∼> g) [24]. Instead of
waiting for the future fut to be fulfilled, as is the case for get and await,
future chaining attaches a closure g to the future to run when the future is
fulfilled. Future chaining immediately returns a future that will store the result
of applying the closure to the result of the original future.

The terminology comes from the fact that one can add a further closure onto
the future returned by future chaining, and add a additional closure onto that,
and so forth, creating a chain of computations to run asynchronously. If the code
is written in a suitably stylised way (e.g., one of the ways of writing monadic code
such as Haskell’s do-notation [30]), then the code reads in sequential order—no
inversion of control.

Consider the following alternative implementation of the run method from
class Client above using future chaining:

1 def run() : void {
2 let fut = service.provide()
3 handler = new Handler()
4 in {
5 fut ~~> (\(prod: Producer) -> handler.handle(prod)) -- future chaining
6 ...
7 }
8 }

In the example above, the closure defined on line 5 will be executed as soon as
the future from service.provide() (line 2) is fulfilled.

A chained closure can run in one of two modes, depending on what is accessed
within the closure. If the closure accesses fields or passive objects from the sur-
rounding context, which would create the possibility of race conditions, then it
must be run in attached mode, meaning that the closure when invoked will be
run by the active object that lexically encloses it. The closure in the example
above needs to run in attached mode as it accesses the local variable handle. In
contrast, a closure that cannot cause race conditions with the surrounding active
object can be run in detached mode, which means that it can be run indepen-
dently of the active object. To support the specification of detached closures, the
notion of spore [26], which is a closure with a pre-specified environment, can be
used (cf. Sect. 7.6). Capabilities (Sect. 10) will also provide means for allowing
safe detached closures.

12 S. Brandauer et al.

7 Expressions, Statements, and so Forth

Encore has many of the language features one expects from a general purpose
programming language. Some of these features are described (briefly) in the
following subsections.

7.1 Types

Encore has a number of built in types. The following table presents these, along
with typical literals for each type:

Type Description Literals

void The unit value ()
string Strings “hello”
int Fixed-precision integers 1, -12
uint Unsigned, fixed-precision integers 42
real Floating point numbers 1.234, -3.141592
bool Booleans true, false
Fut t Futures of type t —

Par t Parallel computations producing type t —

Stream t functional streams of type t —

t -> t’ functions from type t to type t’ \x -> x * 2
[t] arrays of type t [1,2,3,6], but not []

The programmer can also introduce two new kinds of types: active class types
and passive classes types, both of which can be polymorphic (cf. Sect. 4).

7.2 Expression Sequences

Syntactically, method bodies, while bodies, let bodies, etc. consist of a single
expression:

1 def single() : void
2 print"a single expression needs no curly braces"

In this case, curly braces are optional.
1 def curly() : void {
2 print".. but it CAN use them!"
3 }

If several expressions need to be sequenced together, this is done by sepa-
rating them by semicolons and wrapping them in curly braces. The value of a
sequence is the value of its last expression. A sequence can be used wherever an
expression is expected.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 13

1 def multiple() : int {
2 print"multiple";
3 print"expressions";
4 print"are wrapped by { ... }";
5 print"and separated by ’;’";
6 2
7 }

7.3 Loops

Encore has two kinds of loops: while and repeat loops. A while loop takes a
boolean loop condition, and evaluates its body expression repeatedly, as long as
the loop condition evaluates to true:

1 let i = 0 in
2 while i < 5 {
3 print("i={}\n",i);
4 i = i + 1
5 }

This prints:

i=0
i=1
i=2
i=3
i=4

The repeat loop is syntax sugar that makes iterating over integers simpler.
The following example is equivalent to the while loop above:

1 repeat i <- 5
2 print("i={}\n",i)

In general,
1 repeat i <- n
2 expr

evaluates expr for values i = 0, 1, . . . , n − 1.

7.4 Arrays

The type of arrays of type T is denoted [T]. An array of length n is created
using new [T](n). Arrays are indexed starting from 0. Arrays are fixed in size
and cannot be dynamically extended or shrunk.

Array elements are accessed using the bracket notation: a[i] accesses the
ith element. The length of an array is given by |a|. Arrays can be constructed
using the literal notation [1, 2, 1+2].

The following example illustrates the features of arrays:
1 class Main
2 def bump(arr: [int]): void
3 repeat i <- |arr|

14 S. Brandauer et al.

4 arr[i] = arr[i] + 1
5

6 def main(): void {
7 let a = [1,2,3] in {
8 this.bump(a);
9 repeat i <- |a|

10 print a[i];
11 let b = new [int](3) in {
12 b[0] = 0;
13 b[1] = a[0];
14 b[2] = 42 - 19;
15 };
16 repeat i <- |b|
17 print b[i];
18 }
19 }

The expected output is

2
3
4
0
2
23

7.5 Formatted Printing

The print statement allows formatted output. It accepts a variable number
of parameters. The first parameter is a format string, which has a number of
holes marked with {} into which the values of the subsequent parameters are
inserted. The number of occurrences of {} must match the number of additional
parameters.

The following example illustrates how it works.
1 class Main
2 def main() : void {
3 let i = 0 in {
4 while i < 5 {
5 i = i+1;
6 print("{} * {} = {}\n", i, i, i*i);
7 }
8 }
9 }

The output is:

$./ex_printing.enc
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 15

7.6 Anonymous Functions

In Encore, an anonymous function is written as follows:
1 \(i : int) -> 10 * i

This function multiplies its input i by 10.
The backslash \ (syntax borrowed from Haskell, resembling a lambda) is

followed by a comma separated list of parameter declarations, an arrow -> and
an expression, the function body. The return type does not need to be declared
as it is always inferred from the body of the lambda.

In the example below, the anonymous function is assigned to the variable
tentimes and then later applied—it could also be applied directly.

1 let tentimes = \(i : int) -> 10 * i in
2 print(tentimes(10)) -- prints 100

Anonymous functions are first-class citizens and can be passed as arguments,
assigned to variables and returned from methods/functions. Types of functions
are declared by specifying its arguments types, an arrow ->, and the return
type. For example, the type of the function above is int ->int. Multi-argument
functions have types such as (int, string)->bool.

The following example shows how to write a higher-order function update
that takes a function f of type int->int, an array of int’s and applies the
function f to the elements of the array data, updating the array in-place.

1 def update(f: int -> int, data: [int]): void {
2 repeat i <- |data|
3 data[i] = f(data[i]);
4 }
5

6 class Main
7 def main(): void {
8 let xs = [2,3,4,1] in
9 update(\(data: int) -> data + 1, xs)

10 }

Closures as specified above can capture variables appearing in their surround-
ing lexical context. If a closure is run outside of the context in which it is defined,
then data races can occur. A variation on closures exists that helps avoid this
problem.

Encore provides a special kind of anonymous function called a spore [26].
A spore must explicitly specify the elements from its surrounding context that
are captured in the spore. The captured elements can then, more explicitly, be
controlled using types, locks or cloning to ensure that the resulting closure can
be run outside of the context in which the spore is defined. Spores have an
environment section binding the free variables of the sport to values from the
surrounding context, and a closure, which can access only those free variables
and its parameters.

1 class Provider
2 service: Service
3

4 def provide(): Data -> Product {

16 S. Brandauer et al.

5 spore {
6 let x = clone this.service in -- set up environment for closure
7 \(y: Data) -> x.produce(y) -- the closure
8 }
9 }

In this code snippet, the only variables in scope in the closure body are x and y.
The field service, which would normally be visible within the closure (in Scala
or in Java if it were final), is not accessible. It is made accessible (actually, a
clone of its contents), via variable x in the environment section of the spore.

7.7 Polymorphism and Type Inference

At the time of writing, Encore offers some support for polymorphic classes,
methods and functions. Polymorphism in Encore syntactically resembles other
well-established OOP languages, such as Java. Type variables in polymorphic
classes, methods and/or functions must be written using lower case.

The following example shows how to write a polymorphic list:
1 passive class List<t>
2 data: t
3 next: List<t>
4

5 def init(data: t): void
6 this.data = data
7

8 def append(data: t): void {
9 let next_item = new List<t>(this.data) in {

10 next_item.next = this.next;
11 this.data = data;
12 this.next = next_item;
13 }
14 }
15 -- other methods
16

17 class Main
18 def main(): void {
19 let l = new List<int> in {
20 l.append(3);
21 l.append(4);
22 }
23 }

7.8 Module System

Currently, Encore supports a rudimentary module system. The keyword import
followed by the name of a module imports the corresponding module. The name
of the module must match the name of the file, excluding the .enc suffix. The
compiler looks for the corresponding module in the current directory plus any
directories specified using the -I pathlist compiler flag.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 17

Assume that a library module Lib.enc contains the following code:
1 class Foo
2 def boo(): void {
3 print"^-^"
4 }

This module can be imported using import Lib as illustrated in the following
(file Bar.enc):

1 import Lib
2

3 class Main
4 def main(): void {
5 let
6 f = new Foo
7 in
8 f.boo()
9 }

Here Bar.enc imports module Lib and can thus access the class Foo.
Currently, the module system has no notion of namespaces, so all imported

objects needs to have unique names. There is also no support for cyclic imports
and qualified imports, so it is up to the programmer to ensure that each file is
only imported once.

7.9 Suspending Execution

The suspend command supports cooperative multitasking. It suspends the cur-
rently running method invocation on an active object and schedules the invoca-
tion to be resumed after all messages in the queue have been processed.

1 class Pi
2 def calculate_digits(digits: int): double {
3 -- perform initial calculations
4 ...
5 suspend;
6 -- continue performing more calculations
7 ...
8 }
9

10 class Main
11 def main(): void {
12 let pi = new Pi() in {
13 pi.calculate_decimals(100000000000);
14 }
15 }

The example computes a large number of digits of π. The method calculate
digits calls suspend to allow other method calls to run on the Pi active object.
This is achieved by suspending the execution of the current method call, placing
a new message in its message queue, and then releasing control. The message
placed in the queue is the continuation of the suspended method invocation,
which in this case will resume the suspended method invocation at line 6.

18 S. Brandauer et al.

7.10 Embedding of C Code

Encore supports the embedding of C code. This is useful for wrapping C
libraries to import into the generated C code and for experimenting with imple-
mentation ideas before incorporating them into the language, code generator,
or run-time. Two modes are supported: top-level embed blocks and embedded
expressions.

Note that we do not advocate the extensive use of embed. Code using embed
is quite likely to break with future updates to the language.

Top-Level Embed Blocks. Each file can contain at most one top-level embed
block, which has to be placed before the first class definition in the file. This
embed block consists of a header section and an implementation section, as in
the following example:

1 embed
2 int64_t sq(int64_t);
3 body
4 int64_t sq(int64_t n) {
5 return n*n;
6 }
7 end

The header section will end up in a header file that all class implementations
will include. The implementation section will end up in a separate C file. The
sq function declaration must be included in the header section, otherwise the
definitions in the body section would not be accessible in the generated C code.

Embedded Expressions. An embed block can appear anywhere where an expres-
sion can occur. The syntax is:

1 embed encore-type C-code end

When embedding an expression, the programmer needs to assign an encore type
to the expression. Encore will assume that this type is correct. The value of an
embedded expression is the value of the last C-statement in the embedded code.

Encore variables can be accessed from within an embed block by wrapping
them with #{ }. For instance, local variable x in Encore code is accessed using
#{x} in the embedded C. Accessing fields of the current object is achieved using
C’s arrow operator. For instance,this->foo accesses the field this.foo.

The following example builds upon the top-level embed block above:
1 class Main
2 def main() : void {
3 let x = 2 in
4 print(embed int sq(#{x}); end)
5 }

The embedded expression in this example promises to return an int. It calls the
C-function sq on the local Encore variable x.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 19

Embedding C Values as Abstract Data Types. The following pattern allows
C values to be embedded into Encore code and treated as an abstract type,
in a sense, where the only operations that can manipulate the C values are
implemented in other embedded blocks. In the following code example, a type D
is created with no methods or fields. Values of this type cannot be manipulated
in Encore code, only passed around and manipulated by the corresponding C
code.

1 passive class D
2

3 passive class LogArray
4 size:int
5 slots:D
6 def init(size:int) : void
7 embed void -- initialise element of type D
8 this->slots = pony_alloc(size * sizeof(void*));
9 for (int i = 0; i < size; ++i) ((pony_actor_t**)this->slots)[i] = NULL;

10 this->size = size;
11 end
12 def write(i:int, v:LogEntry) : void
13 embed void -- modify element of type D
14 ((void **)this->slots)[i] = v;
15 end
16 def read(i:int) : LogEntry
17 embed LogEntry --- read element of type D
18 ((void **)this->slots)[i];
19 end
20 def size() : int
21 this.size

Mapping ENCORE Types to C Types. The following table documents how
Encore’s types are mapped to C types. This information is useful when writing
embedded C code, though ultimately having some detailed knowledge of how
Encore compiles to C will be required to do anything advanced.

Encore type C type

string (char *)
real double
int int64 t
uint uint64 t
bool int64 t
〈an active class type〉 (encore actor t *)
〈a passive class type〉 (CLASSNAME data *)
〈a type parameter〉 (void *)

20 S. Brandauer et al.

8 Streams

A stream in Encore is an immutable sequence of values produced asynchro-
nously. Streams are abstract types, but metaphorically, the type Stream a can
be thought of as the Haskell type:

1 type Stream a = Fut (Maybe (St a))
2 data St a = St a (Stream a)

That is, a stream is essentially a future, because at the time the stream is
produced it is unknown what its contents will be. When the next part of contents
are known, it will correspond to either the end of the stream (Nothing in Haskell)
or essentially a pair (Just (St e s)) consisting of an element e and the rest of
the stream s.

In Encore this metaphor is realised, imperfectly, by making the following
operations available for the consumer of a stream:

– get: Stream a -> a — gets the head element of the (non-empty) stream,
blocking if it is not available.

– getNext: Stream a -> Stream a — returns the tail of the (non-empty)
stream. A non-destructive operator.

– eos: Stream a -> Bool — checks whether the stream is empty.

Streams are produced within special stream methods. Calling such methods
results immediately in a handle to the stream (of type Stream a). Within such a
method, the command yield becomes available to produce values on the stream.
yield takes a single expression as an argument and places the corresponding
value on the stream being produced. When the stream method finishes, stream
production finishes and the end of the stream marker is placed in the stream.

The following code illustrate an example stream producer that produces a
stream whose elements are of type int:

1 class IntSeq
2 stream start(fr : int, to : int) : int {
3 while fr <= to {
4 yield fr;
5 fr = fr+1
6 };
7 }

The following code gives an example stream consumer that processes a stream
stored in variable str of type Stream int.

1 class Main
2 def main() : void
3 let
4 lst = 0
5 str = (new IntSeq).start(1,1000000)
6 in {
7 while not eos str {
8 lst = get str;

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 21

9 str = getNext str;
10 };
11 print lst
12 }

Notice that the variable str is explicitly updated with a reference to the tail of
the stream by calling getNext, as getNext returns a reference to the tail, rather
than updating the object in str in place—streams are immutable, not mutable.

9 Parallel Combinators

Encore offers preliminary support for parallel types, essentially an abstraction
of parallel collections, and parallel combinators that operate on them. The com-
binators can be used to build pipelines of parallel computations that integrate
well with active object-based parallelism.

9.1 Parallel Types

The key ingredient is the parallel type Par t, which can be thought of as a
handle to a collection of parallel computations that will eventually produce zero
or more values of type t—for convenience we will call such an expression a parallel
collection. (Contrast with parallel collections that are based on a collection of
elements of type t manipulated using parallel operations [31].) Values of Par
t type are first class, thus the handle can be passed around, manipulated and
stored in fields of objects.

Parallel types are analogous to future types in a certain sense: an element
of type Fut t can be thought of as a handle to a single asynchronous (possibly
parallel) computation resulting in a single value of type t; similarly, an element
of type Par t can be thought of as a handle to a parallel computation resulting
in multiple values of type t. Pushing the analogy further, Par t can be thought
of as a “list” of elements of type Fut t: thus, Par t ≈ [Fut t].

Values of type Par t are assumed to be ordered, thus ultimately a sequence
of values as in the analogy above, though the order in which the values are
produced is unspecified. Key operations on parallel collections typically depend
neither on the order the elements appear in the structure nor the order in which
they are produced.3

9.2 A Collection of Combinators

The operations on parallel types are called parallel combinators. These adapt
functionality from programming languages such as Orc [22] and Haskell [30]
to express a range of high-level typed coordination patterns, parallel dataflow
pipelines, speculative evaluation and pruning, and low-level data parallel com-
putations.
3 An alternative version of Par t is possible where the order in the collection is not

preserved. This will be considered in more detail in future experiments.

22 S. Brandauer et al.

The following are a representative collection of operations on parallel types.4

Note that all operations are functional.

– empty: Par t. A parallel collection with no elements.
– par: (Par t, Par t) ->Par t. The expression par(c, d) runs c and d in

parallel and results in the values produced by c followed (spatially, but not
temporally) by the values produced by d.

– pbind: (Par t, t ->Par t’) -> Par t’. The expression pbind(c,f)
applies the function f to all values produced by c. The resulting nested par-
allel collection (of type Par (Par t’)) is flattened into a single collection (of
type Par t’), preserving the order among elements at both levels.

– pmap: (t -> t’, Par t) -> Par t’ is a parallel map. The expression
pmap(f,c) applies the function f to each element of parallel collection c in
parallel resulting in a new parallel collection.

– filter: (t ->bool, Par t) -> Par t filters elements. The expression filter
(p, c) removes from c elements that do not satisfy the predicate p.

– select: Par t -> Maybe t returns the first available result from the parallel
type wrapped in tag Just, or Nothing if it has no results.5

– selectAndKill: Par t -> Maybe t is similar to select except that it also
kills all other parallel computations in its argument after the first value has
been found.

– prune: (Fut (Maybe t) ->Par t’, Par t) -> Par t’. The expression
prune(f, c) creates a future that will hold the result of selectAndKill(c)
and passes this to f. This computation in run in parallel with c. The first
result of c is passed to f (via the future), after which c is terminated.

– otherwise: (Par t, () ->Par t) ->Par t. The expression otherwise
(c, f) evaluates c until it is known whether it will be empty or non-empty.
If it is not empty, return c, otherwise return f().

A key omission from this list is any operation that actually treats a parallel col-
lection in a sequential fashion. For instance, getting the first (leftmost) element
is not possible. This limitation is in place to discourage sequential programming
with parallel types.

9.3 From Sequential to Parallel Types

A number of functions lift sequential types to parallel types to initiate parallel
computation or dataflow.
4 As work in parallel types and combinators is work in progress, this list is likely to

change and grow.
5 Relies on Maybe data type: in Haskell syntax data Maybe a = Nothing | Just a.

Data types are at present being implemented. An alternative to Maybe is to use Par
restricted to empty and singleton collections. With this encoding, the constructors for
Maybe become Nothing = empty, Just a = liftv a (from Sect. 9.3), and the destruc-
tor, maybe :: b -> (a -> b) -> Maybe a -> b in Haskell, is defined in Encore as
def maybe(c: b, f: a->b, x: Maybe a) = otherwise(pmap(f, x), \() -> c).

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 23

– liftv :: t -> Par t converts a value to a singleton parallel collection.
– liftf :: Fut t -> Par t converts a future to a singleton parallel collection

(following the Par t ≈ [Fut t] analogy above).
– each :: [t] -> Par t converts an array to a parallel collection.

One planned extension to provide a better integration between active objects
and parallel collections is to allow fields to directly store collections but not as a
data type but, effectively, as a parallel type. Then applying parallel operations
would be more immediate.

9.4 ... and Back Again

A number of functions are available for getting values out of parallel types. Here
is a sample:

– select :: Par t -> Maybe t, described in Sect. 9.2, provides a way of getting
a single element from a collection (if present).

– sum :: Par Int -> Int and other fold/reduce-like functions provide opera-
tions such as summing the collection of integers.

– sync :: Par t -> [t] synchronises the parallel computation and produces a
sequential array of the results.

– wsync :: Par t -> Fut[t] same as sync, but instead creates a computation
to do the synchronisation and returns a future to that computation.

9.5 Example

The following code illustrates parallel types and combinators. It computes the
total sum of all bank accounts in a bank that contain more than 10,000 euros.

The program starts by converting the sequential array of customers into a
parallel collection. From this point on it applies parallel combinators to get the
accounts, then the balances for these accounts, and to filter the corresponding
values. The program finishes by computing a sum of the balances, thereby moving
from the parallel setting back to the sequential one.

1 import party
2

3 class Main
4 bank : Bank
5 def main(): void {
6 let
7 customers = each(bank.get_customers()) -- get customers objects
8 balances =
9 filter(\(x: int) -> { x > 10000 }, -- filter accounts

10 pmap(\(x: Account) -> x.get_balance()), -- get all balances
11 pbind(customers,
12 \(x : Customer) -> x. get_accounts())) -- get all accounts
13 in
14 print("Total: {}\n", sum(balances))
15 }

24 S. Brandauer et al.

9.6 Implementation

At present, parallel types and combinators are implemented in Encore as a
library and the implementation does not deliver the desired performance. In
the future, Par t will be implemented as an abstract type to give the com-
piler room to optimise how programs using parallel combinators are translated
into C. Beyond getting the implementation efficient, a key research challenge
that remains to be addressed is achieving safe interaction between the parallel
combinators and the existing active object model using capabilities.

10 Capabilities

The single thread of control abstraction given by active objects enables sequen-
tial reasoning inside active objects. This simplifies programming as there is no
interleaving of operations during critical sections of a program. However, unless
proper encapsulation of passive objects is in place, mutable objects might be
shared across threads, effectively destroying the single thread of control.

A simple solution to this problem is to enforce deep copying of objects when
passing them between active objects, but this can increase the cost of mes-
sage sending. (This is the solution adopted in the formal semantics of Encore

presented in Sect. 12.) Copying is, however, not ideal as it eliminates cases of
benign sharing of data between active objects, such as when the shared data
is immutable. Furthermore, with the creation of parallel computation inside
active objects using the parallel combinators of Sect. 9, more fine-grained ways
of orchestrating access to data local to an active object is required to avoid race
conditions.

These are the problems addressed by the capability type system in Encore.6

10.1 Capabilities for Controlling of Sharing

A capability is a token that governs access to a certain resource [27]. In an
attempt to re-think the access control mechanisms of object-oriented program-
ming systems, Encore uses capabilities in place of references and the resources
they govern access to are objects, and often entire aggregates. In contrast to how
references normally behave in object-oriented programming languages, capabil-
ities impose principles on how and when several capabilities may govern access
to a common resource. As a consequence, different capabilities impose different
means of alias control, which is statically enforce at compile-time.

In Encore capabilities are constructed from traits, the units of reuse from
which classes can be built (cf. Sect. 4.5). Together with a kind, each trait forms
a capability, from which composite capabilities can be constructed. A capability
provides an interface, essentially the methods of the corresponding trait. The
capability’s kind controls how this interface can be accessed with respect to
6 Note that at the time of writing, the capability system has not been fully imple-

mented.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 25

Capability

Exclusive
Shared

LockedAtomic Immutable

Safe Unsafe

Lock-Free Active Stable

Subordinate

Optimistic Pessimistic Oblivious

Fig. 2. The hierarchy of capabilities. Leaf nodes denote concrete capabilities, non-leaves
categorise.

avoiding data-races. Capabilities are combined to form classes, just as traits do,
which means that the range of capabilities are specified at class definition, rather
than at object creation time.

From an object’s type, it is immediately visible whether it is exclusive to a
single logical thread of control (which trivially implies that accesses to the object
are not subject to data races), shared between multiple logical threads (in which
case freedom from data races must be guaranteed by some concurrency control
mechanism), or subordinate to some other object which protects it from data
races—this is the default capability of a passive class in Encore. The active
capability is the capability kind of active classes in Encore. Figure 2 shows the
different capabilities considered, which will be discussed below.7

10.2 Exclusive Capabilities

Exclusive capabilities are exclusive to a single thread of control. exclusive capa-
bilities implement a form of external uniqueness [12] where a single pointer is
guaranteed to be the only external pointer to an entire aggregate. The uniqueness
of the external variable is preserved by destructive reads, that is, the variable
must be nullified when read unless it can be guaranteed that the two aliases are
not visible to any executing threads at the same time.

Exclusive capabilities greatly simplify ownership transfer—passing an exclu-
sive capability as an argument to a method on another active object requires the
nullification of the source variable, which means that all aliases at the source to
the entire aggregate are dead and that receiver has sole access to the transferred
object.
7
Encore may eventually not include all kinds of capabilities presented here, this is
a matter under consideration.

26 S. Brandauer et al.

10.3 Shared Capabilities

A shared capability expresses that the object is shared and, in contrast to exclusive
capabilities, some dynamic means is required to guarantee data-race freedom.

The semantics of concurrent accesses via a shared capability is governed by
the sharing kind. The list below overviews the semantics of concurrent accesses
of safe (first six) and unsafe capabilities.

Active. Active capabilities denote Encore’s active classes. They guarantee race-
freedom through dynamic, pessimistic concurrency control by serialising all its
inside computation.

Atomic. Atomic capabilities denote object references whose access is managed
by a transaction. Concurrent operations either commit or rollback in a stan-
dard fashion. From a race-freedom perspective, atomic capabilities can be freely
shared across Encore active objects.

An interesting question arises when considering the interaction between trans-
actions and asynchronous message passing: can asynchronous messages “escape” a
transaction? Since asynchronous messages are processed by other logical threads
of control, they may be considered a side-effect that is impossible to roll-back.
Some ways of resolving this conundrum are:

1. Forbidding asynchronous message sends inside transactions. Problem:
Restricts expressivity.

2. Delaying the delivery of asynchronous message sends to commit-time of a
transaction. Problem: Reduces throughput/increases latency.

3. Accepting this problem and leaving it up to programmer’s to ensure the
correctness of their programs when transactions are mixed with asynchronous
message passing. Problem: Not safe.

Immutable. Immutable capabilities describe data that is always safely acces-
sible without concurrency control. Immutability is “deep”, meaning that state
can be observably modified through an immutable reference, though a method
in an immutable object can mutate state created within the method or of its
arguments. Immutable capabilities can be freely shared across Encore active
objects without any need for copying.

Locked. Each operation via a locked capability requires prior acquisition of a lock
specific for the resource. The lock can be reentrant (analogous to a synchronised
method in Java), a readers-writer lock, etc. depending on desired semantics.

LockFree. The implementations of behaviours for this capability must follow
a certain protocol for coordinating updates in a lock-free manner. Lock-free
programming is famously subtle, because invariants must be maintained at all
times, not just at select commit-points. As part of the work on Encore, we
are implementing a type system that enforces such protocol usage on lock-free
capabilities [8].

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 27

Stable. Stable capabilities present an immutable view of otherwise mutable
state. There are several different possible semantics for stable capabilities: read-
only references—capability cannot be used to modify state, but it may witness
changes occurring elsewhere; fractional permissions—if a stable capability is
available, no mutable alias to an overlapping state will be possible, thereby avoid-
ing read-write races; or readers-writer locks—a static guarantee that a readers-
writer lock is in place and used correctly.

Unsafe. As the name suggest, unsafe capabilities come with no guarantees with
respect to data races. Allowing unsafe capabilities is optional, but they may be
useful to give a type to embedded C code.

10.4 Subordinate Capabilities

A subordinate capability is a capability that is dominated by an exclusive or
shared capability, which means that the dominating capability controls access
to the subordinate. In Encore, passive objects are subordinate capabilities by
default, meaning they are encapsulated by their enclosing active object. This
corresponds to the fact that there can be no “free-standing” passive objects in
Encore, they all live on the local heap of some active object.

Encapsulation of subordinate objects is achieved by disallowing them to be
passed to non-subordinate objects. A subordinate capability is in this respect
similar to the owner annotation from ownership types [10,38].

Some notion of borrowing can be used to safely pass subordinate objects
around under some conditions [13].

10.5 Polymorphic Concurrency Control

Capabilities allow for polymorphic concurrency control through the abstract
capabilities shared, safe, optimistic, pessimistic and oblivious. This allows a
library writer to request that a value is protected from data races by some
means, but not specify those means explicitly. For example:

1 def transfer(from:safe Account, to:safe Account, amount:int) : void
2 to.deposit(from.withdraw(amount))

This expresses that the calls on from and to are safe from a concurrency
stand-point. However, whether this arises from the accounts using locks, trans-
actions or immutability is not relevant here.

Accesses through safe capabilities are interesting because the semantics of dif-
ferent forms of concurrency control requires a small modicum of extra work at
run-time. For example, if from is active, then from.withdraw() should (implic-
itly) be turned into get from.withdraw(), or if we are inside an atomic capabil-
ity and to is a locked capability, then the transfer transaction should be extended
to also include to.deposit(), and committing the transaction involves being
able to grab the lock on to and release it once the transaction’s log has been
synchronised with the object.

The exact semantics of the combinations are currently being worked out.

28 S. Brandauer et al.

10.6 Composing Capabilities

A single capability is a trait plus a mode annotation. Mode annotations are
the labels in Fig. 2. Leaves denote concrete modes, i.e., modes that can be used
in the definition of a capability or class. Remaining annotations such as safe,
pessimistic etc. are valid only in types to abstract over concrete annotations, or
combinations of concrete annotations.

Capabilities can be composed in three different ways: conjunction C1 ⊗ C2,
disjunction C1 ⊕ C2, and co-encapsulation C1〈C2〉.

A conjunction or a disjunction of two capabilities C1 and C2 creates a com-
posite capability with the union of the methods of C1 and C2. In the case of
a disjunction, C1 and C2 may share state without concurrency control. As a
result, the same guard (whether it is linearity, thread-locality, a lock, etc.) will
preserve exclusivity of the entire composite. In the case of a conjunction, C1 and
C2 must not share state, except for state that is under concurrency control. For
example, they may share a common field holding a shared capability, as long as
neither capability can write the field. The conjunction of C1 and C2, C1 ⊗ C2,
can be unpacked into its two sub-capabilities C1 and C2, creating two aliases to
the same object that can be used without regard for the other.

In contrast to conjunction and disjunction, co-encapsulation denotes a nested
composition, where one capability is buried inside the other, denoted C1〈C2〉.
The methods of the composite C1〈C2〉 are precisely those of C1, but by exposing
the nested type C2 in the interface of the composite capability, additional oper-
ations on the type-level become available. Co-encapsulation is useful to preserve
linearity of nested capabilities. For example, unless C3 is exclusive, the capabil-
ity C3〈C1 ⊗ C2〉 can be turned into C3〈C1〉⊗ C3〈C2〉 which introduces aliases to
C3 but in a way that only disjoint parts of the nested capability can be reached.

Capabilities of different kinds may be used in disjunctions and conjunctions.
A capability with at least one exclusive component must be treated linearly to
guarantee race-freedom of its data. A capability with at least one subordinate
component will be contained inside its enclosing class. There are vast possibil-
ities to create compositions of capabilities, and we are currently investigating
their possible uses and interpretations. For example, combinations of active and
exclusive capabilities allow operating on an active object as it if was a passive
object until the exclusive capability is lost, after which the active object can
be freely shared. This gives powerful control over the initialisation phase of an
object. As another example, conjunctions of active capabilities could be used to
express active objects which are able to process messages in parallel.

10.7 Implementing a Parallel Operation on Disjoint Parts of Shared State

Figures 3, 4, 5, and 6 show how the capabilities can be used to construct a simple
linked list data structure of exclusive pairs, which is subsequently “unpacked”
into two (logical) immutable lists of disjoint cells which are passed to different
objects, and later re-packed into a single mutable list of pairs again. Support for
unstructured packing and unpacking is important in Encore as communication

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 29

Fig. 3. Two different implementations of pairs from the same building blocks. WeakPair
uses conjunction (⊗) and StrongPair disjunction (⊕).

across active objects has a more flexible control flow than calls on a single stack,
or fork-join style parallelism.

The trait keyword introduces a new trait which requires the presence of
zero or more fields in any class that includes it. Figure 3 illustrates a trait Cell
that requires a mutable field value in any including class.

The compositions of cells into WeakPair and StrongPair have different reuse
stories for the Cell trait. The cells of a WeakPair may be independently updated
by different threads whereas the cells of a StrongPair always belong to the same
thread and are accessed together.

For simplicity, we employ a prime notation renaming scheme for traits to
avoid name clashes when a single trait is included more than once.

Figure 4 shows how three capabilities construct a singly linked list. The links
in the list are subordinate objects, and the elements in the list are typed by
some exclusive parameter P. The capabilities of the List class are Add, Del and
Get. The first two are exclusive and the last is stable.

The Add and Del capabilities can add and remove exclusive P objects from
the list. (Since these objects are exclusive, looking them up, removes them from
the list to maintain linear access.) Since Add and Del share the same field first
with the same type, they are not safe to use separately in parallel, so their com-
bination must be a disjunction. If they had been, for example, locked capabilities
instead, they would have protected their internals dynamically, so in this case,
a conjunction would be allowed.

30 S. Brandauer et al.

Fig. 4. A list class. P above is a type parameter which allows deep unpacking of the
object.

Linearity of exclusive capabilities is maintained by an explicit destructive
read, the keyword consumes. The expression consume x returns the value of x,
and updates x with null, logically in one atomic step.

The Get capability overlaps with the others, but the requirement on the field
first is different: it considers the field immutable and its type stable through

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 31

Fig. 5. Definition of the link class with a stable iterator capability to support non-
destructive parallel iteration over elements in the list.

the Iterator capability (cf. Fig. 5). As the Get capability’s state overlaps with
the other capabilities, their composition must be in the form of a disjunction.

Inside the Get trait, the list will not change—the first field cannot be
reassigned and the Iterator type does not allow changes to the chain of links.
The Get trait however is able to perform reverse borrowing, which means it is
allowed to read exclusive capabilities on the heap non-destructively and return
them, as long as they remain stack bound. The stack-bound reference is marked
by a type wrapper, such as S(P).

The link capabilities used to construct the list are shown in Fig. 5; they are
analogous to the capabilities in List, and are included for completeness.

Finally, Fig. 6 shows the code for unpacking a list of WeakPairs into two logi-
cal, stable lists of cells that can be operated on in parallel. The stable capability
allows multiple (in this case two) active objects to share part of the list structure
with a promise that the list will not change while they are looking.

On a call to start() on a Worker, the list of WeakPairs is split into two in
two steps. Step one (line 10–11) turns the List disjunction into a conjunction
by jailing the Add and Del components which prevents their use until the list is
reassembled again on line 35. Step two (line 12) turns the iterator into two by
unpacking the pair into two cells.

32 S. Brandauer et al.

Fig. 6. Parallel operations on a single list of pairs using unpack and re-packing. Note
that this code would not type check for var a: List<StrongPair> as StrongPair is
built from a disjunction that does not allow unpacking.

The jail construct is used to temporarily render part of a disjunction inaces-
sible. In the example, Add<WeakPair> ⊕ Del<WeakPair> ⊕ Get<Cell> is turned
into J(Add<WeakPair> ⊕ Del<WeakPair>) ⊗ Get<Cell>. The latter type allows
unpacking the exclusive reference into two, but since one cannot be used while
it is jailed, the exclusivity of the referenced object is preserved.

The lists of cells are passed to two workers (itself and other) that perform
some work, before passing the data back for reassembly (line 32).

11 Examples

A good way to get a grip on a new programming language is to study how it is
applied in larger programs. To this end, three Encore programs, implementing a

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 33

thread ring (Sect. 11.1), a parallel prime sieve (Sect. 11.2), and a graph generator
following the preferential attachment algorithm (Sect. 11.3), are presented.

11.1 Example: Thread Ring

Thread Ring is a benchmark for exercising the message passing and scheduling
logic of parallel/concurrent programming languages. The program is completely
sequential, but deceptively parallel. The corresponding Encore program (Fig. 7)
creates 503 active objects, links them forming a ring and passes a message con-
taining the remaining number of hops to be performed from one active object
to the next. When an active object receives a message containing 0, it prints its
own id and the program finishes.

Fig. 7. Thread ring example

34 S. Brandauer et al.

In this example, the active objects forming the ring are represented by the
class Worker, which has field id for worker’s id and next for the next active
object in the ring. Method init is the constructor and the ring is set up using
method setNext. The method run receives the number of remaining hops, checks
whether this is larger than 0. If it is, it sends an asynchronous message to the next
active object with the number of remaining hops decrement by 1. Otherwise, the
active object has finished and prints its id.

11.2 Example: Prime Sieve

This example considers an implementation of the parallel Sieve of Eratosthenes
in Encore. Recall that the Sieve works by filtering out all non-trivial multiples
of 2, 3, 5, etc., thereby revealing the next prime, which is then used for further
filtering. The parallelisation is straightforward: one active object finds all primes
in

√
N and uses M filter objects to cancel out all non-primes in (chunks of) the

interval [
√

N,N]. An overview of the program is found in Fig. 8 and the code
is spread over Figs. 9, 10, 11 and 12. Which each filter object finally receives
a “done” message, they scan their ranges for remaining (prime) numbers and
report these to a special reporter object that keeps a tally of the total number
of primes found.

Fig. 8. Overview of the parallel prime sieve. The root object finds all primes in [2,
√
N]

and broadcasts these to filter objects that cancel all multiples of these in some ranges.
When a filter receives the final “done” message, it will scan its range for remaining
(prime) numbers and report these to an object that keeps a tally.

The listing of the prime sieve program starts by importing libraries. The
most important library component is a bit vector data type, implemented as a

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 35

Fig. 9. Prime Sieve (a). The Reporter class collects the reports from all filter active
objects and summarises the (number of) primes found.

thin Encore wrapper around a few lines of C to flip individual bits in a vec-
tor. Figure 9 shows the class of the reporter object that collects and aggregates
the results of all filter active objects. When it is created, is it told how many
candidates are considered (e.g., all the primes in the first 1 billion natural num-
bers), and as every filter reports in, it reports the number of primes found in the
number of candidates considered.

The main logic of the program happens in the Filter class. The filter objects
form a binary tree, each covering a certain range of the candidate numbers
considered. The lack of a math library requires a home-rolled power function
(pow() below) and an embedded C-level sqrt() function (Lines 105–106).

The main filter calls the found prime() function with a prime number. This
causes the program to propagate the number found to its children (line 77).
This allows them to process the number in parallel with the active object doing
a more lengthy operation in cancel one(), namely iterating over its bit vector
and cancelling out all multiples of the found prime.

Once the main active object has found all the primes in
√

N , it calls root
done() which is propagated in a similar fashion as found prime(). Finally, the
done() method is called on each filter active object, which scans the bit vector
for any remaining numbers that have not been cancelled out. Those are the
prime numbers which are sent to the reporter.

11.3 Example: Preferential Attachment

Preferential attachment is a model of graph construction that produces graphs
whose node degrees have a power law distribution. Such graphs model a number
of interesting phenomena such as the growth of the World Wide Web or social
networks [3,6].

36 S. Brandauer et al.

Fig. 10. Prime Sieve (b). The Filter class (continued in next figure) is the main work
horse of this program.

The underlying idea of preferential attachment is that nodes are added incre-
mentally to a graph by establishing connections with existing nodes, such that
edges are added from each new node to a random existing node with probability
proportional to the degree distribution of the existing nodes. Consequently, the
better connected a node is, the higher the chance new nodes will be connected
to it (thereby increasing the chance in the future that more new nodes will be
connected to it).

The preferential algorithm is based on two parameters: n the total number
of nodes in the final graph and k the number of unique edges connecting each

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 37

Fig. 11. Prime Sieve (c). The Filter class (continued from previous figure) is the main
work horse of this program.

newly added node to the existing graph. A sequential algorithm for preferential
attachment is:

1. Create a fully connected graph of size k (the clique). This is a completely
deterministic and all the nodes in the initial graph will be equally likely to
be connected to by new nodes.

2. For i = k+1, . . . , n, add a new node ni, and randomly select k distinct nodes
from n1, . . . , ni−1 with probability proportional to the degree of the selected
node and add the edges from ni to the selected nodes to the graph.

One challenge is handling the probabilities correctly. This can be done by storing
the edges in an array of size ≈n × k, where every pair of adjacent elements in
the array represents an edge. As an example, consider the following graph and
its encoding.

38 S. Brandauer et al.

Fig. 12. Prime Sieve (d). The Main class sets up the program and finds all the primes
in the first

√
N (here hard coded to 1 billion) candidates.

Fig. 13. High-level design of the parallel preferential attachment.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 39

The number of times a node appears in this array divided by the size of
the array is precisely the required probability of selecting the node. Thus, when
adding new edges, performing a uniform random selection from this array is
sufficient to select target nodes.

In the implementation a simple optimisation is made. Half of the edge infor-
mation is statically known—that is (ignoring the clique), for each n > k, the
array will look like the following:

The indices where the edges for node n will be stored can be calculated in
advance, and thus these occurrences of n need not be stored, and the amount of
space required can be halved.

Parallelising preferential attachment is non-trivial due to the inherent tempo-
rality in the problem: the correctness (with respect to distinctness) of all random
choices for an addition depends on the values selected for earlier nodes. However,
even though a node may not yet appear in some position in the array, it is possi-
ble to compute in parallel a candidate for the desired for all future nodes. Then
these can gradually be fulfilled (out of order) and the main challenge is ensuring
that distinctness of edges is preserved. This is done by checking whenever new
edges are added and randomly selecting again when a duplicate edge is added.

The naive implementation shown here attempts to parallelise the algorithm
by creating A active objects each responsible for the edges of some nodes in the
graph. Every active object proceeds according to the algorithm above, but with
non-overlapping start and stop indexes. If a random choice picks an index that
is not yet filled in, a message is sent to the active object that owns that part of
the array with a request to be notified when that information becomes available.

The requirement that edges are distinct needs to be checked whenever a new
edge is added. If a duplicate is found, the algorithm just picks another random
index. With reasonably large graphs (say 1 million nodes with 20 edges each),
duplicate edges is rare, but the scanning is still necessary, and this is more costly
in the parallel implementation compared to the sequential one, because in the
sequential algorithm all edges are available at the time the test for duplicates is
made, but this is not the case in the parallel algorithm.

Figure 13 shows a high-level overview of the implementation. The colour-
coded workers own the write rights to the equi-coloured part of the array.
A green arrow denotes read rights, a red array denotes write rights. The middle
worker attempts to the edge at index 3 in the array, which is not yet determined.
This prompts a request to the (left) worker that owns the array chunk to give

40 S. Brandauer et al.

this information once the requested value becomes available. Once this answer
is provided, the middle active object writes this edge into the correct place, pro-
vided it is not a duplicate, and forwards the results to any active object that
has requested it before this point.

The Encore implementation of preferential attachment is fairly long and
can be found in Appendix A.

12 Formal Semantics

This section presents the semantics of a fragment of Encore via a calculus called
μEncore. The main aim of μEncore is to formalise the proposed concurrency
model of Encore, and thereby establish a formal basis for the development of
Encore and for research on type-based optimisations in the UpScale project.
μEncore maintains a strong notion of locality by ensuring that there is no
shared data between different active objects in the system.

Fig. 14. Syntax of µEncore. Terms like e and x denote (possibly empty) lists over the
corresponding syntactic categories, square brackets [] denote optional elements.

12.1 The Syntax of µENCORE

The formal syntax of μEncore is given in Fig. 14. A program P consists of inter-
face and class declarations followed by an expression e which acts as the main
block.8 The types T includes Booleans bool (ignoring other primitive types), a
type void (for the () value), type Fut T for futures, interfaces I, passive classes
C, and function types T → T . In μEncore, objects can be active or passive.
Active objects have an independent thread of execution. To store or transfer
local data, an active object uses passive objects. For this reason, interfaces IF
and classes CL can be declared as passive. In addition, an interface has a name
I and method signatures Sg and class has a name C, fields x of type T , and
methods M . A method signature Sg declares the return type T of a method with
8 µEncore supports interfaces, though Encore does not yet. Encore with combine

interfaces with traits.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 41

name m and formal parameters x of types T . M defines a method with signa-
ture Sg , and expressions e. When constructing a new object of a class C by a
statement new C(e), the new object may be either active or passive (depending
on the class).

Expressions include, variables (local variables and fields of objects), values,
sequential composition e1; e2, assignment, skip (to make semantics easier to
write), if, let, and while constructs. Expressions may access the fields of an
object, the method’s formal parameters and the fields of other objects. Values
v are expressions on a normal form, let-expressions introduce local variables.
Cooperative scheduling in μEncore is achieved by explicitly suspending the
execution of the active stack. The statement suspend unconditionally suspends
the execution of the active method invocation and moves this to the queue.
The statement await e conditionally suspends the execution; the expression e
evaluates to a future f , and execution is suspended only if f has not been fulfilled.

Communication and synchronisation are decoupled in μEncore. In contrast
to Encore, μEncore makes explicit in the syntax the two kinds of method call:
e
 m(e) corresponds to a synchronous call and e�m(e) corresponds to an asyn-
chronous call. Communication between active objects is based on asynchronous
method calls o�m(e) whose return type is Fut T , where T corresponds to the
return type of the called method m. Here, o is an object expression, m a method
name, and e are expressions providing actual parameter values for the method
invocation. The result of such a call is a future that will hold the eventual result
of the method call. The caller may proceed with its execution without block-
ing. Two operations on futures control synchronisation in μEncore. The first
is await f , which was described above. The second is get f which retrieves the
value stored in the future when it is available, blocking the active object until it
is. Futures are first-class citizens of μEncore. Method calls on passive objects
may be synchronous and asynchronous. Synchronous method calls o
m(e) have
a Java-like reentrant semantics. Self calls are written this�m(e) or this
m(e).

