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Preface

The computational paradigm considered here is a conceptual, theoretical, and formal
framework situated above machines and living creatures (two instantiations), suffi-
ciently solid, and still non exclusive, that allows us:

1. to help neuroscientists to formulate intentions, questions, experiments, methods,
and explanation mechanisms assuming that neural circuits are the psychological
support of calculus;

2. to help scientists and engineers from the fields of artificial intelligence (AI) and
knowledge engineering (KE) to model, formalize, and program the computable
part of human knowledge;

3. to establish an interaction framework between natural system computation and ar-
tificial system computation in both directions, from Artificial to Natural and from
Natural to Artificial.

With these global purposes, Prof. José Mira organized the 1st International Work
Conference on the Interplay between Natural and Artificial Computation, which took
place in Las Palmas de Gran Canaria, Canary Islands (Spain), 10 years ago, trying to
contribute to both directions of the interplay.

Today, the hybridization between social sciences and social behaviors with robotics,
neurobiology and computing, ethics and neuroprosthetics, cognitive sciences and neu-
rocomputing, neurophysiology and marketing is giving rise to new concepts and tools
that can be applied to ICT systems, as well as to natural science fields. Through IWINAC
we provide a forum in which research in different fields can converge to create new com-
putational paradigms that are on the frontier between Natural sciences and Information
technologies.

As a multidisciplinary forum, IWINAC is open to any established institutions and
research laboratories actively working in the field of this interplay. But beyond achiev-
ing cooperation between different research realms, we wish to actively encourage coop-
eration with the private sector, particularly SMEs, as a way of bridging the gap between
frontier science and societal impact, and young researchers in order to promote this
scientific field.

In this edition, four main themes outline the conference topics: gerontechnology
and e-therapy, Brain–Computer Interfaces, Biomedical imaging applications for health,
and artificial vision and robotics.

Gerontechnology is an interdisciplinary field combining gerontology and technol-
ogy. Gerontechnology aims at matching systems to health, housing, mobility, commu-
nication, leisure, and work of the elderly. The development of computing systems for
gerontechnology has turned into a challenging activity requiring disciplines as diverse
as artificial intelligence, human–computer interaction, and wireless sensor networks to
work together in order to provide solutions able to satisfy this growing societal demand.

Brain–Computer Interfaces implement a new paradigm in communication networks,
namely Brain Area Networks. In this paradigm, our brain inputs data (external
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stimuli), performs multiple media-access control by means of cognitive tasks (selec-
tive attention), processes the information (perception), takes a decision (cognition) and,
eventually, transmits data back to the source (by means of a BCI), thus closing the com-
munication loop. The objectives include neuro-technologies (e.g. innovative EEG/ECG/
fNIRS headsets, integrated stimulation-acquisition devices, etc.), Tele-services (e.g. ap-
plications in Telemedicine, tele-rehabilitation programs, tele-control, mobile applica-
tions, etc.), innovative biosignal processing algorithms, training techniques, and novel
emerging paradigms.

Image understanding is a research area involving both feature extraction and object
identification within images from a scene, and a posterior treatment of this informa-
tion in order to establish relationships between these objects with a specific goal. In
biomedical and industrial scenarios, the main purpose of this discipline is, given a visual
problem, to manage all aspects of prior knowledge, from study start-up and initiation
through data collection, quality control, expert independent interpretation, to design
and development of systems involving image processing capable of tackling with these
tasks. Brain imaging using EEG techniques or different MRI systems can help in some
neural disorders, like epilepsy, Alzheimer, etc.

Over the last decades there has been an increasing interest in using machine learn-
ing methods combined with computer vision techniques to create autonomous systems
that solve vision problems in different fields. This research involves algorithms and ar-
chitectures for real-time applications in the areas of computer vision, image processing,
biometrics, virtual and augmented reality, neural networks, intelligent interfaces, and
biomimetic object-vision recognition. Autonomous robot navigation sets out enormous
theoretical and applied challenges to advanced robotic systems using these techniques.

Ten years after the birth of IWINAC meetings these ideas maintain the visionary ob-
jectives of Prof. Mira. This wider view of the computational paradigm gives us more el-
bow room to accommodate the results of the interplay between nature and computation.
The IWINAC forum thus becomes a methodological approximation (set of intentions,
questions, experiments, models, algorithms, mechanisms, explanation procedures, and
engineering and computational methods) to the natural and artificial perspectives of
the mind embodiment problem, both in humans and in artifacts. This is the philosophy
that continues in IWINAC meetings, the “interplay” movement between the natural and
the artificial, facing this same problem every two years. This synergistic approach will
permit us not only to build new computational systems based on the natural measurable
phenomena, but also to understand many of the observable behaviors inherent to natural
systems.

The difficulty of building bridges between natural and artificial computation is one
of the main motivations for the organization of IWINAC 2015. The IWINAC 2015 pro-
ceedings contain the works selected by the Scientific Committee from more than 190
submissions, after the refereeing process. The first volume, entitled Artificial Compu-
tation in Biology and Medicine, includes all the contributions mainly related to the
methodological, conceptual, formal, and experimental developments in the fields of
neural sciences and health. The second volume, entitled Bioinspired Computation in
Artificial Systems, contains the papers related to bioinspired programming strategies
and all the contributions related to the computational solutions to engineering problems
in different application domains.
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An event of the nature of IWINAC 2015 cannot be organized without the collabo-
ration of a group of institutions and people who we would like to thank now, starting
with UNED and Universidad Politécnica de Cartagena. The collaboration of the UNED
Associated Center in Elche was crucial, as was the efficient work of the Local Orga-
nizing Committee, chaired by Eduardo Fernández with the close collaboration of the
Universidad Miguel Hernández de Elche. In addition to our universities, we received
financial support from the Spanish CYTED, Red Nacional en Computación Natural y
Artificial and Apliquem Microones 21 s.l.

We want to express our gratefulness to our invited speakers Prof. Hojjat Adeli, Ohio
State University (USA), Prof. Marc de Kamps, University of Leeds (UK), Prof. Richard
Duro, University of A Coruña (Spain), and Prof. Luis Miguel Martínez Otero, Univer-
sity Miguel Hernández (Spain) for accepting our invitation and for their magnificent
plenary talks.

We would also like to thank the authors for their interest in our call and the effort in
preparing the papers, condition sine qua non for these proceedings. We thank the Sci-
entific and Organizing Committees, in particular the members of these committees who
acted as effective and efficient referees and as promoters and managers of preorganized
sessions on autonomous and relevant topics under the IWINAC global scope.

Our sincere gratitude goes also to Springer and to Alfred Hofmann and his collab-
orators, Anna Kramer and Christine Reiss, for the continuous receptivity, help efforts,
and collaboration in all our joint editorial ventures on the interplay between neuro-
science and computation.

Finally, we want to express our special thanks to Viajes Hispania, our technical
secretariat, and to Chari García and Beatriz Baeza, for making this meeting possible,
and for arranging all the details that comprise the organization of this kind of event.
We want to dedicate these two volumes of the IWINAC proceedings to the memory of
Professor Mira, whose challenging and inquiring spirit is in all of us. We greatly miss
him.

June 2015 José Manuel Ferrández Vicente
José Ramón Álvarez-Sánchez

Félix de la Paz López
Fco. Javier Toledo-Moreo

Hojjat Adeli
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Rosa-Maŕıa Menchón-Lara, Andrés Bueno-Crespo,
and José Luis Sancho-Gómez
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Stress Detection Using Wearable Physiological Sensors . . . . . . . . . . . . . . . . 526
Virginia Sandulescu, Sally Andrews, David Ellis, Nicola Bellotto,
and Oscar Martinez Mozos

An Embedded Ground Change Detector for a “Smart Walker” . . . . . . . . . 533
Viviana Weiss, Aleksandr Korolev, Guido Bologna, Séverine Cloix,
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Jeronimo Puertas, and Luis Pena

Computer-Aided Development of Thermo-Mechanical Laser Surface
Treatments for the Fatigue Life Extension of Bio-Mechanical
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
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J.M. Ferrández-Vicente, and Eduardo Ferrández

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459



Automated Diagnosis of Alzheimer’s Disease

by Integrating Genetic Biomarkers
and Tissue Density Information
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Abstract Computer aided diagnosis (CAD) constitutes an important
tool for the early diagnosis of Alzheimer’s Disease (AD), which, in turn,
allows the application of treatments that can be simpler and more likely
to be effective. This paper presents a straightfoward approach to determ-
ine the most discrimanative brain regions, defined by the Automated
Anatomical Labelling (AAL), based on the measurements of the tissue
density at the different brain areas. Statistical analysis of GM and WM
densities reveal significant differences between controls (CN) and AD at
specific brain areas associated to tissue density diminishing due to neuro-
degeneration. The proposed method has been evaluated using a large
dataset from the Alzheimer’s disease Neuroimaging Initiative (ADNI).
Classification results assessed by cross-validation proved that computed
WM/GM densities are discriminative enough to differentiate between
CN/AD. Moreover, fusing density measurements with ApoE genetic in-
formation help to increase the diagnosis accuracy.

1 Introduction

Alzheimer’s Diasese (AD) is the most common cause of dementia among older
people and a third of young people with dementia have AD, affecting 30 mil-
lion people worldwide. Due to the increasing life expectancy and the ageing
of the population in developed nations, it is expected AD affects 60 million
people worldwide over the next 50 years. It is a slow neurodegenerative disease
associated to the production of β-amyloid peptide (Aβ) and its extracellular

Data used in preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
ucla.edu/wpcontent/uploads/how to apply/ADNI Acknowledgement List.pdf.
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deposition as well as the flame-shaped neurofibrillary tangles of the microtubule
binding protein tau [9]. This progressively causes the loss of nerve cells, whose
symptoms usually start with mild memory problems, turning into severe brain
damage in several years. There is no cure for AD, and currently developed drugs
can only help to temporarily slow down the progression of the disease [14]. How-
ever, treatment success depends on the early diagnosis that can allow an early
treatment.

Since the AD neurodegeneration process progresively affects different brain
functions, functional images such as Single Emission Computerized Tomography
(SPECT) [12,6,8] or Positron Emission Tomography (PET) [1,13] have been ex-
tensively used in Computer Aided Diagnosis systems. AD also causes structural
changes in the brain and thus structural differences between controls and AD pa-
tients can be revealed by analysis of Magnetic Resonance Images (MRI). In fact,
MRI has been used in many previous works for automatic diagnosis [11,10,4,5].
However, these works use GM or WM images on whole brain volume to classify
controls and AD patients [4,5] or to compute Regions of Interest (ROI). By con-
trast, we use here the 116-regions Automated Anatomical Labeling Atlas (AAL)
to extract brain patches corresponding to these areas, allowing to compute GM
and WM tissue densities at each brain region. Moreover, clinical information
such as gender and APOE genetic biomarkers have been included to 1) determ-
ine the discriminative power of each biomarker and 2) improve the classification
accuracy by combining biomarkers and image data.

The rest of the paper is organized as follows. Section 2 describes the database
used in this work. Image preprocessing, densty computation and the methods
used to select the most relevant brain regions are shown in subsections 2.1, 2.2
and 2.3, respectively. Section 3 shows details on the experiments performed and
the results obtained using patient data from the ADNI database. Finally, the
conclusions are drawn in Section 4.

2 Database

The database used in this work contains multimodal PET/MRI image data from
138 subjects, comprising 68 Controls (CN), 70 AD and 111 MCI patients from
the ADNI database [2]. This repository was created to study the advance of
the Alzheimer disease, collecting a vast amount of MRI and Positron Emission
Tomography (PET) images as well as blood biomarkers and cerebrospinal fluid
analyses. The main goal of this database is to provide a maens for the early
diagnosis of the Alzheimer’s disease. Patient’s demographics are shown in Table
1. However, in this work only MRI data are used.

2.1 Image Preprocessing

MRI images from the ADNI database have been spatially normalized according
to the VBM-T1 template and segmented into White Matter (WM) and Grey
Matter (GM) tissues using the VBM toolbox for SPM [3,16]. This ensures each
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Table 1. Patient Demographics

Evaluation Sex (M/F) Mean Age ± Std Mean MMSE ± Std

NC 43/25 75.81 ± 4.93 29.06 ± 1.08
AD 46/24 75.33 ± 7.17 22.84 ± 2.91

image voxel corresponds to the same anatomical position. After image registra-
tion, all the images from ADNI database were resized to 121x145x121 voxels
with voxel-sizes of 1.5 mm (Sagittal) x 1.5 mm (coronal) x 1.5 mm (axial). MRIs
are further segmented to obtain information about GM and WM tissue distri-
butions, which can be used to differentiate AD from CN patients [10,7,11]. This
process is guided by means of tissue probability maps of grey matter, white mat-
ter or cerebro-spinal fluid. A nonlinear deformation field is estimated that best
overlays the tissue probability maps on the individual sujects’ image. The tissue
probability maps provided by the International Consortium for Brain Mapping
(ICBM) are derived from 452 T1-weighted scans, which were aligned with an
atlas space, corrected for scan inhomogeneities, and classified into grey mat-
ter, white matter and cerebro-spinal fluid. Segmentation through SPM/VBM
provides values in the range [0, 1] which denote the membership probability to
a specific tissue.

2.2 Density Computation

Features used in this work are based on GM and WM volumes in specific brain
regions. The brain atlas delimitates 116 regions that can be used to mask the
brain and extract information from different areas. Thus, the GM volume in the
i-region can be computed using the following expression,

Voli =
#voxelsi > thr

1000
∗ voxel size (1)

where thr indicates the probability threshold that determines whether a voxel
belongs to a specific tissue. Similarly, tissue density for each region can be com-
puted as follows,

Di =
#voxelsi > thr

V oli
(2)

The threshold thr, in Equations 1 and 2, indicates how the partial volume
effect is taken into account.That is, if thr = 0.5, information from GM and WM
are equally mixed at the same voxel; the lower the thr (thr < 0.5) the less the
relative importance of one tissue over the other, and for thr=1 no volume effect
is taken into account. Since thr determines the classification accuracy, it has
been determined experimentally through classification experiments for different
threshold values, as shown in Section 3.
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2.3 Selection of Most Relevant Brain Regions

In this work, feature selection is accomplished in order to select the most dis-
criminant brain regions for AD. This is performed by the Student’s two sample
t -Test, with pooled variance estimate, which allows to test the difference in the
means of two populations. t -test defines the statistic t which is a significance
measurement on the means difference. Indeed, greater t-values correspond to
lower p-values that allows to reject the null hyphotesis. t -statistic can be com-
puted by the following expression

It =
|IμCN − IμAD|√
Iσ2

CN

NCN
+ Iσ2

AD

NCN

(3)

where IμCN and IμAD are the mean images for CN and AD respectively, IσCN and
IσAD are the variance images for CN and AD, respectively and NCN , NAD are
the number of CN and AD images, respectively.

3 Experimental Results

Firstly, experiments to determine the optimal threshold value indicated in Sec-
tion 2.2 were carried out. This was addressed by classifying using a Support
Vector Machine (SVM) with selected brain regions (p-value < 0.05). As a result,
the value 0.7, see Figure 1, is obtained as the optimal threshold that provides
the best accuracy outcome. Results shown in Figure 1 were obtained by k-fold
(k=10) cross-validation, performing the Welch’s test on each training partition.
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Fig. 1. Classification accuracy obtained for different threshold values for CN/AD sub-
jects

Hereafter, this optimal threshold is used for the rest of our experiments. Thus,
density computation is addressed with thr = 0.7 for both GM and WM tissues.

3.1 Diagnostic Relevance of Brain Regions

The most relevant regions at each cross-validation iteration are computed by
statistical hypothesis test as shown in Section 2.3. A set of p-values (and t-
statistic values) corresponding to the discriminative power of each brain region
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is calculated at each iteration. Thus, p-values coming from each test using the
training samples are combined to provide a summarized view of the relevance
of different brain areas. Hence, p-value combination has been addressed by the
Stouffer method [15] that transforms the p-values via the standard normal dis-
tribution. This way, p-values combination is defined as

pcomb = Φ

(
1√
n

n∑
i=1

Φ−1(pi)

)
(4)

where Φ is the cumulative distribution function (c.d.f.), and pi, i = {1, .., n}
are independent p-values.

Although all regions with p-value below 0.05 (5% significance level) have been
considered in the classification task, Figure 2 shows the most ten relevant regions
according to the combined p-value.

(a) (b) (c)

Fig. 2. Top ten selected brain regions in axial (a), coronal (b) and sagittal (c) planes.
Sorted by significance order, (38) Right Hippocampus, (90) Right Inferior temporal
Gyrus, (38) Left Hippocampus, (85) Left Middle Temporal gyrus, (86) Right Middle
Temporal gyrus, (89) Inferior Temporal gyrus, (40) Right ParaHippocampal gyrus,
(39) Left ParaHippocampal gyrus, (42) Right Amygdala, (41) Left Amygdala.

3.2 Integrating ApoE Genetic Data

The ApoE gene contains the information necessary to make the apolipoprotein
E, which is combined with fats (lipids) in the body to lipoproteinsis. There
are four genotypes, depending on the alleles present in the gene. Specifically,
genotypes that have been found to be related to AD are ApoE 4,4 and ApoE
3,3. However, subjects with two copies of the allele 4 (ApoE-ε4) have a higher risk
of contracting AD than ApoE 3,3 subjects. Conversely, subjects with genotype
ApoE 2,3 are considered to be protected against AD. In this paper, ApoE genetic
information from each subject has been included in the feature space to be
considered in the classification task.
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3.3 Classification

In this work, WM and GM density information has been computed from each
brain region according to the AAL atlas, consisting of 116 brain areas. These
densities have been used to compose the feature space and then to assess their
discriminant capabilities. Hence, statistical tests performed on density data re-
vealed discriminant regions corresponding to those found in the medical liter-
ature. Moreover, the discriminant power of ApoE genetic information extracted
from the ADNI database has been also assessed, showing less prediction capab-
ility than MRI data. A series of classification experiments were performed using
both GM/WM density information and genetic data. Subsequently, density and
genetic information is fused to improve the prediction capability using a SVM
classifier for CN/AD subjects. In the first experiment, once the most relevant
regions have been identified, only density information from these regions are
taken into account for classification. Figure 3a shows the accuracy, sensitivity
and specificity values obtained when WM and GM densities are used as features.
Moreover, Figure 3a also shows the improvement provided by fusing information
from WM and GM. As most of the information is contained in GM, it produces
the best accuracy value (0.83), but WM density also provides discriminant in-
formation, increasing the classification performance up to 0.86 when both WM
and GM densities are fused. On the other hand, as shown in Figure 3b, ApoE
data does not provide provide enough information by itself, but when fused
with WM/GM density data, it sightly contributes to increase the classification
outcomes.
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Fig. 3. Classification results assessed by k-fold (k=10) cross-validation for (a) WM/GM
density and (b) WM/GM density + ApoE genetic information

Additionally, Receiver Operating Curves (ROC) curves have been computed
to prove the discriminant power of density and genetic features used in this work.
We obtain that fusing WM and GM density information provides greater Aurea
Under ROC Curve (AUC) values than using those values separately, see Figure
4a. Moreover, Figure 4b shows a sightly improvement provided by incorporating
ApoE data to the feature space.
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Fig. 4. ROC curves for (a) WM/GM density and (b) WM/GM density + ApoE genetic
information

4 Conclusions

This paper proposes a straightforward method to compute tissue densities from
different brain regions defined by the AAL atlas. Different experiments were
carried out using these densities as features to assess their capability to distin-
guish between CN and AD subjects. Thus, statistical tests performed on density
data obtain discriminant regions corresponding to those found in medical lit-
erature, such as the hippocampus in both hemispheres. Moreover, artrophy in
other regions such as inferior temporal gyrus have been also revealed. Classi-
fication experiments performed using GM and WM density values from most
discriminant brain regions show an accuracy up to 85%, and AUC up to 0.90.

Finally, although genetic ApoE information has not shown a high discriminat-
ive capability, it helps to increase the classification accuracy when incorporated
to the WM/GM density information. Indeed, fusion of WM/GM density data
and ApoE genetic biomarkers provides accuracy values up to 87% and an AUC
of 0.92.
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Abstract. In the present paper we describe an artificial neural model of
the Number Interval Position Effect (NIPE;[5]) that has been observed in
the mental bisection of number intervals both in adults and in children.
In this task a systematic error bias in the mental setting of the subjective
midpoint of number intervals is found, so that for intervals of equal size
there is a shift of the subjective midpoint towards numbers higher than
the true midpoint for intervals at the beginning of decades while for inter-
vals at the end of decades the error bias is directionally reversed towards
numbers lower than the true midpoint. This trend of the bisection error is
recursively present across consecutive decades.
Here we show that a neural-computational model based on information
spread by energy gradients towards accumulation points based on the log-
arithimic compressed representation of number magnitudes that has been
observed at the single cell level in rhesus monkeys [9] effectively simulates
the performance of adults and children in the mental bisection of number
intervals, in particular replicating the data observed in children.

Keywords: Artificial Neural Models · Numerical Cognition · Mental
Number Line · Bisection of Number Intervals · NIPE effect

1 Introduction

Numbers are everywhere around us and dealing with them covers an important
part of our cognitive activity throughout our life. A number of studies have
suggested that when left/right response codes must be associated to number
magnitudes, healthy participants belonging to western cultures with left-to-right
reading habits map numbers upon a mental number line (MNL) with small inte-
gers positioned to the left of larger ones. This is reflected in the SNARC effect,
(Spatial-Numerical Association of Response Codes) first demonstrated by De-
haene, Bossini, and Giraux [4] who argued that A representation of number
magnitude is automatically accessed during parity judgments of Arabic dig-
its. This representation may be likened to a mental number line, because it
bears a natural and seemingly irrepressible correspondence with the left/right

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 9–18, 2015.
DOI: 10.1007/978-3-319-18914-7_2
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coordinates of external space (p. 394). More recently a inherent spatial and
spatial-response-code independent nature of the MNL was suggested by the find-
ing that during the mental bisection of number intervals right brain damaged
patients with attentional neglect for the left side of space shift the subjective
midpoint of number intervals toward numbers higher than the true midpoint,
i.e. supposedly to the right of the true midpoint [14].

However, several ensuing studies have demonstrated that this numerical bias
is unrelated to left spatial neglect and that it is rather linked to a deficit in
the abstract representation of small numerical magnitudes [1,2]; for a review see
Rossetti and collegues [11]. This conclusion was suggested by the finding that
in right brain damaged patient the pathological bias toward numbers higher
than the midpoint in the mental bisection of number interval is correlated to a
similar bias in the bisection of time intervals on an imagined clock face where
higher number are positioned to the left, rather than to the right, of the mental
display [2,11]. In a recent study, Doricchi and colleagues [5] have discovered an
new interesting psychophisical property of the number interval bisection task.
It was found that in this task, human participants show a systematic error bias
which is linked to the position occupied by the number interval in a decade
(Number Interval Position Effect, NIPE). The subjective midpoint of number
intervals of the same length is placed on numbers higher than the true midpoint
the closer the interval is to the beginning of a decade and on numbers lower
than the midpoint the closer the interval is to the end of the same decade. For
example, in case of 7 units intervals the bias is positive for the intervals at the
beginning of the decade (1-7) and negative for the intervals at the end of the
decade (3-9). This effect has been observed in healthy adults [1,5], right brain
damaged patients [1,5] and in pre-school children [12] thus suggesting that it is
not related to learning of formal arithmetics and that it could be linked to some
fundamental properties of the neural representation of number magnitudes.

Neurophysiological studies have demonstrated a neuronal representations of
numerosity in the prefrontal and parietal cortex of rhesus monkeys [9]. In these
areas different neuronal populations code for different numerosities. For small
numerosities, the neural discharge is narrowly tuned, according to a gaussian
function, to the preferred numerosity of the neuron so that the discharge is weak
for adjacent numerosities. This gaussian tuning becomes progressively larger,
i.e. less selective, for increasing numerosities, so that neurons tuned to larger
numerosities show some discharge also for numerosities that are immediately
adjacent to the preferred one. The organisation of the gaussian curves linked
to the different and progressively increasing numerosities is best described by a
nonlinearly logarithmic compressed scaling of numerical information.

In what follows we shall propose that the NIPE observed in the mental bisec-
tion of number intervals can be simulated by a neural-computational model based
on infomation spread by energy gradients towards accumulation points based on
the logarithimic compressed representation of number magnitudes that has been
observed at the single cell level in the rhesus monkey [9].
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2 Materials and Method

2.1 The Task

In order to investigate neuro-cognitive structures and mechanisms underlying
basic arithmetics, namely neural coding of natural numbers and simple arith-
metics operations, it is often proposed a task in which the participant has to
identify the natural number that divides equally, bisects, a numerical series that
is delimited by two natural numbers. For example, if we consider only the series
of the first natural ten (1-10), the partecipant can be asked to identify the mid-
dle number between 1 (lower bound) and 7 (upper bound) or between 2 (lower
bound) and 6 (upper bound) and so on. This task includes various forms: some
of them permit one single solution, the ones whose limits sum is an even number,
some others, the ones whose limits sum is an odd number, permit two solutions.
This latter case is exemplified by the identification of the middle number be-
tween 1 and 8: the solutions are 4 and 5. To reply univocally the partecipant
must choose the number that is closer to the lower bound, rounding down, or
the upper, rounding up. For this reason, it is preferred to propose the task form
with even sum.

2.2 The Model

We propose a neural model where no linear spatial representation is present. For
this reason we start from two general principles about neural mechanisms which
are strongly funded:

a. Natural numbers neural coding: basic numbers in a certain notation
are coded in an amodal way by distinct neural groups. In other words, if we
consider the decimal notation, there is a neural group whose activation is
more probable when the number 1 is presented regardless of the presentation
form, another one for number 2 and so on up to 10.

b. Neural accumulation mechanisms: neural elaboration takes place by
energy transfer between neural groups and arrives to its conclusion when
some neural group accumulates a certain energy level.

Fig. 1. The neural network architecture with nodes connections
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Fig. 2. The bisection problem: the even sum case

Let us consider that m neural groups code n natural numbers: m=n. In dec-
imal notation, we will therefore have ten neural groups a,b,c,d,e,f,g,h,i,l which
code natural numbers from 1 to 10. Let us imagine that neural groups are com-
municating vessels that transfer from one to another their energy level and the
transfer dynamic ends when one neural group goes beyond a certain accumula-
tion threshold. The various groups are connected in such a way that the neural
group who presents its biggest activation probability when the number n is pre-
sented, is connected with the groups representing n-1 and n+2. The groups
representing the bounds 1 and 10 are an exception. Number 1 is connected only
with n+1 group and 10 is connected only with n-1. This architecture is repre-
sented in figure 1. Please note that each node does not represent a single neuron,
but a group of neurons, a network.

We dictate the following dynamic to our network:

1. A neural group is univocally associated to a natural number. It therefore
activates when this number is presented. The node a,b,c,d,e,f,g,h,i,l are as-
sociated with numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

2. At time t0, nodes coding upper and lower bound have 1.0 activation whereas
other nodes have 0.0.

3. An highly active node transfers its energy to a node to whom it is connected
with lower energy.

4. At time t1 energy flows between nodes according to the following constraint:
the node that codes the lower limit transfers its energy to the node repre-
senting the number immediately superior; the node coding the upper bound
transfers its energy to the node representing the immediately inferior num-
ber.

5. If two contiguous nodes have the same energy level the energy flow interrupts.
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Fig. 3. The bisection problem: the odd sum case

6. One single node activation is the sum of all energies that collects.
7. Every node has an accumulation threshold that, when overcome, interrupts

the network dynamic. Let us dictate that this threshold is equal to 1.5.

Such a neural network is able to calculate the intermediate number between
two limits whose sum is an even number and the two intermediate numbers when
the sum is an odd number. Figure 2 and 3 represent two examples: in figure 2
we have the intermediate number between 1-7 (even sum), figure 3 represents
the odd sum (2-7).

To obtain in every case an univocal result, even if the limit numbers sum
is odd, it is necessary hypothesize that various neural groups at moment t0
present different energetic levels in order to have a convergence toward a single
neural group. In other words, it is necessary to hypothesize that to each neural
group is associated an activation coefficient or energy gradient that reinforce
or soften stimulation coming from outside. For example, at time t0, the energy
level associated is inversely proportional to the numerical value to which it is
associated. This relation is shown in figure 4. It is necessary to underline that
this relation is arbitrary.

Let us modify the point 2. of the above described neural dynamic in the
following way:

2. At time t0, nodes coding upper and lower bound have an activation that
varies in function of an activation coefficient that is specific for each neuronal
group. All the other nodes have activation 0.0.

This condition is the equivalent of defining a neuro-cognitive bias that, de-
pending on the activation coefficient associated to lower and upper bound pro-
duces a solution of rounding up or down. Obviously this bias is valid only for
“odd sum” problems. The example in figure 3, with this change in neural dynamic
and of parameters defined in figure 4, produces a new solution, as illustrated in
figure 5.
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Fig. 4. The bisection problem: the odd sum case

The relation defined in figure 4 imposes to the network to select an univocal
intermediate point also in cases where the limit numbers is an odd number (see
figg. 3 and 5). It is worth noting that the relation between initial activation level
of neural groups reported in fig.4 produces rounding up solutions, the interme-
diate point of “odd sum” problem is placed toward the upper bound. Obviuosly
if we change the relation, the rounding changes too. For example, if the relation
is directly proportional we have a rounding down. If the relation is non-linear
we would observe sometimes a rounding up, some others down.

Fig. 5. The bisection problem: the odd sum case with the modified neural dynamic
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This network is able to calculate the natural number between two limit num-
bers. In even sum case, it produces solutions without any mistake. On the con-
trary, human beings committ systematic errors, as shown in the introduction.
They select, in some conditions, the intermediate number toward the lower limit
(rounding down) and, in some others, toward the upper bound (rounding up).

This means that the initial activation gradient, shown in figure 4, is non linear,
as shown by already cited studies. One possible explanation can be that when
a certain number is presented a particular neural group activates selectively.
Small numbers (1, 2, 3) are always associated to the same neural group, whereas
bigger numbers are associated with neural groups with a certain probabilty. In
other words a given neural group can activate more probably than others, but
other groups, devoted to coding numbers that are close to the presented one,
can activate too. For example, ift number 8 is presented, neural groups for 7 and
9 can activate too. If we introduce in our network dynamic this phenomen, the
item 1 becomes:

1. A neural group is probabilistically associated to a natural numbers. Each
neural group has a probability distribution where the association between
the neural group and the natural number is defined.

Behavioral and neurophysiological evidence show that representations of increas-
ing numerosities increasingly overlap, thereby becoming progressively less dis-
criminable from adjacent ones [9]. Let us now imagine to adopt the probability
distribution as reported in figure 6, deduced from cited studies.

Applying the relation illustrated in figure 6, a subject to whom is proposed
to identify the intermediate number between 1 and 7 can accomplish the task
sometimes as the demand is with 1 and 6 limits and some others as it is with 1
and 8 limits. Data indicate that the systematic error is non-linear: sometimes we
observe a overestimation, in other cases an underestimation. For these reasons
we modify figure 4 giving it a non-linear trend, as shown in figure 7.

Fig. 6. Probability distribution of each neural group activation for number from 1 to 10



16 M. Ponticorvo et al.

Fig. 7. Probability distribution of each neural group activation for number from
1 to 10

Fig. 8. Data about Number Intervals Bisection with 7 units derived from the neural
model

Please not that the parameters related to the model have been obtained using
a genetic algorithm [3]. For more detailsl, please look at additional materials
section.

3 Results

The proposed model is able to replicate the data observed with children [12]
indicating the presence of NIPE effect. In figure 8 the data about the 7 units
task are reported. The results reported in figure 8 indicate that the model shows
the NIPE effect too, displayng the same trend as the children. The artificial
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neural network in fact commits a systematic error that is consistent with the
NIPE effect, in fact the closer one boundary of the interval was to the border of
a ten, the more its midpoint was shifted.

4 Conclusions and Future Directions

In the present paper we have described a neural model that replicates data
observed in mental bisection of numerical intervals in children. This model is
exclusively based on energy transfer and accumulation and, despite of this, it
can replicate data observed in children.

These results support the idea that the mental number line does not represents
numbers in a spatial guise and the arithmetics module can, at least in principle,
work on energy transfer rather than on number spatial representation.

Numbers are a fundamental part of our cognitive environment and it is worth
interrogating on how they are represented in the brain. Feigenson and collegues
[6] underline that there are two core systems that underlie the ability to think
and reason about number: one system that is devoted to represent large, ap-
proximate numerical magnitudes, and another system that precisely represent
small numbers of individual objects. These systems are shared across different
developmental stages and different species and represent the basis on which the
sophisticated human numerical ability is built.

The reported studies and the presented results indicate that the NIPE ef-
fect is widespread too. It can be observed in human adult and children and in
our artificial model too. What does this tell us about number representation?
The NIPE effect can mirror the logarithmic central representation of numeri-
cal magnitudo that is independent from school education and that is shared by
non-human species too.

In this context a computational model can be an interesting way to approach
cognitive issues [7,10]. Artificial models, in fact, can give us the chance to pro-
duce an artifact to be included in the list of species to be studied. If comparative
sciences can give us insights about cognition, artificial models can give further
insights in reproducing a certain phenomenon. In this case the scientific challenge
is buiding a new artificial species with its own specific features. These artificial
networks can reproduce phenomena at various levels: behavioural, physiological,
neural with different granularity from the single neuron to whole structures. This
approach has been already used in modelling neuropsychological phenomena,[13]
linking these phenomena with neural representation as well as organisms inter-
action with the environment [8] giving useful insights to this research field.

The next step will be to build an extended model with more different layers
to reproduce not only the behavioural side of NIPE effect but also the supposed
corresponding neural circuitry.
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Additional Materials

More details about the model and the related code can be provided to whom is
interested by emailing the author Orazio Miglino (orazio.miglino@unina.it) or
Michela Ponticorvo (michela.ponticorvo@unina.it).
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Abstract. Alzheimer’s Disease (AD) is nowadays the most common
type of dementia, with more than 35.6 million people affected, and
7.7 million new cases every year. Magnetic Resonance Imaging (MRI)
is a fairly widespread tool used in clinical practice, and has repeatedly
proven its utility in the diagnosis of AD. Therefore a number of auto-
matic methods have been developed for the processing of MR images.
In this work, a new algorithm that projects the three-dimensional image
onto two-dimensional maps using Local Binary Patterns (LBP) is pre-
sented. The algorithm yields visually-assessable maps that contain the
textural information and achieves up to a 90.5% accuracy in a differ-
ential diagnosis task (AD vs controls), which proves that the textural
information retrieved by our methodology is significantly linked to the
disease.

Keywords: LBP · SVM · MRI · Alzheimer’s Disease · Projection

1 Introduction

Neurodegenerative diseases have attracted considerable research attention, spe-
cially in developed countries where the ageing population is a major concern.
According to the World Health Organization, the most common type of demen-
tia is Alzheimer’s Disease (AD), with more than 35.6 million people affected,
and 7.7 million new cases every year.

Currently, new imaging techniques such as Magnetic Resonance Imaging
(MRI) or Single Photon Emission Computed Tomography (SPECT) are being
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intensively used in the diagnosis. These techniques allow not only the manual
processing of the images to obtain helpful data related to the neurodegeneration
that occurs, but the prediction of the conversion from prodromal stages (Mild
Cognitive Impairment, or MCI) to AD [1].

Given its availability and non-invasive nature, MRI is often recommended
as a first diagnosis tool, and therefore, a huge variety of methods have been
developed for the medical imaging processing in what is known as the Computer
Aided Diagnosis (CAD) paradigm. Since MRI provides high tissue contrast, the
most common brain image analysis methods focus on the intensity information:
analysis of Regions of Interest (ROIs) [2], Voxel-Based Morphometry (VBM) [3]
or Cortical Thickness [4], among others. However, there is an increasing interest
in multivariate approaches that are able to handle regional patterns, texture
features and voxel and region-wise relationships [5,6,7,8]. These approaches could
reveal other information than the volumetric, complementing and providing new
insights into the disease.

Recently, some CAD systems based on texture features have been proposed
[5,9,10]. Particularly, in [9], an easily computed texture descriptor, Local Binary
Pattern (LBP) has demonstrated its utility in various high-level brain MR image
analysis. At the same time, a new algorithm was proposed in [11], that allow the
projection of three-dimensional MR images to a two-dimensional map of some
radial texture features including average, entropy or kurtosis, with promising
results in the diagnosis of AD vs normal individuals.

In this work, a new projection system based on a combination of the two
aforementioned methods is proposed, where, instead of using direct texture fea-
tures from the projection vector, a LBP is computed around it, to avoid the
spatial information loss in the vicinity of the vector.

The article is organised as follows. First, in Section 2 the methodology is
presented, and the usage of LBP, volumetric LBP (VLBP) and projection al-
gorithms and in a projection environment is explained. Later, in Section 3, the
database and the results are presented and analysed. Finally, some conclusions
are drawn in Section 4.

2 Methodology

2.1 Local Binary Patterns

Local Binary Patterns (LBP) were first introduced in [12] to describe the texture
of an image with application to face recognition. In its first version, LBP gener-
ates a value that describe the local texture, using 3x3 pixel blocks. Roughly, LBP
operator computes binary values by comparing the grey values in a neighbour-
hood of radius 1 to the central pixel value. Then, 8 binary values are sampled
counterclockwise in each block, generating a binary histogram and finally, the
LBP operator transforms the binary histogram in a unique descriptor by con-
verting it to a decimal value. In contrast to the first version of LBP which only
considers the use of 8 sampling points in each 3x3 pixels block, [13] generalizes
the LBP operator to any radius and any number of sampling sampling points.
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Fig. 1. Computation of the generalized LBP8,2 descriptor from a 5x5 image block

Figure 1 shows the sampling procedure on a 5x5 block using a 8-pixel neigh-
bourhood and 2 pixel radius (LBP(8,2)). This process can be formally described
as follows. Let I be an image and g0 = I(x, y) the grey level of a pixel located at
position (x, y) in the image. P samples can be extracted going counterclockwise
in the r-neighbourhood around p0 taking the pixel values at positions:

xp,r = x+ r cos(2πp/P )

yp,r = y + r sin(2πp/P )
(1)

with p = {0, ..., P − 1}.

Thus, the 2D-LBP operator can be computed as:

LBPP,r =

P∑
p=1

s(gp,r − g0)2
p−1 (2)

where gp,r is the p-th sampling point at a distance r from the central pixel, and
s is the sign function defined as:

s(x) =

{
1 x ≥ 0

0 x < 0
(3)

where gp,r is the grey level sampled at position (xp,r , yp,r) and g0 is the central
pixel in the block. Taking gp,r−g0 differences aims to obtain grey scale invariance,
as signed differences are not affected by changes in mean luminance [13].

However, the described LBP descriptor is defined for 2D images. Extensions of
LBP to volumes have been proposed to compute image texture in the spatiotem-
poral domain, specifically developed to extract textural features from video se-
quences [14,15], namely Volume Local Binary Patterns (VLBP). Other proposals
such as [16] use a different approach directed to characterize 3D textures, substi-
tuting the 2D neighbourhoods uses in classical LBP to spherical ones. Moreover
in [17], the authors propose a different approach to compute LBP in 3D images,
by sampling the 6 nearest voxels around the central one. In this case, the de-
veloped method is used to obtain 3D textural patterns in PET images for AD
diagnosis. The method proposed in this work uses a different sampling algorithm
and computes a unique descriptor for a group of layers across the image.
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2.2 2D Projection Using Spherical Coordinates

In [11], an algorithm to perform a 2D projection based on the use of spherical
coordinates in the brain is proposed. This method computes different statistical
measurements across the projecting vector pθ,ϕ, which is defined in a pair of
inclination (θ) and azimuth (ϕ) angles in the range [−π/2, π/2] and [−π, π]
respectively, and sampling the nearest voxel. In other words, a 2D projection is
obtained by computing an unique value R from the projecting vector pθ,ϕ for
each (θ, ϕ) pair of coordinates, what yields a two-dimensional map in the θ − ϕ
plane. As an example, 2D projection of different statistics is shown in Figure 2.

Mean Variance Skewness

Kurtosis Energy Entropy

Fig. 2. Example of 2D projections of different statistics using the method proposed
in [11].

This smart representation of the brain is able to provide insight into different
and useful properties of the anatomical structures such as brain folds or the cor-
tical thickness in a 2D representation. However, the mapping process of reducing
from 2D to 3D losses textural information in the vicinity of the vector pθ,ϕ that
may be important from a discriminative point of view. The method proposed
in this work preserves part of the 3D textural information by means of the
V LBP θ,ϕ descriptor which takes into account not only the voxels in the radius
of a specific direction (θ, ϕ) but also the voxels in a predefined neighbourhood.

2.3 Projecting 3D LBP Features

Although the discriminative properties of the maps computed by projecting
statistics across a pθ,ϕ vectors has been proved in [11], these statistic do not
preserve per layer textural information, as only voxels that are crossed by pθ,ϕ
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are considered. In this work, a 3D LBP descriptor is defined by computing the
LBP in the neighbourhood of different layers across the pθ,ϕ vector. This way,
each pθ,ϕ vector is the axis of a cylinder oriented in the direction indicated by
(θ, ϕ) and whose radius define the neighbourhood used to compute the 3D-LBP
descriptor. Figure 3 shows the sampling method devised in this work, which is
based on the VLBP descriptors developed for characterization of dynamic tex-
tures in video sequences by using three consecutive frames. In this case, voxels
in each layer across the radius pθ,ϕ of the sphere that contains the brain are
sampled following helical coordinates as shown in Figure 3.
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Fig. 3. Sampling voxels in VLBP model. Note that in this case the vector pθ,ϕ is placed
along the x axis, which corresponds to p0,0 in our coordinate system.

This method allows to extend the LBP to 3D and eventually defining a 3D
texture in a local neighbourhood by means of a texture sequence in a similar
way that [15] defined the basic Volume LBP (VLBP).

Formally, the sequence of image voxels in the 3D neighbourhood taken by
helical sampling as depicted in Figure 3 can be expressed as:

V = vθ,ϕP,r(g0, g1,r, g2,r, . . . gP−1,r) (4)

where gp,r indicates the voxel sampled in p-th place at a sampling radius r. The
coordinates of gp,r, for a projection vector pθ,ϕ orientated in the (θ, ϕ) direction,
are given by:

gp,r =

⎧
⎪⎨
⎪⎩

xp,r = p sin(ϕ) cos(θ)− r sin(2πn p
P )

yp,r = p sin(ϕ) sin(θ) + r cos(2πn p
P )

zp,r = p cos(ϕ)

p = {0, ..., P − 1}, P ∈ N (5)

where r is the neighbourhood radius, P is the total number of sampling points
and n is the number of layers (n = 5 in the example of Fig. 3).
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As proposed in [15], the voxels that do not fall exactly at coordinates com-
puted by Equations 5 are estimated by interpolation of closest points. It is in-
teresting to note that first and end sampling points correspond to points in
the pθ,ϕ vector. Specifically, the first and final sampling point would be (0, 0, 0)
and (P sin(ϕ) cos(θ), P sin(ϕ) sin(θ), P cos(ϕ)) respectively. Hence, our VLBP,
namely Volumetric Radial LBP (VRLBP), defined across each pθ,ϕ vector can
be computed using the following expression:

V RLBP θ,ϕ
P,r =

P∑
p=0

vθ,ϕp,r 2
p (6)

Figure 4 shows the VRLBP descriptor for MRI Grey Matter (GM) and White
Matter (WM) of the same subject.

(a) VRLBP of GM (b) VRLBP of WM

Fig. 4. Volumetric Radial LBP computed for GM (a) and WM (b) MRI images of the
same subject

3 Experimental Results

3.1 Database

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the National In-
stitute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit orga-
nizations, as a $60 million, 5-year public-private partnership. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of
MCI and early Alzheimers Disease. Determination of sensitive and specific mark-
ers of very early AD progression is intended to aid researchers and clinicians to

adni.loni.usc.edu
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develop new treatments and monitor their effectiveness, as well as less en the
time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California-San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range of academic institutions
and private corporations, and up to 1500 adults (ages 55 to 90) have been re-
cruited from over 50 sites across the U.S. and Canada in ADNI and its following
initiatives ADNI-GO and ADNI-2.

In this article, a subset of the ADNI 1075-T1 database (subjects who have a
screening data) has been used. The database contains 1075 T1-weighted MRI im-
ages, containing a total amount of 229 normal controls (NOR), 401 MCI (312 sta-
ble MCI and 86 progressive MCI) and 188 AD images (see www.adni-info.org).
Our methodology has been tested against a subset of 360 randomnly selected
patients (180 AD and 180 NOR). The MR images have been spatially normal-
ized and then segmented in Grey Matter (GM) and White Matter (WM) tissues
using SPM software [18], after a skull removing procedure.

3.2 Classification Experiments

In this section, VRLBP projections computed for all the GM and WM MRI
images are used as features to classify between controls and AD patients. To
this end, VRLBP features are first selected by the t-statistic criteria, computed
as

t =
|IμCN − IμAD|√
Iσ2

CN

NCN
+ Iσ2

AD

NCN

(7)

where IμCN and IμAD are the mean images for CN and AD respectively, IσCN and
IσAD are the variance images for CN and AD, respectively and NCN , NAD are
the number of CN and AD images, respectively. Then, a linear SVC [19] is used
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Fig. 5. Performance results of our proposed VRLBP methodology. 5a displays the
accuracy of the system when using GM, WM and both combined, and 5b shows the
ROC curve for the same cases.

www.adni-info.org


26 F.J. Martinez-Murcia et al.

to classify the samples. the results have been assessed by k-fold cross-validation
with k=10. Figure 5a shows the classification accuracy obtained for different
number of selected voxels by means of varying the threshold in the t-statistic.

This figure states the discriminative capabilities of the VRLBP projections
computed for WM and GM, obtaining an accuracy of 88% and 86.5% respec-
tively. Moreover, accuracy up to 90.5% is obtained when fusing the projection of
VRLBP descriptors for WM and GM. In the same way, ROC curves are depicted
in Figure 5b, showing AUC values of 0.930, 0.940 and 0.945 for GM, WM and
combined GM+WM VRLBP projections.

4 Conclusions and Future Works

In this paper, a volumetric descriptor based on LBP has been proposed to retain
part of the textural information loosed during the 2D projection process. This
way, classification experiments have been performed to show the discriminative
power of that descriptor using the ADNI 1075-T1 database, and assessed by
k-fold cross-validation. These experiments shown that 1) the proposed descrip-
tor is discriminative enough to be used with the projections, 2) it improves
the results obtained by classical first order statistics such as average, variance,
kurtosis, etc., and 3) fusing GM and WM projections increases the discrimina-
tive power compared to the use of single WM or GM projections, providing an
accuracy up to 90% for CN/AD classification using a linear SVC classifier.

As future work, we plan to extend the VRLBP to MCI patients to realize its
capabilities for early AD diagnosis. Moreover, also plan to use different methods
to fuse WM and GM information as in this work that fusion has been imple-
mented by simply concatenating WM and GM descriptors considering them as
different feature dimensions.
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Abstract. This paper presents the design, development, simulation and
test of a directional telemetry system for cochlear implants using FPGA.
We used Manchester codification and ASKmodulation in order to achieve
a high transmission speed. The design was simulated using the System
Generator for FPGA by Xilinx and Simulink developed by Mathworks.
Also, the design was emulated using the ISE design software by Xilinx.
The design has been tested under noisy environment. The design was
optimised so as to obtain a power consumption equal or less than the
maximum allowed in the receiver. We achieved the use fewer compo-
nents of the FPGA. As a result, the telemetry system has been designed
to meet with specifications for use it in the development of a prototype
of cochlear implant for research purposes.

1 Introduction to the Telemetry System

Cochlear implants are high-technology electronic devices. They transform acous-
tic signals into electrical stimuli of the auditory nerve. Signals are processed
through different elements that composed of the cochlear implant. Cochlear im-
plants have basically two units: the external and internal units. The external
unit is formed by a sound processor and by a data and energy transmitter. The
internal unit is surgically inserted in the internal ear, this is formed by a data
and energy receiver, an internal processor and an electrode array that stimulate
the auditory nerve [1].

The external unit encodes/codifies and processes the input voice signal and
converts it into digital data. These data are send to a transmitter of the telemetry
system in order to be codified, modulated and transmitted to the internal unit by
means of an inductive link. A receiver of the telemetry system gets the modulated
signal. This signal is demodulated and decodified in order to obtain the original
data. These recovery data carry information about the stimulation level as well as

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 29–38, 2015.
DOI: 10.1007/978-3-319-18914-7_4
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of the electrode to stimulate. The electrode array stimulates electrically different
zones of the cochlea, and excites the auditory nerve that transports the neural
impulses to the acoustic area of the brain. Finally, the brain does the most
complex cognitive function like speech perception.

