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Abstract. At present there is a growing interest in studying emotions in
the brain. However, although in the latest years there have been numer-
ous studies, little is known about their temporal dynamics. Techniques
such as fMRI or PET have very good spatial resolution but poor tempo-
ral resolution and vice-versa in the case of EEG. In this study we propose
to use EEG to gain insight into the spatiotemporal dynamics of emotions
processing with a better time resolution. We conducted an experiment in
which binary classification (like / dislike) of standardized images was per-
formed. Topographic changes in EEG activity were examined in the time
domain. In the spatial dimension, we used a rotating dipole for the spa-
tial location and determination of Cartesian coordinates (x, y and z). Our
results showed a temporal window (424-474msec) with a significant differ-
ence which involved a lateralization (left to very positive stimuli and right
to very negative stimuli) even for neutral stimuli. These results support
the lateralization of brain activity during processing of emotions.

Keywords: EEG Teleservices · Brain-computer interface · Brain area
networks

1 Introduction

The ability to recognize the emotional states is an important part of natural
communication. Emotion plays an important role in human–human communica-
tion and interaction. Considering that, in normal live, we all are surroundedbyma-
chines; the emotional interaction between humans andmachines is one of the most
important challenges in advancedhuman–machine interactionandbrain–computer
interface [1]. For a robust analysis of the affective human–machine interaction, one
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of the most important requisites is to develop a reliable emotion recognition sys-
tem capable to guarantee high recognition accuracy, robustness against artifacts
and adaptability to applications.

Some researchers support the notion of biphasic emotion, which states that
emotion fundamentally stems from varying activation in centrally organized ap-
petitive and defensive motivational systems that have evolved to mediate the
wide range of adaptive behaviors necessary for an organism struggling to survive
in the physical world [2]. In this framework, neuroscientists have made efforts to
determine how the relationship between stimulus input and behavioral output
is mediated though specific, neural circuits that have evolved to organize and
direct adaptive actions [3].

Relatively little is known about the neural temporal dynamics of emotion
processing [4]. The majority of neuroimaging studies are based on methods such
as functional Magnetic Resonance Imaging (fMRI) [5] or Positron Emission To-
mography (PET) [6] with excellent spatial resolution but a very poor temporal
one (in the range of seconds). Conversely, Electroencephalography (EEG) offers
excellent temporal resolution (in the range of milliseconds), thus offering a better
choice to solve the temporal problem.

Among neuroimaging techniques, EEG has demonstrated it can provide
informative characteristics in responses to the emotional states [7]. Since David-
son et al [8] suggested that frontal brain electrical activity was associated with
the experience of positive and negative emotions, the studies of associations be-
tween EEG asymmetry and emotions has received much attention [9]. In other
studies, EEG asymmetry and event-related potentials (indexing a relatively small
proportion of mean EEG activity) were also used to study the association with
emotion [10].

In this study we investigated the temporal dynamics of neural activity associ-
ated to emotions (like/dislike) generated by complex pictures derived from the In-
ternational Affective Picture System (IAPS) [11]. First, we used EEG to solve the
problem of temporal resolution. We evaluated the correspondence between sub-
jective emotional experience induced by the pictures and then the neural signa-
ture derived from the temporal profiles associated with their perception. Finally,
we estimated with rotating dipole and head reconstruction the underlying neural
places in which event-related potentials (ERPs) were generated. The tridimen-
sional location was used for the assessment of changes in the activation of cortical
networks involved in emotion processing. We completed the study by analysis of
lateralization during emotion identification task in the tridimensional space.

Our results i) provide valuable information to understand the temporal dy-
namics of emotions, ii) are coherent with other works [12] about hemispheric
lateralization and iii) introduce locations in the tridimensional space. Therefore,
we suggest that the findings of this study could be useful for the development of
effective and reliable neural interfaces.
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2 Material and Methods

Participants

Twenty two participants participated in the study (mean age: 24.7; range:
19.7–33; eleven men, eleven women). All participants had no personal history
of neurological or psychiatric illness, drug or alcohol abuse, or current medica-
tion, and they had normal or corrected to normal vision. All of them were right
handed with a laterality quotient of at least + 0.4 (mean 0.8, SD: 0.2) on the
Edinburgh Inventory [13]. All subjects were informed about the aim and design
of the study and gave their written consent for participation.

Stimuli and Validation

A subset of standardized stimuli (144 pictures in total) was preselected from the
IAPS dataset [11]. This is a database that contains a set of normalized emotional
stimuli for experimental investigations of emotion and attention. It contains a
large set of standardized, emotionally-evocative, internationally accessible, color
photographs including contents across a wide range of semantic categories, from
pleasant images (e.g. babies and beautiful animals) to unpleasant images (e.g.
scenes of violence and injuries). Each image was presented with a score (9-1)
concerning their affective valence. Stimuli were presented in color, with equal
luminance and contrast.