Anonymous functions and future chaining Anonymous functions are available
in μEncore in the form of spores [26]. A spore spore x′ = e′ in λ(x : T) → e : T
is a form of closure in which the dependencies on local state e′ are made explicit;
i.e., the body e of the lambda-function does not refer directly to variables outside
the spore. Spores are evaluated to create closures by binding the variables x′

to concrete values which are controlled by the closure. This ensures race-free
execution even when the body e is not pure. The closure is evaluated by function
application e(e) where the arguments e are bound to the variables x of the spore,
before evaluating the function body e. Closures are first class values. Future
chaining e1 � e2 allows the execution of a closure e2 to be spawned into a
parallel task, triggered by the fulfilment of a future e1.

12.2 Typing of µENCORE

Typing judgments are on the form Γ � e : T , where the typing context Γ maps
variables x to their types. (For typing the constructs of the dynamic semantics,
Γ will be extended with values and their types.) Write Γ � e : T to denote that

42 S. Brandauer et al.

Γ � ei : Ti for 1 ≤ i ≤ |e|, assuming that |e| = |T |. Types are not assigned to
method definitions, class definitions and the program itself; the corresponding
type judgements simply express that the constructs are internally well-typed by
a tag “ok”.

Auxiliary definitions. Define function typeOf(T, m) such that: (1) typeOf(T, m)
= T → T ′ if the method m is defined with signature T → T ′ in the class or
interface T ; (2) typeOf(T, x) = T ′ if a class T has a field x declared with type T ′;
and (3) typeOf(C) = T → C where T are the types of the constructor arguments.
Further define a predicate active(T) to be true for all active classes and interfaces
T and false for all passive classes and interfaces. By extension, let active(o) =
active(C) if o is an instance of C.

Subtyping. Let class names C of active classes also be types for the type analysis
and let be the smallest reflexive and transitive relation such that

– T void for all T ,
– C I ⇐⇒ ∀m ∈ I · typeOf(C, m) typeOf(I,m)
– T T

′ ⇐⇒ n = length(T) = length(T
′
) and Ti T ′

i for 1 ≤ i ≤ n
– T1 → T2 T ′

1 → T ′
2 ⇐⇒ T ′

1 T1 ∧ T2 T ′
2

A type T is a subtype of T ′ if T T ′. The typing system of μEncore is given
in Fig. 15 and is mostly be standard. Note that rule T-Spore enforces that all
dependencies to the local state to be explicitly declared in the spore.

12.3 Semantics of µENCORE

The semantics of μEncore is presented as an operational semantics in a context-
reduction style [15], using a multi-set of terms to model parallelism (from from
rewriting logic [25]).

Run-Time Configurations. The run-time syntax of μEncore is given in Fig. 16.
A configuration cn is a multiset of active objects (plus a local heap of passive
objects per active object), method invocation messages and futures. The associa-
tive and commutative union operator on configurations is denoted by whitespace
and the empty configuration by ε.

An active object is given as a term g(active, hp, q) where active is the method
invocation that is executing or idle if no method invocation is active, hp a
multiset of objects, and q is a queue of suspended (or not yet started) method
invocations.

An object obj is a term o(σ) where o is the object’s identifier and σ is an
assignment of the object’s fields to values. Concatenation of such assignments is
denoted σ1 ◦ σ2.

In an invocation message m(o, v, hp, f), m is the method name, o the callee,
v the actual parameter values, hp a multiset of objects (representing the data
transferred with the message), and f the future that will hold the eventual result.
For simplicity, the futures of the system are represented as a mapping fut from
future identifiers f to either values v or ⊥ for unfulfilled futures.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 43

Fig. 15. The type system for µEncore.

Fig. 16. Run-time syntax; here, o and f are identifiers for objects and futures, and x is
the name of a variable.

44 S. Brandauer et al.

The queue q of an active object is a sequence of method invocations (task).
A task is a term t(fr ◦ sq) that captures the state of a method invocation as
sequence of stack frames {σ|e} or {σ|E} (where E is an evaluation context,
defined in Fig. 18), each consisting of bindings for local variables plus either the
expression being run for the active stack frame or a continuation (represented
as evaluation context) for blocked stack frames. eos indicates the bottom of the
stack. Local variables also include a binding for this, the target of the method
invocation. The bottommost stack frame also includes a binding for variable
destiny to the future to which the result of the current call will be stored.

Expressions e are extended with a polling operation e? on futures that eval-
uates to true if the future has been fulfilled or false otherwise. Values v are
extended with identifiers for the dynamically created objects and futures, and
with closures. A closure is a dynamically created value obtained by reducing a
spore-expression (after sheep cloning the local state). Further assume for sim-
plicity that default(T) denotes a default value of type T ; e.g., null for interface
and class types. Also, classes are not represented explicitly in the semantics, but
may be seen as static tables of field types and method definitions. Finally, the
run-time type Closure marks the run-time representation of a closure. To avoid
introducing too many new run-time constructs, closures are represented as active
objects with an empty queue and no fields.

The initial configuration of a program reflects its main block. Let o be an
object identifier. For a program with main block e the initial configuration con-
sists of a single dummy active object with an empty queue and a task executing
the main block itself: g(t({this �→ 〈Closure, o〉|e} ◦ eos), o(ε), ∅).

A Transition System for Configurations. Transition rules transform configu-
rations cn into new configurations. Let the reflexive and transitive transition
relation → capture transitions between configurations. A run is a possibly ter-
minating sequence of configurations cn0, cn1, . . . such that cni → cni+1. Rules
apply to subsets of configurations (the standard context rules for configurations
are not listed). For simplicity we assume that configurations can be reordered to
match the left hand side of the rules, i.e., matching is modulo associativity and
commutativity as in rewriting logic [25].

Auxiliary functions. If the class of an object o has a method m, let bind(m, o, v)
and abind(m, o, v, f) return a frame resulting from the activation of m on o with
actual parameters v. The difference between these two functions is that the abind
introduces a local variable destiny bound to 〈T, f〉 where T is the return type of
the frame. If the binding succeeds, the method’s formal parameters are bound
to v. The function select(q, fut) schedules a task which is ready to execute from
the task queue q which belongs to an active object g with g(idle, hp, q). The
function atts(C, o) returns the initial field assignment σ of a new instance o of
class C in which the fields are bound to default values. The function init(C)
returns an activation of the init method of C, if defined. Otherwise it returns
the empty task {ε|()}. The predicate fresh(n) asserts that a name n is globally

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 45

unique (where n may be an identifier for an object or a future). The definition
of these functions is straightforward but requires that the class table is explicit
in the semantics, which we have omitted for simplicity.

Sheep cloning. Given an object identifier v and a heap hp, let lookup(v, hp)
return the object corresponding to v in hp. Given a list of object identifiers v
and a heap hp, let rename(v, hp, σ) return a mapping that renames all passive
objects reachable from v in hp. Given a list of object identifiers v and a heap hp,
copy(v, hp, transfer) returns the sub-heap reachable from v in hp. The formal
definitions of these functions are given in Fig. 17. Sheep cloning combines the
rename and copy functions.

Fig. 17. Sheep cloning: deep renaming and copying of passive objects.

Transition rules. The transition rules of μEncore are presented in Figs. 20
and 21. Let a denote the map of fields to values in an object and l to denote map
of local variables to values in a (possibly blocked) frame. A context reduction
semantics decomposes an expression into a reduction context and a redex, and
reduces the redex (e.g., [15,28]). A reduction context is denoted by an expression
E with a single hole denoted by •, while an expression without any holes is
denoted by e. Filling the hole of a context E with an expression e is denoted by
E[e], which represents the expression obtained by replacing the hole of E with
e. In the rules, an expression E[e] consisting of a context E and a redex e is
reduced to E[e′], possibly with side effects. Here the context E determines the
hole where a reduction may occur and e is the redex located in the position of

46 S. Brandauer et al.

Fig. 18. Context reduction semantics of µEncore: the contexts.

Fig. 19. Context reduction semantics of µEncore: the redexes.

that hole. The contexts of our semantics are given in Fig. 18 and the redexes in
Fig. 19.

Basic rules. Rule Skip consumes a skip in the active task. Rules Assign1 and
Assign2 assign a value v to a variable x in the local variables l or in the fields
a, respectively. In the rules, the premise l(this) = o looks up the corresponding
object. Rule Variable1 reads the value of a local variable or a field of the object
executing the frame. Rule Variable2 reads the value of the field of another object
in the same local heap. Rules Cond1 and Cond2 cover the two cases of conditional
expression. Rule Let associates a value v to a local variables x and uses it in
the expression e. Rule While unfolds the while loop into a conditional. Rule
Sequential discards the value v in an expression of the form v; e and continues
the evaluation the expression e.

Suspension and activation. Rule Suspend enables cooperative scheduling and
moves the active task to the queue q, making the active task idle. Rule Await

unfolds into a conditional. Rules Poll-Future1 and Poll-Future2 test whether
the future f has been resolved. If f is not resolved, the active task suspends.
Otherwise, the await expression is reduced to a skip. Rule Activate schedules
a task from the task queue q by means of the select function. Since the schedu-
lability of a task may depend on a future, select uses the map of futures fut .

Asynchronous method calls. Rule Remote-Async-Call sends an invocation mes-
sage to an object o, with a return address f and sheep copied actual parameter
values. The cloned objects hp′ are transferred with the method invocation. (Nota-
tion v σ and hp σ denote the recursive application of the substitution σ to v and
hp, respectively). The identifier of the new future is added to fut with a ⊥ value
indicating that it has not been fulfilled. In rule Remote-Bind-Mtd, the function
abind(m, o, v̄, f) binds a method call in the class of the callee o. This results in a
new task in the queue of the active object o. In the frame fr , the local variable
this is bound to o and destiny is bound to f . The heap hp′ transferred with the
message extends the heap hp of the active object. Rule Local-Async-Call puts
a new task with a single frame fr on the queue q. As before, a new future f
is created and associated to the variable destiny in fr , the identifier of the new
future is added to fut with a ⊥ value. Rule Async-Return places the final value

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 47

Fig. 20. Semantics for µEncore (1).

of a task into the associated future, making the active task idle. Rule Read-Fut

dereferences a future f from the maps of futures fut .

Synchronous method calls. In rule Sync-Call, method m is called on a local
object o, with actual parameters v. The function bind(m, o′, v′) binds the call in
the class of o, resulting in a frame fr . The new frame extends the stack, and the
previously active frame becomes blocked. In rule Sync-Return, the active frame

48 S. Brandauer et al.

Fig. 21. Semantics for µEncore (2).

only contains a single value. The frame is popped form the stack, and the value
is passed to the blocked frame below which becomes active.

Object creation. Rule New-Active-Object creates a an active object with a
unique identifier o′ and a new local heap. The fields of o′ are given default
values by atts(C, o′). The active task of the new active object is the constructor
init(C, f), where the local variable this binds to 〈C, o′〉 and destiny binds to
〈Fut C, f〉.9 Passive object are created in a similar way, except that the class
constructor is executed by the calling thread (cf. Rule New-Passive-Object).

9 In Encore the constructor does not run asynchronously.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 49

Closures. In rule Create-Closure, a closure is created from a spore by sheep
cloning any references to the passive objects of enclosing active object. Note
that values inside closures are also sheep copied, even if this has already been
done when they were created, to ensure that if the closure is passed out of the
active object, it is passed with a fresh sheep clone of its passive objects. Rule
Lambda-App reduces a closure to a let-expression when it is applied to values.

Future chaining. Future chaining creates a new dummy active object in which
the closure can execute in parallel with the current active object. The closure
blocks waiting for the value of it needs from f to begin execution, and will return
its own value to another future f ′.

12.4 Run-Time Typing

Assume a typing context CT (C) that maps fields of each class C to their declared
types. The class table also includes a class Closure such that CT (Closure) = ε.
The run-time type system (Fig. 22) facilitates the type preservation proof for
μEncore.

Fig. 22. Type system for µEncore run-time states.

50 S. Brandauer et al.

Lemma 1. If a program IF CL e is well-typed, then there is a Γ such that the
initial run-time state of this program is well-typed: Γ � s({this �→ 〈Closure, o〉|e}◦
eos, o(ε), ∅) ok.

Lemma 2 (Sheep lemma). Assume that Γ � hp ok and let σ be a substitution
such that dom(σ) ⊆ dom(Γ), ran(σ) ∩ dom(Γ) = ∅. Let Γ ′ = {y �→ T |σ(x) =
y ∧ Γ (x) = T} Then Γ ◦ Γ ′ � hp σ ok.

Lemma 3 (Type preservation). If Γ � cn ok and cn → cn ′ then there exists a
Γ ′ such that Γ ⊆ Γ ′ and Γ � cn ′ ok

Theorem 1. Let P be a program in μEncore, with an initial state cn. If Γ �
P ok and cn → cn′, there is a typing environment Γ ′ such that Γ ⊆ Γ ′ and
Γ ′ � cn′ ok.

Proof. Follows directly from Lemmas 1–3.

13 Related Work

Encore is based on the concurrency model provided by active objects and actor-
based computation, where software units with encapsulated thread of control
communicate asynchronously. Languages based on the actor model [1,2] take
asynchronous messages as the communication primitive and focus on loosely
coupled processes with less synchronisation. This makes actor languages concep-
tually attractive for parallel programming programming. Rather than the pure
asynchronous message passing model of actor systems, active objects adopts
method calls as asynchronous messages combined with futures to deliver results.
Futures were devised as a means to reduce latency by synchronising at the lat-
est possible time. Futures were discovered by Baker and Hewitt in the 70s [5],
and rediscovered after around 10 years and introduced in languages such as
ABCL [40,41], Argus [24], ConcurrentSmalltalk [39], and MultiLisp [18] and later
in Alice [33], Oz-Mozart [36], Concurrent ML [32], C++ [23] and Java [37], often
as libraries. Nowadays, active object and actor-based concurrency is increasingly
attracting attention due to its intuitive and compositional nature, which can lead
to good scalability in a parallel setting. Modern example languages or frame-
works include Erlang [4], ProActive [7], Scala Actors [17], Kilim [34], Creol [21],
ABS [20], Akka [35], Habanero-Java [9], among others.

Encore has a clear distinction between active and passive objects, such
that passive objects as a default are only locally accessible. This is ensured in
μEncore by means of sheep cloning [11] and paves the way for capability type
systems for sharing, as first investigated in Joëlle [13]. Encore further features
spores, originally proposed for Scala [26]. Although spores in Encore need not
be pure, they are combined with sheep cloning to preserve race-free execution as
a default. Future versions of spores in Encore will utilise capabilities for more
fine-grained control.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 51

14 Conclusion

Programming parallel computers is hard, but as all future computers will be
parallel computers doing so will be a necessary skill of all programmers. New
programming models and languages are required to support programmers in
writing applications that are safe and exploit the available parallel computing
resources. Encore aims to answer this challenge by provided active-object based
parallelism combined with additional mechanisms such as parallel combinators
and capabilities for safely expressing other forms of parallelism. This paper gave
an overview of Encore, including the semantics of its core, along with a number
of examples showing how to use the language.

Work on Encore has really only just begun. In the future we will be imple-
menting and improving language constructs for expressing different kinds of par-
allelism and for controlling sharing, data layout and other deployment related
concerns. We will continue improving the run-time system, developing libraries
and tool support, and exploring case studies. In the near future, we plan to con-
vert the compiler to open source. When this happens—or even beforehand, if
you are keen—, you are more than welcome to contribute to the development of
Encore.

A Code for Preferential Attachments

52 S. Brandauer et al.

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 53

54 S. Brandauer et al.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge (1986)

2. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. J. Funct. Program. 7(1), 1–72 (1997)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, Raleigh (2007)

5. Baker Jr, H.C., Hewitt, C.: The incremental garbage collection of processes. SIG-
PLAN Not. 12(8), 55–59 (1977)

6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

7. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. Inf.
Comput. 207(4), 459–495 (2009)

8. Castegren, E., Wrigstad, T.: Capable: capabilities for scalability. In: IWACO 2014
(2014)

9. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures of
old X10. In: Probst, C.W., Wimmer, C. (eds.) Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ 2011, pp.
51–61. ACM, Kongens Lyngby, Denmark, 24–26 August 2011

10. Clarke, D.: Object ownership and containment. Ph.D. thesis, School of Computer
Science and Engineering, University of New South Wales, Australia (2002)

Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore 55

11. Clarke, D., Noble, J., Wrigstad, T. (eds.): Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification. LNCS, vol. 7850. Springer, Heidelberg
(2013)

12. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

13. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal ownership for active
objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008)

14. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

15. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

16. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification,
3rd edn. Addison-Wesley Professional, Reading (2005)

17. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

18. Halstead Jr, R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

19. Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 90–104. Springer,
Heidelberg (2013)

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

21. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 35–58 (2007)

22. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522,
pp. 1–25. Springer, Heidelberg (2009)

23. Lavender, R.G., Schmidt, D.C.: Pattern Languages of Program Design 2. Chapter
Active Object: An Object Behavioral Pattern for Concurrent Programming.
Addison-Wesley Longman Publishing Co., Inc, Boston (1996)

24. Liskov, B.H., Shrira, L.: Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In: Wise, D.S. (ed.) Proceedings of the SIG-
PLAN Conference on Programming Lanugage Design and Implementation (PLDI
1988), pp. 260–267. ACM, Atlanta, GE, USA (1988)

25. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96, 73–155 (1992)

26. Miller, H., Haller, P., Odersky, M.: Spores: a type-based foundation for closures in
the age of concurrency and distribution. In: Jones, R. (ed.) ECOOP 2014. LNCS,
vol. 8586, pp. 308–333. Springer, Heidelberg (2014)

27. Miller, M.S.: Robust composition: towards a unified approach to access control and
concurrency control. Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006

28. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

29. Noble, J., Clarke, D.G., Potter, J.: Object ownership for dynamic alias protec-
tion. In: TOOLS Pacific 1999: 32nd International Conference on Technology of
Object-Oriented Languages and Systems, pp. 176–187. IEEE Computer Society,
Melbourne, Australia, 22–25 November 1999

56 S. Brandauer et al.

30. Peyton Jones, S., et al.: The Haskell 98 language and libraries: the revised report.
J. Funct. Program. 13(1), 0–255 (2003)

31. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A Generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 6853, pp. 136–147. Springer, Heidelberg (2011)

32. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press,
Cambridge (1999)

33. Rossberg, A., Botlan, D.L., Tack, G., Brunklaus, T., Smolka, G.: Alice Through
the Looking Glass, Munich, Germany. Trends in Functional Programming, vol. 5,
pp. 79–96. Intellect Books, Bristol (2006). ISBN 1-84150144-1

34. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

35. The Akka Project. Akka (2015). http://akka.io/
36. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-

ming. MIT Press, Cambridge (2004)
37. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proceedings of the

Object Oriented Programming, Systems, Languages, and Applications (OOPSLA
2005), pp. 439–453. ACM Press, New York, NY, USA (2005)

38. Wrigstad, T., Pizlo, F., Meawad, F., Zhao, L., Vitek, J.: Loci: simple thread-locality
for Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 445–469.
Springer, Heidelberg (2009)

39. Yokote, Y., Tokoro, M.: Concurrent programming in ConcurrentSmalltalk. In:
Yonezawa, A., Tokoro, M. (eds.) Object-Oriented Concurrent Programming, pp.
129–158. The MIT Press, Cambridge, Mass. (1987)

40. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. Series in Computer
Systems. The MIT Press, Cambridge (1990)

41. Yonezawa, A., Briot, J.-P., Shibayama, E:. Object-oriented concurrent program-
ming in ABCL/1. In: Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA 1986) (1986). Sigplan Not. 21(11):258–268
(1986)

http://akka.io/

Coordinating Multicore Computing

Farhad Arbab1,2(B) and Sung-Shik T.Q. Jongmans1

1 Formal Methods, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
farhad@cwi.nl

2 Leiden Institute for Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. Traditional models of concurrency resort to peculiarly indi-
rect means to express interaction and study its properties. Formalisms
such as process algebras/calculi, concurrent objects, actors, shared
memory, message passing, etc., all are primarily action-based models
that provide constructs for the direct specification of things that inter-
act, rather than a direct specification of interaction (protocols). Conse-
quently, interaction in these formalisms becomes a derived or secondary
concept whose properties can be studied only indirectly, as the side-
effects of the (intended or coincidental) couplings or clashes of the actions
whose compositions comprise a model.

Treating interaction as an explicit first-class concept, complete with
its own composition operators, allows to specify more complex interac-
tion protocols by combining simpler, and eventually primitive, protocols.
Reo [4,7,8,15] serves as a premier example of such an interaction-based
model of concurrency. In this paper, we describe Reo and its compiler. We
show how exogenous coordination in Reo reflects an interaction-centric
model of concurrency where an interaction (protocol) consists of nothing
but a relational constraint on communication actions. In this setting,
interaction protocols become explicit, concrete, tangible (software) con-
structs that can be specified, verified, composed, and reused, indepen-
dently of the actors that they may engage in disparate applications.

This paper complements the first author’s lecture at the 15th Interna-
tional School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems in Bertinoro, Italy, June 2015, and collects
previously published material (notably [9]).

1 Introduction

With the availability of today’s low-cost multicore commodity hardware that can
scale up to offer massively parallel computing platforms, high-speed communi-
cation networks that interconnect the globe, plus every indication that both of
these phenomena constitute trends that will continue in the future, the need for
programming techniques to harness the massive concurrency that they offer has
becomemore vivid than ever.Concurrency is inherently difficult because it involves
complex interaction protocols. The inadequacy of traditional models for program-
ming of concurrent systems to serve this purpose stems from the fact that the way
in which they express interaction protocols generally does not scale up.
c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 57–96, 2015.
DOI: 10.1007/978-3-319-18941-3 2

58 F. Arbab and S.-S.T.Q. Jongmans

Global Objects: Green Producer:
1 Semaphore greenSemaphore = new Semaphore(1); 14 while (true) {
2 Semaphore redSemaphore = new Semaphore(0); 15 sleep(5000);

3 Semaphore bufferSemaphore = new Semaphore(1); 16 greenText = ...;

4 String buffer = EMPTY; 17 greenSemaphore.acquire();

18 bufferSemaphore.acquire();

19 buffer = greenText;

20 bufferSemaphore.release();

21 redSemaphore.release();

22 }

Consumer: Red Producer:
5 while (true) { 23 while (true) {
6 sleep(4000); 24 sleep(3000);

7 bufferSemaphore.acquire(); 25 redText = ...;

8 if (buffer != EMPTY) { 26 redSemaphore.acquire();

9 println(buffer); 27 bufferSemaphore.acquire();

10 buffer = EMPTY; 28 buffer = redText;

11 } 29 bufferSemaphore.release();

12 bufferSemaphore.release(); 30 greenSemaphore.release();

13 } 31 }

Fig. 1. Alternating producers and consumer

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [40], CCS [68], the π-calculus [69,72], process algebras [19,27,36], and
the actor model [6] represent popular approaches to tackle the complexities of
constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-based models of concurrency.

For example, consider developing a simple concurrent application with two
producers, which we designate as Green and Red, and one consumer. The con-
sumer must repeatedly obtain and display the contents alternately made avail-
able by the Green and the Red producers.

Figure 1 shows the pseudo code for an implementation of this simple applica-
tion in a Java-like language. Lines 1–4 in this code declare four globally shared
entities: three semaphores and a buffer. The semaphores greenSemaphore and
redSemaphore are used by their respective Green and Red producers for their
turn keeping. The semaphore bufferSemaphore is used as a mutual exclusion
lock for the producers and the consumer to access the shared buffer, which
is initialized to contain the empty string. The rest of the code defines three
processes: two producers and a consumer.

The consumer code (lines 5–13) consists of an infinite loop where in each
iteration, it performs some computation (which we abstract as the sleep on line
6), then it waits to acquire exclusive access to the buffer (line 7). While it has
this exclusive access (lines 8–11), it checks to see if the buffer is empty. An empty
buffer means there is no (new) content for the consumer process to display, in
which case the consumer does nothing and releases the buffer lock (line 12).

Coordinating Multicore Computing 59

If the buffer is non-empty, the consumer prints its content and resets the buffer
to empty (lines 9–10).

The Green producer code (lines 14–22) consists of an infinite loop where in each
iteration, it performs some computation and assigns the value it wishes to produce
to local variable greenText (lines 14–15), and waits for its turn by attempting
to acquire greenSsemaphore (line 17). Next, it waits to gain exclusive access to
the shared buffer, and while it has this exclusive access, it assigns greenText into
buffer (lines 18–20). Having completed its turn, the Green producer now releases
redSemaphore to allow the Red producer to have its turn (line 21).

The Red producer code (lines 23–31) is analogous to that of the Green pro-
ducer, with “red” and “green” swapped.

This is a simple concurrent application whose code has been made even sim-
pler by abstracting away its computation and declarations. Apart from their
trivial outer infinite loops, each process consists of a short piece of sequential
code, with a straight-line control flow that involves no inner loops or non-trivial
branching. The protocol embodied in this application, as described in our prob-
lem statement, above, is also quite simple. One expects it be easy, then, to answer
a number of questions about what specific parts of this code manifest the various
properties of our application. For instance, consider the following questions:

1. Where is the green text computed?
2. Where is the red text computed?
3. Where is the text printed?

The answers to these questions are indeed simple and concrete: lines 16, 25,
and 9, respectively. Indeed, the “computation” aspect of an application typically
correspond to coherently identifiable passages of code. However, the perfectly
legitimate question “Where is the protocol of this application?” does not have
such an easy answer: the protocol of this application is intertwined with its
computation code. More refined questions about specific aspects of the protocol
have more concrete answers:

1. What determines which producer goes first?
2. What ensures that the producers alternate?
3. What provides protection for the global shared buffer?

The answer to the first question, above, is the collective semantics behind lines
1, 2, 17, and 26. The answer to the second question is the collective semantics
behind lines 1, 2, 17, 26, 21, and 30. The answer to the third question is the
collective semantics of lines 3, 18, 20, 27, and 29. These questions can be answered
by pointing to fragments of code scattered among and intertwined with the
computation of several processes in the application. It is far more difficult to
identify other aspects of the protocol, such as possibilities for deadlock or live-
lock, with concrete code fragments. While both concurrency-coordinating actions
and computation actions are concrete and explicit in this code, the interaction
protocol that they induce is implicit, nebulous, and intangible. In applications
involving processes with even slightly less trivial control flow, the entanglement

60 F. Arbab and S.-S.T.Q. Jongmans

Green Producer: Red Producer:
14 while (true) { 28 while (true) {
15 sleep(5000); 29 sleep(3000);

16 greenText = ...; 30 redText = ...;

17 greenSemaphore.acquire(); 31 redSemaphore.acquire();

18 while (greenText !=EMPTY) { 32 while (redText !=EMPTY) {
19 bufferSemaphore.acquire(); 33 bufferSemaphore.acquire();

20 if (buffer == EMPTY) { 34 if (buffer == EMPTY) {
21 buffer = greenText; 35 buffer = redText;

22 greenText = EMPTY; 36 redText = EMPTY;

23 } 37 }
24 bufferSemaphore.release(); 38 bufferSemaphore.release();

25 } 39 }
26 redSemaphore.release(); 40 greenSemaphore.release();

27 } 41 }

Fig. 2. Busy waiting consumer

of data and control flow with concurrency-coordination actions makes it difficult
to determine which parts of the code give rise to even the simplest aspects of
their interaction protocol.

When the protocol in a typical concurrent application consists of 623 send and
receive (or lock/unlock, etc.) primitives, sprinkled over 783,961 lines of C code,
chopped up into 387 different source files, how simple is it to understand this proto-
col, reason about its properties, debug it, adapt it, or imagine reusing it in another
application? How can a hapless programmer (who may very well be the original
author of the code, six months down the road) even see what this protocol actu-
ally does before he can contemplate to do anything with it? Even in the case of our
simple program in Fig. 1, which we just examined, do we see all of its properties?
We asked about and identified the buffer protection mechanism in this application.
But does this mechanism provide adequate protection that we expect?

It is only tactful to say that we are sure all our readers have already spotted
what may be considered a bug in this code that may in fact remain undetected
in practice for a very long time, depending on the circumstances that determine
the relative speeds of the producer and consumer threads in this application.
There is no protection in this code preventing the producers from over-writing
each other in the buffer, regardless of whether or not their output has actually
been consumed by the consumer. Strictly speaking, the original statement of
our requirements does not forbid this behavior, so whether this is a bug (in
the specification or implementation) is unclear. Suppose the intention in fact
was for the consumer to alternately consume what the two producers produce,
which means the implementation in Fig. 1 is incorrect and we need to alter it.

One solution is to make the producers sensitive to the emptiness of the buffer.
The code for the new producers appears in Fig. 2. A disadvantage of this code
is that it more heavily uses the busy-waiting mechanism that already existed in
the consumer code in Fig. 1. A better alternative is to use a different protocol
that explicitly respects the turn taking, as described below.

In the program shown in Fig. 3, the consumer too has its own turn-taking
semaphore, the new blueSemaphore (line 3), which is initialized to be locked,

Coordinating Multicore Computing 61

Global Objects: Green Producer:
1 Semaphore greenSemaphore = new Semaphore(1); 12 while (true) {
2 Semaphore redSemaphore = new Semaphore(0); 13 sleep(5000);

3 Semaphore blueSemaphore = new Semaphore(0); 14 greenText = ...;

4 Semaphore bufferSemaphore = new Semaphore(0); 15 greenSemaphore.acquire();

5 String buffer = EMPTY; 16 buffer = greenText;

17 blueSemaphore.release();

18 bufferSemaphore.acquire();

19 redSemaphore.release();

20 }

Consumer: Red Producer:
6 while (true) { 21 while (true) {
7 sleep(4000); 22 sleep(3000);

8 blueSemaphore.acquire(); 23 redText = ...;

9 println(buffer); 24 redSemaphore.acquire();

10 bufferSemaphore.release(); 25 buffer = redText;

11 } 26 blueSemaphore.release();

27 bufferSemaphore.acquire();

28 greenSemaphore.release();

29 }

Fig. 3. Revised alternating producers and consumer

just as the redSemaphore, because initially, there is nothing for the consumer
to do before any of the producers produces something. The initialization of the
bufferSemaphore is also changed (line 4), making the buffer initially locked on
behalf of the first producer. The consumer and the two producers all can proceed
until each reaches its own turn-taking lock on lines 8, 15, and 24, respectively.
The consumer and the Red producer suspend themselves on their turn-taking
locks, but the Green producer can proceed beyond its turn-taking lock (line 15),
where it fills the buffer (line 16), releases the turn-taking lock of the consumer
(line 17), and suspends itself on the buffer lock (line 18). Only the consumer can
now proceed, printing the content of the buffer (line 9), and releasing the buffer
lock (line 10), after which it proceeds with its next iteration in which it suspends
itself on its turn-taking lock (line 8). Only the Green producer can now proceed,
having obtained the buffer lock. It now completes its iteration by releasing the
turn-taking lock of the Red producer (line 19), and starts its next iteration in
which it suspends itself on its own turn-taking lock (line 15). Now, only the Red
producer can proceed to fill the buffer (line 25), release the turn- taking lock
of the consumer (line 26), and suspend itself on the buffer lock (line 27). The
consumer now goes through another iteration, at the end of which it releases the
buffer lock, allowing only the Red producer to proceed. The Red producer now
releases the turn-taking lock of the Green producer (line 29), and starts its next
iteration in which it suspends itself on its own turn-taking lock (line 24) again.

Now that we have a correct protocol (if we indeed do) that does what we expect
it to do (if it indeed does), what can we do with this protocol? How easy is it, for
instance to reuse this same protocol in a more elaborate application where the
control flow of the processes is more complex than the essentially linear, sequen-
tial flow of these simple processes? Is it possible to bundle up this protocol and

62 F. Arbab and S.-S.T.Q. Jongmans

Global Names: Green Producer:
synchronization-points g, r, b, d G := genG(t) . ?g(k) . !b(t) . ?d(j) . !r(k) . G

Consumer: Red Producer:
B := ?b(t) . print(t) . !d("done") . B R := genR(t) . ?r(k) . !b(t) . ?d(j) . !g(k) . R

Application:
G | R | B | !g("token")

Fig. 4. Alternating producers and consumer in a process algebra

parameterize it such that we can instantiate the protocol with arbitrary numbers
of processes containing arbitrary computation code, the same way that we can
package a piece of code into a parameterized function to compute the inverse of
a matrix of any size, or find the minimum element in a list of any size? It would
certainly help in software development for multicore platforms, for instance, if we
could simply specify the desired numbers of participants and the specific compu-
tation code for each, to instantiate an abstract parameterized protocol, as easily
as passing arguments in a function call, to tailor the desired concurrency on the
available cores. How easy is it to alter this protocol to change the imposed order-
ing or to allow a pair of considerably fast producers go as fast as they wish, while
the slower consumer merely samples their output? Such manipulations are diffi-
cult with this and similar incarnations of a protocol because they require seeing
and touching the protocol as a tangible concrete entity.

Process algebraic models of concurrency fare only slightly better in this
regard than, e.g., programming with threads: they too embody an action-based
model of concurrency. Figure 4 shows a process algebraic model of our alter-
nating producers and consumer application. This model consists of a number of
globally shared names, i.e., g, r, b, and d. Generally, these shared names are con-
sidered as abstractions of channels and thus are called “channels” in the process
algebra/calculi community. However, since these names in fact serve no purpose
other than synchronizing the I/O operations performed on them, and because
we will later use the term “channel” to refer to entities with more elaborate
behavior, we use the term “synchronization points” here to refer to “process
algebra channels” to avoid confusion.

A process algebra consists of a set of atomic actions, and a set of composition
operators on these actions. In our case, the atomic actions include the primitive
actions read ? () and write ! () defined by the algebra, plus the user-defined
actions genG(),genR(), andprint(), which abstract away computation.Typ-
ical composition operators include sequential composition . , parallel composi-
tion | , nondeterministic choice + , definition := , and implicit recursion.

In our model, the consumer B waits to read a data item into t by synchronizing
on the global name b, and then proceeds to print t (to display it). It then writes a
token "done" on the synchronization point d, and recurses. The Green producer G
first generates a new value in t, then waits for its turn by reading a token value into
k from g. It then writes t to b, and waits to obtain an acknowledgment j through
d, after which it writes the token k to r, and recurses. The Red producer R behaves
similarly, with the roles of r and g swapped. The application consists of a parallel

Coordinating Multicore Computing 63

composition of the two producers and the consumer, plus a trivial process that
simply writes a "token" on g to kick off process G to go first.

Observe that a model is constructed by composing (atomic) actions into
(more complex) actions, called processes. True to their moniker, such formalisms
are indeed algebras of processes or actions. Just as in the version in Fig. 3, while
communication actions are concrete and explicit in the incarnation of our appli-
cation in Fig. 4, interaction is a manifestation of the model with no direct explicit
structural correspondence. Process algebraic incarnations of concurrency proto-
cols are obviously simpler and more concise than their incarnations in typical
programming languages, primarily because they abstract away the clutter of
computation. Nevertheless, process algebras and calculi also constitute action-
based models of concurrency.

In all action-based models of concurrency, interaction becomes a by-product of
processes executing their respective actions: when a process A happens to execute
its ith communication action ai on a synchronization point, at the same time that
another process B happens to execute its jth communication action bj on that
same synchronization point, the actions ai and bj “collide” with one another and
their collision yields an interaction. Manifested this way, an interaction protocol
consists of a desired temporal sequence of such (coincidental or planned) collisions.
It is non-trivial to distinguish between the essential and the coincidental collision
sequences, when the protocol itself is only such an ephemeral manifestation.

Generally, the reason behind the specific collision of ai and bj remains debat-
able. Perhaps it was just dumb luck. Perhaps it was divine intervention. Some
may prefer to attribute it to intelligent design! What is not debatable is the fact
that, a split second earlier or later, perhaps in another run of the same application,
completely random cosmic rays may zap a memory bit and trigger the automatic
hardware error correction of the affected memory cell, and thus change the relative
timing of the running processes, making ai and bj collide not with each other, but
with two other actions (of perhaps other processes) yielding completely different
interactions. Action based models of concurrency make protocols more difficult
than necessary to specify, manipulate, verify, debug, and next to impossible to
reuse.

Instead of explicitly composing (communication) actions to indirectly specify
and manipulate implicit interactions, is it possible to devise a model of concur-
rency where interaction (not action) is an explicit, first-class construct? We tend
to this question in the next section and in the remainder of this paper describe
a specific language based on an interaction-centric model of concurrency. We
show that making interaction explicit leads to a clean separation of computa-
tion and communication, and produces reusable, tangible protocols that can be
constructed and verified independently of the processes that they engage.

2 Interaction-Centric Concurrency

The most salient characteristic of interaction is that it transpires among two or
more actors. This is in contrast to action, which is what a single actor manifests.

64 F. Arbab and S.-S.T.Q. Jongmans

In other words, interaction is not about the specific actions of individual actors,
but about the relations that (must) hold among those actions. A model of inter-
action, thus, must allow us to directly specify, represent, construct, compose,
decompose, analyze, and reason about those relations that define what tran-
spires among two or more engaged actors, without the necessity to be specific
about their individual actions. Making interaction a first-class concept means
that a model must offer (1) an explicit, direct, concrete representation of the
interaction among actors, independent of their (communication) actions; (2) a
set of primitive interactions; and (3) composition operators to combine (primi-
tive) interactions into more complex interactions.

Wegner has proposed to consider coordination as constrained interaction [74].
We propose to go a step further and consider interaction itself as a constraint
on (communication) actions. Features of a system that involve several entities,
for instance the clearance between two physical objects, cannot conveniently be
associated with any one of those entities. It is quite natural to specify and rep-
resent such features as constraints. The interaction among several active entities
has a similar essence: although it involves them, it does not belong to any one of
those active entities. Constraints have a natural formal model as mathematical
relations, which are non-directional. In contrast, actions correspond to functions
or mappings which are directional, i.e., transformational.

A constraint declaratively specifies what must hold in terms of a relation.
Typically, there are many ways in which a constraint can be enforced or violated,
leading to many different sequences of actions that describe precisely how to
enforce or maintain a constraint. Action-based models of concurrency lead to
the precise specification of how in terms of sequences of actions interspersed
among the active entities involved in a protocol. In an interaction-based model of
concurrency, only what a protocol represents is specified as a constraint over the
(communication) actions of some active entities; as in constraint programming,
the responsibility of how the protocol constraints are enforced or maintained is
relegated to an entity other than those active entities.

Generally, composing the sequences of actions that manifest two different
protocols does not yield a sequence of actions that manifests a composition
of those protocols. Thus, in action-based models of concurrency, protocols are
not compositional. Represented as constraints, in an interaction-based model of
concurrency, protocols can be composed as mathematical relations.

Banishing the actions that comprise protocol fragments out of the bodies
of processes produces simpler, cleaner, and more reusable processes. Expressed
as constraints, pure protocols become first-class, tangible, reusable constructs in
their own right. As concrete software constructs, such protocols can be embodied
into architecturally meaningful connectors.

In this setting, a process (or thread, component, service, actor, agent, etc.)
offers no methods, functions, or procedures for other entities to call, and it
makes no such calls itself. Moreover, processes cannot exchange messages through
targeted send and receive actions. In fact, a process cannot refer to any foreign
entity, such as another process, the mailbox or message queue of another process,
shared variables, semaphores, locks, etc. The only means of communication of

Coordinating Multicore Computing 65

P C

Fig. 5. Protocol in a connector

a process with its outside world is through blocking I/O operations that it may
perform exclusively on its own ports, producing and consuming passive data.
A port is a construct analogous to a file descriptor in a Unix process, except that
a port is unidirectional, has no buffer, and supports blocking I/O exclusively.

If i is an input port of a process, there are only two operations that the process
can perform on i: (1) blocking input get(i, v) waits indefinitely or until it suc-
ceeds to obtain a value through i and assigns it to variable v; and (2) input with
time-out get(i, v, t) behaves similarly, except that it unblocks and returns false
if the specified time-out t expires before it obtains a value to assign to v. Anal-
ogously, if o is an output port of a process, there are only two operations that
the process can perform on o: (1) blocking output put(o, v) waits indefinitely or
until it succeeds to dispense the value in variable v through o; and (2) output with
time-out put(o, v, t) behaves similarly, except that it unblocks and returns false
if the specified time-out t expires before it dispenses the value in v.

Inter-process communication is possible only by mediation of connectors. For
instance, Fig. 5 shows a producer, P and a consumer C whose communication
is coordinated by a simple connector. The producer P consists of an infinite
loop in each iteration of which it computes a new value and writes it to its
local output port (shown as a small circle on the boundary of its box in the
figure) by performing a blocking put operation. Analogously, the consumer C
consists of an infinite loop in each iteration of which it performs a blocking
get operation on its own local input port, and then uses the obtained value.
Observe that, written in an imperative programming language, the code for P
and C is substantially simpler than the code for the Green/Red producers and
the consumer in Figs. 1, 2, and 3: it contains no semaphore operations or any
other inter-process communication primitives.

The direction of the connector arrow in Fig. 5 suggests the direction of the
dataflow from P to C. However, even in the case of this very simple example, the
precise behavior of the system crucially depends on the specific protocol that this
simple connector implements. For instance, if the connector implements a syn-
chronous protocol, then it forces P and C to iterate in lock-step, by synchronizing
their respective put and get operations in each iteration. On the other hand the
connector may have a bounded or an unbounded buffer and implement an asyn-
chronous protocol, allowing P to produce faster than C can consume. The protocol
of the connector may, for instance enable it to replicate data items, e.g., the last
value that it contained, if C consumes faster and drains the buffer. The protocol
may mandate an ordering other than FIFO on the contents of the connector buffer,
perhaps depending on the contents of the exchanged data. It may retain only some
of the contents of the buffer (e.g., only the first or the last item) if P produces data
faster than C can consume. It may be unreliable and lose data nondeterministically
or according to some probability distribution. It may retain data in its buffer only

66 F. Arbab and S.-S.T.Q. Jongmans

for a specified length of time, losing all data items that are not consumed before
their expiration dates. The alternatives for the connector protocol are endless, and
composed with the very same P and C, each yields a totally different system.

A number of key observation about this simple example are worth noting. First,
Fig. 5 is an architecturally informative representation of this system. Second, ban-
ishing all inter-process communication out of the communicating parties, into the
connector, yields a “good” system design with the beneficial consequences that:

– changing P, C, or the connector does not affect the other parts of the system;
– although they are engaged in a communication with each other, P and C are

oblivious to each other, as well as to the actual protocol that enables their
communication;

– the protocol embodied in the connector is oblivious to P and C.

In this architecture, the composition of the components and the coordination of
their interactions are accomplished exogenously, i.e., from outside of the com-
ponents (or processes) themselves, and without their “knowledge”1. In contrast,
the interaction protocol and coordination in the examples in Figs. 1, 2, 3, and 4
are endogenous, i.e., accomplished through (inter-process communication) prim-
itives from inside the parties engaged in the protocol. It is clear that exogenous
composition and coordination lead to simpler, cleaner, and more reusable com-
ponent code, simply because all composition and coordination concerns are left
out. What is perhaps less obvious is that exogenous coordination also leads
to reusable, pure coordination code: there is nothing in any incarnation of the
connector in Fig. 5 that is specific to P or C; it can just as readily engage any
producer and consumer processes in any other application.

Obviously, we are not interested in only this example, nor exclusively in con-
nectors that implement exogenous coordination between only two communicating
parties. Moreover, the code for any version of the connector in Fig. 5, or any other
connector, can be written in any programming language: the concepts of exogenous
composition, exogenous coordination, and the system design and architecture that
they induce constitute what matters, not the implementation language.

Nevertheless, focusing on multi-party interaction/coordination protocols reve-
als that they are composed out of a small set of common recurring concepts. They
include synchrony, atomicity, asynchrony, ordering, exclusion, grouping, selection,
etc. Encoding every instance of these recurring concepts in terms of assignment
statements, if-then-else, for-loops, and communication actions in every applica-
tion is tedious, error prone, and obscures the concepts beyond recognition when
they are interspersed with the computation code of an application. Compliant
with the constraint view of interaction advocated above, these concepts can be
expressed more succinctly and elegantly as constraints. This observation behooves
us to consider the interaction-as-constraint view of concurrency as a foundation
for a special language to specify multi-party exogenous interaction/coordination

1 By this anthropomorphic expression we simply mean that a component does not con-
tain any piece of code that directly contributes to determine the entities that it com-
poses with, or the specific protocol that coordinates its own interactions with them.

Coordinating Multicore Computing 67

protocols and the connectors that embody them, of which the connector in Fig. 5
is but a trivial example. Reo, described in the next section, is a premier example
of such a language.

3 Overview of Reo

Reo [4,7,8,15] is a channel-based exogenous coordination language wherein com-
plex coordinators, called connectors, or circuits, are compositionally built out of
simpler ones. Exogenous coordination imposes a purely local interpretation on
each inter-components communication, engaged in as a pure I/O operation on
each side, that allows components to communicate anonymously, through the
exchange of untargeted passive data. We summarize only the main concepts in
Reo here. Further details about Reo and its semantics can be found in the cited
references.