A telemetry system can be conceptualised through a model of abstract layers,
Figure 1. It has a physical layer, a communication layer and an application layer
in both processors external and internal. These layers are connected by direct
and virtual form. The virtual connection is established between the layers at the
same level, it requires a direct way through the lower level in order to estab-
lish the connection between the external and the internal unit. The application

Fig. 1. A telemetry system for biomedical applications

layer corresponds to the control of the whole functionality of the system. This
layer includes the control of both units, external and internal. These layers are
virtually and physically interconnected by a communication system of the lower
layers. The communication layer is formed by a set of elements that transport
the information from one point to another of the system. In the same way as
the communication layer, the physical layer permits bidirectional communica-
tion between the external and internal units. In this layer are included all the
components needed to transmit and to receive the information, either through
radio, light, inductive link or galvanic connection. Physical layer is the lowest
layer of the virtual connection and at the same time, it the units connects di-
rectly. The Figure 1 shows a telemetry system for biomedical applications, it is
defined by two layers, the communication layer and the physical layer.

The physical layer connects directly the external unit (transmitter) with the
internal unit (receiver) of the cochlear implant. This layer is defined by inductive
links due to the need to transfer energy and information. The telemetry system
is based in a weakly-coupled inductive link. Resonant circuits are used in order
to increase the coupling between both units.

In order to provide to the external unit the highest amount of energy from
the power supply, the primary coil must reflect a low impedance to the source,
i.e. a performance equal to a pure resistance. This condition is reached using a
series resonant circuit in the transmitter, tuned in the working frequency. In the
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secondary, or receiver, there are two possibilities. In the first, the charge is in
parallel with the resonant circuit. On the other hand, the charge is in series.

Modulations used frequently in the telemetry system have to have few com-
plexes, because a highly complex modulation consumes more energy. These con-
ditions are very difficult to obtain in the receiver due to the low quantity of
energy it can be transferred for fulfill the requirements of the IEEE [2].

ASK modulation is used in the telemetry system. In this modulation, the
variations of the amplitude of the carrier represent the values of the digital data.
Modulation and demodulation are process that carry out in a relatively easy
form. This characteristic is used in the receiver due due to the need to design a
small circuit and low complexity.

Amplitude Shift Keying (ASK) corresponds to a Double-Sideband with Sup-
pressed Carrier (DSSC or DSB-SC). This type of modulation can be managed
using a balanced modulator if the modulating signal is bipolar or using an am-
plitude modulator, with a modulation rate equal to 100%, if the modulating
signal is unipolar.

With the present technology, the design of a digital modulation by means
Field Programmable Gate Arrays (FPGA) can be an easy task. The FPGA are
programmed via Matlab/Simulink and Xilinx System Generator (XSG). XSG
is a high-level tool developed by Xilinx for designing high-performance Digital
Signal Processing (DSP) in systems targeting FPGAs. It produces the same code
if we had used a hardware description language (HDL) [4,5].

XSG permits to model the telemetry system into a specific hardware platform.
This potentiality is due to its flexibility, robustness and facility to employ high
performance DSPs. The design developed with this tool are composed for a wide
diversity of elements: XSG specific blocks, HDL code and functions produced by
Matlab. Therefore, all of these elements can be used concurrently and they are
simulated and synthesised in order to obtain signals processing under FPGA.

This paper has the goal of designing a telemetry system for cochlear implants
using a FPGA by Xilinx.

2 Design and Simulation of the Telemetry System

The following parameters have been taken into account in the design of the
telemetry system: the number of channels of stimulation 18; the resolution equal
to 12 bits/symbol; the control bits 6; the data frame 222bits; the maximum fre-
quency of stimulation per channel 2000pps; the maximum transfer rate 24 kbps
per channel; the maximum transfer rate of data to the implant 432kbps; the
maximum transfer rate 444kbps.

With all these considerations, the following technical specifications have been
chosen: the signalling rate 444kbps; Manchester coding; ASK modulation; the
carrier frequency 5MHz; the attenuation of the transmission channel 25 dB;
power consumption of the receiver less than 20mW; maximum power of the
cochlear stimulator was 72.5mW (18.60 dBm); maximum power of the receiver
100mW (20 dBm).
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Given the above considerations and [3,6,7,8], we suggest the telemetry system
shown in the Figure 2. Figure 2 a) shows the transmitter block diagram. It is
formed by a Manchester encoder and an ASK modulator. Figure 2 b) shows
the block diagram of the receiver. It is formed by an ASK demodulator and a
Manchester decoder.

Fig. 2. Block diagram of a) the transmitter, b) the receiver

2.1 Design and Simulation of the Telemetry System Using System
Generator

Manchester Encoder/Decoder. Manchester encoder is a line code very used
for the codification of bit frames that provides applications of a simple way. This
codifier avoids loss of synchronicity in the transmission with inductive links and
even errors in the bit frames. These losses of synchronicity are due to very long
bit frames without level transitions [9]. Figure 3 shows the XSG block diagram
of the Manchester encoder. In this, data are put by means of an input port.
The data signal is obtained using a random number generator with a period of
2µs, equivalent to a signalling rate of 500kbps which is a value greater than the
444kpbs specified. The clock signal of the encoder is obtained from a counter
block. This block generates a symmetric square waveform and period equal to
1µs, which is half of the data period. Both signals data and clock are connected to
a XNOR block, then to a NOT block. Figure 4 shows the Manchester decoder.
The input data flow through two paths. In the upper branch, each sample is
subtracted mathematically to the previous sample. This approach would obtain
impulses in all the transitions of the encoded signal. Afterwards, these impulses
are rectified in order to obtain positive values of the samples. On the other
hand, in the lower path, the data are delayed with a value equal to half of the
number of data bits, then they are subtracted and rectified; hence we obtain
positive impulses in the initial instants of each bit without transition in the
original data signal. In order to get the clock signal, first the data of each path
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Fig. 3. Manchester Encoder

are logically added by the block OR, so impulses in the start of each bit are
generate. With the XOR block, we obtain small impulses in the moments when
the signal change its state. The CAST block converts the signal to Boolean
values before of the COUNTER block. Finally, the COUNTER block generates
the data signal encoded in Manchester format.

Fig. 4. Manchester Decoder

Modulator/Demodulator. ASK modulation is obtained from a balanced
modulator with a unipolar modulating signal, Figure 5. The modulating sig-
nal is the data output of the Manchester encoder. The frequency of the carrier
signal is 5MHz and the sampling interval is equal to 20 ns. This carrier signal is
generated using a frequency synthesizer (DDS compiler 4.0). The carrier signal
is fitted to the suitable levels of the modulator through the CMult block. Both
signal, modulating and carrier are inserted to the ASK modulator (Mcode). The
ASK demodulator is designed using an enveloping detection noncoherent, Figure
6. The noncoherent detection just picks up data without the necessity of recover
the carrier signal in the receiver. This type of detection can be carried out in the
XSG in an easy approach and with a very low hardware resources of the FPGA.

The received modulated signal is full-wave rectified. The consequent signal is
processed through a finite impulse response (FIR) low-pass filter (FIR Compiler
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Fig. 5. ASK modulator

5.0). The Mcode block works as a decision threshold and the output signal is
sent to the Mancherter decoder. We would highlight that we first had chosen
a 79-order filter, a cutoff frequency of 0.5MHz and a minimum of attenuation
equal to 60 dB at 1.0MHz. Afterwards, we searched the minimum filter order
for a minimum power consumption in the receiver and we took into account the
integrity of data even in a noisy environment.

Fig. 6. ASK demodulator

2.2 Emulation Using the HDL Coder and Xilinx ISE Design Suite

We have done the emulation of the design using System Generator. For this
process, first it is necessary to choose the FPGA more suitable to implement the
design. System Generator automatically synthesizes the design on the selected
FPGA, and HDL Coder generates the VHDL code from Simulink models. With
EDA ISE tool, the internal interconnection of the FPGA hardware is made. This
tool reports on the percentage of resources used. If the quantity of resources
are greater than the FPGA has got, we must change the design and/or choose
another FPGA. Power Analyzer tool works out the overall power consumption
of the design. If the overall power consumption is greater than that expected,
we must change the design until to accomplish that target. Our implementation
was made on a Xilinx Virtex-6 xc6vsx315t-3ff1156 FPGA.

Transmitter and Receiver Emulation. We took into account the Mancheter
encoder, the ASK modulator and PWM generator for the transmitter emulation.
In addition, the ASK demodulator and Manchester decoder for the receiver
emulation. In both cases, all of those elements were implemented on the same
FPGA.
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3 Results

3.1 Verification of the Telemetry System Design Using System
Generator

Figures 7 a), b) and c) show signals that are involved in the encoding process.
Figure 7 a) shows the data signal to encode. Figure 7 b) shows the clock signal
that is necessary in the Manchester encoding process. Figure c) shows the data
signal encoded. We can notice that each data encode with a high level, Figure 7
a), it corresponds with a unipolar pulse of the type ON-OFF in the encoded data,
Figure 7 c). In the same way, each data encode with a low level, and corresponds
with a unipolar pulse of the type OFF-ON in the encoded data. Figures 7 d),

Fig. 7. Signals in the Manchester encoder: a) Data signal; b) Clock signal; c) Encoding
signal. Signals in the Manchester decoder: d) Input signal; e) Clock pulses; f) Decoding
signal.

e) and f) show signals that are involved in the Manchester decoding process.
Figure d) depicts the input signal and Figure e) shows the clock pulses. Finally,
in Figure f) it shows the decoded data. In the last figure, we can observe that
pulses with an ON-OFF relation of the encoded signal correspond to a high level
symbol in the decoded signal. However, pulses with an OFF-ON relation of the
encoded signal correspond to a low level symbol in the decoded signal.

ASK Modulator/Demodulator. Figures 8 a), b) and c) show signals corre-
sponding to the ASK modulator. Figure 8 a) depicts Manchester encoded data,
which is the modulating signal. Figure 8 b) shows the carrier signal, 5MHz.
Figure 8 c) shows the modulated ASK signal. In this figure we can observe
that sinusoidal signals correspond with high values of the modulating signal.
Therefore, the implemented modulator works perfectly. Figures 8 d), e) and f)
shows signals of the ASK demodulator. Figure 8 d) shows the modulated sig-
nal. Figure 8 e) depicts the filter output signal. Figure 8 f) shows the recovered
modulating signal. In this figure we can observe that the filter output signal is
the envelope of the modulating signal but delayed. Furthermore, a high level of
the recovered modulating signal corresponds with the instant of a high level of
the filter output signal.
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Fig. 8. ASK modulator (left) / demodulator (right): a) modulating signal; b) carrier
signal; c) modulated ASK signal; d) modulated signal; e) filter ouput signal (envelope);
f) recovered modulating signal

Fig. 9. Transmitter-receiver signal: a) Data signal; b) encoded Manchester data signal;
c) carrier signal; d) ASK modulated signal; e) demodulater Manchester data signal; f)
recovered data signal

Telemetry system (Transmitter/Receiver). In the Figure 9 it can be ap-
preciated that corresponding signals to input and output of each block which
builds the transmitter and the receiver (Figures 2 and 3, respectively). Figures
9 a) and b) show both data signal and encoded Manchester data signal. The
encoded data signal is the modulating signal of the ASK modulator. Figure 9 c)
shows the carrier signal, 5MHz. Figure 9 d) shows the ASK modulated signal
to the output of the transmitter (and input of receiver). Figure 9 e) shows the
demodulated data signal which is the same as the encoded data signal depicted
in the Figure 9 b). Finally, Figure 9 f) shows the recovered data signal which is
the same as the original signal but it is delayed for the own demodulation and
decodification process. Figure 10 shows the spectrum of the transmitted signal
for the designed telemetry system. In this we can observe that the maximum
power comes to the carrier frequency, 5MHz. And its bandwidth is 1MHz. We
can also see a very low direct component, which is good in a transmission system
with inductive link, therefore avoiding loss of data.

3.2 Emulation Using Xilinx ISE Design Tools, Results

Transmitter/Receiver. In the emulation of the transmitter, we took special
interest in achieving a design that would get the default maximum dynamic
power. In this case, it was possible that the maximum power consumption was
the required 12 mW.



Telemetry System for Cochlear Implant Using ASK Modulation and FPGA 37

Fig. 10. Spectrum of the transmitted signal by the telemetry system

Fig. 11. Block diagram to analyse the reception in noyse environment

In the emulation of the receiver, results of the first emulation gave a power
consumption higher than the required maximum. This high consumption is due
to the high computational cost of the high level order of the filter, initially equal
to 79. We proceeded to calculate the minimum order of the filter capable to keep
a suitable Bit Error Rate (BER) and an adequately Signal to Noise Ratio (SNR).
It was possible to reduce the power consumption using a 12-order filter, from
48mW to 12mW, the value of BER=10−5 and SNR=25dB (or BER=0 and
SNR=26dB). For all the cases, the measurement of the BER was realized using
a random sequence of data of 100ms of duration that correspond to 5x104 bits.
We can conclude that the SNR values are acceptable considering the relatively
high power in the transcutaneous transmission across and inductive link and the
proximity of both transmitter and receiver in a cochlear implant. Furthermore,
it is possible to emphasize that energetic levels needed for the electronics meet
the design parameters suggested in the section 2. Figure 11 shows the Simulink
diagram used for this purpose.

4 Conclusion and Recommendations

With the present work it was possible to design a telemetry system for cochlear
implants using a FPGA device, it complies with a low power consumption and
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low hardware cost. We managed the design, the simulation and the emulation of
a telemetry system built by a Manchester encoder/decoder and an ASK mod-
ulator/demodulator. It accomplished 500kbps of signalling rate and 1MHz of
bandwidth. We checked that the system can work until 25 dB of SNR. For every-
thing previously exposed, we concluded that the telemetry system complies with
the request need for its use in the development of a cochlear implant for research
aims. We recommend to experiment with other modulations less complex that
meet equal or better SNR levels with low values of BER that maintaining the
characteristics of the design.
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Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador

cjordan@espol.edu.ec

Abstract. In this work we examine the problem of finding biological
motifs in DNA databases. The problem was solved by applying
MBMEDA, which is a evolutionary method based on the Estimation
of Distribution Algorithm (EDA). Though it assumes statistical inde-
pendence between the main variables of the problem, results were quite
satisfactory when compared with those obtained by other methods; in
some cases even better. Its performance was measured by using two met-
rics: precision and recall, both taken from the field of information re-
trieval. The comparison involved searching a motif on two types of DNA
datasets: synthetic and real. On a set a five real databases the average
values of precision and recall were 0.866 and 0.798, respectively.

Keywords: DNA dataset · Estimation of distribution algorithms ·
Molecular biology · Transcription factor · Motifs

1 Introduction

The search for biological motifs is an important problem in molecular biology. A
motif or transcription factor binding site (TFBS) is the sequence of nucleotides
in the promoting zone of a gene, where a transcription factor (TF) binds and
controls the process of transcription of that gene into an mRNA molecule [1].
This molecule eventually will be translated into a protein at a cells ribosome; all
this happens according to the central dogma of molecular biology.

Basically the problem can be formulated as follows: given a DNA base consist-
ing of n promoting zones of size m, with one TFBS per sequence, find a pattern
of length l that constitutes a motif. No doubt this problem is rather difficult,
because we dont know a priori the length of the motif or its location in the pro-
moting zone, neither the specific sequence of nucleotides we are looking for. To
make matters even worse, the TFBS may mutate from one instance to another.
Fig. 1 shows how difficult is to find a pattern of nucleotides on a real DNA
base.

There exists, however, a key to break this code: the motif is a sequence of
nucleotides of length l that repeats with the highest frequency in the DNA

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 39–46, 2015.
DOI: 10.1007/978-3-319-18914-7_5



40 C.I. Jordán and C.J. Jordán

Fig. 1. DNA base for searching the TFBS of CRP in Escherichia Coli

dataset. This clue reduces the problem to a mathematical one, i.e., an optimiza-
tion problem. To solve it a number of different methods have been devised; among
others: MEME (Multiple Expectation Maximization for Motif Elicitation) and
BioProspector [2].

It is well known that optimization problems can be solved efficiently by evo-
lutionary methods [3]. For instance: genetic algorithms are a good option; but
in this case we are required to guess appropriate values for the rates of crossover
and mutation, which are its classical operators [4]. We could avoid guessing these
values if we use the method Estimation of Distribution Algorithm (EDA) [5].
However, in this case the challenge is to construct a good estimator. For the
problem of finding biological motifs, it has been proposed in [6] to use a multi-
variate Gaussian estimator in order to capture possible correlations among the
positions in the motif instances.

However, looking for simplicity and better processing times, we assume here
that the nucleotides on a motif instance are statistically independent. Then,
four univariate Gaussian Estimators (GE) will be required instead of a multi-
variate one to generate a new individual, where each estimator represents the
distribution of a particular nucleotide estimated from the best individuals in
the population. Our method will be called MBMEDA (Mtodo de Bsqueda de
Motivos con base en un Algoritmo por Estimacin de Distribuciones) and its
results will be compared systematically with those of EDAMD (Estimation of
Distribution Algorithms for Motifs Discovery) published in [6]; this will allow
us to explore two questions: 1) whether our method gives better or similar re-
sults compared with those of the multivariate approach, and 2) whether an EDA
based motif search algorithm is more efficient than other computational motif
search methods.

2 Materials and Methods

To test MBMEDA we used two types of DNA datasets: synthetic and real. A
synthetic base is generated artificially following criteria used in other similar
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works: the length of the motif, the size of the promoting zones and the presence
of noise [7]; in this bases a motif is implanted at known sites. On the other hand,
in the real or biological DNA datasets, the sequences of nucleotides of the motif
were determined experimentally by analyzing a number of promoting regions for
each particular organism. Each biological dataset is labeled with the name of
the TF that binds on its motif. Here we use five databases: CRP, E2F, ERF,
ME2F and MYOD.

MBMEDA is a method that does a global search on the problem space of
possible solutions, where a solution -also known as an individual- is defined
by a vector VIP of the initial positions of a candidate motif on the n rows of
the DNA dataset. Therefore, with each individual we associate a vector S of n
sequences of length l that starts at the initial positions specified in VIP; we also
associate with each individual a matrix of positional weights, denoted as PWM
m x l, where l is the length of the motif sequence and m the cardinality of the
nucleotide alphabet, in this case m = 4. The PWM has one row for each symbol
of the alphabet: 4 rows in our case; it also has one column for each position
in the pattern of sequences [8]. Each entry on the PWM represents the relative
frequency of a nucleotide on its correspondent column in S. See Fig. 2.

Fig. 2. Representation of an individual or candidate solution in MBMEDA

The initial population of individuals is usually generated randomly. The qual-
ity of a solution is evaluated by the fitness function, which in this case is the
information content (IC) of the individual as defined by expression (1) [9] where
fb is the frequency that nucleotide b appears at position i on the PWM and pb
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is the frequency of b on the entire DNA base. At each iteration, a number of
the best individuals in the current population will be chosen by a tournament
selection operator, in order to model with them how solutions will distribute in
the next generation.

IC =

L∑
i=1

∑
b

fb (i) log

(
fb(i)

pb

)
(1)

The information content of an individual is a measure of the difference between
the distribution of the nucleotides in the PWM -which represents a solution- and
the distribution of the nucleotides on the entire DNA dataset. The larger is this
difference, the more information content the solution has and, therefore, the
larger is the possibility that it to be a motif. This concept of IC is crucial to the
process of getting a subset of the best individuals in a population [10]; with them
well estimate the four univariate gaussian models that will be used to calculate
the next population.

Since we work here with the assumption of statistical independence of nu-
cleotides on the motif instances, we have to estimate a set of four Univariate
Gaussian distributions, one for each nucleotide, by calculating their correspond-
ing values of mean and variance [11]. Then, by sampling the frequencies of these
distributions using expression (2), well get the components for the new individ-
uals in the next generation.

Ib = μb + Z ∗ σ2
b . (2)

Where Ib represents the component of nucleotide b for a sampled individual,
mub represents the mean of the distribution for nucleotide b, sigma2b represents
its variance and Z is a vector of random values obtained by the Box Muller
Transformation.

The EDA algorithm iterates until appropriate termination conditions are sat-
isfied; in our case, the value of the fitness function for the best individual remains
constant through at least 10 generations [12]. To avoid being trapped on local
minima, at each iteration two operators unique to this method are applied af-
ter sampling: the Shift and the Local Filtering operators [6]. Fig. 3 presents a
pseudo-code for the MBMEDA algorithm.

To measure the performance of EDA so that we are able to compare its results
with those obtained by other methods, two metrics were used: Precision and Re-
call; both were taken from the field of Information Retrieval [13] and calculated
by the following expressions (3) and (4), respectively; where Nc represents the
correct number of motif instances found by the algorithm, Np the number of
promoter regions in the DNA database and Nt represents the total number of
real instances of the motif.

Precision =
Nc

Np
. (3)

Recall =
Nc

Nt
. (4)
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Fig. 3. MBMEDA algorithm

Table 1. Results of MBMEDA applied on synthetic bases

Number of Sequences Motif Size
Noise

Noiseless With-Noise
Pr Rc Pr Rc

100 16 1.00 1.00 0.99 0.97
20 16 0.99 0.99 0.98 0.95
100 8 1.00 1.00 0.99 0.93
20 8 0.99 0.99 0.98 0.92
100 16 0.97 0.97 0.84 0.79
20 16 0.95 0.95 0.93 0.86

3 Results

Table 1 shows the MBMEDAs performance with different synthetic DNA bases
that corresponds to each row in the table. When we include noise for each base
-which represents a more realistic situation-, the average values for both metrics
were above 0.90; this is certainly promising
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Table 2. Results of applying MBMEDA and EDAMD on real DNA bases

MBMEDA EDAMD

Base Pr Rc Pr Rc

CRP 0.83 0.65 0.94 0.74
ERE 0.80 0.80 0.76 0.76
E2F 0.80 0.74 0.71 0.80

MYOD 1.00 0.80 0.86 0.90
ME2F 1.00 1.00 1.00 1.00

Table 3. Results when MBMEDA and other methods are applied on real DNA bases

MBMEDA MBMAG MEME BioProspector

Base Pr Rc Pr Rc Pr Rc Pr Rc

CRP 0.83 0.65 0.88 0.69 0.92 0.52 1.00 0.35
E2F 0.80 0.75 0.76 0.70 0.80 0.70 0.52 0.41
ERE 0.80 0.80 0.76 0.76 0.88 0.60 0.30 0.56
ME2F 1.00 1.00 0.94 0.94 0.93 0.82 0.71 0.71
MYOD 1.00 1.00 0.94 0.76 0.00 0.00 0.00 0.00

Fig. 4. Sequence logo of CRP motif consensus found experimentally

Table 2 shows the performance of MBMEDA and EDAMD on real datasets;
this methods are both based on estimation of distribution algorithms. The av-
erage value for Precision for MBMEDA on these bases was 0.886, better than
0.854 for the reference method EDAMD, while for the other metric, Recall, the
average value for MBMEDA was 0.798, a bit smaller than the 0.846 obtained
for the reference method.

Table 3 presents results for the same real DNA bases as those of Table 2,
obtained by applying our method MBMEDA and three others: MBMAG (Mtodo
de Bsqueda basado en Algoritmos Genticos), which is a method based on genetic
algorithms [9], and two non-evolutionary ones: MEME and BioProspector. The
average values for Precision and Recall were 0.886 and 0.798 respectively, higher
for the method we propose than for the other three.

Figure 4 shows a sequence logo [14], which is a graphic representation of the
consensus word for the TFBS of transcription factor CRP, found experimentally
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Fig. 5. Sequence logo of CRP motif consensus found by MBMEDA

[6]. Figure 5 on the other hand presents the sequence logo for the same motif as
it was found by MBMEDA, the method proposed in this work.

4 Discussion and Conclusion

From the tables and figures above, its clear that the results of applying MBMEDA
on DNA synthetic and real databases are quite satisfactory; they are similar and
in some cases better than those obtained by other methods, like EDAMD for
example.

Comparing Fig. 4 and Fig. 5, we observe that logo sequences for the motif
consensus of the TFBS of protein CRP resemble each other quite well, which
confirms the good results obtained with MBMEDA when searching for a motif.
All this would imply that the assumption of statistical independence among the
positions of the nucleotides in the motif instances is a reasonable one. However,
we still consider necessary to make a more rigorous analysis of this assumption,
which is fundamental to the performance of EDA based methods, since it sim-
plifies the modeling of distributions and the process of sampling new individual
for the next population.
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Abstract. The retina is one of the most extensively studied neural cir-
cuits in the Visual System. Numerous models have been proposed to
predict its neural behavior on the response to artificial and natural visual
patterns. These models can be considered an important tool for under-
standing the underlying biophysical and anatomical mechanisms. This pa-
per describes a general-purpose simulation environment that fits to differ-
ent retina models and provides a set of elementary simulation modules at
multiple abstraction levels. The platform can simulate many of the bio-
logical mechanisms found in retinal cells, such as signal gathering though
chemical synapses and gap junctions, variations in the receptive field size
with eccentricity,membrane integration by linear and single-compartment
models and short-term synaptic plasticity. A built-in interface with neural
network simulators reproduces the spiking output of some specific cells,
such as ganglion cells, and allows integration of the platform with mod-
els of higher visual areas. We used this software to implement whole retina
models, from photoreceptors up to ganglion cells, that reproduce contrast
adaptation and color opponency mechanisms in the retina. These models
were fitted to published electro-physiological data to show the potential of
this tool to generalize and adapt itself to a wide range of retina models.

Keywords: Retina simulator · Contrast adaptation · Color opponency ·
Neural network · Spikes

1 Introduction

The retina is the visual sensory input of the brain. Photons arriving at photore-
ceptors are first translated into a biochemical message and then into an electrical
message that can stimulate all of neurons in the retina. Analog electrical signals
are finally transformed into patterns of spikes for transmission along the optic
nerve to various downstream brain regions. The retina is not merely a simple
spatiotemporal prefilter [1]. On the contrary, retinal cells connect in different
and complex neural structures that provide a wide visual behavioral repertoire.
However, many aspects of retinal connectivity are still controversial and certain
functional mechanisms are not entirely clear [2]. Therefore, new efforts and ap-
proaches are required to improve and advance in both neurophysiological studies
and the modeling of the retina.
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Initially, computational models of neurons were programmed by researchers
with the purpose of fitting the results of specific experiments conducted in their
labs. There was no effort made to disseminate the software or to generalize it
beyond a particular model [3]. Neural simulation systems, such as NEST [4] or
NEURON [5], exploited common properties of neurons (e.g., their ionic-selective
channels) to provide researchers with general and efficient simulation environ-
ments. They have become reliable research tools that facilitate and accelerate
neural modeling and provide options for extensibility, interoperability, and model
sharing between laboratories.

A remarkable amount of research also pursued a generalization of common fea-
tures of retina processing and a unification of different biophysical retina models
[6–13]. Computations performed by these systems reproduce those retina behav-
iors that they have been intentionally designed for, but lack the configurability
to modify their simulation circuitry and adapt to new experiments. In agreement
with other authors [1], we consider that there are sufficient examples of single
neural structures that serve quite different roles in retina processing to moti-
vate the generalization of basic retinal circuits. Moreover, many physiological
experiments can be approximated by simple linear temporal filters and static
nonlinearities, such as the widely used linear-nonlinear (LN) model for measur-
ing contrast adaptation [14–17]; single-compartment models for the description
of adaptation phenomena (e.g., neural gain control) [7, 18, 19]; and spatial Gaus-
sian receptive fields when the spatial processing of the signal is relevant for the
experiment [20, 21]. These models have led to a quantitative understanding of
many dynamic phenomena occurring both at the cellular and conceptual level in
the retina and they have been commonly used in neural modeling of the retina.

We have implemented a software platform that provides researchers with a
general and efficient simulation environment of neural mechanisms in the retina.
Computations performed by the platform are based on generic microcircuits at
different abstraction levels whose interconnection schema can be fully modified
to configure different retina architectures. The platform combines the efficient
filtering scheme of retina simulators based on image-processing techniques and
some biological concepts used to simulate the dynamics and structure of neural
networks. Simulation of electrophysiological experiments, covering some signifi-
cant phenomena observed in the retina (i.e., contrast adaptation and chromatic
opponency), show the potential of this tool to adapt to a wide range of retina
models. The software can be easily used as an efficient benchmark to simulate
and understand the visual processing at low-level.

The rest of the paper is organized as follows. In section 2 we detail the neural
models implemented by the platform. We present simulation results of the physi-
ological experiments in section 3. Finally, in section 4, we discuss the conclusions
and summarize the contributions of this software.

2 Neural Models of Retinal Cells

Neural models are constructed to explain the biophysical mechanisms respon-
sible for generating neural activity. Such models range from highly detailed
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descriptions involving thousands of coupled differential equations to greatly sim-
plified systems that are used to explain results of specific physiological experi-
ments. The simulation platform implements a series of neural models that have
been recurrently used over the last few decades to explain certain phenomena
such as contrast adaptation or synaptic integration within the receptive field.
One of the main contribution of our work has been to summarize and gener-
alize these models to provide a set of general neural tools that can be used to
construct a wide range of retina architectures. In this section we discuss the
mathematical framework of these models and how they are integrated in the
simulation platform.

Membrane potential of cells can be defined using a single-compartment model.
The basic equation that explains the temporal evolution of a single-compartment
model is [22]:

Cm
dV (t)

dt
=

∑
i

Ii(t) +
∑
j

gj(Ej(t)− V (t))g (1)

where the index j indicates the input ionic channel, Cm is the membrane capac-
itance, V the membrane potential, gj is the conductance of the channel, Ej the
reversal potential of the channel and the term

∑
i Ii denotes the sum of external

input currents. Channel conductances can be modified by other neural modules
of the simulator to reproduce the shunting inhibition effect. Conductances with
reversal potentials near the membrane potential conduct little current. Instead,
their primary impact is to change the membrane resistance of the cell. Such con-
ductances are called shunting because their main effect is to increase the total
conductance of a neuron. Shunting inhibition has been used to reproduce nonlin-
ear mechanisms of the retina, such as contrast and luminance gain control [7, 18]
or directional selectivity to motion [23, 24], and normalization of the linear re-
sponse in the primary visual cortex [25]. Voltage-gated and calcium-dependent
conductances can be easily implemented following a similar mathematical for-
malism. However, instead of a conductance controlled by another neural module
the gating variable would be the membrane potential or the concentration of
calcium-binding molecules.

In some specific physiological experiments the membrane potential is approx-
imated by linear models. A linear approximation of the neural response of a cell,
L(t), can be defined based on the linear kernel K(x, y, τ) [22, 26]:

L(t) =

∫ ∞

0

dτ

∫

(x,y)εRF

K(x, y, τ)s(x0 − x, y0 − y, t− τ)dxdy (2)

where s(x, y, t) is the visual stimulus and RF the receptive field of the cell.
The neural response of the cell depends linearly on all past values of the input
stimulus located in the cells receptive field RF . This integral corresponds to the
well-defined convolution operation:

L(t) = (s ∗K)(x0, y0, τ) (3)
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For some neuronsK(x, y, τ) can be broken down as a product of two functions,
one that accounts for the spatial receptive field and the other one for the temporal
receptive field:

K(x, y, τ) = Ks(x, y)Kt(τ) (4)

The temporal linear kernel is the basis of a well-known mathematical tool, the
linear-nonlinear analysis (LN) [16, 17, 27], used to describe, for example, con-
trast adaptation mechanisms. The LN analysis separates the temporal behavior
of the cell from nonlinear response components (e.g., synaptic rectification or
saturation). The neural response is first correlated with the input pattern to
obtain the temporal filter. This filter is convolved afterwards with the stimulus
to generate a linear model of the response; this linear model (i.e. filtered stimu-
lus) serves as the input passed through a static nonlinearity, which works like a
lookup table, and translates linear model values into output values (nA, mV or
spikes/s) [28]. The simulation platform offers the possibility of creating these two
modules, the temporal linear filter and the static nonlinearity, to reproduce this
type of experiments. Low-pass filters are based on recursive implementations of
exponential and exponential cascade functions. Linear subtraction of low-pass
filters (e.g., between photoreceptors and horizontal cells at the outer plexiform
layer) produce the typical biphasic shape observed in bipolar and subsequent
neural layers [16, 27].

The spatial receptive field is modeled as a Gaussian function, similarly to the
kernels used in the receptive field model proposed by Rodieck [20] and Enroth-
Cugell and Robson [21]. The software also reproduces morphological and phys-
iological variations associated with eccentricity. It is possible to simulate the
spread of neuron dendrites with eccentricity and its consequent increase of the
receptive field size. To this end, Gaussian kernels vary with eccentricity. Space-
variant filters are based on the Deriche’s recursive approach [29–32]. The main
advantage of these filters is that the number of operations per pixel is constant
and does not depend on the size of the kernel. Moreover, kernel coefficients can be
modified at every pixel to simulate a foveated retina [31]. We have improved the
performance of the spatial filtering in a multi-core processor by taking advantage
of the fact that every row and every column of the image are processed inde-
pendently according to the Deriche’s recursive algorithm and can be executed
in different threads.

The history of activity at a synapse influences the probability of transmitter re-
lease and the magnitude of the resulting conductance change. This phenomenon
is known as short-term plasticity when it lasts anywhere from milliseconds to tens
of seconds[22]. Short term plasticity is also present in the retina; Contrast adapta-
tion originates in bipolar cells and neither photoreceptors nor horizontal cells are
involved in the process [16, 27].Recent experiments have shown that contrast adap-
tation effects are still present under physiological blockade of amacrine synapses,
ruling out a critical role for amacrine cells in driving contrast adaptation [27, 28,
33]. Slow adaptation mechanisms are apparently driven by prolonged depression
of glutamate release at bipolar cell synapses [14, 34–36], whereas inactivation of
voltage-dependent Na+ channels in ganglion cells [17, 19] and calcium-related
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mechanism in bipolar cells [33] may be responsible for the fast component. In ad-
dition, a large fraction of adaptation has been observed at the synapse bipolar-to-
ganglion [27, 37].

Polarization and hyperpolarization offsets of the nonlinearity are implemented
by a model of short-term plasticity. It was suggested that opposing mechanisms
of plasticity (i.e., depression and facilitation) could be combined together to
compensate the mutual information loss [38]. Following this idea, the model
includes a short-term plasticity module that correlates synaptic weight with the
neural input to simulate a depolarizing offset of the ganglion membrane for
high contrast steps [14, 16]. On the other hand, synaptic depression occurs for
maintained values of contrast with the synaptic offset decaying exponentially
back to its resting value. This module is defined by:

P = P + kf (km(t)abs(input)− P ) (5)

where P is the offset of the synapse, the parameter kf controls the degree of
facilitation, and the factor (km(t)abs(input)−P ) prevents the offset from grow-
ing indefinitely. A rectification of the input is applied by the term of absolute
value. The variable km is responsible for the slow depression of the synapse. Its
exponential decay is approximated by:

km(t+ 1) = kmInf + (km(t)− kmInf ) exp(−step/tau) (6)

with a temporal constant defined by the quotient of the simulation step and the
parameter tau. kmInf fixes the resting value and is inversely proportional to the
input using a depression factor kd:

kmInf =
kd

abs(input)
(7)

A summarize of these neural modules and the software connection with a neu-
ral network simulator is represented in figure 1. When interfacing the platform
with models of higher brain areas the neural network simulator integrates our
software efficiently and the retina module can be easily loaded in the neural
network script. Configuration parameters are passed through the retina script,
whose programming syntax is similar to that used in other neural simulators.
Other modules can be also instantiated in the retina script to generate synthetic
input stimuli (e.g., spatially drifting gratings or white noise) or to read video
sequences. The user can also create monitoring panels to visualize intermediate
outputs and the temporal and spatial activity of simulated cells.

3 Simulations of Physiological Experiments

We fitted four different retina models to published physiological data. Differ-
ent combinations of the neural modules, included in the simulation platform,
were used to reproduce chromatic opponency mechanisms, red-green and blue-
yellow, and contrast adaptation phenomenon in the retina. Chromatic models
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Fig. 1. Schematic view of the simulation platform connected to a spiking neural net-
work simulator (e.g., NEST [4]). Green boxes indicate those modules that can be config-
ured and interconnected by the user through a retina script ( such as neural models and
visual input sources). The analog outputs of the platform correspond to the ganglion
synaptic currents, which are processed by the neural network simulator to produce the
spiking output. This spiking output can feed afterwards models of higher brain areas
implemented in the neural network simulator. The neural network simulator drives the
simulation time and synchronizes the update process of spatiotemporal equations in
the retina model. In the figure we show a possible retina configuration, where L, M and
S correspond to L-, M-, and S-cones, respectively. Other different retina architectures
can be easily configured by creating new neural layers and modifying the connection
scheme in the retina script.

were inspired by the retina structures suggested by different authors [39–41]. We
would like to remark that authors of these chromatic experiments used simple
mathematical models, based on difference of Gaussian functions that depend
on spatial frequency, to fit the physiological recordings. However, our simulated
models correspond to whole retina models that provide a neural basis at each
retinal stage to explain measured data.

A summary of the simulation experiments conducted for two of these models is
shown in figure 2. The model on the right was inspired by the blue-yellow retina
circuitry proposed by Crook et al. [39]. The spatially coextensive receptive field of
the blue-yellow pathway is explained by a retina architecture of parallel ON and
OFF cone bipolar inputs to ganglion cells in primate retina. The S-ON bipolar
(left branch of the circuit) inherits a LM-OFF surround created by H2 horizontal
cell feedback to the S-cone. However, this LM-OFF surround is canceled out by
the LM-ON surround created by H1 horizontal cell feedback to LM-OFF bipolar
(right branch). Thus, no net surround appears at the ganglion cell resulting in
a cone-opponent receptive field that lacks center-surround spatial opponency.
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Fig. 2. Two retina experiments reproduced by the simulation tool. The retina archi-
tecture on the left reproduces both fast and slow contrast adaptation by a combined
model of shunting feedback loop at bipolar cells [7] and short-term plasticity (S.T.P.)
at the bipolar-to-ganglion synapse [14, 34–36]. A representation of the type of results
that are obtained for the contrast experiment is shown below the retina circuit. Further
details of this experiment are included in the text and in figure 3. The model on the
right corresponds to the spatially coextensive receptive field of the blue-yellow pathway
[39]. Excitatory contributions to receptive fields (R.F.) of each bipolar cell are marked
in orange and inhibitory in blue. The S-ON bipolar (left branch of the circuit) is fed
by a LM-OFF surround created by H2 horizontal cell feedback to the S-cone. How-
ever, this LM-OFF surround is counterbalanced by the LM-ON surround created by
H1 horizontal cell feedback to LM-OFF bipolar (right branch). Therefore, the center
and the periphery of the ganglionar receptive field are similar in size and it does not
present the common center-surround spatial opponency of other retinal cells.

Fast and slow contrast adaptation mechanisms have been also characterized.
The simulation tool captures both forms of adaptation by a combined model of
shunting feedback at the bipolar level [7] and short-term plasticity at the bipolar-
to-ganglion synapse [14, 34–36]. Results of the LN analysis for this experiment
are shown in figure (figure 3). A contrast increase of the visual input accelerates
kinetics of the linear filter, reduces sensitivity (defined as the average slope of the
nonlinearity) and depolarizes the membrane potential (reflected in the increase of
the mean value of the nonlinearity). Slow adaptation does not affect the temporal
response but produces a progressive hyperpolarization of membrane potential
(figure 3). Upon a decrease in contrast, all these changes reverse direction but
with asymmetric time constants for slow adaptation.
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Fig. 3. Linear-nonlinear (LN) analysis of the contrast model. The temporal response
of the retina is represented by the linear filter. The LN analysis separates the temporal
behavior of the cell from nonlinear response components (e.g., synaptic rectification or
membrane depolarization). In addition, the linear filter is normalized by the input and
any variation of gain is reflected only in the nonlinearity [16]. Four different contrast
intervals are considered to calculate the nonlinearity: ‘L early’ corresponds to the first
10 seconds after a low contrast step and ‘L late’ to the period from 10 to 20 seconds
after a low contrast step. ‘H early’ and ‘H late’ are defined similarly for a high contrast
step. Only two contrast periods are considered for the linear filter because the temporal
behavior does not vary within a contrast period.

4 Discussion

A great number of retina models have been proposed to explain the biophysical
and anatomical mechanisms of the retina. Neural response observed in differ-
ent physiological experiments have been recurrently explained by a set of basic
mathematical tools, such as the well-known Gaussian receptive field [20, 21].
There are sufficient examples of the same neural structures that serve quite dif-
ferent roles in retina processing to motivate the generalization of basic retinal
circuits [1]. In this paper we presented a general-purpose simulation environ-
ment that adapts to different retina models and provides a set of elementary
simulation modules at multiple abstraction levels. The platform can simulate
many of the biological mechanisms found in retinal cells, such as signal gather-
ing though chemical synapses and gap junctions, variations in the receptive field
size with eccentricity, membrane integration by linear and single-compartment
models and short-term synaptic plasticity. The interconnection scheme of these
modules can be modified to create different retina architectures. The platform
is easily integrated with neural network simulators to generate a spiking output
that can interface models of higher visual areas.

Four different retina models were fitted to published physiological data. These
retina models simulate chromatic opponency, blue-yellow and red-green, and
contrast adaptation mechanisms in the retina. The chromatic models we propose
provide a neural basis for the retina architectures suggested by different authors
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[39–41]. The simulation tool was configured to reproduce both theories of the
red-green pathway (the cone-type selective surround [40, 42, 43] and the random-
wiring or mixed surround [41, 44]) and the spatially coextensive receptive field
of the blue-yellow pathway [39]. A detailed description of these experiments can
be found in previous publications [45]. The simulation platform also captures
both form of contrast adaptation observed in the retina, fast and slow, by a
combined model of shunting feedback loop [7, 18] in bipolar cells and short-term
plasticity at the bipolar-to-ganglion synapse [14, 34–36]. Simulation results of
these physiological experiments show the potential of this tool to generalize and
adapt to a wide range of retina configurations.
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Abstract. In the olfactory system we can observe two types of
neurons based on their responses to odorants. Specialist neurons react
to a few odorants, while generalist neurons respond to a wide range of
them. These kinds of neurons can be observed in different parts of the
olfactory system. In the antennal lobe (AL), these neurons encode
odorant information and in the extrinsic neurons (ENs) of the
mushroom bodies (MB) they can learn and identify different kind of
odorants based on the selective and generalist response. The
classification of specialists and generalists neurons in Kenyon cells
(KCs), which serve as a bridge between AL and ENs, may seem
arbitrary. However KCs have the unique mission of increasing the
separability between different odorants, to achieve a better information
processing performance. To carry out this function, the connections
between the antennal lobe and Kenyon cells do not require a specific
connectivity pattern. Since KCs can be specialists or generalists by
chance and olfactory learning performance relies on their feature
extraction capabilities, we analyze the role of generalist and specialist
neurons in an olfactory discrimination task. Role that we studied by
varying the percentage of these two kind of neurons in KC layer. We
determined that specialist neurons are a decisive factor to perform
optimal odorant classification.

Keywords: Pattern recognition · Specialist neuron · Generalist
neuron · Olfactory system · Neural variability · Supervised learning ·
Heterogeneous threshold · Lateral inhibition

1 Introduction

Insects possess an olfactory system that identifies a large number of odorants
using a simple structural organization. This neural network allows pattern
recognition under different environmental conditions, gas concentrations, and
mixtures. Inside this network, there are two kind of neurons based on their
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response to odorants: specialists and generalists. Specialist neurons have
selective responses to stimuli and generalist neurons code for multiple
stimuli [19,4,20,26,21]. The role of both classes of neurons in the olfactory
system is still under debate [10,4]. However, it is suggested that specialist
neurons are crucial for discrimination, while generalist neurons play a key role
in extracting and discovering common features [25]. This Hypothesis has been
supported, in the case of the role of specialists neurons using experimental
studies [7,2] and computational models [16]. In this paper we investigate the
impact that changing the ratio of specialists and generalists has in the
performance in a pattern recognition task.

To answer this question, we focused on Kenyon cells of the mushroom body.
While projection neurons of the antennal lobe and extrinsic neurons of the
mushroom body have a reason to react to certain odorants, the first ones
encode the odorants and the second ones identify them, the response to
different odorants of Kenyon cells is circumstantial. The role of Kenyon cells in
the olfactory systems is primarily to increase the separability of different
odorants to facilitate subsequent learning and identification. It has been
observed that for this task the Kenyon cells do not require specific connections
with the antennal lobe [14,24]. In fact, these connections vary between
individuals of the same species. Thus, it seems that there is not a criterion by
which a neuron is defined as a generalist or specialist. Therefore, aspects of
KCs as:

– arbitrary creation of their connections from AL and, therefore, their
specialist and generalist neurons,

– large number of neurons (50,000 in locust), and
– being the final stage of feature extraction started in the olfactory receptor

neurons (ORNs),

are the reasons why we consider them the best ones to analyze the implications
of varying the number of generalist and specialist neurons for pattern recognition
process.

In order to classify Kenyon cells as specialist or generalist neurons, we use
neural sensitivity. This can be estimated from the distribution of neurons that
respond to n out of N different stimuli [20,21]. However, because the boundary
between specialists is arbitrary in a continuous distribution of sensitivity, a
systematic analysis is required for a proper differentiation of these neurons. We
will define, therefore, the minimum percentage of reaction to an odorant for
which a neuron can be considered sensitive to this, as well as the sensitivity
degree that makes a neuron be specialist or generalist.

To perform this study, we used a single-hidden-layer neural network that
represents a computational model focused on the AL and MB, which we can see
in Fig. 1. The input of this neural network is the AL activity, which is connected
to MB through a non-specific connectivity matrix [14,24,6]. The other layers,
hidden and output, are made of KCs and ENs respectively. These neurons are
connected by a connectivity matrix subjected to learning that is modulated by
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Hebbian learning [5,1]. ENs give us the final result of the classification, once the
lateral inhibition process between them has finished [13,3].

We will show in results that the most specialist neurons as responsible for
odorant classification.

Fig. 1. Neural network model. Olfactory system of insects can be decomposed into
3 parts: olfactory receptor neurons (ORN), antennal lobe (AL) and mushroom body
(MB). The ORNs sent olfactory information in a fan-in phase to AL that transmits this
in a fan-out phase to MB. The olfactory information is received by Kenyon cells (KC),
which is responsible for increasing the separability of information and transmit it, in a
fan-in phase, to extrinsic neurons (EN), responsible for its learning and classification.
Our model is a single-hidden-layer neural network with AL as input (X) connected by
a random matrix (C) to KCs, the hidden layer (Y ). KCs are connected by a matrix
with Hebbian learning (W ) to ENs, the output layer (Z). The thresholds for the hidden
and output layer are θj and εl respectively. The Heaviside activation function ϕ is 0
when its argument is negative or 0 and 1 otherwise.
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2 Neural and Network Model

The model focuses on the AL and MB, dividing the MB into KCs and ENs
(Fig. 1). Therefore, the network model is a single-hidden-layer neural network
with an input layer of 1, 568 neurons (due to our patterns), a hidden layer with
50, 000 neurons (locust [12] has a ratio of 1:50 between neurons of the AL, input
layer, and KCs, hidden layer, and similar dimensions to those we selected) and
an output layer with 100 neurons. These neurons of the output layer are divided
into populations of 10 neurons, a population for each pattern class, and there
are lateral inhibitions between these populations [1]. This facilitates that only a
specific population of neurons reacts to a particular pattern class.

The KC neurons of the MB display very low activity [19]. These neurons are
inactive most of the time, with a mean firing frequency lower than 1 Hz. But
when they are activated, their neuronal response is produced by the coincidence
of concurrent spikes followed by a reset. Bearing in mind this behavior, we chose
the McCulloch-Pitts model in all neurons of the hidden and output layers.

The connectivity matrices, C and W , are initialized at the beginning of each
learning process. These matrices are created by using the connection
probabilities, pc and pw, as a threshold on matrices with random values
uniformly distributed. The connectivity matrix W is updated using Hebbian
learning [8,9], which is subjected to a target t of the output layer (supervised
learning), while matrix C remains fixed.

The synaptic model is binary. Therefore, activation states and weights can
only take values 0 or 1.