The preselected IAPS stimuli were categorized into four groups according to
punctuation IAPS, namely very nice pictures (7< punctuation ≤ 9), nice pictures
(5 < punctuation ≤ 7), unpleasant images (2 < punctuation ≤ 5) and very un-
pleasant images (1 < punctuation ≤ 2). Each group was composed of 36 images.

IAPS pictures were previously scored with American population. In order
to avoid artifacts due to the cultural issue (the participants were Spanish), we
executed a previous study to calibrate the valence of the images with our par-
ticipants. Stimulus categorization was validated in a study including 30 partic-
ipants who did not participate in the main experiment (mean age: 23.3; range:
20.6–31.3; seventeen men, thirteen women). The stimuli were presented one by
one during 1 second followed by a black screen for 3 sec on a 21 inches screen
in random order. Subjects were instructed to give each stimulus a score from
1 to 9 avoiding 5 depending on subjective taste (1: dislike; 9: like). Their ver-
bal response was recorded. Eighty out of the 144 images were selected for the
main EEG experiment based on their new subjective score. Half of them (40)
corresponded to positive images (score >5, CI = 95%) and the other half were
negative images (punctuation <5; CI = 95%).

Procedure

Figure 1 summarizes the serial structure of the study. Each image was presented
for 500msec and followed by a black screen for 3500msec. The participants task
was to view the images and to rate the arousal and valence of their own emotional
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Fig. 1. Experimental design. The sequence of stimuli was presented in continuous mode
by using a commercial stimulus presentation software (STIM2, Compumedics, Char-
lotter, NC, USA).

experience. Pictures score ranged from 1 (very unpleasant) to 9 (very pleasant).
The images appeared randomly and only once.

Data Acquisition

We instructed subjects to remain as immobile as possible, avoiding blinking
during image exposure and trying to keep the gaze toward the monitor center.
EEG data was continuously recorded at a sampling rate of 1000 Hz from 64
locations (FP1, FPZ, FP2, AF3, GND, AF4, F7, F5, F3, F1, FZ, F2, F4, F6,
F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2,
C4, C6, T8, REF, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3,
P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ,
O2, CB2 ) using the international 10/20 system [14]. EEG was recorded via cap-
mounted Ag-AgCl electrodes. A 64-channel NeuroScan SynAmps EEG amplifier
(Compumedics, Charlotte, NC, USA). The impedance of recording electrodes
was monitored for each subject prior to data collection and the threshold were
kept below 25 KΩ. All the recordings were performed in a silent room with soft
lighting.

Signal processing was performed with the help of Curry 7 (Compumedics,
Charlotte, NC, USA). Data were re-referenced to a Common Average Reference
(CAR) because the statistical and analysis methods required CAR. EEG signals
were filtered using a 45 Hz low-pass and a high-pass 0.5 Hz filters.

Electrical artifacts due to motion, eye blinking, etc. were corrected. They were
identified as signal levels above 75μV in the 5 frontal electrodes (FP1, FPZ, FP2,
AF3 and AF4). These electrodes were chosen because they are the most affected
by potential involuntary movements. The time interval for artifact detection
was from (-200msec, +500msec) from stimulus onset. The detected artifacts
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were corrected using Principal Component Analysis (PCA). PCA is a classical
technique in statistical data analysis, feature extraction and data reduction [15].

EEG data in the interval (-100, 1000) msec from stimulus onset were analyzed
in this study. For each person, records were separated into 8 subgroups according
to their given score (9, 8, 7, 6, 4, 3, 2, and 1). In turns, subgroups for dipole
analysis were grouped into 4 groups as shown in Table 1.

Table 1. Separation of subjective scores into 4 groups for all people. Dipole separation
performed for reconstruction using the mean of all people.

Statistical Analyses

To constrain our analysis, we used an approach that has been widely used in
psychophysiology: the examination of topographic changes in EEG activity (see
[16] for an overview and [17]). This approach considers whole-scalp EEG activity
elicited by a stimulus as a finite set of alternating spatially stable activation
patterns, which reflect a succession of information processing stages. Differences
in topographic patterns of activity between conditions were assessed using the
Curry 7 software.

There are two main reasons why we used this analysis rather than the more
traditional which is based on the assessment of amplitudes and latencies of a
set of predefined ERP components. First, it takes into consideration the entire
time course of activity and the entire pattern of activation across the scalp by
testing the global field power from all electrodes (see for further explanation
[18]). Second, this approach is able to detect not only differences in amplitude,
but also differences in underlying sources of activity. The latter is based on the
fact that maps that are confirmed to be both spatially and temporally different
must necessarily be the product of a different set of generators. However, we
emphasize that the analysis of topography changes is not incompatible with the
analysis of traditional ERPs.