Complex connectors in Reo are constructed as a network of primitive binary
connectors, called channels. Connectors serve to provide the protocol that con-
trols and organizes the communication, synchronization and cooperation among
the components/services that they interconnect. Formally, the protocol embod-
ied in a connector is a relation, which the connector imposes as a constraint on
the actions of the communicating parties that it inter-connects.

A channel is a medium of communication that consists of two ends and
a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for
loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

Although all channels used in Reo are user-defined and users can indeed
define channels with any complex behavior (expressible in a semantic model
of Reo) that they wish, a very small set of channels, each with very simple
behavior, suffices to construct useful Reo connectors with significantly complex
behavior. Figure 6 shows a common set of primitive channels often used to build
Reo connectors.

P

Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

Fig. 6. A typical set of Reo channels

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

68 F. Arbab and S.-S.T.Q. Jongmans

A LossySync channel is similar to a synchronous channel except that it
always accepts all data items through its source end. This channel transfers a
data item if it is possible for the channel to dispense the data item through its
sink end; otherwise the channel loses the data item. Observe that the behavior
of this channel if fully deterministic; the channel is never free to choose between
passing or losing a data item: if it is possible for a data item to be consumed
through its sink end, the channel must pass the data item exactly as a Sync.
Thus, the context of (un)availability of a ready consumer at its sink end deter-
mines the (context-sensitive) behavior a LossySync channel.

A FIFO1 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. In the graphical representation of an empty
FIFO1 channel, no data item is shown in the box (this is the case in Fig. 1). If the
buffer of a FIFO1 channel contains a data element d, then d appears inside the box
in its graphical representation. When its buffer is empty, a FIFO1 channel blocks
I/O operations on its sink, because it has no data to dispense. It dispenses a data
item and allows an I/O operation at its sink to succeed, only when its buffer is
full, after which its buffer becomes empty. When its buffer is full, a FIFO1 channel
blocks I/O operations on its source, because it has no more capacity to accept the
incoming data. It accepts a data item and allows an I/O operation at its source
to succeed, only when its buffer is empty, after which its buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous
and asynchronous drains. Each of these channels has two source ends and no
sink end. No data value can be obtained from a drain channel because it has no
sink end. Consequently, all data accepted by a drain channel are lost. SyncDrain
is a synchronous drain that can accept a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter(P), its pattern P ⊆ Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d ∈ P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d �∈ P through its source end and loses them immediately.

Synchronous and asynchronous Spouts are the duals of their respective drain
channels, as each has two sink ends through which it produces nondeterministic
data items. Further discussion of these and other primitive channels is beyond
the scope of this paper.

Complex connectors are constructed by composing simpler ones via the join
and hide operations. Channels are joined together in nodes, each of which consists
of a set of channel ends. A Reo node is a logical place where channel ends coincide

Mixed nodeSink NodeSource node

Fig. 7. Reo nodes

Coordinating Multicore Computing 69

and coordinate their dataflows as prescribed by its node type. Figure 7 shows the
three possible node types in Reo. A node is either source, sink, ormixed, depending
on whether all channel ends that coincide on that node are source ends, sink ends,
or a combination of the two. Reo fixes the semantics of (i.e., the constraints on
the dataflow through) Reo nodes, as described below. The hide operation is used
to hide the internal topology of a Reo connector. A hidden node can no longer be
accessed or observed from outside.

The source and sink nodes of a connector are collectively called its bound-
ary nodes. Boundary nodes define the interface of a connector. Processes (or
components, actors, agents, etc.) connect to the boundary nodes of a connector
and interact anonymously with each other through this interface. Connecting a
process to a (source or sink) node of a connector consists of the identification of
one of the (respectively, output or input) ports of the process with that node.
At most one process can be connected to a (source or sink) node at a time.
Processes interact by performing their blocking I/O operations on their own
local ports, which trigger dataflow through their respectively identified nodes of
the connector(s): the get and put operations mentioned in the description of
the processes in Fig. 5 trigger write and take operations of Reo on the channel
ends of their respective nodes.

A component (or process) can write data items to a source node that it is
connected to. The write operation succeeds only if all (source) channel ends
coincident on the node accept the data item, in which case the data item is
transparently written to every source end coincident on the node. A source node,
thus, acts as a synchronous replicator.

A component (or process) can obtain data items, by an input operation, from
a sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger.

A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends. Note that a component cannot connect to, take
from, or write to mixed nodes.

Because a node has no buffer, data cannot be stored in a node. Specifically, a
mixed node cannot take a data item out of one of its coincident sink channel ends,
unless it can atomically replicate and write it into all of its coincident source
channel ends. Hence, nodes instigate the propagation of synchrony and exclusion
constraints on dataflow throughout a connector. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its
constituent channels and nodes [33]. This is not a trivial task. In the sequel,
we present examples of Reo connectors that illustrate how non-trivial dataflow
behavior emerges from composing simple channels using Reo nodes. The local
constraints of individual channels propagate through (the synchronous regions
of) a connector to its boundary nodes. This propagation also induces a certain
context-awareness in connectors. See [32] for a detailed discussion of this.

70 F. Arbab and S.-S.T.Q. Jongmans

Reo has been used for composition of Web services [16,57,65], modeling and
analysis of long-running transactions in service-oriented systems [60], coordina-
tion of multi-agent systems [10], performance analysis of coordinated composi-
tions [12,13,17,70,71], modeling of business processes and verification of their
compliance [14,59,73], and modeling of coordination in biological systems [31].

Reo offers a number of operations to reconfigure and change the topology of a
connector at run-time: operations that enable the dynamic creation of channels,
splitting and joining of nodes, hiding internal nodes. The hiding of internal
nodes allows to permanently fix the topology of a connector, such that only its
boundary nodes are visible and available. The resulting connector can then be
viewed as a new primitive connector, or primitive for short, since its internal
structure is hidden and its behavior is fixed.

Tool support for Reo consists of a set of Eclipse plug-ins that together comprise
the Extensible Coordination Tools (ECT) visual programming environment [2].
The Reo graphical editor supports drag-and-drop graphical composition and edit-
ing of Reo connectors. This editor also serves as a bridge to other tools, includ-
ing animation and code generation plug-ins. The animation plug-in automatically
generates a graphical animation of the flow of data in a Reo connector, which pro-
vides an intuitive insight into their behavior through visualization of how they
work. Several model checking tools are available for analyzing Reo. The Vere-
ofy model checker, integrated in ECT, is based on constraint automata [5,21–
24,28,37,55,56]. Properties of Reo connectors can be specified for verification by
Vereofy in a language based on Linear Temporal Logic (LTL), or on a variant
of Computation Tree Logic (CTL), called Alternating-time Stream Logic (ASL).
Another means for verification of Reo is made possible by a transformation bridge
into the mCRL2 toolset [3,38]. The mCRL2 verifier relies on the parameterized
boolean equation system (PBES) solver to encode model checking problems, such
as verifying first-order modal-calculus formulas on linear process specifications.
An automated tool integrated in ECT translates Reo models into mCRL2 and
provides a bridge to its tool set. This translation and its application for the analy-
sis of workflows modeled in Reo are discussed in [58,62,63]. Through mCRL2,
it is possible to verify the behavior of timed Reo connectors, or Reo connectors
with more elaborate data-dependent behavior than Vereofy supports. The result-
ing labeled transformation systems can also be used for analysis by a number of
tools in the CADP tool set [1]. Another tool is a Reo compiler that generates exe-
cutable code for Reo connectors; we discuss compilation in more detail shortly.
Even more tools are discussed elsewhere [9].

4 Examples

Recall our alternating producers and consumer example of Sect. 1. We revise
the code for the Green and Red producers to make them suitable for exogenous
coordination (which, in fact, makes them simpler). Similar to the producer P in
Fig. 5, this code now consists of an infinite loop, in each iteration of which the
producer computes a new value and writes it to its output port. Analogously, we

Coordinating Multicore Computing 71

Consumer: Green Producer: Red Producer:
1 while (true) { 6 while (true) { 11 while (true) {
2 sleep(4000); 7 sleep(5000); 12 sleep(3000);

3 get(input, text); 8 greenText = ...; 13 redText = ...;

4 print(text); 9 put(output, greenText); 14 put(output, redText);

5 } 10 } 15 }

Fig. 8. Generic reusable producers and consumer

revise the consumer code, fashioning it after the consumer C in Fig. 5. Figure 8
shows this code.

In the remainder of this section, we present a number of protocols to implement
different versions of the alternating producers and consumer example of Sect. 1,
using the producers and consumer processes in Fig. 8. These examples serve three
purposes. First, they show a flavor of programming of pure interaction coordina-
tion protocols as Reo connectors. Second, they present a number of generically
useful connectors that can serve as connectors in many other applications, or as
sub-connectors in the connectors for construction of many other protocols. Third,
they illustrate the utility of exogenous coordination by showing how trivial it is
to change the protocol of an application, without altering any of the processes
involved.

4.1 Alternator

The connector shown in Fig. 9(a) is an alternator that imposes an ordering on the
flow of the data from its input nodes A and B to its output node C. The SyncDrain
enforces that data flow through A and B only synchronously (i.e., atomically). The
empty buffer of the FIFO1 channel together with the SyncDrain guarantee that
the data item obtained from A is delivered to C while the data item obtained from
B is stored in the FIFO1 buffer. After this, the buffer of the FIFO1 is full and data
cannot flow in through either A or B, but C can dispense the data stored in the
FIFO1 buffer, which makes it empty again. Thus, subsequent take operations at
C obtain the data items written to A,B,A,B, ..., etc.

A

B

CA

B

C

(b)

CC

(d)

(c)

A3

A2

A1 A1

A2

A3

A4

(a)

Fig. 9. Reo connectors for alternators

72 F. Arbab and S.-S.T.Q. Jongmans

The connector in Fig. 9(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Fig. 9(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Fig. 9(b) allows us to generalize its alternating behavior to any
number of producers, simply by replicating it and “juxtaposing” the top and the
bottom Sync channels of the resulting copies, as seen in Fig. 9(c) and (d).

The two SyncDrain channels in the connector shown in Fig. 9(c) require
data to flow through A1, A2, and A3 only simultaneously (i.e., atomically). The
empty buffers of the FIFO1 channels, together with these SyncDrain channels
guarantee that the data item obtained from A1 is delivered to C while the data
items obtained from A2 and A3 are stored in the buffers of their respective
FIFO1 channels. Subsequently, as long as the buffer of at least one of the FIFO1
channels remains full, no data can flow through any of the nodes A1, A2, and
A3, but C can dispense the data stored in the buffers of the FIFO1 channels,
with their order preserved. Thus, the first 3 take operations on C deliver the
data items obtained through A1, A2, and A3, in that order. At this point, all
FIFO1 buffers become empty and the next round of input becomes possible.

The connector in Fig. 9(d) is obtained by replicating the one in Fig. 9(b) 3
times. Following the reasoning for the connector in Fig. 9(c), it is easy to see
that the connector in Fig. 9(d) delivers the data items obtained from A1, A2,
A3,and A4 through C, in that order.

A version of our alternating producers and consumer example of Sect. 1 can
now be composed by attaching the output port of the revised Green producer in
Fig. 8 to node A, the output port of the revised Red producer in Fig. 8 to node
B, and the input port of the consumer in Fig. 8 to node C of the Reo connector
in Fig. 9(a).

A closer look shows, however, that the behavior of this version of our example
is not exactly the same as that of the one in Figs. 3 and 4. As explained above,
the Reo connector in Fig. 9(a) requires the availability of a pair of values on A
(from the Green producer) and B (from the Red producer) before it allows the
consumer to obtain them, first from A and then from B. Thus, if the Green
producer and the consumer are both ready to communicate, they still have to
wait for the Red producer to also attempt to communicate, before they can
exchange data. The versions in Figs. 3 and 4 allow the Green producer and
the consumer to go ahead, regardless of the state of the Red producer. Our
original specification of this example in Sect. 1 was abstract enough to allow
both alternatives. A further refinement of this specification may indeed prefer
one and disallow the other. If the behavior of the connector in Fig. 9(a) is not
what we want, we need to construct a different Reo connector to impose the
same behavior as in Figs. 3 and 4. This is precisely what we describe below.

4.2 Sequencer

Figure 10(a) shows an implementation of a sequencer by composing five Sync
channels and four FIFO1 channels together. The first (leftmost) FIFO1 channel
is initialized to have a data item in its buffer, as indicated by the presence of the

Coordinating Multicore Computing 73

Sequencer

(b)

A
B

C

e

A B C D

(a)

Sequencer

(c)

A
B

C

Fig. 10. Sequencer

symbol e in the box representing its buffer cell. The actual value of the data item
is irrelevant. The connector provides only the four nodes A, B, C and D for other
entities (connectors or component instances) to take from. The take operation
on nodes A, B, C and D can succeed only in the strict left-to-right order. This
connector implements a generic sequencing protocol: we can parameterize this
connector to have as many nodes as we want simply by inserting more (or fewer)
Sync and FIFO1 channel pairs, as required.

Figure 10(b) shows a simple example of the utility of the sequencer. The
connector in this figure consists of a two-node sequencer, plus a SyncDrain and
two Sync channels connecting each of the nodes of the sequencer to the nodes
A and C, and B and C, respectively. Similar to the connector in Fig. 9(a), this
connector imposes an order on the flow of the data items written to A and B,
through C: the sequence of data items obtained by successive take operations
on C consists of the first data item written to A, followed by the first data
item written to B, followed by the second data item written to A, followed
by the second data item written to B, and so on. However, there is a subtle
difference between the behavior of the two connectors in Figs. 9(a) and 10(b).
The alternator in Fig. 9(a) delays the transfer of a data item from A to C until
a data item is also available at B. The connector in Fig. 10(b) transfers from A
to C as soon as these nodes can satisfy their respective operations, regardless of
the availability of data on B.

We can obtain a new version of our alternating producers and consumer
example by attaching the output port of the Green producer in Fig. 8 to node A,
the output port of the Red producer in Fig. 8 to node B, and the input port of the
consumer in Fig. 8 to node C. The behavior of this version of our application is
now the same as the programs in Fig. 4 and in Fig. 1 (after replacing its producers
with the ones in Fig. 2). The connector in Fig. 10(b) embodies the same protocol
that is implicit in Fig. 4.

A characteristic of this protocol is that it “slows down” each producer, as
necessary, by delaying the success of its data production until the consumer
is ready to accept its data. Our original problem statement in Sect. 1 does not
explicitly specify whether or not this is a required or permissible behavior. While
this may be desirable in some applications, slowing down the producers to match
the processing speed of the consumer may have serious drawbacks in other appli-
cations, e.g., if these processes involve time-sensitive data or operations. Perhaps
what we want is to bind our producers and consumer by a protocol that decou-
ples them such as to allow each process to proceed at its own pace. We proceed,
below, to present a number of protocols that we then compose to construct a
Reo connector for such a protocol.

74 F. Arbab and S.-S.T.Q. Jongmans

4.3 Buffered Sequencing

Figure 10(c) shows how easily we can decouple the producers from the consumer
by adding two FIFO1 channels to the connector in Fig. 10(b). The protocol imple-
mented by this connector allows each producer to move ahead of its turn by one
item. Obviously, one can add more FIFO1 channels, as desired, to allow the pro-
ducers to move ahead of their turns by any arbitrary k items, before they need
to wait for their next output item to be accepted. Because Reo allows users to
define arbitrary channels, it is equally possible to define an unbounded FIFO
channel, and use two instances of this channel to allow producers to move ahead
of the consumer by any arbitrary number of items.

A characteristic of all such buffered protocols is that they make sure every
item produced by every producer is eventually consumed by the consumer. In
fact, such total retention of data is not always desirable. Sometimes, some sort of
sampling is required to ensure the consumer is not overwhelmed by much faster
producers, or to ensure that the consumer always processes the most up-to-date
produced items.

4.4 Sampling

The connector in Fig. 11(a) is a variant of the one in Fig. 10(b) which never
delays any of its producers. Producers can produce items as fast as they wish
and the protocol never delays them; it simply loses any item that they produce
when the consumer is not ready to take it. Whenever the consumer is ready to
take an item, it must wait for the producer whose turn it is to produce its next
item for it to consume. On the one hand, this ensures that the consumer always
obtains the freshest, most up-to-date item produced by each producer. On the
other hand, although the producers never wait, the consumer may still have to
wait for the right producer to deliver its next fresh item. If this is not desirable,
we may wish the protocol to hold at least one produced item at hand to alleviate
the need for the consumer to wait.

The connector on the left-hand side of the ≡ sign in Fig. 11(b) shows a useful
connector which behaves almost exactly as a FIFO1 channel. The only difference
is that, unlike a normal FIFO1 channel, this connector does not suspend its writer
if its buffer is full; it allows the write to succeed, but loses the written data. We use
the symbol on the right-hand side of the ≡ sign in Fig. 11(b) as a short-hand for
this connector, and refer to it as an OverflowLossyFIFO1 channel. This symbol
is intentionally similar to that of a regular FIFO1 channel, because the behavior

Sequencer

(c)

A
B

C

(b)

Sequencer

(a)

A
B

C

Fig. 11. Synchronized sampling, OverflowLossyFIFO1, and buffered sampling

Coordinating Multicore Computing 75

of this connector closely resembles that of a regular FIFO1 channel. The dashed
source-side half of this channel suggests that when its buffer is full, this channel
simply loses its new input items, as if they “overflow” over a full container.

Replacing the FIFO1 channels in Fig. 10(c) with such OverflowLossyFIFO1
channels, we obtain the connector in Fig. 11(c). Using this connector in our
running example application allows the producers to run as fast as they wish,
and allows the consumer to merely sample what each producer delivers. If the
consumer ever gets ahead of a producer by more than one cycle, then this pro-
tocol makes the consumer wait. Obviously, we can add more FIFO1 channels to
the construct in Fig. 11(b) to obtain an OverflowLossyFIFOk channel, for any
k > 1. We can then raise the sampling depth of our protocol to any k by using
OverflowLossyFIFOk channels in connectors similar to the one in Fig. 11(c).
Such a protocol with the sampling depth of k allows the consumer move ahead
of a producer by k items, while the protocol retains up to k items produced by
each producer, before it loses their excess output.

A consequence of using OverflowLossyFIFOk channels in the above con-
nectors is that the protocol tends to retain the “oldest” k sampled output of
each producer.2 In many situations, it is desirable to bias sampling toward most
recent values, discarding older values. To do this, we need a counterpart of the
OverflowLossyFIFO1 channel in Fig. 11(b), that when its buffer is full, discards
the old value in the buffer and retains its new input. We present a connector
with such behavior in Sect. 4.6.

4.5 Exclusive Router

The connector shown in Fig. 12(a) is a binary exclusive router : it routes data from
A to either B or C (but not both). This connector can accept data only if there is
a write operation at the source node A, and there is at least one taker at the sink
node B or C. If both B and C can dispense data, the choice of routing to B or C

in

outo

A

B C

M

(a) (b)

Fig. 12. An exclusive router and a ShiftLossyFIFO1

2 In fact, this characterization is not very accurate for values of k > 1. Work out what
happens for k = 2, for instance.

76 F. Arbab and S.-S.T.Q. Jongmans

follows from the non-deterministic decision by the mixed node M : it can accept
data only from one of its sink ends, excluding the flow of data through the other,
which forces the latter’s respective LossySync to lose the data it obtains from A,
while the other LossySync passes its data as if it were a Sync.

By connecting the source node of a binary exclusive router to one of the sink
nodes of another binary exclusive router we obtain a ternary exclusive router.
This is possible in Reo because synchrony and exclusion constraints propagate
through its nodes. More generally, an n-ary exclusive router (with a single source
and n sink ends) can be composed out of n−1 binary exclusive routers. Because
the exclusive routers are so commonly useful, we use a graphical short-hand to
represent them in connectors. The crossed circle shown on the right-hand side
of the ≡ symbol in Fig. 12(a) is the symbol that we use to represent a generic
n-ary exclusive router.

4.6 Shift-Lossy FIFO1

Figure 12(b) shows a Reo connector for a connector that behaves as a lossy
FIFO1 channel with a shift loss-policy. This channel is called shift-lossy FIFO1
(ShiftLossyFIFO1). This connector is composed of an exclusive router (shown
in Fig. 12(a)), an initially full FIFO1 channel, two initially empty FIFO1 channels,
and four Sync channels. Intuitively, it behaves as a normal FIFO1 channel, except
that if its buffer is full then the arrival of a new data item deletes the existing
data item in its buffer, making room for the new arrival. As such, this channel
implements a “shift loss-policy” losing the older contents in its buffer in favor of
the newer arrivals. This is in contrast to the behavior of an overflow-lossy FIFO1
channel, whose “overflow loss-policy” loses the new arrivals when its buffer is
full. See [25] for a more formal treatment of the semantics of this connector.

The ShiftLossyFIFO1 connector in Fig. 12(b) is indeed so frequently useful
as a connector in construction of more complex connectors, that it makes sense to
have a special graphical symbol to designate it as a short-hand. The symbol shown
on the right-hand side of the ≡ symbol in Fig. 12(b) is the what we use to repre-
sent this connector, and also take the liberty to refer to it as a ShiftLossyFIFO1
channel. This symbol is intentionally similar to that of a regular FIFO1 channel,
because the behavior of this connector closely resembles that of a regular FIFO1
channel. The dashed sink-side half of this channel suggests that it loses the older
values to make room for new arrivals, i.e., it shifts to lose.

4.7 Decoupled Alternating Producers and Consumer

Figure 13(a) shows how the ShiftLossyFIFO1 connector of Fig. 12(b) can be
used to construct a version of the example in Fig. 5, where the producer and the
consumer are partially decoupled from one another. Whenever, as initially is the
case, the ShiftLossyFIFO1 buffer is empty, the consumer has no choice but to
wait for the producer to place a value into this buffer. However, the producer
never has to wait for the consumer: it can work at its own pace and write to the
connector whenever it wishes. Every write by the producer replaces the current

Coordinating Multicore Computing 77

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 13. Decoupled producers and consumer

contents of the ShiftLossyFIFO1 buffer. A subsequent take by the consumer
obtains the current value out of ShiftLossyFIFO1 buffer and makes it empty.
The producer never has to wait for the consumer, but if the consumer is faster
than the producer, it has to wait for the next data item to arrive. It is instructive
to compare the behavior of this system with that of a single LossySync channel
connecting a producer and a consumer: the two are not exactly the same.

The connector in Fig. 13(b) is a small variation of the Reo connector in
Fig. 10(b), with two instances of the ShiftLossyFIFO1 connector of Fig. 12(b)
spliced in. In this version of our alternating producers and consumer, these three
processes are partially decoupled: each producer runs at its own pace, never
having to wait for any of the other two processes. Every take by the consumer,
always obtains and empties the latest value produced by its respective producer.
If the consumer runs slower than a producer, the excess data that they produce
is lost in the producer’s respective ShiftLossyFIFO1, which allows the consumer
to effectively “sample” the data generated by this producer. If the consumer runs
faster than a producer, it will block on its respective empty ShiftLossyFIFO1
until a new value becomes available.

4.8 Dataflow Variable

The Reo connector in Fig. 14 implements the behavior of a dataflow variable. It
uses two instances of the ShiftLossyFIFO1 connector shown Fig. 12(b), to build
a connector with a single input and a single output nodes. Initially, the buffers
of its ShiftLossyFIFO1 channels are empty, so an initial take on its output node
suspends for data. Regardless of the status of its buffers, or whether or not data
can be dispensed through its output node, every write to its input node always
succeeds and resets both of its buffers to contain the new data item. Every time
a value is dispensed through its output node, a copy of this value is “cycled
back” into its left ShiftLossyFIFO1 channel. This connector “remembers” the
last value it obtains through its input node, and dispenses copies of this value
through its output node as frequently as necessary: i.e., it can be used as a
dataflow variable.

78 F. Arbab and S.-S.T.Q. Jongmans

out

in

Fig. 14. Dataflow variable

The variable connector in Fig. 14 is also very frequently useful as a connector
in construction of more complex connectors. Therefore, it makes sense to have a
short-hand graphical symbol to designate it with as well. The symbol shown on
the right-hand side of Fig. 14 is the what we use to represent this connector, and
also take the liberty to refer to it as a Variable channel, or just a “variable”
for short. This symbol is intentionally similar to that of a regular FIFO1 chan-
nel, because the behavior of this connector closely resembles that of a regular
FIFO1 channel. We use a rounded box to represent its buffer: the rounded box
hints at the recycling behavior of the variable connector, which implements its
remembering of the last data item that it obtained or dispensed.

4.9 Fully Decoupled Alternating Producers and Consumer

Figure 15(a) shows how the variable connector of Fig. 14 can be used to construct
a version of the example in Fig. 5, where the producer and the consumer are fully
decoupled from one another. Initially, the variable contains no value, and there-
fore, the consumer has no choice but to wait for the producer to place its first value
into the variable. After that, neither the producer, nor the consumer ever has to
wait for the other one. Each can work at its own pace and write to or take from
the connector. Every write by the producer replaces the current contents of the
variable, and every take by the consumer obtains a copy of the current value of
the variable, which always contains the most recent value produced.

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 15. Fully decoupled producers and consumer

Coordinating Multicore Computing 79

The connector in Fig. 15(b) is a small variation of the Reo connector in
Fig. 10(b), with two instances of the variable connector of Fig. 14 spliced in. In
this version of our alternating producers and consumer, these three processes are
fully decoupled: each can produce and consume at its own pace, never having to
wait for any of the other two. Every take by the consumer, always obtains the
latest value produced by its respective producer. If the consumer runs slower
than a producer, the excess data is lost in the producer’s respective variable,
and the consumer will effectively “sample” the data generated by this producer.
If the consumer runs faster than a producer, it will read (some of) the values of
this producer multiple times.

4.10 Flexibility and Scaling

Figures 9(a), 10(b), (c), 11(a), (c), 13(b), and 15(b) show a number of different
connectors, each imposing a variant of a protocol for the coordination of two
alternating producers and a consumer. The exact same producers and consumer
processes can be combined with any of these connectors to yield different appli-
cations. It is instructive to compare the ease with which this is accomplished in
our interaction-centric world, with the effort involved in modifying the action-
centric incarnations of this same example in Figs. 3 and 4, which correspond
to the protocol of the connector in Fig. 10(b), in order to achieve the behavior
induced by the connector in Figs. 9(a), 10(c), 11(a), (c), 13(b), or 15(b). It is
also instructive to compare the ease with which any of these connectors can be
parameterized to scale up their number of producers, with the changes necessary
to scale up the number of producers in action-centric versions of these protocols.

Moreover, applications with many producers may indeed require somewhat
different treatment of the output of some of their producers. For instance, an
application may require barrier synchronization of some producers, synchronous
sampling of some others, buffered sampling of yet others, etc., etc. It is trivial
to mix-and-match the necessary interaction (sub-)protocols that we examined,
to tailor make such a protocol, essentially through cut-and-paste of parts of
the various Reo connectors presented above. Such cut-and-paste is generally
unthinkable when protocols are expressed in terms of action-based constructs of
traditional models of concurrency.

As if anyone needed more evidence to appreciate that concurrency is dif-
ficult, the many variants of our deceptively trivial running example presented
above, plus the multitudes of their possible mix-and-match variants, demon-
strate that even seemingly trivial protocols involve intricate details that require
careful attention and explicit, concrete, first-class treatment. By the way, none
of the variants of the Reo connectors presented above captures the behavior
of the Java-like code of our initial attempt. For the sake of completeness, the
behavior of the protocol in Fig. 1 corresponds to the behavior of the connector
in Fig. 16. Just as in the case of the program in Fig. 1, this connector allows the
producers at nodes A and B alternate and over-write each other in the buffer
of the ShiftLossyFIFO1. The consumer at C can obtain only the latest value
produced by either of the producers.

80 F. Arbab and S.-S.T.Q. Jongmans

Sequencer

A
B

C

Fig. 16. Alternating and over-writing

The Reo connector binding a number of distributed processes, such as Web
services, can even be “hot-swapped” while the application runs, without the
knowledge or the involvement of the engaged processes. A prototype platform
to demonstrate this capability is available at [2].

5 Semantics

Reo allows arbitrary user-defined channels as primitives; arbitrary mix of syn-
chrony and asynchrony; and relational constraints between input and output.
This makes Reo more expressive than, e.g., dataflow models, Kahn networks,
synchronous languages, stream processing languages, workflow models, and Petri
nets. On the other hand, it makes the semantics of Reo quite non-trivial.

Various models for the formal semantics of Reo have been developed, each
to serve some specific purposes. In the rest of this section, we briefly describe
constraint automata [25], the main semantics used in verification and code gen-
eration; a comprehensive overview of other models appears elsewhere [44].

Constraint automata provide an operational model for the semantics of Reo
connectors. The states of an automaton represent the configurations of its corre-
sponding connector (e.g., the contents of the FIFO channels), while the transitions
encode its maximally-parallel stepwise behavior. The transitions are labeled with
themaximal sets of nodes onwhich dataflowoccurs simultaneously, and a data con-
straint (i.e., boolean condition for the observed data values). For example, Fig. 17
shows the constraint automata semantics for some of the common Reo primitives.

The constraint automaton for the Sync channel consists of a single state. It
has only a single transition, labeled by the pair of synchronization constraint, and
data constraint. The synchronization constraint {A,B} states that this transition
is possible iff both nodes A and B can fire synchronously (i.e., atomically),
allowing their respective pending I/O operations to succeed. The data constraint

P

{A,B}, d(A)=d(B)

{A
}, true

{A}, d(A)=X’

{B}, d(B)=X

{A,B}, d(A)=d(B) {A,B}, d(A)=d(B) ^ d(A) # P

{A
}, d(A

) !# P

Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

A B A B A B A B A B A B

{A,B}, true

{A
}, true

{B}, true

Fig. 17. Constraint automata of some typical Reo channels

Coordinating Multicore Computing 81

d(A) = d(B) states that this transition is possible iff the data observed at
node A is identical to the data observed at node B. Because these two nodes
are respectively the source and the sink nodes (of the Sync channel), this data
constraint requires a transfer of data from A to B.

The constraint automaton for the LossySync channel in fact expresses the
semantics of a nondeterministic LossySync channel, not that of our context
sensitive LossySync described in Sect. 3. The difference is significant, but it is
not important for our purposes in this paper.3 This automaton has a single
state and two transitions. One of these transitions is identical to that of the
Sync channel, modeling its identical behavior. The other, labeled by {A}, true
simply states that the automaton can make this transition iff A can fire by itself
and imposes no constraint of the data of A: this data is lost.

The constraint automaton for the FIFO1 channel has two states, represent-
ing its empty (initial) and full states. To simplify our presentation, we consider a
variant of constraint automata that allow states to have local memory variables.
The label {A}, d(A) = X ′ of the transition that takes the automaton from its
empty to its full state allows it to make this transition iff node A can fire by itself,
and the new value of the memory variable X in the target state (identified by
X ′ in the data constraint) is the same as the data value observed on node A: the
value obtained from the source node A gets assigned to the X variable of the tar-
get state to satisfy this constraint. The label {B}, d(B) = X of the transition that
takes the automaton from its full to its empty state allows it to make this transi-
tion iff node B can fire by itself, and the value of the memory variable X in the
source state (identified by X in the data constraint) is the same as the data value
observed on node B: the value of the X variable of the source state is dispensed
through the sink node B to satisfy this data constraint.

The constraint automaton for the SyncDrain channel has a single state
and a single transition, whose constraints require its ends to fire synchronously
({A,B}), but imposes no constraints (true) on their data. Because these are
both source ends, their data are simply lost.

The constraint automaton for the AsyncDrain channel has a single state and
two transitions, each of which allow it to fire and lose the data obtained through
one of its ends (but never both synchronously).

The constraint automaton for the Filter(P) channel has a single state and
two transitions. If source node A can fire and its data value does not match
the filter pattern P, then the data value of A is simply lost. If the data value
available on the source node A matches the filter pattern P, then the only possible
transition is one similar to that of the Sync channel, by which the data value of
A is transferred to the sink node B.

3 In fact, constraint automata do not have the expressiveness required to directly
represent context sensitivity. Other more expressive semantic models, including more
sophisticated automata models, have been devised for this purpose [29,34]. A recent
work shows that, although constraint automata cannot directly represent context
sensitivity, it is possible to encode context sensitivity using constraint automata as
well [52,61].

82 F. Arbab and S.-S.T.Q. Jongmans

{A,C}, d(A)=d(C) {B
,C

}, d(B
)=

d(C
)

BA

C

{A,C}, d(A)=d(C) {A
,B

}, d(A
)=

d(B
)

Exclusive router

{C}, d(C)=X

{A,B,C}, d(A)=d(C) ^ d(B) = X’

{B}, d(B)=X

{A}, d(A) = X’

{A
}, true

{B}, d(B)=X

{A}, d(A) = X’ {A
}, d(A

) =
 X

’

Binary Merger

(a) (b)

Alternator Shift−Lossy FIFO1Overflow−Lossy FIFO1

)e()d()c(

Fig. 18. Constraint automata of a binary merger and some example connectors

The semantics of a Reo connector is derived by composing the constraint
automata of its constituents, through a special form of synchronized product of
automata, which automatically accommodates the replication semantics of Reo
nodes [25]. The nondeterministic n-ary merge semantics inherent in Reo nodes
needs to be made explicit as a (product) composition of n − 1 nondeterminis-
tic binary merge primitives. Figure 18(a) shows the constraint automaton for a
nondeterministic binary merge primitive.

Figure 18(b) shows the constraint automaton representing the semantics of
the exclusive router Reo connector of Fig. 12(a), which is obtained as the product
of the constraint automata of its constituents: 5 Sync channels, 2 LossySync
channels, a SyncDrain channel, and a merger.

Figure 18(c) shows the constraint automaton representing the semantics of
the alternator connector of Fig. 9(a), obtained as the product of the constraint
automata of its constituent Sync channel, SyncDrain channel, FIFO1 channel,
and merger.

Figure 18(d) shows the constraint automaton representing the semantics of
an overflow lossy connector, which can be easily composed by connecting the
sink end of a LossySync to the source end of a FIFO1. Although this is the
semantics that must be obtained, the product of simple constraint automata in
Fig. 17 does not yield this automaton. This automaton can be obtained using
more sophisticated variants of constraint automata [29,34], or an encoding tech-
nique [52] which can handle context sensitivity.

Figure 18(e) shows the constraint automaton representing the semantics of
the ShiftLossyFIFO1 connector of Fig. 12(b), which is obtained as the product
of the constraint automata of its constituents.

Constraint automata have been used for the verification of protocols through
model-checking [5,22–24,28,37,55,56]. Results on equivalence and containment
of the languages of constraint automata [25] and failure based equivalences [43]
provide opportunities for analysis and optimization of Reo connectors.

A constraint automaton essentially captures all behavior alternatives of a Reo
connector. Therefore, it can be used to generate a state-machine implementing
the behavior of Reo connectors, in a chosen target language, such as Java or C,
as explained in the next section.

Variants of the constraint automata model have been devised to capture time-
sensitive behavior [11,53,54], probabilistic behavior [20], stochastic behavior [26],

Coordinating Multicore Computing 83

context sensitive behavior [29,34,41], fairness [30,42], resource sensitivity [66],
and the QoS aspects [12,13,67,70,71] of Reo connectors and composite systems.

d
e
c
l
a
r
a
t
i
v
e

i
m
p
e
r
a
t
i
v
e

programmers S

shared-mem.
+sync. prims. I1 I2 Ik

hardware B1 B2 Bk

f lo

glo
1 glo

k−1 ◦ · · · ◦ glo
2

h h h

Fig. 19. From declarative specifications to imperative implementations

6 Compilation

By now, we may have convinced our readers that both (1) exogenous specifi-
cation of multi-party interaction protocols (regardless of the language in which
they are implemented), and (2) high-level languages that support specification of
such protocols as composition of primitive interactions (as opposed to in terms
of low level communication actions) offer clear software engineering advantages
(e.g., programmability, maintainability, reusability, verifiability, etc.). Reo serves
as a prime example of a high-level language, based on an exogenous interaction-
centric model of concurrency, that demonstrates the viability of raising the level
of abstraction in specification of concurrency protocols to where these software
engineering advantages can indeed materialize. It seems far less obvious, how-
ever, that protocol specifications expressed in such high-level languages can be
compiled into efficient and scalable binaries.

In this section, we intend to persuade the reader that in time, sufficiently
smart compilers for high-level protocol languages can produce binaries with bet-
ter performance than binaries produced by compilers for contemporary general-
purpose languages that offer the lower-level constructs of traditional models
of concurrency. At the core of our argument lies the observation that compil-
ers for such high-level protocol languages can optimize concurrent programs in
novel ways inconceivable for compilers that receive lower-level constructs of tra-
ditional models of concurrency as their input. In making this argument, first, we
need to understand the limitations of compiling protocols coded in lower-level
action-based languages as Java and C.

Essentially, to write a concurrent program, concurrent programmers cross
a distance between a declarative specification of its protocols and processes

84 F. Arbab and S.-S.T.Q. Jongmans

(or threads, components, services, actors, agents, etc.), which abstractly defines
what must happen, and its imperative implementation, which concretely defines
how things happen. Today, the processes in such imperative implementations
typically interact with each other through actions that manipulate shared-memory
protected by classical synchronization primitives, such as locks, semaphores, or
monitors.4 Figure 19 shows our perspective on this approach in terms of three
levels of abstraction: (i) the specification interpreted by programmers, denoted
by S, (ii) its implementations using shared-memory protected by classical syn-
chronization primitives, denoted by Ii, and (iii) the binaries executed by the
hardware, denoted by Bi. In writing their concurrent program, programmers
first cross the distance between S and I1, denoted by arrow f lo. Subsequently,
possibly assisted by tools, these programmers may incrementally improve I1
into implementations I2 . . . Ik by applying high-level optimizations to the pro-
gram logic (e.g., introducing more fine-grained concurrency or replacing data
structures with more optimal ones), denoted by arrows glo1 . . . glok−1. Finally, a
compiler crosses the remaining distance between Ii and Bi, denoted by arrow h.

Figure 19 provides another perspective on the previously identified difficulties
with low-level action-based concurrency. Essentially, these difficulties arise from
the conceptually long distance between the levels of abstraction of S and I1,
effectively measured by comparing the textual length of specification S with
the number of lines of code of its implementation I1. Intuitively, as this ratio
gets smaller, the distance between S and I1 grows longer, and consequently, the
amount of intellectual work that programmers need to perform becomes larger.
In practice, it typically requires a substantial effort and significant ingenuity
from programmers to define f lo (i.e., to write their concurrent program with
action-based concurrency) and to establish f lo(S) � S in terms of the low-level
code that f lo(S) consists of (i.e., to establish that f lo faithfully implements S).
Hamberg and Vaandrager, for instance, discuss these issues in more detail, from
the perspective of teaching concurrency through model checking [39].

Additionally, Fig. 19 also shows that facing a traditional low-level action-based
model of concurrency, forces programmers to take responsibility for defining,
selecting, and applying every gloi (i.e., defining, selecting, and applying optimiza-
tions) and, again, for establishing (glok−1 ◦ · · · ◦glo1 ◦f lo)(S) � S. Ideally, of course,
a compiler instead of programmers should perform every gloi . But although sixty
years of research in compiler technology has resulted in a battery of many impor-
tant low-level optimization techniques, current compilers typically cannot apply
higher-level, “intention-preserving” optimizations to the program logic. For ins-
tance, automatic parallelization of general algorithms and data structures remains
an open problem to this day [18].

To further illustrate this point, Fig. 20 shows the problem that a low-level
compiler faces in applying such high-level “intention-preserving” optimizations.
For such a compiler to decide which optimizations it can—and should—apply

4 Of course, in a distributed memory setting, the concurrency primitives are different,
but message passing communication primitives used in such settings still constitute
an action-based model of concurrency, for which our subsequent argument still holds.

Coordinating Multicore Computing 85

d
e
c
l
a
r
a
t
i
v
e

i
m
p
e
r
a
t
i
v
e

programmers S

shared-mem.
+sync. prims. I1 I2 Ik

hardware B1 B2 Bk

glo
1 glo

k−1 ◦ · · · ◦ glo
2

h h h

(f lo)-1f lo

g lo
k−1 ◦ · · · ◦ g lo

1 ◦ f lo

Fig. 20. Irresurrectability of declarative specifications

to which parts of implementation I1, it essentially needs to reconstruct specifi-
cation S. Only then, when the compiler knows the itentions that programmers
had when they wrote I1, can it decide which portions of the code admit which
intention-preserving optimization. In other words, before the compiler can opti-
mize anything, it first needs to apply the inverse of f lo to f lo(S) to resurrect
the lost what, S. Generally, however, the compiler cannot do this: in going from
a declarative specification to an imperative implementation, certain informa-
tion gets irretrievably lost or becomes practically impossible to extract from the
resulting code. Consider, for instance, the following C code:

int x;
for (int i = 0; i < 10; i++) {

x = rand();
a[i] = some_function(x); // without side effects

}

If we intended just to assign the output of some function to every a[i], for
random inputs x, a compiler can parallelize the loop. However, if we additionally
intended the resulting array to have the same content in executions with the
same random seed (e.g., to reproduce bugs), a compiler cannot parallelize the
loop: in that case, the order of generating random numbers matters. Just from
this code, thus, neither a compiler nor a human can judiciously decide about
loop parallelization; to make that decision, one needs more information.

For more complex programs, as the distance between specifications and their
implementations becomes longer, the distance between those implementations
and their binaries becomes relatively shorter, leaving less room for a compiler
to perform significant high-level “intention preserving” optimizations. Inciden-
tally, the annotations used in some parallelization frameworks (e.g., OpenMP)
explicitly preserve information that otherwise gets lost in translation, which
the compiler subsequently leverages to produce more optimized binaries. For
instance, with OpenMP, a programmer can annotate the loop in the previous C
code with the following pragma to inform the compiler that it may parallelize:

86 F. Arbab and S.-S.T.Q. Jongmans

#pragma omp parallel for private(x)

In summary, the distance between high-level declarative specifications of pro-
tocols/processes and their low-level imperative implementations using action-
based concurrency models hinders concurrent programming in two ways: (1) this
distance is too long for average programmers to reasonably write correct code, let
alone, correct code that is also efficient, and scalable; (2) the low level of abstrac-
tion of the synchronization primitives in which they write their code leaves too
small a domain for compilers to perform effective, high-level, intention-preserving
optimizations. The latter subsequently forces programmers to take direct respon-
sibility for such optimizations, thereby adding even more complexity to the already
daunting task of programmers. To alleviate these issues, programming language
designers should provide programmers new, declarative, high-level interaction-
based abstractions for implementing parallel programs. In the previous sections,
we already argued that languages that offer such constructs, as Reo, can alleviate
the first issue. Here, Figs. 19 and 20 give us the right context to argue that such
languages also alleviate the second issue.

Figure 21 shows our proposed approach, where M1 . . . Mk denote implemen-
tations of S in a special, declarative protocol language (imagine Reo). The
shorter distance between S and M1 simplifies programmers’ task of writing their
parallel program, denoted by arrow fhi, essentially because those programmers
need to concern themselves with fewer details (e.g., seemingly nondeterministic
scheduling). Moreover, as programmers express their protocols at a high level of
abstraction, declaratively, more information about their intentions remains avail-
able in the resulting code. A compiler can subsequently leverage this information
to generate more optimized binaries. As such, this compiler relieves programmers
from the responsibility of manually implementing, and establishing the correct-
ness of, not only low-level optimizations (as current compilers already do) but
also high-level intention-preserving optimizations: an application programmer
now needs to work out only fhi, after which the compiler takes care of selecting

d
e
c
l
a
r
a
t
i
v
e

i
m
p
e
r
a
t
i
v
e

programmers S

protocols &
processes M1 M2 Mk

hardware B1 B2 Bk

fhi

ghi
1 ghi

k−1 ◦ · · · ◦ ghi
2

hhi hhi hhi

Fig. 21. From declarative specifications to declarative implementations

Coordinating Multicore Computing 87

and applying every applicable ghii defined by its designer. This designer, instead
of application programmers, should prove the correctness and effectiveness of
every ghii , and establishing those properties remains a one-shot activity (cf. ad-
hoc reasoning about every manually optimized low-level concurrent program).
Moreover, because Mi and Mi+1 reside at a higher level of abstraction than Ii
and Ii+1 do, proving the correctness and effectiveness of ghii typically becomes
simpler, clearer, and more mathematically elegant than reasoning about the low-
level code manipulated by gloi . Shortly, we give concrete examples for this claim.