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000
Response Threshold 20%

# Different Stimuli

# 
N

eu
ra

l R
es

po
ns

es

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000
Response Threshold 40%

# Different Stimuli

# 
N

eu
ra

l R
es

po
ns

es

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
x 10

4 Response Threshold 80%

# Different Stimuli

# 
N

eu
ra

l R
es

po
ns

es

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
x 10

4 Response Threshold 60%

# Different Stimuli

# 
N

eu
ra

l R
es

po
ns

es

Fig. 2. Neural sensitivity depending on the response threshold. Response
threshold is the percentage of odorants from a class that a neuron needs to respond to
be considered sensitive to it. When response threshold rises, the neurons that respond
to few stimuli increase in number compared to those that respond to many of them.
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3 Neural Sensitivity

To define KCs as specialist or generalist neurons, we use a criterion based on
neural sensitivity [20,21]. Neural sensitivity represents the number of neural
responses of a neuron to different stimuli. However, it is necessary to define
what is the minimum response degree to a pattern class so that a neuron can be
considered sensitive to this. To analyze this response degree, we used different
response thresholds and we present in Fig. 2 some cases: the neurons have to
respond to 20/40/60/80% of patterns for a specific odorant to be considered
sensitive to it.

As we can see in Fig. 2, when response threshold is higher, the number of
neurons that respond to no or few pattern classes increases, while the number
of those respond to all or many of them decreases. Since specialist neurons let
odorant discrimination, we are interested to have more neurons of this kind.
Also a neuron should be considered sensitive to a pattern class when it responds
to this in most cases. For that, we consider that response threshold of 80% as
desirable response percentage.
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Fig. 3. Generation of KC layer according to the selection criteria of
generalist and specialist neurons. We define specialist and generalist neurons
by neural sensitivity. To perform this, we initially define that specialist neurons
have a sensitivity of 5 or less and generalist ones have a sensitivity of 6 or more.
Subsequently, we start to remove neurons with intermediate sensitivity until we only
have neurons with sensitivity of 1 (specialists) and 10 (generalists), see left panel. Once
these sensitivities are defined, we extract generalist and specialist neurons from KCs,
excluding the neurons with sensitivity 0, and we create two sets with them. Then, a
new KC’ layer is generated, with the same dimensions than the original one and the
desired percentage of generalist and specialist neurons, see right panel.
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4 Selection Criteria of Generalist and Specialist Neuron

At the beginning of each simulation, we determine which kinds of sensitivities
define neurons as generalist or specialist. To perform this, we excluded neurons
with sensitivity 0. Once these sensitivities are defined, we extract these neurons
and create with them two sets, one generalist and other specialist, as we can see
in right panel of Fig. 3. We create a new KC layer with the same dimensions
than the original one by extracting neurons of these sets, which let us to control
the percentages of these two kinds of neurons. The neural network starts with
all generalist neurons and we gradually replace these by specialist neurons and
observe how the classification error varies during this process.

Because we used 10 kinds of patterns, we established different definitions of
specialist and generalist neurons in terms of neural sensitivity. First, we defined
that specialist neurons have a sensitivity of 5 or less and generalist ones have a
sensitivity of 6 or more. Subsequently, we start to remove neurons with
intermediate sensitivity until we only have neurons with sensitivity of 1
(specialists) and 10 (generalists), see left panel of Fig. 3. This way of defining
neurons as specialists and generalists allow us to assess the relevance of
neurons with intermediate sensitivities.

5 Odor Patterns

We used the MNIST digits [11], which have dimensions of 28 × 28 pixels, and
binarized their information on values of 0 and 1. Since antennal lobe has a
gain control mechanism [18,22,23] that keeps a constant neuronal activity for
all odorants and their alterations (concentrations, mixtures, etc.), each MNIST
pattern is subjected to gain control too. The method for performing this gain
control is simple, we duplicated the information of each pattern to use their
positive and negative image [9], see Fig. 4.

ON NEURON

OFF NEURON

Fig. 4. Gain control in the patterns. Example of MNIST digit patterns with gain
control where two populations of neurons respond inversely to each other.

We used 100 patterns, 10 patterns for each class. In the learning process these
patterns are divided into 5 parts, taking one as test set and the other four as
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training set. This process is repeated 5 times, in order to each part can be used
as test set (5-cross-validation). Thus, the training data set has 80 patterns and
test set has 20 patterns.

6 Results

To analyze what happens if we vary the proportion of generalist and specialist
neurons in KC layer, we used a computational model focused on AL and MB
where we introduced 100 MNIST digits, 10 for each pattern class, as input. The
following averaged results for the test set were obtained by supervised learning.
We ran 10 simulations with 5-cross-validation. This assumes an average of 50
results for each of the system configurations shown below.
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Fig. 5. Test classification error for different combinations of generalist and
specialist neurons in KC layer. We can observe that the minimum error, for a
pc = 0.1, does not vary when intermediate neurons are eliminated. Therefore, these
neurons do not seem to participate in classification success, as generalist ones increase
its error. The S value indicates the maximum number of different stimuli that make
firing a specialist neuron. On the other hand, the G value indicates the minimum
number of different stimuli for a generalist ones, see left panel of Fig. 3.

We have used a pc connection probability of 0.1 [15,17], for C matrix that
connects AL to MB. We initialize the weights of W matrix, which connects KCs
to ENs, with an intermediate pw value, 0.5, before Hebbian learning [9]. The
combination of values for Hebbian probabilities that we selected are p+ = 0.1
and p− = 0.05 by their good performance [8].
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6.1 Only the Most Specialist Neurons are Required for a Good
Odor Classification

The minimum classification error in Fig. 5 is 18.5% that are consistent with
other studies [9]. Since the neural selection process reaches its minimum with
100% of specialist neurons, we can say that these neurons are responsible for
odorant classification. This also happens when we do not introduce changes in
KC layer. In this case, KC layer neurons are mostly specialists, as we can see in
left panel of Fig. 3, and therefore we obtain a similar error to the previous one.
Because its percentage of specialist neurons place its result on the right side of
the error curve, Fig. 5. We also note that the minimum classification error does
not change when we have only the most specialist neurons or we also have some
neurons with intermediate sensitivities. This leads us to think that neurons with
intermediate sensitivities do not contribute to achieve this minimum error. On
the other hand, we can observe that classification error increases when in the
KC layer there are more generalist neurons.

7 Discussion and Conclusions

The objective of this work is to investigate what happens if we change the
percentage of generalist and specialist neurons during the feature extraction
process, to learn about how odorant information is processed at olfactory
system. To investigate this point, we used a simple model that retains the most
relevant structural properties of the olfactory system. This model focuses on
the AL and MB, where the input to single-hidden-layer neural network is the
AL activity. The other layers, hidden and output that represent the MB, are
composed by KCs and ENs respectively. These latter layers are connected by a
connectivity matrix that implements a supervised Hebbian learning. Also ENs
possess a lateral inhibition process between the different populations of
neurons that are specialized in a particular pattern class. Using MNIST digits
as odorant information, we analyze the neural sensitivity of each neuron and
define these ones as a specialist or generalist by this information. Once we
established generalist and specialist populations, we begin to vary their
proportions in the KC layer. This process that not only allows observing the
behavior of the generalist and specialist neurons, but also those with
intermediate sensitivities.

We show that in the feature extraction phase, pathway from ORNs to KCs,
the achieved minimum error in the learning phase, ENs, is obtained by the
most specialized KCs. This is clearly seen in the case of neural selection, Fig. 5,
since the classification error does not change when we also have neurons with
intermediate sensitivities. However, it also happens before this modification of
KC layer, left panel of Fig. 3, where almost all neurons are specialist. On the
other hand, this error increases for the most generalist neurons and those with
intermediate sensitivities. These results are consistent with researches about
Drosophila [7,2] that measure the KC activity by calcium images, since their
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experimental results reveal that KCs show high selectivity for a particular
odorant.

These results raise questions on the functional role of generalist neurons and
neurons with intermediate sensitivities. It is possible that in other kind of
problems, with a larger degree of overlapping between patterns, these neurons
could have a greater role in classification. However, for this problem, they are
not needed. Other aspects such as gain control and lateral inhibition of ENs
deserve further analysis, since their impact in odorant classification seem
critical as we observed during this work. On the other hand, we need to study
the different aspects of the neuronal network for their relationship with the
existence of specialist and generalist neurons. For example, the impact on these
neural populations by the network dimensionality and fan-in/out phases. Their
relationship with pc and what is the value of this probability that provides an
optimal configuration of specialist and generalist neurons. As if the existence of
variability between neuronal thresholds affects these populations. All these
points reveal details about the role of these kinds of neurons and allow us to
understand how olfactory system processes odorant information.
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Abstract. The intensity normalization step is essential, as it corre-
sponds to the initial step in any subsequent computer-based analysis.
In this work, a proposed intensity normalization approach based on a
predictive modeling using multivariate linear regression (MLR) is pre-
sented. Different intensity normalization parameters derived from this
model will be used in a linear procedure to perform the intensity normal-
ization of 123 I-ioflupane-SPECT brain images. This proposed approach
is compared to conventional intensity normalization methods, such as
specific-to-non-specific binding ratio, integral-based intensity normaliza-
tion and intensity normalization by minimizing the Kullback-Leibler di-
vergence. For the performance evaluation, a statistical analysis is used
by applying the Euclidean distance and the Jeffreys divergence. In addi-
tion, a classification task using support vector machine to evaluate the
impact of the proposed methodology for the development of a computer
aided diagnosis (CAD) system for Parkinsonian syndrome detection.

Keywords: Intensity normalization · DaTSCAN SPECT images ·
Multivariate Linear Regression · Parkinsonian syndrome · Computer-
aided diagnosis system

1 Introduction

There have been a growingnumber of studies showing the importance of functional
imaging studies using single-photon emission tomography (SPECT) or positron
emission tomography (PET) tracers in neurology. In particular, Parkinson’s dis-
ease (PD) and other neurodegenerative disorders are useful disease models to un-
derstand the contribution ofmodern functional neuroimaging techniques. ThePD,
the most common cause of Parkinsonism, is a neurodegenerative disease that pro-
vokes the degeneration of the central nervous system. Early in the course of the
disease, themost obvious symptoms aremovement-related.These include shaking,
rigidity, slowness of movement and difficulty with walking and gait. Later, cogni-
tive and behavioral problemsmay arise, with dementia commonly occurring in the
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advanced stages of the disease. Other symptoms include sensory, sleep, and emo-
tional problems. The neuropathology of the disease is characterized by the pro-
gressive loss of dopaminergic neurons of the nigrostriatal pathway. This leads to
a corresponding loss of dopamine transporters (DaTs) in the striatum [1]. The di-
agnosis of Parkinsonian syndrome (PS) is usually based on the results of clinical
assessments and clinical signs have proved to be insufficient for accurate diagnosis
especially at an early stage and in elderly subjects. The initial diagnoses of PD
made by general neurologists have shown to be incorrect in 24% to 35% of the
cases [2]. A reliable diagnostic test, which could be used to differentiate between
different tremor disorders, would therefore be of great value. Thus, as a feature
of PD is a marked reduction in dopaminergic neurons in the striatal region, brain
imaging techniques (SPECT or PET) with specific ligands, derived from cocaine
such as I-Ioflupane (better known asDaTSCAN [3] or [123I]FP-CIT [4]) can be used
as a valuable tool to evaluate PD patients [3]. These specific radio-ligands bind to
the dopamine transporters in the striatum and have evolved as in vivo markers of
progressive dopaminergic neuron loss in PD. Previous to any kind of image pro-
cessing, the functional brain images have to be normalized in terms of intensity, so
that it is guaranteed that the differences between images of different subjects are
due to physiological reasons and the brain functioning, and not due to the baseline
calibration of the Gamma camera used for the acquisition among other factors.
The most fruitful way of carrying out the intensity normalization is to consider as
a reference for all the images the brain region that is not significantto differentiate
between ill subjects and healthy ones. In the case of PD, the discriminant region
is the striatum and the occipital region is usually chosen as a reference because
it is devoid of DATs and it is usually selected as the background region [5]. How-
ever, in previous works, the whole brain area is considered, minus the striatum, as
a non-specific region [6,7]. In this sense, a new normalization technique is applied
in this work, based on multivariate linear regression approach. Its performance is
validated through a statistical analysis and in the classification performance for
improving the diagnostic accuracy in Parkinsonism. This new approach is an ex-
tension of the mean-squared error normalization method presented in our previ-
ous work in [8]. Thus, this normalizationmethodology can be applied to the whole
medical image, not only in a non-specific regions.

2 Materials and Methods

2.1 DaTSCAN SPECT Dataset

The database consisting of 189 SPECT images (94 Normal Controls (NCs) and
95 Parkinsonian Syndrome (PS)). The brain images were acquired by the “Virgen
de la Victoria” hospital (Malaga, Spain). The demographic details are shown
in Table 1. All SPECT images were spatially normalized using SPM 8 software
yielding a 73×73×45 three-dimensional functional activity map for each subject.
This spatial normalization ensures that any given voxel in different images refers
to the same anatomical position across the brains.
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Table 1. Demographic details of the DaTSCAN SPECT dataset. μ and σ stand for
the average and the standard deviation respectively.

Sex Age
# M F μ σ range

NCs 94 49 45 69.26 10.16 33-89
PS 95 54 41 68.29 9.62 30-87

2.2 Intensity Normalization Approaches

There are a variety of normalization methods available in the literature for the
Parkinson’s disease image normalization. Several approaches approaches are de-
scribed below:

Specific-to-Non-Specific Binding Ratio (BRall): This normalization ap-
proach is based on the binding potential (specific/non-specific binding ratio
(BR)) [9] which can be calculated as:

BR =
CV OI − CN

CN
(1)

where CV OI is the mean count per voxel in the volume of interest (striatum,
putamen or caudate nucleus) and CN represent the mean count per voxel in the
occipital cortex. This binding ratio is used for the normalization of functional
brain images. BRall denotes the binding ratio calculated using all the brain
voxels except those in the striatum as non-specific region.

Integral-based Intensity Normalization [4]: It It consists of the compu-
tation of an intrinsic parameter from the image, Ip. This normalization is per-
formed by the estimation of the binding activity:

Î =
I

Ip
(2)

where I denotes the spatially normalized image, Î denotes the intensity normal-
ized image and Ip is the integral intensity value. It can be approximated as the
sum of all the intensity values of the image, giving an integral value of intensity:

Ip =

∫
I(x, y, z) ≈

∑
I(x, y, z) (3)

Intensity Normalization by Minimizing the Kullback-Leibler Diver-
gence (MKL): The basic idea of the method presented in [10] is to estimate
a multiplicative correction field in order to match a template histogram to a
reference model density. The observed image I can be expressed as:

I = F Î + n (4)
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where F is a multiplicative intensity corruption field, n is the additional acqui-
sition noise and Î is the desired correct image. After neglecting n for having
only little influence on the problem of intensity normalization and solving the
eq. 4 for Î, the uncorrupted image is obtained as Î ≈ F−1I. The intensity ad-
justment parameter F−1 has to be chosen in a way that the Kullback-Leibler
divergence [11] between the adjusted source and target data sets is minimized.
The Simultaneous Perturbation Stochastic Approximation (SPSA) is used to
generate the gradient estimate and then to adjust the current solution estimate
according to the gradient estimate.

2.3 Multivariate Linear Regression (MLR) Model

Multivariate regression analysis is a well-known technique that is widely used in
many branches of science and engineering to predict values of D responses from
a set of P regressors, where D ≥1 and P ≥1. A MLR is generally based on the
following statistical model [12]:

Yi = β0 + BTxi + εi (5)

where the symbol i is used to denote a sample unit; Yi=(Yi1, . . . , Yid, . . . , YiD)T

and xi=(xi1, . . . , xip, . . . , xiP )
T are the D-dimensional vector of the response

variables and the P -dimensional vector of the fixed regressor values for the ith
unit, respectively; β0 is a D-dimensional vector containing the intercepts for the
D responses; B is a matrix of dimension P × D whose (p, d)th element, βpd,
is the regression coefficient of the pth regressor on the dth response; finally, εi
denotes the D-dimensional random vector of the error terms corresponding to
the ith unit.
To simplify the computation, the multiple regression model in terms of the obser-
vations can be written using matrix notation. Using matrices allows for a more
compact framework in terms of vectors representing the observations, levels of
regressor variables, regression coefficients, and random errors. The model is in
the form:

Y = Xβ + ε (6)

2.4 Intensity Normalization Using MLR

In this paper, we apply MLR to a specific pre-processing step of image processing
application, that is intensity normalization. The following assumption will be
used to perform the normalization task of each image subject:

– Let Y ∼ Ī be an N × 1 vector of observations on the dependent variable,
that is the template image.

– Let X ∼ I be an N × 1 vector where we have observations on 1 independent
variables for N observations, that is the raw data.

– Let the number of observations N be the number of image voxels.
– Let β be an 1 × 1 vector of unknown parameters that we want to estimate

and ε be an N × 1 vector of errors.
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Therefore, by estimating the values of β and ε we can easily transform the
intensity distribution of I to Î using the following expression:

Î = I a+ b (7)

where Î is the normalized image, a = β and b = ε̄ are the intensity normalization
parameters, they represent the scale and offset of the intensity transformation [8].
The used criteria for obtaining our estimates of β is to minimize the residual
sums of squares (or error sums of squares) (RSS), which can be defined as:

εT ε = (Ī− Iβ)T (Ī− Iβ) = Ī
T
Ī− Ī

T
Iβ − ITβT Ī+ βT IT Iβ

= Ī
T
Ī− 2βT IT Ī+ βT IT Iβ

(8)

To find the β that minimizes the RSS, we need to take the derivative of eq. 8
with respect to β. This gives us the following equation:

∂εT ε

∂β
= −2IT Ī+ 2IT Iβ = 0 (9)

From eq. 9, the “normal equations” are:

(IT I)β = IT Ī (10)

Multiplying both sides of the eq. 10 by the inverse (IT I)−1 gives us the following
equation:

(IT I)−1(IT I)β = (IT I)−1IT Ī (11)

By definition, (IT I)−1(IT I) = IN , where IN is the identity matrix and N is the
number of image voxels. As a result, the least square solution of β is :

β = (IT I)−1IT Ī (12)

The residuals are computed as:

ε = Ī− Iβ = Ī− I(IT I)−1IT Ī = (In − I(IT I)−1IT )Ī (13)

The goal in this work is to transform linearly all the intensity values for differ-
ent image subjects using predictive modeling based on MLR. The procedure to
perform the intensity normalization is summarized as follows:

– Firstly, the template Ī is computed as :

Ī =
1

Nc

∑
i∈Xc

(Ii(x, y, z) + Ii(−x, y, z)) (14)

where Xc denotes the subset of control images, Nc the number of control
images, Ii(x, y, z) is the ith image and Ii(−x, y, z) is its reflected image in
the x = 0 hemisphere midplane.

– Secondly, the different parameters β and ε of the MLR model are estimated
using the eqs. 12 and 13.

– Lastly, the normalized images are computed by linearly transforming the
voxel intensity of each image subject using the model in eq. 7.
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3 Results and Discussion

3.1 Image Analysis

The proposed methodology has been tested on the database described in sec-
tion 2.1 which presents a high degree of variability in the intensity level for the
specific/non-specific area (see Fig. 1.a). Furthermore, those images present a
relatively poor signal-to noise ratio (SNR) in the so-defined non-specific region
provided by the image acquisition system at the nuclear medicine department.
The visual assessment of normalized subjects using the compared approaches
in Figs. 1.b, 1.d and 1.e shows that they are not enough for an accurate in-
tensity normalization procedure. Since the intensity heterogeneity in the non-
specific between subjects is quite reduced. After intensity normalization using
our proposed methodology detailed in section 2.4, the intensity heterogeneity
in the non-specific region is reduced and the inter-subject intensity differences
in the non-specific region due to noise and artifacts are clearly reduced. These
qualitative effects can be seen more clearly at the image level in the results
of Fig. 1.c. Moreover, this figure proves that, post-normalization, the contrasts
of relevant features in the striatum are improved. Hence, the separation be-
tween the striatum and the non-specific region is increased. Thus, the proposed
post-normalization approach allows us as well to guarantee that the differences
between the two classes (NC and PS subjects) are due only to the uptake of the
tracer in the discriminant region (striatum) and not due to the baseline calibra-
tion of the gamma camera applied for the acquisition. Therefore, this normal-
ization method is suitable for preprocessing of 123 I-ioflupane brain images for
diagnosis purposes.

3.2 Statistical Analysis

The proper adjustment of the resulting normalized set of images can be evalu-
ated by means of some defined metrics that provide a measure of the difference
between two sets of samples, such as Euclidean distance (ED) and Jeffreys diver-
gence (JD) measure [13]. In this particular case, the set of samples to be evalu-
ated with these metrics is the histogram of the normalized 3D image, referred to
the histogram of a reference target 3D image (typically, the mean image of the
subjects) in the non-specific region. Lower values of these divergences represent
less difference between the two distributions of histograms.

Thus, the inter-subject variability is quantitatively computed in Tables 2 and
3, both before and after normalization and according to class belonging. Note
that, the lowest ED, JD values and the lowest error are obtained (in terms of
the standard deviation) by the proposed normalization method based on linear
intensity normalization using a model-based MLR. Compared to raw data and
normalized images using the comparative approaches, its ED and JD represent
less difference between adjusted images and target model, both in the same class
or in different classes. Thus, more intensity homogeneity in the reference region.
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(a)

(b)

(c)

(d)

(e)

Fig. 1. A given trans-axial slices of 6 selected brain images; 3 healthy subjects (left)
and 3 PS patients (right): a) raw DaTSCAN brain images b) BRall brain images c)
MLR brain images d) MKL brain images and e) integral-based intensity normalized
brain images.
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Table 2. Mean Euclidean distance and standard deviation for original images and
intensity normalized images in the non-specific region

Normalization approach class Euclidean distance

Raw data NCs 0.5761±0.2567
(spatial normalization) PS 0.2180±0.1023

NCs+PS 0.5601±0.2479

BRall NCs 0.5058±0.2220
PS 0.4916±0.1886
NCs+PS 0.5430±0.2303

MLR NCs 0.4477±0.1909
PS 0.1805±0.0727
NCs+PS 0.4830±0.1982

MKL NCs 0.5097±0.2233
PS 0.3559±0.1816
NCs+PS 0.5394±1.1314

Integral NCs 0.4998±0.2068
PS 0.4856±0.1777
NCs+PS 0.4928±0.2163

Table 3. Mean Jeffreys Divergence and standard deviation for original images and
intensity normalized images in the non-specific region

Normalization approach class Jeffreys Divergence

Raw data NCs 0.7408±0.5743
(spatial normalization) PS 0.1427±0.1459

NCs+PS 0.7422±0.5943

BRall NCs 0.1634±0.0927
PS 0.1348±0.0953
NCs+PS 0.1860±0.1432

MLR NCs 0.1511±0.0690
PS 0.0607±0.0340
NCs+PS 0.1657±0.0974

MKL NCs 0.5781±0.4166
PS 0.2406±0.2596
NCs+PS 0.5700±0.4094

Integral NCs 0.1655±0.0867
PS 0.1303±0.0865
NCs+PS 0.1873±0.1276

3.3 Quantitative Classification Performance of Parkinsonism

The classification performance of the proposed intensity normalization
approaches is tested using the classical multivariate approach Voxel-As-Feature
approximation (VAF) and Support VectorMachines (SVM) with linear kernel and
Leave-One-Out cross-validation strategy in order to extract several performance
parameters: accuracy, sensitivity, specificity. This approximation uses all voxels in
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each image as a feature vector, which is used as an input to the classifiers. Only
linear SVM has been used to compute the results, due to the large number of in-
put features to the classifier, to obtain more generalizable results and to avoid the
small sample size problem. The performances of the raw images and the intensity
normalization methods are presented in Table 4. A significant improvement of the
performance results is carried out by the proposed approach. For instance, the ac-
curacy gain is 8.61%, the sensitivity and the specificity gains are 11.99%and 6.30%
compared to unnormalized intensity images (raw data). Compared to the other
intensity normalization methods, the accuracy gain is up to 7.09%, the sensitiv-
ity and the specificity gains are up to 7.72% and 3.64%. The underlying reason for
these improvements is the reduction of inter-subject intensity variability between
different images of the same class, and between images of different classes as shown
in the previous sections. The behavior of the VAF systemwith this strategy of pre-
processing highlights the benefits of using an intensity normalization, as well shows
its ability and robustness in PS pattern detection.

Table 4. Comparison between the performance (%) achieved with the proposed inten-
sity normalization methodology, the raw data and the other normalization approaches
using VAF approach and linear SVM classifier

Normalization approach Accuracy Sensitivity Specificity

Raw data 79.58% 78.95% 80%
BRall 85.83% 88.68% 83.78%
MLR 88.19% 90.74% 86.30%
MKL 81.10% 83.02% 79.73%
Integral 85.04% 88.46% 82.66%

4 Conclussion

Multivariate regression has been widely used for years applying to almost all
the areas in our lives. The present work proposes a new intensity normalization
method based on predictive modeling using MLR. This methodology has the
advantage of automatically normalizing the 3D functional brain images with-
out using anatomical information. In addition, this approach could be used for
visual assessment in clinical practice; since it is not dependent on any patho-
logical information about the specific disease. It might also be applied to other
image modalities, such as positron emission tomography (PET). We have proved
that, using this approach, we are able to obtain brain images with very similar
intensity distribution. We compare our method with a widely used approaches
for the Parkinson’s disease image normalization. Further analysis reveals that,
the intensity normalization is improved by the proposed methodology, the inter-
subjects intensity differences are reduced and the artifacts and noise affecting
the source images are removed. In addition, the proposed normalization method
demonstrates also its ability and robustness in PS pattern detection as it pro-
vides good value of accuracy compared to other approaches.
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Abstract. An accurate and early diagnosis of the Alzheimer’s disease
(AD) is of fundamental importance to improve diagnosis techniques, to
better understand this neurodegenerative process and to develop effec-
tive treatments. In this work, a novel classification method based on
independent component analysis (ICA) and supervised learning meth-
ods is proposed to be applied on segmented brain magnetic resonance
imaging (MRI) from Alzheimer’s disease neuroimaging initiative (ADNI)
participants for automatic classification task. The ICA-based method is
composed of three step. First, MRI are normalized and segmented by the
Statistical Parametric Mapping (SPM8) software. After that, average im-
age of normal (NC), mild cognitive impairment (MCI) or AD subjects
are computed. Then, FastICA is applied to these different average images
for extracting a set of independent components (IC) which symbolized
each class characteristics. Finally, each brain image from the database
was projected onto the space spanned by this independent components
basis for feature extraction, a support vector machine (SVM) is used to
manage the classification task. A 87.5% accuracy in identifying AD from
NC, with 90.4% specificity and 84.6% sensitivity is obtained. According
to the experimental results, we can see that this proposed method can
successfully differentiate AD, MCI and NC subjects. So, it is suitable for
automatic classification of sMRI images.

Keywords: Alzheimer’s disease · Mild cognitive impairment · Magnetic
resonance imaging · Computer aided diagnosis · Independent component
analysis · Support vector machine · Supervised learning

1 Introduction

The progression of AD is of great interest in medical research as 1 in 3 seniors
in the United States dies with dementia [1]. Based on signs and symptoms,
physicians usually track AD using the Clinical Dementia Rating (CDR) system.
Using CDR, subjects are classified in three states such as NC, MCI and AD
patient. The progression of AD can be characterized by atrophy of gray matter
(GM) and white matter (WM) brain tissues. These structural changes in brain

c© Springer International Publishing Switzerland 2015
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facilitate the distinction of an AD brain from a NC brain; however, the distinc-
tion between MCI and NC is subtle [2]. To facilitate the distinction between
the different classes, the proposed work used the segmentation technique in the
structural Magnetic Resonance Imaging (sMRI) datasets in order to consider
only the relevant brain regions which are significant for AD detection. Then,
different algorithms such as Independent Component Analysis (ICA) [3,4], have
been used to perform the feature extraction task and to solve the problem of
small sample size [5].

In this study, ICA is used to extract maximally spatially independent sources
revealing patterns of variation that occur in segmented sMRI images, in order
to identify segmented sMRI difference between AD patients, MCI and NC sub-
jects [6]. Once a significant features were selected, we build a SVM to manage
the classification task. Support vector machine (SVM) [7, 8], a kind of machine
learning techniques, plays an important role to perform classification of sMRI
after features extraction by ICA which is novel and innovative. It has been suc-
cessfully used in diagnosing medical images.

This paper shows a computer aided diagnosis (CAD) system for the early
detection of AD using SVM classifiers applied to the projection of each average
brain image of each classes into the Independent Component (IC) brain images
space (Fig. 1). This process reduced the dimensionality of the feature space, thus
facing the small sample size problem. The present work based on the segmen-
tation of brain MRI images, separating white matter (WM) from gray matter
(GM) and using either or both of them to extract relevant informations. In ad-
dition, the proposed method grows a CAD system for the early detection of the
Alzheimer’s disease (AD) and developed with the aim of reducing the subjec-
tivity in visual interpretation of these scans by clinicians, thus improving the
accuracy of diagnosing Alzheimer’s disease in its early stage.

Fig. 1. Detailed schema of the proposed CAD system
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1.1 ICA Application to Segmented MRI Images

Independent Component Analysis (ICA) [3, 4], is a statistical technique that
represents a multidimensional random vector as a lineal combination of non-
gaussian random variables (the so-called ”independent components”) to be as
independent as possible. In brain images, the dataset is an ensemble of 3D brain
images Γi, whose size M is typically 121×145×121 voxels. Let the full 3D brain
image set be Γ1, Γ2,..., ΓN , each understood as a vector of dimension M , each
pertaining to a class ζk , k = 1, 2, ...,K, where K is the total number of classes.
The average brain image of the dataset is defined as:

Xk =
1

Nk

∑
Γi⊂ζk

Γi, k = 1, 2, ...,K. (1)

where Nk denotes the number of images in the class ζk. These average images
X = [X1,X2, ...,XK ], which number is the same as the number of classes.
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Fig. 2. Three representative transversal slices of the first three independent compo-
nents, obtained by the ICA feature extraction method

ICA algorithm is expected to separate them into a independent set of sources
through WX = Y, where W is the estimated separating matrix, and Y is
the estimated set of K independent sources Y = [Y1,Y2, ...,YK ] (see Fig 2).
These latent variables are the essence of the different classes. Furthermore, these
independent sources Yk define a orthogonal basis which span a independent
components subspace of the ”brain images space”. For the classification task, Y
can be used to project each image onto the independent component (IC) space.



Independent Component Analysis-Based Classification 81

Each projected image produced a vector of weights so that a matrix of weights
can be constructed with each brain tissues database. this matrix Ω is giving by:

Ωki = Yk.Γi, i = 1, 2, ..., N, k = 1, 2, ...,K. (2)

and describes the contribution of each IC in representing the input brain image
Γi, treating the IC as a basis set for brain images (See Fig. 3).

IC1

∗Ωp1+

IC2

∗Ωp1 =

Fig. 3. Reconstruction of a random AD subject using the independent brain source
basis. The representation is encoded in the coefficients (Ωp1 and Ωp2).

The matrix Ω contains the most relevant information extracted from ICA. We
used this matrix Ω for the following classification task, that is N k-dimensional
patterns: xi = [Ω1i,Ω2i, ...,Ωki], i = 1, 2, ..., N. each of them with its corre-
sponding class labels yi ∈ × {±1}.

2 Classification Using Support Vector Machines (SVM)

Support Vector Machines (SVM) are a state-of-the-art classification method in-
troduced in 1992 by Boser, Guyon, and Vapnik [9], widely used and applied to
lots of different problems, specially in pattern recognition [9]. Being a maximum-
margin classifier, and having excellent generalization ability in the linear case,
they have been successfully used in a number of CAD systems [10,11]. The prin-
cipal function of SVM classifier, in this work, is to separate a set of binary labeled
training data by means of a hyperplane that is maximally distant from the two
classes (known as the maximal margin hyperplane). The goal is to build a func-
tion f : RK → {±1} using training data, consisting of k -dimensional patterns
xi and class labels yi:

(x1, y1), (x2, y2), ..., (xN , yN ) ∈ (RK×{±1}) (3)
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so that f will correctly classify new examples (x, y). For nonlinearly separable
data, the optimization process needs to be modified to work in combination
with kernel techniques, so that the hyperplane defining the SVM corresponds
to a non linear decision boundary in the input space [12]. The use of kernels
enables to map the data into some other dot product space (feature space)
through a non linear transformation. We used a Radial Basis Function (RBF)
F (x, y) = exp(−γ||x− y||2) as kernel function.

3 MRI Brain Image Database

The database used in the preparation of this work were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The ADNI has
recruited over 800 adults aged between 55 to 90 years old from approximately
50 sites across the United States and Canada. These include approximately 200
cognitively normal individuals who are followed for 3 years, 400 subjects with
MCI who are followed for 3 years, and 200 patients with early AD who are fol-
lowed for 2 years. We preprocessed the MRI images in the ADNI database and
segmented using the Statistical Parametric Mapping (SPM) software [13]. SPM
was initially designed for functional images, but it also provides routines for
realignment, smoothing and spatial normalization into a standard space of T1-
weighted images. Moreover, the template from the VBM package [14] was used
for this purpose. It is worth mentioning that normalization routines preserve the
amount of tissues and not the intensities [15]. Thus, images from ADNI database
were resized to 121×145×121 voxels with voxel sizes of 1.5 mm (sagital) x 1.5
mm (coronal) x 1.5 mm (axial). After normalization, the whole brain MRI data
was automatically segmented using the Statistical Parametric Mapping (SPM8)
software. This process partitions brain into gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) regions. Therefore, the database used in
this work contains 1075 T1-weighted MRI images separated into three different
classes: 229 NC subjects, 401 MCI (312 stable MCI and 86 progressive MCI) and
188 AD. As only the first exam for each patient has been used in this work, 818
images were used for assessing the proposed approach. The demographic of the
subjects who compose the dataset used in this work described in detail in [11].
To prevent this study from being prevalence-dependent, 188 individuals have
been randomly selected from each of the classes AD, MCI and normal controls.
The same set of patients has been used in the rest of the paper.

4 Experiments and Results

We have developed a computer aided diagnosis (CAD) system using the ICA
feature extraction method described above and two SVM classifiers; linear and
nonlinear (RBF kernel). Since our purpose is to distinguish between NC, MCI
subjects and AD patients, first we have trained the CAD system with only NC
and AD images (group 1). Second, we have used MCI images as NC (group 2)
and , third, MCI images as AD (group 3). Thus, we can measure the ability of the
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Fig. 4. Projecting of each GM image from group 1 onto the IC images space

Table 1. Statistical performance measures of the proposed model with different SVM
classifiers, for the three sample groups

Group 1 Group 2 Group 3
Brain tissues Kernel Acc/Sens/Spec(%) Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Linear: 87.11/89.91/84.09 77.59/80.31/75.11 84.79/84.61/85.09

RBF: 87.61/90.42/84.61 77.61/80.89/74.51 83.51/86.22/80.09

WM
Linear: 77.61/77.61/77.61 72.91/77.11/68.61 80.31/83.09/77.61

RBF: 77.91/77.59/78.21 72.11/73.42/71.09 81.11/84.59/77.61

GM+WM
Linear: 86.21/88.89/83.49 76.61/80.31/72.89 85.41/85.61/85.11

RBF: 84.61/86.72/82.41 76.31/81.03/72.01 83.81/85.61/81.91

proposed method to distinguish between NC, MCI and AD patients. The classi-
fication performance of our approach is tested using the k−fold cross validation
method with the feature vectors dimension k=2.

Fig. 4 shows the distribution of the x1 training vector versus the x2 in the
feature space. From this plot, it can be read that the separation of the training
samples in two classes is giving by the combination of both x1 and x2. This result
is in correspondence with the IC1 and the IC2 obtained. In the first independent
component, there are a high intensity values in the posterior cingulate gyri and
precunei, and the second independent component complements the IC1 by giving
a high intensity level in temporo-parietal regions. Both of these regions affected
by glucose hypometabolism in the AD.
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Table 2. Comparaison of performance parameters using VAF, ICA [18] and the pro-
posed ICA method using SVM with linear kernel for the three sample groups

Type of groups
Brain tissues Parameter(%) VAF ICA [18] Proposed method

NOR.vs.AD

GM

Accuracy 65.61 84.65 87.12

Sensitivity 72.91 86.46 89.92

Specificity 58.29 82.45 83.98

WM

Accuracy 64.49 70.26 77.61

Sensitivity 70.81 72.93 77.61

Specificity 58.29 67.02 77.61

(GM+WM)

Accuracy 65.71 86.37 86.21

Sensitivity 75.09 88.34 88.91

Specificity 56.21 83.98 83.48

NOR.vs.MCI

GM

Accuracy 55.21 69.46 77.62

Sensitivity 55.11 69.03 80.27

Specificity 58.29 69.96 74.49

WM

Accuracy 44.82 63.51 72.89

Sensitivity 51.11 63.24 77.09

Specificity 39.55 63.78 68.48

(GM+WM)

Accuracy 52.2 70.19 76.62

Sensitivity 56.3 72.89 80.27

Specificity 48.15 67.49 72.89

MCI.vs.AD

GM

Accuracy 48.91 69.19 84.81

Sensitivity 45.82 70.27 84.62

Specificity 52.08 68.11 85.07

WM

Accuracy 59.51 59.46 80.31

Sensitivity 64.98 62.16 82.98

Specificity 52.51 56.76 77.59

(GM+WM)

Accuracy 61.11 69.83 85.41

Sensitivity 66.69 73.43 85.59

Specificity 53.31 66.24 85.11
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5 Analysis

The results summarized in table 1 show that the idea of compressing a large
amount of brain image data to a small element image basis for characterizing
the AD is useful to develop the CAD system. The proposed method exhibit
interesting performance results , however the best performance result is obtained
for group 1 (NC. vs. AD) when combined with a RBF kernel, reaching 87.61%
accuracy. Specificity took the value 84.61% and sensitivity 90.42% in the case
of using only GM brain tissue images. From table results, we find that within
the experiments established to differentiate between NC and MCI, the value
of accuracy decreases significantly (77.6% for GM images). However, group 3
(MCI. vs. AD) present a high accuracy rate. According to the results obtained,
the MCI subjects can be more similar to NC. It can be noted from this table
that the accuracy value with the WM brain tissue images decreases wildly. It
means that there are not a remarkable change in the WM brain tissue of the AD
patient. Thus, in order to not lose the information from the WM images and to
earn the maximum relevant informations related with the disease, we used the
combination of features extracted from both GM and WM tissue distributions
to improve the classification and to include the relevant informations from the
both tissue brains.

In table 2, the method presented in this work was compared with other exist-
ing in the literature. The voxel-as-features (VAF) approach results are reported
as reference, since different studies have concluded that this method is, at least,
comparable to visual assessments performed by experts [16,17]. The use of SVM
classifier in combination with ICA leads to better performance, due to the small
dimensionality of the feature space and the use of independent features from
the brain images. In all the groups, the proposed method outperform the VAF
approximation [16,17], as well as the ICA method proposed in [18]. As a conclu-
sion, the proposed CAD system yields better classification results with smaller
computational time than the ICA method used in [18]. Furthermore, our method-
ology can produce a valid approach to perform a CAD system for early diagnosis
of AD.

6 Conclussion

For early AD diagnosis, we proposed in this work a new CAD system based on
ICA, which makes to extract the highly representative features from each average
brain image, related to typical AD patterns, for classification task. The principal
aim of ICA application in this work was to find a set of independent component
sources that present each Alzheimer’s disease stage. Besides, it is proven to be an
opportune method of reducing the dimension of the feature with projection into
a discriminative subspace , and also, selection the most relevant informations.
After that, a SVM classifier is trained to detect these AD patterns, and its
performance is evaluated. The resultant system performs significantly well with
the segmented MRI database, and demonstrates its ability and robustness in AD
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detection as its provides high accuracy values. It outperforms several proposed
methods in bibliography, specially the baseline VAF approach.
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novación, Ciencia y Empresa (Junta de Andalućıa, Spain) under the Excellence Projects
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4. Illán, I.A., Górriz, J.M., Ramı́rez, J., Salas-Gonzalez, D., López, M.M., Segovia,
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Abstract. With regard to neural networks, there are two different ar-
eas which have generated two lines of research. One research interest
comes from the field of computer science which seeks to create and de-
sign neural networks capable of performing computational tasks. In this
line of research, any neural network is relevant because the important
issue is the problems which they are capable of resolving. Thus, neural
networks are computational devices and computational power and the
computational process which they perform are researched. The other in-
terest of research is related to neuroscience. This focuses on both neural
and brain activity. The big difference between these two lines of research
can be observed from the outset. In the first, the neural network is de-
signed and its performance on computational tasks is then researched.
In the second, performance on computational tasks is known but the
neural mechanism is not and neuroscience seeks to identify it. An in-
teraction between these two lines of research is very positive because it
produces synergies which generate important advances in both lines of
research e.g. Hopfield’s networks. This article enunciates a neural mecha-
nism to interpret neural dynamics based on some of the results produced
by computer science. This mechanism identifies an internal or external
state s with a formal language L. Independently, if the mechanism exist
or not in the human brain, this mechanism can be used to design new
architectures for neural networks.

1 Introduction

Human conscious thinking appears to us as a serial symbolic process. This fact
was the inspiration for the Turing’s work concerning computation. At the same
time, the work of Turing was a key element in the emergence of cognitive psy-
chology. However, the computer metaphor does not help us to understand how
the brain works because the Turing Machine is an architecture very different
from human brain architecture. The human brain has hundreds of billions of
processors and performs a massive parallel processing. Allan Newell suggested
that a computational process should be described by a multilevel description to
reach a full understanding[20]. However, Newell’s proposal was focused on his
concept of the symbol system. David Marr proposed applying a multilevel de-
scription to the visual system[13]. Concretely, He proposed three levels and he

c© Springer International Publishing Switzerland 2015
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developed algorithms concerning these three levels. The idea of explaining the
nervous system using a multilevel description has also been defended by Mira
and Delgado[19][18].

Brain activity is measured at different levels using different techniques EEG,
MEG and fMRI. Those techniques are related to the synchrony of a huge num-
ber of neurons. Therefore, although EEG, MEG, fMRI are useful to research
cognitive behavior, they do not permit discovery or research of the neural mech-
anism which allows the flow of information nor explain how the information is
processed. Since the second half of the 20th century, electrophysiology has re-
searched the processing done by a neuron in depth using microelectrodes. Thus,
from the ’80s onwards we have known the features of the units of processing
of the brain very well[12]. However, there is much theoretical and experimen-
tal work which has indicated that information can be coded in sparse patterns
of activity[15]. Thus, if we wish to understand the function of a population of
neurons and we try to inference that function from independent recordings of
individual neurons we will have probably overlooked important aspects of the in-
formation coded in changing patterns of activity that are distributed throughout
the populations of neurons.

For a long time, there were no techniques available to perform recordings of
each neuron in a population simultaneously. Nevertheless, in order to fill the
gap between neuron activity and brain activity, mathematical models about the
mechanism which the neural populations of the brain may be using to be success-
ful have been proposed and researched. Two possible kinds of neural mechanisms
underlying the neural dynamics have been stated: vector-state and chaotic itin-
erancy. Each one of these kinds of mechanisms groups many methods together.
In the 21st century, the time has come for discussion to pass from the merely
theoretical to the experimental given that it is now possible to record each neu-
ron of a population simultaneously. One of the techniques which permits this
is calcium imaging[25]. Calcium imaging allows studies of neuronal activity in
hundreds of neurons within neuronal circuits. These advances have recently per-
mitted the observation of the neural dynamics of neural circuits[3]. The work
of Brice Bathellier et al. [3] has shown that the superficial layers of the audi-
tory cortex contain a small number of attractor-like neuronal assemblies which
produce categorization of sounds. The issue of how the dynamics of the brain
operate appears to be reaching an interesting new point where experiments may
allow us to better understand how it works.

This article is structured as follows. The second section of this article explains
the problem about understanding neural dynamics from the point of view of mul-
tilevel descriptions. The third section summarizes the two kinds of mechanism
which currently exist for neural activity. In the fourth section, a short overview
of formal languages, neural networks and deterministic finite automata is given.
The fifth section proposes a new mechanism to categorization which could be
responsible for cerebral dynamics. The last section contains a summary and a
short discussion of this article.
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2 The Multilevel Description

The idea of a multilevel description to describe computational process was pro-
posed initially by Allan Newell [20]. Newell explained that a level can be defined
in two ways :

“First, it can be defined autonomously, without reference to any other level
to an amazing degree, programmers need not know logic circuits, logic designers
need not know electrical circuits, managers can operate at the configuration level
with no knowledge of programming, and so forth. Second, each level can be re-
duced to the level below. Each aspect of a level - medium, components, laws of
composition and behavior - can be defined in terms of systems at the level next
below. The architecture is the name we give to the register-transfer level system
that defines a symbol (programming) level creating a machine language and mak-
ing it run as described in the programmers manual for the machine. Neither of
these two definitions of a level is the more fundamental. It is essential that they
both exist and agree. ”[20]

Human conscious thinking is at the symbol level. How the symbol level emerges
from the level below in computers is completely understood as a consequence
of the fact that computers are designed by humans. However, how the symbol
level emerges from the level below in the human brain is an open problem. David
Marr proposed that a multilevel description should also be applied to understand
visual system but his proposal could also be applied to any neural system. He
also proclaimed that there were only three main levels. From that point, Jose
Mira Mira and Ana Delgado have defined a hierarchy of three main levels: the
physical level, the symbol level and the knowledge level[19][18][17]. They have
defended the use of this framework to understand the neural function. One of
the issues which they have discussed in their works is about how the symbol
level could emerge from the physical level. They argue that knowing all about
the processing in the physical level in neural networks is not enough to know
what is being calculated at the symbol level. They write the next:

“Let us assume for one moment that we have a complete theory of the physical
level. In other words, that we know everything about individual signals, circuits
and local operators, similar to our knowledge about digital electronics and com-
puter architecture. Would we know what the brain is calculating? Would we know
the ‘program’ and the emerging cognitive processes? Of course, not.”[19]p. 224

Therefore, to move from one level to the next we need a set of rules which
permit a translation. One important concept which Mira and Delago introduce
in their work is the concept of a ‘dynamic symbol’ [19]. Mira and Delgado define
their concept of a ‘symbol’ very clearly providing a definition of symbols which
includes neurophysiological systems.

“ The symbols[in neurophysiological systems] are active and dynamic entities
associated with specific patterns of spatio-temporal signals(electrical, chemical
and electronics) that are presented repeatedly in a stable, independent and au-
tonomous way and associated with specific references in the organism’s internal
and external environment.”[19].
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They expand explicitly the concept of a symbol employed by Newell because
they wish to apply the multilevel description to all kinds of computational sys-
tems, including conexionist systems.

“ we should remember that the concept of symbol proposed here is not the one
proposed by Newell and Simon (1976) in their Physical Symbol System Hypothe-
sis because in our proposal the symbols are evolutive, dynamic, connectionist and
grounded in specific physiological mechanisms and they are not programmable in
the conventional sense, but via dynamic adjustment processes of synaptic effi-
ciency, controlled by the states of activity in the network. Per contra, symbols
in conventional programmable computers are static, descriptive, and arbitrary
semantics.” [19].

Mira and Delgado stated the problematic situation which remains in under-
standing the global function of the brain:

“We know how to construct models at the physical level, in terms of mathe-
matical relationships between measured physical quantities as function of time,
but we still do not know how to construct formal models of symbols and relations
between these symbols with the exception of those peripheral situations in which
the neural networks are situated at end of the effector and/or receptor sides of
the nervous system, with accessible points of physical measurement. It seems
clear to us that we cannot use the conventional programming strategies as used
in computers, because our symbols are embodied in the neural dynamics.”[19].

The research currently being undertaken about biological neural activity is
confined basically to the physical level because the register of each neuron of a
neural population is really complex and it is only now that some experiments
are beginning to be done where each neuron of a population is recorded. How-
ever, from the theoretical field of neural networks two main proposals have been
to translate neural activity from the physical level to the symbol level. These
proposals are summarized in the next section.