As recommended, topographical differences were tested through a non-
parametric randomization test known as TANOVA (Topographic ANOVA).
TANOVA tests for differences in global dissimilarity of EEG activity between
two conditions by assessing whether the topographies are significantly different
from each other on a time point-by-time point basis. TANOVA were performed
to assess differences in activation patterns between different groups of images by
subjective scoring. TANOVA is sufficient to indicate the time windows of inter-
est for further analysis dipole. In this study, the significance level is α=0.01. As
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suggested by [19], the corresponding required number of repetitions was chosen
to be p> 1000. Map normalization was used for the difference tests, such that
the MGFP per map was equal to 1.

The dipole source localization (DSL) solves the EEG inverse problem by using
a nonlinear multidimensional minimization procedure that estimates the dipole
parameters that best explain the observed scalp potentials in a least-square
sense. In this process, we assume that EEG is generated by one or no more than
few focal sources. The dipole source model can be further classified as moving,
fixing or rotating dipoles depending on the degree of freedom of parameters. In
our study we used a rotating dipole, that may be viewed as two independent
dipoles whose orientation is allowed to vary with time [20].

Boundary Element Method (BEM) was used in the head reconstruction since
it permits to locate the source dipoles. Thus BEM models are superior in non-
spherical parts of the head like temporal and frontal lobe or basal parts of the
head, where spherical models exhibit systematic localizations of up to 30mm [21].

Fig. 2. Time points of significant differences in EEG activity for the 8 contrasts (9, 8,
7, 6, 4, 3, 2 and 1). It is as indicated by the T ANOVA analysis, depicting 1 minus
p-value across time. Significant p values are plotted (p<0.01). The two vertical rectan-
gles contain interval with significant differences.
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3 Results

Participant Rankings Compression

The participants responded correctly to 1758 images (99.98%) following the in-
structions before starting the experiment. In only two images volunteer answered
incorrectly (score 5) or did not respond. The images followed by incorrect an-
swers were not excluded in the analysis below. The distribution of the new scores
(or valences) was 49.4% and 50.6% greater and less than 5 respectively.

EEG

Differences in stimulus-elicited activity are depicted in Figure 2. There were
significant differences between pictures with different scores (p<0.01). These
differences started approximately 276 msec after stimulus onset. All subgroups
were significant different to each other in two time windows, namely [276 - 294]
msec and [424 - 474] msec.

Dipoles

One rotating dipole source model was used in the two time windows with sig-
nificant differences indicated by the TANOVA (see Figure 2). When we focused

Fig. 3. Head reconstruction by rotating dipole in time window [424-474] msec. Rating
was grouped into four groups according to subjective punctuation (see Table 1).



210 M.D. Grima Murcia et al.

Table 2. Coordinates of dipole in head for window significant [424-474] msec

in the larger time window (424-474msec, duration 50msec) we found significant
differences in the dipoles for the different types of images (see Figure 3).

The Cartesian coordinates of the rotating dipole for each group are shown in
table 2.

4 Conclusions

Our results suggest a strong lateralization in the processing of images with emo-
tive content. Thus, we found an increased activity in the left hemisphere for
emotions with a positive valence. In contrast, there was an increased activity
in the right hemisphere for emotions with a negative valence. These results are
in line with the valence hypothesis in the hemispheric lateralization of emotion
processing, which postulates a preferential engagement of the left hemisphere
for positive emotions and of the right hemisphere for negative emotions[22],[23].
Furthermore the z coordinate of the resulting rotating dipoles, provide valuable
information for further studies in this field. In this framework our results support
the point of view that in extreme emotions (groups ++++ and —-), z is smaller
or more intermediate than in neutral images (groups ++ and –).

On the other hand, the broad range of stimulus types adds an important
dimension of universal validity to the results. The same valence can be induced
by either pictures displaying facial, bodily expressions, or complex events and
landscape. Therefore, we extend generalizability beyond facial expressions, which
are the stimuli most commonly used in emotion research. In future work, we plan
to perform a deeper study of the dipoles for each group, which would allow us to
get higher levels of accuracy in the definition of the location of the dipoles. Thus,
the spatial location observed in emotional processing of different visual stimuli
can help to provide a comprehensive account of the role of each hemisphere in
this processing, which could help in understanding deficits seen in psychiatric or
developmental disorders. Furthermore, this could be helpful for the development
of new paradigms of brain-computer interfaces.

Acknowledgement. This work has been supported in part by grant MAT2012-39290-
C02-01, by the Bidons Egara Research Chair of the University Miguel Hernández, by
a research grant of the Spanish Blind Organization (ONCE), by Nicolo Association for
the R&D in Neurotechnologies for disability, by the regional project P11-TIC-7983, by
Junta of Andalucia (Spain) and by the Spanish grant TIN2012-32039 (Spain).