Thus, by offering a new level of interaction-based abstraction to program-
mers, our proposed approach alleviates the software engineering difficulties of
expressing implementations using action-based models of concurrency, by short-
ening the distance between specifications and their implementations, which in
turn makes it more reasonable for programmers to perform the intellectual work
required to cross this distance. Perhaps surprisingly, a shorter distance between
specification and implementation has another significant advantage: it makes the
distance between implementations and binaries long enough for compilers to per-
form also high-level intention-preserving optimizations, which also ameliorates
the difficulties of developing implementations with good scalability and perfor-
mance. In time, binaries generated by sufficiently smart compilers for high-level
protocol languages should outperform binaries of low-level code hand-written by
average programmers. In posing this thesis, we feel encouraged by the observa-
tion that although the distance between an implementation of a typical sequen-
tial program expressed in a conventional imperative languages (e.g., Java or C)
and an optimized version of its binary code is also huge, the compiler construc-
tion community has still succeeded to develop effective tools for crossing this dis-
tance, demanding little or no intellectual effort from programmers. Essentially,
we propose to extend that work to high-level protocol languages for concurrent
programming. By now, the concrete preliminary results of experiments with our
Reo compiler support our thesis and exemplify its feasibility.

d
e
c
l
a
r
a
t
i
v
e

i
m
p
e
r
a
t
i
v
e

programmers S

Reo circuits
& Java/C M1 M2 M3 M4

hardware B

fhi

ghi
1 ghi

2 ghi
3

hhi

Fig. 22. From declarative specifications to imperative implementations via cas

88 F. Arbab and S.-S.T.Q. Jongmans

Figure 22 shows the instantiation of Fig. 21 in the context of our Reo com-
piler, which is based on Reo’s constraint automaton semantics, presented in
Sect. 5. In this instantiation, the programmers’ task fhi consists of (i) translat-
ing the processes in specification S into Java or C code and (ii) translating the
protocol in S into a Reo connector; together, this code and the Reo connector
constitute M1. Our compiler subsequently maps every node and every channel in
the Reo connector to its corresponding constraint automaton. This yields a set
of “small” automata that collectively represent the connector’s semantics. The
compiler then translates this set of small automata into Java/C and merges the
code so generated with the Java/C code for the processes. An external compiler
for Java/C subsequently translates the full code base into a binary.

Our Reo compiler currently applies three high-level optimizations ghii .

– ghi1 —Improving latency [46]
The most straight-forward translation of a parallel composition of small auto-
mata, which collectively model a connector’s semantics, into Java/C works by
generating a distinct thread for each of those automata. In this approach, every
such thread executes a small state machine for its corresponding automaton,
firing transitions as it reaches consensus with the other threads about their col-
lective behavior. The distributed consensus algorithm necessary for achieving
such multiparty synchronization, however, costs too much in terms of resources
at run-time, which causes transitions to have high firing latency.
Optimization ghi1 aims at reducing firing latency: instead of translating a par-
allel composition of small automata to as many threads, ghi1 first computes a
single “big” automaton for that composition, similar to parallel expansion in
process calculi, and generates only one thread for that automaton. This single
thread executes a big state machine, free of other threads to synchronize its
behavior with.

– ghi2 —Improving throughput [45,47,48,51]
Although ghi1 reduces firing latency, it does so at the cost of reduced firing
throughput: by computing one big automaton out of multiple small automata,
ghi1 effectively serializes all parallelism among those small automata. If those
small automata have heavy synchronization interdependencies, this is desir-
able, but if the small automata are more “loosely coupled”, such sequen-
tialization may unnecessarily reduce throughput. In that case, at run-time,
independent transitions cannot fire in parallel but are artificially serialized.
Optimization ghi2 aims at improving firing throughput: instead of computing
one big automaton for a parallel composition of small automata, it carefully
partitions that set of small automata into a number of disjoint subsets. Then,
for every resulting subset, it composes that subset’s elements into a “medium”
automaton and generates a thread for that automaton. Every such thread exe-
cutes a medium state machine, but because of how ghi2 partitions the set of
small automata, the consensus algorithm necessary for achieving multiparty
synchronization among those threads costs only little in terms of resources
at run-time. Consequently, ghi2 balances low latency (i.e., sequentiality) with
high throughput (i.e., parallelism).

Coordinating Multicore Computing 89

– ghi3 —Improving scalability [49]
Before a thread can fire a transition, it must check the synchronization con-
straint and the data constraint of that transition. To check the synchronization
constraint, a thread inspects all relevant interface nodes for a pending i/o-
operation; if at least one of those nodes has no such operation, the transition
cannot fire. To check the data constraint, a thread calls a constraint solver to
find a solution for that constraint; if no solution exists, the transition cannot
fire. Whenever a transition does fire, its executing thread effectively effectu-
ates an interaction among processes. Typically, as the number of processes
increases, the number of transitions per medium automaton also increases.
Because the thread for such a medium automaton needs to check all its tran-
sitions for enabledness (in the worst case), firing a transition requires increas-
ingly more resources as the number of processes increases. This suggests poor
scalability.
Optimization ghi3 aims at improving scalability: instead of directly generating
a thread for a medium ca, it first merges certain distinguished transitions of
that automaton into a single transition in a semantics-preserving way. Subse-
quently, it translates the resulting automaton, with merged transitions, into
a thread. This thread executes in the same way as before, but it can check
merged transitions for enabledness with a single operation, instead of with
one operation per transition. Crucially, to facilitate such combined checks, ghi3
injects optimized data structures for pending i/o-operations on nodes in the
generated code. Because not all transitions can be merged in a semantics-
preserving way, ghi3 performs static analysis on the transitions of an automa-
ton to determine the extent to which it can introduce such optimized data
structures.

We have proved the correctness of the above high-level optimizations in terms
of constraint automata (see their respective references, above).

The Java bytecode obtained using our compiler (and an external Java compiler
afterward) runs on a Jvm as any other Java program. With C, as an extra low-
level optimization, we use a framework that allows instructions to be scheduled
directly to cores instead of indirectly via the operating system’s scheduler [49].

Compilers for low-level languages seem incapable of performing similar
optimizations as those in Fig. 22 (i.e., automatic sequentialization, automatic
parallelization, and automatic optimization of data structures). As practical evi-
dence, if those compilers would be capable of this, we would have relied on those
capabilities of theirs instead of developing optimizations ourselves. More philo-
sophically, we believe that low-level compilers will never be capable of optimizing
in this way, simply because they do not have enough information about program-
mers’ intentions (see, e.g., the example of assigning random numbers to array
elements, mentioned earlier in this section). Constraint automata, in contrast,
retain enough such information to allow more effective high-level optimizations.
At the same time, it may be difficult for average programmers to detect when
and how optimizations similar to the ones in Fig. 22 may and should be applied
manually; compilers for high-level protocol languages alleviate this burden.

90 F. Arbab and S.-S.T.Q. Jongmans

Fig. 23. Earlier performance results [50] (Color figure online)

For some protocols, the high-level intention-preserving optimizations in
Fig. 22 already allow our compiler to generate code that can compete with
code written by a competent programmer [50]. Figure 23 shows one of our most
promising achievements so far. It shows the performance of three implementa-
tions of a k-producers-single-consumers protocol, for k ∈ {

2i | 2 ≤ i ≤ 9
}
: one

naive hand-written implementation in C (blue, solid line), one hand-crafted
optimized implementation in C (yellow, dashed line), and one implementation
expressed in Reo and compiled via cas into C (red, dotted line). In every round
of this protocol, every producer sends one datum to the consumer. Once the
consumer has received a datum from every producer, in any order, it sends
an acknowledgment to the producers, thereby signaling that the consumer is
ready for the next round. To measure just the performance of the protocol, we
did not give the producers and the consumers real computational tasks (i.e.,
the producers sent only dummy data). This example shows that already our
current compilation technology is capable of generating code that can compete
with—and in this case even outperform—carefully hand-crafted code. Surely, our
technology is not yet mature enough to always achieve such positive results. Nev-
ertheless, this example offers preliminary evidence that programming protocols
among threads using high-level, interaction-based constructs and abstractions
can result in equally good—or better—performance as compared to hand-crafted
code using conventional low-level, action-based models of concurrency.

The obvious superficial “performance comparison” depicted in Fig. 23 may
say as much about the effectiveness of our optimization techniques, as it does
about the competency of the C programmer who produced the hand-crafted
version of the protocol code of this application. However, below this surface,
lies a more crucial fundamental point that is independent of the competency
of any individual programmer, or the precise factor by which our optimization
techniques potentially can or currently do outperform hand-crafted code that a
programmer can (even hypothetically) produce. Crucial to this benchmark is the
fact that the task assigned to the programmer restricted him to use concurrency

Coordinating Multicore Computing 91

constructs available in contemporary programming languages, such as Java or C
(in this case p-threads). On the other hand, our Reo compiler bypasses this level
of abstraction (and the coarser-grained, OS-level scheduling inefficiencies that it
entails) and generates code using finer-grained constructs below the OS-level and
the concurrency constructs that it supports. From this perspective, comparing
the performance of the two versions of the code is even unfair, because the
statement of his task assignment prevents the programmer from using lower-
level constructs to directly hand-craft code similar to (or even better than) what
our Reo compiler produces. But precisely this unfairness constitutes the crux of
our argument in this section.

There are two conceivable ways to make such a comparison fair, i.e., produce
code using constructs that are “fairly comparable” to the constructs that our
Reo compiler uses to produces its code: (1) allow the programmer to directly
code below the level of p-threads and OS; or (2) develop tools that take p-threads
level code written by a programmer and produce more optimized code.

Option 1, i.e., removing the artificial barrier of programming at the level
of p-threads, is certainly possible. However, programming below p-threads and
OS-level sharply raises the level of expertise required by a programmer to code
directly at such a low level, and dramatically increases the size and the complex-
ity of the resulting code. Higher competency requirements and increased size and
complexity of code, in turn, sharply reduce the number of competent individuals
who qualify to perform such programming assignments, and dramatically lower
the likelihood of success of those who undertake such daunting tasks. Besides,
applications that directly use constructs below p-threads or OS abstractions
become highly brittle and non-portable, as they rely on constructs that most
likely do not exist verbatim on other platforms, or even on a future upgrade of
their original platforms.

Option 2 requires developing tools that can reconstruct the intentions behind
the p-threads constructs used to encode a protocol (fragment). As a concrete
example, a single transition in a constraint automaton may declare a complex
multi-party synchronization. By the time that a programmer expresses this inten-
tion in terms of semaphores, locks, guards, communication primitives, and data
structures, and intersperses its resulting code with other fragments of code that
are not directly related to this specific (multi-party synchronization) intention,
it becomes extremely difficult, if not theoretically impossible, for any tool to
reconstruct the original intention. Not having this information prevents a tool
from performing intention-preserving optimizations to generate lower-level code
that can more efficiently implement an application-specific multi-party synchro-
nization.

Offering programmers higher-level protocol specification languages, such as
Reo, which directly capture and retain more of the intentions behind protocol
fragments, seems like a very promising alternative. Our work on Reo and our
preliminary experiments with our Reo compiler suggest this approach is a viable
alternative.

92 F. Arbab and S.-S.T.Q. Jongmans

7 Concluding Remarks

Action and interaction offer dual perspectives on concurrency. Execution of
actions involving shared resources by independent processes that run concur-
rently, induces pairings of those actions, along with an ordering of those pairs,
that we commonly refer to as interaction. Dually, interaction can be seen as an
external relation that constrains the pairings of the actions of its engaged proce-
sses and their ordering. The traditional action-centric models of concurrency
generally make interaction protocols intangible by-products, implied by nebu-
lous specifications scattered throughout the bodies of their engaged processes.
Specification, manipulation, and analysis of such protocols are possible only
indirectly, through specification, manipulation, and analysis of those scattered
actions, which is often made even more difficult by the entanglement of the
data-dependent control flow that surrounds those actions. The most challenging
aspect of a concurrent system is what its interaction protocol does. In contrast
to the how which an imperative programming language specifies, declarative
programming, e.g., in functional and constraint languages, makes it easier to
directly specify, manipulate, and analyze the properties of what a program does,
because what is precisely what they express. Analogously, in an interaction-
centric model of concurrency, interaction protocols become tangible first-class
constructs that exist explicitly as (declarative) constraints outside and indepen-
dent of the processes that they engage. Specification of interaction protocols as
declarative constraints makes them easier to manipulate and analyze directly,
and makes it possible to compose interaction protocols and reuse them.

The coordination language Reo is a premier example of a formalism that
embodies an interaction-centric model of concurrency. We used examples of Reo
connectors to illustrate the flavor of programming pure interaction protocols.
Expressed as explicit declarative constraints, protocols espouse exogenous coor-
dination. Our examples showed the utility of exogenous coordination in yielding
loosely-coupled flexible systems whose components and protocols can be easily
scaled or modified, even at run time.

In addition to software engineering advantages, high-level languages to spec-
ify multi-party exogenous interaction protocols, such as Reo, have advantages
with respect to performance as well: as evidenced by our Reo compiler, compil-
ers for such high-level languages can perform optimizations that compilers for
lower-level languages cannot apply.

References

1. CADP home page. http://www.inrialpes.fr/vasy/cadp/
2. Extensible Coordination Tools home page. http://reo.project.cwi.nl/cgi-bin/trac.

cgi/reo/wiki/Tools
3. mCRL2 home page. http://www.mcrl2.org
4. Reo home page. http://reo.project.cwi.nl
5. Vereofy home page. http://www.vereofy.de/

http://www.inrialpes.fr/vasy/cadp/
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
http://www.mcrl2.org
http://reo.project.cwi.nl
http://www.vereofy.de/

Coordinating Multicore Computing 93

6. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

7. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

8. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)

9. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011)

10. Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J., Tinnermeier,
N.: Reo connectors as coordination artifacts in 2APL systems. In: Bui, T.D., Ho,
T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53. Springer,
Heidelberg (2008)

11. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical
specifications for timed component connectors. Softw. Syst. Model. 6(1), 59–82
(2007)

12. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol.
4467, pp. 286–304. Springer, Heidelberg (2007)

13. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.:
From coordination to stochastic models of QoS. In: Field and Vasconcelos [35], pp.
268–287

14. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 108–123. Springer, Heidelberg (2008)

15. Arbab, F., Mavaddat, F.: Coordination through channel composition. In: Arbab,
F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 22–39.
Springer, Heidelberg (2002)

16. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008)

17. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool
chain for performance analysis of coordination models. In: van Vliet, H., Issarny,
V. (eds.) ESEC/SIGSOFT FSE, pp. 287–288. ACM, New York (2009)

18. Arvind, D.A., Pingali, K., Chiou, D., Sendag, R., Yi, J.: Programming multicores:
do applications programmers need to write explicitly parallel programs? IEEE
Micro 30(3), 19–33 (2010)

19. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

20. Baier, C.: Probabilistic models for Reo connector circuits. J. Univers. Comput. Sci.
11(10), 1718–1748 (2005)

21. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

22. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field and Vasconcelos [35],
pp. 247–267

23. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer,
Heidelberg (2010)

94 F. Arbab and S.-S.T.Q. Jongmans

24. Baier, C., Klein, J., Klüppelholz, S.: Modeling and verification of components and
connectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
114–147. Springer, Heidelberg (2011)

25. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

26. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006)

27. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60, 109–137 (1984)

28. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. Electr. Notes
Theor. Comput. Sci 215, 209–226 (2008)

29. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent connec-
tors. In: Field and Vasconcelos [35], pp. 184–203

30. Bonsangue, M.M., Izadi, M.: Automata based model checking for reo connec-
tors. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 260–275.
Springer, Heidelberg (2010)

31. Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer,
Heidelberg (2006)

32. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

33. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

34. Costa, D.: Formal models for context dependent connectors for distributed soft-
ware components and services. Ph.D. thesis, Vrije Universiteit Amsterdam (2010).
http://dare.ubvu.vu.nl//handle/1871/16380

35. Field, J., Vasconcelos, V.T. (eds.): COORDINATION 2009. LNCS, vol. 5521.
Springer, Heidelberg (2009)

36. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, Berlin (1999)

37. Grabe, I., Jaghoori, M.M., Aichernig, B.K., Baier, C., Blechmann, T., de Boer,
F.S., Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M.,
Leister, W., Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Xuedong, L., Yi,
W.: Credo methodology: modeling and analyzing a peer-to-peer system in credo.
Electr. Notes. Theor. Comput. Sci. 266, 33–48 (2010)

38. Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) MMOSS. Dagstuhl Seminar Proceedings,
vol. 06351. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2006)

39. Hamberg, R., Vaandrager, F.: Using model checkers in an introductory course on
operating systems. Oper. Syst. Rev. 42(6), 101–111 (2008)

40. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

41. Izadi, M., Bonsangue, M.M., Clarke, D.: Modeling component connectors: syn-
chronisation and context-dependency. In: Cerone, A., Gruner, S. (eds.) SEFM, pp.
303–312. IEEE Computer Society, Los Alamitos (2008)

42. Izadi, M., Bonsangue, M.M., Clarke, D.: Büchi automata for modeling component
connectors. Softw. Syst. Model. 10(2), 183–200 (2011)

http://dare.ubvu.vu.nl//handle/1871/16380

Coordinating Multicore Computing 95

43. Izadi, M., Movaghar, A.: Failure-based equivalence of constraint automata. Int. J.
Comput. Math. 87(11), 2426–2443 (2010)

44. Jongmans, S.-S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

45. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 174–188. Springer,
Heidelberg (2013)

46. Jongmans, S.-S., Arbab, F.: Modularizing and specifying protocols among
threads.In: Proceedings of PLACES 2012. EPTCS, vol. 109, pp. 34–45. CoRR
(2013)

47. Jongmans, S.-S., Arbab, F.: Toward sequentializing overparallelized protocol code.
In: Proceedings of ICE 2014. EPTCS, vol. 166, pp. 38–44. CoRR (2014)

48. Jongmans, S.-S., Arbab, F.: Can high throughput atone for high latency in
compiler-generated protocol code? In: Proceedings of FSEN 2015. Springer (in
press)

49. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of inter-
action protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014)

50. Jongmans, S.-S., Halle, S., Arbab, F.: Reo: a dataflow inspired language for mul-
ticore.In: Proceedings of DFM 2013, pp. 42–50. IEEE (2014)

51. Jongmans, S.-S., Santini, F., Arbab, F.: Partially-distributed coordination with
Reo.In: Proceedings of PDP 2014, pp. 697–706. IEEE (2014)

52. Jongmans, S.-S.T.Q., Krause, C., Arbab, F.: Encoding context-sensitivity in reo
into non-context-sensitive semantic models. In: De Meuter, W., Roman, G.-C.
(eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 31–48. Springer, Heidelberg
(2011)

53. Kemper, S.: SAT-based verification for timed component connectors. Electr. Notes
Theor. Comput. Sci. 255, 103–118 (2009)

54. Kemper, S.: Compositional construction of real-time dataflow networks. In: Clarke,
D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–106. Springer,
Heidelberg (2010)

55. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal
verification. An industrial case study using reo and vereofy. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011)

56. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electr. Notes Theor. Comput. Sci 175(2), 19–37 (2007)

57. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
Krämer et al. [64], pp. 625–626

58. Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of service
compositions with Reo and mCRL2. In: SAC 2010: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2406–2413. ACM, New York (2010)

59. Kokash, N., Arbab, F.: Formal behavioral modeling and compliance analysis for
service-oriented systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009)

60. Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running busi-
ness transactions. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1381–1382. ACM,
New York (2009)

61. Kokash, N., Arbab, F., Changizi, B., Makhnist, L.: Input-output conformance
testing for channel-based service connectors. In: Aceto, L., Mousavi, M.R. (eds.)
PACO. EPTCS, vol. 60, pp. 19–35 (2011)

96 F. Arbab and S.-S.T.Q. Jongmans

62. Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-
based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010)

63. Kokash, N., Krause, C., de Vink, E.P.: Time and data-aware analysis of graphical
service models in Reo. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.)
SEFM, pp. 125–134. IEEE Computer Society (2010)

64. Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.): ICSOC 2007. LNCS, vol. 4749.
Springer, Heidelberg (2007)

65. Lazovik, A., Arbab, F.: Using Reo for service coordination.In: Krämer et al. [64],
pp. 398–403

66. Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
301–316. Springer, Heidelberg (2007)

67. Meng, S., Arbab, F.: QoS-driven service selection and composition. In: Billington,
J., Duan, Z., Koutny, M. (eds.) ACSD, pp. 160–169. IEEE (2008)

68. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

69. Milner, R.: Elements of interaction - turing award lecture. Commun. ACM 36(1),
78–89 (1993)

70. Moon, Y.-J.: Stochastic models for quality of service of component connectors.
Ph.D. thesis, Leiden University (2011)

71. Moon, Y.-J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for sto-
chastic Reo connectors. In: Mousavi, M.R., Salaün, G. (eds.) FOCLASA. EPTCS,
vol. 30, pp. 93–107 (2010)

72. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge
University Press, New York (2001)

73. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business process compliance through reusable units of compliant
processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
325–337. Springer, Heidelberg (2010)

74. Wegner, P.: Coordination as comstrainted interaction (extended abstract). In:
Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp.
28–33. Springer, Heidelberg (1996)

Modeling of Architectures

Jade Alglave(B)

Microsoft Research Cambridge and University College London, London, UK
j.alglave@ucl.ac.uk, jaalglav@microsoft.com

Abstract. Concurrent programming is known to be quite hard. It is
made even harder by the fact that, very often, the execution models of
the machines we run our software on are not precisely defined.

This document is a tutorial on the herd tool and the cat language,
in which one can define consistency models.

c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 97–145, 2015.
DOI: 10.1007/978-3-319-18941-3 3

98 J. Alglave

1 Why Herd Cats Anyway?

Concurrent programming is known to be quite hard.
Look at this pink pony:

It’s been computed on an Intel x86 CPU, with sequential code. It’s healthy!
Now look at this one:

It’s been computed on an Nvidia GPU, with concurrent code. It’s all broken;
this is because multicore machines sometimes do not behave quite as we’d expect,
and sensible looking code can end up producing unexpected results.

Now, there are ways to repair the concurrent pony, look; this pony was also
computed on an Nvidia GPU, under the same conditions as the previous one:

One can repair our pony by placing special instructions in the code used
to compute it. However the semantics of such special instructions is very often
poorly documented.

In this lecture we present a language, called cat, that can help us tackle this
issue by allowing us to precisely describe the semantics of these special instructions.

Modeling of Architectures 99

More precisely, our cat language gives us means to describe consistency models,
i.e. execution models of concurrent and distributed systems.

By the end of this lecture, you should have been able to build several models:

• Sequential Consistency [8] (see Sect. 3)
• Total Store Order [10] (see Sect. 3),
• a model similar in spirit to IBM Power or ARM [5] (see Sect. 4),
• a model similar in spirit to Nvidia GPUs [3] (see Sect. 5),
• a model inspired by C++ [14] (see Sect. 6).

Reading Notes. Most of the lecture is going to be interactive, using the herd
tool. For this tutorial to go smoothly, I would suggest to:

• have internet access, to be able to go to the herd web interface: http://virginia.
cs.ucl.ac.uk/herd-web/?book=tutorial;

• open the appendix, where I give the final models that the tutorial should help
you build; these can act as guidelines along the way.

2 First Steps in Herding Cats

Here we’re going to learn about the essential concepts to follow this lecture.

Litmus Tests. Litmus tests are small snippets of assembly or pseudo-assembly
code that allow us to examine the behaviour of a chip (see e.g. [5]), or a model
like we’re doing here.

Below is our first litmus test. In this test, called MP (short for message pass-
ing), two processors P0 and P1 communicate via two shared memory locations
x and y, both initialised to 0:

Bell MP
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

On the left, the thread P0 writes 1 to memory location x, and 1 to memory
location y. On the right, the thread P1 reads from y and places the result into
register r1, and reads from x and places the result into register r2. The registers
r1 and r2 are private to P1.

Essentially, P0 writes a message in x, then sets up a flag in y, so that when
P1 sees the flag (via its read from y), it can read the message in x.

At the bottom of the test, we ask “is there an execution of this test such that
register r1 contains the value 1 and register r2 contains the value 0?”.

http://virginia.cs.ucl.ac.uk/herd-web/?book=tutorial
http://virginia.cs.ucl.ac.uk/herd-web/?book=tutorial

100 J. Alglave

Exercise: What do you Think? Do you think such an execution is possible?

The Herd Tool. Now, let’s try it out! The herd tool lets us simulate a model, and
run litmus tests against that model, to determine which executions are allowed
by this model. So let’s go to virginia.cs.ucl.ac.uk/herd-web/?book=tutorial. In
the “litmus test” box, find the file mp.litmus in the drop box. Let’s select “all
executions” for the display, and then click on the pink pony.

Histograms. In the “histogram” box, we see the following result:

Test MP Allowed
States 4
1:r1=0; 1:r2=0;
1:r1=0; 1:r2=1;
1:r1=1; 1:r2=0;
1:r1=1; 1:r2=1;
Ok

Note that we see the result 1:r1=1; 1:r2=0;, which we asked about in our
test. Thus this result is reachable by our test, and this is why the tool says Ok;
otherwise it would say No.

Executions. In the “executions” box, we see that this test can have four different
executions. In all of them we see four events: writes to x or y, of the shape W[]
x=32, which means that value 32 was written to the memory location x, and
reads from x or y, of the shape R[] y=52, meaning that memory location y was
read, and the value read was 52. We also see two types of relations over these
events: po arrows and rf arrows.

Program Order. The po arrows represent the program order. The program
order intuitively corresponds to the order in which the events occur on a thread.

For example in our test, on P0, the write of x is appears in program order
before the write of y. Therefore the two corresponding events in Fig. 1 are related
by po. Similarly the read of y on P1 appears in our test in program order before
the read of x; thus the two corresponding events in Fig. 1 are related by po.

Note also that po is transitive. In Fig. 1, suppose there was an extra event e
occuring on P1 with a po arrow from d to e. In this case there would also be a
po arrow from c to e. That is, e is after c in the program order.

Read-from. The rf (read-from) arrows depict who reads from where; more
precisely, for each read of a certain location, it finds a unique write of the same
location and value.

Let’s go through each execution one by one. In the first one, the two reads on
P1 read from the initial state, which we depict with rf arrows with no sources.
Our test has initialised x and y to 0, thus the read events in the first execution
have the value 0. In the second execution, the read of x reads from the update
of x by P0, hence has the value 1; however the read of y reads from the initial
state still, hence takes the value 0. The third execution is the one our test was
asking about: the read of y reads from the update by P0, whereas the read of

http://virginia.cs.ucl.ac.uk/herd-web/?book=tutorial

Modeling of Architectures 101

mp (data flow 1)

P0

a: Wx=1

b: Wy=1

P1

c: Ry=0

d: Rx=0

po po

rf

rf

mp (data flow 3)

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po

rf

mp (data flow 2)

P0

a: Wx=1

b: Wy=1 d: Rx=1

P1

c: Ry=0

po
rf

po

rf

mp (data flow 4)

P0

a: Wx=1

b: Wy=1 d: Rx=1

c: Ry=1

P1

po
rf

rf
po

Fig. 1. Four executions of the MP test

x takes its value from the initial state, i.e. 0. In the last execution, both reads
take their values from the updates by P0, i.e. they both read the value 1.

Now we’re going to write a model that will forbid the result 1:r1=1; 1:r2=0;,
which we asked about in our test. It won’t be a minimal model forbidding this
result though (by which I mean that the model will forbid much more behaviours
than this particular one), but that’s okay.

To do so, we need to learn a few more concepts.

Coherence Order. In most models I know of, there’s a notion of a coherence
order. Intuitively it’s a history of all writes to a given memory location x, that
represents the order in which writes to x hit x. If you were sitting in memory
location x, looking at writes falling down onto you, and recording their values as
they come by, you would get the coherence order. In this lecture, the coherence
order co is a total order over writes to a given memory location.

From-read. Using the read-from and coherence relations, we can build a relation
called from-read :

r

w1

w2

w0

fr

fr

rf
co

co

102 J. Alglave

Intuitively, a from-read arrow starts from a read of a given location x, for
example the read r just above, and points to all the writes that overwrite the
value this read has taken. In the drawing above, the read r takes its value from
the write w0, as shown by the rf arrow between them. The write w0 is then
overwritten by the write w1, as shown by the co arrow between them. Hence
there is an fr arrow between r and w1, as w1 overwrites the write w0 from which
r reads. The write w1 is then overwritten by the write w2, as shown by the co
arrow between them. Thus there is an fr arrow between r and w2 too.

A good place to build fr is our cat file: go to the “model” box, and find the
“toggle cat” button. The interface should put you in front of the cat file called
tutorial.cat. If you click on “make custom cat”, you should be able to edit it,
and write the line above underneath the title and preamble of the cat file, i.e.
underneath:

"I can’t dance"

include "tutorial.cat"

In cat speak, this is how we can build the from-read fr (you can put this line
in your cat file):

let fr = rf^-1;co

which means that two events a and b are related by fr if it’s possible to follow
an rf arrow backwards from a to some event, then a co arrow forwards from
there, arriving at b. Also let’s add

show fr

to the cat file, to make sure that the tool displays the new fr arrows.
Now let’s run herd on MP again (don’t forget to click on the pink pony!). In

the third execution, observe the fr arrow between the read of x by P1 and the
update of x by P0:

mp

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po
fr

Let’s look at this execution a bit more: the read of y by P1 reads the update
by P0, whereas the read of x by P1 reads the initial state, i.e. ignores the update
of x by P0. Note that this is an execution that leads to the result 1:r1=1;
1:r2=0; that we asked about in our litmus test.

Also, note that such an execution compromises the implementation of mes-
sage passing idioms: intuitively, we’d like P1 to access the update of the data x
after it has read the update of the flag y.

Modeling of Architectures 103

In our models, these kind of violations will occur as cycles. Notice, in the
execution above, how we can follow the arrows to find a cycle: from a to b to c
to d and back to a.

3 Let’s Herd Two Kittens [12]

There are several models that would forbid this compromising execution. We’ll
build two: Sequential Consistency (SC) [8] and Total Store Order (TSO), which
is the model of Sparc TSO [11] and Intel x86 [10]. In fact we won’t build exactly
TSO below, only a fragment of it, but you’ll get to build TSO properly in an
exercise later on.

Sequential Consistency is such that executions of a program are interleavings
of the instructions appearing on the different threads of the program. One can
show (see e.g. [1,2]) that this corresponds to an axiomatic model, i.e. model
phrased in terms of events, program order, read-from, coherence and from-read
(such as the ones we are manipulating here), where the program order and what
I call the communication relations (i.e. the union of read-from, coherence and
from-read) are compatible, i.e. there cannot be any cycle in their union. Let’s
first build the communication relations in cat speak (to put in your cat file):

let com = rf | co | fr

Here we’re gathering the read-from rf, coherence order co and the from-read
fr in a relation called com (for communications). In cat speak, the symbol | is
the union of arrows, i.e. of relations over events.

Now we can build a procedure that will implement Sequential Consistency
(to put in your cat file):

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

This procedure we call sc, and it enforces the acyclicity (through the keyword
acyclic) of the relation sc-order. This relation is defined as the union of the
program order po and the communication relation com that we built earlier. We
need to call this procedure later on in the cat file for it to have an effect:

call sc()

Now let’s run our MP example under that new cat file. Let’s have a look at
the histogram:

Test MP Allowed
States 3
1:r1=0; 1:r2=0;
1:r1=0; 1:r2=1;
1:r1=1; 1:r2=1;
No

104 J. Alglave

Observe that there are now only 3 possible states, and the compromising
result 1:r1=1; 1:r2=0; has disappeared. If you look at the executions, you’ll
see that we do not have the compromising one anymore. That’s because there
was a cycle in the union of the program order po and the communication com:
from a to b to c to d and back to a.

Total Store Order. is such that write-read pairs (whether to the same memory
location or not) on the same thread can appear to occur out of order. This may
be due to processor caches and buffering (which lead to faster processors, but
surprising behaviours).

Consider the following store buffering litmus test, where two processors P0
and P1 communicate via two shared memory locations x and y, both initialised
to 0:

Bell SB
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | w[] y 1 ;
r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

On the left, the thread P0 writes 1 to memory location x, and reads from y
and places the result into register r1. Symmetrically, the thread P1 writes 1 to
memory location y, and reads from x and places the result into register r2. The
register r1 is private to P0, and r2 is private to P1.

At the bottom of the test, we ask the question “is there an execution of this
test such that both registers contain the value 0?”

Let’s comment out the call to SC because we’re trying to build a different
model here:

(* call sc() *)

Let’s feed this test to herd; find the file sb.litmus in the litmus test drop
box. After clicking on the pink pony, it says:

Test SB Allowed
States 4
0:r1=0; 1:r2=0;
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
Ok

Note that we see the result 0:r1=0; 1:r2=0;, which we asked about in our
test. This result corresponds to the following execution:

Modeling of Architectures 105

sb

P0

a: Wx=1

b: Ry=0

c: Wy=1

P1

d: Rx=0

po
fr fr

po

More precisely, the two reads on each thread reads from the initial state
(e.g. the read on P1 reads from the initial state for x). Since the initial state is
overwritten by the updates to x and y, we are exactly in the fr situation: for
example the read of x on P1 is fr-before the write of x on P0.

Such a result can be explained for example by the presence of store buffers,
one per thread: both writes (the write to x on P0 and the write to y on P1) can
sit in their threads’ store buffers for a while, then the reads (from y on P0 and
from x on P1) can take their value from the initial state, i.e. from memory, and
finally the writes can hit the memory.

This would be the case on an Intel x86 [10], or a Sparc TSO machine [11].
One can show (see e.g. [1,2,10]) that TSO corresponds to an axiomatic model

(i.e. phrased in terms of events, program order, read-from, coherence and from-
read), where a fragment of the program order and the communication relations
are compatible, i.e. there cannot be any cycle in their union. Remember that
we’ve built the communication relations earlier, and placed the definition in our
cat file.

To model TSO, we also need to build a notion of read-froms between different
threads, which we often call external read-from (in our cat file, next to the
definition of com for example):

let rfe = rf & ext

where the primitive ext is the relation that gathers pairs of events that belong
to different threads, such as the write of y by P0 and the read of y by P1.

Now, one way to model the store buffering scenarios allowed by TSO is to
reorder write-read pairs (whether to the same memory location or not). This
means that TSO differs from SC on write-read pairs. Thus we have to exclude
all the write-read pairs from sc-order to build TSO. We can then require the
acyclicity of this new relation tso-order. Let’s build this as a procedure once
again (to put in your cat file, just below the sc procedure):

procedure almost-tso() =
let ppo = po \ W*R
let tso-order = ppo | rfe | co | fr
acyclic tso-order

end

Here we’re declaring a procedure called almost-tso, in which there is a local
definition of a relation called ppo (for preserved program order). We define ppo
as the program order po, minus the write-read pairs: in cat speak the “setminus”

106 J. Alglave

operation is \; the (predefined) set of write events is W, the (predefined) set of
read events is R, thus the set of all write-read pairs is W*R.

On the second line of this procedure, we require the acyclicity of the union
(remember that the symbol | is the union in cat speak) of ppo and the commu-
nications com.

We need to call our almost-tso procedure in our cat file:

call almost-tso()

If you run the test now, you should find that the test has still not been
forbidden. Now, most architectures provide special instructions called fences
that prevent certain reorderings. For example, Intel x86 provides mfence, which
prevents the reordering of write-read pairs allowed by TSO. Let’s build ourselves
such a fence; the right place to do so is in the bell file. Go to the “model” box,
and find the “toggle bell” button; if you click on it, it should put you in front
of tutorial.bell. Clicking on “make custom bell” should allow you to edit
the bell file. Do not remove the title line "I can’t dance"; you could write
another title, but not remove the title entirely.

First we declare a possible annotation for our fence, for example ’wr (for
write-read):

enum Fences = ’wr

More precisely, here we declare an enumeration of possible fence annotations
under the name Fences. For now we only have one annotation, wr. This enum
will also create a set Wr of all the events that bear the annotation wr.

Interlude: Enums, Tags, and Annotations. More precisely, in cat speak,
one can define enumeration types, as follows. This should go into a bell file; if
you want to try it out I would suggest opening a fresh bell file to not spoil the
one we’re currently building; don’t forget to give a title to your file [16]:

"Hey Hey Mama"
enum Led = ’z || ’e || ’p

Here we’re defining an enumeration type Led, which contains three tags: ’z,
’e and ’p. The user can then use these tags to specify that certain events can
bear eponymous annotations ; for example (again in the bell file):

events W[{’z}]
events R[{’e,’p}]

specifies that write events (which belong to the predefined set W) can bear the
annotation z, whilst read events (which belong to the predefined set R) can bear
the annotations e or p.

The user can then use these annotations in litmus tests, for example (if you
want to try it out, find ledzep.litmus in the litmus test drop box):

Modeling of Architectures 107

Bell BlackDog
{
x = 0;
y = 0;
}
P0 | P1 ;
w[z] x 1 | r[p] r2 x ;
r[e] r1 y | ;
exists(0:r1=0 /\ 1:r2=1)

Internally, herd has built one set for each possible tag that was declared in
the enumeration type Led: the set Z gathers all events with annotation z, the
set E all events with annotation e, and the set P all events with annotation p.
Thus in the litmus test LedZep above, the write event on P0 will belong to the
set Z, the read on P0 to the set E, and the read on P1 to the set P.

The user can manipulate these sets in the bell file; for example:

let ze = Z*E
let ep = E*P
let zep = ze;ep

defines three relations ze, ep, and zep, such that ze gathers all pairs where the
left extremity belongs to Z and the right extremity belongs to E, ep gathers all
pairs where the left extremity belongs to E and the right extremity belongs to
P, and zep builds the sequence of a step of ze and a step of ep. We can add

show ze, ep, zep

if we want to visualise these three relations.

Back to the Write-read Fence. Then we need to say that our fence events
(much like read and write events, but to represent fences) can bear the annota-
tions that we’ve just defined:

events F[Fences]

More precisely, here we say that our fence events, of the shape f(...) can
bear the annotation wr. Let’s go ahead and modify the SB example by adding
fences to it:

Bell SB+fwr+fwr
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | w[] y 1 ;
f[wr] | f[wr] ;
r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

108 J. Alglave

As you can see, there is a fence instruction f(wr) between each write-read
pair on P0 and P1. Thus the two corresponding events belong to the set Wr.

Now we need to build a relation to gather all pairs of memory events (read
or write) that are separated by a fence in between them in program order; the
standard library has such a primitive, it is called fencerel. We can put the
following lines in our bell file for example (where F & Wr is the set of fence
events that bear the annotation wr):

let fwr = fencerel(F & Wr)
show fwr

The definition of fencerel is in herd’s standard library; it is as follows:

let fencerel(S) = (po & (_ * S)); po

It takes as argument a set S of events, and builds the sequence (the symbol;
designates the sequence of relations in cat speak) of the relation po & (* S)
and the program order po. Now let’s look at the relation po & (* S) a bit
more. It is built as the intersection (& is the intersection in cat speak) of the
program order po, and the set of pairs (* S). These pairs are such that the
domain (the left extremity) can be anything, whether read or write (means
“anything” in cat speak), and the range (the right extremity) is in the set S.

So now when we define fwr as fencerel(F & Wr) up above, this means that
we’ve built the relation gathering all pairs of events (read or write), such that
there is a fence event (i.e. that belong to F) in between them in program order,
and this fence event bears the annotation wr (i.e. belongs to the set Wr). This is
true, for example, of the write-read pair on P0 in our example SB+fwr+fwr.

Now we can add this fwr relation to our tso definition; that is, we can update
our almost-tso procedure as follows:

procedure almost-tso() =
let ppo = po \ W*R
let tso-order = ppo | fwr | rfe | co | fr
acyclic tso-order

end

Note how we’ve added the fwr relation to the shape of cycles forbidden by
our tso definition, so that now we can have no cycle that is made of ppo, fwr
or com arrows.

Let’s feed this test to herd and see what it says (find the file sb+fwr+fwr.
litmus in the litmus test drop box):

Test SB+fwr+fwr Allowed
States 3
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
No

Modeling of Architectures 109

Observe that the final state we were asking about, that can be explained by
the store buffer scenario outlined above, has disappeared, thanks to the fences.

Think of saving your bell and cat files, for example under the names
kittens.bell and kittens.cat.

4 Let’s Herd Our First Big Cat: A Tiger [6]

Today we’ll learn how to build a model that is similar in spirit to IBM Power
and ARM. These two models revolve around a handful of principles that we’ll
build one by one.

Start from fresh bell and cat files, but keep the definitions of fr, rfe, and
com. We’re going to use the sc procedure in a slightly different way, to flag the
executions that do not satisfy SC; in our kittens.cat file we had:

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

[...]

call sc()

to forbid non-SC executions, i.e. executions with a cycle in the union of the
program order po and the communications com.

Now we don’t want to forbid SC executions, but just flag them. Thus we
implement a procedure to flag non-SC executions (in our cat file):

procedure sc-flag() =
let sc-order = (po | com)+
flag ~acyclic sc-order as non-sc

end

call sc-flag()

that is we flag, with the name non-sc, all the executions where there is a cycle
in the union of the program order po and the communications com. Note that ∼

is the negation. Finally, select the “positive executions” display option.

4.1 SC per Location

The first principle is called SC per location. It means that if you analyse your
program through the prism of a sole memory location at a time, everything looks
as if on SC. Formally, this also means that non-relational analyses are sound for
free under consistency models that respect SC per location [4].

110 J. Alglave

Now, let’s look at a bunch of litmus tests.

coWW

Bell coWW
{
x = 0;
}
P0 ;
w[] x 1 ;
w[] x 2 ;

exists (x=1)

In the coWW test, we have only one thread P0, which does two writes of
memory location x in program order. The first write in program order writes
the value 1 to x; the second writes 2. We’re asking at the end if it is possible to
have the value 1 in x at the end, which means that the write of value 2 has hit
the memory before the write of value 1.

Recall that we have defined the coherence order precisely for that purpose:
describing the order in which writes to a given memory location hit that location.

Now let’s run herd on our cat file and the test coWW (find coww.litmus in
the litmus test drop box). We get the following histogram:

Test coWW Allowed
States 2
x=1;
x=2;
Ok

On the execution side, we get the execution that leads to the final state we’ve
asked about in our litmus test; note that it’s a non-SC execution (see the line
Flag non-sc in the histogram above) because of its cycle in the union of po
and com:

coWW

P0

a: Wx=1

b: Wx=2

poco

If you select the “all executions” option, you’ll see two executions; one where
the coherence order co follows the program order po, and the one above, where
the coherence order co is in the opposite direction as po.

Modeling of Architectures 111

coRW1

Bell coRW1
{
x = 0;
}
P0 ;
r[] r1 x ;
w[] x 1 ;

exists (0:r1=1)

In the coRW1 test, we have only one thread P0, which does a read and a write
of memory location x in program order. The read access reads x and places the
result into register r1. The write access writes the value 1 to x. We’re asking at
the end if it is possible to have the value 1 in r1 at the end, which means that
the read takes its value from the po-later write.

Recall that we have defined the read-from precisely for that purpose: describ-
ing who reads from where; in this case if the read of x can take its value from
the po-later write of value 1.

Now let’s run herd on our cat file and the test coRW1 (find the file corw1.
litmus in the litmus test dropbox). We get the following histogram:

Test coRW1 Allowed
States 2
0:r1=0;
0:r1=1;
Ok

On the execution side, we get the execution that leads to the final state we’ve
asked about in our litmus test; note that it’s a non-SC execution (see the Flag
non-sc line just above) because of its cycle in the union of po and com:

coRW1

P0

a: Rx=1

b: Wx=1

rfpo

If we select the “all executions” display option, we get two executions; one
where the read takes its value from the initial state, and the one above, where
the read takes its value from the po-later write of value 1.

112 J. Alglave

coRW2

Bell coRW2
{
x = 0;
}
P0 | P1 ;
r[] r1 x | w[] x 2 ;
w[] x 1 | ;

exists (0:r1=2 /\ x=2)

In the coRW2 test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 is the same as in the
previous test coRW1, i.e. does a read and a write of memory location x in program
order. The read access reads x and places the result into register r1. The write
access writes the value 1 to x. P1 writes the value 2 into memory location x.
We’re asking at the end if it is possible to have the value 2 in r1 and in x at the
end, which means that the read takes its value from the write of x on P1 (r1=2)
and that the write by P1 hits the memory after the write by P0 (x=2).

Now let’s run herd on our cat file and the test coRW2 (find corw2.litmus in
the litmus test dropbox).

On the execution side, we get the following execution; note that it’s a non-SC
execution because of its cycle in the union of po and com:

coRW2

P0

a: Rx=2

b: Wx=1

c: Wx=2

P1

po

co

rf

If we select the “all executions” display option, we get six executions, the
third one being the one leading to the result we’re asking about in the test. In
this execution, the read of x by P0 takes its value from the write by P1 (note the
read-from rf arrow between them), and the write by P0 hits the memory before
the write by P1 (note the coherence arrow co between them).

coWR

Bell coWR
{
x = 0;
}
P0 | P1 ;
w[] x 1 | w[] x 2 ;
r[] r1 x | ;

exists (0:r1=2 /\ x=1)

Modeling of Architectures 113

In the coWR test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 writes 1 into memory
location x, and reads x, placing the result into register r1. P1 writes 1 into x. At
the end we’re asking if it’s possible to have the value 2 into r1, i.e. the read by
P0 reads from the write by P1, and to have the value 1 in x, i.e. the write of P0
hits the memory after the write of P1.

Now let’s run herd on our cat file and the test coWR (file cowr.litmus). On
the execution side, we get the following non-SC execution:

coWR

P0

a: Wx=1

b: Rx=2

P1

c: Wx=2

pofr

corf

If we select the “all executions” option, we get six executions, the fourth
one being the one leading to the result we’re asking about in the test. In this
execution, the read of x by P0 takes its value from the write by P1 (note the
read-from rf arrow between them), and the write by P0 hits the memory after
the write by P1 (note the coherence arrow co between them).