3 Neural Activity and Encoding States

There is no knowledge of how the brain encodes human conscious thinking. How-
ever, many researchers have proposed hypothetical mechanisms of how popula-
tions of neurons could encode symbols states which build the human conscious
thinking. Two concepts have been proposed up to now: vector-state and chaotic
itinerancy. The concept of vector-state is behind algorithms of neural networks
for the associative memories developed by Kohonen, Anderson, Amari, Hopfield,
and others[9][6] and the attractor dynamics developed by Amari, Hirsch, Hop-
field, Amit, and others[6] [1] [5] [2]. From vector-state concept an internal or
external state is represented by a vector which is defined by the state of the
units of the neural network. The other concept which is proposed is chaotic
itinerancy[26][27], which has been proposed to give a dynamical interpretation
of cortical transitory behaviors. Some experiments have shown activity which
contains a set of dynamically switching cortical states[8] and irregular transi-
tions in cat visual cortex[4]. The proposers of chaotic itinerancy argue against
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dynamics related with concept of vector-state (e.g. the vector is an attractor) be-
cause they consider it cannot explain the transitory phenomena mentioned[27].
Actually, there is not any experiment which has resolved the contradiction be-
tween these two concepts. Therefore, it remains unknown how discrete dynamics
reflect perceptual categories in the neural activity. Furthermore, there is no rea-
son to think that vector-state and chaotic itinerancy are unique mechanisms to
produce represent internal or external states in a neural network.

4 Formal Languages, Neural Networks and Deterministic
Finite Automata

The work of WarrenMcCulloch andWalter Pitts in 1943 showed that the nervous
system could be understood as a computational system[14]. McCulloch–Pitts
model is equivalent to other computational model, the Deterministic Finite Au-
tomata (DFA)[16]. A useful way to classify the power of a computational model
is to compare it with the kind of languages defined by the theory of generative
grammars developed by Noam Chomsky. Thus, the McCulloch–Pitts model and
the DFA can be seen as acceptors of languages. One of the great advantages
of neural networks is the capacity to learn complex task related with classifica-
tion or pattern recognition but one of the disadvantages is that the knowledge
learned by the neural network is difficult to extract and understand. This can
be seen in the problem of formal language learning. A formal language L is a
set of strings of symbols that may be constrained by a concrete set of rules. A
string, w, of a language is denominated a word. The symbols which can contain
a word conform a set, Σ named alphabet. The length of a word is the number of
symbols which the word contains, denoted |w|. Therefore, if w = 101 on the al-
phabet Σ = {0, 1}, then |w| = 3 We distinguish languages with finite words and
with infinite words. The generative grammars of Chomsky permit the definition
of languages with finite words. The language with all the words on the alphabet
Σ is denoted by Σ∗. Thus, a formal language L over an alphabet Σ is a subset
of Σ∗. Artificial intelligence and cognitive science has been concerned about for-
mal language learning. One of the techniques to resolve this problem has been
the use of recurrent networks. Some researchers have proposed that the recur-
rent networks which recognize formal languages are simulating a DFA. Thus,
we could achieve a understanding of the recurrent network generating a DFA
from the own neural network. This process is denominated DFA extraction. The
success of the DFA extraction from the networks is a matter of debate[10]. How-
ever, from the McCulloch–Pitts model to dynamical recurrent networks there is
a connection with formal languages.

5 A New Kind of Neural Mechanism: Trajectories-State

In this section a new neural mechanism is proposed for the categorization of
inputs. The basis of the new mechanism is the following:
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1. Categorizing is a fundamental process of cognition. There are different lev-
els of categorization; the more abstract the categories which an animal can
create the greater its cognitive skills. Forgetting the qualitative differences
of the processes of categorization, it is a fundamental feature which all ani-
mals possess ranging from animals which need this feature for survive[23] to
animals which use it to play high cognitive behaviors[22].

2. Existence of discrete dynamics in animal brain for categorizing. Experimen-
tal research has shown that firing in the superficial layers of auditory cortex
is organized into a small number of attractor-like neuronal assemblies, whose
responses can predict an animal’s sound discrimination performance[3].

3. A neural population can be seen as a dynamic system. Neural networks have
been used to model dynamical systems[28] but a neural network may be
considered a dynamical system by itself. Thus, the continuous input which an
animal receives from its environment and recurrent connections can convert
a neural population into a dynamical system.

4. The time sequence of states produced by a dynamical system can be consid-
ered a word. A word is a sequence of symbols; therefore, if the states of the
dynamical system are considered an alphabet, then the sequence of states
produced by a dynamical system can be seen as words.

5. Conscious states are composed of a finite time sequence of inputs. Several
investigations have shown that there is a threshold of time which is needed
to overcome to perceive a stimulus[7] [24].

6. A formal language can be interpreted as a category whose objects are words.
7. Neural networks can enable the recognition of formal languages[21]. This

is relevant because a formal language is considered as an object at symbol
level. Thus, this connection can be used to move from the physical level to
the symbol level.

Given the facts (1) and (2) narrated above, we should find a mechanism which
will be able to categorize if we wish to explain some brain dynamics. Using facts
(3) and (4) we see that the activity of a neural population may be interpreted as a
mechanism which generates words. Fact (5) implies that these words should have
a finite length. However, the words generated by the dynamical network would
not be very interesting if all the words generated belong to the same formal
language. Thus, taking fact (6) and if we suppose that the dynamical system
generates words of different formal languages, a network can assign a category
to a input sequence if the trajectory of the dynamical system interpreted as a
word belongs to a formal language which corresponds to the category. Fact (7)
shows that a neural network can accept or reject words in order to identify if they
belong to a formal language. Thus, the mechanism of the image 1, denominated
trajectories-state, is proposed as a one of the possible mechanisms which may
produce neural dynamics.

The mechanism consists in two sub-networks connected consecutively which
can be interpreted at the symbol level in the following way. The first sub-network
will transform the input into a word. The second sub-network takes the word
and recognizes to which formal language it belongs. Thus, while usually DFA
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Fig. 1. Scheme of the trajectories-state mechanism proposed to explain neural
dynamics

or neural networks are used to define a unique formal language by accepting
or rejecting words, here the objective is a neural network which recognizes to
which formal language the word belongs. Therefore, the second sub-network
could consist of a set of networks where each one is dedicated to recognizing a
formal language and the output of each recognizer sub-network conforms to a
vector state which determines one formal language among a set of them. Thus,
a category is defined as a set of trajectories but when the category must be
used it is represented by a state which is interpreted as a formal language at the
symbol level. In addition to categorization the mechanism proposed here may
filter noise. A sensor can have several variations when it is recording due to noise
or fast fluctuations of the environment. Thus, it may be necessary to filter that
noise or its fluctuations. If the number of languages which can be recognized is
similar to the size of the alphabet then a language can be used to represent a
filtered input.

If this mechanism were to exist in the brain, then the states which represent
the formal language would be the human thought symbols. How this activity
becomes to be consciousness is outside the scope of this article and probably is
related to physical issues which are not understood yet[11]. One of the interesting
issues is that this mechanism is scalable because it can be reapplied. Thus, the
temporal sequence of languages recognized also conform to a string which can be
considered a word if we use the languages as the alphabet of formal languages.
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Thus, a hierarchy of languages can be defined where the categories are more
abstract in a new level than the previous level.

6 Discussion

The brain needs to encode external and internal states to make decisions and
perform behaviors. Up to now, two kinds of mechanism have been proposed to
explain how a neural network can encode states: vector-state and chaotic itiner-
ancy. Also, these two kinds of mechanism have been proposed to explain cerebral
dynamics. Ichiro Tsura considers that the way in which the brain encodes infor-
mation is chaotic itinerancy.

“Furthermore, another misleading theory in conventional brain theory is the
theory based on the description of non-stationary and transitory processes by a
geometric attractor.”[27]

However, the work of Brice Bathellier et al. [3] has shown that the superfi-
cial layers of auditory cortex is organized into a small number of attractor-like
neuronal assemblies. Thus, the nature of the neural mechanism which produces
cerebral dynamics is still an open question.

This article has proposed a new neural mechanism which may underlie some
high-level brain functioning: trajectories-state. The idea expressed by this new
concept is that a set of trajectories are grouped to define a category. This mech-
anism can also be translated to the symbolic level. Thus, at the symbol level the
trajectories are words of a formal language and the category is formalized as the
formal language. Therefore, a formal language becomes a symbol for an internal
or external state.

Neuroscientific experiments have demonstrated two facts:

– Activity which contains a set of dynamically switching cortical states[8] and
irregular transitions visual cortex[4].

– Firing in the superficial layers of auditory cortex is organized into a small
number of attractor-like neuronal assemblies[3].

These two facts, although apparently appearing contradictory from the dis-
cussion between vector-state and chaotic itinerancy, can be reconciled using the
trajectories-state mechanism. The performance of a bottom-up analysis of neural
dynamics based on the trajectories-state mechanism, it may explain the results
obtained in neuroscientific experiments in the following way. The continuous
generation of words by the dynamical sub-network may explain the dynami-
cally switching or irregular transitions and the attractors would be the language
recognizer sub-network. Of course, this explanation is only a hypothesis and
complex experiments will have to be carried out in order to validate it and it is
not clear if neuroscientists can perform experiments which demonstrate whether
this interpretation is right or wrong. However, there is an interesting issue which
must be noted about the mechanism trajectories-state. It is that this mechanism
can incorporate the mechanisms of vector-state and chaotic itinerancy because
these mechanisms can be used in the sub-networks. From my point of view, it
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is not that one kind of neural mechanism is true and the others are false in
their attempt to explaining cerebral dynamics. It may be that the brain is using
more than one mechanism to code information if it allows the brain to optimize
its global performance and operate in a more efficient manner. Furthermore, it
may be possible that different species of animals have nervous systems which
use different neural mechanisms to represent environmental or internal features.
Evolution could have produced different mechanisms although all nervous sys-
tems are connectionist systems. In any way, independently whether this new
proposed mechanism exist in the biological realm or not, this new kind of mech-
anism is interesting because it can be used in artificial neural networks to do
tasks of classification or filtering noise. Finally, what can be deduced about the
existence of several neural mechanism to represent external or internal states
is that the neural network has a high computational versatility which from an
evolutive point of view (where the capacity for variation is very important) it is
a very interesting mechanism to produce behavior.
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Abstract. The use of image analysis in understanding how powdered
coal burns during the combustion plays a significant role in setting com-
bustion parameters. During the pulverised coal combustion, char parti-
cles are produced by devolatising coal and represent the dominant stage
in the combustion process. The pyrolysis produces different char mor-
phologies that determine coal reactivity affecting the performance of coal
combustion in power plants and the emissions of carbon dioxide, CO2.
In this paper, an automatic char classification model is proposed us-
ing supervised learning. A general classification model is trained given a
set of char particles classified by an expert. In particular, Support Vector
Machine (SVM) and Random Forest are the trained classifiers. Two types
of features are evaluated to built classification models: local and global.
Local features are calculated using the Scale-Invariant Transform Feature
(SIFT). Global features are defined based on the morphology classifica-
tion by the International Committee for Coal and Organic Petrology
(ICCP). Each classifier is trained by SVM or Random Forest and evalu-
ated using a 10-fold cross-validation. The 70% of data is used as training
set and the rest as testing set. A total of 2928 char-particle images are
used for evaluating performance of classification models. Additionally,
evaluation of model generalisation capability is done using a test set of
732 char particle images. Results showed that global features – defined
by the application domain – increase significantly the accuracy of clas-
sifiers. Also, global features have more generalisation power than local
features. Local features lack of meaning in the application domain and
classifiers build with local features – such as SIFT – depend crucially on
the training set.

Keywords: Char classification · Global features · Local features · Bag-
of-features · Support Vector Machine · Random Forest

1 Introduction

Char is produced by devolatising coal and represents the dominant stage in
a combustion process. Char particles have different morphologies that deter-
mine coal reactivity which affects the performance of coal combustion in power
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plants [6] [14]. Char morphologies have been studied in order to propose a classi-
fication into meaningful groups [13] [2] [1]. The classification proposed by Alvarez
and Lester [1] is recommended by the International Committee for Coal and
Organic Petrology (ICCP). This classification consists of eight char-types. How-
ever, it can be summarised into two groups: char reactive with morphology of
thin-walled, high porosity and large superficial area and char no reactive with
morphology of thick-walled, low porosity and small superficial area. Char parti-
cle with reactive morphologies are more desirable for coal combustion. Figure 1
illustrates char morphologies and classifications.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Illustration of char morphologies and classificaction. Char reactive: (a) Crassi-
sphere; (b) Teniusphere: (c) Tenuinetwork; (d) Crassisnetwork. Char no reactive: (e)
Mixed Porus; (f) Mixed Dense; (g) Solid; (h) Inertoid.

The char classification problem has been addressed using manual and auto-
matic approaches. Manual classification is performed by an expert. Char particles
– in a char-block – are observed through a microscope and classified based on
observed morphological characteristics [13] [1]. This process is subjective and
requires a significant amount of time since a coal sample classification requires
observing at least 400 char particles [14]. On the other hand, automatic clas-
sification is based on a set of char digital images taken by a camera attached
to a microscope. Images are processed to automatically identify char particles
and quantify morphological characteristics, following the ICCP standard, such
as: area of particle, undevolatilised material, wall thickness and porosity of par-
ticle [2] [17] [5]. However, small changes during image acquisition, such as il-
lumination, may produce incorrect classifications. For instance, gray intensities
may be erroneously measured as undevolatilised material affecting the particle
classification. It is due to the ill-posed characteristics of this problem.
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Image classification – in a general context – has been addressed using super-
vised learning. A classification model may be trained using machine learning
algorithms from a given set of labeled images by an expert [9] [11] [3] [15]. A
bag-of-feature method may be used to represent image content. The classifica-
tion process may be summarised in four stages [9] [3]: 1) Feature extraction by
partitioning images into patches and describe image content using local descrip-
tors; 2) Image codification by assigning descriptors from each image patch to a
predetermined vocabulary; 3) Calculation of aggregated statistics using coded
descriptors (pooling) to generate a bag-of-features by image; 4) Classification
by applying a classification model. The classifier is trained using the bag-of-
features generated by images as a feature vectors. Commonly, local features are
used because they are robust to occlusions and special variations [11].

In this paper, an automatic char classification is proposed using either Support
Vector Machine (SVM) or Random Forest. The proposed model is based on nine
global features, following the ICCP standard. Selected classification features are:
char particle area, undevolatilised material, devolatilised material, number of
porous, porosity, wall thickness – first, second and third quartile of wall thickness
distribution –, and sphericity. The validation of global features performance is
compared to local features, which are calculated by a bag-of-feature method
employing the SIFT descriptor.

Classifiers are built using images from a dataset with 2928 char particle im-
ages where 1464 images correspond to char particle reactives and 1464 images
correspond to char particle no reactives. Global features are used to train a
classifier using SVM and Random Forest with a 10-fold cross-validation. The
70% of data was used as training set and the rest of the data as testing set.
In a similar way, local features are used to train classifiers by SVM and Ran-
don Forest. Additionally, a new set of 732 char images are used for evaluating
generalisation capability of the classification models. Results showed that global
features – defined by the problem domain – increase significantly the accuracy
of classifiers compared to bag of local features. Apparently, Random Forest ex-
hibits better generalisation capabilities. Local features lack of meaning in the
application context and classification models depend of the training set.

The remaining of the paper is organised as follows: Section 2 describes global
and local features used to represent the char images; Section 3 presents briefly
the supervised learning algorithms used to train the char classification models;
Section 4 is focused on the experimental evaluation; and Section 5 includes final
remarks.

2 Feature Extraction

A feature vector is obtained from a char particle image. The feature vector is
formed by characteristics extracted from an image and is used to train classi-
fication models. In this paper, two type of features are considered, global and
local. Global features are calculated over the whole image. Local features are
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calculated over image patches or small regions and characteristics are obtained
using a bag-of-feature method.

2.1 Global Features

Nine features are selected to represent char particles based on the char classifica-
tion proposed by the ICCP [1] along with morphological characteristics observed
in Colombian chars [5]. A description of global characteristics calculation is pre-
sented.

1. Particle Area: A binary image is obtained from a char particle image (in
gray scale) using the Triangle method [20] . White color pixels correspond
to the particle area, in Figure 2b.

2. Percentage of Undevolatilised Material: is calculated as the ratio be-
tween the total of undevolatilised material and the particle area. The un-
devolatilised material corresponds to gray intensities in char images with
values between 130 and 160 approximate, in Figure 2h.

3. Percentage of Devolatilised Material: is defined as the ratio between the
total of devolatilised material and the particle area. Undevolatilised materials
are recognised using color information, in Figure 2c.

4. Number of Porous: identified in a char particle image, in Figure 2d.
5. Porosity: is calculated as the ratio between the total area of pores or voids

and the total particle area.
6. Sphericity: is obtained as the ratio between the minimum and the maxi-

mum Feret diameter, in Figure 2e.
7. First, Second and Third Quartile of Wall Thickness: Line transects

are used for calculating wall thickness, in Figure 2f.

2.2 Local Features

A char particle image is represented by a bag-of-features method which can
be summarised in three stages [9] [3], and feature extraction is illustrated in
Figure 3.

Firstly, local regions are calculated with a dense regular grid of 16x16 pixels
with a spacing of 8 pixels. Each region is described by SIFT descriptor as a vector
of 128 values [12]. An unordered vector X = [x1, . . . , xi, . . . , xN ] ∈ R

128 is ob-
tained from the image, where N is the total of SIFT descriptors extracted. SIFT
is choose since it is robust against changes of scale, rotation, and viewpoint [11].

Secondly, given a set of local features, X and a visual codebook, B = [b1, . . . ,
bj . . . , bM ] ∈ R

128 with M visual codewords, a codification matrix H = [α1,1, . . . ,
αj,i, . . . , αM,N ] ∈ R

M×N is obtained. H contains the codification of each xi image
features using the M codewords on the codebook [3]. The codification is done
by Locality-constrain Linear Coding (LLC) [16].

The codebook is obtained by the k-means algorithm, with k = 2000, to a
subset of 300000 local features randomly chosen from all features descriptors of
the training set. Each cluster centroid corresponds to a visual codeword.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustration of global features. (a) Original image of a char particle; (b) Area of
particle; (c) Devolatilised material; (d) Identified pores in gray color; (e) Illustration of
the Feret diameters; (f) Line transects used for calculating wall thickness. (g) Original
image of a char particle; (h) Undevolatilised material in grey color using (f).

Fig. 3. Extraction of local features

Thirdly, given the codification matrix, H , a single vector Z = [z1, . . . , zj, . . . ,
zM ] or bag-of-features to represent the whole image is calculated using a pooling
function [3]. In this paper, a max-pooling function is used. The max-pooling
function represents an image using the maximum codification values αi for the
codeword bj by the function [18] [15]:

g(H) = z : ∀j, zj = max(αj1, αj2, . . . , αjN ). (1)

The pooling process is illustrated in Figure 4.
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Fig. 4. Pooling of local features

Fig. 5. Spatial pooling of local features using L = 2

Additionally, the spatial pyramid image representation [18] is used to preserve
spatial information, since limiting the descriptive ability of pooling representa-
tion is disregard in general pooling [18]. In this paper, L pyramid levels are
considered to split the image at level into 2L square regions. At each level region
is used the max-pooling function and the final image representation is obtained
by concatenating all pooling vectors. the The spatial pooling process is illus-
trated in Figure 5.

3 Classification Algorithms

Given a training set {(Zi, yi)}ni=1 where yi ∈ {−1,+1} corresponds to a label
class (char reactive or char no reactive) and Zi is a feature vector with the
obtained representation from a char particle image –in Section 2. A classification
model is learnt by a machine learning algorithm. In this paper, Support Vector
Machine (SVM) and Random Forest algorithms are used.

SVM learnt the classifier by choosing the best hyperplane that categorises
the two considered classes – char reactive and char no reactive. The best hyper-
plane is defined as one which maximises the margin or distance of separation
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between the classes and the separated hyperplane. It is obtained by the objective
function [4] [7]:

min
1

2
‖ w ‖2 +C

l∑
i

ξi, (2)

subject to the constraints:

yi(w · Zi + b) ≥ 1− ξi, ∀Zi, ξi ≥ 0, (3)

where w is termed the weight vector, b is the bias and C is a regularisation
parameter. C controls the trade-off between maximising the margin and min-
imising the training error term. In this paper, Liblinear [10] is used to train SVM
classifiers.

On the another hand, Random Forest is an ensemble of decision trees. Each
decision tree is trained using a subset of the training data. The final classifier
corresponds to a combination of individual trees [8]. This training method avoids
over-fitting since individual classifiers do not use the whole training data [19].

Random Forest consists of three steps [8] [15]: 1) Choose T subsets from
training data – T is the number of trees in the forest –; 2) Grow a decision tree,
with D nodes, for each subset of training data. The best split at each decision
tree node is selected using a subset of features; 3) Classify test data by combining
the outputs of the T trees.

4 Building and Evaluating Classification Models

Classification models are built using a dataset composed by 2928 char images –
1464 images correspond to char reactives and 1464 images correspond to char
no reactives. Global and local features describe in Section 2 are used to train
classifiers. Global features are normalised in order to avoid the effect of different
scales. Local features are codified by the LLC algorithm with a spatial pyramidal
pooling using the parameters L = {0, 1, 2}.

Each classifier, learns by SVM or Random Forest algorithm, is evaluated using
a 10-fold cross-validation. The 70% of data are used as training set and the rest
as testing set. Additionally, the generalisation of the char classification models is
evaluated. The best classifier using cross-validation is chosen and used to classify
a new set of 732 char images – 366 char reactive images and 366 char no reactive
images.

SVM classification models are trained using a regularisation parameter C = 5.
Random Forest classifiers are trained using T = 100 trees. Each tree is grown

to a maximum level size D = 6. The number of features selected to learn the split
function, at each node, is ρ =

√|τ | where the number of features, τ , depends on
the type of feature used (global or local).

4.1 Suppot Vector Machine Evaluation

Table 1 shows the accuracy results using global and local features.
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Table 1. Accuracy results of char classification using SVMs

Feature # of Features Accuracy I. C. (%)
Accuracy (%)

Best classifier Generalisation

Global 9 99.27 ± 0.37 99.77 99.86

Local
2000, L = 0 88.15 ± 0.71 89.06 90.57

10000, L = 1 91.08 ± 0.78 92.25 92.21
42000, L = 2 91.74 ± 0.91 92.94 93.03

Models obtained with SVM classifiers shown that both, global and local fea-
tures, classified correctly char particles, with accuracies over 88%. However, mod-
els built using global features have a higher accuracy than models built with local
features – 99.27± 0.37 average accuracy using global features and 91.74± 0.91
average accuracy using local features with a codification parameter L = 2. It
appears that global features based on the application domain increase the ac-
curacy of classification models. Moreover, the SIFT descriptor – used in this
paper – lacks of meaning in the classification context while the global features
are meaningfully since they are measured of char morphological characteristics.

Additionally, it is observed that local features had a higher accuracy using a
codification parameter L > 0. It shows the importance of taking into account
spatial information during char classification. A codification parameter L = 1
may be enough for obtaining good classification results – 91.08 ± 0.78 average
accuracy – since the used of the parameter L = 2 does not increase the accuracy
and increase the computational cost of building the classification model.

In general, obtained accuracy using the new set of char images – in order
to evaluate generalisation capability – is similar to the average accuracy. Thus,
SVM classifiers have generalisation capability.

4.2 Random Forests Evaluation

Table 2 shows the accuracy results using global and local features.

Table 2. Accuracy results of char classification using Random Forest

Feature # of Features Accuracy I. C. (%)
Accuracy (%)

Best classifier Generalisation

Global 9 99.96 ± 0.05 100.00 100.00

Local
2000, L = 0 88.05 ± 0.89 89.29 90.44

10000, L = 1 90.01 ± 0.96 91.57 92.07
42000, L = 2 90.31 ± 0.97 92.03 91.08
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Random Forest classifiers have similar results to the classification models
based on SVM. Random Forest models built using global features have a higher
accuracy than models built using local features – 99.96±0.005 average accuracy
using global features and 90.31± 0.97 average accuracy using local features with
a codification parameter L = 2. These results are consistent with the SVM-
based classification models. However, Random Forest classifiers built using local
features with a codification parameter L > 0 yield an improvement of the clas-
sification accuracy. It can be observed a classification accuracy over 88% using
a codification parameter L = 0 and a classification accuracy over 90% using
codification parameters L = 1 and L = 2.

Regarding the generalisation capability, classification accuracy values are sim-
ilar to the average accuracy showing Random Forests based classification models
have a good generalisation capability. Moreover, Random Forest presents a bet-
ter generalisation capabilities than SVM.

5 Final Remarks

A correct classification of char images is essential for setting the combustion
parameters, such as temperature and residence time. Chars with morphologies
no reactives require high temperature, high pressure and long residence time.
Whilst chars with morphologies reactives burn faster and produce lower levels
of CO2.

An automatic char classification model was proposed using supervised learn-
ing. Two types of features were evaluated for building classification models: local
and global. Based on the application domain, nine global features were consid-
ered: char particle area, undevolatilised material, devolatilised material, number
of porous, porosity, wall thickness (first, second and third quartile), and spheric-
ity. Local features were calculated by a bag-of-feature method. Each local feature
was extracted using the SIFT descriptor and codified using the LLC algorithm
with a max-pooling function.

Classification models are built based on SVMs and Random Forest classifiers.
In general, classification models using global features have higher accuracy, over
99%, than classification models using local features. In char image classification,
global features are meaningfully since they are defined taking into account the
application domain. Additionally, classification accuracy is affected by the spatial
information when local features are used.

Although, classification models using SVM and Random Forest have similar
generalisation capabilities, Random Forest shown better classification accuracy
using the new test-set.

References

1. Alvarez, D., Lester, E.: Atlas of char occurrences. combustion working group, com-
mission iii. In: Internacional Conference on Coal Petrology, ICCP (2001)



Global and Local Features for Char Image Classification 107

2. Alvarez, D., Borrego, A.G., Menéndez, R.: Unbiased methods for the morphological
description of char structures. Fuel 76(13), 1241–1248 (1997)

3. Avila, S., Thome, N., Cord, M., Valle, E., de Araujo, A.: Bossa: Extended bow for-
malism for image classification. In: 18th IEEE International Conference on Image
Processing, ICIP (2011)

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT 1992 (1992)

5. Chaves, D., García, E., Trujillo, M., Barraza, J.M.: Char morphology from coal
blends using images analysis. In: World Conference on Carbon, CARBON (2013)

6. Cloke, M., Lester, E.: Characterization of coals for combustion using petrographic
analysis: A review. Fuel 73(3), 315–320 (1994)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

8. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for
classification, regression, density estimation, manifold learning and semi-supervised
learning. Foundations and Trends in Computer Graphics and Vision 7(2), 81–227
(2011)

9. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-
points. In: Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

10. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. Journal of Machine Learning Research 9, 1871–1874
(2008)

11. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene cat-
egories. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR (2005)

12. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, ICCV
1999 (1999)

13. Rojas, A.F., Burgos, J.M.B.: Caracterización morfológica del carbonizado de car-
bones pulverizados: estado del arte. Revista Facultad de Ingeniería Universidad de
Antioquia (41), 84–97 (2007)

14. Rojas, A.F., Burgos, J.M.B.: Caracterización morfológica del carbonizado de car-
bones pulverizados: determinación experimental. Revista Facultad de Ingeniería
Universidad de Antioquia (43), 42–58 (2008)

15. Tang, F., Lu, H., Sun, T., Jiang, X.: Efficient image classification using sparse
coding and random forest. In: 5th International Congress on Image and Signal
Processing, CISP (2012)

16. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: IEEE Conference on Computer Vision
and Pattern Recognition (2010)

17. Wu, T., Lester, E., Cloke, M.: Advanced automated char image analysis techniques.
Energy & Fuels 20(3), 1211–1219 (2006)

18. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR (2009)

19. Yang, P., Yang, Y.H., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods
in bioinformatics. Current Bioinformatics 5(4), 296–308 (2010)

20. Zack, G.W., Rogers, W.E., Latt, S.A.: Automatic measurement of sister chromatid
exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977)



On the Automatic Tuning of a Retina Model

by Using a Multi-objective Optimization
Genetic Algorithm

Rubén Crespo-Cano1, Antonio Mart́ınez-Álvarez1(�), Ariadna Dı́az-Tahoces2,
Sergio Cuenca-Asensi1, J.M. Ferrández3, and Eduardo Fernández2

1 Department of Computer Technology, University of Alicante, Alicante, Spain
amartinez@dtic.ua.es

2 Institute of Bioengineering and CIBER BBN,
University Miguel Hernández, Alicante, Spain

e.fernandez@umh.es
3 Department of Electronics and Computer Technology,
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Abstract. The retina is responsible for transducing visual information
into spikes trains which are then sent via the optical nerve to the visual
cortex. This is the first step in the visual pathway responsible for the
sense of vision. Our research group is working on the design of a cor-
tical visual neuroprosthesis aimed to restore some functional vision to
profoundly visual-impaired people. The goal of developing such a bioin-
spired retinal encoder is not simply to record a high-resolution image,
but to process its visual information and transmit it in a meaningful
way to the appropriate area on the visual cortex. Retinal models to be
implemented have to match as much as possible the output produced
by an actual biological retina. The models involve a big search space
defined by a set of parameters that have to be appropriately adjusted.
This in itself has several problems which need to be addressed. We pro-
pose in this paper an automatic evolutionary multi-objective strategy
for selecting those parameters which best approximate the outputs by
the synthetic retina model and the biological records. A case study is
presented where results of a retina model tuned with our method are
compared to biological recordings.

Keywords: Retina modeling · Visual neurprostheses · Multi-objective
optimization · NSGA-II · Evolutionary search

1 Introduction

The retina is actually a little but important piece of brain capable of being stim-
ulated by direct light focusing in this tissue and coming from the outside world.
Indeed, it is responsible for the first stages of the visual processing. The retina
integrates a rich set of specialized cells and complex neurostructures which are

c© Springer International Publishing Switzerland 2015
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sensitive to color, light intensity, image movements, edges detection, and many
others valuable characteristics for the sense of vision. Using these structures,
the retina performs chromatic and achromatic spatio-temporal processing of vi-
sual information, and finally encodes it into spike trains delivered to the brain
visual cortex by the optic nerve. Our research group is working on the design
of a cortical visual neuroprosthesis aimed to restore some functional vision to
profoundly visual-impaired people. The goal of developing such a bioinspired
retinal encoder is not simply recording a high-resolution image, but to process
this visual information and transmit it in a meaningful way to the appropriate
area on the visual cortex. To achieve this goal we have to take into account the
processing and coding features of the biological visual system. In addition, design
constraints related to the number and distribution of the microelectrodes where
the visual scene is mapped to [1,2] have to be kept in mind. The full description
of this problem has been discussed elsewhere [1,3–5] and is beyond the scope of
this paper, but Fig.1 summarizes the basic processing blocks of the bioinspired
retina model we are currently investigating.

Fig. 1. Functional processing blocks of the bioinspired retina model under study

Before to proceed with acute tests to deliver an stimulation current directly
to the visual cortex and thus eliciting an in-vivo controlled visual perception, a
fine tuning of the involved retina model is needed. In this way, we refer to tuning
a retina model as the process of adjusting the parameters and functions defining
a retina model to best match its output with the biological records. Appropriate
matching metrics are needed to assess the tuning of the synthetic retina.

From a mathematical point of view, the first two processing blocks from Fig. 1
can be modeled as a weighted combination of different well-known convolutive
spatio-temporal image filters such as Gaussians, Difference of Gaussians (DoG),
Laplacian of Gaussian, Gabor, Sobel, etc. (See Eq. 1) This combination results
as an activity matrix feeding an Integrate & Fire model that calculates the
spike firing of the ganglionar cells to be sent to the visual cortex with a possible
remapping for every microelectode target. Each processing block from the retina
model has many parameters to be tuned. Many of them move in a continuous
dynamic range (E.g. σ parameter for a Gaussian filter) and some of them can be
modeled as natural numbers (E.g. Kernel size (N ×N) of a convolutive filter).
With such an infinite search space to explore, the process of adjusting those
parameters supposes a difficult problem to be solved. We propose in this paper
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an automatic evolutionary multiobjective strategy for selecting those parameters
which best approximate the synthetic retina model outputs with the biological
records.

The rest of the paper is structured as follows: Section 2 presents the evolu-
tionary multiobjective strategy for tuning a retina model; Section 3 presents the
experimental setup to obtain the biological registers; Section 4 describes and
discusses the experimental cases of study, and finally, Section 6 provides the
conclusions of this work.

2 Evolutionary Multi-objective Strategy for Tuning a
Retina Model

As introduced in Section 1, considering the vast number of possible parameters
which must be taken into account, the problem of automatic tuning of a retina
model cannot be achieved by exhaustively exploring all the solutions space. In
addition, no one but several antagonist objectives come to scene to assess the
goodness of a retina model, and thus, the problem becomes multi-objective.
The proposed well-known evolutionary strategy is based on the assumption that
evolution could be used as an optimization tool for a multi-objective problem.
The idea is to evolve a population of candidate solutions using operators inspired
by natural genetic variation and natural selection. In our case, the population
of candidates are defined by a set of retina models. Therefore, multi-objective
optimization (MOO) based on a Genetic Algorithm (MOOGA) is adopted as
strategy to explore the huge solution space.

Genetic Algorithms (GAs) are methods for solving search problems, based on
sexual reproduction and the mechanics of natural selection. It belongs to the
group of techniques known as Evolutionary Algorithms (EAs) which are based
on the imitation of evolutionary processes such as natural selection, crossover
or mutation. Every individual, which is randomly initialized, represents a pos-
sible solution for the problem. The population is evolved through crossover and
mutation operators and only those that represents better solutions can be ex-
tracted from the surviving population. The selection operator chooses from the
population, those individuals that will be allowed to reproduce, being the best
individuals those who maximize or minimize the goals, according to their nature.
The crossover operation exchanges subparts of two individuals and recombines,
since this the way to imitate biological recombination. At last, mutation ran-
domly changes the values of the aleles of the chromosome (Fig. 2).

To solve MOO problems, many different methods of resolution have been pro-
posed in the last couple of years. One of these methods internationally regarded
as one of the best is NSGA-II [6], included within of group of elitist algorithms
that emphasize computational efficiency as SPEA and SPEA2 [7].

NSGA-II (Non-dominated Sorting Genetic Algorithm II) has been reported
to be one of the most successful MOO algorithms [8]. NSGA-II algorithm estab-
lishes an order relationship among the individuals of a population mainly based
on the concept of non-dominance or Pareto fronts. It is said that one solution



On the Automatic Tuning of a Retina Model 111

Fig. 2. Steps of the MOO genetic tuning strategy

Xi dominates other Xj if the first one is better or equal than the second in every
single objective and, at least, strictly better in one of them (i.e. Pareto fronts
are defined by those points in which no improvements in one objective are possi-
ble without degrading the rest of objectives). NSGA-II firstly groups individuals
in a first front that contains all non-dominated individuals, that is the Pareto
front. Then, a second front is built by selecting all those individuals that are
non-dominated in the absence of individuals of the first front. This process is
repeated iteratively until all individuals are placed in some front. The crowding
distance function is used to calculate the diversity of a possible solution, and
its purpose is to maintain a good spread of solutions. After that, individuals of
the Pareto front are sorted in descending order based on its crowding distance
value. As a result, those solutions having more diversity are prioritized.

In summary, the result of the execution of the NSGA-II, will provide us the
population sorted by non-dominated fronts and then, by the crowding distance.

Chromosome Codification

In our approach, each individual represents a possible retina model and every
gene codifies the values of the parameters of the function which models the
retina. As an example, equation 1 represents a general retina model as described
in Sec. 1. The parameters of each function will be the candidates to be encoded
as genes that make up the chromosome.
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= . . .+f i

Gauss(σi, μi,KernelSizei)+f i+1
Gauss(σi+1, μi+1,KernelSizei+1)+ . . .

+ f i+M
DoG (σi+M

1 , σi+M
2 , μi+M

1 , μi+M
2 ,KernelSize

i+M
1 ,KernelSize

i+M
2 ) + . . .

+ f i+K(. . .);

RetinaModel = IntegrateAndF ire(ActivityMatrix;Thresholdj, Leakagej+1, (1)
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i, j,M,K ∈ N

The figure Fig. 3 shows the way in which each gene is encoded and integrates
the chromosome.

Fig. 3. Example of an individual codification

3 Material and Methods

All experimental procedures were carried out in accordance with the ARVO and
European Communities Council Directives (86/609/ECC) for the use of labora-
tory animals.

Wild-type (C57BL/6J strain) adults mice were bred within a local colony es-
tablished from purchased breeding pairs (Jackson Laboratories, Bar Harbor,
ME). Following inhalational anesthesia with 4% of isoflurane (IsoFlo R©, Esteve
vETERINARIA) was carried out the cervical dislocation of animals. Animals
were dark-adapted for one hour prior to sacrifice.

After enucleation of the eye, the eyeball was hemisected with a razor blade
separating and discarding the cornea and lens. The retinas were then carefully
removed from the remaining eyecup, mounted on a glass slide ganglion cell side
up and covered with a cut Millipore filter. This preparation was then mounted on
a recording chamber and perfused with Ringer medium at physiological temper-
ature. This working process was made under dim red illumination. Extracellular
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ganglion cell recordings were made in the isolated superfused mice retina using an
array of 100 microelectrodes. Simultaneous single- and multi-unit responses were
obtained in response to full field flash visual stimuli. Responses were recorded
with quadrate array of 100 electrodes, 1.5 mm long (Utah Electrode Array).

The spike trains was recorded with a data acquisition system (Bionic Tech-
nologies Inc) and stored on a Pentium-based computer for later analysis. Neural
spike events detected when exceed the thresholds established in each electrode
using standard procedures described elsewhere [9, 10].

The spike sorting for classify the different units was accomplished with an free
open source software based on principal component analysis (PCA) method and
different clustering algorithms [11]. Time stamps for each action potentials of the
single unit were used to generate peristimulus time histograms and peristimulus
spike rasters using NeuroExplorer R© Version 4 (Nex Technologies) as well as
customized software [12].

Visual stimuli were programmed in Python using an open source library (Vi-
sionEgg) for real-time visual stimulus generation [13] and reproduce in a 16-bit
ACER TFT monitor. The monitor resolution was 1280×1024 pixels at 60 Hz
refresh rate and in this experiment we used an area of 120×154 pixels for the
visual stimulation. Pictures drawn on this area were projected through a beam
splitter and focused onto the photoreceptor layer with the help of optical lenses.

Finally Fig. 4 summarizes the data acquisition procedure commented bellow.

Fig. 4. Data acquisition procedure

4 Case Studies

To assess the feasibility and goodness of the proposed MOOGA strategy for
tuning a retina model, two experiments-based case studies have been designed.
In both experiments we attempt to demonstrate the importance of a fine tuning
for a given retina model to best match the biological records.

In vivo biological records to be synthetically approximated were obtained
stimulating a mice retina with a full-field flashing white-black stimulus. The reti-
nal firing spikes response were recorded using the experimental set-up presented
in Section 3. The biological stimuli, designed using VisionEgg, are defined by
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a periodic flash stimulus 700ms–white (ON) and 2700ms–black (OFF) repeated
5 times over time, and thus, taking 15 seconds at a frame rate of 60 fps. To
feed the synthetic retina a DivX MPEG-4 v4 video file with the exact biological
stimulus was prepared using the same VisionEgg stimulus.

With such a full black or full white flash stimulus, those retina parameters
related with color processing has little or no impact on the biological records.
Consequently, for this particular stimulus, we have selected the Integrate&Fire
(IaF ) processing block as the most appropriate module to be tuned. This mod-
ule is based in the Leaky-Integrate&Fire model by [14] with the only addition of
a new parameter Persistence time to model how many times every video frame
feeds the retina model. In this way, four parameters within this module were se-
lected to conform the retina model chromosome following the scheme presented
in Section 2. The chosen parameters are: Threshold level, Leakage, Refractory
period and Persistence time. The dynamic ranges of variability for these pa-
rameters have been chosen as: [240, 800], [10, 75], [1ms, 10ms] and 1, 2, 3, 4, 5, 6
respectively. Note that, with the exception of the Persistence time the remaining
parameters move within a continuous range, and thus a infinite search space is
presented.

The biological records for every microelectrode are pre-processed to sepa-
rate different cell responses, and are finally presented as a set of diverse Post-
Stimulus Time Histograms (PSTH) for every isolated ganglionar cell response.
These PSTHs have to be approximated by our population of retina models.

The parameters of the genetic operation are selected as follows: population
size – 60, mutation probability (Pmut) – 0.05, crossover probability – 0.3 and
120 iterations (or generations). Thus, a total amount of 7200 retina models
were processed. Each experiment presented below took a total of 31 hours to be
completed.

4.1 Study of Convergence of Kullback–Leibler Divergence and
Firing Rate Absolute Difference as Quality Metrics to Compare
PSTHs

To compare synthetic and biological PSTHs, and also test the behavior of the
proposed MOOGA strategy, two quality metrics, or fitness functions in the field
of genetic algorithms, have been selected. The first one is the Kullback–Leibler
Divergence (KLD) between two PSTH vectors, and the second one is their firing
rate absolute difference(FRAD).

To test and ensure the convergence of both metrics, two experiments have
been done to cope with the challenge of approximating them. Both experiments
have been completed with a population of 60 individuals and 120 iterations. The
duration was 31 hours each. The fist experiment evaluates the convergence of
the Kullback–Leibler divergence, whereas the second one evaluates the FRAD.

As expected and showed by Figure 5, both metrics converge at a plausible
time (less than 4 hours) and a plausible number of iterations (∼ 15 in each
case). For a better examination of these figures, an appropriate maximization
have been added to each one.
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(a) KLD convergence test

(b) FRAD convergence test

Fig. 5. Convergence of Kullback-Leibler divergence (a) and FRAD (b) when comparing
biological and synthetic PSTHs

Fig. 6. Kullback-Leibler divergence against FRAD
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4.2 Multi-objective Tuning of Retina Model

This experiment aims to show the effectiveness of the proposed MOOGA ap-
proach to find a set of retina models maximizing at the same time a set of
predefined criteria of interest. To this end, the previous fitness metrics KLD as
fitness 1 and FRAD as fitness 2, presented on Section 4.1, have been selected.
Both of them have to minimized to best fit the biological records. As a result,
Fig. 6 shows the solutions minimizing at a time both metrics. Those individuals
belonging to the Pareto front are identified by means of red dots. 10 retina mod-
els (from 7200 explored) comprises the Pareto front and are not dominated by
any other solution. Each one represents a valid solution for the multi-objective
problem.

5 Conclusions

An automatic evolutionary multi-objective strategy for tuning retina models has
been presented. The tuning is performed so that a selection of those parameters
which best approximate a synthetic retina model output with actual biological
records is automatically calculated. To assess the strategy two case studies for
approximating real mice retina records has been presented. As a future work,
we are designing new quality metrics for providing a better approximation and
convergence. Also, we are working in the design of new valuable stimuli for a
better characterization of the problem.

6 Conclusions

An automatic evolutionary multi-objective strategy for tuning retina models has
been presented. The tuning is performed so that a selection of those parameters
which best approximate a synthetic retina model output with actual biological
records is automatically calculated. To assess the strategy two case studies for
approximating real mice retina records has been presented. As a future work,
we are designing new quality metrics for providing a better approximation and
convergence. Also, we are working in the design of new valuable stimuli for a
better characterization of the problem.
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Abstract. This study investigates the effect of two personality traits,
dominance and extroversion, on social intelligence. To test these traits, a
NAO robot was used, which was teleoperated through a computer using a
Wizard of Oz technique. A within-subject design was conducted with ex-
troversion as within-subject variable and dominance as between-subject.
Participants were asked to cooperate with the robot to play “Who wants
to be a millionaire”. Before the experiment participants filled in a person-
ality questionnaire to measure their dominance and extroversion. After
each condition, participants filled in a modified version of the Godspeed
questionnaire concerning personality traits of the robot plus 4 extra traits
related to social intelligence. The results reveal a significant effect of
dominance and extroversion on social intelligence. The extrovert robot
was judged as more socially intelligent, likeable, animate, intelligent and
emotionally expressive than the introvert robot. Similarly, the submis-
sive robot was characterized as more socially intelligent, likeable and
emotionally expressive than the dominant robot. We found no substan-
tial results towards the similarity-attraction hypothesis and therefore we
could not make a conclusion about the mediating effect of participant’s
personality on likeability.

1 Introduction

There is an increasing need for social robots that are able to interact with humans
and appear social enough to keep elderly and children company. Making social
robots intelligent enough to be perceived as a replacement of a human being in
some tasks or at least a trustworthy social agent is extremely difficult. The robot
not only has to look social but also behave socially and in an intelligent way[1].
As Fong et al. [1] state in their study, an important trait is missing from social
robots nowadays and that is social intelligence.

Research on intelligent robots mainly focuses on the rational part of intelli-
gence, equipping robots with planning, reasoning, navigation, manipulation and
other non-social skills [2]. However, this kind of intelligence is not the only skill
that social robots need to maintain a long-term acceptance. Social robots need
in addition social skills related, but not limited, to persuasion, collaboration,
cooperation, emotions, empathy, situational awareness and adaptation [3]. This
is called emotional [3] or social intelligence [1]. Social intelligence is still an

c© Springer International Publishing Switzerland 2015
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ill-defined concept since it was first presented in 1933 by Vernon [4], but still
hasn’t reached a unanimous definition. The definition Vernon gives is: “social
intelligence is a person’s ability to get along with people in general, social tech-
nique or ease in society, knowledge of social matters, susceptibility to stimuli
from other members of a group, as well as insight into the temporary moods of
underlying personality traits of strangers”. So Vernon focuses on the emotional
aspect of social intelligence that dictates socially intelligent individuals are able
to recognize the effect of stimuli on group members and change their behavior
accordingly to maintain group harmony.

In another definition by Albrecht [5] social intelligence is defined as “the ability
to get along well with others while winning their cooperation.” He also posits
that social intelligence requires social awareness, sensitivity to the needs and
interests of others, an attitude of generosity and consideration, and a set of
practical skills for interacting successfully with others in any setting. As it can
be noticed, Albrecht focuses more on the cooperative part of social intelligence,
which is one of the required skills in social robots.

To summarize, a socially intelligent person is more skilled on judging other peo-
ple’s feelings, thoughts, attitudes and opinions, intentions, or the psychological
traits that may determine their behaviour. It is worth noting that social intelli-
gence is directly connected to the social context, between two or more people, and
judgment on it necessitates the consideration of contextual factors in play [6].

In this study we follow the cooperation definition by Albrecht, the social skills
indicated in Martínez-Miranda & Aldea (except empathy and adaptation) and
also keep the social context in play when the robot responds to the participant.
In addition, we enhance the persuasion of the robot by incorporating gazing and
gestures [7].

The need to find the features and the extent that human social intelligence
applies to robots is still an issue that has to be further studied [1]. To do so, we
have to analyze the features of the personality of the robots that have already
been tested in the past.

Robot personality started concerning scientists in the last twenty years. Since
Nass et al. [8] found that humans respond socially to computers and even recog-
nize their personality [9] there was enough fertile ground for studies to develop.
Several sources pinpoint the need to determine the connection between human
and robot personalities in order to find which traits are critical for HRI to in-
crease satisfaction and enjoyment[10] [11]. Furthermore, Breazeal [12] claims
that adaptation of robot’s personality to that of the human that interacts with
is needed. In addition, she states that the type and the complexity of the per-
sonality should be also defined. Personality is considered the key for creating
socially interactive robots [10] because it “represents those characteristics of the
person that account for consistent patterns of feeling, thinking, and behaving”
[13]. Therefore, equipping robots with personality gives people the affordances
needed to engage in human-human interaction schemes.
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As we said earlier, Nass et al. [8] and Isbister & Nass [9] were the first
who studied the effect of adapting an artificial agent’s personality to human’s.
In particular, they investigated whether similarity attraction hypothesis, which
supports that humans with similar personality traits are attracted to each other,
also applies to artificial agents such as a computer. In their study, they created
two different personalities, one dominant and one submissive, and found that
participants were in favor of the computer with a similar personality to theirs.
The dominant behavior was characterized by the attributes of self-confident,
leading, self-assertive, strong and take-charge. On the contrary, submissive be-
havior was linked to self-doubting, weak, passive, following and obedient.

In another study by Isbister and Nass [9], researchers tested whether previous
findings on similarity attraction rules also extend to embodied artificial agents.
They used a mannequin avatar on a computer screen which used verbal (text)
and non-verbal gestures to interact with participants. In addition, participants
interacted with either an extrovert or introvert avatar. In comparison with the
previous study [8], results indicated that subjects preferred a complimentary
personality to theirs when interacted with an embodied virtual agent.

Similar results were found when participants interacted with the robot dog
AIBO by Sony [10]. Subjects interacted with an extrovert (high speech speed,
pitch and intensity, facial expressions (LED activity), long moving angles, high
moving speed) or introvert (lower intensities than extrovert) robot. They found
that a robot with complementary personality is regarded as more intelligent,
attractive and socially present than a similar personality robot.