Spatio-temporal Dynamics of Images with Emotional Bivalence 211

References

1. Picard, R.W.: Affective computing. MIT Press

2. Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Ap-
proach/withdrawal and cerebral asymmetry: Emotional expression and brain phys-
iology(58), 330–341

3. Fanselow, M.S.: Neural organization of the defensive behavior system responsible
for fear 1(4), 429–438, http://www.springerlink.com/index/10.3758/BF03210947,
doi:10.3758/BF03210947

4. Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian,
L., Sorger, B., Healy, D., Goebel, R.: Real-time self-regulation of emotion networks
in patients with depression 7(6) e38115,
http://dx.doi.org/10.1371/journal.pone.0038115, doi:10.1371/journal.pone.0038115

5. Vink, M., Derks, J.M., Hoogendam, J.M., Hillegers, M., Kahn, R.S.: Func-
tional differences in emotion processing during adolescence and early adult-
hood 91, 70–76, http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561,
doi:10.1016/j.neuroimage.2014.01.035

6. Royet, J.P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., Gervais,
R.: Emotional responses to pleasant and unpleasant olfactory, visual, and auditory
stimuli: a positron emission tomography study 20(20) 7752–7759

7. Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using
frontal brain asymmetry for enhanced EEG-based emotion recognition 15(5), 737–
746, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5776680,
doi:10.1109/TITB.2011.2157933

8. Davidson, R., Fox, N.: Asymmetrical brain activity discriminates between positive
and negative affective stimuli in human infants 218(4578), 1235–1237,
http://www.sciencemag.org/cgi/doi/10.1126/science.7146906,
doi:10.1126/science.7146906

9. Harmon-Jones, E., Allen, J.J.: Anger and frontal brain activity: EEG asymmetry
consistent with approach motivation despite negative affective valence 74(5), 1310–
1316

10. Schupp, H.T., Cuthbert, B.N., Bradley, M.M., Cacioppo, J.T., Ito, T., Lang, P.J.:
Affective picture processing: The late positive potential is modulated by motiva-
tional relevance 37(2), 257–261, http://doi.wiley.com/10.1111/1469-8986.3720257,
doi.10.1111/1469-8986.3720257

11. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system
(IAPS): Technical manual and affective ratings

12. Davidson, R.J.: Anterior electrophysiological asymmetries, emotion, and depres-
sion: Conceptual and methodological conundrums 35(5), 607–614,
http://doi.wiley.com/10.1017/S0048577298000134, doi:10.1017/S0048577298000134

13. Oldfield, R.: The assessment and analysis of handedness: The edinburgh inven-
tory 9(1), 97–113, http://linkinghub.elsevier.com/retrieve/pii/0028393271900674,
doi:10.1016/0028-3932(71)90067-4

14. Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system
of the international federation. the International Federation of Clinical Neurophys-
iology 52, 3–6

http://www.springerlink.com/index/10.3758/BF03210947
http://dx.doi.org/10.1371/journal.pone.0038115
http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5776680
http://www.sciencemag.org/cgi/doi/10.1126/science.7146906
http://doi.wiley.com/10.1111/1469-8986.3720257
http://doi.wiley.com/10.1017/S0048577298000134
http://linkinghub.elsevier.com/retrieve/pii/0028393271900674


212 M.D. Grima Murcia et al.

15. Meghdadi, A.H., Fazel-Rezai, R., Aghakhani, Y.: Detecting determinism in
EEG signals using principal component analysis and surrogate data testing,
pp. 6209–6212. IEEE,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4463227,
doi:10.1109/IEMBS.2006.260679

16. Murray, M.M., Brunet, D., Michel, C.M.: Topographic ERP analyses: A step-by-
step tutorial review 20(4) 249–264,
http://link.springer.com/10.1007/s10548-008-0054-5, doi:10.1007/s10548-008-
0054-5

17. Martinovic, J., Jones, A., Christiansen, P., Rose, A.K., Hogarth, L.,
Field, M.: Electrophysiological responses to alcohol cues are not associ-
ated with pavlovian-to-instrumental transfer in social drinkers 9(4), e94605,
doi:10.1371/journal.pone.0094605

18. Skrandies, W.: Global field power and topographic similarity 3(1) 137–141,
http://link.springer.com/10.1007/BF01128870, doi:10.1007/BF01128870

19. Rosenblad, A.: B. f. j. manly: Randomization, bootstrap and monte carlo methods
in biology, 3rd edn., 455 p. Chapman & amp; hall/CRC, Boca raton, $79.95 (HB),
ISBN: 1-58488-541-6 24 (2) 371372. doi:10.1007/s00180-009-0150-3

20. Fuchs, M., Wagner, M., Wischmann, H.-A., Köhler, A., Theissen, R., Drenckhahn,
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