Recall that we have defined the from-read precisely for that purpose: starting
from a read such as the one by P0, pointing to all the writes (such as the one
by P0) that overwrite the value read (given by the write on P1). Thus we have
a from-read arrow fr between the read by P0 and the po-preceding write by P0.

coRR

Bell coRR
{
x = 0;
}
P0 | P1 ;
r[] r1 x | w[] x 1 ;
r[] r2 x | ;

exists (0:r1=1 /\ 0:r2=0)

In the coRR test, we have two threads P0 and P1, communicating via the
shared memory location x which is initialised to 0. P0 reads x twice, placing
the results into r1 and r2; P1 writes 1 to x. At the end we’re asking if it’s
possible for r1 to hold the value 1, i.e. after having read from P1, and for r2 to
hold the value 0, i.e. after having read from the initial state.

Now let’s run herd on our cat file and the test coRR (file corr.litmus).
On the execution side, we get the following execution; note that it’s a non-SC

execution because of its cycle in program order and communications:

114 J. Alglave

coRR

P0

a: Rx=1

b: Rx=0

c: Wx=1

P1

po
fr

rf

If we select the “all executions” option, we get four executions, the third
one being the one leading to the result we’re asking about in the test. In this
execution, the first read by P0 reads from the write on P1 (note the read-from
arrow rf between them), and the second read by P0 reads from the initial state.

Recall that we have defined the from-read precisely for that purpose: starting
from a read such as the second one by P0, pointing to all the writes (such as the
one by P1) that overwrite the value read (given by the initial write of x). Thus
we have a from-read arrow fr between the read by P0 and the write by P1.

Forbidding these Idioms. Let’s look at all the executions that we have flagged
to be non-SC: observe that they all have a similar shape, in which the program
order contradicts the communication relations. More precisely, because all of our
tests use one memory location only, it’s the program order restricted to the same
location that contradicts the communication relations.

Let’s define a new notion po-loc, i.e. the program order restricted to both
extremities having the same location; in cat speak (a good place to put this
definition would be in the cat file, just next to the definition of com):

let po-loc = po & loc

where the primitive loc gathers all pairs of read and write events that have the
same location.

Now, let’s require for po-loc to not contradict our communication relations
(recall we’ve built this notion before, into the relation com), within a procedure
sc-per-location:

procedure sc-per-location() =
acyclic po-loc | com

end

Don’t forget to call the procedure sc-per-location in your cat file:

call sc-per-location()

Now let’s re-run all of our tests, and observe that we do not have the execu-
tions that we’ve flagged anymore!

Exercise: SC per Location with Load-Load Hazard. Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;.

How do you think we can build a check that forbids all tests coWW, coRW1,
coRW2 and coWR, but allows the test coRR?

Modeling of Architectures 115

4.2 No Thin Air

The second principle is called no thin air. Intuitively, this principle forbids
scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:

Bell LB
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

In the LB test, we have two threads P0 and P1. P0 reads x and places the
result into register r1, then writes 1 to y. P1 reads y and places the result into
register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
po-later writes. This is perfectly well possible on ARM or Nvidia machines for
example [3,5], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
in the litmus test drop box); we get the following histogram:

Test LB Allowed
States 4
0:r1=0; 1:r2=0;
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
Ok

The execution corresponding to the situation we asked about in the test is
as follows; note that it’s a non-SC execution because of its cycle in union of
program order and communications:

lb

P0

a: Rx=1

b: Wy=1

c: Ry=1

P1

d: Wx=1

po
rf rf

po

Now, we can place something between the read and the write on each thread
to prevent their reordering: we can use dependencies, typically address, data, or
control dependencies. Note that dependency relations always start with a read.

116 J. Alglave

Interlude: Implementing Dependencies. In this lecture, we’ll abstract away
from actual ways of implementing dependencies. But to give an idea of what I
mean, here’s an example of data dependency. Consider the following variant
of LB:

Bell LB+datas
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r1 y ;
xor r2 r1 r1 | xor r2 r1 r1 ;
add r3 r2 1 | add r3 r2 1 ;
w[] y r3 | w[] x r3 ;
exists (0:r1 = 1 /\ 1:r2 = 1)

Observe how we use operations on registers between the read and write
on each thread. More precisely on P0, we read location x and place the result
into register r1. Then we xor the value in r1 with itself, and place the result
into register r2 (of course the result is always 0, but that’s okay). Then we add 1
to the value in r2, and place the result (i.e. 1) into r3. Finally we write the value
in r3 into location y. This manipulation of registers is enough to implement a
data dependency from the read of x to the write of y.

Abstracting Dependencies. For this lecture however, we’re going to model
dependencies as fences. This means that the dependencies that we are manip-
ulating here are stronger than in the wild. However the definitions and axioms
we’re defining should hold with a proper notion of dependencies.

Let’s do it! Let’s open our bell file, and create a tag dep for dependencies;
we can for example declare a Fences type:

enum Fences =’dep

Now in our litmus test we can use dependencies (note the f[dep] instructions
in between the read and the write on each thread):

Bell LB+dep+dep
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 y | r[] r2 x ;
f[dep] | f[dep] ;
w[] x 1 | w[] y 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

Modeling of Architectures 117

Run it on your current cat file and observe that there are non-SC executions.
Finally we have to give a semantics to our dependencies. The right place to

do this is your cat file. Let’s look at the execution of the LB litmus test that
we give above. We can see a cycle in the union of the program order po and
the read-froms rf between threads. We want to build a check such that having
dependency arrows instead of program order arrows forbids this execution.

So we need to implement a few concepts in cat speak; let’s build the relations
yielded by our special dependency events; recall that herd has a standard library
in which there is a function called fencerel. This function builds, given a set of
events (e.g. F), the relation gathering all pairs of events in program order that
have such an event (e.g. f(dep)) between them. Thus using fencerel we can
build the relation corresponding to dependencies (to put in your bell file):

let deps = fencerel(F & Dep) & (R * _)
show deps

Note how we restrict our dependency relation deps to pairs of events that
start with a read event (which belongs to the predefined set R). Also, we add
show deps to make sure that herd will display this new relation.

Now let’s go back to the execution we want to forbid. By the look of it, we
want to build a check such that a cycle in the union of the dependencies deps
and the external read-froms rfe is forbidden. Let’s call this union happens-before
and write it hb for example. In cat speak (to put in your cat file):

let hb = (deps | rfe)+

Note that we use the transitive closure ()+ to make hb a transitive relation.
We don’t really need to for now, especially since we’re going to require hb to be
acyclic in a minute, but it’s going to be important later.

Now let’s require, in our cat file, for the happens-before relation to be acyclic
to forbid the execution above; in cat speak:

procedure no-thin-air() =
acyclic hb

end

Don’t forget to call this procedure in your cat file:

call no-thin-air()

Now run lb+dep+dep.litmus on your current cat file and observe that there
is no non-SC execution anymore.

Exercise: Implementing Address Dependencies. How do you think we
can implement address dependencies? By this I mean that I’d like to see a
sequence of instructions which, placed between two reads, implement e.g. an
address dependency.

118 J. Alglave

4.3 Propagation

The third principle is called propagation. Intuitively, this principle gives the
semantics of fences, which are special instructions that ensure that two writes
of distinct locations separated by a fence have to propagate to other threads in
the order in which they appear in the program.

One representative example of this principle is the following:

Bell 2+2w
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 2 | w[] y 2 ;
w[] y 1 | w[] x 1 ;

exists (x=2 /\ y=2)

The 2+2w test has two threads P0 and P1 which both write to the shared
memory locations x and y. P0 writes 2 to x and 1 to y, when P2 writes 2 to y
and 1 to x. In the end we’re asking if it’s possible to have both locations holding
the value 2, which could be explained by the write-write pairs being reordered
on both threads. This corresponds to the following execution, which is non-SC:

2+2w

P0

a: Wx=2

b: Wy=1

c: Wy=2

P1

d: Wx=1

po

co co

po

Try running herd on 2+2w.litmus under our current cat file and observe
that there are (flagged) non-SC executions.

Now, placing a fence between each write-write pair should forbid this cycle.
Let’s do it! Let’s open our bell file, and update our fences. Remember that we
had defined an annotation ’dep for them previously:

enum Fences =’dep

Here we additionally give ourselves lightweight fences ’lw (there will be
heavyweight ones later on):

enum Fences =’dep ||’lw

Now, placing a lightweight fence between each write-write pair of the 2+2w
test (leading to 2+2w+lwfs) should forbid this cycle.

To do so, we first need to define a relation flw, that contains all the possible
pairs of events in program order separated by a lightweight fence; recall that we
can use the fencerel definition. A good place to do so is our bell file:

Modeling of Architectures 119

let flw = fencerel(F & Lw)
show flw

Let’s also create a fences relation to gather all actual fences (as opposed to
dependencies); for now we only have lightweight fences, but we’ll have heavy-
weight fences in a moment:

let fences = flw

Now in our cat file we can define the propagation order as the order induced
by lightweight fences:

let prop = fences

In cat speak, we can now forbid the 2+2w cycle by the following procedure
(to put in your cat file):

procedure propagation() =
acyclic prop | co

end

And don’t forget to call the procedure (in your cat file):

call propagation()

Try running herd on 2+2w.litmus on this new cat file and observe that there
is no non-SC execution anymore.

4.4 Observation

The fourth principle is called observation. Intuitively, this principle means that
two reads of distinct locations have to read writes in the order in which these
writes propagate. One representative example of this principle is the message
passing example we’ve seen at the beginning:

Bell MP
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

As we’ve seen before, the test as is can yield the result where P1 sees the
new flag (r1=1), but reads the stale data (r2=0). There are several architectural
reasons for this to happen, amongst which:

120 J. Alglave

1. The two reads on P1 could be reordered—this could happen for example on
ARM, IBM Power, or Nvidia machines [3,5];

2. The two writes on P0 could be reordered—this could happen for example on
ARM, IBM Power, or Nvidia machines [3,5];

3. The two writes could swap places on their way to the reading thread P1, the
write of y by P0 hitting P1 before the write of x does—this could happen for
example on ARM or IBM Power machines [5].

We need several devices to protect against each of these items:

1. To protect against the reordering of reads on P1, one typically uses depen-
dencies such as the ones we’ve defined to deal with LB;

2. To protect against the writes being reordered on their thread or on their way
to the reading thread, we need fences.

Now in our litmus test we can use for example:

1. A data dependency to prevent the reordering of reads on P1 (note the f(dep)
events in between the reads in the litmus test below);

2. A lightweight fence to prevent the write scenarios we mentioned earlier (note
the f(lw) between the writes in the litmus test below).

This corresponds to the following test:

Bell MP+lw+dep
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
f[lw] | f[dep] ;
w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

Finally we have to define our observation principle. To do so, let’s first go
back to the LB litmus test: to forbid the non-SC execution, we chose earlier to
use dependencies between the read and write on each thread. Equally we could
have chosen to place a fence on each thread, like so:

Bell LB+lws
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
f[lw] | f[lw] ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

Modeling of Architectures 121

or to mix and match fences and dependencies:

Bell LB+dep+lw
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
f[dep] | f[lw] ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

This means that, in our cat file, we can extend our happens-before relation
hb to include our fences, as follows; hb was:

let hb = (deps | rfe)+

and now becomes:

let hb = (deps | fences | rfe)+

The no-thin-air and observation checks can remain unchanged, and now
we forbid tests like LB+lws or LB+dep+lw above.

Now, let’s look at the execution of the MP litmus test that we want to forbid
(note that it is non-SC):

mp

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Rx=0

po
rf

po
fr

Intuitively, we want to make sure that if the two writes a and b by P0 are
separated by a lightweight fence, they cannot be reordered, and propagate to the
reading thread P1 in the same order as they appear on P0. Moreover we want to
ensure that the two reads c and d by P1 cannot be reordered when separated by
a dependency.

Reading off the drawing very plainly, we want to forbid executions where we
take one step via a lightweight fence, then one step of read-from, then one step
of dependency, then one step of from-read and end up where we started.

Now, observe that there is a hb path from the write a by P0 to the read d by
P1: (a, b) ∈ fences, (b, c) ∈ rf and (c, d) ∈ deps. It is, however, a special path in
hb, as its first step consists of a fence step. This special subset of hb is in fact the
propagation order. Remember that we had defined it in our cat file, as follows:

let prop = fences

122 J. Alglave

which is not quite right anymore, in the light of the MP example. So let’s refine
our propagation order as follows (to put in your cat file):

let prop = fences;hb*

Thus the propagation order prop starts off with a step of fence, then can
continue with a happens-before chain of any length (even zero, as indicated by the
reflexive and transitive closure *), through external read-froms, dependencies,
and other fences. This is what is sometimes called B-cumulativity of a fence [5]:
when the propagation order induced by a fence carries over to chains of happens-
before.

We can now phrase our observation axiom in terms of the propagation
order (to put in your cat file):

procedure observation() =
irreflexive fre;prop

end

where fre is the external from-read, i.e. a from-read arrow between two events
that belong to different threads. In cat speak, we can define it using the prede-
fined ext relation that gathers pairs of events that belong to different threads,
such as the read d by P1 and the write a by P0. A good place to put the definition
of fre is in your cat file, for example next to the definition of rfe:

let fre = fr & ext

Don’t forget to call the procedure observation at the end of your cat file:

call observation()

Running this new cat file on the tests mp+lw+dep.litmus, lb+lws.litmus
and lb+dep+lw.litmus should forbid their non-SC executions.

Observe that the observation principle also forbids distributed variants of
the message passing example, such as ISA2+lw+dep+dep:

Bell ISA2+lw+dep+dep
{
x = 0;
y = 0;
}
P0 | P1 | P2 ;
w[] x 1 | r[] r1 y | r[] r2 z ;
f[lw] | f[dep] | f[dep] ;
w[] y 1 | w[] z 1 | r[] r3 x ;

exists (1:r1 = 1 /\ 2:r2 = 1 /\ 2:r3=0)

The test ISA2+lw+dep+dep is similar to the message passing one (MP), in
that we want to ensure that the two writes by the first thread P0 propagate
in the order in which they’ve been written, to forbid the scenario where, even if
the flag y has been passed over to P1, i.e. r1=1, the read of x on P2 reads from

Modeling of Architectures 123

the initial state instead of from the update of x by P0. This corresponds to the
following non-SC execution:

isa2

P0

a: Wx=1

b: Wy=1

c: Ry=1

P1

d: Wz=1

e: Rz=1

P2

f: Rx=0

po
rf

po
rf

fr po

The difference with MP is that the propagation is over several threads: here
the write of y by P0 propagates to P1, whereas the write of x by P0 propagates
to P2. Because the threads P1 and P2 communicate (via z), and because the
accesses on both P1 and P2 are ordered via dependencies, we have a happens-
before chain from the write of y by P0 to the read of x by P2. This is enough
to create a propagation order arrow from the write of x by P0 to the read of x
by P2, which therefore contradicts the execution where the read of x would read
from the initial state.

The observation principle should also forbid WRC+lw+dep:

Bell WRC+lw+dep
{
x = 0;
y = 0;
}
P0 | P1 | P2 ;
w[] x 1 | r[] r1 x | r[] r2 y ;

| f[lw] | f[dep] ;
| w[] y 1 | r[] r3 x ;

exists (1:r1=1 /\ 2:r2=1 /\ 2:r3=0)

The difference with MP is that the two writes that we want to ensure propagate
in the right order are on different threads: the write of the data x is made by
P0, whereas the write of the flag y is made by P1. We want to ensure that if the
reading thread P2 takes the flag (so that r2=1), then the update of the data x
has reached P2, so that the read of x on P2 cannot read from the initial state
anymore. This would correspond to the following non-SC execution:

wrc

P0

a: Wx=1 b: Rx=1

P1

c: Wy=1

d: Ry=1

P2

e: Rx=0

rf
po

rf

fr po

Our definition of propagation order does not forbid this yet; we have to add
a new notion to our cat file, namely A-cumulativity. We say that a fence is

124 J. Alglave

A-cumulative when it orders two writes on different threads P0 and P1 (just like
the write a of x by P0 and the write c of y by P1), such that P1 reads the write
by P0 then does the fence, then does the second write. Looking at the execution
above, it means that an A-cumulative fence placed between b and c should create
an arrow between a and c. In cat speak:

let A-cumul = rfe;fences

Now let’s update our propagation order to include A-cumulativity (to put in
your cat file):

let prop = (fences | A-cumul);hb*

Observe that WRC+lw+dep is now forbidden.

Exercise: Distributed. 2+2w Consider the following litmus test, which is essen-
tially a distributed variant of 2+2w:

Bell w+rw+ww
{
x = 0;
y = 0;
}
P0 | P1 | P2 ;
w[] x 2 | r[] r1 x | w[] y 2 ;

| w[] y 1 | w[] x 1 ;
exists (1:r1=2 /\ x=2 /\ y=2)

Which fences should we use to forbid the final state? Why? Where should
we put them?

4.5 Restoring SC with Heavyweight Fences

The fifth principle explains how to regain SC. To do so, we need to use heavy-
weight fences. We can extend our fences as follows (in our bell file):

enum Fences =’dep ||’lw ||’hw

Now consider the store buffering litmus test that we’ve seen earlier:

Bell SB
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | w[] y 1 ;
r[] r1 y | r[] r2 x ;

exists (0:r1 = 0 /\ 1:r2 = 0)

Modeling of Architectures 125

Putting a heavyweight fence between the write-read pairs on each thread
should forbid the scenario where both reads take their value from the initial
state. More generally, putting a heavyweight fence between any pair of events in
program order should restore SC.

Recall that SC can be defined as the acyclicity of the union of program order
po and the communication relations com. Thus to restore SC with heavyweight
fences, we shouldn’t allow any cycle in the union of the relation fhw, induced by
the heavyweight fences, and the communications.

Let’s define fhw in our bell file:

let fhw = fencerel(F & Hw)
show fhw

And in our cat file, let’s implement our fifth principle:

procedure restoring-sc() =
acyclic fhw | com

end

call restoring-sc()

Observe that SB+hws is now forbidden; note however that SB+lws is still
allowed, as one really needs heavyweight fences to restore SC. The lightweight
fences only contribute to building the propagation order.

Now, heavyweight fences should also forbid the non-SC executions of LB and
MP. This means that we should add them to our fences relation, so that they
naturally get included in the definitions of hb and prop, thus contribute to the
no-thin-air and observation checks. In our cat file, we had:

let fences = flw

and now we should have:

let fences = flw | fhw

Think of saving these bell and cat files, for example under the names
tiger.bell and tiger.cat.

Exercise: Independent Reads of Independent Writes. Consider the follo-
wing litmus test, known as IRIW:

Bell IRIW
{
x = 0;
y = 0;
}
P0 | P1 | P2 | P3 ;
w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| r[] r2 y | | r[] r4 x ;
exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

126 J. Alglave

Which fences should we use to forbid the final state? Why? Where should
we put them?

Exercise: SC and TSO Re-Make Re-Model. [9] Remember that we’ve
defined SC and (not quite) TSO earlier in our cat file, as follows:

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

procedure almost-tso() =
let ppo = po \ W*R
let tso-order = ppo | rfe | co | fr
acyclic tso-order

end

Try to reformulate both models in terms of the five principles we’ve just
learnt: sc per location, no thin air, propagation, observation and
restoring sc. The SC model you’ll end up with will be equivalent to the
one above. The TSO model you’ll end up with will be TSO proper!

5 Let’s Herd Our Second Big Cat: A Jaguar [13]

Today we’ll learn how to build a model that is similar in spirit to Nvidia GPUs.
This model differs from the previous one because GPUs have scopes. Start with
fresh bell and cat files (keep the title and include).

Intuitively, a scope is a set of threads. Here we’ll consider three different
scopes: cta, gpu and system.

5.1 Scopes

Scopes are organised hierarchically: cta is narrower than gpu, and gpu is nar-
rower than system, as shown in Fig. 2.

gpu gpu
system

cta cta

thread thread threadthread

Fig. 2. Concurrency hierarchy

Modeling of Architectures 127

Building the concurrency hierarchy. To build this concurrency hierarchy,
the ideal place is our bell file; we can simply enumerate these three scopes as
follows:

enum Scopes =’cta ||’gpu ||’system

We also need to specify the hierarchy, with a function called narrower
(to put in your bell file):

let narrower(s) = match s with
||’system ->’gpu
||’gpu ->’cta

end

The dual function is called wider (to put in your bell file):

let wider(s) = match s with
||’gpu ->’system
||’cta ->’gpu

end

Scope Tree. Litmus tests also need changing; in particular we need to say which
scope a given thread belongs to. Let’s go back to the message passing example:

Bell MP
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

Let’s implement a variant where P0 and P1 are each on a different cta, but
in the same gpu, hence in the same system:

Bell MP-mit-scopes
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

128 J. Alglave

Note the addition of the scope tree scopes: (system (gpu (cta P0) (cta
P1))) that specifies where the threads P0 and P1 are.

Scope Annotations. Now, we need to say that our instructions can bear these
scope annotations, indicating at which level of the concurrency hierarchy they
can operate.

In this model, we’d like our fences to have different effects depending on
which scope they apply to. To implement that, we can add scope annotations to
our fence events (that belong to the predefined set F). The right place to do so
is in our bell file:

events F[Scopes]

We will need to be able to say, given an instruction or an event of a litmus test,
which scope it belongs to. There are two different notions of scoping: syntactic
and execution scopes (sometimes called static and dynamic [3,7]).

Syntactic Scope. The herd tool provides the primitive tag2events which, given
a tag such as the scope ones ’cta,’gpu or ’system, returns all the events that
bear this tag. Thus tag2events(’gpu) returns the set of all events annotated
with ’gpu.

Execution Scope. The herd tool also provides the primitive tag2scope which,
given a tag, returns the relation that links events that are executed within the
same scope level as tag. Consider our MP example, and let’s build tag2scope
(’cta): for this particular instance of MP, it will contain eight pairs. The first
pair gathers the two writes on P0, because the scope tree (system (gpu (cta
P0) (cta P1))) specifies that P0 is in its own cta. Similarly, the second pair
will gather the two reads on P1. The set tag2scope(’cta) also contains the
symmetric pairs to the ones we’ve just studied, that leads to 4 pairs, to which it
adds the four identity pairs, where each event is paired with itself. Note that not
all pairs are shown in diagrams, as most relations undergo a transitivity removal
procedure before being printed.

Building tag2scope(’gpu) will gather all the possible pairs of events, because
the scope tree specifies that P0 and P1 belong to the same gpu; idem for tag2scope
(’system).

5.2 RMO per Scope

So now, experimentally Nvidia GPUs implement RMO per scope [3]. Let’s study
RMO first, then the scopes.

Relaxed Memory Order, or RMO, is a Sparc model that allows the reordering
of any pair of read or write events in program order [1,2,11]. One can restore
these orderings using dependencies or fences. We’ve defined the dependencies
deps earlier. We have defined fences as well, but for today we’ll define our fences
locally.

Modeling of Architectures 129

Let’s write an rmo procedure in our cat file (note that you need the definitions
of rfe and fr):

procedure rmo() =
let rmo-fences = fencerel(F)
let rmo-order = deps | rmo-fences | rfe | co | fr
acyclic rmo-order

end

What we do here is the following: we define a relation fence using our
fencerel primitive applied to the set of fence events F. Then we define a relation
that we call rmo-order, which is the union of the dependencies deps, the fence
relation rmo-fences, the external read-from rfe, the coherence order co, and
the from-read fr.

One can show (see e.g. [1,2]) that requiring the acyclicity of this relation
rmo-order is enough to implement RMO.

Exercise: Difference Between RMO and Power or ARM. What’s a test
that distinguishes RMO from Power or ARM (as we’ve defined them previously)?
More precisely, what’s a test that’s forbidden on RMO but allowed on Power or
ARM?

Scope Hierarchy. Now, we need to express the fact that each level of our scope
hierarchy (cta, gpu, system) will behave like RMO. To do so, we can modify
our rmo procedure to take scopes into account (to put in your cat file):

procedure rmo() =
let rmo-fences(t) = fencerel(F & tag2events(t))
let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)
forall t in Scopes do

acyclic rmo-order(t)
end

end

By contrast to our scope-less rmo procedure, here our local relation fence
takes a scope annotation t as an argument, and builds the relation induced
by fences (which belong to F) that bear the syntactic annotation t. Then the
relation rmo-order uses this scoped fence relation; additionally, we impose that
the extremities of the pairs gathered in rmo-order belong to the same scope
instance of level t. Finally we require the acyclicity of the relation rmo-order
for each level of the concurrency hierarchy, i.e. for each t in the set Scopes.

Don’t forget to call the procedure rmo from your cat file:

call rmo()

Now try to run mp-mit-scopes.litmus and observe that it is allowed; try
again with the following test:

130 J. Alglave

Bell MP-mit-scopes+fgpus
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
f[gpu] | f[gpu] ;
w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

and observe that it is forbidden.
Now think of saving your bell and cat files, for example under the names

jaguar.bell and jaguar.cat.

Exercise: Implementing Scope Inclusion. How would you implement an
RMO per scope model as above, but where the fences have an effect not only
at their scopes, but also at narrower scopes? That is, the fence for system also
has an effect at gpu and cta level for example? This procedure should forbid
mp-mit-scopes+fgpu+fsys:

Bell MP-mit-scopes+fgpu+fsys
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
f[gpu] | f[sys] ;
w[] y 1 | r[] r2 x ;

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

but not mp-mit-scopes+fcta+fgpu:

Bell MP-mit-scopes+fcta+fgpu
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
f[cta] | f[gpu] ;
w[] y 1 | r[] r2 x ;

Modeling of Architectures 131

scopes: (system (gpu (cta P0) (cta P1)))

exists (1:r1 = 1 /\ 1:r2 = 0)

6 Let’s Herd Our Third Big Cat: A Panther [15]

Today we’ll learn how to build a model that is inspired by C++. Start with fresh
bell and cat files (keep the title and include).

This model is different from the previous ones, in particular because it doesn’t
simply reject executions based on the presence of certain cycles. It also looks for
data races, and declares an execution that has a data race to be undefined.

6.1 Plain and Special Events

Let’s first build our bell file. We’re going to have two different flavours of events:
plain ones and special ones:

enum Flavours =’plain ||’special

events R[Flavours]
events W[Flavours]

6.2 Release-Acquire Semantics

Now let’s focus on our special events. The model we’re building is such that syn-
chronisation happens through special events, more precisely, when two threads
communicate (i.e. one writes to a location that is read by the other).

Thus the read-from relation over special events is quite central to this model;
let’s add this notion to our cat file, as a relation special-rf (for rf over special
events):

let special-rf = rfe & (Special * Special)

Now we need to implement the notion that when two threads communicate
in an atomic way, they synchronise. Let’s build a happens before relation hb:

let hb = (po | special-rf)+

Here we say that an event e1 happens before another one e2 (i.e. (e1, e2) ∈ hb)
when e1 is in program order before e2, or e2 reads from e1 and they’re both
special, or any chain of such steps (note how we use the transitive closure).

Note that we didn’t say anything specific about fences in our bell file; that’s
because fences won’t play much of a role in this model so that we can focus on the
special accesses instead. Therefore today in our happens before relation, we’re
taking all of the program order where we had previously taken only dependencies
and fences. On the other hand we’re only using the special read-from, whereas
previously we used all of rf.

132 J. Alglave

Now to make our happens-before relation an order that we can build on, we
should implement a no thin air check. We can put the following procedure in
our cat file:

procedure no-thin-air() =
acyclic hb

end

Now using this happens-before relation we can forbid message passing sce-
narios from going wrong; recall MP:

Bell MP
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

For this test to make sense in our current setup, where reads and writes can
be plain or special, we need to annotate our events as being plain

Bell MP-plain
{
x = 0;
y = 0;
}
P0 | P1 ;
w[plain] x 1 | r[plain] r1 y ;
w[plain] y 1 | r[plain] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

If we make the communication over the flag y special, like so:

Bell MP-special
{
x = 0;
y = 0;
}
P0 | P1 ;
w[plain] x 1 | r[special] r1 y ;
w[special] y 1 | r[plain] r2 x ;

exists (1:r1 = 1 /\ 1:r2 = 0)

then we create a happens-before order from the update of the data x (i.e. the
write of x on P0) and the read of x on P1.

Modeling of Architectures 133

Now, to forbid the final state of this variant of MP, we need to build an
observation check (to put in your cat file):

procedure observation() =
irreflexive fre;hb

end

6.3 Validity

Now let’s gather our checks into a single procedure (to put in your cat file).
Note that we added a call to sc-per-location cat files, just because:

procedure valid() =
call sc-per-location()
call no-thin-air()
call observation()

end

Of course for this to work you need to add the definition of the sc-per-
location procedure, which you can copy from your previous cat files.

Don’t forget to call your valid procedure (you need fre as before):

call valid()

Now try to run mp-plain.litmus under your new cat file and observe it is
allowed; try it out on mp-special.litmus and observe it is forbidden.

6.4 Data Races and Undefined Executions

Now we want to be able to distinguish executions that have data races, and flag
them as being undefined. Let’s define data races (in our cat file):

let at-least-one(k) = (k * _ | _ * k)
let conflict = at-least-one(W) & loc & ext
let race =

let r = conflict & ~(hb | hb^-1)
in r \ ((I * M) | (M * I) | (Special * Special))

show race

Thus we define a race as a pair of accesses that:

• conflict (which implies that the accesses are distinct, as they must be on
different threads when they conflict), and

• are not ordered by hb or hb^-1 (i.e. take a step of hb backwards), and
• none of them is an initialisation write (i.e. belong to the set I), and
• are not both special.

134 J. Alglave

A conflict is a pair of accesses, such that at least one is a write (i.e. belongs to
W), both accesses are relative to the same memory location (i.e. they belong to
loc), and they belong to different threads (i.e. they belong to ext).

Now we can flag racy executions as undefined:

procedure race-free() =
flag ~empty race as undefined

end

and define our executions to be both valid and race-free:

procedure execution() =
call valid()
call race-free()

end

Don’t forget to call this procedure in your cat file:

call execution()

and to comment out our previous standalone call to the valid procedure because
it appears in our execution procedure now.

Now try out our new cat file on MP-special, and observe that the tool finds
it is racy. To fix this issue, we can modify our example like so (beq is a branch
instruction; below it branches to END if r1 is equal to 0):

Bell MP-special+branch
{
x = 0;
y = 0;
}
P0 | P1 ;
w[plain] x 1 | r[special] r1 y ;

| beq r1, 0, END ;
w[special] y 1 | r[plain] r2 x ;

| END: ;
exists (1:r1 = 1 /\ 1:r2 = 0)

This is because the branch on P1 here ensures that the read of x on P1 takes
its value only after the flag y has been read by P1. The fact that you need a
branch also shows po is a dynamic notion, otherwise hb = (po | rf-special)+
would catch the test without the branch, and not find it racy.

Exercise: Release Sequence. In C++ there’s a notion of release sequence,
which says that synchronisation does not just happen via special-rf, i.e. from
the special write of a special read-from to the corresponding special read. Rather,
it can happen from any write of the same location and on the same thread that
precedes (in program order) a special write.

How would you modify our model to include this notion?

Modeling of Architectures 135

7 Credits

The cat language is mostly Luc Maranget’s and my work, the five principles as
well [5]. The shiny web interface is thanks to Tyler Sorensen. The bell subset has
benefited from Tyler’s contribution. Tyler has computed the three pink ponies
at the beginning of this document.

For more ponies: https://youtu.be/3-Y8xLsqywY.
For more bell and cat files: virginia.cs.ucl.ac.uk/herd-web. In particular:

• IBM Power: http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&lang
uage=ppc&cat=ppc

• ARM:http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=
arm&cat=arm

• C++: http://virginia.cs.ucl.ac.uk/herd-web/?book=c11popl15
• Nvidia PTX: http://virginia.cs.ucl.ac.uk/herd-web/?book=ptx&language=

ptx&cat=ptx.

With thanks to the supersonic beta-testers: Patrick Cousot, Matthew Hague,
Luc Maranget, Tyler Sorensen, Michael Tautschnig and Jules Villard. Many
thanks also to Tony Tye for his careful reading.

A Answers to Exercises

A.1 First Step in Herding Cats

Exercise: what do you think?. Do you think such an execution is possible?
Yes! On IBM Power or ARM machines for example [5].

https://youtu.be/3-Y8xLsqywY
http://virginia.cs.ucl.ac.uk/herd-web
http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=ppc&cat=ppc
http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=ppc&cat=ppc
http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=arm&cat=arm
http://virginia.cs.ucl.ac.uk/herd-web/?book=herding-cats&language=arm&cat=arm
http://virginia.cs.ucl.ac.uk/herd-web/?book=c11popl15
http://virginia.cs.ucl.ac.uk/herd-web/?book=ptx&language=ptx&cat=ptx
http://virginia.cs.ucl.ac.uk/herd-web/?book=ptx&language=ptx&cat=ptx

136 J. Alglave

A.2 First Big Cat: Tiger

Exercise: SC per Location with Load-Load Hazard. Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;. How do you think we can build a check that forbids all tests
coWW, coRW1, coRW2 and coWR, but allows the test coRR?

In cat speak:

let po-loc-llh = po-loc \ R*R
acyclic po-loc-llh | com as sc-per-location-llh

Intuitively what we’re doing here is removing the read-read pairs (R*R) from
po-loc to build the po-loc-llh relation, then enforcing that this new relation
is compatible with the communication relations com.

Let’s run herd on coWW, coRW1, coRW2, and coWR, and observe that they are
still forbidden. Now let’s run it on coRR and observe that it is allowed. We’ve
built a check that enforces SC per location but allows for load-load hazards!

Exercise: Implementing Address Dependencies. How do you think we
can implement address dependencies? By this I mean that I’d like to see a
sequence of instructions which, placed between two reads, implement e.g. an
address dependency.

Consider the following variant of MP; the reading thread P1 has an address
dependency between its two reads:

Bell MP+lw+addr
{
x = 0;
y = 0;
}
P0 | P1 ;
w[] x 1 | r[] r1 y ;
f(lw) | xor r3 r1 r1 ;
w[] y 1 | add r4 x r3 ;

| r[] r2 r4 ;
exists (1:r1 = 1 /\ 1:r2 = 0)

This dependency, in conjunction with the lightweight fence on P0, should be
enough to forbid the non-SC execution of MP.

Exercise: Distributed. 2+2w Consider the following litmus test, which is essen-
tially a distributed variant of 2+2w:

Bell w+rw+ww
{
x = 0;
y = 0;
}

Modeling of Architectures 137

P0 | P1 | P2 ;
w[] x 2 | r[] r1 x | w[] y 2 ;

| w[] y 1 | w[] x 1 ;
exists (1:r1=2 /\ x=2 /\ y=2)

Which fences should we use to forbid the final state? Why? Where should
we put them?

We should put a lightweight fence between the read-write pair on P1, and a
lightweight fence between the write-write pair on P2, like so:

Bell w+rw+ww+lws
{
x = 0;
y = 0;
}
P0 | P1 | P2 ;
w[] x 2 | r[] r1 x | w[] y 2 ;

| f[lw] | f[lw] ;
| w[] y 1 | w[] x 1 ;

exists (1:r1=2 /\ x=2 /\ y=2)

This is because the A-cumulativity of the lightweight fence on P1 will impose
an ordering between the write of x on P0 and the write of y on P1.

Exercise: Independent Reads of Independent Writes. Consider the follo-
wing litmus test, known as IRIW:

Bell IRIW
{
x = 0;
y = 0;
}
P0 | P1 | P2 | P3 ;
w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| r[] r2 y | | r[] r4 x ;
exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

Which fences should we use to forbid the final state? Why? Where should
we put them?

We should put a heavyweight fence between the read-read pairs on P1 and
P3, like so:

Bell IRIW+hws
{
x = 0;
y = 0;
}

138 J. Alglave

P0 | P1 | P2 | P3 ;
w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| f[hw] | | f[hw] ;
| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

This is because IRIW essentially is a distributed variant of the store buffering
example, therefore reacts to fences in much the same way as SB, just like ISA2
or WRC react to fences (lightweight in their case) in much the same way as MP.

Thus the A-cumulativity of the heavyweight fence will impose an ordering
between the write of x on P0 and the read of y on P1 (idem for the write of y on
P2 and the read of x on P3).

Exercise: SC and TSO Re-Make Re-Model [9]. Remember that we’ve
defined SC and (not quite) TSO earlier. Try to reformulate both models in
terms of the five principles we’ve just learnt: sc per location, no thin air,
propagation, observation and restoring sc. The SC model you’ll end up
with will be equivalent to the one above. The TSO model you’ll end up with will
be TSO proper!

Take the tiger cat file, and use the following bell files. For SC:

"Re-Make"
let deps = po
let fhw = po
let fences = fhw

and for TSO:

"Re-Model"

enum Fences = ’wr
events F[Fences]
let fwr = fencerel(F & Wr)
let deps = po
let fhw = fwr | po \ (W*R)
let fences = fhw
show fwr, fhw

A.3 Second Big Cat: Jaguar

Exercise: Difference Between RMO and Power or ARM What’s a test
that distinguishes RMO from Power or ARM (as we’ve defined them previously)?
More precisely, what’s a test that’s forbidden on RMO but allowed on Power or
ARM?

IRIW+deps distinguishes RMO from Power or ARM:

Modeling of Architectures 139

Bell IRIW+deps
{
x = 0;
y = 0;
}
P0 | P1 | P2 | P3 ;
w[] x 1 | r[] r1 x | w[] y 1 | r[] r3 y ;

| f[dep] | | f[dep] ;
| r[] r2 y | | r[] r4 x ;

exists (1:r1 = 1 /\ 1:r2 = 0 /\ 3:r3=1 /\ 3:r4=0)

because it is forbidden on RMO [1,2], but allowed on Power and ARM [5].

Exercise: Implementing Scope Inclusion. How would you implement an
RMO per scope model as above, but where the fences have an effect not only
at their scopes, but also at narrower scopes? That is, the fence for system also
has an effect at gpu and cta level for example? This procedure should forbid
mp-mit-scopes+fgpu+fsys, but not mp-mit-scopes+fcta+fgpu.

We need to invent a recursive notion of wider, that will return, given a scope
level s, all scope levels wider than s, not just the immediately wider one:

let wider2(s) = match s with
|| ’gpu -> ’system
|| ’cta -> ’gpu | ’system

end

We can then use this new notion in the way we define our rmo-fences:

procedure rmo() =
let rmo-fences(t) = fencerel(F & wider2(t))
let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)
forall t in Scopes do

acyclic rmo-order(t)
end

end

Note how we replace the call to tag2events by a call to wider2 in the
definition of rmo-fences.

Exercise: Release Sequence. In C++ there’s a notion of release sequence,
which says that synchronisation does not just happen via special-rf, i.e. from
the special write of a special read-from to the corresponding special read. Rather,
it can happen from any write of the same location and on the same thread that
precedes (in program order) a special write.

How would you modify our model to include this notion?
Like so (where ? means zero or one step):

let hb = (po | co?;special-rf)+

140 J. Alglave

B Complete Bell and Cat Files

B.1 Kittens

Here’s kittens.bell:

"I’m at your service ma’am, and here’s your kitty back"
enum Fences = ’wr
events F[{’wr}]

let fwr = fencerel(F & Wr)
show fwr

Here’s kittens.cat:

"How can I thank you for your bringing kitty back?"

include "tutorial.cat"

let fr = rf^-1;co
show fr

let rfe = rf & ext

let com = rf | co | fr

(* SC *)

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

(* call sc() *)

(* Almost TSO *)

procedure almost-tso() =
let ppo = po \ W*R
let tso-order = ppo | fwr | rfe | co | fr
acyclic tso-order

end

call almost-tso()

Modeling of Architectures 141

B.2 Tiger

Here’s tiger.bell:

"He went out tiger hunting with his elephant and gun"

enum Fences = ’dep || ’lw || ’hw
events F[Fences]

let deps = fencerel(F & Dep) & (R * _)
show deps

let flw = fencerel(F & Lw)
show flw

let fhw = fencerel(F & Hw)
show fhw

let fences = flw | fhw

Here’s tiger.cat:

"In case of accidents he always took his mum"

include "tutorial.cat"

let fr = rf^-1;co
show fr
let fre = fr & ext
let rfe = rf & ext
let com = rf | co | fr

(* Flag non-SC executions *)

procedure sc-flag() =
let sc-order = (po | com)+
flag ~acyclic sc-order as non-sc

end

call sc-flag()

(* SC per location *)

let po-loc = po & loc

procedure sc-per-location() =

142 J. Alglave

acyclic po-loc | com
end

call sc-per-location()

(* No thin air *)

let hb = (deps | fences | rfe)+

procedure no-thin-air() =
acyclic hb

end

call no-thin-air()

(* Propagation *)
let A-cumul = rfe;fences
let prop = (fences | A-cumul);hb*

procedure propagation() =
acyclic prop | co

end

call propagation()

procedure observation() =
irreflexive fre;prop

end

call observation()

procedure restoring-sc() =
acyclic fhw | com

end

call restoring-sc()

B.3 Jaguar

Here’s jaguar.bell:

"I’ll call you Jaguar"

enum Scopes = ’cta || ’gpu || ’system

Modeling of Architectures 143

let narrower(s) = match s with
|| ’system -> ’gpu
|| ’gpu -> ’cta

end

let wider(s) = match s with
|| ’gpu -> ’system
|| ’cta -> ’gpu

end

events F[Scopes]

Here’s jaguar.cat:

"If I may be so bold"

include "tutorial.cat"

let fr = rf^-1;co
let rfe = rf & ext

procedure rmo() =
let fence(t) = fencerel(F & tag2events(t))
let rmo-order(t) = (fence(t) | rfe | co | fr) & tag2scope(t)
forall t in Scopes do

acyclic rmo-order(t)
end

end

call rmo()

B.4 Panther

Here’s panther.bell:

"Kool thing walkin’ like a panther"

enum Flavours = ’plain || ’special

events R[Flavours]
events W[Flavours]

Here’s panther.cat:

"Come on and give me an answer"

144 J. Alglave

include "tutorial.cat"

(* SC per location *)

let po-loc = po & loc

let fr = rf^-1;co
let fre = fr & ext
show fr

let com = rf | co | fr

procedure sc-per-location() =
acyclic po-loc | com

end
(* No thin air *)

let special-rf = rfe & (Special * Special)

let hb = (po | special-rf)+

procedure no-thin-air() =
acyclic hb

end

(* Observation *)

procedure observation() =
irreflexive fre;hb

end

(* Valid executions *)

procedure valid() =
call sc-per-location()
call no-thin-air()
call observation()

end

(* call valid() *)

(* Races *)

let at-least-one k = (k * _ | _ * k)
let conflict = at-least-one(W) & loc & ext

Modeling of Architectures 145

let race =
let r = conflict & ~(hb | hb^-1)
in r \ (id | (I * M) | (M * I) | (Special * Special))

show race

procedure race-free() =
flag ~empty race as undefined

end

procedure execution() =
call valid()
call race-free()

end

call execution()

References

1. Alglave, J.: A shared memory poetics. Ph.D. thesis, Université Paris 7 (2010)
2. Alglave, J.: A formal hierarchy of weak memory models. Formal Methods Syst.

Des. 41(2), 178–210 (2012)
3. Alglave, J., Batty, M., Donaldson, A.F., Gopalakrishnan, G., Ketema, J., Poetzl,

D., Sorensen, T., Wickerson, J.: GPU concurrency: weak behaviours and program-
ming assumptions. In: ASPLOS (2015)

4. Alglave, J., Kroening, D., Lugton, J., Nimal, V., Tautschnig, M.: Soundness of data
flow analyses for weak memory models. In: Yang, H. (ed.) APLAS 2011. LNCS,
vol. 7078, pp. 272–288. Springer, Heidelberg (2011)

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data-mining for weak memory. TOPLAS 36(2) (2014)

6. The Beatles: The Continuing Story of Bungalow Bill. In: White Album (1968)
7. Hower, D.R., Hechtman, B.A., Beckmann, B.M., Gaster, B.R., Hill, M.D.,

Reinhardt, S.K., Wood, D.A.: Heterogeneous-race-free memory models. In: ASP-
LOS 14 (2014)

8. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

9. Roxy Music: Re-Make Re-Model. In: Roxy Music (1972)
10. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:

Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

11. SPARC International Inc.: The SPARC Architecture Manual Version 9 (1994)
12. Sparks: Here Kitty. In: Hello Young Lovers (2006)
13. T-Rex: Jeepster. In: Electric Warrior (1971)
14. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Com-

mon compiler optimisations are invalid in the C11 memory model and what we
can do about it. In: POPL (2015)

15. Sonic Youth: Kool Thing. In: Goo (1990)
16. Led Zeppelin: Black Dog. In: Led Zeppelin IV (1971)

A Gentle Introduction to Multiparty
Asynchronous Session Types

Mario Coppo1, Mariangiola Dezani-Ciancaglini1, Luca Padovani1,
and Nobuko Yoshida2(B)

1 Dipartimento di Informatica, Università di Torino, Turin, Italy
2 Department of Computing, Imperial College London, London, UK

n.yoshida@imperial.au.uk

Abstract. This article provides a gentle introduction to multiparty ses-
sion types, a class of behavioural types specifically targeted at describing
protocols in distributed systems based on asynchronous communication.
The type system ensures well-typed processes to enjoy non-trivial proper-
ties, including communication safety, protocol fidelity, as well as progress.
The adoption of multiparty session types can positively affect the whole
software lifecycle, from design to deployment, improving software relia-
bility and reducing its development costs.