Other findings suggest that when humans interact with non-anthropomorphic
robots (interactive closet) they tend to complement the personality of the robot
[14]. In particular, when dominant participants interacted with a dominant closet
they reported feelings of submissiveness. The same effect was found when a
submissive subject interacted with a submissive closet, as they reported feeling
of dominance. In the same study, the submissive closet was more favorable than
the dominant closet.

However, none of these studies tested this with a humanoid robot. There is
currently no evidence that these results will apply to a humanoid robot. Fur-
thermore, these studies did not directly test whether their system appeared more
socially intelligent as suggested by Fong et al. [1]. Therefore we combine elements
from all these studies that relate to in one experiment and measure the apparent
social intelligence of a humanoid robot. Whether people prefer to interact with
similar or complementary personality artificial agents is the second question that
this study will try to answer.

To identify the personality traits that impact social intelligence, we propose
testing two pairs of personality traits that have been empirically tested in pre-
vious studies. These pairs are dominance-submissiveness [8] and extroversion-
introversion [10]. Based on these theories we expect that:

H1) Participants that interact with the submissive robot will consider it as
more socially intelligent and will like it more than the dominant robot. Thus,
submissive behaviour will score higher on social intelligence and likeability than
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dominant behaviour. We also expect the same effect with likeability. The reason-
ing behind this lies to the fact that the submissive robot will be more cooperative
[1] and it will compromise to reach a common final agreement.

H2) Participants will judge the extrovert robot as more socially intelligent
and will like it more than the introvert robot. Thus, extrovert behaviour will
score higher on social intelligence than introvert behaviour. We believe that an
extrovert robot will be able to exhibit more social cues that will be beneficial
for the enhancement of the interaction.

H3) We also expect that people prefer a companion of similar personality as
they usually pick their human friends. Subsequently, likeability will score higher
when the personality of the robot matches the one of the participant than when
it is the opposite.

2 Method

2.1 Robot

The robot used in the experiment was a NAO robot from Aldebaran Robotics
[15]. NAO is an anthropomorphic robot involving 25 degrees of freedom for
movement of the limbs and head, two cameras for movement and face recognition,
and two speakers in the head. Furthermore, NAO incorporates two LED-colored
eyes that can be used as an additional social cue.

One of the features of the robot that were used in the experiment was the
wireless communication. The robot allows to be remotely controlled, something
that was beneficial for using the wizard of Oz technique.

2.2 Experimental Design

To test our hypotheses, we used a mixed model 2 between-subject (dominant-
submissive) X 2 within-subject (extrovert-introvert) design.

Four different personalities were designed according to each of the condi-
tions. The variations of the behavior of the robot concerned the assertiveness
(dominant-submissive) and the expressiveness (extrovert-introvert) of the robot
in the following way. A dominant robot uses strong arguments with confident
language, while a submissive robot uses arguments, but expresses uncertainty
as well. To enhance this feeling, we also varied the pitch of the voice of the
robot. The dominant robot sounded more serious and straightforward to its sug-
gestions and was given a lower voice pitch. On the other hand, the submissive
robot was given a higher voice pitch to boost its uncertainty and insecurity. The
extraversion-introversion factor was designed through changing the intensity of
the expressiveness of the robot by using gesticulation and a higher speech speed
(see Table 1). For this game, the robot was programmed to give 360 different
answers, 90 per condition. In addition, it gave a different answer according to
the user’s selection (loss or victory).
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Table 1. Robot personality differences per condition
Dominant Submissive

Extrovert

Low-pitch speech High-pitch speech
Assertive Insecure

Gestures Gestures
Emotions Emotions

High-speed speech High-speed speech
Talkative Talkative

Introvert

Low-pitch speech High-pitch speech
Assertive Insecure

Limited gestures Limited gestures
No emotions No emotions

Low-speed speech Low-speed speech
Less talkative Less talkative

2.3 Participants

We have recruited 70 subjects for this experiment, 42 male and 28 female. Their
ages ranged from 18 to 82 (Mean 28.1) and some of them were recruited from
Technical University of Eindhoven and Fontys University of applied sciences,
while others from a database of participants all over the Nord Brabant province.
The interaction was in English, so only participants that could understand and
speak English were recruited. All of the participants’ data was used for the anal-
ysis, since there were not significant technical difficulties during the experiment
or the outliers did not affect the outcome. Only a handful of participants were
acquainted with the robot, with few of them having participated in a similar
experiment in the past. Participants were randomly placed in one of the two
between-subject conditions, so each of them would face either the dominant or
the submissive robot. Before the experiment, participants were requested to sign
an informed consent form.

2.4 Task

To satisfy the needs of this experiment, we wanted a task that allowed one-way
interactions between the robot and the participant, without hindering the social
intelligence of the robot. To fulfill this purpose, we redesigned the “Who wants to
be a millionaire” TV-show (http://en.wikipedia.org/wiki/Who_Wants_to_Be
_a_Millionaire%3F). In the TV-show, the player has to answer fifteen questions
of escalating difficulty to win one million euros/pounds/dollars (depending on
the currency of the country). After each correct answer the money the person has
acquired is doubled, starting from 100. On each question four different answers
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appear on the screen and the player is requested to select the correct one. Fur-
thermore, the game provides three assistances (lifelines): a) Phone-a-Friend, b)
50:50, c) Ask the Audience. The first lifeline allows the player to call a friend of
his/hers in thirty seconds, read them the question and the answers, and receive
an input. On the second lifeline, the computer eliminates two of the incorrect
answers. Finally, the last lifeline requests the members of the audience to use
the touch pads in front of them to vote for the correct answer. After the vot-
ing, the outcome is displayed on the player’s screen. In the experiment, we kept
the main goal of the game, but we changed the way the player played it. More
specifically, we asked the participants to cooperate with the robot. Additionally,
we removed the lifelines, so the participant requested help from the robot to
win the game. The robot’s behavior was designed in such a way that the robot
utilized the same strategy the lifelines did to assist the player. For instance, the
robot in the dominant and extrovert condition responded to the participants like
they were taking advice from a friend that was confident about his/her answer
supported by several arguments. To make the task more challenging we made
the robot respond correctly with a 50% chance. In other words, on each question
the robot had 50% chance to provide the correct answer. This arrangement made
the interaction to be also based on trust. Last but not least, to increase gaming
time so participants can interact more with the robot, we gave participants three
lives. When the participant failed to answer a question correctly, they lost a life
and started a new set of 15 questions from the beginning. For experimental pur-
poses, we tracked the time spent on each condition, so each participant would
spend ten minutes per condition. For the design of the game, we used Axure RP
Pro by Axure Software Solutions (www.axure.com) to create the graphics and
then connect each of the buttons on the screen with different functionalities. The
scripts run on the robot were created in Python 2.6. The gestures of the robot
were initially created in Aldebaran’s Choregraphe 1.14.5 and then exported as
a script to Python.

2.5 Questionnaires

In this study, we used two questionnaires to create the data we needed. The first
questionnaire concerned participant’s personality and the second robot’s per-
sonality. Both questionnaires used a 5-point Likert scale with 1 being the lowest
and 5 the highest. Participant’s personality questionnaire involved 48 questions
focusing first on defining the extraversion of the participants and then their
dominance (see Table 2). This questionnaire was needed to answer the third hy-
pothesis by testing the effect of robot’s extraversion and dominance on likeability
when controlling for participant’s extraversion and dominance respectively. The
items used in this questionnaire were derived from Wiggins (1979) and Interna-
tional Personality Item Pool (IPIP) online database. From the scales provided on
the website, we used BIG-FIVE, CAT-PD and CPI and NEO:E3. Participants
filled in this questionnaire before engaging the task with the robot. The second
questionnaire, robot’s personality questionnaire, was a modified version of God-
speed questionnaire by Bartneck et al., (2009) and (Waytz et al., 2010) with the
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safety and anthropomorphism dimensions replaced by emotion, extraversion and
dominance plus four new items that represented social intelligence (cooperative,
supportive, persuasive and situation aware). In other words, it consisted of 34
questions describing the following seven factors: animacy, perceived intelligence,
emotion, likeability, social intelligence, extraversion and dominance. In more de-
tail, animacy represents the liveliness of the robot. Interaction is a key ingredient
of animacy as animate robots tend to interact more with the environment and
incorporate less inactive moments. Perceived intelligence is a dimension that rep-
resents the general intelligence term described in the introduction, more closely
related to the rationality aspect of the robot’s decisions. Emotion corresponds
to an expressive and empathetic agent. Next, likeability is connected to the ex-
tent participants consider the robot as friendly, nice and kind. Social intelligence
describes the cooperation, persuasion and the level of social skills of the robot
according to the context of the conversation. Last, extraversion is related to the
extent the robot is expressing itself by being talkative and outgoing, and dom-
inance to the extent the robot is assertive and competitive. All dimensions and
items used can be seen in Table 3. This questionnaire was answered after each
condition to receive evaluation on robot’s personality.

Table 2. Participant traits addressed by the questionnaire
Extraversion Dominance

Silent - Talkative Dominant
Shy – Not shy Assertive

Introverted- Extraverted Forceful
Inward - outgoing Domineering

Submissive

2.6 Procedure

Participants were picked up from the waiting area and the experimenter led
them to the lab. At the entrance of the lab, participants were asked about their
familiarity with the lab, the experiment and the robot. Next, they were given
an informed consent form to read and sign. The informed consent form involved
instructions about the experiment. After signing the form, participants were re-
quested to sit on an armchair next to the robot facing a TV-set. They were
asked to fill in a questionnaire about their personality and were given a key-
board (to write their name) and a mouse. The experimenter told them that the
purpose of this questionnaire was to check whether they match with the robot.
When they were done, the experimenter took the keyboard away and started
explaining the task. First, he asked the participants whether they know the TV-
show and explained the differences between the TV-show and the task. Only a
couple of participants were completely unaware of the TV-show. After the ex-
planation, the experimenter summarized again the process and demonstrated on
the screen how the participant should play it. When the experimenter confirmed
that participants understood the rules of the game, he set the timer and said
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Table 3. Robot behavioral traits addressed by the questionnaire

Animacy Perceived Intelli-
gence

Emotion Likeability

Dead-Alive Irrational-Rational Insensitive-
Compassionate

I dislike-like it

Stagnant-Lively Incompetent-Competent Emotionally
unstable-
Emotionally stable

Unfriendly-
Friendly

Mechanical-Lively Ignorant-Knowledgeable Passive-
Active/Energetic

Unkind-Kind

Artificial-Lifelike Irresponsible-
Responsible

Apathetic-
Empathetic

Unpleasant-
Pleasant

Inert-Interactive Unintelligent-Intelligent Awful-Nice

Social Intelli-
gence

Extraversion Dominance

Uncooperative-
Cooperative

Silent - Talkative Forceful (have the fi-
nal word)

Unsupportive-
Supportive

Shy – Not shy Dominant (competi-
tive)

Unpersuasive-
Persuasive

Extraverted (play for the
team)

Dominant (doesn’t
like to be outper-
formed)

Situation
aware-unaware

Outgoing (expressive) Assertive

Outgoing (share per-
sonal experiences)

Domineering (en-
forcing opinion)

to the participants to start playing when the robot stood up. The experimenter
left the room and initiated the robot. On each question, participants read the
question and clicked on one of the answers. The experimenter, as soon as the
participant selected one of the answers on the screen, made the robot give an
answer to that particular question. Participants could decide either to confirm
their own answer, or change it to follow the robot’s suggestion. After every ques-
tion, the robot responded according to the condition that it was on. For example,
on dominant condition the robot either gave a positive feedback such as “Good
Job” or “We can do it”, or a neutral feedback “Ok, I don’t know everything”. On
the other hand, on submissive condition, the robot never discouraged partici-
pants and was eager to take responsibility of its suggestions, such as “Sorry! I
wasn’t sure about the answer”. The extrovert robot on both dominant and sub-
missive conditions tended to gesticulate using obtuse joint angles and talk more
by providing more arguments towards their suggestion. On the contrary, the
introvert robot used little to no movement of the body and the responses were
short and straightforward. Next, when the participant lost all of his/her lives the
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Table 4. Reliability analysis on participant and robot personality questionnaires
Factors Cronbach’s Alpha

Participant personality questionnaire
Silent - Talkative (4 items) 0.468
Shy – Not shy (4 items) 0.699

Introverted - Extraverted (6 items) 0.535
Inward - Outgoing (4 items) 0.613

Introvert – Extrovert (18 items) 0.783

Dominant (8 items) 0.733
Assertive (7 items) 0.784
Forceful (3 items) 0.650

Domineering (6 items) 0.795
Submissive (6 items) 0.843

Dominant – Submissive (30 items) 0.861

Robot personality questionnaire
Animacy (6 items) 0.769

Perceived Intelligence (5 items) 0.774
Perceived Emotion (4 items) 0.703

Likeability (5 items) 0.921
Social Intelligence (4 items) 0.699

Extraversion (5 items) 0.564
Dominance (5 items) 0.780

experimenter walked in the room and requested from the participants to fill in the
robot’s questionnaire. After the participants were done with the questionnaire,
the experimenter set the timer again and moved to the next room to initiate the
robot again. When the second condition was completed, the participants were
asked to fill in the same questionnaire as before to evaluate the new behavior
of the robot. A lot of participants became really excited about the experiment
and when the experiment finished wanted to learn more things about the study.
The experimenter answered all their questions and, after handing their monetary
compensation, led the participants out of the room.

3 Results

3.1 Reliability Analysis

For the first part of the analysis, we did a reliability analysis in order to check
the internal validity of the questionnaire factors in participant and robot ques-
tionnaires. In addition, in the analysis of the robot questionnaires, to increase
the reliability of the scale we joined the results of both questionnaires, doubling
our sample size to 140. The results of the analysis can be seen in Table 4.
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All the items were eventually used in the analysis, since the removal of certain
items did not improve the alpha of the factor significantly. The final factor scores
were computed by averaging the values of the items that describe each factor in
the questionnaire.

3.2 Hypotheses Analysis

To answer our first two hypotheses, we conducted a repeated-measures analysis
of variance (ANOVA) with robot’s extraversion as the within-subject factor and
robot’s dominance as the between-subject factor.

The first hypothesis (H1) was supported. The results showed that participants
judged the extrovert robot to be more socially intelligent (M=3.4, SD= .71) than
the introvert robot (M=2.96, SD= .81). The main effect of robot’s extraversion
was statistically significant, F(1,68) = 12.6, p < .001, η2 = .16 (see Figure
1(left)). In addition, the main effect of robot’s extraversion on likeability was
also significant, F(1,68) = 13.27, p < .001, η2 = .16. The extrovert robot was
liked more (M= 3.6, SD= .9) than the introvert (M=3.07, SD= .96), which is
also verified by participant’s verbal statements after the experiment (see Figure
1(right)).

Similarly, the second hypothesis (H2) was also supported. A significant main
effect of dominance was found, F(1,68) = 4.17, p < .05, η2 = .002. More specif-
ically, the dominant robot was judged as less socially intelligent (M=3.05, SD=
.72) than the submissive robot (M=3.32, SD= .79) (see Figure 1(left)). Moreover,
there was a significant main effect of dominance on likeability, F(1,68) = 16.88,
p < .001, η2 = .008. Participants liked more the submissive robot (M=3.65,
SD= .81) than the dominant robot (M=3.03, SD= .94). No interaction effects
between extraversion and dominance were found on either social intelligence or
likeability (see Figure 1(right)).

Finally, the third hypothesis (H3) was partly supported. The personality of
the participants was used as a covariate to test whether similarity-attraction hy-
pothesis applies on this experiment. This part of the analysis gave two opposite
results. First, the participant’s extraversion dimension was used as a covariate,
which did not return significant results. Second, we used the dominance di-
mension of the participant’s personality. Compared to extraversion, controlling
for participant’s dominance had a statistically significant effect on likeability,
F(1,67) = 5.48, p=.02, η2 = .03. Likewise, robot’s dominance was also found
to be significant, while controlling for participant’s dominance, F(1,67) =15.3,
p<.001, η2 = .09. Due to the insignificance of the interaction effect, we cannot
make a conclusion about whether the similarity or complementarity attraction
rule applies in our case.

Apart from the hypotheses, we also analyzed the rest of the dimensions in the
robot questionnaire, namely animacy, perceived intelligence, perceived emotion,
extraversion and dominance (see Figure 2(left)).

Robot’s extraversion had a significant effect on animacy, F(1,68) = 6.49,
p<.05, η2 = .09. The extrovert robot appeared more lifelike and alive (MD
= 3.48, SD= .6) than the introvert robot (MD = 3.27, SD= .66). There was
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Fig. 1. The effect of personality on social intelligence (left) and likeability (right)

no main effect of dominance on animacy, p=.27, nor an interaction effect of
dominance and extraversion.

Next, we found a significant effect of robot’s extraversion on perceived intel-
ligence, F(1,68) = 11.49, p<.001, η2 = .14. The extrovert behavior of the robot
was rated higher (MD = 3.24, SD= .72) than the introvert behavior (MD = 2.84,
SD= .84). No main effect of dominance, p=.45 or an interaction effect between
dominance and extraversion was found.

Emotional expression was found to be significantly affected by both robot’s
extraversion, F(1,68) = 8.29, p<.05, η2 = .11 and dominance, F(1,68) = 13.81,
p<.001, η2 = .006. More specifically, the extrovert robot was perceived as more
emotionally expressive (MD = 3.12, SD= .69) than the introvert robot (MD =
2.87, SD= .68) and the submissive robot as more emotionally expressive (MD
=3.24, SD= .63) than the dominant robot (MD = 2.75, SD= .67). Again no
interaction effects were noticed to be significant.

Finally, the last two dimensions of the robot questionnaire extraversion and
dominance, were tested for verification purposes over the effectiveness of the
manipulation. Indeed, the results indicated that robot expressing extravert be-
haviors had a significant effect on the perceived extraversion F(1,68) = 22.11,
p<.001, η2 = .25. The extrovert robot was correctly perceived as more extrovert
(MD = 3.46, SD= .55) than the introvert one (MD = 3.03, SD= .66). However,
dominance had, as expected, no effect on perceived extraversion, p=.55. Con-
versely, when we used dominance as the dependent variable, we got the opposite
pattern. The dominant behaviors expressed by the robot significantly affected
perceived dominance by the participants F(1,68) = 47.19, p<.001, η2 = .02, but
not the extraversion, p=.38. In fact, the dominant robot was perceived as more
dominant (MD = 3.41, SD= .74) than the submissive robot (MD = 2.53, SD=
.69).

Another interesting finding is the effect of gender on the perceived emotion in
the robot behavior. When gender was used as a covariate there was a significant
main effect, F(1,66) = 7.17, p<.05, η2 = .016. Female participants found the
robot more emotionally expressive (MD = 3.2, SD= .64) than male participants
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(MD = 2.85, SD= .69). Similar outcome was found for animacy, F(1,66) = 4.084,
p<.05, η2 = .008. Female participants judged the robot as more lifelike (MD =
3.53, SD= .6) than males (MD =3.26, SD= .62). There was also a significant
interaction effect between gender and extraversion F(1,66) = 4.92, p<.05, η2 =
.067 (see Figure 2(right)).

Fig. 2. Overall the remaining dimensions (left), interaction effect extraversion X gender
(right)

4 Discussion

Many scientists supported the idea of designing social robots with personalities
and social intelligence. However, the connection between these two factors has
not been empirically tested. The purpose of this study was to verify whether the
theory behind social intelligence and personality applies to the design of robotic
agents.

Therefore, we combined in a different way the expression of two different
personality traits and this way created four robot personalities. To enrich the
interaction, we used robot features based on findings from previous studies on
robot personalities such as gestures, voice prosody and emotional expression.
Our results showed that the expressed personality does affect the perceived social
intelligence of robots.

In particular, our first hypothesis supported that the submissive robot will be
judged as more socially intelligent and be liked more as it will be more coopera-
tive than the dominant robot. The results indicated that, indeed, the submissive
behavior was seen as more socially intelligent and more likeable than the dom-
inant one. This is in line with the findings of [14] for a non-anthropomorphic
robot. We assume that the cooperative attitude of the submissive behavior is
mainly responsible for this result. In addition, the verbal feedback of the robot,
by exhibiting supportive behavior, was equally responsible for the increased like-
ability. Independently from the outcome of the in-game decision, the robot ver-
bally supported the participant to continue playing and felt responsible for any
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erroneous suggestions. On the other hand, the dominant robot blamed the par-
ticipant after a wrong in-game decision and did not feel responsible for any wrong
suggestion. We did not measure the performance of the participants between the
conditions so we could not detect the effects of the robot’s assertiveness. In fu-
ture studies the performance difference between these two behaviors should be
tested.

The second hypothesis tested the differences between the extrovert and intro-
vert behavior of the robot. The results supported our expectations. The extrovert
robot was perceived as more socially intelligent and was liked more than the in-
trovert robot. This result can be attributed to the vivid gestures of the robot
and the verbal feedback in the extrovert condition that in the introvert condition
were quite limited or absent.

Our third hypothesis tested whether the similarity-attraction hypothesis also
applies in anthropomorphic robots. We did not find a significant effect that could
indicate that either similarity or complementarity attraction hypothesis is sup-
ported. We believe that not screening out the participants by their extraversion
or dominance as [8], [10], and [14] did is responsible for the absence of inter-
action effects. More specifically, most participants scored 3 on the participant
questionnaire (middle) and thus there was no clear difference between extrovert
and introvert participants.

In general, the extrovert robot was judged as more socially intelligent, likeable,
animate, intelligent (this corroborates with [10]), and emotionally expressive
than introvert robot. Similarly, the submissive robot was characterized as more
socially intelligent, likeable (in consent with [14]) and emotionally expressive
than the dominant robot. Last, female participants found the extrovert robot
more emotionally expressive and lifelike than the male participants.

Although our results cannot support any of the previous studies about person-
ality matching preferences, they provide substantial evidence on the personality
and social intelligence studies. [1] discussed the need of finding the personality
features that affect social intelligence and we can say that dominance-submissive
and extrovert-introvert are two dimensions that affect perceived social intelli-
gence. Nevertheless, we strongly believe that this is just the beginning of the
identification of the critical personality characteristics that affect social intelli-
gence and HRI in general. There is a big list of social traits in [3] that define
emotional intelligence and future studies should put these to test.
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Abstract. Artificial Metaplasticity are Artificial Learning Algorithms
based on modelling higher level properties of biological plasticity: the
plasticity of plasticity itself, so called Biological Metaplasticity. Artificial
Metaplasticity aims to obtain general improvements in Machine Learning
based on the experts generally accepted hypothesis that the Metaplastic-
ity of neurons in Biological Brains is of high relevance in Biological Learn-
ing. Artificial Metaplasticity Multilayer Perceptron (AMMLP) is the
application of Metaplasticity in MLPs ANNs trying to improve uniform
plasticity of the Backpropagation algorithm. In this paper two different
AMMLP algorithms are applied to the MIT-BIH electro cardiograms
database and results are compared in terms of network performance and
error evolution.

Keywords: Metaplasticity · Plasticity · MLP · MMLP · AMP ·
MIT-BIH ECGs · Feature Extraction · Machine Learning · Artificial
Neural Network

1 Introduction

In this research we continue with our previous work [1], [2] applying the artifi-
cial metaplasticity multilayer perceptron (AMMLP) algorithm for the classifica-
tion of cardiac arrhythmias. In this work AMMLP based on the input distribu-
tion presented in our previous work is compared with a new AMMLP based on
the output of the network using it to modify the learning process of the MLP.
AMMLP algorithm is tested using the well-known MIT-BIH (MIT-Beth Israel
Hospital) dataset. For assessing this algorithm’s accuracy of classification, we
used the most common performance measures: specificity, sensitivity and ac-
curacy. The results obtained were validated using the 10-fold cross-validation
method.

Different artificial neural networks (ANNs) have been suggested for the detec-
tion of cardiac arrhythmias. Some based just on the ANN and others combining
a preprocessing technique with the ANN system. For comparison purposes a
table with the results of the different approaches will be provided in section 3.

c© Springer International Publishing Switzerland 2015
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134 S. Torres-Alegre et al.

Regarding to the importance of the problem to which we apply the AMMLP
algorithm is important to mention that cardiovascular diseases (CVDs) are one of
the mayor cause of death worldwide as stated by the World Health Organization.
There are significant cardiovascular abnormal symptoms which appear before
the sudden occurrence of a heart attack. Therefore, having an effective method
for early detection and treatment would reduce the number of disabilities and
deceases caused by heart attack.

The remainder of this paper is organized as follows. Section 2 presents a
description of the database and the algorithms. In Section 3 we present the
experimental results obtained. A brief discussion of these results is showed in
Section 4. Finally section 5 summarizes the main conclusions.

2 Materials and Methods

2.1 MIT-BIH Dataset

The MIT-BIH Arrhythmia Database was the first generally available set of ECGs
(Electrocardiograms) test material for evaluation of arrhythmia detectors [3].
Database contains 48 half-hour excerpts of two-channel, 24-hour, studied by
the BIH Arrhythmia Laboratory. These 48 half-hour excerpts were split in two
groups: 23 (the ”100 series”) were chosen at random from a collection of over
4000 Holter tapes, and the other 25 (the ”200 series”) were selected to include
examples of uncommon but clinically important arrhythmias that would not be
well represented in a small random sample.

2.2 Data Preparation

1000 annotated ECG beats examined by specialists in MIT-BIH were selected for
this study, which contain 4 different waveforms related to cardiac arrhythmias
target, Normal beat (N); Premature ventricular contraction (PVC); Right bundle
branch block (RBBB) and Left bundle branch block (LBBB). In Table 1 the
eleven features descriptors that seem to be most important for characterizing
the cardiac arrhythmias are presented. This features has been chosen with the
help of specialists in cardiology. Componentes of ECG signal could be seen in
Figure 1.

The data set formed by 1000 patterns is divided equally in four classes with 250
patterns each (N, PVC, RBBB and LBBB). We denominate respectively these
classes as H1, H2, H3, and H4. To obtain results statistically independent of
the distribution of the patterns a 10 fold cross validation evaluation method has
been considered. Using this method the possible dependence of the results with
the distribution of the samples in the training or performance evaluation sets is
eliminated: all the samples are used to train the networks and all the samples
are used to evaluate the performance of the results in different executions of the
experiment for the same initial neural networks. Mean values are calculated to
establish the final performance results.
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Table 1. Features descriptors

Attributes Meaning

Duration P The width of the P wave.
PR interval The distance between the beginning of the P

wave and the beginning of QRS.
QRS complex The distance between the beginning of the Q

wave and the end of the S wave.
Duration T The width of the T wave.
ST segment The distance between the end of the S wave or R

and the beginning of the T wave.
QT interval The distance between the beginning of QRS and

the end of the T wave.
RR previous: RRp The distance between the peak R of the present

beat and the peak R of the previous beat.
RR next : RRn RRn: the distance between the peak R of the

present beat and the peak R of the following
beat.

RDI (delay of the deflexion) From the beginning of QRS to the top of the
latest wave of positivity R peak.

Beat duration The distance between the beginning of the P
wave and the end of the wave T.

RRp / RRn. The ratio RRp / RRn

Fig. 1. ECG signal components

2.3 Artificial Metaplasticity Neural Network Model

ANNs, widely used in pattern classification within medical fields, are biologically
inspired distributed parallel processing networks based on the neuron organiza-
tion and decision-making process of the human brain [4]. In this paper we contiue
with our prevoius work [1] applying metaplasticity to the MLP for classifying
cardiological patterns.

The concept of biological metaplasticity was defined in 1996 by Abraham and
now is widely applied in the fields of biology, neuroscience, physiology, neurology
and others [5], [6]. Ropero-Pelez [6], Andina [2] and Marcano-Cedeño [7] have
introduced and modeled the biological property metaplasticity in the field of



136 S. Torres-Alegre et al.

ANNs, obtaining excellent results. The model is applicable to general ANNs
[2],[7], although in this paper it has been implemented for a multilayer perceptron
(MLP).

The Backpropagationalgorithm (BPA) presents some limitations and problems
during the MLP training [8]. The artificial metaplasticity on multilayer percep-
tron algorithm (AMMLP) tries to improve BPA by including a variable learning
rate in the training phase affecting the weights in each iteration step, that is the
metaplasticity, instead of the uniform plasticity that applies in the BPA. If s, j, i
∈ N are the MLP layer, node and input counter respectively, for each W(t) com-

ponent ω
(s)
ij (t)∈ R, where W(t)is the weight matrix, we can express the weight

reinforcement in each iteration as:

w
(s)
ij (t+ 1) = w

(s)
ij (t)− η

∂E∗ [W (t)]

∂w
(s)
ij

= w
(s)
ij (t)− η

1

f∗
X

∂E [W (t)]

∂w
(s)
ij

(1)

It is up to the designer to find a function f∗
X that improves MLP learning.

Several have been already proposed , and we introduce a new one in this study,
given by Equation 3. In order to validate AMMLPs performance paper two
alternative weighting functions are considered.

Artificial Metaplasticity by Gaussian Weighting Function as Estima-
tion of Inputs Distribution. In AMMLP based on the distribution of the
input patterns the function f∗

X is:

f∗
X (x) =

A
√
(2π)

N
.e

B
N∑

i=1
x2
i

(2)

Where N is the number of neurons in the MLP input layer, and parameters
A and B ∈ R+ are algorithm optimization values empirically determined which
depend on the specific application of the AMMLP algorithm [1],[2],[7].

Artificial Metaplasticity by Outputs of the Network as an Estima-
tion of a Posteriori Probability. In this case the estimation of a posteriori
probability density function is considered as follows:

ŷL ∼= P (Hi/x) = f∗
X(x) (3)

where ŷL is the output of the neuron that estimate the a posteriori probability
of the class. It can be seen that Equation 3 takes advantage of the inherent a
posteriori probability estimation for each input class of MLP outputs.

The algorithm presented performs in the following way, if the output is far
from the expected output the learning ratio is reinforced in next iteration and
if the output is close to the expected output then the learning ratio in slowed
down. It has to be noticed that in the first steps of the training the outputs
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of the MLP do not provide yet any valid estimation of the probabilities, so the
training may not converge. In practice there are rarely instability problems of
this kind, but if they occur, it is then better in these first steps of training, either
to apply ordinary BPA training or to use another valid weighting function till
BPA starts to minimize the error objective.

2.4 Network Structure Selection and AMMLP Algorithm

A 11/9/4 network structure is selected, that is 11 input neurons, one for each
relevant features selected, 9 neurons in the hidden layer and 4 output neurons
to represent the four possible classes. Output layer could also be composed of 3
neurons if output [0, 0, 0] is interpreted as one of the four classes.

Regarding to theAMMLP training phase the following parameters are consider:

– Learning rate η =1
– Activation function is sigmoidal with value between (0,1).
– Initialize all weights in weight matrix W randomly between (-0.5,0.5)
– if epochs = 200 stop training
– if Mean Squared Error, MSE = 0.01 stop training
– for Gaussian AMMLP case A=39 and B=0,5 are selected

3 Results

In this section we present the results obtained in this research. All the models
used in this study were trained and tested with the same data and validated
using 10-fold cross-validation. The MLP and AMMLP proposed as classifiers for
cardiac arrhythmias were implemented in MATLAB (software MATLAB version
R2013a). The eleven attributes detailed in Table 1 were used as the inputs of
the ANNs.

3.1 Measures of Quality

To evaluate the performance of the classifiers three measures are used and defined
as follows:

Sensitivity(SE) =
TP

TP + FN
(%) (4)

Specifity(SP ) =
TN

TN + FP
(%) (5)

Accuracy(AC) =
TP + TN

TP + TN + FP + FN
(%) (6)

Where TP, TN, FP, and FN stand for true positive, true negative, false posi-
tive and false negative, respectively.
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3.2 Model Evaluation

For test results to be more valuable, a k-fold cross-validation is used among the
researchers because it minimizes the bias associated with the random sampling
of the training. In this method, the whole data are randomly divided into k
mutually exclusive and equal size subsets. The classification algorithm is trained
and tested k times. In each case, one of the folds is taken as test data and the
remaining folds are added to form training data. Thus k different test results
exist for each training-test configuration. The average of these results provides
the test accuracy of the algorithm. A 10-fold cross-validation is used in all of our
experiments by separating the selected 1000 samples randomly into 10 subsets
with 100 records each and then taking each subset as test data in turns.

3.3 Performance Evaluation

In Table 2 results are presented, MLP AMMLP1 and AMMLP2 stands respec-
tively for standard MLP Backpropagation ANN, MLP using gaussian function
to modify the weights of the network and MLP using the output of the network
to modify the weights. MLP and AMMLP1 results were presented in [1], the
models are evaluated based on the accuracy measures discussed above (classi-
fication accuracy, sensitivity and specificity). The results were achieved using
10-fold cross-validation for each model, and are based on the average results
obtained from the test data set for each fold.

Table 2. Results for 10-fold cross-validation for all folds and AMMLP and MLP
models. Bold values highlight the average results obtained in this research.

Fold N MLP (%) AMMLP1 (%) AMMLP2 (%)
SP SE AC SP SE AC SP SE AC

1 100 100 100 98.94 98.87 98.91 100 97.66 98.75
2 96.12 100 99.03 100 99.43 99.63 100 99.33 99.75
3 84.70 100 96.18 97.89 100 99.26 99.20 98.75 99.25
4 100 98.68 99.01 96.56 98.52 97.59 100 98.66 99.25
5 100 100 100 92.73 91.6 92.81 100 97.33 98.00
6 88.28 97.33 95.07 97.59 100 99.06 98,40 98.99 99.25
7 76.85 94.67 90.21 100 96.29 97.83 100 96.63 97.00
8 80.24 100 95.06 100 100 100 100 97.66 98.50
9 100 86,67 90 99.02 100 99.97 98.40 97.66 98.00
10 100 100 100 95.2 98.29 97.47 100 98,66 99,25

Average 92.62 97.73 96.45 97.79 98.3 98.25 99.60 98.10 98.70

For comparison purposes, Table 3 gives the classification accuracies of our
method and previous methods applied to the same database. As can be seen
from the results, AMMLP2 method is among the best in classification accuracy.

3.4 Error Evolution

Error evolution is evaluated at the end of every epoch of training. In each epoch
900 patterns are presented to the network. In Figures 2, 3, 4, error evolution is
presented for MLP, AMMLP1 and AMMLP2.
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Table 3. Classification accuracies obtained with our method and other classifiers from
the literature

Authors (year) Method Accuracy (%)
Hu Y.et al., [9] (1997) Expert Approach 94.00
Minami K. et al., [10] (1999) Fourier-NN 98.00
Owis M.I. et al., [11] (2002) Blind Source Separation 96.79
Yu S.N. et al., [12] (2008) ICA-NN 98.71
Benchaib Y. et al., [13] (2009) MLP BPA 95.12
Gothwal H. et al., [14] (2011) Fourier-NN 98.48
P. Ghorbanian P. et al., [15] (2011) Fourier-NN 99.17
Benchaib Y. et al., [1] (2013) AMMLP1 98.25
in this study AMMLP2 98.70
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Fig. 2. Evolution of the classification error η = 1 - Nominal Backpropagation
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Fig. 3. Evolution of the classification error - AMMLP1
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Fig. 4. Evolution of the classification error - AMMLP2

4 Discussion

As seen in Table 2, the results obtained by AMMLP algorithms are superior
to the ones obtained by MLP showing that the Artificial metaplasticity models
produce a higher accuracy than the MLP model. The best average accuracy
is obtained with AMMLP2, 98,70% although best sensitivity is obtained with
AMMLP1, 98,3%, being sensitivity for the AMMLP2 98,1%.

The results obtained by the proposed AMMLP algorithm based on the out-
put of the network, (AMMLP2), are among the best compared with the other
state-of-the-art methods. The AMMLP2 performance is similar to the solution
proposed by Yu S.N et al., [12] and is beat for the solution proposed by [15].
It must be taken into account that in these better methods preprocessing tech-
niques as Independent Component Analysis and Wavelets have been applied. In
our future study we will combine these preprocessing techniques with AMMLP.

Regarding to the classification error evolution we can observe that the learning
is quicker in AMMLP1 than in AMMLP2 or MLP but the AMMLP2 reach the
final value first. We can also observe that in AMMLP1 there are a lot peaks in
the learning evolution but in MLP and AMMLP2 the evolution of the error is
more natural.

5 Conclusions

In this paper, the artificial metaplasticity on MLP based on the output of the
network has been applied to the problem of cardiac arrhythmias classification.
The AMMLP approach is based on the biological property of metaplasticity.
The goal of this research was to compare the accuracy and the error evolution of
the proposed AMMLP2 based on the output of the network with the AMMLP1
based on the distribution of the input patterns, and the classical MLP with
BPA. Proposed AMMLP2 algorithm provides better results than AMMLP1,
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and MLP with BPA and is among the best of the state-of-the- art algorithms
applied to the same database. It can be observed also that the evolution of the
classification error is quicker in the AMMLP cases than in BPA altough more
peaks appear in AMMLP1 being AMMLP2 and BPA evolution more natural.
The results indicate that the use of the AMMLP algorithm based on the output
of the network, as well as the AMMLP based 0n the distribution of the input
patterns, is an alternative option for cardiac arrhythmias detection and could
be used as a computer aided detection system for second opinion by physicians
when making their diagnostic decisions.
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vol. 4528, pp. 628–636. Springer, Heidelberg (2007)

7. Marcano-Cedeño, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer clas-
sification applying artificial metaplasticity algorithm. Neurocomputing 74(8),
1243–1250 (2011)

8. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions
on Signal Processing 39(9), 2101–2104 (1991)

9. Hu, Y.H., Palreddy, S., Tompkins, W.J.: A patient- adaptable ECG beat classifier
using a mixture of experts approach. IEEE Transactions on Biomedical Engineer-
ing 44(9), 891–900 (1997)

10. Minami, K., Nakajima, H., Toyoshima, T.: Real-time discrimination of ventricular
tachyarrhythmia with Fourier-transform neural network. IEEE Transactions on
Biomedical Engineering 46(2), 179–185 (1999)

11. Owis, M.I., Youssef, A.B.M., Kadah, Y.M.: Characterization of ECG signals based
on blind source separation. Medical and Biological Engineering and Comput-
ing 40(5), 557–564 (2002)

12. Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural
networks for ECG beat classification. Expert Systems with Applications 34(4),
2841–2846 (2008)

http://dx.doi.org/10.1016/j.neucom.2012.08.042


142 S. Torres-Alegre et al.

13. Benchaib, Y., Chikh, M.: A Specialized learning for neural classification of cardiac
arrhythmias. Journal of Theoretical and Applied Information Technology 6(1),
81–89 (2009)

14. Gothwal, H., Kedawat, S., Kumar, R.: Cardiac arrhythmias detection in an ECG
beat signal using fast fourier transform and artificial neural network. Journal of
Biomedical Science and Engineering 4, 289–296 (2011)

15. Ghorbanian, P., Jalali, A., Ghaffari, A., Nataraj, C.: An improved procedure for
detection of heart arrhythmias with novel pre-processing techniques. Expert sys-
tems 29(5), 478–491 (2009)



Toward an Upper-Limb Neurorehabilitation

Platform Based on FES-Assisted Bilateral
Movement: Decoding User’s Intentionality

Andrés Felipe Ruiz-Olaya1(�), Alberto López-Delis2, and Alexander Cerquera1
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Abstract. In the last years there has been a noticeable progress in mo-
tor learning, neuroplasticity and functional recovery after the occurrence
of brain lesion. Rehabilitation of motor function has been associated
to motor learning that occurs during repetitive, frequent and intensive
training. Neuro-rehabilitation is based on the assumption that motor
learning principles can be applied to motor recovery after injury, and that
training can lead to permanent improvements of motor functions in pa-
tients with muscle deficits. The emergent research field of Rehabilitation
Engineering may provide promise technologies for neuro-rehabilitation
therapies, exploiting the motor learning and neural plasticity concepts.
Among those technologies, the FES-assisted systems could provide repe-
titive training-based therapies and have been developed to aid or control
the upper and lower limbs movements in response to user’s intentionality.
Surface electromyography (SEMG) reflects directly the human motion
intention, so it can be used as input information to control an active
FES-assisted system. The present work describes a neurorehabilitation
platform at the upper-limb level, based on bilateral coordination training
(i.e. mirror movements with the unaffected arm) using a close-loop active
FES system controlled by user. In this way, this work presents a novel
myoelectric controller for decoding movements of user to be employed in
a neurorehabilitation platform. It was carried out a set of experiments
to validate the myoelectric controller in classification of seven human
upper-limb movements, obtaining an average classification error of 4.3%.
The results suggest that the proposed myoelectric pattern recognition
method may be applied to control close-loop FES system.

1 Introduction

Neurorehabilitation is a process that take advantage of the neural plasticity to
assist people in recovering motor ability [1], [2], whose most important aspects
are based on the assumption that patients can improve with practice through
motor learning. Repetitive motor activity in a real-world environment with a

c© Springer International Publishing Switzerland 2015
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cognitive effort has been identified in several studies as favorable for motor re-
covery in stroke patients [3]. In this way, functional electrical stimulation (FES)
is a technology developed to generate controlled specific muscle functions using
electrical impulses, which facilitate movement of motor impaired people. This is
achieved by activating skeletal muscles with constant frequency trains of stimu-
lations [6]. In literature, FES has been evaluated to assist neurorehabilitation
processes in people after stroke [7], [4], [5], rehabilitation after spinal cord injury
[8], and suppression of pathological tremor [9].

During active FES-assisted therapy in a neurorehabilitation process, muscles
work to complete a motor function under control of the treated patient. When
the active FES-assisted therapy is delivered, the purpose of that intervention is
to restore voluntary function. In other words, active FES-assisted therapy helps
the neuromuscular system to relearn the execution of a function impaired due to
neurological injury or disorder [6]. Thus, the goal of the FES therapy is helping
to recover voluntary function as much as possible.

Implementing an active FES-assisted therapy requires a controller to gene-
rate commands in response to user’s intention. This controller needs a conve-
nient source of information, such as electromyography signals (EMG), whose
characteristics reflect the muscular force level and the intention for movement.
EMG signals offer a potential to provide residual control channels between the
motor disability and assisted rehabilitative engineering [10], [11]. Accordingly,
myoelectric pattern recognition is the process to detect the movement intention
of the user from EMG signals [12]. To accomplish an effective myoelectric pat-
tern recognition process, it is required to implement methods for pre-processing,
features extraction, classification, and post-processing. Feature extraction is a
key step of pattern recognition, taking into account that features represent rel-
evant information from the input data in order to perform the desired task.
Several works propose methods to extract features from EMG signals in the
time-domain, frequency-domain and time-frequency domain. In the time-domain
there are features such as mean absolute value (MAV), mean absolute value slope,
zero crossing (ZC), slope sign changes (SSC), root mean square (RMS), waveform
length (WL), among others [12]. By the other hand, frequency-domain features
include coefficients obtained via short-time Fourier transform (STFT), wavelet
transform (WT) and auto-regression (AR) of the spectrum of EMG signals [12].

This study presents a novel myoelectric pattern recognition method for decod-
ing muscle movements to be implemented in an active FES-assisted system. It was
implemented a feature extraction stage computing from EMG signals the RMS
(Root Mean Square), WL (waveform length) and coefficients of a four-order AR
model. Pattern recognition of EMG signals requires the generation of repeatable
patterns of contractions, whose changes may result in an erroneous controller. A
main source of pattern alterations arise from position of upper limb, where there
are muscles whose activity depends on the angles and kinematics in joints [13].
Thus, the proposed myoelectric controller include information of the angular ve-
locity at eachupper-limb joint, in suchaway that themeanvalue of angular velocity
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signals was computed as an additional feature. Finally, a classifier based on the
Linear Discriminant Analysis (LDA) was implemented. In the validation process,
it was carried out a set of experiments aimed to recognize seven upper-limb
movements.

Next section presents a review of EMG-controlled FES-assisted techniques for
neurorehabilitation and describes the proposed platform. Section 3 describes ex-
perimental methods including the protocol, the feature extraction methods and
the classification process. Section 4 presents obtained results in the validation
stage and last section presents conclusions and future work.

2 EMG-Controlled FES-Assisted Therapy
for Neurorehabilitation

During a motor recovery process in neurorehabilitation two operating modes for
FES therapy could be defined: passive and active. During passive FES therapy,
a FES cycle is applied without intervention of the user, whereas in active FES
therapy, the user initializes the application of FES to allow the execution of a
specific motor function in response to user’s intention [15].

An active FES therapy such as EMG-triggered electrical stimulation is re-
ported to generate cortical changes and to induce neuroplasticity. Kimberley
and collaborators reported a study to evaluate the effectiveness of EMG trig-
gered electrical stimulation therapy in patients with longer-term hand paresis
and representation of cerebral activation in the functional NMR [16]. Shin et
al. investigated the effect of electromyography (EMG)-triggered neuromuscular
electrical stimulation on functional recovery of hemiparetic hand and its related
cortical activation pattern in chronic stroke patients. They demonstrated that
10-week EMG-stimulation can induce functional recovery and change of cortical
activation pattern in the hemiparetic hand of chronic stroke patients [17]. Hara
et al. researched the relation between hemiparetic arm function improvement
and brain cortical perfusion (BCP) change during voluntary muscle contraction
(VOL), EMG-controlled FES (EMG-FES) and simple electrical muscle stimula-
tion (ES), before and after EMG-FES therapy in chronic stroke patients. They
concluded that EMG-FES may have more influence on ipsilesional BCP than
VOL or ES alone [4].

Active FES-assistive therapy is congruent with the sensorimotor integration
theory that underlies EMG-controlled neuromuscular stimulation, which pro-
poses that non-damaged motor areas can be recruited and trained to plan more
effective movements using time-locked movement-related afference [18]. The pa-
tients initiate a movement and are assisted to complete it, receiving reafference
that can be related to the command and the movement. EMG-triggered neu-
romuscular stimulation involves initiating a voluntary contraction for a specific
movement until the muscle activity reaches a threshold level. When EMG ac-
tivity reaches the chosen threshold, an assistive electrical stimulus is triggered.
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In this way, two motor learning principles can be coupled in one protocol: repe-
tition and sensorimotor integration.

2.1 Bilateral Coordination Training

Bilateral Coordination Training is a new treatment aimed to improve recovery
of upper limb function in patients with hemiplegic stroke [19]. Specifically, vo-
luntary movements of the intact limb may facilitate voluntary movements in the
paretic limb. Activating the primary motor cortex and supplementary motor
area for the intact limb increases the likelihood of voluntary muscle contractions
(i.e., motor synergies) in the impaired limb when symmetrical movements are
executed [20].

Bilateral coordination produces larger improvements than cyclic neuromus-
cular electrical stimulation on upper extremity impairment and activity limita-
tion in patients [4]. The paradigm incorporates several rehabilitation principles
that are important for motor relearning. The bilateral coordination puts the
brain back in control of the affected limb by giving the patient direct control of
the stimulation intensity [21], which reinforces the principle of intention-driven
movement improving the synchronization between motor intention (central neu-
ral activity) and stimulated motor response (peripheral neural activity). This
synchronization may promote neural reorganization to improve the central con-
trol of the impaired limb [21], so that the patient may not control only the
stimulation turning on, but also its duration, intensity and therefore the resul-
tant movement.

Fig. 1. Architecture of the neurorehabilitation platform at the elbow joint level
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2.2 Upper-Limb Motor Recovery Through an EMG-Controlled
Bilateral FES-Assisted Therapy

Figure 1 shows a proposed upper-limb closed-loop system based on EMG-control-
led FES for impaired patients due to stroke that currently is being implemented.
EMG activity of unaffected limb was detected and processed to control the stimu-
lation duration and intensity of muscles in paralyzed limb, in order to generate
mirror movements with the unaffected limb. This offers to the patient the ability
to control the stimulation involving a cognitive task.

As was described in previous sections, this work describe the implementation
and validation of a novel myoelectric pattern recognition method as a controller
for decoding user’s movements to be used in the neurorehabilitation platform.
Next section describes the implementation and validation of the controller.

3 Experimental Methods

3.1 Protocol

Six adult subjects without neurological or musculoskeletal impairments partici-
pated under informed consent (four females and two males with ages between 22
and 36 years). The subjects were instrumented at upper limb level with surface
EMG electrodes (Ag-AgCl electrodes) following the SENIAM recommendations
[22]. Seven surface electromyography records (SEMG) were taken from each sub-
ject: two arm muscles (biceps brachii long head and triceps brachii long head)
and five muscles around forearm. Subsequently, three 9-axis Inertial Measure-
ments Units - IMU (MPU9150 from InvenSense) were coupled to arm, forearm
an hand (see Figure 2). Since IMUs provided absolute angular velocity in its
active axis, it was required the combination of two independent IMUs placed
distally and proximally to the joint of interest.