1 Introduction

In modelling distributed systems where processes interact by means of message
passing, one soon realises that many interactions are meant to occur within the
scope of private channels following disciplined protocols. We call such private
interactions sessions and the protocols that describe them session types. In its
simplest form, a session is established between two peers, such as a client connect-
ing with a server. In these cases, the sessions are “binary” or “dyadic” [39,42].
In general, a session may involve any (usually fixed, but sometimes variable)
number of peers. In these cases, we speak of multiparty sessions and of their
protocol descriptions as of multiparty session types [43].

The ability to describe complex interaction protocols by means of a formal,
simple and yet expressive type language can have a profound impact on the way
distributed systems are designed and developed. This is witnessed by the fact
that some important standardisation bodies for web-based business and finance
protocols [68,72,73] have recently investigated design and implementation frame-
works for specifying message exchange rules and validating business logic based
on the notion of multiparty sessions, where multiparty session types are “shared
agreements” between teams of programmers developing possibly large and com-
plex distributed protocols or software systems.

A multiparty session type theory consists of three main ingredients:

– At the most abstract level is the global type, which describes a communication
protocol from a neutral viewpoint in terms of the interactions that are sup-
posed to occur between the protocol peers, of the order of these interactions,
and of the kind of messages exchanged during these interactions.

c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 146–178, 2015.
DOI: 10.1007/978-3-319-18941-3 4

A Gentle Introduction to Multiparty Asynchronous Session Types 147

– At the most concrete level are processes, which describe the behaviour of the
peers involved in the session using a formal language (usually, a dialect of the
π-calculus).

– Somehow in between these two levels are local types, one for each peer, which
describe the same communication protocol as the global type, but from the
viewpoint of each peer.

These ingredients are strictly related: a projection operation extracts the local
type of each peer from the global type, and a type system makes sure that a
process uses the communication channels it owns according to their local type.
Once these relations are established, a number of properties can be proved,
among which:

– communication safety, namely the fact that there is never a mismatch between
the types of sent and expected messages, despite the same communication
channel is used for exchanging messages of different types;

– protocol fidelity, namely the fact that the interactions that occur are accounted
for by the global type and therefore are allowed by the protocol;

– progress, namely the fact that every message sent is eventually received, and
every process waiting for a message eventually receives one.

Remarkably, these properties are guaranteed by means of purely local checks on
the single peers that participate in the protocol, despite the fact that they will
run independently once the session has been established. The ability to prove
relevant global properties by means of local checks is one of the key features of
session type theories.

The present article formalises these concepts and provides a gentle introduc-
tion to multiparty session type theory. The process calculus and the type system
we use have been first introduced in [3] and then developed in [25]. Notably,
the focus of these two papers was the design of a type system assuring progress
even in presence of session interleaving. In this article we solely describe the
so-called communication type system, which assures communication safety, pro-
tocol fidelity and, when no sessions are interleaved, progress.

Outline. We start illustrating our calculus with simple yet comprehensive exam-
ples in Sect. 2. The calculus of asynchronous, multiparty sessions is the content
of Sect. 3. The communication type system assuring that processes behave cor-
rectly with respect to the sessions in which they are involved is illustrated with
examples in Sect. 4. Section 5 discusses related work and further readings. To
ease reading and accessibility of the content, proofs of the properties enjoyed by
well-typed processes and additional technical material have been collected in the
Appendix.

2 Examples

In this section we present two versions of a simple but non-trivial example that
illustrates the basic functionalities and features of the process calculus that we

148 M. Coppo et al.

work with. This example comes from a Web service usecase in Web Service Chore-
ography Description Language (WS-CDL) Primer 1.0 [73], capturing a collabora-
tion pattern typical to many business and distributed protocols [62,69,72].

2.1 Example 1: The Three Buyer Protocol

The setting is that of a system involving Alice, Bob, and Carol that cooperate
in order to buy a book from a Seller. The participants follow a protocol that is
described informally below:

1. Alice sends a book title to Seller and Seller sends back a quote to Alice and
Bob. Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he
accepts, then sends his address to Seller and Seller answers with the deliv-
ery date.

3. If the price exceeds Bob’s budget, Bob asks Carol to collaborate by estab-
lishing a new session. Bob sends Carol how much she has to contribute and
delegates the remaining interactions with Alice and Seller to her.

4. If Carol’s contribution is within her budget, she accepts the quote, notifies
Alice, Bob and Seller, and continues the rest of the protocol with Seller and
Alice as if she were Bob. Otherwise, she notifies Alice, Bob and Seller to quit
the protocol.

Alice Seller Bob Carol
2[INIT] a 3[INIT] a 1

"Title"

quote quote

quotediv 2

2[INIT] b 1

quote− contrib−99

y

ok

okok

"Address"

date

Fig. 1. An execution of the three buyer protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to
collaborate (by delegating the remaining interactions with Alice and Seller) and
the transaction terminates successfully.

A Gentle Introduction to Multiparty Asynchronous Session Types 149

Multiparty session programming consists of two steps: specifying the intended
communication protocols using global types and implementing these protocols
using processes. The specifications of the three-buyer protocol are given as two
distinct global types: one is Ga among Alice, Bob and Seller and the other is Gb

between Bob and Carol. In Ga Alice plays role 2, Bob plays role 1, and Seller
plays role 3, while in Gb Bob plays role 2 and Carol plays role 1. We annotate
the global types with line numbers (i) so that we can easily refer to the actions
in them.

Ga =

(1) 2 −→ 3 : 〈string〉.

(2) 3 −→ {1, 2} : 〈int〉.

(3) 2 −→ 1 : 〈int〉.

(4) 1 −→ {2, 3} : {ok : 1−→3 : 〈string〉.

(5) 3−→1 : 〈date〉.end,

(6) quit : end}

Gb =

(1) 2 −→ 1 : 〈int〉.

(2) 2 −→ 1 : 〈T〉.

(3) 1 −→ 2 : {ok : end, quit : end}

T = ⊕〈{2, 3}, {ok : !〈3, string〉.?(3, date).end, quit : end}〉

Global types provide an overall description of the two conversations, directly
abstracting the scenario of the diagram. In Ga, line (1) denotes Alice sending
a string value to Seller. Line (2) says that Seller sends the same integer value
to Alice and Bob and line (3) says that Alice sends an integer to Bob. In lines
(4-6) Bob sends either ok or quit to Seller and Alice. In the first case Bob sends
a string to Seller and receives a date from Seller, in the second case there are no
further communications.

Line (2) in Gb represents the delegation of a channel with the communication
behaviour specified by the session type T from Bob to Carol (note that Seller
and Alice in T concern the session on a). Then Carol terminates the interaction
as if she were Bob in session a. Note that in this case the Seller does not know
if he is talking with Bob or Alice.

Table 1 shows an implementation of the three buyer protocol conforming to
Ga and Gb for the processes Seller, Alice, Bob, and Carol in the calculus that
we will formally define in Sect. 3.1. The service name a is used for initiating ses-
sions corresponding to the global type Ga . Seller initiates a three party session
by means of the session request operation a [3](y), where the index 3 identifies
Seller. Since 3 is also the overall number of participants in this session, a occurs
with an over-bar. Alice and Bob get involved in the session by means of the ses-
sion accept operations a[1](y) and a[2](y) and the indexes 2 and 1 identify them
as Alice and Bob, respectively. Once the session has started, Seller, Alice and
Bob communicate using their private channels represented by y. Each channel
y can be interpreted as a session endpoint connecting a participant with all the
others in the same session; the receivers of the data sent on y are specified by
giving the participant numbers. Line (1) of Ga is implemented by the matching
output and input actions y!〈p,"Title"〉 of Alice and y?(2, title) of the Seller.

150 M. Coppo et al.

Table 1. Implementation of the three buyer protocol.

Seller = a [3](y).y?(2, title).y!〈{1,2},quote〉.y&(1,{ok : y?(1,address).y!〈1,date〉.0,quit : 0})

Alice = a[2](y).y!〈3,"Title"〉.y?(3,quote)).y!〈1,quotediv 2〉.y&(1,{ok : 0, quit : 0})

Bob = a[1](y).y?(3,quote).y?(2,contrib).if (quote− contrib < 100)
then y⊕〈{2,3},ok〉.y!〈3,"Address"〉.y?(3,date).0

elseb [2](z).z!〈1,quote− contrib−99〉.z!〈〈1,y〉〉.z&(1,{ok : 0,quit : 0})

Carol = b[1](z).z?(2,x).z?((2, t)).if (x < 100)
then z⊕〈2,ok〉.t⊕〈{2,3},ok〉.t!〈3,"Address"〉.t?(3,date).0

else z⊕〈2,quit〉.t⊕〈{2,3},quit〉.0

Line (2) of Ga is implemented by the output action y!〈{1, 2}, quote〉 of the
Seller which is matched by the input actions y?(3, quote) of both Bob and Alice.
Line (3) of Gb is implemented by the selection and branching actions z⊕〈2, ok〉,
z⊕〈2, quit〉 and z&(1, {ok : 0, quit : 0}).

In process Bob, if the quote minus Alice’s contribution exceeds 100, another
session between Bob and Carol is established through the shared service name b.
Delegation occurs by passing the private channel y from Bob to Carol (actions
z!〈〈1, y〉〉 and z?((2, t))), so that the rest of the session with Seller and Alice is
carried out by Carol.

In this particular example no deadlock is possible, even if different sessions
are interleaved with each other and the communication topology changes because
of delegation.

2.2 Example 2: The Three Buyer Protocol with Recursion

We now describe a variant of the above example that uses recursion. The scenario
is basically the same, the only part that changes is that, if the price exceeds
the budget, Bob initiates a negotiation with Carol to collaborate together by
establishing a new session: Bob starts asking a first proposal of contribution to
Carol. At each step Carol answers with a new offer. Bob can accept the offer,
try with a new proposal or give up. When Bob decides to end the negotiation
(accepting the offer or giving up) he communicates the exit to Carol and, as
before, Carol concludes the protocol with Seller.

Figure 2 depicts the part of the protocol involving recursion.
The communication protocols are described by the following global types;

these are similar to the ones of the previous example. In particular Ga is exactly
the same (since the server does not notice the further interactions among the
buyers). Instead, Gb is now more involved since we have a recursive part which
represents the (possibly) recursive negotiation between Bob and Carol.

A Gentle Introduction to Multiparty Asynchronous Session Types 151

Ga =

(1) 2 −→ 3 : 〈string〉.

(2) 3 −→ {1, 2} : 〈int〉.

(3) 2 −→ 1 : 〈int〉.

(4) 1 −→ {2, 3} : {ok :1−→3 : 〈string〉.

(5) 3−→1 : 〈date〉.end,

(6) quit : end}

Gb =

(1) μt.2 −→ 1 : 〈int〉.

(2) 1 −→ 2 : 〈int〉.

(3) 2 −→ 1 : {ok : 2−→1 : 〈T〉.end,

more : t,

quit : end}

T = ⊕〈{3, 2}, {ok :!〈3, string〉.?(3, date).end, quit : end}〉

Bob Carol
2 [INIT] b 1

quote

offer

more
iteration

ok

delegate T

choice

Fig. 2. The three buyer protocol with recursion: additional interactions between Bob
and Carol.

Fig. 3. The three buyer example with recursion.

The code of the example is in Fig. 3. Again, it is similar to the previous one,
but for the recursive definitions in the processes Bob and Carol. Note that the

152 M. Coppo et al.

recursive process X in Bob’s code has a data parameter (x′) and two channel
parameters (y′ and z′), while the process Y in Carol’s code has only one channel
parameter (z′).

3 The Calculus for Multiparty Sessions

In this section we formalise syntax and operational semantics of the calculus
of multiparty asynchronous sessions. To ease the presentation and limit some
technicalities, with respect to the previous section we consider a slightly simpler
calculus in which communication actions always specify exactly one receiver
instead of a non-empty set of receivers and we assume that recursive definitions
have exactly one data parameter and one channel parameter. Allowing multiple
receivers is mostly a matter of syntactic sugar, since a communication action
involving multiple receivers can be canonically encoded as a sequence of actions
involving single receivers only. Some notions, however, such as the projection
operator, are affected by this design choice and should be adjusted accordingly.
The interested reader may refer to [25] for the presentation of the calculus with
native support for multiple receivers, and to [34] for the definition of a projection
operator that can handle actions with multiple receivers encoded as sequences
of actions with single receivers only.

3.1 Syntax

The present calculus is a variant of the calculus in [43], as explained in Sect. 5.
The syntax of processes, ranged over by P , Q . . . , and that of expressions, ranged
over by e, e′, . . . , is given by the grammar in Table 2, which shows also naming
conventions. The operational semantics is defined by a set of reduction rules.
In the reduction of processes it is handy to introduce elements, like queues of
messages and runtime channels, which are not expected to occur in the source
code written by users (user processes). These elements, which are referred as
runtime syntax, appear shaded .

The processes of the form u [p](y).P and u[p](y).P cooperate in the initiation
of a multiparty session through a service name identified by u, where p denotes
a participant to the session. Participants are represented by progressive numbers
and are ranged over by p, q,... The barred identifier is the one corresponding to
the participant with the highest number, which also gives the total number of
participants needed to start the session. The (bound) variable y is the placeholder
for the channel that will be used in the communications. After opening a session
each channel placeholder will be replaced by a channel with role s[p], which
represents the runtime channel of the participant p in the session s.

Process communications (communications that can only take place inside
initiated sessions) are performed using the next three pairs of primitives:
the sending and receiving of a value; the channel delegation and reception (where
the process performing the former action delegates to the process receiving it the
capability to participate in a session by passing a channel associated with that
session); and the selection and branching (where the former action sends one

A Gentle Introduction to Multiparty Asynchronous Session Types 153

Table 2. Process syntax and naming conventions.

P ::= u [p](y).P Multicast request
|| u[p](y).P Accept
|| c!〈p,e〉.P Value sending
|| c?(p,x).P Value reception
|| c!〈〈p,c′〉〉.P Channel delegation
|| c?((q,y)).P Channel reception
|| c⊕〈p, l〉.P Selection
|| c&(p,{li : Pi}i∈I) Branching
|| if e then P else Q Conditional
|| P | Q Parallel
|| 0 Inaction
|| (a)P Service name hiding
|| def D in P Recursion
|| X〈e,c〉 Process call
|| (s)P Session hiding
|| s : h Message queue

D ::= X(x,y) = P Declaration
::= [] || P || (a) Evaluation context
|| (s) || def D in
|| |

a, b Service name
x Value variable

y, z, t Channel Variable
s Session name

p, q Participant number
X , Y Process variable

l Label
s[p] Channel with role

u ::= x || a Identifier
v ::= a || true Value

|| false
e ::= v || x

|| e and e′ Expression
|| not e . . .

c ::= y || s[p] Channel
m ::= (q,p,v) Message in transit

|| (q,p,s[p′])
|| (q,p, l)

h ::= h ·m || Queue

of the labels offered by the latter). The input/output operations (including the
delegation ones) specify the channel and the sender or the receivers, respectively.
Thus, c!〈p, e〉 denotes the sending of a value on channel c to the participant p;
accordingly, c?(p, x) denotes the intention of receiving a value on channel c from
the participant p. The same holds for delegation/reception (but the receiver is
only one) and selection/branching.

An output action is a value sending, channel delegation or label selection: an
output process is a process whose first action is an output action. An input action
is a value reception, session reception or label branching: an input process is a
process whose first action is an input action. A communication action is either
an output or an input action.

As usual evaluation contexts are processes with some holes.
As in [43], we use message queues in order to model TCP-like asynchronous

communications (where message order is preserved and sending is non-blocking).
A message in a queue can be a value message, (q,p,v), indicating that the value
v was sent by the participant q and the recipients is the participant p; a channel
message (delegation), (q, p, s[p′]), indicating that q delegates to p the role of p′

on the session s (represented by the channel with role s[p′]); and a label message,
(q,p,l) (similar to a value message). The empty queue is denoted by φ. By h·m
we denote the queue obtained by concatenating m to the queue h. With some
abuse of notation we will also write m·h to denote the queue with head element
m. By s : h we denote the queue h of the session s. Queues and channels with
role are generated by the operational semantics (described later).

We call pure a process which does not contain message queues.

154 M. Coppo et al.

There are many binders: request/accept actions bind channel variables, value
receptions bind value variables, channel receptions bind channel variables, dec-
larations bind value and channel variables, recursions bind process variables,
hidings bind service and session names. In (νs)P all occurrences of s[p] and the
queue s inside P are bound. We say that a process is closed if the only free names
in it are service names (i.e. if it does not contain free variables or free session
names).

3.2 Operational Semantics

Processes are considered modulo structural equivalence, denoted by ≡, and
defined adding α-conversion to the rules in Table 3. We denote by fn(Q) (fn(D))
the set of free names in Q (D), by dpv(D) the set of process variables declared
in D and by fpv(Q) the set of process variables which occur free in Q. Besides
the standard rules [50], we have a rule for rearranging messages in a queue when
the senders or the receivers are not the same.

Table 3. Structural equivalence.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(r)P | Q ≡ (r)(P | Q) if r /∈ fn(Q)

(r)(r′)P ≡ (r′)(r)P (a)0 ≡ 0 (s)(s :) ≡ 0

where r ::= a || s

def D in 0 ≡ 0 def D in (r)P ≡ (r)def D in P if r /∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D)∩ fpv(Q) =

def D in (def D′ in P) ≡ def D′ in (def D in P)
if (dpv(D)∪ fpv(D))∩dpv(D′) = dpv(D)∩ (dpv(D′)∪ fpv(D′)) =

s : h · (q,p,) · (q′,p′, ′) ·h′ ≡ s : h · (q′,p′, ′) · (q,p,) ·h′ if p
= p′ or q
= q′

Table 4 shows the reduction rules of processes (we use −→∗ and −→k with the
expected meaning). Rule [Init] describes the initiation of a new session among
n participants that synchronise over the service name a. The last participant
a [n](y).Pn, distinguished by the overbar on the service name, specifies the num-
ber n of participants. After the initiation, the participants will share the private
session name s, and the queue associated to s, which is initially empty. The vari-
able y in each participant p will be replaced by the corresponding channel with
role s[p]. The output rules [Send], [Deleg] and [Sel] enqueue values, channels and
labels, respectively, into the queue of the session s (in rule [Send], e ↓ v denotes
the evaluation of the expression e to the value v). The input rules [Rcv], [SRcv]
and [Branch] perform the corresponding complementary operations. Note that

A Gentle Introduction to Multiparty Asynchronous Session Types 155

Table 4. Reduction rules.

a[1](y).P1 | ... | a[n−1](y).Pn−1 | a [n](y).Pn−→
(s)(P1{s[1]/y} | ... | Pn−1{s[n−1]/y} | Pn{s[n]/y} | s :) [Init]

s[p]!〈q,e〉.P | s : h −→ P | s : h · (p,q,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉.P | s : h −→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈l,q〉.P | s : h −→ P | s : h · (p,q, l) [Sel]

s[p]?(q,x).P | s : (q,p,v) ·h −→ P{v/x} | s : h [Rcv]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h −→ P{s′[p′]/y} | s : h [SRcv]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, l j) ·h −→ Pj | s : h (j ∈ I) [Branch]

if e then P else Q −→ P (e ↓ true) if e then P else Q −→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [ProcCall]

P −→ P′ ⇒ [P] −→ [P′] [Ctxt]

P ≡ P′ and P′ −→ Q′ and Q ≡ Q′ ⇒ P −→ Q [Str]

these operations check that the sender matches, and also that the message is
actually meant for the receiver.

4 Communication Type System

This section introduces the communication type system, by which we can check
type soundness of the communications and protocol fidelity. This type system
is the one introduced in [25], but the proof of subject reduction is cleaned up
by the use of the property stated in Lemma1. As we have done in Sect. 3.1, here
too we only consider communication actions with single receivers, even though
the examples make use of a slightly more general syntax.

4.1 Global and Session Types

Global types describe the whole conversation scenarios of multiparty session.
Session types correspond to projections of global types on the individual par-
ticipants: they are types of pure processes. The grammar for global and session
types is given in Table 5. Sorts S, S′, . . . are associated to values (either base
types or closed global types, ranged over by G). Exchange types U,U ′, ... consist
of sort types or closed session types, ranged over by T.

The global type p → q : 〈S〉.G says that participant p sends a value of sort
S to the participant q
= p and then the interactions described in G take place.

156 M. Coppo et al.

Table 5. Global and session types.

S ::= bool | . . . | G Sorts
U ::= S | T Exchange types

Global types
G ::= p → q : 〈S〉.G Value exchange

|| p → q : 〈T〉.G Channel exchange
|| p → q : {li : Gi}i∈I Branching
|| t.G || t || end Recursion/end

Session types
T ::= !〈p,S〉.T Send value

|| !〈p,T〉.T Send channel
|| ?(p,U).T Receive
|| ⊕〈p,{li : Ti}i∈I〉 Selection
|| &(p,{li : Ti}i∈I) Branching
|| t.T || t || end Recursion/end

Similarly, the global type p → q : 〈T〉.G says that participant p
= q delegates a
channel of type T to participant q and the interaction continues according to G.
When it does not matter we use p → q : 〈U〉.G to refer both to p → q : 〈S〉.G
and p → q : 〈T〉.G.

Type p → q : {li : Gi}i∈I says that participant p sends one of the labels
li to participants q. If lj is sent, interactions described in Gj take place. Type
μt.G is a recursive type, assuming type variables (t, t′, . . .) are guarded in the
standard way, i.e., type variables only appear under some prefix. We take an
equi-recursive view of recursive types, not distinguishing between μt.G and its
unfolding G{μt.G/t} [66, Sect. 21.8]. Type end represents the termination of the
session.

Session types represent the input-output actions performed by single par-
ticipants. The send types !〈p, S〉.T, !〈p,T〉.T express, respectively, the sending
of a value of sort S to participant p or the sending of a channel of type T to
participant p followed by the communications described by T. The selection type
⊕〈p, {li : Ti}i∈I〉 represents the transmission to participant p of a label li cho-
sen in the set {li | i ∈ I} followed by the communications described by Ti. The
receive and branching types are dual of send and selection types. Recursion is
guarded also in session types, and we consider them modulo fold/unfold as done
for global types.

The relation between global and session types is formalised by the notion of
projection as in [43].

Definition 1. The projection of a global type G onto a participant q (G � q) is
defined by induction on G:

A Gentle Introduction to Multiparty Asynchronous Session Types 157

(p → p′ : 〈U〉.G′) � q =

⎧
⎪⎨

⎪⎩

!〈p′,U 〉(G′ � q) if q = p

?(p,U)(G′ � q) if q = p′

G′ � q otherwise

(p → p′ : {li : Gi}i∈I) � q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊕〈p′, {li : Ti}i∈I〉 if q = p

&(p, {li : Gi � q}i∈I) if q = p′

Gi0 � q where i0 ∈ I if q
= p, q
= p′

and Gi � q = Gj � q for all i, j ∈ I.

(μtG) � q =

{
μt(G � q) if G � q
= t

end otherwise
t � q = t end � q = end

As an example, we list two of the projections of the global types Ga and Gb of
the three-buyer protocol in Sect. 2.

Ga � 3 = ?(2, string).!〈{1, 2}, int〉; &(1, {ok :?(1, string).!〈1, date〉.end, quit : end})
Gb � 1 = ?(2, int).?(2,T). ⊕ 〈2, {ok : end, quit : end}〉
where T is defined at page 4.

Hereafter we assume all global types are well formed, i.e. G � q is defined for
all q which occur in G.

4.2 Typing Rules for Pure Processes

The typing judgements for expressions and pure processes are of the shapes:

Γ � e : S and Γ � P � Δ

where

– Γ is the standard environment which associates variables to sort types, service
names to closed global types and process variables to pairs of sort types and
session types;

– Δ is the session environment which associates channels to session types.

Formally we define:

Γ ::= ∅ || Γ, x : S || Γ, a : G || Γ,X : S T and Δ ::= ∅ || Δ, c : T

assuming that we can write Γ, x : S only if x
∈ dom(Γ), where dom(Γ) denotes
the domain of Γ , i.e., the set of identifiers which occur in Γ . We use the same
convention for a : G, X : S T and c : T (thus we can write Δ,Δ′ only if dom(Δ)∩
dom(Δ′) = ∅).

Table 6 presents the typing rules for expressions and pure processes.
Rule (Name) is standard: recall that u stands for x and a and S includes G.
Rule (MCast) permits to type a request on a service identified by u, if the

type of y is the p-th projection of the global type G of u and the maximum
participant in G (denoted by mp(G)) is p. Rule (MAcc) permits to type the
p-th participant identified by u, which uses the channel y, if the type of y is the
p-th projection of the global type G of u and p < mp(G).

In the typing of the example of the three-buyer protocol the types of the
channels y in Seller and z in Carol are respectively the third projection of

158 M. Coppo et al.

Table 6. Typing rules for expressions and pure processes.

,u : S � u : S (NAME) � true, false : bool (BOOL)
� ei : bool (i = 1, 2)

� e1 and e2 : bool
(AND)

� u : G � P� ,y : G � p p = mp(G)
(MCAST)

� u [p](y).P�

� u : G � P� ,y : G � p p < mp(G)
(MACC)

� u[p](y).P�

� e : S � P� ,c : T
(SEND)

� c!〈p,e〉.P� ,c : !〈p,S〉.T
,x : S � P� ,c : T

(RCV)
� c?(q,x).P� ,c :?(q,S).T

� P� ,c : T
(DELEG)

� c!〈〈p,c′〉〉.P� ,c : !〈p,T〉.T,c′ : T

� P� ,c : T,y : T
(SRCV)

� c?((q,y)).P� ,c :?(q,T).T

� P� ,c : Tj j ∈ I
(SEL)

� c⊕〈p, l j〉.P� ,c : ⊕〈p,{li : Ti}i∈I〉

� Pi � ,c : Ti ∀i ∈ I
(BRANCH)

� c&(p,{li : Pi}i∈I)� ,c : &(p,{li : Ti}i∈I)

� P� � Q� ′
(PAR)

� P | Q� , ′
� e : bool � P� � Q�

(IF)
� if e then P else Q�

end only
(INACT)

� 0�

,a : G � P�
(NRES)

� (a)P�

� e : S end only
(VAR)

,X : S T � X〈e,c〉� ,c : T

,X : S t,x : S � P� y : T ,X : S t.T � Q�
(DEF)

� def X(x,y) = P in Q�

Ga and the first projection of Gb. By applying rule (MCast) we can then
derive a : Ga � Seller � ∅. Similarly by applying rule (MAcc) we can derive
b : Gb � Carol � ∅. (The processes Seller and Carol are defined in Table 1.)

The successive six rules associate the input/output processes to the input/
output types in the expected way. For example we can derive:

� t ⊕ 〈{2, 3}, ok〉.t!〈3, "Address"〉; t?(3, date).0 � {t : T}

where T = ⊕〈{2, 3}, {ok :!〈3, string〉.?(3, date).end, quit : end}〉. Note that,
according to our notational convention on environments, in rule (Deleg) the
channel which is sent cannot appear in the session environment of the premise,
i.e., c′
∈ dom(Δ) ∪ {c}.

A Gentle Introduction to Multiparty Asynchronous Session Types 159

Rule (Par) permits to put in parallel two processes only if their session
environments have disjoint domains.

In rules (Inact) and (Var) we take environments Δ which associate end to
arbitrary channels, denoted by “Δ end only”.

The present formulation of rule (Def) forces to type process variables only
with μ-types, while the formulation in [3,43]:

Γ,X : S T , x : S � P � y : T Γ,X : S T � Q � Δ

Γ � def X(x, y) = P in Q � Δ

allows to type unguarded process variables with arbitrary types, which can be
meaningless. For example with the more permissive rule we can derive

� def X(x, y) = X(x, y) in X〈true, z〉 � {z : T}
for an arbitrary closed T, while in our system we cannot type this process since
its only possible type would be μt.t, which is not guarded and then forbidden.

4.3 Types and Typing Rules for Runtime Processes

In this subsection we extend the communication type system to processes con-
taining queues. We start by defining the types of queues.

Message Types M ::= !〈p,U 〉 message send
| ⊕〈p, l〉 message selection
| M ;M message sequence

Generalised τ ::= T session
| M message
| M ;T continuation

Message types are the types for queues: they represent the messages contained
in the queues. The message send type !〈p,U 〉 expresses the presence in a queue
of an element of type U to be communicated to participant p. The message
selection type ⊕〈p, l〉 represents the communication to participant p of the label
l and M ;M represents sequencing of message types (we assume associativity for
“;”). For example ⊕〈{1, 3}, ok〉 is the message type for the message (2, {1, 3}, ok).

A generalised type is either a session type, or a message type, or a message
type followed by a session type. Type M ;T represents the continuation of the
type M associated to a queue with the type T associated to a pure process.
Examples of generalised types are

!〈3, string〉.?(3, date).end and !〈3, string〉; ?(3, date).end,

which only differ for the replacement of the leftmost “.” by “;”. In the first the
type !〈3, string〉 corresponds to an output action sending a string to participant
3, while in the second type !〈3, string〉 corresponds to a message for participant

160 M. Coppo et al.

3 with a value of type string. See the examples of typing judgements at the end
of this subsection.

In the typing rules for single queues the turnstile � is decorated with {s}
(where s is the session name of the current queue) and the session environments
are mappings from channels to message types. The empty queue has the empty
session environment. Each message adds an output type to the current type of
the channel which has the role of the message sender. Table 7 lists the typing
rules for queues, where all types in session environments are message types. The
operator “;” between an arbitrary session environment and a session environment
containing only one association is defined by:

Δ;{s[q] : M} =

{
Δ′, s[q] : M ′;M if Δ = Δ′, s[q] : M ′,
Δ, s[q] : M otherwise.

For example we can derive �{s} s : (3, {1, 2}, ok) � {s[3] : ⊕〈{1, 2}, ok〉}.

Table 7. Typing rules for queues.

(QINIT)
�{s} s : �

�{s} s : h� � v : S
(QSEND)

�{s} s : h · (q,p,v)� ;{s[q] : !〈p,S〉}

�{s} s : h�
(QDELEG)

�{s} s : h · (q,p,s′[p′])� (;{s[q] : !〈p,T〉}),s′[p′] : T

�{s} s : h�
(QSEL)

�{s} s : h · (q,p, l)� ;{s[q] : ⊕〈p, l〉}

For typing pure processes in parallel with queues, we need to use generalised
types in session environments and to add further typing rules.

In order to take into account the structural congruence between queues (see
Table 3) we consider message types modulo the equivalence relation ≈ induced
by the rule:

M ;
〈p, Z〉;
′〈p′, Z〉;M ′ ≈ M ;
′〈p′, Z〉;
〈p, Z〉;M ′ if p
= p′

where
 ∈ {!,⊕} and Z ∈ {U, l}).
The equivalence relation on message types extends to generalised types by:

M ≈ M ′ implies M ; τ ≈ M ′; τ

We say that two session environments Δ and Δ′ are equivalent (notation
Δ ≈ Δ′) if c : τ ∈ Δ and τ
= end imply c : τ ′ ∈ Δ′ with τ ≈ τ ′ and vice versa.
The reason for ignoring end types is that rules (Inact) and (Var) allow to freely
introduce them.

A Gentle Introduction to Multiparty Asynchronous Session Types 161

In composing two session environments we want to put in sequence a message
type and a session type for the same channel with role. For this reason we define
the partial composition ∗ between generalised types as:

τ ∗ τ ′ =

{
τ ; τ ′ if τ is a message type,
τ ′ ; τ if τ ′ is a message type.

Notice that τ ∗ τ ′ is defined only if at least one between τ and τ ′ is a message
type.

We extend ∗ to session environments as expected:

Δ ∗ Δ′ = Δ\dom(Δ′) ∪ Δ′\dom(Δ) ∪ {c : τ ∗ τ ′ || c : τ ∈ Δ ∧ c : τ ′ ∈ Δ′}.

Note that ∗ is commutative, i.e., Δ ∗ Δ′ = Δ′ ∗Δ. Also if we can derive mes-
sage types only for channels with roles, we consider channel variables in the
definition of ∗ for session environments, since we want to get for example that
{y : end}∗{y : end} is undefined (message types do not contain end).

To give the rules for typing processes with queues we introduce consistency
of session environments, which assures that each pair of participants in a multi-
party conversation performs their mutual communications in a consistent way.
Consistency is defined using the notions of projection of generalised types and
of duality, given respectively in Definitions 2 and 3. Notice that projection is not
defined for message types.

Definition 2. The partial projection of the generalised type τ onto q, denoted
by τ � q, is defined by:

(!〈p, U〉.T) � q =

{
!U .T � q if q = p,

T � q otherwise.
(?(p, U).T) � q =

{
?U .T � q if p = q,

T � q otherwise.

(!〈p, U〉; τ ′) � q =

{
!U ; τ ′ � q if q = p,

τ ′ � q otherwise.
(⊕〈p, l〉; τ ′) � q =

{
⊕l; τ ′ � q if q = p,

τ ′ � q otherwise.

(⊕〈p, {li : Ti}i∈I〉) � q =

{
⊕{li : Ti � q}i∈I if q = p,

Ti0 � q where i0 ∈ I if q �= p and Ti � q = Tj � q for all i, j ∈ I.

(&(p, {li : Ti}i∈I)) � q =

{
&{li : Ti � q}i∈I if q = p,

Ti0 � q where i0 ∈ I if q �= p and Ti � q = Tj � q for all i, j ∈ I.

(μt.T) � q =

{
μt.(T � q) if T � q �= t,

end otherwise.
t � q = t end � q = end

Definition 3. The duality relation between projections of generalised types (��)
is the minimal symmetric relation which satisfies:

end �� end t �� t T �� T′ =⇒ μt.T �� μt.T′

T �� T′ =⇒ !U.T �� ?U.T′ T �� T′ =⇒ !U ;T �� ?U.T′

∀i ∈ I Ti �� T′
i =⇒ ⊕{li : Ti}i∈I �� &{li : T′

i}i∈I

∃i ∈ I l = li ∧ T �� Ti =⇒ ⊕l;T �� &{li : Ti}i∈I

where T ranges over projections of generalised types.

Definition 4. A session environment Δ is consistent for the session s (notation
co(Δ, s)) if s[p] : τ ∈ Δ and s[q] : τ ′ ∈ Δ imply τ � q �� τ ′ � p. A session
environment is consistent if it is consistent for all sessions which occur in it.

162 M. Coppo et al.

It is easy to check that projections of a same global type are always dual.

Proposition 1. Let G be a global type and p
= q. Then (G � p) � q �� (G � q) � p.

This proposition assures that session environments obtained by projecting global
types are always consistent.

The vice versa is not true, i.e. there are consistent session environments which
are not projections of global types. An example is:

{s[1] :?(2, bool).!〈3, bool〉.end, s[2] :?(3, bool).!〈1, bool〉.end, s[3] :?(1, bool).!〈2, bool〉.end}

Note that for sessions with only two participants, instead, all consistent session
environments are projections of global types.

Table 8. Typing rules for processes.

� P�
(GINIT)

� P�

� P� ≈ ′
(EQUIV)

� P� ′

� P� � ′ Q� ′ ∩ ′ =
(GPAR)

� ∪ ′ P | Q� ∗ ′

� P� co(,s)
(GSRES)

� \s (s)P� \ s
,a : G � P�

(GNRES)
� (a)P�

,X : S t,x : S � P�{y : T} ,X : S t.T � Q�
(GDEF)

� def X(x,y) = P in Q�

Table 8 lists the typing rules for processes containing queues. The judgement

Γ �Σ P � Δ

means that P contains the queues whose session names are in Σ. Rule (GInit)
promotes the typing of a pure process to the typing of an arbitrary process
without session names, since a pure process does not contain queues. When two
arbitrary processes are put in parallel (rule (GPar)) we need to require that
each session name is associated to at most one queue (condition Σ ∩ Σ′ = ∅).

Examples of derivable judgements are:

�{s} P | s : (3, {1, 2}, ok) � {s[3] : ⊕〈{1, 2}, ok〉; !〈1, string〉.?(1, date).end}
where P = s[3]!〈1, "Address"〉; s[3]?(1, date);0 and

�{s} P ′ | s : (3, {1, 2}, ok)·(3, 1, ”Address”) � {s[3] : ⊕〈{1, 2}, ok〉; !〈1, string〉; ?(1, date).end}

A Gentle Introduction to Multiparty Asynchronous Session Types 163

where P ′ = s[3]?(1, date);0. Note that

P | s : (3, {1, 2}, ok)−→P ′ | s : (3, {1, 2}, ok)·(3, 1, string)

A simple example showing that consistency is necessary for subject reduction
is the process:

P = s[1]!〈2, true〉.s[1]?(2, x).0 | s[2]?(1, x′).s[2]!〈1, x′ + 1〉.0
which can be typed with the non consistent session environment

{s[1] :!〈2, bool〉.?(2, nat).end, s[2] :?(1, nat).!〈1, nat〉.end}
In fact P reduces to the process

s[1]?(2, x).0 | s[2]!〈1, true + 1〉.0
which cannot be typed and it is stuck.

4.4 Subject Reduction

Since session environments represent the forthcoming communications, by reduc-
ing processes session environments can change. This can be formalised as in [43]
by introducing the notion of reduction of session environments, whose rules are:

– {s[p] : M ; !〈q, U〉.T} ⇒ {s[p] : M ; !〈q, U〉;T}
– {s[p] : !〈q, U〉; τ, s[q] : M ; ?(p, U).T} ⇒ {s[p] : τ, s[q] : M ;T}
– {s[p] : M ;⊕〈p, {li : Ti}i∈I〉} ⇒ {s[p] : M ;⊕(p, lj);Tj} for j ∈ I
– {s[p] : ⊕〈q, l〉; τ, s[q] : M ; &(p, {li : Ti}i∈I)} ⇒ {s[p] : τ, s[q] : M ;Ti} if l = li
– Δ,Δ′′ ⇒ Δ′,Δ′′ if Δ ⇒ Δ′

where M can be missing and message types are considered modulo the equiva-
lence relation ≈defined at page 14.

The first rule corresponds to putting in a queue a message with sender p,
receiver q and content of type U . The second rule corresponds to reading from
a queue a message with sender p, receiver q and content of type U . The third
and fourth rules are similar, but a label is transmitted.

Notice that not all the left-hand-sides of the reduction rules for processes are
typed by consistent session environments. For example,

Γ �Σ s[1]?(2, x).s[1]?(2, y).0 | s : (2, 1, true) � {s[1] :?(2, bool).?(2, nat).end, s : [2] : !〈bool, 1〉}

Observe that s[1]?(2, x).s[1]?(2, y).0 | s : (2, 1, true) matches the left-hand-side
of the reduction rule [Rcv] and {s[1] :?(2, bool).?(2, nat).end, s : [2] : !〈bool, 1〉}
is not consistent. The process obtained by putting this network in parallel with
s[2]!〈1, 7〉.0 has a consistent session environment. It is then crucial to show that
if the left-hand-side of a reduction rule is typed by a session environment, which
is consistent when composed with some other session environment, then the
same property holds for the right-hand-side too. It is sufficient to consider the
reduction rules which do not contain process reductions as premises, i.e. which
are the leaves in the reduction trees. This is formalised in the following lemma,
which is the key step for proving the Subject Reduction Theorem.

164 M. Coppo et al.

Lemma 1 (Main Lemma). Let Γ �Σ P � Δ, and P−→P ′ be obtained by any
reduction rule different from [Ctxt], [Str], and Δ ∗ Δ0 be consistent, for some
Δ0. Then there is Δ′ such that Γ �Σ P ′ � Δ′ and Δ ⇒∗ Δ′ and Δ′ ∗ Δ0 is
consistent.

We end this section by formulating subject reduction.

Theorem 1 (Subject Reduction). If Γ �Σ P � Δ with Δ consistent and
P−→∗P ′, then Γ �Σ P ′ � Δ′ for some consistent Δ′ such that Δ ⇒∗ Δ′.

AppendixA proves subject reduction. Note that communication safety and pro-
tocol fidelity easily follow from Theorem 1.

5 Related Work

5.1 Multiparty Session Types

The first theoretical works on multiparty session types are [10,43]. The paper
[10] uses a distributed calculus where each channel connects a master endpoint to
one or more slave endpoints; instead of global types, they solely use (recursion-
free) local types. For type checking, local types are projected to binary sessions,
so that type safety is ensured using duality, but it loses sequencing information:
hence progress in a session interleaved with other sessions is not guaranteed.

In this article we have presented the calculus of [25], which is an essential
improvement and simplification of the calculus in [43]. Both processes and types
in [43] share a vector of channels and each communication uses one of these chan-
nels. In the present work, instead, processes and types use indexes for identifying
the participants of a session.

The communication type system in this article improves the one of [43] in
two main technical points without sacrificing expressiveness. First, it avoids the
overhead of global linearity-check in [43] because our global types automati-
cally satisfy the linearity condition in [43] due to the limitation to bi-directional
channel communications. Second, it provides a more liberal policy in the use
of variables in delegation, since we do not require to delegate a set of session
channels. The global types in [43] have a parallel composition operator, but its
projectability from global to local types limits to disjoint senders and receivers;
hence our global types do not affect the expressivity.

5.2 Theoretical Studies on Multiparty Session Types

Extensions of the original multiparty session types [43] and of the communi-
cation type system in this article have been proposed, often motivated by use
cases resulting from industry applications (Sect. 5.8). Such extensions include: a
subtyping for asynchronous multiparty session types enhancing efficiency [52],
motivated by financial protocols and multicore algorithms; parametrised global
types for parallel programming and Web service descriptions [34]; communica-
tion buffered analysis [30]; extensions to the sumtype and its encoding [61] for

A Gentle Introduction to Multiparty Asynchronous Session Types 165

describing Healthcare workflows; exception handling for multiparty conversa-
tions [15] for Web services and financial protocols; a liveness-preserving refine-
ment for multiparty session types [64].

Multiparty session types can be extended with logical assertions following the
design by contract framework [7]. This framework is enriched in [6] to handle
stateful logical assertions, while [21] offers more fine-grained property analysis
for multiparty session types with these stateful assertions.

In [31] roles are inhabited by an arbitrary number of participants which can
dynamically join and leave a session. The paper [71] shows that the multirole
session types [31] can be naturally represented in a dependent-typed language.

To enhance expressivity and flexibility of multiparty session types, the work
[28] proposes nested, higher-order multiparty session types and the work [18]
studies a generalisation of choices and parallelism. The paper [17] directly types
a global description language [16] by multiparty session types without using
local types. This direct approach can type processes which are untypable in
the original multiparty session typing (i.e. the communication type system in
this article). The paper [51] extends the work in [17] to compositional global
description languages.

As another line of the study, we extend the multiparty session types to express
temporal properties [9]. In this work, the global times are enriched with time
constraints, in a way similar to timed automata.

A type system enforcing a stronger correspondence between nondeterministic
choices expressed in multiparty session types and the behaviour of processes
involved in multiparty sessions has been investigated in [8].

An overview of the recent developments in these studies is the survey in the
state-of-the art report produced by the Foundations Working Group of the IC
COST Action BETTY, entitled “Foundations of Behavioural Types” [45].

5.3 Progress and Session Interleaving

Multiparty session types are a convenient methodology for ensuring progress
of systems of communicating processes. However, progress is only guaranteed
within a single session [31,35,43], but not when multiple sessions are interleaved.
The first papers considering progress for interleaved sessions required the nesting
of sessions in Java [24,36]. These systems can guarantee progress for only one
single active binary session. The work [25] develops a static interaction type
system for global progress in dynamically interleaved and interfered multiparty
sessions. A type inference algorithm for this system has been studied in [22],
although for finite types only. The work [63, technical report] presents a type
system for the linear π-calculus that can ensure progress even in presence of
session interleaving, exploiting an encoding similar to that described in [27] of
sessions into the linear π-calculus. However, not all multiparty sessions can be
encoded into well-typed linear π-calculus processes. In this respect, the richer
structure of multiparty session types increases the range of systems for which
non-trivial properties such as progress can be guaranteed.

166 M. Coppo et al.

5.4 Security

Enforcement of integrity properties in multiparty sessions, using session types,
has been studied in [4,67]. These papers propose a compiler which, given a mul-
tiparty session description, implements cryptographic protocols that guarantee
session execution integrity.

The work [14] and in its extended version [12] propose a session type system
for a calculus of multiparty sessions enriched with security levels, adding access
control and secure information flow requirements in the typing rules, and show
that this type system guarantees preservation of data confidentiality during ses-
sion execution. In [13] this calculus is equipped with a monitored semantics,
which blocks the execution of processes as soon as they attempt to leak infor-
mation, raising an error.

Various approaches for enforcing security into calculi and languages for struc-
tured communications have been recently surveyed in the state-of-the art report
produced by the Security Working Group of the IC COST Action BETTY,
entitled “Combining Behavioural Types with Security Analysis” [2].