Fig. 2. Surface EMG electrodes and IMUs sensors coupled to upper limb
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Signals were acquired using a PowerLab 8/30 system from ADInstruments and
a sampling frequency of 1 kHz was used to acquire records from EMG channels
and from IMUs. Subjects were seated in front of a computer that indicated
movements to execute.

In each trial, subjects repeated each limb motion three times following seven
movements: flexion and extension of the wrist, pronation and supination of the
forearm, flexion and extension of the elbow, and resting state. The order of
these limb motions was randomized. The resting state was kept in both at the
beginning and at the end of each test, as well as between movements. A total of
three trials were complete in a session.

3.2 Data Analysis and Pre-processing Techniques

The raw EMG signals were normalized respect to the maximum voluntary con-
traction (MVC) value. EMG signals were also filtered through a band-pass four-
pole Butterworth filter, with a range of frequencies of 20-500 Hz. Signals from
IMUs was filtered through a low-pass four-pole Butterworth filter with a cut-off
frequency of 50 Hz. Electromyographic and angular velocity signals were seg-
mented in windows of 250 ms and overlapped in 50 ms, taking into account that
delays in myoelectric control for real-time applications must be inferior to 300 ms
[23]. Afterward, each data segment was processed through a feature extraction
method given from a combination of parameters in temporal and spectral do-
mains, aimed at extracting information from both sources of signals.

3.3 Feature Extraction and Classification Methods

The work presented by [14] showed that a simple feature extraction method
combined with a LDA classifier may provide an suitable performance for real-
time myoelectric control. Taking into account its easy implementation and high
performance, this system has been widely accepted and was implemented in the
present work. Furthermore, recent researches have demonstrated that a combina-
tion of time and frequency domain parameters provides a functional and efficient
configuration [24]. In the proposed myoelectric controller, two time-domain fea-
tures (root mean square and waveform length) and four frequency-domain fea-
tures (coefficients of an 4-order AR model) were extracted from the EMG data.
Likewise, for each segment (epochs of 50 ms each), the mean value (MV) of
the angular velocity signal was calculated. The RMS value relates to standard
deviation, which is expressed in Equation 1.

RMS =

√√√√ 1

n

n∑
i=1

x2
i (1)
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where xi represents the data of the segment i of n samples length. The WL
value provides the cumulative length of the waveform over the time segment (see
Equation 2):

WL =

n−1∑
i=1

|xi+1 − xi| (2)

The MV provides the average amplitude of xi in the segment i of n samples
length (see Equation 3):

MV =
1

n

n∑
i=1

xi (3)

AR model described each sample of SEMG signal as a linear combination of
previous samples plus a white noise error term. These coefficients were herein used
as features describing EMG pattern. The model is described by Equation 4.

Xn = −
p∑

x=1

ai · xn−1 + wn (4)

where Xn is a sample of the model signal, ai is an AR coefficient, wn is
white noise or error sequence, and p is the order of the AR model. The feature
vector, which is then used in the classification stage, results from the concate-
nation of both time and frequency domains. Thus, the feature vector have 38
features (7 EMG channels x 5 features/channel + 3 angular velocity signal x 1
feature/signal). The classification process was carried out using a LDA classifier,
where each movement in the experimental protocol belongs to a class such as
follows: class 1-wrist flexion, class 2-wrist extension, class 3-forearm pronation,
class 4-forearm supination, class 5-elbow flexion, class 6-elbow extension and
class 7-resting. The classifier was trained using data from the first two trials and
was tested with data from the last trial, in a individual fashion for each subject.

3.4 Post-processing Techniques

The post-processing method were designed to manage excessive outflows in the
classification process and improve the system performance. Errors occur nor-
mally during transitional periods, which are expected when the system lays in
an undetermined state between contractions. In this way, a transition removal
algorithm was implemented to remove errors.

4 Results

Feature extraction and classification methods were implemented using functions
in MATLAB. Figure 3 (top) shows the confusion matrix from one working section
in the experimental protocol. Rows in the matrix represent the inputs related
to classes that are required to obtain, and columns represent obtained patterns
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as classifier outputs. The main diagonal in both matrices represents the con-
cordance between the true and obtained classes. Figure 3 (bottom) shows the
obtained classification error.

Figure 4 presents classification error over all subjects. The average classifi-
cation error was 4.3%, which suggests that it is a good option for myoelectric
pattern recognition. Unlike traditional EMG-based pattern recognition methods
found in literature, the proposed myoelectric control method includes EMG-data
and kinematics information (angular velocity) of upper-limb joints, in order to
compensate EMG pattern alterations that arise from position of upper limb.

Fig. 3. Classification errors from one working section. Confusion matrix (top) and
obtained errors for all classes (bottom).
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Fig. 4. Classification errors over all subjects. Features extracted from EMG signals
and angular velocity information.

5 Conclusions and Future Work

This work presented an experimental protocol to validate a proposed myoelectric
pattern recognition method, in order to classify seven upper-limb movements
from SEMG information and angular velocity information of upper-limb joints.
The results here obtained show a good performance of the method with an
average classification error of 4.3%. Likewise, it is presented results for deco-
ding movements executed by a user at the upper-limb level. As future work,
this decoding user’s intentionality method will be implemented in an upper-
limb neurorehabilitation platform based on bilateral movement coordination. In
addition, it will be integrated with the FES system to generate a specific real-
time motor function in response to users intention at the upper limb level.
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Abstract. This work presents a study that evaluates different scena-
rios of preprocessing and processing of EEG registers, with the aim to
predict fist imaginary movements utilizing the data of the EEG Mo-
tor Movement/Imaginary Dataset. Three types of imaginary fist move-
ments have been decoded: sustained opening and closing of right fist,
sustained opening and closing of left fist and rest. Initially, the regis-
ters were band-pass filtered to separate frequency ranges given by mu
rhythms (7.5-12.5 Hz), beta rhythms (12.5-30 Hz), mu&beta rhythms,
and a broad range of 0.5-30 Hz. Afterward, the signals of the separated
subbands were epoched in time windows of 0-0.5, 0-1, 0-1.5 and 0-2 se-
conds, as well as preprocessed with two techniques of spatial filtering:
common spatial patterns and independent component analysis. In both
cases, a set of selected channels was established for feature extraction,
by calculation of the logarithms of the variance in the time series cor-
responding to each preprocessed and selected channel. The classification
stage was based on linear discriminant analysis and support vector ma-
chines. The results showed that the combination given by common spatial
patterns and support vector machines allowed to reach a mean decoding
accuracy close to 99.9%, where epoching and filtering to separate sub-
bands did not influence the results in a noticeable way.

1 Introduction

It is well known that mental tasks are encoded in scalp electroencephalographic
waves (EEG) that can be used as a source of information to operate devices of
brain computer interfaces (BCI). One of the most important challenges in this
topic is the application of biomedical signal processing tools to decode motor
tasks with high performance of classification. In addition, in BCI applications it
is important to extract features from EEG registers to detect characteristics of
imaginary movements such as direction, intensity, lateralization and speed [1].
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Several approaches to decode mental tasks have been explored in the last
decades to improve the performance of BCI devices, as a way to develop com-
munication technologies between brain and control systems for motor activities.
These studies include the evaluation of features extracted via time and time-
frequency representations [2], spectral power, coherence, phase locking value [3]
and power spectral density [4]. Nevertheless, some years ago the utility of spatial
filter techniques began to be explored in BCI applications, as a way to select
the most discriminative features of EEG registers in motor imagery tasks and to
reduce its huge dimensionality in feature space [5]. In this way, common spatial
patterns (CSP) have been applied successfully together with features extracted
via frequency-weighted method [6], wavelet packets decomposition [7], local dis-
criminant bases [8] and eigendecomposition [9]. Likewise, ICA has been employed
to extract motor-related cortical EEG [10] and hand imaginary movements [11].

These promising studies need to be complemented with an evaluation of dif-
ferent preprocessing and classification methods, whose characteristics can mark
the difference between high and low decoding performance of motor tasks from
EEG registers. In this way, this work presents a comparison among different
EEG preprocessing scenarios to decode a set of imaginary fist movements on a
single trial basis. The main preprocessing parameters varied in this study were:
1) EEG subbands: mu, beta, mu&beta and a broad spectrum (0.5 to 30 Hz);
2) epoch length: 0-0.5, 0-1, 0-1.5 and 0-2 seconds; 3) spatial filter: None, CSP
and ICA; and 4) supervised classification method to perform the prediction:
linear discriminant analysis (LDA) and support vector machines (SVM). The
results allow to infer combinations of these parameters to obtain decoding per-
formances close to 99.9% in a BCI simulated application.

2 Materials and Methods

2.1 Dataset

The database used in this study was the EEG Motor Movement/Imaginary
Dataset [12], [13]. This database contains 64-channels EEG data acquired from
109 healthy volunteers performing imaginary movements (sustained opening and
closing) of their right and left fists during six minutes. The appearance of the
target on the left or right side of a screen in front of each volunteer indicated
the onset of imaginary left or right fist movement, which was sustained during
four seconds until the target disappeared. Each EEG register contained 87 trials
of three events of interest: 43 trials of resting condition (T0), 22 trials of left fist
movement (T1) and 22 trials of right fist movement (T2). The files were read
using the EEGLAB toolbox [14].

2.2 Data Processing and Experimental Design

Preprocessing. The analysis was carried out in three stages: preprocessing,
training and testing. Each stage was performed for every subject individually and
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in five independent repetitions, where the transformation matrices of the spatial
filters and the parameters of the classifiers were determined exclusively during
the training stage. This experimental procedure was repeated for every possible
combination of 16 preprocessing steps, three spatial filters and two classification
methods resulting in 96 experiments.

The preprocessing stage included the combinations of channels selection, re-
referencing, temporal filtering and epoching. Whereas the two latter were applied
to all combinations, channels selection and re-referencing were applied only in
experiments that involved the spatial filtering based on ICA. Firstly, the 64
channels of each EEG register were re-referenced to their average electrode and
the analysis was restricted to a subset of eight channels located on the motor
cortex (FC3, FCZ, FC4, C3, C1, CZ, C2, and C4), under assumption that this
subset transmits most of the relevant information that characterizes imaginary
movements from EEG data [15].

The works presented in [16] and [17] showed that significant changes in the
power of brain rhythms in response to real or imaginary movements are most
prominent in the mu (7.5 to 12.5 Hz) and beta (12.5 to 30 Hz) EEG subbands.
Therefore, four bandwidth scenarios were chosen employing band-pass finite im-
pulse response filters: mu, beta, mu&beta and a broad range from 0.5 to 30 Hz.
Subsequently, the band-pass filtered EEG data were epoched around the events
of interest, labeled as T0, T1 and T2, in four different time windows (the move-
ment onset was set to 0 seconds): 0 to 0.5, 0 to 1, 0 to 1.5 and 0 to 2 seconds.
Afterward, the resulting 87 epochs were pseudo-randomly separated into training
(80%) and testing (20%) trials.

Training. The training stage started with the application of a spatial filter
in order to improve the signal-to-noise ratio of the EEG registers and to opti-
mize the signal for their further analysis. As mentioned, the processing in this
work was based on independent component analysis (ICA) and common spatial
pattern (CSP). ICA provided a transformation matrix that projected the EEG
data from the space of 64 temporal channels into a space of surrogate channels,
which are maximally independent from each other. ICA was applied only to the
eight EEG channels selected during the preprocessing stage and no indepen-
dent components were inspected or excluded empirically. Instead, the selection
of the independent components with respect to classification task at hand was
performed in a data driven way, i.e., the weights obtained during the learning
process of the classifiers performed the selection indirectly.

CSP is a spatial filter that was developed to optimize the discriminalibility of a
signal with respect to two classes [18]. It has been widely and successfully used for
the classification of two movement conditions in BCI research [19], [20]. However,
few approaches have been performed to explore its utility in the classification
of three movement conditions. Therefore, the CSP technique was extended in
this work to the multi-class situation, in such a way that three CSP filters were
employed via one-versus-rest approach: T0&T1 vs T2, T0&T2 vs T1 and T1&T2

vs T0. Similar to ICA, one CSP filter yields a transformation matrix that projects
the EEG signal to a set of surrogate channels. This transformation is optimized
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under the constraint that the variances of the resulting surrogate channels are
maximally different in two conditions. Usually, the number of surrogate channels
used for the further analysis is reduced to the k most discriminant common
spatial patterns for each condition, resulting in 2k surrogate channels. Here,
k=4 was used, so that each CSP filter reduced the 64 EEG channels to eight
CSP surrogate channels with optimal variances.

The last step in the training stage was the feature extraction from the prepro-
cessed and spatially filtered signals. It was assumed that the power of a certain
brain rhythm was approximately equal to the variance of a band-passed filtered
signal in the corresponding EEG subband. Accordingly, the features were ex-
tracted calculating the logarithm of the variance of each channel resulting from
the spatial filtering. This procedure resulted in eight features for the ICA filter,
(one for each of the eight independent components), while for the CSP filters 24
features were obtained (eight for each of the three CSP filters). After this task,
they were scaled to have zero mean and unit variance.

The classification among the three conditions was carried out with linear dis-
criminant analysis (LDA) and support vector machines (SVM). LDA is a method
that finds parameters to construct a hyperplane by separation of the training
samples in the feature space. On the other hand, SVM is a more advanced clas-
sification method that has proven its usefulness for BCI applications [21], [22].
Similar to LDA, SVM uses the training samples to fit a hyperplane, in order to
separate two groups of data points in the feature space. However, by maximi-
zing the margin between the hyperplane and the nearest training samples (the
support vectors) it constraints the fitted hyperplane to be optimal and yields a
sparse classifier that depends only on a subset of the training samples. As a con-
sequence, it provides a good generalization to data different than the training
distribution. Furthermore, by projecting the features in a higher dimensional
space, before finding the parameters of the hyperplane, it is capable of dealing
with nonlinear structures in the features. In this way, the projection is achieved
by applying a kernel function to the features.

In the present study, a polynomial kernel was utilized in the classfication with
SVM employing the LIBSVM toolbox [23]. Since the basic SVM is a method
to classify between two groups, the classification of the three conditions was
performed in three predictive models as well, one for each contrast among the
groups: T0&T1 vs T2, T0&T2 vs T1 and T1&T2 vs T0.

Testing. In this stage, preprocessing and feature extraction were performed like
it was done during the training stage. The transformation matrices obtained were
applied for the spatial filtering, whereas the predictive models obtained from the
classification with LDA and SVM were tested on the unseen testing trials using
the one-versus-rest approach. For every class contrast j, the corresponding model
predicted each trial i and computed the posterior probability, so that given the
observation of trial i the underlying class was j (defined as p(classj | triali)).
Thus, for each trial the class contrast with the highest posterior probability
yielded the final decoded movement.
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2.3 Evaluation

The decoding performance was quantified using the classification accuracy, that
is, the percentage of correctly classified testing trials. For each subject, the de-
coding performance was averaged over the five repetitions of the experimental
procedure, in such a way that the grand mean over all 109 subjects was calcu-
lated in each experiment. In order to evaluate the significant differences among
decoding performances, an ANOVA analysis for repeated measures with four
within-subject factors was performed on the mean testing accuracies using SPSS.
The four within-subject factors were: temporal filter (TF) with four levels (mu,
beta, mu & beta and broad), epoching (EP) with four levels (0 to 0.5, 0 to 1,
0 to 1.5 and 0 to 2 seconds), spatial filter (SPF) with three levels (None, ICA
and CSP) and classification method (CM) with two levels (LDA and SVM). This
procedure resulted in a total number of 4 × 4 × 3 × 2 = 96 repeated measures
for each subject.

A Mauchly’s test of spherecity was performed to assess the compliance of the
assumption of spherecity. In case of a significant violation, Greenhouse-Geisser-
and Huynh-Feldt-correction of degrees of freedom were applied as proposed in
[24]. In addition, post-hoc tests of multiple comparisons on each of the signifi-
cant main factors and interactions were performed for evaluation of significant
differences among the levels within each factor. Here, Bonferroni correction was
used to adjust the level of significance for the multiple comparisons. In all tests
the initial significance level was established to p < 0.05. The classification using
each of the 96 combinations of processing methods was repeated five times for
each subject, and the performance of each combination for each subject was
quantified using mean classification accuracy over the five repetitions.

3 Results

Table 1 shows the grand mean for each combination, i.e. mean over all 109 sub-
jects, giving an overview of the performance of the 96 combinations. A more
detailed quantification of the results was performed through a 4×4×3×2 (TF
× EP × SPF × CM) within-subject repeated-measures ANOVA. All four fac-
tors showed a significant main effect (p < 0.01) and significant interaction be-
tween factors were found for TF*EP, TF*SPF, TF*CM, EP*SPF, EP*CM and
SPF*CM (p < 0.01). Notice that the sign of asterisk denotes the interaction
between factors. No other significant effects were found.

The multiple comparison tests on the significant main effects showed small
significant differences in some of the factor levels of TF and EP. However, the
most interesting and noticeable differences were obtained in the SPF and the CM
factor. Here, the marginal mean accuracy of the CSP filter was 13.7% and 11.4%
higher than that ofNone and ICA (p < 0.05) respectively, and the marginal mean
accuracy of the SVM classifier was 39% higher than the obtained with the LDA
method (p < 0.05). From the multiple comparisons tests within the significant
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Table 1. Mean percentages of classification accuracy over all 109 subjects

Epoch
in

LDA SVM

seconds mu beta mu&beta broad mu beta mu&beta broad

None

0 to 0.5 43.27 42.21 43.80 40.94 78.55 74.91 74.85 74.37

0 to 1 45.03 45.65 46.72 40.23 77.10 78.82 80.22 72.19

0 to 1.5 45.11 47.92 48.44 40.45 77.56 80.11 79.02 72.99

0 to 2 46.14 49.49 49.75 41.01 78.42 80.95 80.96 73.37

ICA

0 to 0.5 52.24 52.32 56.83 51.06 79.53 79.79 79.27 75.44

0 to 1 56.59 64.00 62.00 51.41 79.46 82.53 81.44 77.57

0 to 1.5 61.41 68.47 67.76 50.24 80.40 82.66 84.64 77.20

0 to 2 64.94 71.53 70.00 49.88 82.90 83.30 84.99 78.42

CSP

0 to 0.5 49.32 49.50 50.23 48.30 99.89 99.61 99.43 99.82

0 to 1 50.48 50.43 52.52 47.06 99.77 99.74 99.31 99.81

0 to 1.5 52.07 52.81 37.44 45.61 99.61 99.40 99.23 99.88

0 to 2 53.38 54.93 57.01 44.01 99.46 99.45 99.15 99.81

interactions, the most interesting results occurred in the interactions TF*SPF
and SPF*CM. The corresponding box plots of mean accuracies are presented
in Figures 1 and 2, where it can be observed that the marginal mean accuracy
for the TF*SPF interaction was maximum in combinations using a temporal
mu or beta filter and spatial CSP filter (p < 0.05). Regarding spatial filters and
classification methods, CSP combined with SVM was significantly better than
any other combination.

The relationship between the weights, resulting from spatial filtering and clas-
sification with the location of the electrodes, gives a neurobiological meaningful
understanding of the involved methods. In this way, Figure 3 shows the topo-
graphic maps of the eight most important spatial filters resulting from CSP. The
four spatial filters in the first row maximize the variance for the T0 condition,
whereas the other four in the second row do it for the conditions T1 and T2. This
rationale corresponds to the weights visualized in the topographic maps, showing
reverse relations between CSP 2 and CSP 63. Furthermore, CSP 62 and CPS 63

emphasize the channels located over the left and right motor cortex respectively.
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Fig. 1. Box plots diagrams for all combinations of levels in the interaction between the
TF and the SPF factors

4 Discussion

The results of this study allow to establish some observations about the influ-
ence of preprocessing and classification tasks in EEG registers, in order to predict
imaginary movements in a BCI simulated application. Specifically, the signifi-
cant main effects, interactions and significant differences found in the multiple
comparison tests suggest that the combinations including the spatial filter CSP
and the classifier SVM resulted in the best classification accuracies. Neither the
applied temporal filter nor the extracted epoch seem to have a significant influ-
ence on the classification accuracy when CSP and SVM are involved. While CSP
yielded the best results in combination with SVM, it was outperformed by ICA
when combined with LDA. Regarding the different subbands, similar results for
the mu, beta and mu&beta subbands, as well as slightly lower accuracies for the
broad band were observed. In any way, the decoding performance was always
above the chance level of 33.3%.

Although the works shown in [16] and [17] showed the role of the brain rythms
in mu and beta subbands in response to imaginary movements, in the present
study it is observed that the separation of these subbands did not noticeably
influence the performance in comparison to those obtained with EEG signals
of broad spectrum. The difference in the performance between classifiers was
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Fig. 2. Box plots diagram for all combinations of levels in the interaction between the
SPF and the CM factors

CSP 1 CSP 2 CSP 3 CSP 4

CSP 61 CSP 62 CSP 63 CSP 64

Fig. 3. The weights of the eight most important spatial filters from CSP analysis
interpolated in a topographic map. The spatial filters were obtained by contrasting
condition T0versus rest (99.9% accuracy). The first row shows the four most important
commom spatial patterns for condition T0 and the second row those for conditions T1

and T2.
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expected, given the utility of the SVM to capture the nonlinear structure of the
features by applying a polynomial kernel and by performing intense parameter
search. Furthermore, the analysis carried out in this work took advantage of the
method of CSP, extending it to the classification of three conditions, optimizing
the features for classification, and allowing the prediction to be more successful
than using the ICA features.

The computational expensive operations were performed during training, so
that it is possible to perform a further implementation of the method in a real-
time scenario. Regarding the length of the epochs, although an increase of the
time from 0.5 to 2 seconds improve the classification percentages, the prepro-
cessing with CSP allows to obtain performances close to 99.9% with epochs of
only 0.5 seconds. These results suggest the feasibility to predict imaginary fist
movements from a single-trial EEG record with accuracies, time windows and
computational costs sufficient to be realistic in real-time BCI applications.
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number 415-2011) and the RISE Worldwide Program of the DAAD.
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Abstract. In this paper we present a new unsupervised neural network
whose architecture resembles the koniocortex, the first cortical layer re-
ceiving sensory inputs. For easiness, its properties were incorporated in
a step by step manner along successive network versions. In some cases,
the version improvement consists in the replacement of a non-biological
property by a biologically plausible one. Initially (version 0) the network
was merely an scaffold implementing the Bayes Decision Rule. The first
network version incorporated metaplasticity and intrinsic plasticity, but
neural competition was not biological. In a second version, competition
naturally occurred due to the interplay between lateral inhibition and
homeostatic properties. Finally, in the koniocortex-like network, compe-
tition and pattern classification emerges naturally due to the interplay
of inhibitory interneurons and previous version’s properties. An example
of numerical character recognition is presented for illustrating the main
characteristics of the network.

Keywords: koniocortex · Granular cortex · Intrinsic plasticity ·
Pre-synaptic rule · Competition · Feature extraction · Learning · Neural
network

1 Introduction

The koniocortex, also called granular cortex, is the name given to the differ-
ent regions of the cerebral cortex that exhibit a well-defined inner granular layer
(layer IV). Both names (koniocortex and granular) refer to a cortex with a grainy
texture (konia is a greek word meaning “dust”) due to the abundance of spiny
stellate neurons in this layer. Brodmann areas 13 of the somatic sensory cor-
tex, area 17 of the visual cortex, and area 41 of the auditory cortex belong to
the koniocortex. All these areas behave as topographic maps that change their
boundaries and receptive fields according to sensory experience. The visual ko-
niocortex, for example, is the locus of ocular dominance columns and orientation

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 163–174, 2015.
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columns that are modified when for example one eye is occluded; in the case
of the somatosensory cortex, Diamond et al [6] discovered that when rodent
whiskers are differently stimulated, important somatotopic map modifications
occur in this cortex. They attributed these modifications to NMDA receptors
in spiny stellate cells [8] . According to Miller et al.[11] , map reorganization is
a bottom-up process, solely involving the two layered network composed of the
thalamo-cortical layer and the IVth layer of koniocortex. They mentioned David
Ferster research [7] who found that orientation sensitivity columns developed in
the fourth layer of the cortex without the collaboration of upper cortical layers
(i.e. layers I,II and III) in which neuron’s spiking was prevented by cooling the
cortical preparation.

In this paper, an initial complete artificial neural framework is gradually trans-
formed into a new type of neural network, the koniocortex-like network (KLN),
that very much resembles the granular layer of the koniocortex. This is done
mainly by replacing non-biological properties by biological ones.

Initially (in version 0 of the network), we introduce a non-biological frame-
work, the “Bayesian Decision Framework” (see Fig.1.a) used as a sort of scaffold
over which the different biological properties will be placed. This “Bayesian Deci-
sion Framework” serves for introducing some algebraic concepts of the following
versions of the network.

Fig. 1. For allowing a step-by-step presentation of the koniocortex-like network, it was
developed along four stages. See details in Section. 1

In the following version, version 1, we added competition to the initial frame-
work. This competitive network is depicted in Fig.1.b. In this version, competi-
tion is not yet biological, but externally driven (the winner neuron is obtained
by calculation). In this version, biological intrinsic plasticity (see section 2) was
incorporated to the neurons.

This network version performs feature extraction and classification tasks as
any competitive network. The network in Fig.1.c, is a type of “lateral inhibition
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network”, performing feature extraction and classification tasks. Here, intrinsic
plasticity, lateral inhibition and a steep slope in the sigmoidal activation func-
tions allow competition in a biologically plausible way. Finally, the fourth version
of the network which is represented in Fig.1.d performs competition and pat-
tern classification similarly to the previous “lateral inhibition network”. Here, in-
hibitory lateral connections are substituted by inhibitory interneurons with non-
modifiable negative connections. We have called this network the “Koniocortex-
like network” (KLN), due to its similarity to the koniocortex or granular layer
of sensory cortex. In this paper, we discuss in more detail some of the findings
sketched in a previous work [13] while highlighting the similarities between the
KLN and the koniocortex fourth layer. We also apply the network to perform a
classification task using alphanumerical input patterns.

2 Homeostatic Properties: Metaplasticity and Intrinsic
Plasticity in Rate Code Neurons

All versions of the network use rate-code neurons whose outputs, Oj , (bounded
between 0 and 1) represent the probability of occurrence of an action poten-
tial. The inner product of neuron’s j weights and the normalized input pattern
−→
i =

−→
I /|| −→

I || (lower case notation meaning vector normalization) yields the
net-input of neuron j. Normalization is performed with the l1-norm in which:

|| −→
I || =

n∑
i=1

|Ii| (1)

Weights can be considered the components of a vector prototype
−→
T j , so that

−→
T j=

−→
W j= [Wj1,Wj2, ...,Wjn]. Taking this into account, the net-input of neuron

j is calculated as netj = ||
−→
W j .

−→
i || = ||

−→
T j .

−→
i || = ||

−→
T j

→
I
|| , the modulus of

the projection of prototype
−→
T j over input pattern

−→
I .

For altering synaptic weights, we used the incremental version of the presy-
naptic rule:

� ω = ξI(O − ω) (2)

Where O and I are the postsynaptic and presynaptic action potential proba-
bilities, respectively, and ξ, a learning factor.

The presynaptic rule not only yields the empirical plasticity curve obtained by
Artola et al. [3] relating postsynaptic voltage to the increment of synaptic weight
[12],[14], but also exhibits metaplasticity [1][2], a homeostatic property which
elongates the plasticity curves rightwards for higher initial synaptic weights.

The computer simulation [14] of the presynaptic rule yields a family of curves
that are similar to biological-plasticity curves exhibiting metaplasticity [12]. For
relating the net-input of neuron Oj to its firing probability, Oj a conventional
sigmoidal activation function was used.



166 F.J.R. Peláez et al.

Oj =
1

1 + e−k(netj+0.5−2sj)
(3)

where k is a curve-compressing factor and sj the horizontal shift of the acti-
vation function ranging from zero to one, 0 < sj < 1. In our examples we adjust
the parameters so that when the sigmoid is completely shifted leftwards sj = 0
and when it is completely shifted rightwards sj = 1.

Related to this horizontal shift sj , real neuron exhibits intrinsic plasticity [4][5]
(see Fig. 2), the homeostatic property that makes very active neurons moderate
their spiking rate and inactive neurons increment its firing rate. According to
this property [5], the activation function gradually shifts leftwards or rightwards
regulating the activation of scarcely or highly activated neurons, respectively.

Fig. 2. Intrinsic plasticity allows the neurons’ activation function to shift horizontally
so that the activation function “follows” the average net-input of the neuron. (a) Initial
position of the sigmoidal activation function. (b) In the case of a low regime of net-
input values (as in A, B and C), intrinsic plasticity shifts the sigmoid leftwards. (c) In
the case of a high regime of net-input values (as in D, E and F), intrinsic plasticity
shifts the sigmoid rightwards increasing the sensitivity of the neuron.

For allowing this dynamics, parameter sj , the horizontal shift of the activation
function of neuron Oj is incorporated in the neuron’s activation function f()
relating the net-input of the neuron to its spiking probability Oj :

Oj = f(||
−→
T j

→
I
||, sj) (4)

The following equation is an attempt to model intrinsic plasticity [12]. It
calculates the shift of the activation function, s at time t in terms of the shift
and output probability of the neuron at time t− 1.

sjt =
υ.Ot−1 + sjt−1

υ + 1
(5)

Where υ, the shifting velocity parameter, is a small arbitrary factor for ad-
justing the shifting rate of the activation function. sj shifts rightwards in the
case of highly activated neurons so that the neuron will be down-regulated in
the future. It shifts left-wards in the case of less active neurons, for allowing the
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neuron to increase its firing. Notice that when both the shift and the output at
time t− 1 are equal, the shift at time t continues having the same value of the
shift at time t− 1.

3 Step by Step Development of the Koniocortex Like
Network

In this section, and for a better understanding of the operation of the KLN,
we evolve a network from a Bayesian scaffold to a KLN. In the latter, learning
appears as an emergent property, due to the interaction of individual neurons.
In the KLN, a “winner takes all” (WTA) kind of operation takes place without
the need of applying a function for obtaining the maximally activated neuron.

3.1 The “Bayes Decision Rule Framework”

The objective of presenting this case is to establish a minimal mathematical
framework to start dealing with the following network versions. As in the fol-
lowing versions, input patterns are normalised by dividing each pattern by the
l1 norm (the sum of the inputs). In the “Bayes Decision Rule” framework, all
patterns belonging to a specific category, let’s call it T j, produce (in a forced
manner) the firing Oj of a specific output neuron j, while remaining neurons
are forced to be silent. Along the presentation of a certain category of patterns,
neuron j set of weights converge through a process of hebbian modification to

prototype
−→
T j . Afterwards, during the testing phase, all prototypes are projected

over the testing input pattern,
−→
Itest, (this projection is accomplished by the inner

product of the normalized input vector by the prototype’s weights). The neuron
that fires with highest output, O∗ , indicates the category, to which the testing

pattern
−→
Itest belongs to.

O∗ = Oj / ∀k �= j ||
−→

T j
→

Itest
|| > ||

−→
T k

→
Itest

|| (6)

Previous expression is analogous to the Bayes decision rule, used in pattern
recognition for determining the class, T j, to which a certain pattern belongs to.

O∗ = Oj / ∀k �= j P

(
T j/

→
Itest

)
> P

(
T k/

→
Itest

)
(7)

3.2 Forced WTA Network with Intrinsic Plasticity

Differently from previous case in which neuron’s outputs are arbitrarily imposed,
neuron’s outputs in this case results from the network dynamics in which intrinsic
and synaptic plasticity are determinant factors. However, there is an external
modification performed once neurons’ outputs are known: the highest output
is forced to be one and remaining outputs are set to zero in a WTA manner.
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Fig. 3. Example of a WTA network with intrinsic plasticity: see details in section 3.2

This WTA type of network is depicted in Fig.3.a in which input patterns are
normalized, by dividing each component by the l1-norm (we represent normalized
inputs with lower-case letters).

The set of weights of each neuron are represented either as a weight vector
−→
W i

or a prototype vector
−→
T i . The activation functions depicted above each neuron

represent the preliminary output Oj of neuron Oj , in terms, f(), of its net-input

(||
−→
T j

→
I
|| , see section 2). Here, the WTA operation takes place through an altered

version of eq.6:

O∗ = Oj / ∀k �= j f

(
||

−→
T j

→
I
||, sj

)
> f(

(
||

−→
T k

→
I
||, sk

)
(8)

In this equation, activation functions, f(), are shifted according to the value

of s (see section 2). When pattern
→
I1 is input to the network (Fig.3.b.1), the

projections of prototypes
−→
T 1 ,

−→
T 2 and

−→
T 3 over

→
I1 (Fig.3.b.2) are calculated.

After applying the activation function to these projections, and after calcu-
lating the greatest output, we obtain that the winning neuron is O1. According
to the WTA, O1 output is set to one while remaining neurons’ outputs are set
to zero. This kind of operation is far from biological because competition is
produced, not as the result of the networks dynamics but due to an external
algorithm that evaluates which is the higher output neuron.
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Before presenting the second pattern
→
I2 , notice that prototypes

−→
T j have

changed (Fig.3.c.2).
This is because the pre-synaptic rule makes weights w1j from active inputs

ij to O1 (the winning neuron) increase, and weights from active inputs to non-
active neurons, O2 and O3, be reduced.

Weights from null inputs to non-winning neurons remain the same. The result

of this process of weights changing is that vector
−→
T 1 evolves towards

−→
I1 and

vectors
−→
T 2 and

−→
T 3 towards a plane orthogonal to

−→
T 1 (in gray).

In a case of having more neurons in the second layer, all non-winning pro-

totypes,
−→
T j , move towards a plane that is orthogonal plane to the winning

prototype. The situation of the weights just before a second input-pattern
−→
I2 is

presented to the network is shown in Fig.3.c.1.
Due to intrinsic plasticity, the activation curve of neuron O1 is shifted right-

wards, while the activation curves of neurons O2 and O3 are shifted leftwards.
Thicker connections correspond to previously reinforced ones.

When a second pattern
−→
I2 is input to the network, projection of

−→
T 1 over

−→
I2

is greater than projection of
−→
T 2 over

−→
I2 (see Fig. 3.c.2), due to the higher value

of O1 neuron’s weights. In this conditions O1 (in gray) wins again.

After several presentations of
−→
I1 and

−→
I2 , neuron O1 weights continue in-

creasing as shown in Figure 3.d.1 and 3.d.2.
On the other hand, neuron O2 weights decrease. With higher weights, neuron

O1 will be the winner in future competitions unless other neuron property acts
in the opposite direction. This problem is solved with intrinsic plasticity that
helps remaining neurons to win by making neuron O1 less sensitive and neurons
O2 and O3 more sensitive due to the shift of the activation function. This allows

that O2 output, O2 = f

(
||

−→
T 2

→
I2

||, s2
)
, becomes greater than any other neuron’s

output, O2 = f

(
||

−→
T j

→
I2

||, sj
)
, so that O1 finally fails to win the competition

that is won by neuron O2, as depicted in Figure 3.e.1.
Figures 3.f.1 and 3.f.2 show the neuron’s weights after many epochs of patterns

−→
I1 and

−→
I2 .

When pattern
−→
I2 is presented and O2 wins the competition, weights from

non-zero inputs to neuron O2 are reinforced so that ||
−→
T 2 || grows, and

−→
T 1 and

−→
T 3 become orthogonal to

−→
T 2 . Along this process, each prototype,

−→
T j , evolves for

representing each category of the input data. This neural network version was
previously used for different purposes like mimicking the illusion of movement
of printed static images [15], identifying the direction of moving objects [10], or
becoming the “nervous system” of a self-learning robot [16].
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3.3 Non-forced WTA Network with Lateral Inhibition

In this case (see Fig.4) the WTA operation is performed without neither the
need of an “external” calculation for identifying the most activated neuron, nor
the need of setting the highest activated neuron to one and remaining ones to
zero. Here, both operations result from the intrinsic dynamics of neurons in
which lateral inhibition, intrinsic plasticity and the pre-synaptic rule are the
main operating factors. This network has the following characteristics: a) in-
trinsic plasticity performing an homeostatic control of neurons’ firing rates, b)
activation curves with steep slopes, c) weights that are modified using the pre-
synaptic rule (as in previous cases), d) lateral inhibition so that each neuron
inhibits its neighbors. Inhibitory weights are kept in fixed value (ranging from
−0.8 to −1).

Fig. 4. Intrinsic plasticity, lateral inhibition and steep slope sigmoids orchestrated for
a genuine natural competitive process leading to pattern classification: see detailed
explanation in section 3.3

This version represents the first stage in our “developing” network in which
the WTA algorithm takes place naturally, emerging from the internal dynamic
of the interacting neurons, without the aid of any kind of external supervi-
sion. The process takes place as follows: Weights start with random, small val-

ues (Fig.4.a). Due to these negligible weights, net-inputs
−→
T j

→
I1

in all neurons are

also negligible and incapable of producing significant outputs. Negligible outputs
make all sigmoidal activation-functions shift leftwards (according to the equa-
tion Sj

t = Sj
t−1/(υ+1) in which outputs are negligible and do not appear in the

equation). Once, all neurons become prone to fire, due to the leftward shift of
sigmoid functions, the most activated neuron (the winner) fires first (O1 in the
example of Fig. 4.b). The firing of this neuron precludes remaining neurons to
fire due to lateral inhibition. This winning neuron will certainly stop winning in
the future because of intrinsic-plasticity shifting its sigmoid rightwards.



The Koniocortex-Like Network: A New Unsupervised Neural Network 171

3.4 Koniocortex-like Network, KLN

Biological neurons engaged in competition processes are never inhibitory as in
previous version. For this reason, in this version we kept them as excitatory but
including among them ancillary inhibitory interneurons. In biology, inhibitory
neurons participates in WTA dynamics for allowing main excitatory neurons to
win or lose the competition.

Fig.5. is a more complete version of the KLN simplified model presented in
Fig.1.d. In the KLN, “B” labeled neurons are inhibitory neurons endowed with
intrinsic plasticity. “S” labeled neurons which are the main neurons engaged
in competition, also have intrinsic plasticity. Since each S contacts a single B,
intrinsic plasticity is concomitantly regulated in both types of neurons. In this
way, when S is highly activated, so it happens with B. In consequence, S reduces
its excitability and B, the inhibitory field surrounding S. This effect allows other
neurons to be the winners in future competitions.

Other neurons with the property of intrinsic plasticity are TC neurons. Single
input/single output neurons, like TC neurons, can use intrinsic plasticity to
remove the mean of a series of input values. When removing the average, patterns
become more uncorrelated and easier to classify.

Fig.5.a shows that each S neuron has a recurrent connection on itself that was
initially intended, not for modeling a real connection, but for allowing a sustained
activation over time in simple rate-code neurons. Recurrent connections are ex-
tremely rare in real neurons. Despite of this, this kind of recurrent connection
was indeed present in the koniocortex (Fig.3,[9]). When analyzing this circum-
stance we noticed that there were many similarities between the “evolved” net
and the koniocortex, and, for this reason, the net was called KLN.

Fig. 5. Architecture of KLN applied to the identification of ten different numerical
characters, each one of them represented in a 5x3 pixel matrix: a detailed explanation
of the graphs is given in the first part of section 3.4
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Another type of neuron with an important role in KLN learning capabilities
is the SB neuron that is important in pattern normalization. Similarly to real
shunting/dividing inter-neurons, SB neurons perform the arithmetical summa-
tion of its inputs (TC outputs), dividing the activation of its target neurons (the
S neurons) by this quantity. Although rare, this type of operation is feasible in
the real koniocortex [9]. As this operation is far different from other neurons
operation, its calculation was performed separately and will not be represented
in the bottom-right graph of Fig.6.

The KLN was tested in pattern classification tasks like the one of recogniz-
ing numerical characters (Fig.6). Numbers are represented in a 5x3 grid and
inputted to the network in each iteration. This KLN (Fig.5) has 15 neurons in
its input layer, 15 neurons’ in its TC layer, 10 neuron’s in the S layer, and 10
neurons in the upper B layer. Once the number is fed to the network, its ac-
tivation is “propagated” until all layers are activated. One thousand iterations
(100 iterations for each pattern) were sufficient for the network to correctly sep-
arate all numbers, so that at the end of training, each S neuron strongly fires
for a specific numerical pattern, while remaining neurons keep almost inactive.
This WTA process occurs naturally as an emergent consequence of the individ-
ual computation of each neuron without the need of externally monitoring the
network. Besides lateral inhibition, intrinsic plasticity is determinant for this to
happen, being this fact the main characteristic of the model.

Fig. 6. KLN Matlab simulation, for identifying ten different numerical characters: a
detailed explanation of the graphs is given in the second part of section 3.4
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Fig.5.b shows an auxiliary network that runs in parallel with the KLN. The
main function of this network is to show, at the end of training, each of the
numbers that were associated with each S winning neuron. As a unique S neuron
fires each time, this auxiliary network is able to associate without crosstalk each
S with each input pattern, allowing the visualization of the pattern associated
with each S neuron. The “virtual” weights of this “virtual” (or auxiliary) network
are represented by the green tiles in each grid of Fig.6. Weights from TC to S
neurons are also shown in the same graph (represented as little yellow squares
inside the tiles).

The top-left graph of Fig.6 shows that, at the end of 1, 000 iterations, each
neuron fires for a specific number. In this way neuron S1 fires for number 2, S2

for number 5, S3 for 9, S4 for 0, S5 for 8, S6 for 6, S7 for 4, S8 for 3, S9 for 7
and S10 for 1.

We tested the adaptation capacity of the network by substituting a pattern
during the training phase (see Fig.6: top-right): pattern “zero” was substituted
by pattern “X” from iteration 1, 001 to iteration 2, 000. At iteration 2, 000 a
complete reorganization of the network took place. S1 that encoded number 2,
came to encode character X, and S4 that encoded a zero now came to encode
number 2.

From iteration 2, 001 ahead (see Fig.6: bottom-left), the initial set of train-
ing patterns was replaced back and used again. At iteration 3, 000, all neurons
correctly encoded the numbers showing the potentiality of the network during
continuous learning.

Bottom-right graph shows the output of all neurons during the last two epochs
(iterations 2, 981 to iteration 3, 000). Each ribbon represents the response of
each of the 50 neuron along these iterations (the output of the SB neuron is
not represented because it was calculated differently from the other neurons).
Competition between S neurons is easily seen in this graph (see ribbons 30 to
40) because S neuron’s output are uncorrelated.

In this simulation, υ was set to 0.025 and ξ to 0.001. The initial sigmoid
shift was 0.5. Initial weights from TC to S neurons were negligible and random.
Non-modifiable weights were set to WSS = 0.85, WSB = 0.98, WITC = 1.0 and
WBS = 0.5.

4 Conclusions

In this work, an initially non-biological double-layered network was developed
through different stages so that non-biological characteristics were gradually sub-
stituted by biological homeostatic ones, like metaplasticity and intrinsic plastic-
ity. Lateral inhibition was also introduced to allow competition between second
layer neurons: first through direct connections between competing neurons, and,
afterwards via inhibitory inter-neurons. Differently from previous WTA mod-
els, in the KLN lateral inhibition acts synergistically with synaptic and intrinsic
plasticity so that WTA dynamics and learning contribute to make each other
possible. With successive improvements, the net-work becomes very similar to
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the koniocortex. As shown in the simulation, in which the KLN is applied to rec-
ognize numerical characters, competition and learning emerge from individual
neurons properties, without the need of any external supervisor.
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Abstract. Medical institutions are increasingly aware of the vast amount
of available data they have and its potential benefits. These data are be-
ing analyzed and shared at institutions all around the world, however, the
way the data are stored, managed and secured need for new technological
solutions to facilitate its consumption and sharing between institutions.
This situation has become a technological challenge for the interoperabil-
ity, data mining and Big Data fields. Neuroimaging community is one of
the most active in looking for effective solutions, like the XNAT project
which aims for neuroimaging data acquisition, management and process-
ing. This paper shows the ongoing effort to develop a Semantic Framework
to facilitate multidimensional data analysis based on XNAT architecture.

Introduction

Alzheimer’s disease (AD) and other neurodegenerative dementias reduce patient
and caregiver quality of life and increase health costs to society but are difficult
to identify at early stages. Therefore its diagnosis is very important for effective
treatment and patient care [1]. Multimodality noninvasive MRI is the principal
diagnostic imaging modality for neurological diseases due to superb soft tissue
contrast combined with high spatial resolution. Further, novel functional and
structural MR based imaging enable new insights into the pathophysiology of
the disease. One of the main challenges of neuroimaging is high-level image in-
terpretation, which requires further processing beyond segmentation and object
detection [2]. Multi-dimensional biomedical data analysis is a growing topic, not
only within clinical research field, but also within clinical practice, because it
helps in the process of finding new biomarkers with the aim of facilitating early
diagnosis and prognosis for neurological diseases. Also Big Data technologies are
allowing to look deeper and more efficiently into the vast amount of research
and clinical data [3].

It is common that these projects are carried out in a multi-center and/or in-
ternational environment, where data is spread over different institutions, with
a common need for an efficient mean of data exchange. Sometimes a hub infor-
mation system or database is deployed for the needs, other times each center
has already set up its own information system, which adds complexity and the
necessity to build interoperable services for inter-center data exchange. One of

c© Springer International Publishing Switzerland 2015
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the challenges of the application of bioinformatics in these heterogeneous data
source scenario is the accurate exchange of data, which needs at least some com-
mon structure or standardization. This can be accomplished through the use of
ontologies.

Ontologies offer a solution to code the domain knowledge so it can be machine-
readable. In the biomedical domain the main use is to serve as a way to relate
domain knowledge to a great amount of data stored in databases. However,
its capabilities go far beyond data relation, it has applications in any complex
knowledge intensive task, like radiological assistance [4], surgical planning [5,6] or
clinical management [7] and patient care systems [8]. There exists a great quan-
tity of biomedical data and models thanks to international efforts like NCBO
[9] Bioportal [10] and Open Biological and Biomedical Ontologies [11]. Many of
them based on Semantic Web technologies like OWL1 for domain models and
RDF2/SPARQL3 for the data storing and linking.

Using these resources with Linked Data principles enables to easily access
and process biomedical data with many purposes. There are two great examples
which are fundamental for the knowledge framework: the Gene Ontology, which
have allowed many researchers to store and share valuable genotypic data serving
multiple aims [12,13], and the Foundational Model of Anatomy (FMA) [14], an
extensive ontological representation of the human anatomy. The FMA has served
as knowledge model for many research projects, like the previously mentioned
[5,6] and [15]. The Mayo Clinic made another great example of the application
of Linked Data principles to its Electronic Health Records [16] with a proof-of-
concept case study leveraging publicly available data from the Linked Open Drug
Data [17] cloud to federated querying for type 2 diabetes patients. The study
highlights several challenges and opportunities in using Semantic Web tools and
technologies within a healthcare setting for enabling clinical and translational
research.

Semantic Web tools and technologies, and in particular W3C’s Linked Open
Data project, is providing unprecedented opportunities by harnessing informa-
tion from publicly available resources, such as Wikipedia and PubMed, and ex-
posing the data as structured RDF that can be queried uniformly via SPARQL.
Not only this provides the capabilities for interlinking and federated querying of
diverse Web-based resources, but also enables fusion of private/local and public
data in very powerful ways.

One of the key aspects for those research projects aiming at data evaluation
is how this data will be gathered, comprising a technological challenge for it-
self. While Semantic Web serves as the foundation of data sharing within the
biomedical domain, it is also important to develop solutions implementing these
standards, either for open access or inter-center and project internal distribution.
Neuroimaging community has invested a vast amount of resources looking into
this issue for many years and one solid example is The Extensible Neuroimaging

1 http://www.w3.org/TR/owl2-primer/
2 http://www.w3.org/TR/rdf-schema/
3 http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/sparql11-query/
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Archive Toolkit (XNAT). It is a software platform designed to facilitate common
management and productivity tasks for neuroimaging and associated data. In
particular, XNAT enables quality-control procedures and provides secure access
to and storage of data [18]. Currently XNAT does not support semantic data-
type definition, but is already making efforts to enable a Semantic infraestructure
which will allow the use of Triple stores, SPARQL and query federation [19].

XNAT system provides a consistent data consumption/update mean through
the use of RESTful Web Services. While this approach is very powerful and
fosters flexibility and modularity for external software development and API
library designs such as PyXNAT [20], it requires a fair amount of programming
to perform complex queries and data retrieval.

Accessing experiment data using the SPARQL endpoint of the semantic frame-
work would allow to write intelligent and semantic aware SPARQL queries, which
can be stored in separated independent files and be executed from any program-
ming language, for example, from R script for statistical analysis of demographic
and genetic data correlation.

Because the expert evaluation process takes into account not only image-based
information, but also the combination of multiple sources of information that
could even be implicit, this work is closely related to information systems and
automated reasoning over large and diverse information sources, which comprise
a set of technological and methodological challenges:

– The creation of a homogenous data access framework built with Semantic
Web technologies, using biomedical ontologies and controlled vocabularies
for knowledge modelling and data schemas.

– The implementation of new software agents to wrap and decouple image-
processing algorithms and expose image feature data as interoperable Web
Services.

– Build inference and data mining services that will consume the already nor-
malized and exposed multidimensional data to perform reasoning, clustering
and correlation analysis to identify hidden/implicit bio-indicators and extend
the WML features to other neurological diseases such as multiple sclerosis
and brain tumours.

Methods

The starting point of this work is to create a semantic environment along XNAT.
This way it will be possible to use all the storing and management capabilities of
XNAT, which will allow us to perform use cases within clinical research projects
and also minimize design and development work. Therefore, XNAT will act as a
central hub for the system and extra custom software modules will be deployed to
be fed from it. We are using Semantic Web technologies (OWL, RDF, SWRL and
SPARQL) to develop the Semantic Framework. As this framework will serve as
a solid terminology base, it is needed a meticulous selection of domain ontologies
and align them for our purposes.
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There are three main lines of work to engage to accomplish such a system: 1)
Developing and integrating a semantic framework along XNAT, 2) aligning the
biomedical domain ontologies and 3) developing pipelines for image processing
integration.

Develop and Integrate a Semantic Framework Along the XNAT
Environment

As stated before, XNAT barely supports semantic descriptions for the data. We
are currently studying the best way to integrate a semantic framework which
will be along XNAT environment.

The easiest way to achieve this goal is by using a D2RQ server instance which
will be connected to XNAT’s PostgreSQL data store, and map each variable
to an ontology term using D2RQ’s mapping language. However, to facilitate
custom extensions and enable reasoning over the triple store is better to look
directly into D2RQ engine instead of the server. Using the D2RQ engine with
Jena API it will be possible to deploy an external triple store, attach a reasoner
to the model, such as Pellet [21], and implement custom web services deployed
inside XNAT to allow semantic data consuming from inside and outside XNAT’s
instance. Figure 1 shows a draft of the modular architecture under development.

This implementation will enable semantic data sharing, using Linked Data
and SPARQL for external module querying.

Biomedical Semantic Design and Ontology Alignment

One of the key aspects for the multi-dimensional data analysis is to understand
which data is being imported to XNAT and its structure. Currently, the main
information sources are a set of research survey forms, modeled as XNAT cus-
tom data-types schemas. These forms gather patient’s phenotypic, cognitive and
genetic data, in particular: patient’s basic information, medical history, physical
examination, cognitive screening, biochemistry and genetic data. The list of in-
formation sources and the set of ontologies used for its semantic modelling are
listed in table 1.

Table 1. Information sources and candidate ontologies

Information source Candidate Ontologies
Patient’s basic information CPRo

Medical history CPRo, Disease Ontology, Cognitive Atlas
Physical examination CPRo, FMA
Cognitive screening Mental State Assessment

Biochemistry Chemical Entities of Biological Interest Ontology
Genetic data Gene Ontology
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Fig. 1. Semantic extension for XNAT environment

In addition to the subject information, there are different image modali-
ties, mainly PET and MRI. This images are annotated using NIDM (http://
nidm.nidash.org/specs/nidm-primer.html ) and FMA.

After identifying a set of candidate ontologies, the next step is to select the
terms which will represent each of the input variables for the semantic mapping.
Instead of performing this task manually, we have developed a semi-automatic
method which takes advantage of one of the Bioportal RESTful web services:
the search endpoint [10]. Half of the process is therefore automatic, only the final
selection is manual.

The method takes two inputs, a XSD schema with the XNAT data type model
(one for each form) to extract the variables to be mapped and the list of selected
ontologies. For each variable a query is sent to Bioportal’s search endpoint with
the list of ontologies, the response is a collection of candidate terms for the
variable, among other related information, such as the ontology in which the
term is defined. The output is a XML file with possible term mappings for each
variable.

http://nidm.nidash.org/specs/nidm-primer.html
http://nidm.nidash.org/specs/nidm-primer.html
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Fig. 2. Search Term Script components

Pipeline Development to Integrate Image Processing and Feature
Extraction Algorithms

XNAT includes a processing platform called Pipeline engine. Pipeline Engine is
a Java-based framework that links sequential activities, human and computer,
into a defined process flow and manages how data moves from step to step in
that flow based on the results of each step. Using the Pipeline engine images
can be processed to extract features which will be included in the data-store for
further processing and correlation.

The system will be tested in a real use case within a clinical assessment re-
search project, which aims to find biomarkers for early detection of dementia
and related cognitive diseases. This project is a real multidimensional data sce-
nario, with multiple image formats and data ranging from cognitive screening
questionnaires to biochemical and genetic profiles.

Results

The final goal of the system is to create a semantic-based neuroimaging frame-
work which will facilitate multidimensional clinical data analysis, easing the
integration of neuroimaging with other information sources like genetic profiles,
biochemistry or cognitive screening.

So far, we have made a revision of current Semantic Web technologies (OWL2,
RDF, SPARQL and SWRL) to master the necessary skills to implement scripts,
services and systems based on semantic data.

Also, we have made an exhaustive revision of current Biomedical ontologies
and vocabularies related to the case of study, such as the Computer-based Patient
Record Ontology (CPRo), the Foundational Model of Anatomy (FMA), the Gene
Ontology, Chemical Entities of Biological Interest Ontology (CHEBI), Mental
State Assessment ontology, Radlex, MESH and UMLNS, the Cognitive Paradigm
Ontology, Disease Ontology, Cognitive Atlas, etc. as well as online public services
from NCBO’s Bioportal.

Regarding the biomedical semantic design and ontology alignment, it is al-
ready available a set of ontologies to model and annotate the data. These on-
tologies are one of the input of the Term Search Script, which is under testing
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Fig. 3. Form mapping and ontology alignment diagram

before the final term selection is validated. An example of this design process is
shown in figure 3, where diseases from the patient’s medical history are mapped
to Disease Ontology terms (DOID) which has been aligned with CPR ontology
to express the diagnosis relation.

It is under study the semantic framework integration as well, which will be
placed along XNAT environment. D2RQ engine is the best option to obtain
real-time RDF data, therefore we have made a first set of mappings like the one
shown in figure 4.

Fig. 4. A sample mapping for subjets in D2RQ mapping language

Currently we are revising the programming techniques to access and manipu-
late the semantic model mapped from the database, to enable external reasoning
and updateable triple store integration.
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Finally, at this point we are also porting a WML feature extraction pipeline
to be integrated in XNAT pipeline module.

Once XNAT and the developed modules are completely integrated, the system
will be capable to:

1. Store a semantic representation of the images and research data.
2. Perform reasoning over the asserted clinical data.
3. Perform statistical analysis and data mining.
4. Provide services for easy data harvesting for external analysis tools and

programs.
5. Provide linked data sharing and interoperable data endpoints.

And, hopefully, expected final results for the use case will be new biomarkers for
early detection both of disease activity, and of disease mechanisms for individual
patients.

Conclusion

Data heterogeneity and integration represent a technological challenge for cur-
rent biomedical research and clinical evaluation. Aware of this issue, biomedical
community has been looking into vocabularies and ontologies for many years. Se-
mantic Web Ontologies offer a way to formally describe the data and its relations
using a logic based language, which reduce data ambiguity. Another problem is
the need for effective platforms for data gathering, processing and sharing, this
is being approached by the neuroimaging community with platforms such as
XNAT.

We have started the developing of an Integrated Semantic Framework for mul-
tidimensional data analysis which is based on these principles takes advantage
of the XNAT software, allowing us to focus on data modelling and consumption.
Available OBO ontologies deliver a sound formal and widely accepted model,
a properly aligned set of these ontologies is the main data model. The map-
ping and alignment process is semi-automatic thanks to a method which uses
the Bioportal Ontology Term Search endpoint. D2RQ engine is the middleware
layer which maps the raw data stored in XNAT’s database to ontology classes
and properties of our semantic framework. This layer enables reasoning over the
data and its sharing using SPARQL and Linked Data. The Semantic Frame-
work will allow to perform intelligent, semantic aware and weak-typed queries,
easing the integration of neuroimaging with other information sources like ge-
netic profiles, biochemistry or cognitive screening and the data consumption for
multidimensional data analysis.
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Abstract. Hallucinations, and more specifically auditory hallucinations
(AH), are a perplexing phenomena experienced by many people. Though
they are a clinical symptom in some mental diseases, such as Schizophre-
nia, they are also experienced by normal, healthy persons. There are
several models of the mechanics happening in the brain leading to hallu-
cinations, which involve auditory, language and emotion regions. On the
other hand, there is not much empirical evidence due to the evanescence
of the phenomena, and the difficulty to capture meaningful data. Recent
works on resting state functional Magnetic Resonance Imaging (rs-fMRI)
data, are providing confirmation of some brain localizations. Dynamic
Causal Modeling (DCM) provides estimations of neural effective connec-
tivity parameters from the experimental fMRI data, and recently has
been proposed to work on rs-fMRI data. We provide preliminar results
on a dataset that recently has been useful to find confirmation of AH
model effects.

1 Introduction

Advances in neuroimaging have made the study of the brain more accessible,
bringing more extensive and detailed information. New discoveries about brain
networks and its behaviors offer an enhanced understanding of several neural
conditions that have been quite obscure until now. In this new research environ-
ment, the pathophisiological models of neural conditions have been reformulated
in order to integrate all the recent knowledge. However, these models are still
quite simplistic as there is little room for experimentation in this area due to
legal and ethical constraints.

Hallucinations are neural conditions of strong public interest, specially Audi-
tory Hallucinations (AH), whose modeling has experienced a remarkable advance
in the late years. Hallucinations are a particularly complex phenomena, involv-
ing complex interaction of many brain areas. The specific characteristics of each
type of hallucination makes it difficult to achieve a unique model. Hallucina-
tions cannot be observed from outside the patient and, therefore, need some
kind of feedback from the studied individual potentially lowering the accuracy
of the extracted data due to subjectivity. Computational models offering predic-
tions that can be validated against real data, perhaps constructed following the
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paradigm of multi-agent system modeling [8,15,11] where agent interaction mim-
ics the functional connection between brain regions leading to the generation of
hallucinations, are highly desirable. However, there is only one approach right
now that may provide some insights into the dynamics of the brain connectivity
from empirical data. This approach is the Dynamic Causal Model [3]provided
in the SPM package for neuroimage processing. This approach was initially pro-
posed for task oriented fMRI experiments, but recently it has been proposed for
rs-fMRI [4].

Intended Contribution. The aim of the work in this article, which is in its initial
stages, is to search into the effective connections that can be discovered from
rs-fMRI data looking for differences between people with and without AH. The
dataset already explored [2] to find discriminant features has been analysed by
the DCM approach, with some difficulties because the program is not tailored for
dealing with rs-fMRI, despite recent claims [4]. We report results showing some
differences between hallucinating and non-hallucinating subjects. The paper con-
tents are as follows: Section 2 provides some background information. Section
3 comments the the abstract functional model. Section 4 presents a detailed
anatomical model. Section 5 gives a short review of DCM. Section 6 provides
preliminar results of ongoing analysis. Section 7 gives some conclusions.

2 Background

Definition of AH. Hallucinations are defined as any perceptual experience in the
absence of external stimuli and sufficiently compelling to resemble a veridical
perception. They may involve any sense. They are often regarded as a symp-
tom of mental illness, but they are not necessarily clinical [1]. Auditory (AH)
and visual hallucinations (VH) are most prevalent in psychiatric disorders, but
auditory verbal hallucinations (AVH) are not uncommon in the general healthy
population, with prevalence estimates ranging between 3 and 15% [6,14]. The
most widely studied patient group suffering AH are the schizophrenia patients
[9,13,7], although some studies have been carried in other clinical patients [12,1]
and healthy individuals with hallucinations [14]. It has been proposed that com-
parison of patients and healthy persons with a history of hallucinations may
allow to identify a hallucination brain fingerpring which will help to understand
further complex psychiatric illnesses who have hallucinations as a core symptom
[6]. In this article we focus our work on AH as they are the most widely present in
the variety of mental conditions where hallucinations have been reported, both
clinical and non clinical.

Evidences in the Literature. The mechanism of AH generation are not clear
yet. Nonetheless, they seem to involve several alterations in grey matter volume,
activation, and functional connectivity of a brain regions’ network [1]. One of
the most widely studied aspects of hallucination prone brains is lateralization.
Several studies have reported a reversed lateralization of cerebral activity dur-
ing AVH, showing right inferior frontal activation when left could be expected,
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because the left-hemisphere is more relevant than the right in language produc-
tion in most right-handed subjects. fMRI studies have shown that the stronger
the right lateralization was the stronger negative emotional content of the AVH
[13]. It has been observed that the right ear advantage (REA) is attenuated in
schizophrenia patients, being more predominant in patients with hallucinations
[6] implying that left language regions are always “tuned in” to the aberrant
signals, and are, therefore, already engaged in processing. Furthermore, patients
with AH showed difficulties in shifting the attention to the opposite ear, which
implies a difficulty in achieving top-down executive control [14]. Many stud-
ies found aberrant activation from emotional attention centers and attenuated
activation in areas involved in monitoring processes, such as dorsal anterior cin-
gulate, supplementary motor area, and cerebellum [1].

Hallucination Models. Eearly models contemplate AH as examples of either
inner speech misattribution or traumatic memories. These two points of view are
especially oriented to explain auditory verbal hallucinations, so that whereas one
proposes that AVH are a misattribution of patient’s own inner speech, the other
looks at AVH as an automatic, or unintentional actualization of memories which
the patient fails to inhibit. Nevertheless, both fail to explain all the variations in
the hallucination experiences, as some patients can hear a voice they can identify
but it is not their own, while others hear benevolent voices narrating their lives.
Thereby, new cognitive models present AH as both an aberrant activation of
perception and a failure of inhibition control [6,14].

3 Abstract Functional Model

The functional model encompasses six areas, which can be divided in three
main groups: emotional regulation/attention and memory related areas, self-
monitoring/inhibition areas, and audio/language processing related areas. Com-
paring the hallucinating and non-hallucinating brains two important differences
can be highlighted. On the one hand, aberrant hyper-activation has been found in
the emotional regulation/attention and memory related areas, probably related
to the common memory triggers and strong emotions contents usually present in
the hallucinations. On the other hand, lesser activation has been found in self-
monitoring/ inhibition areas, explaining the monitoring error that impedes the
brain to recognize thought and sensations as self generated and the weaker capa-
bility of many patients to ignore the hallucinations. Audio/language processing
related areas, however, have been reported function similar to the response to a
real external signal, but with abnormal activations of language related areas of
the left hemisphere.

Therefore, the hallucinating signal is expected to originate in the auditory
cortex, triggering the language related areas and being amplified by the emo-
tional regulation/memory related areas. As the monitoring/inhibition areas fail
to recognize the signal as self-originated due their under-activation, the phrases
and voices are sharped, giving the patient the same experience as in the case of
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Fig. 1. Abstract functional model of the brain fucntional interactions while experiencing
an auditory hallucination. The arrows indicate the general expected hallucinating signal
path, starting in the auditory cortex and traveling to emotional regulation/attention,
language related and monitoring areas. The areas with thicker border are more activated
in the hallucination prone brain, while areas with discontinued border are less activated.

hearing a real voice outside they head. Figure 1 contains a graphic representation
of the functional model with the expected signal behavior.

Regarding inter-area connections some differences have been reported between
the non-hallucinating and the hallucinating brain, considering bidirectional con-
nections. These differences lay in the strength of the said connection. However,
they can be hardly labeled as stronger or weaker as they vary regarding which
specific anatomic areas they concern. Strength differences have been observed
in the connections from audio processing/language related areas and emotional
regulation/attention areas to every other area. Also, from monitoring and inhi-
bition areas to every other area except the memory related one. The model in
figure 1 tries to represent the “default” faulty network of a hallucination prone
brain, not the event of experiencing the hallucination.

4 Anatomical Model

Some areas appear in most reports and reviews, mostly frontal and subcorti-
cal areas. In the frontal areas, the left frontal operculum, both Broca’s area
and Broca’s homologue, dorsolateral gyrus, right orbitofrontal gyrus, left middle
frontal gyrus, and right precentral have been highlighted. Whereas in the sub-
cortical areas, special interest has been reported in the right putamen, cingulate
(with particular interest to anterior cingulate, and left ventral and dorsal an-
terior cingulate, separately), hippocampal and right parahippocampal regions,
right thalamus, and right amygdala. In other areas, such as parietal, tempo-
ral and temporoparietal ones, fewer effects have been observed. These have been
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(a) The anatomical model undelying
the abstract functional model.

(b) The simplified model for DCM.

Fig. 2. The detailed and simplified anatomical models of functional connections

superior temporal gyrus; left superior parietal, right postcentral gyrus, and Wer-
nicke’s area from the parietal; and Heschl’s gyrus, temporoparietal gyrus, and
insula. However, some of them, such as Heschl’s gyrus and superior temporal
gyrus have been widely studied, as they are hypothesized to be of importance
in the hallucination mechanisms. More specifically, in studies that capture the
data while patient is experiencing the hallucinations, mostly temporal areas have
been reported to activate, together with abnormal anterior cingulate activation.
Figure 2a shows the graph of connections between anatomical areas there are
shown every considered area and the correspondent connections, with the areas
colour coded as follows: light blue for temporoparietal, dark blue for fontal, black
for parietal, and purple for temporal. Continuous line connections are stronger
in the hallucinating brain, while dotted connections are weaker ones. Obr, or-
bitofrontal gyrus; DL, frontal dorsolateral gyrus; MF, middle frontal gyrus; PreC,
precentral gyrus, B, Broca’s area; FO, frontal operculum; SP, superior parietal;
W, Wernickles area; PostC, postcentral gyrus; A, amygdala; T, Thalamus; P,
putamen; V, ventral anterior anterior cingulate; D, dorsal anterior cingulate;
H, hippocampus; Ph, parahippocamus; I, insula; Hl, Heschl’s gyrus; TP, Tem-
poroparietal gyrus; ST, superior temporal.

Regarding functional connectivity, the most studied seed areas have been su-
perior temporal gyrus and Heschl’s gyrus (auditive area) [10]. In the hallucinat-
ing brain, the superior temporal gyrus has been found to have weaker connec-
tions with left frontal operculum, dorsolateral frontal gyrus, left dorso anterior
cingulate, cerebellum, and hippocampus, while being more strongly connected to
Broca’s area, ventral anterior cingulate, and Heschl’s gyrus. On the other hand,
the Heschl’s gyrus of the hallucinating brain has connections of greater strength to
most evaluated frontal areas, save the frontal operculum and dorsolateral gyrus,
and it is more disconnected from some subcortical areas such as hippocampus,
parahippocampus, and thalamus, but with stronger connection with cingulate.
Regarding the rest of the connections it is to notice that temporo parietal gyrus
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has been reported to have less connections with Broca’s homologue, anterior cin-
gulate and amygdala. Wernickle’s area, in the other hand, is strongly connected to
putamen and inferior frontal areas. Figure 2b displays the simplified model that
is being fitted by DCM to model the data. It is based on the results reported in
[2] regarding the connectivity discriminant analysis of the data.

5 Dynamic Causal Modeling

Dynamic Causal Modeling (DCM) was proposed as a bayesian estimation frame-
work for the effective connectivity between brain regions in the framework of
fMRI cognitive experiments [3]. In essence it consists of a bilinear dynamic model
of the neural dynamics, which is convolved with the hemodynamic response func-
tion in the case of fMRI for a better model fitting, but can be applied as such
to electroencephalogram (EEG) data. The methodology has evolved during its
application to several cases. Recently [5], the model was enlarged to take into
account also the phase-delay information, i.e. computing the cross-correlation of
spectra (cross-spectra) the result has real and imaginary parts. The real part is
the so called coherence, that measures the agreement between the sources. The
imaginary part contains information about the time lags between the sources.
Formally, the DCM neural dynamics model (before the hemodynamic adjust-
ments) has the form:

ẋ (t) = Ax (t) +Bv (t)

where x (t) is the n-dimensional column vector of hidden neuronal states for
the n brain regions considered, A is the time invariant matrix of interactions
or effective connectivity between brain regions, v (t) is a vector of exogenous
influences and endogenous influences, and B is the time invariant matrix of
effects of these influences on the brain regions. The current DCM approach
performs a bayesian estimation of the parameters in the spectral representation
Y (ω) = K (ω) · V (ω) + E (ω) according to conventional assumptions, such as
the spectral density [4] of the form:

gv (ω, θ) = αvω
−βv + gu (ω, θ)

ge (ω, θ) = αeω
−βe .

Such model covers many forms of noise, including exogenous variates that can be
deterministic gu (ω, θ) = F (C · u (t)), where F (.) represents the fourier trans-
form. The expected signal spectra is

g (ω, θ) = K (ω) gv (ω, θ) +K∗ (ω) ge (ω, θ) ,

that is a sampling of the true spectra with Gaussian error g (ω) = g (ω, θ)+N (ω).
The full generative bayesian model

p (g (ω) , θ) = p (g (ω) |θ ) p (θ |m ) ,

requires the specification of the prior beliefs about the parameter p (θ |m ) dis-
tributions. The complex coherence function between two wide-sense stationary
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can be factorized into the correaltion between the signal amplitudes and the
dispersion of the phase-differences [5]:

Cij =
〈αiαj〉

〈α2
i 〉

〈
α2
j

〉 × φij ,

where the first term corresponds to the coherence between signal amplitudes and
the second to the phase-delay. We will compare the populations on the basis of
the inspection of the these quantities for all brain regions selected.

6 Some Experimental Results

The implementation in SPM1 of DCM is oriented towards data resulting from
some cognitive experimental design. Despite the claim in [4] that it can be ap-
plied to rs-fMRI, there actual process is not automatic. SPM proposes a first
level analysis to identify the volumes of interest (VOI), which we have already
identified in previous works [2]. To find the VOIs, the GLM needs some ex-
perimental design wich is lacking in rs-fMRI, so we specified the VOI selection
described in figure 2b, running DCM for each subject, performing a population
averaging of the results to find population differences. The dataset has been
already described in [2,10], as well as its preprocessing.We focus on the differ-
ences between subjects with a history of AH versus those without. Figure 3 gives
the connectivity results between areas, which are very similar for both popula-
tions. There are some slight differences in the connectivity between ST and IF in

(a) (b)

Fig. 3. Connectivity results of subjects with AH (a) and without (b). IF Inferior frontal,
AC Anterior cingulate, ST Superior temporal, SA Subcortical areas.

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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(a) (b)

Fig. 4. Coherence and delay effects between regions for the AH (a) and nAH (b) sub-
jects. IF Inferior frontal, AC Anterior cingulate, ST Superior temporal, SA Subcortical
areas. Upper triangle of plots corresponds to coherence, lower triangle to delays.

both populations, which is stronger in the non hallucinating subjects, implying
a stronger control of perception. Figure 4 give the average coherence and delays
of AH and nAH populations. Looking at the delays, we find strong differences
in all plots between populations, except in the connection from superior tempo-
ral and subcortical area with inferior frontal region. The remaining differences
point towards the existence of different timing mechanisms in the hallucinating
and non-hallucinating brain which deserve further exploration with neurological
experts. On the other hand there are no differences in coherence that can be
appreciated.

7 Conclusions

Auditory hallucinations (AH) have a high prevalence both in healthy and dis-
eased populations. It is a paradoxical phenomena whose understanding may
bring further understanding of the brain mechanisms. There are little empirical
neuroimage evidence of the diverse models of AH generation, so that new av-
enues for research are widely open. In this paper we apply DCM to a rs-fMRI
dataset to find effects of effective connection between regions that have been
identified by previous research as being involved in the discrimination between
hallucinators and non-hallucinators. The application of DCM to rs-fMRI is not
immediate, as it has been designed for analysis of cognitive experiment data.
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Nevertheless, we have found interesting differences in the the phase-delay be-
tween Anterior Cingulate, Superior Temporal and SubCortical Areas suggesting
that effective connectivity delays maybe at the root of the difference between
the hallucinator and non-hallucinator brain.
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Abstract. This paper analyzes the filtering operation carried out by
the classical Difference-of-Gaussians model proposed by Rodieck to de-
scribe the receptive fields of retinal ganglion cells. Discrete DoG kernels of
such functions were developed and compared with High-Pass and High-
Frequency Enhancing filters. The results suggest that the DoG Kernels
behave as High-Frequency Enhancing filters but in a limited band of
frequencies.

Keywords: Retina · Difference of Gaussians · High-pass Filtering ·
High-Frequency Enhancing Filtering

1 Introduction

The term receptive field (RF) in the visual system was classically defined as
a two-dimensional region in visual space where a luminous stimulus triggers a
change in response on that neuron [1]. The concept was first applied to the retina
to describe the area in which a stimulus drove responses of retinal ganglion cells
(RGCs). Later on, Kuffler found that RGCs show RFs with a concentric shape
made up of two antagonistic regions: a center, and a surround [2]. Thus, when
a bright stimulus is applied to the center region, the RGCs are excited and
generate a number of action potentials or spikes; and, conversely, when the same
stimulus is applied to the surround, the neuron is inhibited and a weaker or no
response is observed. Thereafter, the RFs of RGCs were characterized by this
center-surround organization.

The center-surround RF is an empirical model that is useful to understand the
spatial organization of the afferent inputs to RGCs but lacks the ability to predict
the neuron’s response to any given stimulus. An important contribution was
later made by Rodieck (1965) by proposing a mathematical model to formally
describe the function that maps the input-output relationship of the RFs of

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 195–202, 2015.
DOI: 10.1007/978-3-319-18914-7_20
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RGCs. The proposed relationship was the sum of two Gaussian functions: a
positive one, representing the center, and a wider negative one representing the
surround, both centered at the same point. This model was called the Difference-
of-Gaussians (DoG) model and has been used to represent the RFs of RGCs ever
since.

The parameters of the DoG model for RGCs were first estimated by Enroth-
Cugell and Robson (1966, 1984). They recorded responses of ganglion cells to
sinusoidal stimuli and fitted the model against contrast sensitivity curves that
were obtained experimentally. For each recorded RGC, a DoG model was fitted
and their parameters, the radius and maximum amplitudes of both the center
and surround Gaussians, were estimated. As the individual estimated contrast
sensitivity curves fitted nicely with the experimental ones, the results provided
a strong support for the DoG model as a useful function to describe the center-
surround RFs of RGCs.

The issue about the information processing capabilities of a DoG function was
subsequently assessed by Marr and Hildreth [6]. They proposed a very influential
theory of edge detection on the basis of an analysis of intensity changes which
occur in natural images as well as the appropriate filters to signal those changes.
Intensity changes or edges could best be detected by finding the zero values of the
second derivative, or the Laplacian, of a Gaussian. Moreover, they showed that
an accurate approximation of the Laplacian of a Gaussian could be developed
by using a DoG function with an appropriate ratio σsurround/σcenter about 1.6.
They concluded that neurons in the visual system with RFs being described by
such DoG functions could indeed work as edge detectors.

Since the landmark work of Marr and Hildreth, RGCs, which determine the
output of the retina, have been understood to perform a kind of edge detection
or sharpening filtering. In fact, different authors have reported evidence about
the existence of RGCs of the type of Local Edge Detectors in Cats, Rabbits
and even Primates [7,8,9]. Moreover, in the field of image processing, discrete
kernels derived from DoG functions are usually characterized as high-pass filters
[10]. However, it is interesting to note that there was no previous attempt to
analyze what is the filtering carried out by the DoG models that were obtained
experimentally by Enroth-Cugell and Robson. In this paper we aim at analyzing
the information processing capabilities of different versions of the original DoG
model and test to what extent it behaves as a canonical edge detector.

2 Methods

2.1 Parameters of the DoG model

The Difference-of-Gaussians model is made up with two gaussians: the first one
representing the excitatory center of the RF, the second one the inhibitory sur-
round of the RF. The function as it was used by Enroth-Cugell and Robson [4,5],
was formalized as follows:

DoG(r) = kce
−(r/rc)

2 − kse
−(r/rc)

2

(1)
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being the relevant parameters: the maximum amplitudes kc and ks, and the
radius rc and rs. For each RGC, 17 cells reported in Enroth-Cugell and Robson
(1966) and 6 in Enroth-Cugell and Robson (1984), the theoretical contrast sensi-
tivity function derived from the DoG model was fitted to the empirical contrast
sensitivity function measured at different spatial frequencies. As a result, a set
of parameters (rc, rs, rs/rc, and ksr

2
s/kcr

2
c ) were estimated for each cell. For

brevity these parameters are not shown here but can be found in the original
papers [4,5].

2.2 Discrete DoG kernels

The continuous DoG functions fitted to experimental data has to be converted
into discrete DoG kernels to operate with input images. In what follows, the four
steps required in that procedure are described.

As the continuous function can take infinite values, the first step consisted
on truncating it in order to set a finite range of values. Figure 1 describes the
process in one dimension. A variable T was defined to determine the width of the
truncation, and an standard rule was followed in order to include the 99, 74% of
the area under the curve of either the center or the surround gaussian. Therefore,
two possible values were considered: T = 3 ∗ rc, or T = 3 ∗ rs.

The second step consists on sampling the continuous function. By setting the
size SxS of the kernel, the number of both the elements of the kernel matrix

Fig. 1. Discretization of the continuous DoG model: truncation (upper inset), sampling
(middle inset), and normalization (lower inset)
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as well as the sampling points of the continuous DoG function are set. Both
variables T and S define the step of the sampling process:

Step =
2T

S − 1
(2)

After the convolution of the input image with the discrete kernel, the output
image has to preserve the intensity ranges of the input. The third step there-
fore involves the normalization of the elements of the DoG kernel matrix. Each
element or weight wij of the matrix is normalized as follows:

wnorm
ij =

wij

ΣiΣjwij
(3)

Finally, the goodness of the discretization procedure has been assessed by
fitting back the normalized discrete DoG kernel to the original continuous DoG
function. The Levenberg-Marquart algorithm was used to solve the non-linear
least squares fitting problem. The results (not shown here) confirmed that the
parameter set (rc, rs, rs/rc, and ksr

2
s/kcr

2
c ) is preserved as well as other aspects

of the DoG function.

2.3 Baseline filters

Two filter kernels were chosen to analyze the information processing capabilities
of the discrete DoG kernels described in the previous section. The first one
is the kernel of a typical high-pass filter (HPF), which represents the discrete
version of the second-order derivative or Laplacian operator. The kernel can be
obtained by means of either the coefficients of the second-derivative operation
or by substracting the low-pass filter kernel from the identity kernel (Fig. 2).
HPFs are typically used for edge detection tasks as they signal the location of
edges in the images.

The second kernel belongs to the class of high-frequency enhancing filter
(HFEF), which carries out local contrast enhancement operations. It is a popu-
lar HFEF technique known as unsharp masking widely used in the printing and
photography industry. The kernel is obtained by adding a high-pass filter kernel
to the identity kernel (Fig. 2).

Fig. 2. Kernels of baseline filters: high-pass filter (left) and unsharp masking HFEF
(right)
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2.4 Image processing and kernel analysis

A comprehensive python simulation environment was developed to carry out
the discretization procedure as well as the analysis of the kernels presented in
the Results section. The environment takes advantage of some powerful python
libraries, such as: OpenCV, to convolve an image with a kernel; Numpy, to gen-
erate 2D kernels and compute 2D discrete Fourier transforms; Scipy, to solve the
non-linear least squares fitting problem described in section 2.2; and Matplotlib
to plot graphs and view images.

3 Results

The first task was to analyze the behavior of the discrete DoG kernels obtained
for the 23(= 17+6) cells reported by Enroth-Cugell and Robson (see section 2.1).
For each DoG kernel we generated: the kernel representation in both spatial and
frequency domain, the Bode diagram, and the output after convolving the kernel
with an standard test input (Lena image). It can be concluded that all kernels be-
have in a similar way regardless of the discretization parameters used (not shown
here for the sake of brevity). On the basis of this result, only one of the discrete
DoG kernels, which corresponds to cell number 1 of Enroth-Cugell and Robson
(1966), was chosen to make the comparison with the baseline filters.

The comparison with the high-pass filter (HPF) is shown in figure 3 for kernels
of size 25x25. Both kernels in the spatial domain (red pixels indicating positive
values and blue pixels, negative ones) show a positive center and a negative
surround, but the extent as well as the structure of these regions are clearly
different. These differences are made explicit when the kernels are represented
in the frequency domain (Fig. 3, second row). The 2D Fourier spectrum of the
DoG kernel in a dB/log scale (red pixels indicating positive coefficients; blue
pixels indicating negative ones) shows a region of positive coefficients starting
from the center point (DC coefficient) that progressively change into negative
coefficients at high frequencies. On the contrary, in the HPF kernel the value of
coefficients is negative at low frequencies and positive after a certain threshold
frequency. The effect of the kernel on the frequencies of the input image is better
analyzed by means of the Bode diagrams (Fig. 3, third and fifth rows), which
plots the filter gain for each spatial frequency. It can be seen that (1) the DoG
kernel enhances those frequencies found in a band of frequencies; and (2) the HPF
Kernel removes low-frequencies as well as keeps the gain of high-frequencies. The
image outputs (Fig. 3, fourth and sixth rows), obtained after convolving the input
with the kernels, confirm the different nature of DoG and HPF kernels. The first
one enhances local edges as well as preserves the intensity levels of the rest of
regions, while the second one detects the edges of the image but suppresses all
intensity information of constant regions (black pixels). The transformation of
the intensities at the output is clarified by looking at the intensity profile of
one of the image rows (Fig. 3, fourth and sixth rows). The profile of the DoG
kernel output (green line) follows the original profile of the input (black line)
and stretches the values at the peaks of the curve. The behavior is different for
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Fig. 3. Comparison of DOG kernel with HPF kernel. The DOG kernel corresponds to
cell number 1 of Enroth-Cugell and Robson (1966), parameterized as follows: kc = 100,
ks = 15.9, rc = 0.32, rs = 0.76, SxS = 25x25, T = 3 ∗ rc, and Step = 0.04. The HPF
kernel is of the same size as the DoG kernel. The kernels are represented in the spatial
domain (first row) and the frequency domain (second row). The Bode diagrams (third
and fifth rows) as well as the image outputs and intensity profiles at row = 500 (fourth
and sixth rows) for both kernels are also plotted.
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the HPF kernel output. The baseline is moved down to zero and the positive
values of the curve indicate the location of edge points.

The DoG kernel was also compared with the HFEF kernel, as shown in figure 4
for kernels of size 25x25. The main point here is that both the image outputs
and intensity profiles (Fig. 4, fourth and sixth rows) are very similar, which
might suggest that the behavior of the DoG kernel would belong to the class of
HFEF filters. However, the 2D Fourier spectrum as well as the Bode diagram

Fig. 4. Comparison of DOG kernel with HFEF kernel. The DoG kernel as well as the
analysis plots are the same as shown in 3. The HFEF kernel is of the same size as the
DoG kernel.
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reveals that the kernel features in the frequency domain are somewhat different.
The DoG kernel presents a band-pass behavior whereas the Unsharp HFEF does
enhance the high frequencies in the same manner with no upper limit.

4 Discussion

The results shown in section 3 suggests that the DoG kernels would be better clas-
sified as High-Frequency Enhancing filters rather than High-Pass filters. Our find-
ings indicate that the retinal filters, as components of the first processing stage of
the visual system, would preserve the information related to the intensity levels at
each spatial location. However, the kernel representations at frequency domains
indicate that the DoG kernels focus on some specific band of frequencies and do
not operate on frequencies higher than a certain cut-off value. As the neurons and
circuits of the visual system are fitted to the statistics of natural images, it could
be interpreted that the retinal DoG functions have captured the optimal band of
frequencies that can be found in natural images. This issue as well as the quanti-
tative analysis of the DoG kernels will be assessed in a future work.
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Abstract. At present there is a growing interest in studying emotions in
the brain. However, although in the latest years there have been numer-
ous studies, little is known about their temporal dynamics. Techniques
such as fMRI or PET have very good spatial resolution but poor tempo-
ral resolution and vice-versa in the case of EEG. In this study we propose
to use EEG to gain insight into the spatiotemporal dynamics of emotions
processing with a better time resolution. We conducted an experiment in
which binary classification (like / dislike) of standardized images was per-
formed. Topographic changes in EEG activity were examined in the time
domain. In the spatial dimension, we used a rotating dipole for the spa-
tial location and determination of Cartesian coordinates (x, y and z). Our
results showed a temporal window (424-474msec) with a significant differ-
ence which involved a lateralization (left to very positive stimuli and right
to very negative stimuli) even for neutral stimuli. These results support
the lateralization of brain activity during processing of emotions.

Keywords: EEG Teleservices · Brain-computer interface · Brain area
networks

1 Introduction

The ability to recognize the emotional states is an important part of natural
communication. Emotion plays an important role in human–human communica-
tion and interaction. Considering that, in normal live, we all are surroundedbyma-
chines; the emotional interaction between humans andmachines is one of the most
important challenges in advancedhuman–machine interactionandbrain–computer
interface [1]. For a robust analysis of the affective human–machine interaction, one
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of the most important requisites is to develop a reliable emotion recognition sys-
tem capable to guarantee high recognition accuracy, robustness against artifacts
and adaptability to applications.

Some researchers support the notion of biphasic emotion, which states that
emotion fundamentally stems from varying activation in centrally organized ap-
petitive and defensive motivational systems that have evolved to mediate the
wide range of adaptive behaviors necessary for an organism struggling to survive
in the physical world [2]. In this framework, neuroscientists have made efforts to
determine how the relationship between stimulus input and behavioral output
is mediated though specific, neural circuits that have evolved to organize and
direct adaptive actions [3].

Relatively little is known about the neural temporal dynamics of emotion
processing [4]. The majority of neuroimaging studies are based on methods such
as functional Magnetic Resonance Imaging (fMRI) [5] or Positron Emission To-
mography (PET) [6] with excellent spatial resolution but a very poor temporal
one (in the range of seconds). Conversely, Electroencephalography (EEG) offers
excellent temporal resolution (in the range of milliseconds), thus offering a better
choice to solve the temporal problem.

Among neuroimaging techniques, EEG has demonstrated it can provide
informative characteristics in responses to the emotional states [7]. Since David-
son et al [8] suggested that frontal brain electrical activity was associated with
the experience of positive and negative emotions, the studies of associations be-
tween EEG asymmetry and emotions has received much attention [9]. In other
studies, EEG asymmetry and event-related potentials (indexing a relatively small
proportion of mean EEG activity) were also used to study the association with
emotion [10].

In this study we investigated the temporal dynamics of neural activity associ-
ated to emotions (like/dislike) generated by complex pictures derived from the In-
ternational Affective Picture System (IAPS) [11]. First, we used EEG to solve the
problem of temporal resolution. We evaluated the correspondence between sub-
jective emotional experience induced by the pictures and then the neural signa-
ture derived from the temporal profiles associated with their perception. Finally,
we estimated with rotating dipole and head reconstruction the underlying neural
places in which event-related potentials (ERPs) were generated. The tridimen-
sional location was used for the assessment of changes in the activation of cortical
networks involved in emotion processing. We completed the study by analysis of
lateralization during emotion identification task in the tridimensional space.

Our results i) provide valuable information to understand the temporal dy-
namics of emotions, ii) are coherent with other works [12] about hemispheric
lateralization and iii) introduce locations in the tridimensional space. Therefore,
we suggest that the findings of this study could be useful for the development of
effective and reliable neural interfaces.



Spatio-temporal Dynamics of Images with Emotional Bivalence 205

2 Material and Methods

Participants

Twenty two participants participated in the study (mean age: 24.7; range:
19.7–33; eleven men, eleven women). All participants had no personal history
of neurological or psychiatric illness, drug or alcohol abuse, or current medica-
tion, and they had normal or corrected to normal vision. All of them were right
handed with a laterality quotient of at least + 0.4 (mean 0.8, SD: 0.2) on the
Edinburgh Inventory [13]. All subjects were informed about the aim and design
of the study and gave their written consent for participation.

Stimuli and Validation

A subset of standardized stimuli (144 pictures in total) was preselected from the
IAPS dataset [11]. This is a database that contains a set of normalized emotional
stimuli for experimental investigations of emotion and attention. It contains a
large set of standardized, emotionally-evocative, internationally accessible, color
photographs including contents across a wide range of semantic categories, from
pleasant images (e.g. babies and beautiful animals) to unpleasant images (e.g.
scenes of violence and injuries). Each image was presented with a score (9-1)
concerning their affective valence. Stimuli were presented in color, with equal
luminance and contrast.

The preselected IAPS stimuli were categorized into four groups according to
punctuation IAPS, namely very nice pictures (7< punctuation ≤ 9), nice pictures
(5 < punctuation ≤ 7), unpleasant images (2 < punctuation ≤ 5) and very un-
pleasant images (1 < punctuation ≤ 2). Each group was composed of 36 images.

IAPS pictures were previously scored with American population. In order
to avoid artifacts due to the cultural issue (the participants were Spanish), we
executed a previous study to calibrate the valence of the images with our par-
ticipants. Stimulus categorization was validated in a study including 30 partic-
ipants who did not participate in the main experiment (mean age: 23.3; range:
20.6–31.3; seventeen men, thirteen women). The stimuli were presented one by
one during 1 second followed by a black screen for 3 sec on a 21 inches screen
in random order. Subjects were instructed to give each stimulus a score from
1 to 9 avoiding 5 depending on subjective taste (1: dislike; 9: like). Their ver-
bal response was recorded. Eighty out of the 144 images were selected for the
main EEG experiment based on their new subjective score. Half of them (40)
corresponded to positive images (score >5, CI = 95%) and the other half were
negative images (punctuation <5; CI = 95%).

Procedure

Figure 1 summarizes the serial structure of the study. Each image was presented
for 500msec and followed by a black screen for 3500msec. The participants task
was to view the images and to rate the arousal and valence of their own emotional
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Fig. 1. Experimental design. The sequence of stimuli was presented in continuous mode
by using a commercial stimulus presentation software (STIM2, Compumedics, Char-
lotter, NC, USA).

experience. Pictures score ranged from 1 (very unpleasant) to 9 (very pleasant).
The images appeared randomly and only once.

Data Acquisition

We instructed subjects to remain as immobile as possible, avoiding blinking
during image exposure and trying to keep the gaze toward the monitor center.
EEG data was continuously recorded at a sampling rate of 1000 Hz from 64
locations (FP1, FPZ, FP2, AF3, GND, AF4, F7, F5, F3, F1, FZ, F2, F4, F6,
F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2,
C4, C6, T8, REF, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3,
P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ,
O2, CB2 ) using the international 10/20 system [14]. EEG was recorded via cap-
mounted Ag-AgCl electrodes. A 64-channel NeuroScan SynAmps EEG amplifier
(Compumedics, Charlotte, NC, USA). The impedance of recording electrodes
was monitored for each subject prior to data collection and the threshold were
kept below 25 KΩ. All the recordings were performed in a silent room with soft
lighting.

Signal processing was performed with the help of Curry 7 (Compumedics,
Charlotte, NC, USA). Data were re-referenced to a Common Average Reference
(CAR) because the statistical and analysis methods required CAR. EEG signals
were filtered using a 45 Hz low-pass and a high-pass 0.5 Hz filters.

Electrical artifacts due to motion, eye blinking, etc. were corrected. They were
identified as signal levels above 75μV in the 5 frontal electrodes (FP1, FPZ, FP2,
AF3 and AF4). These electrodes were chosen because they are the most affected
by potential involuntary movements. The time interval for artifact detection
was from (-200msec, +500msec) from stimulus onset. The detected artifacts
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were corrected using Principal Component Analysis (PCA). PCA is a classical
technique in statistical data analysis, feature extraction and data reduction [15].

EEG data in the interval (-100, 1000) msec from stimulus onset were analyzed
in this study. For each person, records were separated into 8 subgroups according
to their given score (9, 8, 7, 6, 4, 3, 2, and 1). In turns, subgroups for dipole
analysis were grouped into 4 groups as shown in Table 1.

Table 1. Separation of subjective scores into 4 groups for all people. Dipole separation
performed for reconstruction using the mean of all people.

Statistical Analyses

To constrain our analysis, we used an approach that has been widely used in
psychophysiology: the examination of topographic changes in EEG activity (see
[16] for an overview and [17]). This approach considers whole-scalp EEG activity
elicited by a stimulus as a finite set of alternating spatially stable activation
patterns, which reflect a succession of information processing stages. Differences
in topographic patterns of activity between conditions were assessed using the
Curry 7 software.

There are two main reasons why we used this analysis rather than the more
traditional which is based on the assessment of amplitudes and latencies of a
set of predefined ERP components. First, it takes into consideration the entire
time course of activity and the entire pattern of activation across the scalp by
testing the global field power from all electrodes (see for further explanation
[18]). Second, this approach is able to detect not only differences in amplitude,
but also differences in underlying sources of activity. The latter is based on the
fact that maps that are confirmed to be both spatially and temporally different
must necessarily be the product of a different set of generators. However, we
emphasize that the analysis of topography changes is not incompatible with the
analysis of traditional ERPs.

As recommended, topographical differences were tested through a non-
parametric randomization test known as TANOVA (Topographic ANOVA).
TANOVA tests for differences in global dissimilarity of EEG activity between
two conditions by assessing whether the topographies are significantly different
from each other on a time point-by-time point basis. TANOVA were performed
to assess differences in activation patterns between different groups of images by
subjective scoring. TANOVA is sufficient to indicate the time windows of inter-
est for further analysis dipole. In this study, the significance level is α=0.01. As
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suggested by [19], the corresponding required number of repetitions was chosen
to be p> 1000. Map normalization was used for the difference tests, such that
the MGFP per map was equal to 1.

The dipole source localization (DSL) solves the EEG inverse problem by using
a nonlinear multidimensional minimization procedure that estimates the dipole
parameters that best explain the observed scalp potentials in a least-square
sense. In this process, we assume that EEG is generated by one or no more than
few focal sources. The dipole source model can be further classified as moving,
fixing or rotating dipoles depending on the degree of freedom of parameters. In
our study we used a rotating dipole, that may be viewed as two independent
dipoles whose orientation is allowed to vary with time [20].

Boundary Element Method (BEM) was used in the head reconstruction since
it permits to locate the source dipoles. Thus BEM models are superior in non-
spherical parts of the head like temporal and frontal lobe or basal parts of the
head, where spherical models exhibit systematic localizations of up to 30mm [21].

Fig. 2. Time points of significant differences in EEG activity for the 8 contrasts (9, 8,
7, 6, 4, 3, 2 and 1). It is as indicated by the T ANOVA analysis, depicting 1 minus
p-value across time. Significant p values are plotted (p<0.01). The two vertical rectan-
gles contain interval with significant differences.
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3 Results

Participant Rankings Compression

The participants responded correctly to 1758 images (99.98%) following the in-
structions before starting the experiment. In only two images volunteer answered
incorrectly (score 5) or did not respond. The images followed by incorrect an-
swers were not excluded in the analysis below. The distribution of the new scores
(or valences) was 49.4% and 50.6% greater and less than 5 respectively.

EEG

Differences in stimulus-elicited activity are depicted in Figure 2. There were
significant differences between pictures with different scores (p<0.01). These
differences started approximately 276 msec after stimulus onset. All subgroups
were significant different to each other in two time windows, namely [276 - 294]
msec and [424 - 474] msec.

Dipoles

One rotating dipole source model was used in the two time windows with sig-
nificant differences indicated by the TANOVA (see Figure 2). When we focused

Fig. 3. Head reconstruction by rotating dipole in time window [424-474] msec. Rating
was grouped into four groups according to subjective punctuation (see Table 1).
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Table 2. Coordinates of dipole in head for window significant [424-474] msec

in the larger time window (424-474msec, duration 50msec) we found significant
differences in the dipoles for the different types of images (see Figure 3).

The Cartesian coordinates of the rotating dipole for each group are shown in
table 2.

4 Conclusions

Our results suggest a strong lateralization in the processing of images with emo-
tive content. Thus, we found an increased activity in the left hemisphere for
emotions with a positive valence. In contrast, there was an increased activity
in the right hemisphere for emotions with a negative valence. These results are
in line with the valence hypothesis in the hemispheric lateralization of emotion
processing, which postulates a preferential engagement of the left hemisphere
for positive emotions and of the right hemisphere for negative emotions[22],[23].
Furthermore the z coordinate of the resulting rotating dipoles, provide valuable
information for further studies in this field. In this framework our results support
the point of view that in extreme emotions (groups ++++ and —-), z is smaller
or more intermediate than in neutral images (groups ++ and –).