5.5 Behavioural Semantics

Typed behavioural theory has been one of the central topics in the study of the
π-calculus throughout its history, for example, reasoning about various encod-
ings into the typed π-calculi [47,65,74]. In the context of typed bisimulations
and reduction-closed theories, the work [46] shows that unique behavioural the-
ories can be constructed based on the multiparty session types. The behavioural
theory in [46] treats the mutual effects of multiple choreographic sessions which
are shared among distributed participants as their common knowledge or agree-
ments, reflecting the origin of choreographic frameworks [73]. These features
related to multiparty session type discipline make the theory distinct from any
type-based bisimulations in the literature and also applicable to a real choreo-
graphic usecase from a large-scale distributed system. This bisimulation is called
globally governed, since it uses global multiparty specifications to regulate the
conversational behaviour of distributed processes.

5.6 Runtime Monitoring and Adaptation

Multiparty session types were originally developed to be used for static type
checking of communicating processes. Via collaborations with Ocean Observa-
tories Initiative [62], it was discovered that the framework of multiparty session
types can be naturally extended to runtime type checking (monitoring). A for-
mulation of the runtime monitoring (dynamic or runtime type checking) is firstly
proposed in [20]. Later the work [5] has formally proved its correctness and prop-
erties guaranteed by the runtime monitoring based on multiparty session types.
See Sect. 5.8.

Works addressing adaptation for multiparty communications include [19,23,
26]. The paper [26] proposes a choreographic language for distributed applica-
tions. Adaptation follows a rule-based approach, in which all interactions, under

A Gentle Introduction to Multiparty Asynchronous Session Types 167

all possible changes produced by the adaptation rules, proceed as prescribed
by an abstract model. In [23] a calculus based on global types, monitors and
processes is introduced and adaptation is triggered after the execution of the
communications prescribed by a global type, in reaction to changes of the global
state. In contrast, in [19] adaptation is triggered by security violations, and as-
sures access control and secure information flow.

5.7 Linkages with Other Frameworks

The work [32] gives a linkage between communicating automata [11] and a
general graphical version of multiparty session types, proving a correspondence
between the safety properties of communicating automata and multiparty ses-
sion types. The paper [33] studies the sound and complete characterisation of
the multiparty session types in communicating automata and applies the result
to the synthesis of the multiparty session types. The inference of global types
from a set of local types is also studied in [48]. The techniques developed in
[33,48] are extended to a synthesis of general graphical multiparty session types
in [49].

The recent work [37] studies the relationship of multiparty session types with
Petri Nets. It proposes a conformance relation between global session nets and
endpoint programs, and proves its safety.

5.8 Implementations Based on Multiparty Session Types

The research group led by the last author is currently designing and implement-
ing a modelling and specification language with multiparty session types [68,69]
in collaboration with some industrial partners [40,41]. This protocol language is
called Scribble. An article [75] also explains the origin and recent development
on Scribble.

Java protocol optimisation [70] based on multiparty session types and gen-
eration of multiparty cryptographic protocols [4] are also studied. The multi-
party session type theory is applied to Healthcare workflows [38]. Its prototype
implementation (the multiparty session π-processes with sumtypes) is available
from [1].

Based on the runtime type checking theory, we are implementing a run-
time monitoring [29,44,55] under collaborations with Ocean Observatories Ini-
tiative [62]. The work [29,44] allows interruptions in Scribble and proves the
correctness of this extension. Further we generalise the Python implementation
to the Actor framework [54]. In order to express temporal properties studied in
timed multiparty session types [9], the work [53] extends Scribble with timed
constrains and implements the runtime monitoring in Python.

We also apply the multiparty session types to high-performance parallel pro-
gramming in C [58,60] and MPI [57]. A parametrised version of Scribble [57,59]
based on the theory of parametrised multiparty session types [34] is developed.
This extension, called Pabble, is used for automatically generating MPI parallel
programs from sequential C code in [56].

168 M. Coppo et al.

Acknowledgements. The research reported in this chapter has been partially sup-
ported by COST IC1201. The first three authors have been partially supported by
MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino University/Compagnia
San Paolo Project SALT. The last author has been partially supported by EPSRC
EP/K011715/01, EP/K034413/01 and EP/L00058X/1 and the EU project FP7-612985
UpScale.

A Properties of the Communication Type System

This appendix completes the description of the communication type system given
in Sect. 4. Auxiliary lemmas, in particular inversion lemmas, are the content of
Sect. A.1. Lastly Sect. A.2 proves subject reduction.

A.1 Auxiliary Lemmas

We start with inversion lemmas which can be easily shown by induction on
derivations.

Lemma 2 (Inversion Lemma for Pure Processes).

1. If Γ � u : S, then u : S ∈ Γ .
2. If Γ � true : S, then S = bool.
3. If Γ � false : S, then S = bool.
4. If Γ � e1 and e2 : S, then Γ � e1 : bool and Γ � e2 : bool and S = bool.
5. If Γ � a [p](y).P � Δ, then Γ � a : G and Γ � P � Δ, y:G � p and p = mp(G).
6. If Γ � a[p](y).P � Δ, then Γ � a : G and Γ � P � Δ, y:G � p and p < mp(G).
7. If Γ � c!〈p, e〉.P � Δ, then Δ = Δ′, c : !〈p, S〉.T and Γ � e : S and

Γ � P � Δ′, c : T .
8. If Γ � c?(q, x).P � Δ, then Δ = Δ′, c : ?(q, S).T and Γ, x : S � P � Δ′, c : T .
9. If Γ � c!〈〈p, c′〉〉.P � Δ, then Δ = Δ′, c : !〈p,T〉.T, c′ : T and Γ � P � Δ′, c : T .

10. If Γ � c?((q, y)).P � Δ, then Δ = Δ′, c : ?(q,T).T and Γ � P � Δ′, c : T, y : T.
11. If Γ � c ⊕ 〈p, lj〉.P � Δ, then Δ = Δ′, c : ⊕〈p, {li : Ti}i∈I〉 and Γ � P � Δ′, c :

Tj and j ∈ I.
12. If Γ � c&(p, {Li : Pi}i∈I) � Δ, then Δ = Δ′, c : &(p, {li : Ti}i∈I) and

Γ � Pi � Δ′, c : Ti ∀i ∈ I.
13. If Γ � P | Q � Δ, then Δ = Δ′,Δ′′ and Γ � P � Δ′ and Γ � Q � Δ′′.
14. If Γ � if e then P else Q � Δ, then Γ � e : bool and Γ � P � Δ and Γ � Q � Δ.
15. If Γ � 0 � Δ, then Δ end only.
16. If Γ � (νa)P � Δ, then Γ, a : G � P � Δ.
17. If Γ � X〈e, c〉 � Δ, then Γ = Γ ′,X : S T and Δ = Δ′, c : T and Γ � e : S

and Δ′ end only.
18. If Γ � def X(x, y) = P in Q � Δ, then Γ,X : S t, x : S � P � {y : T} and

Γ,X : S μt.T � Q � Δ.

A Gentle Introduction to Multiparty Asynchronous Session Types 169

Lemma 3 (Inversion Lemma for Processes).

1. If Γ �Σ P � Δ and P is a pure process, then Σ = ∅ and Γ � P � Δ.
2. If Γ �Σ s : h � Δ, then Σ = {s}.
3. If Γ �{s} s : φ � Δ, then Δ end only.
4. If Γ �{s} s : h · (q, p, v)�Δ, then Δ ≈ Δ′; {s[q] : !〈p, S〉} and Γ �{s} s : h�Δ′

and Γ � v : S.
5. If Γ �{s} s : h · (q, p, s ′[p′]) � Δ, then Δ ≈ (Δ′;{s[q] : !〈p,T〉}), s ′[p′] : T and

Γ �{s} s : h � Δ′.
6. IfΓ �{s} s : h · (q, p, l) � Δ, thenΔ ≈ Δ′;{s[q] : ⊕〈p, l〉} andΓ �{s} s : h � Δ′.
7. If Γ �Σ P | Q � Δ, then Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = ∅ and Δ = Δ1 ∗ Δ2

and Γ �Σ1 P � Δ1 and Γ �Σ2 Q � Δ2.
8. If Γ �Σ (νs)P � Δ, then Σ = Σ′ \ s and Δ = Δ′ \ s and co(Δ′, s) and

Γ �Σ′ P � Δ′.
9. If Γ �Σ (νa)P � Δ, then Γ, a : G �Σ P � Δ.

10. If Γ �Σ def X(x, y) = P in Q � Δ, then Γ,X : S t, x : S � P � y : T and
Γ,X : S μt.T �Σ Q � Δ.

The following lemma allows to characterise the types due to the messages which
occur in queues. The proof is standard by induction on the lengths of queues.

Lemma 4.

1. If Γ �{s} s : h1 · (q, p, v) · h2 � Δ, then Δ = Δ1 ∗ {s[q] : !〈p, S〉} ∗ Δ2 and
Γ �{s} s : hi � Δi (i = 1, 2) and Γ � v : S.
Vice versa Γ �{s} s : hi � Δi (i = 1, 2) and Γ � v : S imply

Γ �{s} s : h1 · (q, p, v) · h2 � Δ1∗{s[q] : !〈p, S〉}∗Δ2.

2. If Γ �{s} s : h1 · (q, p, s ′[p′]) · h2 � Δ, then
Δ = (Δ1∗{s[q] : !〈p,T〉}∗Δ2), s ′[p′] : T and Γ �{s} s : hi � Δi (i = 1, 2).
Vice versa Γ �{s} s : hi � Δi (i = 1, 2) imply

Γ �{s} s : h1 · (q, p, s ′[p′]) · h2 � (Δ1∗{s[q] : !〈p,T〉}∗Δ2), s ′[p′] : T.

3. If Γ �{s} s : h1 · (q, p, l) · h2 � Δ, then Δ = Δ1∗{s[q] : ⊕〈p, l〉}∗Δ2 and
Γ �{s} s : hi � Δi (i = 1, 2).
Vice versa Γ �{s} s : hi � Δi (i = 1, 2) imply

Γ �{s} s : h1 · (q, p, l) · h2 � Δ1∗{s[q] : ⊕〈p, l〉}∗Δ2.

We end this subsection with two classical results: type preservation under sub-
stitution and under equivalence of processes.

170 M. Coppo et al.

Lemma 5 (Substitution Lemma).

1. If Γ, x : S � P � Δ and Γ � v : S, then Γ � P{v/x} � Δ.
2. If Γ � P � Δ, y : T , then Γ � P{s[p]/y} � Δ, s[p] : T .

Proof. Standard induction on type derivations, with a case analysis on the last
applied rule. ��
Theorem 2 (Type Preservation Under Equivalence). If Γ �Σ P � Δ and
P ≡ P ′, then Γ �Σ P ′ � Δ.

Proof. By induction on ≡. We only consider some interesting cases (the other
cases are straightforward).

– P | 0 ≡ P . First we assume Γ �Σ P � Δ. From Γ �∅ 0 � ∅ by applying (GPar)
to these two sequents we obtain Γ �Σ P |0 � Δ.

For the converse direction assume Γ �Σ P |0 � Δ. Using 3(7) we obtain:
Γ �Σ1 P � Δ1, Γ �Σ2 0 � Δ2, where Δ = Δ1∗Δ2, Σ = Σ1 ∪ Σ2 and Σ1 ∩
Σ2 = ∅. Using 3(1) we get Σ2 = ∅, which implies Σ = Σ1, and Γ � 0 � Δ2.
Using 2(15) we get Δ2 end only which implies Δ1 ≈ Δ1∗Δ2, so we conclude
Γ �Σ P � Δ1∗Δ2 by applying (Equiv).

– P | Q ≡ Q | P . By the symmetry of the rule we have to show only one direction.
Suppose Γ �Σ P | Q � Δ. Using 3(7) we obtain Γ �Σ1 P � Δ1, Γ �Σ2 Q � Δ2,
where Δ = Δ1∗Δ2, Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = ∅. Using (GPar) we get
Γ �Σ Q | P � Δ2∗Δ1. Thanks to the commutativity of ∗, we get Δ2∗Δ1 = Δ
and so we are done.

– P | (Q | R) ≡ (P | Q) | R. Suppose Γ �Σ P | (Q | R) � Δ. Using 3(7) we
obtain Γ �Σ1 P � Δ1, Γ �Σ2 Q | R � Δ2, where Δ = Δ1∗Δ2, Σ = Σ1 ∪ Σ2

and Σ1 ∩ Σ2 = ∅. Using 3(7) we obtain Γ �Σ21 Q � Δ21, Γ �Σ22 R � Δ22

where Δ2 = Δ21∗Δ22, Σ2 = Σ21 ∪ Σ22 and Σ21 ∩ Σ22 = ∅. Using
(GPar) we get Γ �Σ1∪Σ21 P | Q � Δ1∗Δ21. Using (GPar) again we get
Γ �Σ (P | Q) | R � Δ1∗Δ21∗Δ22 and so we are done by the associativity of ∗.
The proof for the other direction is similar.

– s : h1 · (q, p, v) · (q′, p′, v ′) · h2 ≡ s : h1 · (q′, p′, v ′) · (q, p, v) · h2 where p
= p′

or q
= q′. We assume p
= p′ and q = q′, the proof in the case q
=
q′ being similar and simpler. If Γ �Σ s : h1 · (q, p, v) · (q, p′, v ′) · h2 � Δ, then
Σ = {s} by Lemma 3(2). This implies Δ = Δ1∗{s[q] : !〈p, S〉; !〈p′, S′〉}∗Δ2

and Γ �{s} s : hi � Δi (i = 1, 2) and Γ � v : S and Γ � v′ : S′ by Lemma 4(1).
By the same lemma we can derive

Γ �{s} s : h1 · (q, p′, v ′) · (q, p, v) · h2 � Δ1∗{s[q] : !〈p′, S′〉; !〈p, S〉}∗Δ2,

and we conclude using rule (Equiv), since by definition

Δ1∗{s[q] : !〈p′, S′〉; !〈p, S〉}∗Δ2 ≈ Δ. ��

A Gentle Introduction to Multiparty Asynchronous Session Types 171

A.2 Proof of Subject Reduction

We show the Main Lemma first and then the Subject Reduction Theorem.

Lemma 1 (Main Lemma). Let Γ �Σ P � Δ, and P−→P ′ be obtained by any
reduction rule different from [Ctxt], [Str], and Δ ∗ Δ0 be consistent, for some Δ0.
Then there is Δ′ such that Γ �Σ P ′ � Δ′ and Δ ⇒∗ Δ′ and Δ′ ∗Δ0 is consistent.

Proof. The proof is by cases on process reduction rules. We only consider some
paradigmatic cases.

– [Init]a[1](y).P1 | ... | a [n](y).Pn −→(νs)(P1{s[1]/y1} | ... | Pn{s[n]/y} | s : φ).
By hypothesis Γ �Σ a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn � Δ; then,

since the redex is a pure process, Σ = ∅ and Γ � a[1](y).P1 | a[2](y2).P2 | . . . �
� | a [n](y).Pn � Δ by Lemma 3(1). Using Lemma 2(13) on all the processes in
parallel we have

Γ � a[i](y).Pi � Δi (1 ≤ i ≤ n − 1) (1)
Γ � a [n](y).Pn � Δn (2)

where Δ =
⋃n

i=1 Δi. Using Lemma 2(6) on (1) we have

Γ � a : G
Γ � Pi � Δi, y:G � i (1 ≤ i ≤ n − 1). (3)

Using Lemma 2(5) on (2) we have

Γ � a : G
Γ � Pn � Δn, y : G � n (4)

and mp(G) = n. Using Lemma 5(2) on (4) and (3) we have

Γ � Pi{s[i]/y} � Δi, s[i] : G � i (1 ≤ i ≤ n). (5)

Using (Par) on all the processes of (5) we have

Γ � P1{s[1]/y}|...|Pn{s[n]/y} �
⋃n

i=1(Δi, s[i] : G � i). (6)

Note that
⋃n

i=1(Δi, s[i]:G � i) = Δ, s[1]:G � 1, . . . , s[n]:G � n. Using (GInit),
(QInit) and (GPar) on (6) we derive

Γ �{s} P1{s[1]/y}|...|Pn{s[n]/y} | s : φ � Δ, s[1]:G � 1, . . . , s[n]:G � n. (7)

Using (GSRes) on (7) we conclude

Γ �∅ (νs)(P1{s[1]/y}|...|Pn{s[n]/y} | s : φ) � Δ

since {s[1]:G � 1, . . . , s[n]:G � n} is consistent and

(Δ, s[1]:G � 1, . . . , s[n]:G � n) \ s = Δ.

172 M. Coppo et al.

– [Send] s[p]!〈q, e〉.P | s : h−→P | s : h · (p, q, v) (e ↓ v).
By hypothesis, Γ �Σ s[p]!〈q, e〉.P | s : h � Δ. Using Lemma 3(7), (1), and (2)

we have Σ = {s} and

Γ � s[p]!〈q, e〉.P � Δ1 (8)
Γ �{s} s : h � Δ2 (9)

where Δ = Δ2∗Δ1. Using 2(7) on (8) we have

Δ1 = Δ′
1, s[p] : !〈q, S〉.T

Γ � e : S (10)
Γ � P � Δ′

1, s[p] : T . (11)

From (10) by subject reduction on expressions we have

Γ � v : S. (12)

Using (QSend) on (9) and (12) we derive

Γ �{s} s : h · (p, q, v) � Δ2;{s[p] : !〈q, S〉}. (13)

Using (GInit) on (11) we derive

Γ �∅ P � Δ′
1, s[p] : T (14)

and then using (GPar) on (14), (13) we conclude

Γ �{s} P | s : h · (p, q, v) � (Δ2;{s[p] : !〈q, S〉})∗(Δ′
1, s[p] : T).

Note that Δ2∗(Δ′
1, s[p] : !〈q, S〉.T) ⇒ (Δ2;{s[p] : !〈q, S〉})∗(Δ′

1, s[p] : T)
and the consistency of (Δ2∗(Δ′

1, s[p] : !〈q, S〉.T))∗Δ0 implies the consistency
of ((Δ2;{s[p] : !〈q, S〉})∗(Δ′

1, s[p] : T))∗Δ0.

– [Rcv] s[p]?(q, x).P | s : (q, {p}, v) · h−→P{v/x} | s : h.
Byhypothesis,Γ �Σ s[p]?(q, x).P | s : (q, {p}, v) · h � Δ.ByLemma3(7), (1),

and (2) we have Σ = {s} and

Γ � s[p]?(q, x).P � Δ1 (15)
Γ �{s} s : (q, {p}, v) · h � Δ2 (16)

where Δ = Δ2∗Δ1. Using Lemma 2(8) on (15) we have

Δ1 = Δ′
1, s[p] : ?(q, S).T

Γ, x : S � P � Δ′
1, s[p] : T (17)

Using Lemma 4(1) on (16) we have

Δ2 = {s[q] : !〈{p}, S′〉}∗Δ′
2

Γ �{s} s : h � Δ′
2 (18)

Γ � v : S′. (19)

A Gentle Introduction to Multiparty Asynchronous Session Types 173

The consistency of Δ∗Δ0 implies S = S′. Using Lemma 5(1) from (17) and (19)
we get
Γ � P{v/x} � Δ′

1, s[p] : T , which implies by rule (GInit)

Γ �∅ P{v/x} � Δ′
1, s[p] : T . (20)

Using rule (GPar) on (20) and (18) we conclude

Γ �{s} P{v/x} | s : h � Δ′
2∗(Δ′

1, s[p] : T).

Note that ({s[q] : !〈{p}, S〉}∗Δ′
2) ∗ (Δ′

1, s[p] : ?(q, S);T) ⇒ Δ′
2 ∗ (Δ′

1, s[p] : T)
and the consistency of (({s[q] : !〈{p}, S〉} ∗ Δ′

2) ∗ (Δ′
1, s[p] : ?(q, S);T)) ∗ Δ0

implies the consistency of (Δ′
2 ∗ (Δ′

1, s[p] : T)) ∗ Δ0.

– [Sel] s[p] ⊕ 〈p, l〉.P | s : h−→P | s : h · (p, q, l).
By hypothesis, Γ �Σ s[p] ⊕ 〈q, l〉.P | s : h � Δ. Using Lemma 3(7), (1), and

(2) we have Σ = {s} and

Γ � s[p] ⊕ 〈q, l〉.P � Δ1 (21)
Γ �{s} s : h � Δ2 (22)

where Δ = Δ2 ∗ Δ1. Using Lemma 2(2) on (21) we have for l = lj (j ∈ I):

Δ1 = Δ′
1, s[p] : ⊕〈q, {li : Ti}i∈I〉

Γ � P � Δ′
1, s[p] : Tj . (23)

Using rule (QSel) on (22) we derive

Γ �{s} s : h · (p, q, l) � Δ2;{s[p] : ⊕〈q, l〉}. (24)

Using (GPar) on (23) and (24) we conclude

Γ �{s} P | s : h · (p, q, l) � (Δ2;{s[p] : ⊕〈q, l〉})∗(Δ′
1, s[p] : Tj).

Note thatΔ2 ∗ (Δ′
1, s[p] : ⊕〈q, {li : Ti}i∈I〉) ⇒ (Δ2;{s[p] : ⊕〈q, l〉}) ∗ (Δ′

1, s[p] :
Tj) and the consistency of (Δ2 ∗ (Δ′

1, s[p] : ⊕〈q, {li : Ti}i∈I〉)) ∗ Δ0 implies the
consistency of ((Δ2;{s[p] : ⊕〈q, l〉}) ∗ (Δ′

1, s[p] : Tj)) ∗ Δ0.

– [Branch] s[p]&(q, {Li : Pi}i∈I) | s : (q, {p}, lj) · h−→Pj | s : h.
By hypothesis, Γ �Σ s[p]&(q, {Li : Pi}i∈I) | s : (q, {p}, lj) · h � Δ. Using

Lemma 3(7), (1), and (2) we have Σ = {s} and

Γ � s[p]&(q, {Li : Pi}i∈I) � Δ1 (25)
Γ �{s} s : (q, {p}, lj) · h � Δ2 (26)

where Δ = Δ2 ∗ Δ1. Using Lemma 2(12) on (25) we have

Δ1 = Δ′
1, s[p] : &(q, {li : Ti}i∈I)

Γ � Pi � Δ′
1, s[p] : Ti ∀i ∈ I. (27)

174 M. Coppo et al.

Using Lemma 4(3) on (26) we have

Δ2 = {s[q] : ⊕〈p, lj〉} ∗ Δ′
2

Γ �{s} s : h � Δ′
2. (28)

Using (GPar) on (27) and (28) we conclude

Γ �{s} Pj | s : h � Δ′
2 ∗ (Δ′

1, s[p] : Tj).

Note that

({s[q] : ⊕〈p, lj〉} ∗ Δ′
2) ∗ (Δ′

1, s[p] : &(q, {li : Ti}i∈I)) ⇒ Δ′
2 ∗ (Δ′

1, s[p] : Tj).

and the consistency of (({s[q] :⊕〈p, lj〉}∗Δ′
2) ∗ (Δ′

1, s[p] :&(q, {li :Ti}i∈I))) ∗ Δ0

implies the consistency of (Δ′
2 ∗ (Δ′

1, s[p] : Tj)) ∗ Δ0 for j ∈ I ��
Theorem 1 (Subject Reduction). If Γ �Σ P � Δ with Δ consistent and
P−→∗P ′, then Γ �Σ P ′ � Δ′ for some consistent Δ′ such that Δ ⇒∗ Δ′.

Proof. Let P ≡ E [P0] and P ′ ≡ E [P ′
0], where P0−→P ′

0 by one of the rules
considered in Lemma 1. By structural equivalence we can assume E=(−→νa)(

−−−−−−→
def D in

(−→νs)([] | P1)) without loss of generality. Theorem 2 and Lemma 3(9), (10)
and (8) applied to Γ �Σ P � Δ give Γ,

−−→
a : G,

−−−−−−−→
X : S μt.T �Σ0 P0 � Δ0, and

Γ,
−−→
a : G,

−−−−−−−→
X : S μt.T �Σ1 P1 � Δ1 and

−−−−−−−−−−−−−−−−−−−−−−→
Γ,

−−→
a : G,X : S t � Q � {y : T}, where−→

D =
−−−−−−−−→
X(x, y) = Q, Σ = (Σ0 ∪ Σ1) \ −→s and Δ = (Δ0 ∗ Δ1) \ −→s . The consis-

tency of Δ implies the consistency of Δ0 ∗ Δ1 by Lemma 3(8). By Lemma 1 there
is Δ′

0 such that Γ,
−−→
a : G,

−−−−−−−→
X : S μt.T �Σ0 P ′

0 � Δ′
0 and Δ0 ⇒∗ Δ′

0 and Δ′
0 ∗ Δ1 is

consistent. We derive Γ �Σ P ′ � Δ′, where Δ′ = (Δ0 ∗ Δ′
1)\−→s by applying typing

rules (GPar), (GSRes), (GDef) and (GNRes). Observe that Δ ⇒∗ Δ′ and Δ′

is consistent. ��

References

1. Apims (2014). http://thelas.dk/index.php?title=Apims
2. Bartoletti, M., Castellani, I., Deniélou, P.-M., Dezani-Ciancaglini, M., Ghilezan,

S., Pantovic, J., Pérez, J.A., Thiemann, P., Toninho, B., Vieira, H.T.: Combining
behavioural types with security analysis (2014, Submitted for Journal Publication)

3. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008)

4. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: Mitchell, J.C. (ed.)
CSF 2009, pp. 124–140. IEEE Computer Society Press, Los Alamitos (2009)

5. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

http://thelas.dk/index.php?title=Apims

A Gentle Introduction to Multiparty Asynchronous Session Types 175

6. Bocchi, L., Demangeon, R., Yoshida, N.: A multiparty multi-session logic. In:
Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 97–111.
Springer, Heidelberg (2013)

7. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

8. Bocchi, L., Melgratti, H., Tuosto, E.: Resolving non-determinism in choreographies.
In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 493–512. Springer,
Heidelberg (2014)

9. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014)

10. Bonelli, E., Compagnoni, A.B.: Multipoint session types for a distributed calcu-
lus. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256.
Springer, Heidelberg (2008)

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30,
323–342 (1983)

12. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Typing access control and
secure information flow in sessions. Inf. Comput. 238, 68–105 (2014)

13. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in
multiparty sessions. Math. Struct. Comput. Sci. 1–43 (2015). http://journals.
cambridge.org/article S0960129514000619

14. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session types for
access and information flow control. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 237–252. Springer, Heidelberg (2010)

15. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions.
Math. Struct. Comput. Sci. 1–50 (2015). http://journals.cambridge.org/article
S0960129514000164

16. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

17. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 263–
274. ACM, New York (2013)

18. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods Comput. Sci. 8(1), 24 (2012)

19. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty structured communications: a unified perspective. In:
Carbone, M. (ed.) BEAT 2014. EPTCS, vol. 162, pp. 9–18 (2014)

20. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012)

21. Chen, T.-C., Honda, K.: Specifying stateful asynchronous properties for distributed
programs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 209–224. Springer, Heidelberg (2012)

22. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of global
progress properties for dynamically interleaved multiparty sessions. In: De Nicola,
R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer,
Heidelberg (2013)

23. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive multiparty sessions.
SOCA 1–20 (2014). http://dx.doi.org/10.1007/s11761-014-0171-9

http://journals.cambridge.org/article_S0960129514000619
http://journals.cambridge.org/article_S0960129514000619
http://journals.cambridge.org/article_S0960129514000164
http://journals.cambridge.org/article_S0960129514000164
http://dx.doi.org/10.1007/s11761-014-0171-9

176 M. Coppo et al.

24. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous session types and
progress for object oriented languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.)
FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

25. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress
for dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 1–65
(2015). http://journals.cambridge.org/article S0960129514000188

26. Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli, M.: AIOCJ:
a choreographic framework for safe adaptive distributed applications. In: Combe-
male, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706,
pp. 161–170. Springer, Heidelberg (2014)

27. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: De Schreye,
D., Janssens, G., King, A. (eds.) PPDP 2012, pp. 139–150. ACM Press, New york
(2012)

28. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer,
Heidelberg (2012)

29. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Formal Methods Syst. Des. 1–29 (2014). http://dx.doi.org/10.1007/
s10703-014-0218-8

30. Deniélou, P.-M., Yoshida, N.: Buffered communication analysis in distributed mul-
tiparty sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 343–357. Springer, Heidelberg (2010)

31. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv,
M. (eds.) POPL 2011, pp. 435–446. ACM Press, New York (2011)

32. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

33. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 174–186. Springer, Heidelberg (2013)

34. Deniélou, P.-M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Logical Methods Comput. Sci. 8(4), 1–46 (2012)

35. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010)

36. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

37. Fossati, L., Hu, R., Yoshida, N.: Multiparty session nets. In: Maffei, M., Tuosto,
E. (eds.) TGC 2014. LNCS, vol. 8902, pp. 112–127. Springer, Heidelberg (2014)

38. Henriksen, A.S., Nielsen, L., Hildebrandt, T.T., Yoshida, N., Henglein, F.: Trust-
worthy pervasive healthcare services via multiparty session types. In: Weber, J.,
Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 124–141. Springer, Heidelberg
(2013)

39. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

40. Honda, K., Hu, R., Neykova, R., Chen, T.-C., Demangeon, R., Deniélou, P.-
M., Yoshida, N.: Structuring Communication with session types. In: Agha, G.,

http://journals.cambridge.org/article_S0960129514000188
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.1007/s10703-014-0218-8

A Gentle Introduction to Multiparty Asynchronous Session Types 177

Igarashi, A., Kobayashi, N., Masuhara, H., Matsuoka, S., Shibayama, E., Taura,
K. (eds.) Concurrent Objects and Beyond. LNCS, vol. 8665, pp. 105–127. Springer,
Heidelberg (2014)

41. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

42. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

43. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL’08, pp. 273–284. ACM Press, New York
(2008)

44. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 130–148. Springer, Heidelberg (2013)

45. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.-M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of Behavioural Types (2014). Submitted for journal publication

46. Kouzapas, D., Yoshida, N.: Globally governed session semantics. Logical Methods
Comput. Sci. 10, 1–45 (2015)

47. Kouzapas, D., Yoshida, N., Raymond, H., Honda, K.: On asynchronous eventful
session semantics. Math. Struct. Comput. Sci. 29, 1–62 (2015)

48. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012)

49. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 221–232.
ACM Press, New York (2015)

50. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

51. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 425–
439. Springer, Heidelberg (2013)

52. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

53. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: Carbone, M. (eds.) BEAT 2014. EPTCS, vol. 162, pp. 19–26
(2014)

54. Neykova, R., Yoshida, N.: Multiparty session actors. In: Kühn, E., Pugliese, R.
(eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 131–146. Springer, Heidelberg
(2014)

55. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer,
Heidelberg (2013)

56. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default: safe MPI
code generation based on session types. In: Franke, B. (ed.) CC 2015. LNCS, vol.
9031, pp. 212–232. Springer, Heidelberg (2015)

57. Ng, N., Yoshida, N.: Pabble: parameterised Scribble. SOCA 1–16 (2014). http://
dx.doi.org/10.1007/s11761-014-0172-8

http://dx.doi.org/10.1007/s11761-014-0172-8
http://dx.doi.org/10.1007/s11761-014-0172-8

178 M. Coppo et al.

58. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

59. Ng, N., Yoshida, N., Luk, W.: Scalable session programming for heterogeneous
high-performance systems. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 82–98. Springer, Heidelberg (2014)

60. Ng, N., Yoshida, N., Niu, X.Y., Tsoi, K.H., Luk, W.: Session types: towards safe
and fast reconfigurable programming. SIGARCH CAN 40, 22–27 (2012)

61. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: Fröschle,
S.B., Valencia, F.D. (eds.) EXPRESS 2010. EPTCS, vol. 41, pp. 121–135 (2010)

62. Ocean Observatories Initiative (2010). http://www.oceanleadership.org/
programs-and-partnerships/ocean-observing/ooi/

63. Padovani, L.: Deadlock and Lock Freedom in the Linear π-Calculus.
In: Henzinger, T.A., Miller, D. (eds.) CSL-LICS 2014, pp. 72:1–72:10.
ACM Press, New York (2014). Extended technical report available at
http://hal.archives-ouvertes.fr/hal-00932356v2/document

64. Padovani, L.: Fair subtyping for multi-party session types. Math. Struct. Comput.
Sci. 1–41 (2015). http://journals.cambridge.org/article S096012951400022X

65. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. J. Math.
Struct. Comput. SCi. 6(5), 409–454 (1996)

66. Benjamin, C.: Types and Programming Languages. MIT Press, Cambridge (2002)
67. Planul, J., Corin, R., Fournet, C.: Secure enforcement for global process specifica-

tions. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp.
511–526. Springer, Heidelberg (2009)

68. Savara. SAVARA JBoss RedHat Project (2010). http://www.jboss.org/savara
69. Scribble. Scribble JBoss RedHat Project (2008). http://www.jboss.org/scribble
70. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient session type

guided distributed interaction. In: Clarke, D., Agha, G. (eds.) COORDINATION
2010. LNCS, vol. 6116, pp. 152–167. Springer, Heidelberg (2010)

71. Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Chakravarty, M.M.T.,
Hu, Z., Danvy, O. (eds.) ICFP 2011, pp. 266–278. ACM Press, New York (2011)

72. UNIFI. International Organization for Standardization ISO 20022 UNIversal
Financial Industry message scheme (2002). http://www.iso20022.org

73. Web Services Choreography Working Group. Web Services Choreography Descrip-
tion Language (2002). http://www.w3.org/2002/ws/chor/

74. Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V.
(eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)

75. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Heidelberg (2014)

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://hal.archives-ouvertes.fr/hal-00932356v2/document
http://journals.cambridge.org/article_S096012951400022X
http://www.jboss.org/savara
http://www.jboss.org/scribble
http://www.iso20022.org
http://www.w3.org/2002/ws/chor/

Refined Ownership:

Fine-Grained Controlled Internal Sharing

Elias Castegren, Johan Östlund(B), and Tobias Wrigstad

Uppsala University, Uppsala, Sweden
{elias.castegren,johan.ostlund,tobias.wrigstad}@it.uu.se

Abstract. Ownership type systems give a strong notion of separation
between aggregates. Objects belonging to different owners cannot be
aliased, and thus a mutating operation internal to one object is guaran-
teed to be invisible to another. This naturally facilitates reasoning about
correctness on a local scale, but also proves beneficial for coarse-grained
parallelism as noninterference between statements touching different
objects is easily established. For fine-grained parallelism, ownership types
fall short as owner-based disjointness only allows separation of the innards
of different aggregates, which is very coarse-grained. Concretely: own-
ership types can reason about the disjointness of two different data
structures, but cannot reason about the internal structure or disjoint-
ness within the data structure, without resorting to static and overly
constraining measures. For similar reasons, ownership fails to determine
internal disjointness of external pointers to objects that share a common
owner.

In this paper, we introduce the novel notion of refined ownership which
overcomes these limitations by allowing precise local reasoning about a
group of objects even though they belong to the same external owner.
Using refined ownership, we can statically check determinism of parallel
operations on tree-shaped substructures of a data structure, including
operations on values external to the structure, without imposing any
non-local alias restrictions.

1 Introduction

Ownership types [10,15] and related notions [29] have been used to solve practi-
cal problems in recent years, including simplifying concurrent and parallel pro-
gramming in Java-like languages (e.g., [4,12,17,27]). With ownership types, the
heap is partitioned hierarchically into nested regions of memory, called con-
texts in ownership parlance. A region’s contents is isolated from all external
regions, giving rise to a strong notion of disjointness useful e.g., to guarantee
non-interference and therefore race-freedom and determinism.

Expressing disjointness between elements of different data structures is easy
with ownership types as each object implicitly introduces a new region of memory
for its representation and objects in this region cannot be pointed to from the
outside. As a concrete example: if two links belong to the representation of two
different lists, they cannot alias.
c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 179–210, 2015.
DOI: 10.1007/978-3-319-18941-3 5

180 E. Castegren et al.

This paper addresses the inability of ownership types to express disjointness
internally of a single data structure: the only way to establish disjointness is
through the introduction of additional regions nested inside existing ones. For
example, to express that all links in a linked list are different using ownership,
each next-link must be nested inside the previous, analogous with “cons cells” in
functional programming. Just like with cons cells, the nesting makes it impossible
to reorder the links without also destroying the list. Likewise, encoding that each
link in a linked list holds a pointer to a different element requires moving each
element into the list. This has the unfortunate side-effect of forbidding any alias
to them external to the list, despite the fact that the property we seek to express
is of local concern only.

The underlying problem is the same in the last two cases: ownership regions
lack internal structure, and the only way to add such structure is unnecessarily
restricting.

In this paper we introduce the notion of refined ownership, which allows
decomposition of a region into smaller parts. Refined ownership enables local
reasoning about interference-freedom of operations on objects in different parts
of a single region. Types in ownership systems are parameterised by names of
external regions—so-called owner parameters. These give permission to access
any object residing in that region. The idea underlying this work is that an owner
parameter instead can be thought of as a set of reference permissions for individ-
ual objects in that memory region. Refinement reifies this set concept and allows
precise local reasoning about aliasing internal to a region. Refinement allows
dynamically partitioning a memory region into disjoint subsets, and propagat-
ing individual subsets to different parts of a structure. This allows expressing
for example that there is only a single pointer to some external element of a
structure, or that all links of a linked list point to different external objects, or
that the links themselves are acyclic. Since refinement is all about local concerns,
internal structure does not impose restrictions on external aliasing of the same
objects.

Contributions

This paper makes the following contributions:

– We extend ownership types by means that allow capturing the internal struc-
ture of a data structure, specifically capturing how (possibly external) data
is referenced from inside a data structure without imposing constraints on
external references (Sect. 3).

– We demonstrate the usefulness of refined ownership on several examples of
parallel applications that can be checked statically to be deterministic, includ-
ing mutating maps and sorting of the elements in a list. Our examples are
not possible to encode with existing ownership systems, e.g., [4,11,15,18].
(Sect. 4).

– We show how refined ownership allows expressing that a chain of links is
acyclic, or that a certain traversal moves within a tree-shaped subset of an
otherwise aliased structure. (Sect. 4.2).

Refined Ownership: Fine-Grained Controlled Internal Sharing 181

– We present a formalisation of refined ownership for a Java-like core language
(Sect. 5) and formulate the key theorems (Sect. 5.8).

– We have implemented refined ownership in our prototype compiler which is
briefly covered in Sect. 6.

To the best of our understanding, most existing proposals that employ owner-
ship for structured parallelism can integrate the ideas presented here straight-
forwardly.

Outline. The paper proceeds as follows: Sect. 2 presents a background and par-
tial motivation for this work. Section 3 introduces refined ownership. Section 4
additionally extends refined ownership with additional constraints for parallel
programming. Section 5 presents a formal description of a core language with
refinement. Section 6 briefly discusses the implementation. Section 7 discusses
related work and Sect. 8 concludes.

2 Background and Motivation

In this work, we propose novel extensions to ownership types that allow dynam-
ically partitioning a memory region (often called “an owner”) into multiple
disjoint subregions, and reason about the disjointness of such regions. In this
section, we give a minimal introduction to object ownership to the reader, along
with our motivation. A recent survey of object ownership can be found in [13].

2.1 Object Ownership

Ownership types due to Clarke et al. [15] partition the heap into nested regions
of memory. Each object resides in a specific region and owns a private region of
memory that holds its representation objects, i.e., those that make up the object,
such as the links of a linked list. An object may be given explicit permission to
reference objects in external regions. This is captured in ownership types by
parameterising types by names of external regions. The name of a region is its
owner, i.e., a symbolic name for the object whose representation is the region
in question. Parameters of this kind are called owner parameters. References
from outside a region to an object inside it is only allowed from the owner of
that region, i.e., the nearest enclosing object. The nesting structure forms a tree
rooted in the outermost region World, which holds all globally accessible objects.
The leftmost figure of Fig. 1 shows the nesting structure of a linked list.

2.2 Ownership-Based Effect Abstraction

Ownership is easily combined with an effect system that abstracts method
behaviour as reads and writes to memory locations to allow reasoning about
interference of statements in a modular fashion. Clarke and Drossopoulou [14]

182 E. Castegren et al.

Fig. 1. First: Nesting structure of a linked list using ownership types. Second: Using
static regions [1,21,32,34]. Third: Nesting to capture alias-freedom between all links in
a linked list. Fourth: Extending the nesting approach to include data elements (cf. Fig. 2)

introduced the first ownership-based effect system in which methods are anno-
tated by the memory regions they read and write. Ownership-based effects intro-
duce a very natural notion of effect abstraction—a write to a specific object in
a region R is subsumed by a “write to R”, which can in turn be subsumed by a
write to any region R′ that encloses R. This is key to reasoning about effects deep
inside a structure further up an aggregation chain where R is unknown. Several
systems have adopted similar techniques for reasoning about non-interference,
including Deterministic Parallel Java [4].

2.3 Ownership, Internal Structure and Disjointness

The reference structure that ownership can capture is relatively coarse-grained,
and the only way to support reasoning about the innards of an object’s rep-
resentation is by partitioning it further in ways that severely restrict aliasing.
Ownership shines when expressing the separation of different objects’ represen-
tations, which works well for proving non-interference of operations on different
data structures. However, when manipulated objects belong to a single region,
ownership offers little reasoning power to distinguish between them. With respect
to ownership, two pointers into a single memory region are always potentially
aliases. This limits the usefulness of ownership for performing parallel operations
on a data structure, or parallely permuting the internals of a data structure.

We now survey several ways offered in the ownership literature to overcome
this problem. These solutions are all unsatisfactory; they either require the num-
ber of disjoint regions to be known statically, or introduce severe restrictions on
aliasing, both internal and external, and make structures difficult to change.
Figure 1 shows a graphic overview of the situations below, and how additional
structure through nesting introduces additional restrictions.

“Vanilla” Linked List. Figure 1(First) shows the canonical ownership types
example—a single-linked list. Each link is owned by the list object, which is
depicted by their nesting inside the region owned by the list. It is possible
to distinguish two links of different lists, but not two links of a single list.

Refined Ownership: Fine-Grained Controlled Internal Sharing 183

head tail head tail

g g

Fig. 2. Memory structure with refined regions. Different links are permitted to refer-
ence different subsets of the data domain. Note that unique objects are not part of any
region.

Links in Different Regions. Figure 1(Second) shows placement of links inside
different regions [1,21,32,34] of a single list. In a system such as this, each
object can introduce a statically known number of representation regions.
With each link in a different region, the individual links are clearly distin-
guishable, but limited to a statically known number of regions, and thus
links.

Nesting of Links. Figure 1(Third) shows the use of nesting to establish dis-
jointness of each link. Such examples can be found in the literature, for
example in DPJ [2]. This avoids a statically known number of regions, but
prevents standard tricks such as last links, and makes insertion and deletion
of links impossible since this affects nesting structure.

Nesting of Links and Data Elements. Figure 1(Fourth) shows a similar case
to Fig. 1(Third), where also the elements are nested in the list. This enables
establishing disjointness between links, and also between elements in the
list. However, it is a very strong restriction that prevents external pointers
to the elements of the list, including banning elements of being part of several
structures at once.

We now present our extension of ownership, which overcomes all of these prob-
lems in an entirely static system.

3 Ownership Refinement

The idea underlying this work is that of an owner as a set of reference per-
missions. Normally, an owner P is treated as a token granting permission to
reference all the objects owned by P . Ownership refinement allows the treat-
ment of an owner P as a set of individual permissions for objects owned by P ,

184 E. Castegren et al.

Fig. 3. Parts of a linked list with ownership refinement. The permission set D given to
the list object is split dynamically over the links so that each link gets its own unique
permission set (cf. Fig. 2).

i.e., in P ’s representation. A set of permissions may be split into several disjoint
subsets that can be used in different parts of a data structure for more precise
reasoning about aliasing, hence the name ownership refinement. Refinement is a
simple idea with important consequences. For example, if a binary tree is para-
metrised by the owner P as the owner of the elements stored in the tree, we
can split P into three disjoint sets, one passed down to the left subtree, one
to the right subtree, and one kept in the current node to reference its element.
Each new node created inside the tree becomes a new witness of the existence of
an additional subregion, which is what allows dynamic partitioning (similar to
the nesting of links in Fig. 1, but horizontal rather than nested). This naturally
captures that no element can be found in both subtrees of a tree.

As a concrete example Fig. 3 shows part of the code for a linked list that uses
ownership refinement. The clause D = Head � Tail in the class head introduces
two disjoint permissions sets Head and Tail whose union is D. We call Head and
Tail refined owners. The permission set Head is used in the element field, and
Tail is passed on to the next link, being bound to its D and further refined.

With the introduction of ownership refinement arises an important distinc-
tion between global and local ownership information. Traditionally, ownership
types is only concerned with global properties, meaning that each piece of owner-
ship information reflects some global nesting invariant in the system, e.g., region
P is nested inside region Q. In contrast, refined owners are concerned with how
aliases are used locally, inside some data structure. Different objects may refine
a common region in different ways, e.g., a linked list and a binary tree may share
elements from the same global region P , but internally partition P differently
depending on the requirements for each particular case.

3.1 Adding Values to Refined Owners

So far, we have only talked about how regions can be partitioned and partitions
“forwarded” to different sub-objects to structure an aggregate, but not about

Refined Ownership: Fine-Grained Controlled Internal Sharing 185

how regions can be populated. We currently support three ways of mapping
objects to refined owners:

Unique References. The simplest one involves unique references. If a refer-
ence is unique, then it can trivially be cast (and consumed) into a refined
owner since there can be no other reference to the same object from some
other refinement. Once the reference has been cast into the refined owner,
the object can be freely aliased externally—uniqueness is simply a way to
guarantee well-formed construction of refined regions.

Internal Creation. Nothing prevents objects from being created inside a refined
owner, e.g., new Object[Head] ();. Once created, the object may be shared
and aliased freely externally—under the regular rules of ownership types.
(This is the approach taken in [3].)

Copies from Disjoint Regions. If regions P and Q are disjoint, then we may
take any element of Q and add it to P . This allows copying elements by
reference across collections with preserved disjointness, but as soon as one
element from Q is moved to P , P and Q are no longer disjoint.

3.2 Copying Elements Across Lists

Figure 4 shows the implementation of a copy method that creates a new list
sharing its elements with the original, just as promised in the contributions.
Copying is initiated by a call to copyList, which creates a new list object passing
the current first link as argument. The constructor of List calls copyLink on
the link argument to produce a copy of the links, sharing the same elements.
Generalising this code is possible e.g., by passing in a factory object to copyList,
which knows how to create both lists and links (or equivalent). Note that we
currently only support cloning from structures with equal or less refinement,
i.e., we can copy a tree to a list but not vice versa. We are currently working on
solving this problem in a way elegant enough for actual use.

Moving things into a refined structure loses uniqueness. However, unique-
ness is key to manipulating structures with refined ownership, and transforming
them without breaking the disjointness invariants on the refined owners. This is
explained in the upcoming section.

3.3 Manipulating Structures with Refined Ownership

One of our criticisms of the use of plain ownership types to introduce internal
disjointness in Sect. 2.3 is that the nesting structure is fixed, which precludes
things like last pointers and reordering of links. As refined ownership gives a
unique type to each object in a tree, one might suspect that manipulation of
internal structure would be just as difficult. For example, what is the type of
next.element in a link in Fig. 3? Since we cannot externally name the refined
owner of the next link, we have two choices—to ban this access altogether, or
come up with a way of abstracting the ownership information so that it becomes
well-typed. We choose the latter, and widen the return type of next.element

186 E. Castegren et al.

Fig. 4. Copying elements across collections with preserved information about alias-
freedom. Method in List to the left and Link to the right. X is implicitly nested inside
World.

to Object[Tail]. Note that this Tail is the one used to type next and which
is called D and refined into another Head and Tail inside the next Link. Thus
the first Tail includes the new Head and this is why we can widen the type.

In the general case, we cannot assign to a field whose type uses a refined owner,
as that could violate the tree-shapedness of the object graph (e.g., next.next
= next). To facilitate manipulation of internal structure, we allow a program to
mediate between different views of a tree. So far, trees have been regular object
structures whose members have been guaranteed to be locally unique.

Relying on refined ownership, we can introduce a novel “supercharged ver-
sion” of the focus construct from the work of DeLine and Fähdrich [19] that
allows us to temporarily view all references in a tree as unique references which
must be treated linearly. The main difference between our focus operation and
that of DeLine and Fähdrich is that focusing on a root variable makes all parts
of all trees rooted at that variable unique, and not just the root variable itself.
Thus, our focus is “deep”—it focuses on an entire nested tree-shaped substruc-
ture of the heap and forbids access to all aliases to the substructure that are not
in the tree; for example, if we focus on first of a linked list, we are prevented
from reading last at the same time.1

1 We would like to note that there’s risk of confusion as to which tree is focused on
when focusing on an owner that is used multiple times in a type. The solution is
simple and just requires that the programmer is explicit about which parameter is
meant, however we leave this out in the examples and the formalism because it does
not add to the story.

Refined Ownership: Fine-Grained Controlled Internal Sharing 187

Fig. 5. A parallel merge sort using the focus mode. The novel focuses effect annotation
captures the permission set of the tree being permuted (see Sect. 4.3).

188 E. Castegren et al.

The assignment this.element = next.element is not well-typed outside of a
focus, as the types of this.element and next.element are not assignment com-
patible. During a focus, this.element and next.element are simply two unique
pointers to leaves of the same tree, and are therefore assignment compatible. It is
easy to see that a linear manipulation of a tree will preserve tree integrity.

Figure 5 shows a linked list with a single tree rooted in first, which guar-
antees that all elements of the list are mutually unique, and that the list is
acyclic. The sort() method uses an implementation of mergesort. The focus
operation in sort() changes the type of all links reachable from first into
unique Link[Rep, D], and the type of all elements into unique Object[D],
where D is the unrefined owner D in List. The mergesort implementation is very
straightforward, and uses a fair amount of destructive reads which are expli-
cated through an optional consumes annotation2. Apart from the method-level
annotation focuses D, which is needed to capture the fact that we are oper-
ating inside this “linear mode”, mergesort() and merge() have no effects and
are therefore safe to run in parallel. Methods with focus are only callable from
inside focus blocks or other focusing methods.

4 Refined Ownership for Parallelism

The need for refined ownership arose in the context of our Joelle programming
language [12,31], which relies on ownership information for isolation to preserve
active object integrity. In this work, we have found the need to express additional
parallel possibilities internal to an active object method, especially to coordinate
work on different parts of shared structures, which is not possible across active
object isolates.

Refined ownership allows expressing what objects may be referenced from
what internal part of an aggregate object by explicating how permissions are
propagated to different subparts of a structure. As a side-effect, this propagation
also exposes the internal structure of a set of objects.

For the reasons outlined in Sect. 2, existing ownership systems are not a
good basis for effect systems with the goal of operating in parallel on objects
belonging to a single structure. We now show how refined ownership overcomes
these limitations and enables statically checking task-based parallelism in the
fork-join style on elements inside a collection, similar to the proposed extension
of DPJ [3], which supports collections with external data.

Deterministic parallel operation on elements of a collection in fork-join style
requires that tasks running in parallel do not interfere. Similar to other systems,
this amounts to the absence of read–write or write–write conflicts in the tasks’
effect footprints. A special case of this is that we must make sure that no task
is spawned twice.
2 The formalism notably uses explicit destructive reads and unique pointers for sim-

plicity, but these can be inferred in the actual language implementation. See how-
ever anecdotal evidence by Gordon et al. [20] that programmers appreciate explicit
operations on uniques.

Refined Ownership: Fine-Grained Controlled Internal Sharing 189

Fig. 6. Parts of a a binary search tree with ownership refinement. The permission set
D given to the tree object is split dynamically over the nodes so that each node gets
its own unique permission set. As a side-effect, all nodes in the tree have unique types,
which guarantees that the tree really is tree-shaped. The where-clause introduces the
requirement that two owners may not be instantiated by overlapping owners, which
can otherwise easily happen due to reflexivity of owner relations.

190 E. Castegren et al.

first

next

elem

next
elem

elem

(root)

(branch)

(leaf)
first

last

Fig. 7. Two examples of linked lists with different internal trees. Left: single-linked list
with all first/next references mutually unaliased. Right: adds a last reference to the
leftmost example that potentially aliases any link in the list.

4.1 A Motivating Example

Figure 6 shows how refined ownership can express that each node in a binary
search tree holds a set of permissions to reference external objects which are dis-
joint from the permissions of its subtrees. Each tree node is parameterised over
some set of permissions that is split into three—one part that is kept and used
to type the element reference, and two that are passed on to the subtrees. The
fact that the permission sets of the branches are disjoint and smaller than their
common root establishes a tree-order and precludes cycles or dag-like structures.
Together, these two properties are enough to guarantee the deterministic execu-
tion of a parallel operation on the list, e.g., map, as long as the parallel operation
has no write effects other than to the element.

The insert method in BST takes a unique argument and inserts it in the
tree. The owner unique[D] denotes that the value is not aliased by any other
variable or field in the system, and the parameter D is necessary to bound how the
value may flow outwards in the nesting hierarchy3. In the different branches in
insert in the Node class, the unique value is moved into a refined owner—Left
or Right.

Using the disjointness information from the refined ownership, we can
straightforwardly type the pmap method in BST that performs a parallel tra-
versal of the tree rooted in root and performs an in-place update. It takes a
function parameter object specified by the Fun interface whose call function is
parameterised with the name of a region that gives it temporary permission to
access and modify one isolated element (cf. e.g., [11]) in the list, and the effect
annotation writes X ensures that no shared data is touched.

Ownership refinement is able to statically capture that this implementation
is interference-free: apart from a read effect to Owner, the effects of lines 43–
45 are writes Left, writes Pivot and writes Right, which are disjoint and
3 This is called the movement bound and investigated further in [11]. It is required

for soundness of ownership transfer, but otherwise of little relevance for refined
ownership.

Refined Ownership: Fine-Grained Controlled Internal Sharing 191

subsumed by a write effect to D, which is visible externally. Thus, the three
async blocks (inspired by [9]) are non-interfering and can be wrapped in the
same finish4.

Unsound attempts at using the internal parallelism of two data structures
(e.g., parallel uses of iterate of two BST’s with possibly overlapping data ele-
ments) will be detected at the outermost call-site by the effect system and
rejected.

4.2 Tree-Shaped Subgraph Traversals

The key to statically checking determinism of parallel operations on objects with
refined ownership is to prove that data is accessed in the shape of a tree. Each
node in the tree has an element that is unique in the tree and one or more
subtrees with elements which are unique to them.

Figure 7 shows two linked lists. The brown and blue arrows are branches and
the green arrows are leaves. The first branch is a root. The leftmost list has just
one single “tree” rooted in first of next-links (brown arrows) pointing to a set
of locally unique elements (green arrows). The right list has two trees rooted in
first and last, but is otherwise the same. This shows that “weakly overlapping
trees” may exist simultaneously in the same aggregate.5

4.3 Constructing Trees for Parallel Programming

Tree-shaped data structures and tree-shaped computation are recurring in par-
allel programming and structured parallelism where a divide-and-conquer app-
roach is common.

Roots, branches and leaves are the building blocks of trees that are possible
to operate on in parallel in a statically checkable fashion. Roots identify starting
points of a tree and are the cut-off points inside which parallel operations are
deterministic. Branches build tree-shaped paths to preclude interference of par-
allel tasks. Allowing paths that are cyclic or dags might lead to tasks racing on
some object due to an unfortunate alias to a shared object. In the case of col-
lections, leaves are often the objects of most interest, i.e., the elements mutated
in parallel.

Refined ownership provides a simple way to statically identify roots, branches,
leaves, or combinations. The use of a refined owner in the owner position—the
first position—of a type denotes a leaf, because it cannot be further refined inter-
nally. A leaf sits on no other path in the tree and may safely be operated on in

4 In addition to disjoint effects, two async blocks in the same finish must not update
the same variable—a trivial compile-time analysis.

5 The tree rooted in last in Fig. 7 notably stops immediately after its first object. To
create trees which overlap in “interesting ways,” e.g., a doubly-linked lists additional
machinery is needed, e.g., a “splitting operator” that allows introduction of multiple
aliases to a value which are bound to different trees. We do not yet have a convincing
simple extension for this, and refer to future work.

192 E. Castegren et al.

parallel. For example, Line 19 in Fig. 6 exemplifies this in the type of element.
Binding a refined owner to an owner parameter that is further refined denotes a
branch—more values which are unique in the same tree (may be) are available
in the substructure of an object with such a type. This is exemplified by the
next fields of links, which bind Tail to the parameter D of some link, which
is then further refined into the (different) Head and Tail subsets of the next
link. Finally, binding a non-refined owner to an owner parameter that is refined
denotes a root, as exemplified by first. It is possible for a field to be a root in
one tree and e.g., a branch in another tree at the same time, although that is
not in the example.

From this point forward, we will use the term tree of A to denote a connected
subgraph of an object graph where all paths to objects in region A are alias-free.
When A is not important, we will simply write tree.

5 A Type System for Refined Ownership

We now turn to the formal description of refined ownership in the context of a
simple Java-like core language building on [11,33]. There are three main com-
ponents to our formalisation:

1. ownership regions that are nested (inside ≺∗, outside �∗),
2. refinement which splits regions into disjoint subregions (�), and
3. ownership-based effects and reasoning about disjointness (#) of effects

(see [14]).

Refinement partitions memory “horizontally” whereas nesting partitions
memory “vertically”. There is a correlation between static regions in the form of
[1,21,32,34] and refinement. In a way, refinement can be seen as a generalisation
of static regions by allowing the partitioning into regions dynamically, including
partitioning of external regions.

The syntax of our core language is shown in Fig. 8. The type environment
Γ records the usual information for an ownership system: types of local vari-
ables and names of the memory regions in scope and their nesting relations. In
addition, Γ also includes refinement relations, e.g., Data is refined into Head
and Tail in the Link class in Fig. 3, as well as disjointness assertions, e.g., Head
Tail. In the code examples refinement declarations are inlined in the para-
meter declarations of classes. For simplicity, we have separated them out in a
where-clause in the formalism. This is a purely syntactic difference.

A program is a list of class definitions excluding the empty top-level class
Object, which is implicitly defined. Classes contain field and method defini-
tions, are parameterised over permissions to reference external regions and derive
from a single super class. Owner parameters may be refined into multiple dis-
joint regions. Methods also take zero or more owner parameters—temporary
permissions to reference objects—and are annotated with effect declarations.
The focuses annotation on methods is not a computational effect. Focused

Refined Ownership: Fine-Grained Controlled Internal Sharing 193

Fig. 8. Core language syntax. We follow FJ [22] and write p to mean sequences of p,
etc. Gray blocks denote syntax only appearing in the running program.

methods deal exclusively with permutation of one specific tree, and are able to
run in parallel as shown in Fig. 5.

The keywords World, Owner and Rep denote special owners, i.e., memory
regions: World denotes the globally accessible top-most owner, Owner is the com-
pulsory name of the first owner parameter of a class, which denotes the region
in which the object resides. The implicitly introduced owner Rep denotes the
object’s own internal region, which is nested directly inside Owner. Types use
the form A C[p] where the parameters p are names of regions whose objects the
object may reference. The first parameter also denotes the owning region. A is
an optional uniqueness annotation for values pointed to by a single pointer in the
entire system or values belonging to the currently permuted tree respectively. To
keep matters simple, we employ destructive reads to preserve uniqueness, using
consume.

5.1 Typing of Statements

Statement type rules have the form P ;Γ �p s � E � Γ ′ which denotes that the
statement s is well-formed under Γ , has effects E, and results in a new Γ ′, which
is possibly extended by new variable declarations.

The subscripted owner name on the turnstile tracks the tree in focus (possibly
none, denoted ε). To clarify several aspects of refinement and focusing, we split
certain rules for looking up fields, etc. into several rules depending on the receiver

194 E. Castegren et al.

(this or not), and whether the accessed value is part of the focused tree or
not. The three different versions of look-up are exercised in S-UPDATE-FIELD,
S-UPDATE-FOCUSED-FIELD, and S-UPDATE-FIELD-INTERNAL.

These rules follow similar patterns, but the differences are important: read-
ing fields and calling methods with this as the receiver (S-UPDATE-FIELD-

INTERNAL), we do not need to widen types to hide refinement (which we must
do for external field look-up). Furthermore, we can allow access to types which
use Rep as an owner (this is the normal ownership containment invariant). Dur-
ing a focus on some p, we must treat values in the tree of p linearly, which is
implemented by giving them unique types in these rules. Field lookups (also
external method calls) must respect ownership containment (types using this
must not be in the signature), and, in the case of a read, any internal refinement
must be widened, e.g., from Head to Data in Fig. 3. In the case of a write, such
accesses are denied as they are unsound.

Without loss of generality, we restrict the focus construct (S-FOCUS) to oper-
ate only on local variables. Focusing on a tree in p rooted in some variable x
introduces a new variable y that aliases x, but with a different type, where p
is replaced by the special owner focused p. This allows us to restrict the life-
time of the focus even in the presence of owner-polymorphic methods, and also
gives us a simple means of identifying the currently focused tree. The helper
function owners extracts the owner parameters from a type. Finally, we require
that the statements inside the block produce no effects, which is the case for
manipulations on a focused structure.

Calling a method (S-CALL) substitutes the owners of the types of the method
with the receiver’s owners at the call-site plus any owner parameters and checks
that the types of arguments and result variable are correct. To avoid cluttering
the rules, this is handled inside mLookup. Calls to focused methods (S-CALL-

FOCUSED) additionally require that the method’s focused owner corresponds to
the current owner in focus.

For simplicity, we disallow calling methods and reading and writing fields on
globally unique values since their main use here is to install values in refined
regions. This is handled in the look-up functions, which take the target type as
argument.

The full treatment of uniques requires a well-understood borrowing construc-
tion (for example [6,11,38]), but this falls out of scope for this paper where
uniqueness is mainly used for storing in refined subregions. This loses unique-
ness after which the value can be used in a normal fashion.

Our formalisation of async–finish style parallelism in (PAR-ASYNCS) and
(PAR-ASYNC) is inspired by [23]. Async blocks inside a common finish may not
have conflicting effects or destructively read or assign the same variables. The
function vars extracts such variables from the statements of a par block.

Refined Ownership: Fine-Grained Controlled Internal Sharing 195

196 E. Castegren et al.

5.2 Typing of Expressions

Expressions work similarly to the statements above with respect to focusing. We
again separate internal/external/focused use for clarity. Looking up a field on the
current this uses the internal version of field look-up (fLookupInt) which does
not need to widen refined types to owners visible in the interface (E-LOOKUP-

FIELD-INTERNAL). Reading a unique local variable requires a destructive read
(E-CONSUME-LOCAL), as is the case for accesssing fields and variables during
a focus (e.g., CONSUME-FOCUSED-LOCAL). Further, the fields and variables
accessed during a focus must be in the currently focused tree.

Expression type rules have the form P ;Γ �p e : T � E. Expressions have
a type T , and never extend the current Γ . Turnstiles are subscripted by an
owner p, which denotes the tree currently being permuted, (i.e., “the tree of p”,
see Sect. 4.3), lifted to include ε (no tree is currently permuted). This subscript
controls the reading of variables and fields, and method calls and effects. If we
are focusing on the tree of p, then we know that no other part of the system is
able to observe these modifications concurrently, and therefore no effects on tree

Refined Ownership: Fine-Grained Controlled Internal Sharing 197

manipulations need to be reported. To preserve tree integrity, all values of the
tree must be treated as unique during the focus. The empty effect is denoted ε.

5.3 Well-Formed Programs

We now present the rules for well-formed declarations. The conditions for well-
formed classes in WF-CLASS follows existing ownership systems. Important addi-
tions include the helper predicate refinedOwnersUsedOnlyOnce which is a very
simple check to see that an owner is neither refined twice, nor does a refined
owner appear in more than one field of a class. For example, in the list class
where Data = Head � Tail, the refined owners Head and Tail may only appear
once on types of fields, including in super classes. This guarantees that permis-
sions are used linearly throughout the fields of the data structure. This is only
necessary for fields accessed during a focus, we simplify matters by requiring

198 E. Castegren et al.

this always. For simplicity, we assume that names of fields and methods are dis-
tinct and that overridden methods preserve types and effects. The appropriate
checks are straightforward.

The rules for well-formed fields and methods are standard. We choose to
include WF-METHOD and WF-METHOD-FOCUSED to highlight the different
requirements of focusing methods. The type environment of a method is that of
the class body, plus any owner parameters. The returned variable in the method
must have the expected type, and all statements in a method must have a smaller
(or equal) effect footprint than what is declared in the method signature.

The focused methods are novel, and are methods that are restricted to operat-
ing on a single tree of the data structure. During a focus we may only touch own-
ers refined from the owner p specified in the focuses declaration on the method
head. During a focus, the only pointers into p that are accessible are the ones in
the current tree, which is why we can omit effects on focusing methods—they
work exclusively on data that is not reachable from the rest of the system for the
duration of the initial focus block. Inside a focused method, we must cater to the
fact that the current this may be part of the tree in focus, and also typecheck
the entire method body in the current focus, denoted by the subscript p on the
turnstiles.

Refined Ownership: Fine-Grained Controlled Internal Sharing 199

5.4 Well-Formed Effects and Effect Disjointness

The rules for well-formed effects and disjointness are found below. Any effect
to a valid (possibly refined) owner is a valid effect. For brevity, we omit effect
subsumption, which follows existing work in the literature [14], with a straight-
forward extension for refinements: an effect on p is subsumed by an effect (of
the same kind) on q if q = q1 � . . . � qn and p ∈ {q1, . . . , qn}. The rules of effect
disjointness are standard and follows [14]. Two read effects are always disjoint
as read-read races are innocuous.

5.5 Well-Formed Types and Subtyping

The rules for well-formed types in WF-TYPE-BASIC are standard ownership rules
with the addition of the constraints from the where-clause, which also mention
splits and disjointness. Notably, a split on the form p = p1�p2 is not a constraint,
but rather introduces the disjoint owners p1 and p2 in the class body. All well-
formed non-unique types have a well-formed unique form (WF-TYPE-UNIQUE).

Weallowwidening froma refinedowner to the owner it refines (SUB-REFINED).
This allows taking any link of a linked list and returning it to the list head with
the unrefined type List[Rep,D], which allows us to create the last link in Fig. 3
and the rightmost of Fig. 7. Similar to how generics work in Java, such a widening
is only sound when reading values, not writing them. (Allowing widening when
storing allows the creation of aliases across “disjoint” owners.)

The rules SUB-UNIQUE-FOCUSED and SUB-UNIQUE-REFINED allows us to
add a (globally) unique reference to a tree (of locally unique references), both
during a focus and not.

200 E. Castegren et al.

5.6 Type Environment, Owners and Relations

The type environment Γ is similar to normal ownership types, but additionally
uses disjointness assertions and splits, which track how owners are split into
disjoint refined owners.

This work introduces two new forms of owners in the ownership literature:
p from q and focused p. The former is a simplification used only in the
formalism that allows us to immediately see subset relations (the owner p from
q keeps track of that p is refined from q). It is not used in the surface language
of our prototype implementation. The latter is another simplification visible in
REL-FOCUSED—it gives us a simple way to introduce a new owner that copies
all relations of an existing owner. The rules for nesting and disjointness are
standard. The only new rule is REL-DISJOINT-SPLIT, which allows us to infer
disjointness from refinement.

Refined Ownership: Fine-Grained Controlled Internal Sharing 201

5.7 Dynamic Semantics

We formulate the dynamic semantics as a small-step reduction semantics with
parallelism as a non-deterministic choice. Fields are reduced step-wise from left
to right, which allows for fine-grained interleaving of statements.

Configurations are on the form P ;D;H;F ; 〈e〉 or P ;D;H;F ;S, where P is the
static program text, D maps static owner names p, q to run-time equivalents rk,
H is the heap which maps locations to tuples of (T, f
→ v) and F which is a stack
frame mapping stack variables to the values they store. 〈e〉 is an expression and
S a stack of statements which capture nesting of async/finish statement and the
requirement that all asyncs in a finish be fully reduced before the finish statement

202 E. Castegren et al.

is finished (borrowed from [23]). Configurations reduce to other configurations on
the same form, or, in the case of a null-pointer dereference, the error configuration
NPError. For simplicity, we assume the existence of a zero-arity main method
in a field-less main class, and the initial configuration has a heap with an instance
of this class, the body s of the main method, followed by an assignment into the
special variable end, which denotes the program’s resulting value.

Inspired by Lightweight Java [37], we maintain a single stack frame (F) for
the entire program and take care to uniquify variable names for each method
call. The helper mLookupθ used in DYN-DISPATCH performs owner substitution
and additionally renames local names to fresh symbols.

Our rules follow standard practises in formalisms with ownership types. For
example, owners do not affect a program at run-time, but merely controls what
code is considered well-formed and may compile.

Notably, the dynamic semantics of focus is extremely lightweight as the focus
block is merely a syntactic trick (DYN-FOCUS). Method call (DYN-DISPATCH)
shows the dispatch of a fully reduced call (the receiver and all arguments have
been reduced to values). The most involved expression is DYN-NEW which cre-
ates a new object on the heap. This creates a new run-time owner for the current
Rep and as many new run-time owners as there are refined owners. These are
crucial to keep track of the local view internal to an object. Hence, different
objects may have different local owners for a single object. These will all be
derived from a common “source owner”, which is its owning object’s Rep, which
is key to checking that a local type is consistent with the object’s “true” global
type. The D binding set is global for the entire program. Thus, static owner
names are distinguished by a subscript denoting the object that “gave rise” to
them.

Syntax of run-time elements:
H:: = [] | H, ι
→ (B, [f
→ v])

F :: = [] | F , x
→ v

D:: = [] | D, kι
→ rk

S:: = S � S ′ | S || S ′ | 〈s〉 | √

Where rk is a run-time owner and a value v are either a location ι or null ⊥)

Refined Ownership: Fine-Grained Controlled Internal Sharing 203

204 E. Castegren et al.

5.8 Meta-theory

We prove subject reduction in the normal way, by proving progress and preser-
vation. These theorems contain no surprises, and no unexpected complications
appear when sketching their proof.

Progress. For progress, we assert that we can always take one step from a well-
formed configuration.

Refined Ownership: Fine-Grained Controlled Internal Sharing 205

In a well formed P , if P ; γ � D; H; F ; S then either
P ; D; H; F ; S ↪→D′; H′; F ′; S ′

or
P ; D; H; F ; S ↪→NPError.
Similarly for configurations P ; D; H; F ; 〈e〉

Preservation. For preservation, we assert that if we can take one step from a
well-formed configuration to another, this configuration will also be well-formed.

In a well formed P , if P ; γ � D; H; F ; S and
P ; D; H; F ; S ↪→ D′; H′; F ′; S ′ then there exists some γ′ ⊇ γ such that P ; γ′ �
D′; H′; F ′; S ′.
Similarly for configurations P ; D; H; F ; 〈e〉

Disjointness Invariant. The disjointness invariant asserts that no references in a
well-formed heap and stack will break the disjointness assertions of the run-time
environment. If a class for example refines an owner X = Y + Z, the run-time
representation of Y and Z will always be disjoint as expected.

In a well formed P , if P ; γ � D and P ; γ; D � H � O and P ; γ; D � F � O′ then
∀(ι1 ∈ rk1), (ι2 ∈ rk2) ∈ (O, O′) .

P ; γ � rk1 # rk2 =⇒ ι1 �= ι2

Deterministic Parallelism. Finally, the theorem for deterministic parallelism
asserts that when starting in a well-formed configuration, if there are more than
one way to reach a certain program state, the resulting configurations will be
equivalent, i.e., equal up to order and renaming of locations.

In a well formed P , if
P ; D; H; F ; S ↪→∗ D′; H′; F ′; S ′

and
P ; D; H; F ; S ↪→∗ D′′; H′′; F ′′; S ′ then D′ ≡ D′′, H′ ≡ H′′ and F ′ ≡ F ′′

6 Implementation

We have implemented ownership refinement as part of our prototype compiler
for our Joelle programming language [12]. Excluding the parser and generated
code, the Joelle compiler is about 11 KLOC of Java code using the Polyglot
framework [30] and emits Java code. Extending this compiler provides some
anecdotal evidence that languages with ownership types can easily be extended
with ownership refinement. To add refinement to our compiler, another 1 KLOC
of code was necessary.

Joelle is an active-objects language with full ownership-based isolation and
safe sharing. Using a well chosen set of defaults and a flat ownership structure
the overhead in terms of annotations is very small. The original Joelle lan-
guage provides coarse-grained parallelism, which can be great for parallelising
an existing sequential program by dividing it into a small number of parallel
parts wrapped in active objects. This is still one of the main features of Joelle,
but we also wanted a language that supports finer-grained parallelism primarily

206 E. Castegren et al.

Fig. 9. unlink and sort methods from Fig. 5 in the current implementation.

for writing parallel programs for multicores from scratch. To this end we have
been working on ways to support deterministic parallelism inside active objects.
Ownership refinement is one feature designed with this goal in mind, giving “on-
demand” rigidity to support deterministic parallelism when required while at
the same time providing much of the flexibility programmers are accustomed to
otherwise.

The implementation differs slightly from the formalism in superficial ways
for practical reasons and because getting things running is more important than
nice syntactic sugar and complicated analyses at this stage. As an example,
Fig. 9 shows what the unlink and sort methods in Fig. 5 look like in the current
implementation. Note the renaming of the focused owner parameter which takes
care of any confusion as to which tree we’re focusing on in the case where multiple
owner parameters are instantiated with the same owner.

7 Related Work

Section 2.3 discussed the shortcomings of introducing additional levels of nesting,
adding static regions or unique pointers to express internal structure and use of
external values. Figure 1 summarised these problems in a graphical way.

Existing ownership systems such as [1,18,35,38] do not provide a means of
introducing structure inside a region, except by using static regions, which are
basically just multiple representation owners. This allows a static partitioning
of a region, but this is not flexible enough to encode any structure whose size
is determined dynamically, and the region partitioning is only accessible inside
a single object. Furthermore, regions are global properties, and not local as our
refined owners. For example, if elements of a list were partitioned over a number
of regions, the same elements could not be shared by some other structure.

In Clarke and Drossopoulou’s ownership-based effect system [14] and deriva-
tives, the smallest effect is to an entire region, which makes perfect sense as this
system is unable to distinguish e.g., two links belonging to the same list. Own-
ership refinement naturally introduces increased precision up to reads or writes
to one specific object (in the form of a permission set of size 1) or subregion.

Refined Ownership: Fine-Grained Controlled Internal Sharing 207

This is key to implementing structures with internal parallelism, regardless of
whether the objects involved are internal or external to the data structure, or
both.

Viewing owner parameters as sets of reference permissions was explored in
the first author’s Master Thesis [8].

Parallel Programming. Ownership systems have been applied to parallel pro-
gramming or similar problems (e.g., [16,25,27]. Extant proposals are unable
to express the example in Fig. 3 as they cannot statically capture mutual alias-
freedom for all list elements. Introducing uniqueness (e.g., in the style of Boyland
et al. [6,7]) and making the element pointer unique has the side-effect of prevent-
ing all non-local aliases of the elements, but is also not enough on its own since
traversal of the next-links must be acyclic. Making the next fields unique also
would solve this problem, but would prevent several useful scenarios including
the last link or doubly-linked list in Fig. 7, which our system supports either by
using a separate tree for the last and previous pointers, or by using non-refined
references for these pointers, since one tree is probably enough in this particular
example.

Refined ownership has more uses than static checking of deterministic par-
allelism. Nevertheless, several such works, most notably Deterministic Parallel
Java, have invented related machinery. Therefore, it is relevant to discuss several
such works here. The following ownership systems are designed with parallelism
in mind, but suffer from the problem overcome by this paper: it is not possible
to statically distinguish between references owned by the same object.

Cunningham et al. [17] constructed a system based on universe types [29]
for race safety where disjointness is only introduced by ownership nesting. Craik
and Kelly [16] employ ownership types to infer parallelism in C# programs.
To overcome the coarse grained nature of ownership, they additionally perform
dynamic alias checking (e.g., comparing all pointers in a collection to make sure
they do not alias) or rely on programmer assertions.

Lu et al. [25,26] use effects on ownership contexts to infer synchronisation
requirements for parallel tasks and perform lock correlation. Where they suffer
from the coarse-grainedness of ownership (e.g., all external pointers in a list,
all links internal to the list) they infer or must use locks to guarantee that no
critical section has more than one active thread. As a consequence, a parallel
map over a list requires locking on each individual element to avoid potential
races due to aliasing. Lu and Potter define a type system for acyclicity [24]
that partitions the heap into regions and constrain references between regions
to go in one direction. They can eliminate cycles between a link and its respec-
tive element, but fall short to eliminate cycles in a chain of links, or duplicates
in a list.

Milanova and Huang [28] develop a static analysis tool for detecting an over-
approximation of data races based on dominance in the object graph. No fine-
grained partitioning is supported.

The work on Deterministic Parallel Java [2,4] offers a rich set of tools for
deterministic parallel programming, and its region path lists are very similar

208 E. Castegren et al.

to ownership regions. Deterministic Parallel Java supports both vertical nesting
(A owns B) and horizontal nesting (A is divided into a static number of regions).
In [3] DPJ is extended to support external data elements in a way similar to
ours, however the correctness of parallel traversals is not guaranteed by the
system but left as an exercise to the programmer. The only way to initially store
elements in a region with disjointness is by sending object factories into the
objects that define them, i.e., let the list populate itself. As a consequence, it is
not possible to create a value elsewhere in the system and later move it into e.g.,
a list. This is rectified in later work [5], where the concept of a reference group is
introduced which allows tree-like traversal of data structures as long as traversal
stays within the reference group. This is similar to refined ownership where trees
are in a constant focus. Special effects are used to preserve tree integrity, and
populate empty reference groups from other groups.

Servetto et al. [36] extend Ballon Types for safe parallelisation over arbitrary
object graphs. This work is strongly related to that of Gordon et al. [20]. They
can safely encode alias-freedom for the nodes in binary trees, but are unable to
do so in the presence of back-pointers (e.g., doubly-linked lists) or multiple entry
points into a structure (last pointers), or pointers to unrestricted external data.

In ongoing work (submission 44), Brandauer et al. employ a type system that
allows to gradually relax uniqueness of references to express similar information
as this paper does. Refined Ownership differs in that it takes a fundamentally
different starting point and, being a straightforward extension, integrates well
with other proposals based on ownership types.

8 Conclusion

Refined ownership extends ownership types with the possibility to distinguish
between objects owned by a single owner. An important aspect of refinement is
that it is a local concern that does not leak to the outside world: refinements
introduce fine-grained reasoning without forcing clients of objects that use them
to propagate additional ownership information. The main driver behind this
work was to type structured parallelism inside active objects, but the usefulness
of ownership refinement extends beyond this use case.

On-going work generalises refined ownership to more set operations on
owners-as-sets-of-permissions. This allows e.g., building lists of elements owned
by different owners by constructing an owner as the their union, etc. This
increases the flexibility of ownership types in a way that avoids flattening the
ownership hierarchy or introduce gratuitous copying of objects across owner
boundaries.

Refined ownership can express internal structure, alias-freedom and non-
interference inside data structures in ways that normal ownership systems are
unable to do, and importantly allow local reasoning about references to external
values. In a system that already uses ownership types, their addition is very
small, only imposes syntactic overhead where used, and adds considerable rea-
soning power.

Refined Ownership: Fine-Grained Controlled Internal Sharing 209

References

1. Aldrich, J., Chambers, C.: Ownership domains: separating aliasing policy from
mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

2. Bocchino, R.: An effect system and language for deterministic-by-default paral-
lel programming, 2010. Ph.D. thesis, University of Illinois at Urbana-Champaign
(2010)

3. Bocchino Jr, R.L., Adve, V.S.: Types, regions, and effects for safe programming
with object-oriented parallel frameworks. In: Mezini, M. (ed.) ECOOP 2011. LNCS,
vol. 6813, pp. 306–332. Springer, Heidelberg (2011)

4. Bocchino, R., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R.,
Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for
deterministic parallel Java. In: OOPSLA, pp. 97–116 (2009)

5. Bocchino, R., Aldrich, J.: Reference groups for local uniqueness. Technical report,
CMU (to appear)

6. Boyland, J.: Alias burying: unique variables without destructive reads. Softw.
Pract. Exp. 31(6), 533–553 (2001)

7. Boyland, J.T., Retert, W.: Connecting effects and uniqueness with adoption. In:
POPL, pp. 283–295 (2005)

8. Castegren. E.: Laps : a general framework for modeling alias management using
access permission sets, Master thesis (2012)

9. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-java: the new adventures
of old x10. In: Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, PPPJ 2011, pp. 51–61. ACM, New York (2011)

10. Clarke, D.: Object ownership and containment. Ph.D. thesis, School of Computer
Science and Engineering, University of New South Wales, Australia (2002)

11. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

12. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal ownership for active
objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008)

13. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: a survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. LNCS, vol. 7850, pp. 15–58. Springer, Heidelberg (2013)

14. Clarke, D.G., Drossopoulou, S.: Ownership, encapsulation and the disjointness of
type and effect. In: OOPSLA, pp. 292–310 (2002)

15. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA, pp. 48–64 (1998)

16. Craik, A., Kelly, W.: Using ownership to reason about inherent parallelism in
object-oriented programs. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 145–
164. Springer, Heidelberg (2010)

17. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universes for Race Safety (2007)
18. Dietl, W.M.: Universe Types: Topology, Encapsulation, Genericity, and Tools.

Ph.D., Department of Computer Science, ETH Zurich, Doctoral Thesis ETH No.
18522, December 2009

19. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for impera-
tive programming. In: PLDI, pp. 13–24 (2002)

20. Gordon, C.S., Parkinson, M.J., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness
and reference immutability for safe parallelism. In: OOPSLA, pp. 21–40 (2012)

210 E. Castegren et al.

21. Greenhouse, A., Boyland, J.: An object-oriented effects system. In: Guerraoui, R.
(ed.) ECOOP 1999. LNCS, pp. 205–229. Springer, Heidelberg (1999)

22. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

23. Lee, J.K., Palsberg, J.: Featherweight x10: a core calculus for async-finish paral-
lelism. In: PPOPP, pp. 25–36 (2010)

24. Lu, Y.: A type system for reachability and acyclicity. In: Gao, X.-X. (ed.) ECOOP
2005. LNCS, vol. 3586, pp. 479–503. Springer, Heidelberg (2005)

25. Lu, Y., Potter, J., Xue, J.: Ownership types for object synchronisation. In:
Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 18–33. Springer,
Heidelberg (2012)

26. Lu, Y., Potter, J., Xue, J.: Structural lock correlation with ownership types.
In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 391–410.
Springer, Heidelberg (2013)

27. Lu, Y., Potter, J., Zhang, C., Xue, J.: A type and effect system for determinism
in multithreaded programs. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
518–538. Springer, Heidelberg (2012)

28. Milanova, A., Huang, W.: Static object race detection. In: Yang, H. (ed.) APLAS
2011. LNCS, vol. 7078, pp. 255–271. Springer, Heidelberg (2011)

29. Müller, P., Poetzsch-Heffter, A.: Universes: a type system for controlling repre-
sentation exposure. In.Fernuniversität Hagen Programming Languages and Fun-
damentals of Programming (1999)

30. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: an extensible compiler frame-
work for java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

31. Östlund, J., Brandauer, S., Wrigstad, T.: The joelle programming language : evolv-
ing java programs along two axes of parallel eval. In: LaME 2012 (2012)

32. Östlund, J., Wrigstad, T.: Regions as owners - a discussion on ownership-based
effects in practice. In: IWACO 2011, International Workshop on Aliasing, Confine-
ment and Ownership in Object-Oriented Programming (2011)

33. Östlund, J., Wrigstad, T.: Multiple aggregate entry points for ownership types. In:
Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 156–180. Springer, Heidelberg
(2012)

34. Östlund, J., Wrigstad, T., Clarke, D., Åkerblom, B.: Ownership, uniqueness, and
immutability. In: Paige, R.F., Meyer, B. (eds.) TOOLS. LNCS, pp. 178–197.
Springer, Heidelberg (2008)

35. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic Java.
In OOPSLA, pp. 311–324 (2006)

36. Servetto, M., Pearce, D. J., Groves, L., Potanin, A.: Balloon types for safe par-
allelisation over arbitrary object graphs. In: 4th Workshop on Determinism and
Correctness in Parallel Programming (2013)

37. Strnisa, R., Parkinson, M.J.: Lightweight java. In: Archive of Formal Proofs (2011)
38. Wrigstad, T.: Ownership-Based Alias Management. Ph.D. thesis, Royal Institute

of Technology, Kista, Stockholm, May 2006

Author Index

Alglave, Jade 97
Arbab, Farhad 57

Brandauer, Stephan 1

Castegren, Elias 1, 179
Clarke, Dave 1
Coppo, Mario 146

Dezani-Ciancaglini, Mariangiola 146

Fernandez-Reyes, Kiko 1

Johnsen, Einar Broch 1
Jongmans, Sung-Shik T.Q. 57

Östlund, Johan 179

Padovani, Luca 146
Pun, Ka I. 1

Tarifa, S. Lizeth Tapia 1

Wrigstad, Tobias 1, 179

Yang, Albert Mingkun 1
Yoshida, Nobuko 146

	Preface
	Contents
	Parallel Objects for Multicores: A Glimpse at the Parallel Language Encore
	1 Introduction
	2 Background: Active Object-Based Parallelism
	3 Hello Encore
	4 Classes
	4.1 Object Construction and Constructors
	4.2 Active Classes
	4.3 Passive Classes
	4.4 Parametric Classes
	4.5 Traits and Inheritance

	5 Method Calls
	6 Futures
	6.1 Using the get operation
	6.2 Using the await command
	6.3 Using Future Chaining

	7 Expressions, Statements, and so Forth
	7.1 Types
	7.2 Expression Sequences
	7.3 Loops
	7.4 Arrays
	7.5 Formatted Printing
	7.6 Anonymous Functions
	7.7 Polymorphism and Type Inference
	7.8 Module System
	7.9 Suspending Execution
	7.10 Embedding of C Code

	8 Streams
	9 Parallel Combinators
	9.1 Parallel Types
	9.2 A Collection of Combinators
	9.3 From Sequential to Parallel Types
	9.4 ... and Back Again
	9.5 Example
	9.6 Implementation

	10 Capabilities
	10.1 Capabilities for Controlling of Sharing
	10.2 Exclusive Capabilities
	10.3 Shared Capabilities
	10.4 Subordinate Capabilities
	10.5 Polymorphic Concurrency Control
	10.6 Composing Capabilities
	10.7 Implementing a Parallel Operation on Disjoint Parts of Shared State

	11 Examples
	11.1 Example: Thread Ring
	11.2 Example: Prime Sieve
	11.3 Example: Preferential Attachment

	12 Formal Semantics
	12.1 The Syntax of Encore
	12.2 Typing of Encore
	12.3 Semantics of Encore
	12.4 Run-Time Typing

	13 Related Work
	14 Conclusion
	A Code for Preferential Attachments
	References

	Coordinating Multicore Computing
	1 Introduction
	2 Interaction-Centric Concurrency
	3 Overview of Reo
	4 Examples
	4.1 Alternator
	4.2 Sequencer
	4.3 Buffered Sequencing
	4.4 Sampling
	4.5 Exclusive Router
	4.6 Shift-Lossy FIFO1
	4.7 Decoupled Alternating Producers and Consumer
	4.8 Dataflow Variable
	4.9 Fully Decoupled Alternating Producers and Consumer
	4.10 Flexibility and Scaling

	5 Semantics
	6 Compilation
	7 Concluding Remarks
	References

	Modeling of Architectures
	1 Why Herd Cats Anyway?
	2 First Steps in Herding Cats
	3 Let's Herd Two Kittens 12
	4 Let's Herd Our First Big Cat: A Tiger 6
	4.1 SC per Location
	4.2 No Thin Air
	4.3 Propagation
	4.4 Observation
	4.5 Restoring SC with Heavyweight Fences

	5 Let's Herd Our Second Big Cat: A Jaguar 13
	5.1 Scopes
	5.2 RMO per Scope

	6 Let's Herd Our Third Big Cat: A Panther 15
	6.1 Plain and Special Events
	6.2 Release-Acquire Semantics
	6.3 Validity
	6.4 Data Races and Undefined Executions

	7 Credits
	A Answers to Exercises
	A.1 First Step in Herding Cats
	A.2 First Big Cat: Tiger
	A.3 Second Big Cat: Jaguar

	B Complete Bell and Cat Files
	B.1 Kittens
	B.2 Tiger
	B.3 Jaguar
	B.4 Panther

	References

	A Gentle Introduction to Multiparty Asynchronous Session Types
	1 Introduction
	2 Examples
	2.1 Example 1: The Three Buyer Protocol
	2.2 Example 2: The Three Buyer Protocol with Recursion

	3 The Calculus for Multiparty Sessions
	3.1 Syntax
	3.2 Operational Semantics

	4 Communication Type System
	4.1 Global and Session Types
	4.2 Typing Rules for Pure Processes
	4.3 Types and Typing Rules for Runtime Processes
	4.4 Subject Reduction

	5 Related Work
	5.1 Multiparty Session Types
	5.2 Theoretical Studies on Multiparty Session Types
	5.3 Progress and Session Interleaving
	5.4 Security
	5.5 Behavioural Semantics
	5.6 Runtime Monitoring and Adaptation
	5.7 Linkages with Other Frameworks
	5.8 Implementations Based on Multiparty Session Types

	A Properties of the Communication Type System
	A.1 Auxiliary Lemmas
	A.2 Proof of Subject Reduction

	References

	Refined Ownership: Fine-Grained Controlled Internal Sharing
	1 Introduction
	2 Background and Motivation
	2.1 Object Ownership
	2.2 Ownership-Based Effect Abstraction
	2.3 Ownership, Internal Structure and Disjointness

	3 Ownership Refinement
	3.1 Adding Values to Refined Owners
	3.2 Copying Elements Across Lists
	3.3 Manipulating Structures with Refined Ownership

	4 Refined Ownership for Parallelism
	4.1 A Motivating Example
	4.2 Tree-Shaped Subgraph Traversals
	4.3 Constructing Trees for Parallel Programming

	5 A Type System for Refined Ownership
	5.1 Typing of Statements
	5.2 Typing of Expressions
	5.3 Well-Formed Programs
	5.4 Well-Formed Effects and Effect Disjointness
	5.5 Well-Formed Types and Subtyping
	5.6 Type Environment, Owners and Relations
	5.7 Dynamic Semantics
	5.8 Meta-theory

	6 Implementation
	7 Related Work
	8 Conclusion
	References

	Author Index