On the other hand, the broad range of stimulus types adds an important
dimension of universal validity to the results. The same valence can be induced
by either pictures displaying facial, bodily expressions, or complex events and
landscape. Therefore, we extend generalizability beyond facial expressions, which
are the stimuli most commonly used in emotion research. In future work, we plan
to perform a deeper study of the dipoles for each group, which would allow us to
get higher levels of accuracy in the definition of the location of the dipoles. Thus,
the spatial location observed in emotional processing of different visual stimuli
can help to provide a comprehensive account of the role of each hemisphere in
this processing, which could help in understanding deficits seen in psychiatric or
developmental disorders. Furthermore, this could be helpful for the development
of new paradigms of brain-computer interfaces.

Acknowledgement. This work has been supported in part by grant MAT2012-39290-
C02-01, by the Bidons Egara Research Chair of the University Miguel Hernández, by
a research grant of the Spanish Blind Organization (ONCE), by Nicolo Association for
the R&D in Neurotechnologies for disability, by the regional project P11-TIC-7983, by
Junta of Andalucia (Spain) and by the Spanish grant TIN2012-32039 (Spain).



Spatio-temporal Dynamics of Images with Emotional Bivalence 211

References

1. Picard, R.W.: Affective computing. MIT Press

2. Davidson, R.J., Ekman, P., Saron, C.D., Senulis, J.A., Friesen, W.V.: Ap-
proach/withdrawal and cerebral asymmetry: Emotional expression and brain phys-
iology(58), 330–341

3. Fanselow, M.S.: Neural organization of the defensive behavior system responsible
for fear 1(4), 429–438, http://www.springerlink.com/index/10.3758/BF03210947,
doi:10.3758/BF03210947

4. Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian,
L., Sorger, B., Healy, D., Goebel, R.: Real-time self-regulation of emotion networks
in patients with depression 7(6) e38115,
http://dx.doi.org/10.1371/journal.pone.0038115, doi:10.1371/journal.pone.0038115

5. Vink, M., Derks, J.M., Hoogendam, J.M., Hillegers, M., Kahn, R.S.: Func-
tional differences in emotion processing during adolescence and early adult-
hood 91, 70–76, http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561,
doi:10.1016/j.neuroimage.2014.01.035

6. Royet, J.P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., Gervais,
R.: Emotional responses to pleasant and unpleasant olfactory, visual, and auditory
stimuli: a positron emission tomography study 20(20) 7752–7759

7. Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using
frontal brain asymmetry for enhanced EEG-based emotion recognition 15(5), 737–
746, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5776680,
doi:10.1109/TITB.2011.2157933

8. Davidson, R., Fox, N.: Asymmetrical brain activity discriminates between positive
and negative affective stimuli in human infants 218(4578), 1235–1237,
http://www.sciencemag.org/cgi/doi/10.1126/science.7146906,
doi:10.1126/science.7146906

9. Harmon-Jones, E., Allen, J.J.: Anger and frontal brain activity: EEG asymmetry
consistent with approach motivation despite negative affective valence 74(5), 1310–
1316

10. Schupp, H.T., Cuthbert, B.N., Bradley, M.M., Cacioppo, J.T., Ito, T., Lang, P.J.:
Affective picture processing: The late positive potential is modulated by motiva-
tional relevance 37(2), 257–261, http://doi.wiley.com/10.1111/1469-8986.3720257,
doi.10.1111/1469-8986.3720257

11. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system
(IAPS): Technical manual and affective ratings

12. Davidson, R.J.: Anterior electrophysiological asymmetries, emotion, and depres-
sion: Conceptual and methodological conundrums 35(5), 607–614,
http://doi.wiley.com/10.1017/S0048577298000134, doi:10.1017/S0048577298000134

13. Oldfield, R.: The assessment and analysis of handedness: The edinburgh inven-
tory 9(1), 97–113, http://linkinghub.elsevier.com/retrieve/pii/0028393271900674,
doi:10.1016/0028-3932(71)90067-4

14. Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system
of the international federation. the International Federation of Clinical Neurophys-
iology 52, 3–6

http://www.springerlink.com/index/10.3758/BF03210947
http://dx.doi.org/10.1371/journal.pone.0038115
http://linkinghub.elsevier.com/retrieve/pii/S1053811914000561
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5776680
http://www.sciencemag.org/cgi/doi/10.1126/science.7146906
http://doi.wiley.com/10.1111/1469-8986.3720257
http://doi.wiley.com/10.1017/S0048577298000134
http://linkinghub.elsevier.com/retrieve/pii/0028393271900674


212 M.D. Grima Murcia et al.

15. Meghdadi, A.H., Fazel-Rezai, R., Aghakhani, Y.: Detecting determinism in
EEG signals using principal component analysis and surrogate data testing,
pp. 6209–6212. IEEE,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4463227,
doi:10.1109/IEMBS.2006.260679

16. Murray, M.M., Brunet, D., Michel, C.M.: Topographic ERP analyses: A step-by-
step tutorial review 20(4) 249–264,
http://link.springer.com/10.1007/s10548-008-0054-5, doi:10.1007/s10548-008-
0054-5

17. Martinovic, J., Jones, A., Christiansen, P., Rose, A.K., Hogarth, L.,
Field, M.: Electrophysiological responses to alcohol cues are not associ-
ated with pavlovian-to-instrumental transfer in social drinkers 9(4), e94605,
doi:10.1371/journal.pone.0094605

18. Skrandies, W.: Global field power and topographic similarity 3(1) 137–141,
http://link.springer.com/10.1007/BF01128870, doi:10.1007/BF01128870

19. Rosenblad, A.: B. f. j. manly: Randomization, bootstrap and monte carlo methods
in biology, 3rd edn., 455 p. Chapman & amp; hall/CRC, Boca raton, $79.95 (HB),
ISBN: 1-58488-541-6 24 (2) 371372. doi:10.1007/s00180-009-0150-3

20. Fuchs, M., Wagner, M., Wischmann, H.-A., Köhler, A., Theissen, R., Drenckhahn,
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Abstract. Understanding the underlying properties of neuronal pop-
ulations over single neurons is a longstanding goal for both basic and
applied neurosciences, with a specifically suitable application in the field
of neuroprosthesis development, aimed to restore the loss of function of
a visual cortex as a result of an injury or disease. We study how the in-
terstimulus interval (ISI) period of a repeated visual stimulus influences
the overall activity of rat visual cortex neuronal populations. Our results
suggest that certain (3, 5 s) interstimulus intervals do have an increased
stimulus response compared to longer or shorter ISIs for a 500 ms grating
drifting stimulus. Based on the preliminary results shown in this article,
we claim the need of a better understanding of the biological dynamics of
the visual cortex neuronal populations in order to properly design suit-
able brain-machine interfaces for visual neurorehabilitation intracortical
neuroprosthetics.

Keywords: Visual cortex · Population analysis · In vivo electrophysi-
ology · Neuroprosthesis

1 Introduction

In the aim of understanding the relationship between cortical activity and visual
perception, a crucial tool is the ability to analyze neuronal population activity
during visual stimulation. Such measurements are increasingly obtained from
mice and rats, due to their small size as well as their simpler and further studied
cortical micro-structure and brain dynamics [6,11,1], overtaking classical exper-
iments driven in monkeys [7] and cats [3]. In this model, classical single cell
studies had focused on the cellular response to a given stimulus [5], concerned
only in preventing stimulus specific adaptation (SSA) [12] when considering the
interstimulus interval of a task. However, cortical activity is driven by complex
interactions between thousands of neurons [4,2,9], rather than the activity profile
of single neurons.

Population dynamics are influenced by more complex features than the stim-
ulus representation per se, such as locomotion [1] and attention [10]. Considering
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this landscape, we hypothesize that neuronal populations output to the repeti-
tion of a stimulus is sensitive to interstimulus interval, even for longer times than
SSA avoidance, and thus, crucial in the design of any brain-machine interface de-
vice. Optimal interstimulus periods may improve intracortical neuroprosthetics
accuracy if correctly implemented.

To prove this hypothesis, we displayed repetitions of a unique stimulus, to
anesthetized Long Evans rats, using interstimulus intervals ranging from 1 to 7
seconds. We recorded visual cortex (V1 and V2) neuronal population activity
during this passive task. Finally, we quantified the mean increase in the activity
produced by the stimulus, depending on each ISI. Our data suggests the presence
of an optimal time frame of visual input, regarding cortical activation.

2 Experimental Methods

2.1 Surgery

Data was obtained from 3 male Long Evans adult rats weighing 450-500gr. Surgi-
cal analgesia was induced by buprenorphine (0.025 mg kg−1 s.c), and anaesthesia
and sedation were induced by ketamine HCl (40 mg kg−1 i.p) . The anaesthesia
was continued and maintained with a mix of oxygen and 2% of isofluorane dur-
ing the surgery and afterwards reduced to 1.5% during the electrophysiological
recordings. The blinking and the toe pinch reflexes were continuously checked
along the experiment to guarantee a proper level of anaesthesia for the animal.
The body temperature was maintained with a thermal pad and the heart rate
and O2 concentration in blood were monitored throughout the experiment. An-
imals were pre-treated with dexamethashone (1 mg kg−1 i.p) 24 hours and 20
minutes prior to surgery in order to avoid brain edema caused by the electrode
insertion. A craniotomy was drilled on top of the visual cortex and the electrode
array was inserted 2 mm lateral to the midline and from 0.5 mm anterior to
lambda. Then, a Utah array was inserted in the deep layers of the visual cortex
with a Blackrock pneumatically-actuated inserter device specifically design for
implanting the Utah array through the duramatter with a minimal tissue offense
(Blackrock Microsystems, Salt Lake City, USA). The customized microelectrode
Utah array consisted of 6 × 6 tungsten microneedles, covering a brain surface of
2 mm × 2 mm millimetres (400 µm spacing). After the insertion, the ipsilateral
eyelid to the craniotomy site was closed with cyanocrylate and atropine sulphate
1% was used to dilate the pupil of the contraleral eye.

Ethical Approval. All experimental procedures were performed conformed
to the directive 2010/63/EU of the European Parliament and of the Council,
and the RD 53/2013 Spanish regulation on the protection of animals use for
scientific purposes and approved by the Miguel Hernández University Committee
for Animal use in Laboratory.
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Fig. 1. Schematic representation of the experimental stimulus-recording design

2.2 Visual Stimulation

Visual stimulation consisted on a vertical drifting square-wave grating (90◦, light
and dark bars, 100% contrast, 6 Hz, 0.6 cycles/degree) interspersed with a dark
(uniform) stimulus displayed from 1 to 7 seconds. The stimulus was displayed
on a LCD monitor (refresh rate 60 Hz) and a luminance of ∼100 cd/m2, placed
25 cm in front of the right eye, approximately at 300 from the midline covering
a visual field spanning ∼100◦(Figure 1). The stimulus was generated using the
vision egg library and a python script. The room was kept in darkness all along
the visual stimulation.

2.3 Extracellular Recording

In vivo neural activity from visual cortex was recorded simultaneously from
16 individual electrodes with a Utah array (Figure 1). The Utah array was
connected to a MPA32I amplifier (Multichannel Systems, MCS) and the ex-
tracellular recordings were digitized with a MCS analog-to-digital board. The
data were sampled at a frequency of 20,000 samples/s and slow waves were dig-
itally filtered out (100-3000Hz) from the raw data. Neural spike events were
extracted with a free-tool application for offline spike sorting analysis (Neural
Sorter, http://sourceforge.net/projects/neuralsorter/) and the resulting multiu-
nit information obtained from each electrode was storage for further analysis.

2.4 Data Analysis

Population activity analysis was performed using Matlab (MathWorks). Only
neuronal clusters with stable waveform and consistent firing rate over the course
of a session were considered in the analysis. We appreciated multiunit activity
in the majority if the electrodes through the whole recordings sessions.

http://sourceforge.net/projects/neuralsorter/
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We constructed time-dependent population activity vectors by temporally
binding the activity of each cluster with 1 ms resolution and applied a smoothing
function when population activity was presented in Figure 3 (Bin size, B = 50,
step size from bin to bin, S = 1) from one second before to one second after each
stimulus presentation. Because B was larger than S, there was overlap between
time bins. This had the effect of over- sampling neuronal activity and effectively
smoothing the temporal trajectory of population vectors. These vectors were
averaged for all the repetitions of the stimulus in different mean activity vectors
for each ISI and recording session. In order to compare ISI effect on population
activity, we divided the second half of each mean activity vector by the first half
of the same vectors to quantify the proportional increase in population activity
in each session for all the different ISIs (1, 3, 5, 7 s)

3 Results

Data was obtained from 3 Long Evans male adult rats. Multiunit activity from
contralateral visual cortex to the stimulated eye was collected simultaneously
from 16 individual electrodes. Single or multiunit neural activity was present
at least in 13 electrodes consistently throughout each recording session. Spikes

Fig. 2. Screen capture showing the display of the extracellular recording for 16 elec-
trodes simultaneously. Each panel in the image corresponds to an individual electrode
of the array. Scale bar in the last bottom panel corresponds to 150µV in the vertical
axis and 50 ms in the horizontal axis.
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Fig. 3. Mean population activity for ISIs of 1, 3, 5 and 7 seconds (see legend). A peak
in the mean population activity level as a response to the stimulus was shown for 3
and 5 ISI seconds. Stimulus duration shown as a horizontal gray bar.

reached amplitudes up to 400 µV in the best signal-to-noise electrode recordings,
and both tonic and bursting dynamics were clearly identified (Figure 2). In order
to perform the neuronal population activity analysis, both tonic and bursting
dynamics were included indifferently for each recording site independently.

We analyzed the mean population activity vectors for the different ISIs (Ex-
ample session 1 in Figure 3). Two seconds of the activity are shown, centred in
the beginning of the grating stimulus (500 ms duration) and averaged for each
ISI. A perceptible increase was shown for stimulus response and 3 and 5 seconds
of ISI; on the other hand, mean population responses to the same stimulus but
with shorter (1 s) or longer (7 s) ISIs were weaker; thus there was not a no-
ticeable increase in population activity in these vectors. The reduced number of
recorded repetitions of the stimuli in our study of this population phenomena
implicated noticeable fluctuations in the pre-stimulus mean population activity
for each train of stimuli.

In order to prevent our analysis from any possible bias produced by this slant,
we normalized mean population activity vectors, using mean population activ-
ity of the previous second to the stimulus initiation for each ISI independently
(Figure 4).

While the widemajority of studies of response to visual stimuli in different parts
of the visual pathway focused on the response itself, addressing stimulus variables,
wemoved our scope on the population effect of interstimulus interval timing varia-
tions, hypothesizing that this may affect population time-persistent activity, thus
population response. Our analysis suggested that ISI timing did affect population
activity mediated by stimulus triggering. A more detailed and informative analy-
sis should be performed by larger recordings in awake animals, as well as a more
exhaustive analysis of this visual cortex neuronal populations property.
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Fig. 4. Upper panel shows the mean population activity for the previous (left) and
the following (right) second to the stimulus trigger for all de ISIs studied in example
population 1. Bottom panel, data shown in the upper panel normalized to the mean
population activity in the previous second to the stimulus trigger for each ISI.

4 Conclusion

Using multiunits recording in anesthetized Long Evans rats visual cortex, we
measured the mean population response for a unique drifting square grating
stimulus while modifying the time duration of its ISI. We found that mean neu-
ronal population activity depends on ISI for longer times than those used to
avoid SSA. We also found this effect to have an “optimal” ISI window, on which
the population response to the stimulus is maximum. Future studies should
extend these studies to awake animals and different stimuli and stimulus dura-
tions, recent papers [8] suggest that visual cortical responses in anesthetized and
awake rodents have similar tuning properties; bearing this in mind, we expect
to find similar results to what we have shown when recording in awake rats.
Finally, our result should be considered in the design and development of visual
brain-machine intracortical devices, as optimal population activation produced
by ISI variations may improve the efficiently of cortical electrical stimulation
with neurorehabilitation porpoises.
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Alejandro Garćıa-Moll1, Lawrence Humphreys1, José Ángel Bolea3,
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Abstract. One of the many important functions the brain carries out
is interpreting the external world. For this, one sense that most mam-
mals rely on is vision. The first stage of the visual system is the image
processing whose capture takes place in the retina. Here, photorecep-
tors cells transform light into electrical impulses that are then guided by
amacrine, bipolar, horizontal and some glial cells up to the ganglion cells
layer. Ganglion cells decode the visual information to be interpreted by
the visual cortex. The understanding of the mechanism for decoding the
visual information is a major task and challenge in neuroscience. This
is especially true for images that change with time, for example during
movement. For this purpose, extracellular recordings with a 100 multi-
electrode-array (MEA) were carried out in the retinal ganglion cells layer
of mice. Different moving patterns and actual images were used to stim-
ulate the retina. Here, we present a new strategy for analysis over the
spike trains recorded allowing the reconstruction of the actual stimuli
with a reduced number of ganglion cell responses.

Keywords: Retina · Ganglion cells · Natural scene · Receptive fields

1 Introduction

Presently, how the nervous system interprets the outside world using neural
messages through a sensory circuit remains a major challenge in neuroscience
[1]. In vision, a light stimulus is transduced into an electrical impulse via the
photoreceptors. This signal is then transmitted to the inner nuclear and ganglion
cell layer which carry out the initial decoding of the stimulus [2].This information
is then transmitted through the optic nerve to the visual cortex for further
processing.

Normally, visual sensory neurons are characterized in a laboratory setting by
their preference to light or dark, intensity, direction and receptive fields. However,

c© Springer International Publishing Switzerland 2015
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this has usually been determined using simplified black and white stimuli as a
representation of the real world. This is in contrast to the color and motion that
we experience.

The problem is not in simulating a realistic visual signal; rather it lies in the
interpretation of the various levels of decoding that is concurrently being carried
out in the retinal layers [3][4]. This is in part due to the complexity of the signal
as well as the many variables that modulate the electrical responses.

For this complicated task we have combined two methods, extracellular record-
ings from ganglion cell evoked responses under light stimuli using a MEA and a
custom designed software to reconstruct complex visual stimuli.

Our software locates the receptive field of each cell based on the response to a
moving bar crossing the visual field in 8 orthogonal directions. From this data we
can identify their receptive field. Using this information we apply a visual stimuli
composed from a natural scene and correlate electrical responses to this image.
This allows us to accurately reconstruct our image using only the ganglion cell
responses.

This novel method can be used as a tool to characterize electrical responses
to complex visual stimuli. Here, we demonstrate with as little as 11 cells we can
reconstruct natural images.

2 Material and Methods

Retina Preparation

Wild-type (C57BL/6J strain) mice were bred within a local colony established
from purchased breeding pairs (Jackson Laboratories). Following anesthesia with
4% of isoflurane (IsoFlo R©, Esteve Veterinaria) inhalational, cervical dislocation
was performed. Then both eyes were removed. Animals were dark-adapted for
one hour prior to sacrifice. All the experimental procedures were carried out
in accordance with the ARVO and European Communities Council Directives
(86/609/ECC) for the use of laboratory animals.

The cornea and lens were removed and discarded from the eyeball by a trans-
verse cut along the ora serrata with a razor blade. Then, the retinas were re-
moved from the remaining eyecup with the pigment epithelium and mounted
on an agar plate with the ganglion cell side facing up. Finally, the tissue was
covered with a piece of nitrocellulose paper in order to fix it and maintain the
correct moisture. This paper had a small window cut into it to allow placement
the electrode on the retinal ganglion cells layer.

This preparation was then mounted on a recording chamber, superfused with
oxygenated Ringer medium (124mM NaCl, 2.5mM KCl, 2mM CaCl2, 2mM
MgCl2, 1.25mMNaH2PO2, 26mMNaCHO3 and 22mMGlucose) at physiological
temperature.

These preparations was always performed under dim red illumination.
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Multielectrode Recordings and Spike Sorting

Extracellular recordings were obtained from the retinal ganglion cell layer in
the isolated mouse retina using an array of 100 electrodes with 400µm inter-
electrode distances [5]. The electrical signals captured by the electrodes array
were amplified with a 100-channel amplified (Bionic Technologies, Inc) with a
gain of 5000 and a bandpass between 250 and 7500 Hz. The selected data from
each channel as well as the state of the visual stimulus were digitized with a
resolution of 16 bits at a sampling rate of 30 kHz and stored using a signal
processor data acquisition system.

All neural spike events recorded exceeded at least 3.25 the standard deviation
of noise level. When a supra-threshold event occurred, the waveform and time
was stored together with the state of the visual stimulus for later offline analysis.

Each electrode can detect light evoked single- or multi-unit responses mak-
ing the characterization and grouping of spikes necessary. The spike sorting was
carried out by Nev2lkit program, free open source software based on principal
component analysis (PCA) method and different clustering algorithms [6]. Time
stamps for action potentials of each sorted unit were used to generate inter spike
interval histograms (ISI), peristimulus time histograms (PSTH) and peristim-
ulus spike raster analysis using NeuroExplorer R©(Nex Technologies) as well as
NeurALC software.

Visual Stimuli

All visual stimuli were programmed in Python and reproduced with Vision egg
an open source library for real-time visual stimulus generation [7]. For this we
used an area of 120×154 pixels of a 16-bit ACER TFT at 60 Hz refresh rate.
The patterns displayed on this area were resized to a 4×4mm area with optical
lenses and projected through a beam splitter focusing the stimulus onto the
photoreceptor layer.

The retinas were then stimulated with three different types of stimuli. Several
repetitions of a 700ms flash (196.25 cd/m2) were displayed followed by darkness
for 2300ms to classify the ganglion cells in ON, OFF, ON/OFF or spontaneous
with no response to light (NRL) [8].

We then proceeded to stimulate the photoreceptors layer with 250µm wide
white bars crossing a black screen at 0.5 & 1Hz. Four pairs of stimuli were used:
0◦, 45◦,90◦,135◦, 180◦, 225◦, 270◦ and 315◦.

This was followed by the presentation of an animated panoramic natural scene
projected on a virtual drum for 180 seconds at 0.7Hzfrequency. The image size
was 1031×156 pixels grouped into squares of 15×15 pixels and was presented in
black and white.

Delimit and Locate the Receptive Field

To determine the size and localization of the cells receptive field [9], the pho-
toreceptor layer was stimulated with 250µm wide white bars crossing the black
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screen at 0.5Hz. To automatically map the response for each isolated ganglion
cell to the corresponding squared-pixel from the stimulus image projection, an
ad-hoc Python program was designed. Within this program, the responses to
each pair of left-to-right and right-to-left moving-bars are processed separately
to calculate their centroids.

To avoid measurement of unwanted firing responses such as noise signals, a
custom weighting threshold was defined for filtering them. Then, both signals
are set in phase to cancel inherent latency effects and locate the receptive field
in every corresponding direction. Fig. 1 represents this automatic phasing pro-
cess for a given cell response through each mentioned direction. Each phased
contribution is added so that four 1 × N matrices of responses are obtained:
M0,180,M45,225, M90,270 and M135,315. Finally, the receptive field is calculated
by multiplying M0,180, by Mt90,270 and M45,225 and Mt135,315 (their trans-
posed orthogonal duals), and averaging the results.

Fig. 1. Automatic phasing for 0◦–180◦, 45◦–225◦, 90◦–270◦ and 135◦–315◦ responses

To map the receptive field to the corresponding squared-pixel from the stim-
ulus image, its centroid is calculated. The coordinates from this centroid reveals
the actual image location from where the cell is integrating information.

Reconstruction of Natural Scenes

Once the process of determining and mapping every isolated ganglion cell is
finished, a weighted set of ganglion cells responses (PSTH) is associated with
every squared-pixel. As the original natural scene moves horizontally within a
drum, every cell is mapped to a certain squared-pixel process as a 1 × N row
of image values in the range 0-255. For reconstructing the natural scene, the data
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provided by each different ganglion cells PSTH was normalized between the
ranges of the corresponding row by means of a linear regression. In this way, the
highest firing rate for a given row corresponds to the highest level of gray within
the mentioned row for an ON-type cell. In addition, as some receptive field areas
expand to more than one single row, a weighted sum of each rows adjacency is
taken into account. In this analysis, OFF cells and NRL were rejected.

3 Results

We performed extracellular recordings in three wild-type adult mice retina. A
minimum of 40 retinal ganglion cells were recorded in each animal during each
experiment. All of these were classified according to their preference to light ON,
OFF, ON/OFF and NRL after the flash stimulus (Fig. 2).
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Fig. 2. Raster plot and histogram post stimuli (PSTH) of the four different ganglions
cells after a 700ms light stimulus followed by 2300ms of darkness. Each raster plot
represents the activity measured in action potentials of individual ganglion cells after
a flash stimulus, repeated 30 times. The PSTHs shows the firing frequency (spikes/sec)
during this stimulation. Bin size = 14ms.

Although the position and distance between electrodes is known, the location
of each cell that they recorded from is not. Our goal was to identify the spatial
position of each cell and outline the area of their receptive field. This was done
using the responses recorded after light stimulation with bars (Fig. 3). The aver-
age value of the receptive field in our population was 0.201µm ±0.026 SE. From
this information we established the actual stimulus area that each cell was able
to decode.

The ganglion cells responses were recorded during the motion of the actual
scene stimulus repeated 30 times within 3 minutes. After spike sorting, 11 cells
were chosen depending on their location to cover the whole image size (Fig 4).
The data provided by their PSTH were normalized by a linear regression be-
tween the gray values range of the corresponding rows. The image reconstructed
with only 11 cells is visually similar to the actual one (Fig 5). Specifically, for lines
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Fig. 3. Left) The action potential waveforms of a ganglion cell for each directional bar
stimulus and a 3D plot of their receptive field. X axis = ±100µV; Y axis = 1.6ms.
Right) Graphical representation of 11 cell receptor fields and from their responses to
the natural scene was reconstructed. Scale bar = 1mm.

Fig. 4. Two examples of ganglion cells receptive fields and how these cells are mapped
to the actual scene location during drum rotation. Scale bar = 1mm.

1-6, 7, 10 and 11 ON-type cells responses were selected. The remaining image
was reconstructed based on ON/OFF-type responses.

Bhattacharyya distance was calculated between the reconstructions and pro-
cessed actual images in order to obtain quantifiable information about the simi-
larity of both objects [10]. For this comparative measure the value 1 is assigned
to the biggest difference and 0 to an equal distribution. In all experiments we
obtained values below 0.35 for this index.

However, nonparametric and parametric statistical tests were also performed
using U Mann-Whitney and T student, respectively. In both cases we observed
that there are no significant differences between images, p > 0.05.

If the actual stimuli are unknown the reconstruction can be performed making
the lineal regression between 0-255 gray scale and the ganglion cells responses,
regardless of the receptive field location. In these cases Bhattacharyya distance
value was within the range 0.4-0.5 (Fig 5D).
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Fig. 5. A) The natural scene, 1031×159 pixels. B) Simplified image with pixels grouped
into squares of 15×15. C) Image reconstructed based on ganglion cell responses of one
animal, Bhattacharyya distance = 0.32. D) Image reconstructed without weighting
between rows, Bhattacharyya distance = 0.42.

4 Conclusions

As a first approach, our preliminary results suggest that with the responses of
only 11 ganglion cells we are able to reconstruct accurately a complicated natural
image. This allows room for improvement for more accurate reconstruction if we
were to incorporate more cells into our analysis. Moreover, using the proposed
method it is not necessary to know what the natural image actually looks like
for carrying out reconstructions as this can be done blind using the gray scale
values to achieve reliable results. These experiments need to be repeated and
analyzed using natural images presented at different frequencies of motion as
well as in color to extend our knowledge for a more complete characterization
of ganglion cell function. As this method is robust it can be adapted easily for
characterization in other species.

Our ultimate goal is to apply the date acquired from this procedure and begin
to compare ganglion cell visual responses in healthy retinas to those suffering
from injury or neurodegenerative visual diseases. This could provide valuable
information to the processes underlying the functional degradation of ganglion
cells in visual impairments.
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Abstract. Electric stimulation in neural cultures in neural cultures may
be used for creating adjacent physical or logical connections in the con-
nectivity graph following Hebbs Law modifying the neural responses
principal parameters. The created biological structure may be used for
computing a certain function, however this achieved structure vanished
with time as the stimulation stops. A DTCNN architecture, specifically
designed for optimum parallel implementation over dedicated hardware,
is proposed to emulate the behavior ans structure of the biological neu-
ronal culture. The FPGA circuit can be used as a permanent model and
is also intended to facilitate and speed up further experimentation.

Keywords: Cultured neural network · Hebbian Law · Induced plastic-
ity · Learning · CNN · FPGA

1 Introduction

Biological brains use millions of biological processors, with dynamic structure,
slow commutations compared with silicon circuits [1, 2, 22], with low power
consumption and unsupervised learning. The use of dissociated cortical neurons
cultured onto MEAs represents a useful experimental model to characterize both
the spontaneous behavior of neuronal populations and their activity in response
to electrical and pharmacological changes.

Learning is a natural process that needs the creation and modulation of sets
of associations between stimuli and responses. Many different stimulation pro-
tocols have been used to induce changes in the electrophysiological activity of
neural cultures looking for achieving learning [3–13] and low-frequency stimula-
tion has brought good results to researchers enhancing bursting activity in corti-
cal cultures [10, 11]. Hebbian learning describes a basic mechanism for synaptic
plasticity wherein an increase in synaptic efficacy arises from the presynaptic
cell’s repeated and persistent stimulation of the postsynaptic cell continuously
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and repeatedly. The theory is commonly evoked to explain some types of as-
sociative learning in which simultaneous activation of cells leads to pronounced
increases in synaptic strength. Basically the efficiency of a synaptic connection is
increased when presynaptic activity is synchronous with post-synaptic activity.
In this work, we use this kind of stimulation to create adjacent physical or logical
connections in the connectivity graphs using Hebbs Law.

In previous papers, we used a specific low-frequency current stimulation on
dissociated cultures of hippocampal cells to study how neuronal cultures could
be trained with this kind of stimulation [14, 15]. We showed that persistent and
synchronous stimulation of adjacent electrodes may be used for creating adjacent
physical or logical connections in the connectivity graph following Hebbs Law. In
later experiments, we have used different parameters for this stimulation to check
if those connections can be created stimulating with different configurations. How-
ever this created biological structure vanishes with time as the stimulation stops.
The stability of the achieved connectivity graph depends on the stimulation pro-
vided and biological culture characteristics. This means it is necessary to translate
the biological culture structure and behavior to a more permanent substrate in or-
der to study its computational capabilities. We propose to translate these param-
eters to a DTCNN over a FPGA element, as result of our previous implementation
of visual systems for low vision devices [23].

The outline of the paper is as follows. Section 2 presents the methods for
addressing Hebbian Learning throw electrical stimulation. Section 3 shows the
results obtained using a specific stimulation with our experimental setup on hip-
pocampal cultures to train them. Sections 4 and 5 detail a DTCNN architecture
specifically designed for hardware projection on programmable devices, and an
specific configuration for the modelling of the presented hippocampal cultures
setup, respectively. Finally, Section 6 conclude by discussing some crucial aspects
of the research and the remaining challenges.

2 Methods

2.1 Cell Culture Preparation

Dissociated cultures of hippocampal CA1-CA3 neurons were prepared from E17.5
sibling embryos (Figure 1). During the extraction of the hippocampus a small
amount of cortical tissue will have inevitably also been included. Tissue was kept
in 2ml of HBSS. 10mg/ml of trypsin was added to the medium and placed in
a 37 ◦C water bath for 13min for subsequent dissociation. The tissue was then
transferred to a 15ml falcon containing 4ml of NB/FBS and triturated using
combination of fine pore fire polished Pasteur pipettes (Volac). Cells were then
transferred onto 12 well plates (Corning Incorporated) containing glass coverslips
(Thermo Scientific).

The coverslips were pre-treated overnight with PDL (50mg/ml), a synthetic
molecule used as a coating to enhance cell attachment. The PDL was then aspi-
rated away and the coverslips washed twice with PBS. This was then followed by a
final coating of laminin (50µg/ml), a protein found in the extracellular matrix, to
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Fig. 1. Hippocampal CA1-CA3 culture (21 DIV) on a microelectrodes array

further help anchor the dissociated hippocampal cells. The cells weremaintained in
a mixture of 500ml NB/B27 (promotes neural growth) and 500ml NB/FBS (pro-
motes glial growth), each supplemented with Glutamax and Pen/Strep (dilution
1/100). Glutamax improves cells viability and growth while preventing buildup of
ammonia whereas Pen/Strep helps to prevent any infections. Cell density for each
coverslip was roughly 200,000 cells. Cells were kept in an incubator at 37 ◦C in
6% CO2.

2.2 Experimental Setup

Microelectrode arrays (Multichannel systems, MCS) consisted of 60 TiN/SiN
planar round electrodes (200µm electrode spacing, 30µm electrode diameter)
arranged in a 8x8 grid. The activity of all cultures was recorded using a MEA60
System (MCS). After 1200X amplification, signals were sampled at 10 kHz and
acquired through the data acquisition card and MCRack software (MCS). Elec-
trical stimuli were delivered through a two-channel stimulator (MCS STG1002)
to each pair of electrodes.

2.3 Analysis Performed

We observed the spontaneous activity of the cultures before and after the stim-
ulation experiments, as well as their evoked response to the applied stimulus.
Extensive burst analysis, post-stimulus time histograms and functional connec-
tivity were the main analysis performed to the registered data.

Functional connectivity [16, 17] captures patterns of deviations from statis-
tical independence between distributed neurons units, measuring their correla-
tion/covariance, spectral coherence or phase locking. Functional connectivity is
often evaluated among all the elements of a system, regardless whether these
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elements are connected by direct structural links; moreover, it is highly time-
dependent (hundreds of milliseconds) and model-free, and it measures statistical
interdependence (e.g. mutual information) without explicit reference to causal
effects.

Correlation and information theory-based methods are used to estimate the
functional connectivity of in-vitro neural networks: Cross-correlation, Mutual In-
formation, Transfer Entropy and Joint Entropy. Such methods need to be applied
to each possible pair of electrodes, which shows spontaneous electrophysiological
activity. For each pair of neurons, the connectivity method provides an estima-
tion of the connection strength (one for each direction). The connection strength
is supposed to be proportional to the value yielded by the method. Thus, each
method is associated to a matrix, the Connectivity Matrix (CM), whose elements
(X,Y) correspond to the estimated connection strength between neuron X and Y.

High and low values in the CM are expected to correspond to strong and
weak connections, respectively. By using such approach, inhibitory connections
could not be detected because they would be mixed with small connection val-
ues. However, non-zero CM values were also obtained when no apparent causal
effects were evident, or no direct connections were present among the considered
neurons.

In our experiments, connectivity maps offered a visualization of the connec-
tivity changes that occur in the culture. Connectivity maps were generated using
the connectivity matrix (CM) obtained after applying the analysis and Cross-
Correlation or Mutual Information. By setting thresholds in the CM, it is pos-
sible to filter out some small values that may correspond to noise or very weak
connections. In consequence, these maps show the strongest synaptic pathways,
and can be used for visualizing the neural weights dynamics, and validate the
achieved learning.

3 Results

Low-frequency current stimulation and tetanic stimulation had both an impact
on the electrophysiological responses of the cultures, as previous studies had
reported [13,6]. Raster plots showed that all of the stimulations provided induce
changes in the firing frequency of the cultures. We can observe some kind of
reorganization in the firing activity, from a nearly random continuous spiking
activity to a more discrete bursting spiking activity. After the third week in vitro,
this bursting activity becomes more frequent and robust and this effect is much
more evident than during the first weeks (Figure 2). First experiments showed
that this behavior takes effect initially with low-frequency stimulation, however
from our last experiments it may be concluded that both stimulations have a
frequency impact on the spiking activity of the culture. It may be concluded
that this effect is more evident using low-frequency neural stimulation.



232 V. Lorente et al.

Fig. 2. Raster plots extracted from cultures of experiments E2 and E5. (a) (21DIV)
and (b) (32DIV) belong to ID68 from E2, (c) (23DIV) and (d) (30DIV) belong to
ID86 from E5. Each figure is divided in two graphs, which show the spiking activity
of the culture before and after stimulation. Raster plots show a change in the spiking
activity, changing from a uniform activity before stimulation to a more concentrated
activity after stimulation. This result is emphasized after the third week in vitro due
to maturing occurred in the cultures.
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Connectivity diagrams based on cross-correlation between electrodes showed
some kind of connections reorganization after stimulations, concentrating them
in a few electrodes. Furthermore, adjacent physical or logical connections in the
connectivity graph following Hebbs law appeared in some pairs of stimulated
electrodes (31 and 42, in red in Figure 3). Electrodes with created connections
between them can distinctly be detected with the instantaneous firing frequencies
graphs. The two pairs of stimulated electrodes before and after the stimulation
session follow exactly each other, whereas the firing periods of the first pair of
electrodes do not match. Furthermore, the electrodes of the second pair change
both the firing periods after stimulation. This feature indicates that there exists
a strong connection between them.

Fig. 3. Connectivity graphs based on cross-correlation between electrodes. The graph
belong to the culture ID48 (E1) at 25 DIV. Pair of electrodes 31, 42 and 52, 53 were
stimulated with low-frequency current stimulation with 50µA biphasic pulses. (a) No
logical connections were observed before stimulation. (b) A connection (red arrow)
between electrodes 31 and 42 has appeared.

Analyzing spike parameters such as peaks heights and widths and number
of spikes have lead us to an important result. Both types of stimulation, low-
frequency and tetanic stimulation, produced a reactivation of neurons over time
which lead to the creation of adjacent physical or logical connections in the
connectivity graph following Hebb’s Law.

4 Non-linear Space-Variant DTCNN Model for FPGA
Implementation

The DTCNN model used in this work has been derived from the original ana-
logue model of CNN [18, 19] by means of the Euler method [20]. In comparison
with other approaches [21], the Euler method offers an excellent behavior with
minimum use of hardware resources.
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With the Euler-based approach, the DTCNN model is defined through the
recursive equations 1 and 2:

Xij [n] =
∑

k,l∈Nr(ij)

Aij
kl[n− 1]Ykl[n− 1] +

∑
k,l∈Nr(ij)

Bij
kl[n− 1]Ukl + Iij , (1)

Yij [n] =
1

2
(|Xij [n] + 1| − |Xij [n]− 1|) (2)

where I, U , Y and X denote input bias, input data, output data and state
variable of each cell, respectively. Nr(ij) gives the neighborhood distance r for
cell (i, j), with i and j the coordinates of the position of the cell in the network,
and with k and l the position of the neighboring cells relative to the cell in
consideration. A and B are the templates for the outputs of the neighboring
cells and the input, respectively. Both A and B are k×l non-linear and space-
variant templates, i.e., they can change over time and be also different for each
cell.

Eqs. (1) and (2) imply an infinite feedback loop in the model which must be
approximated. Clearly, the accuracy of the approximation depends on the num-
ber of iterations to be considered. Simulations of typical video processing appli-
cations (Gaussian, blur, sharpness and edge detections) have revealed that 10
iterations are wide enough to achieve results that present correlation coefficients
with the results obtained from the original analogue model around 9.997e−1.
The number of iterations N is very closely related to the application and to
the accuracy required. Thus, a DTCNN cell can be made up with N stages in
pipeline, as shown in Fig. 4. The figure also shows the graphical model of each
stage of the cell.
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Fig. 4. The cell consists of N identical pipelined stages

The stage has two input ports: the input Uij to the cell, which is weighted by
template B, and the output Yij [n−1] from previous stages, weighted by template
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A. In each stage, the inputs can be adjusted by different templates Aij [n] and
Bij [n]. This allows to design powerful non-linear CNNs.

The stage has two output ports: the output data Yij [n] and the input data
Uij . The presence of the input data in an output port makes it possible the
pipelining of stages all working with the same input data. In order to ensure the
data synchronization, input data is delayed as many cycles as the stage latency
requires.

With this port structure, three different basic configurations can be built
according to the values of the templates. Thus, the output will depend on both
the data input and the neighbors if A and B are non-null; it will depend only
on the input if A is null and B non-null; and the output will depend only on
the neighbors if A is non-null and B is null. This flexibility together with the
stage pipelining approach allow for the design of complex cells with non-linear
and space-variant behavior. With the suitable connections and values for the
templates, it is possible to design networks where the radius of influence of the
input on the output is far more than the k × l template. It is also possible to
design networks with more than one layer, each layer with its own configuration.

5 Hardware Implementation of a DTCNN Model for
Hippocampal Cell Cultures

As can be observed in Fig. 4, a stage is made up of two convolution modules,
a ternary adder and a linear activation function with symmetrical saturation.
Both the convolution of the input Uij with the template B and the convolu-
tion of the output Yij [n− 1] with the template A have been implemented using
Multiply-And-Accumulate (MAC) structures. The number of MAC units for a
given application would come from the tradeoff between circuit area and per-
formance. MACs are common blocks in signal processing algorithms, so FPGAs
come with dedicated resources to implement thousands of these blocks efficiently.
The FIFOs manage the data streams between stages and have been designed to
ensure that all the data required for the convolutions are available at the right
moment. With this solution the system can work on data streaming, and so the
problem of the data storage between stages is overcome. As with MACs, FIFOs
have been implemented carefully to make efficient use of the internal BlockRAM
resources available in the Xilinx FPGAs.

In order to implement the model depicted from the analysis in Section 2.3,
that uses a 8×8 MEA, a DTCNN with a 8×8 bidimensional array of cells will
be required. For such an small experiment, the connectivity maps in Figure 3
indicate that full connectivity between cells must be provided. Thus, in this case,
templates A[n] and B[n] would be 16×16 matrices. Further experiments, using
larger MEAs are planned, in which case the size of templates should be adjusted
to meet the observed connectivity neighborhood.

Template A[n], linked to the outputs of the neighboring cells, will then repre-
sent the functional connectivity map for cell n resulted after tetanic stimulation
was applied as training method. On the other hand, template B[n], coupled to
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the cell’s inputs, represents the influence of the input (external) stimuli. Indi-
vidual values weigh the influence of cell/input ij on current cell and will be
normalized between 0 and 1.

6 Conclusions

Learning in biological neural cultures is a challenging task. Different authors
have proposed different methods for inducing a desired and controlled plasticity
over the biological neural structure. Low-frequency stimulation and tetanization
has brought good results to researchers enhancing bursting activity in cortical
cultures. In previous papers, we have shown that using these kind of stimu-
lations it is possible to create adjacent physical or logical connections in the
connectivity graph following Hebbs Law and such connections induce changes
in the electrophysiological response of the cells in the culture, which can be
observed in the different analysis performed. Furthermore, low-frequency stimu-
lation induces permanent changes in most experiments using different values of
current amplitude and stimulation patterns. Persistent and synchronous stimu-
lation of relevant adjacent electrodes may be used for strengthen the efficiency
of their connectivity graph. These processes may be used for imposing a desired
behaviour over the network dynamics. In this work, we translate the biologi-
cal neural network behavior and structure to a DTCNN over a FPGA device.
The modularity of the solution and the reconfiguration capability of the device
permits to adapt the system to other dimensions and functionalities. In future
works, the working behavior of the translated system will be compared with the
biological one in order to analyze the principal components and critical elements
that constitute the whole system.
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Abstract. Organic as well as neurologic diseases leave important corre-
lates in phonation. Parkinson’s Disease (PD) may leave marks in vocal
fold dystonia and tremor. Biomechanical parameters monitoring vocal
fold tension and unbalance, as well as tremor are defined in the study.
These correlates are known to be of help in tracing the neuromotor ac-
tivity of both laryngeal and articulatory pathways. As the population
affected by PD is mainly above 60, the main problem found is how to
differentiate PD phonation correlates from aging voice (presbyphonia).
An important objective is to explore which correlates react differentially
to PD than to aging voice. As an example a study is conducted on a
set of male PD patients being monitored in short intervals by recording
their phonation. The results of these longitudinal studies are presented
and discussed.

Keywords: Neurologic disease · Parkinson’s Disease · Speech neuromo-
tor activity · Aging voice · Dysarthria

1 Introduction

Parkinson’s Disease is an illness derived from deterioration of substantia nigra
in midbrain, mainly with age, which affects a larger population each year. It is
estimated that substantia nigra cell decay responsible for Parkinson’s Disease
(PD) is about 5% per decade in a normal subject, and ten times larger in a
PD patient [1, 2]. The prevalence of PD is less than 0.4% among the population
under 40 years whereas it is around 1.5% in the population over 65. The pop-
ulation affected by PD will double in 2030 with respect to 2005 in the average.
PD affects voice and speech even at an early stage, when other symptoms are
not yet evident [3, 4]. As illness progresses the impairment of the patient’s self-
care capabilities and well-being worsens, demanding more specialized assistance.

c© Springer International Publishing Switzerland 2015
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PD affects mainly to neuromotor activity involving most biomechanical systems
in the body, among these limbs, head and neck muscles. Malfunction of these
systems affect walking, arm and hand fine movements, body balance, and speech
and phonation [5]. Therefore gait, handwriting and drawing, as well as speech
features have been routinely used to detect, grade and monitor PD by clinicians
[6, 7]. In PD patient clinical evaluation a commonly used scale is that of Hoehn
and Yahr (H&Y) [8], which classifies patients in five stages (1-5) according to
unilateral or bilateral involvement, balance, reflexes, equilibrium, walk or stand
unassisted, or handling an independent life activity. The purpose of these eval-
uations is to monitor illness evolution, but they are time-consuming and costly,
and affected by the subjectivity with which evaluators and patients may quantify
a specific feature. On the other hand, it is believed that PD effects on speech
and phonation are good descriptors of general neuromotor deterioration, in the
sense that there is “compelling evidence to suggest that speech can help quan-
tify not only motor symptoms ... but generalized diverse symptoms in PD” [6].
Speech could be used as a handy signal to monitor PD evolution subsequent
to chirurgical, pharmacological or rehabilitative treatment [9]. During the last
decade, important advances in PD evaluation and monitoring have been pro-
duced [10]. These are mainly based in estimates of phonation quality, prosody or
fluency. Phonation correlates are based in distortion measures as jitter, shimmer,
harmonic-noise-ratios (HNR), dysphonia severity index (DSI) or mel-frequency
cepstral coefficients (MFCC’s), among others [6]. Prosody marks are based on
the temporal evolution of fundamental frequency (f0) and envelope energy (Ee),
which may be parameterized and quantified using nonlinear techniques [11].
Fluency correlates include vocal-onset-time (VOT), pause and silence intervals,
syllable rate, etc [12]. Massive pattern-matching and statistical machine learning
techniques have been used in PD grading reproducing subjective evaluations in
the Unified PD Rating Scale (UPDRS) [6, 13, 14]. The problems in using these
massive data-driven methodologies are on one hand their relatively large compu-
tational cost, and on the other hand, the loss of semantics due to rather obscure
parameterization methods (as is the case of MFCC’s, for instance). A loss of
semantics may imply a too large payoff severing further advancement in the
generation of new hypotheses and experiments to carry on further research. The
present approach is intended to advance in the study of PD monitoring keeping
the semantics of the problem alive. For such, a set of biomechanical parameters
derived from phonation have been proposed which are known to express their
capability to monitor PD evolution in early work, preserving parameter seman-
tics [15, 16]. These are related with vocal fold mechanical stress statistical and
stochastic behaviour: average, dispersion, skew, kurtosis and cyclical variability
(tremor). Tremor is a specific mark which may be perceived in around 60% of the
PD cases. It is known to be distributed in bands around 2-4 Hz (physiological),
6-10 (neurological) or above 10 Hz (sometimes addressed as jitter or flutter).
Empirical mode decomposition has been proposed for its estimation [17]. The
present study is intended to explore the capability of vocal fold stress unbalance
and tremor in monitoring the timely evolution of PD dysphonia in longitudinal
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studies. A brief description of how PD affects the biomechanics of phonation
and a method for tremor estimation from vocal fold stress are provided in Sec-
tion 2. Section 3 presents the methodology of the study. Results are shown and
discussed in Section 4. Conclusions are presented in Section 5.

2 Phonation Model and Tremor Characterization

Speech production is planned and instantiated in the linguistic neuromotor cor-
tex (Broadmann’s areas 4, 6, 8, and 44-47 [18]). The neuromotor speech sequence
activates the muscles of the pharynx, tongue, larynx, chest and diaphragm
through sub-thalamic secondary pathways. Fine muscular control is provided
by a neuro-sensory feedback regulation system, in which substantia nigra is in-
volved. Degeneration of this substance reduces the production of the specific
neurotransmitters responsible of the regulatory function and this eventually re-
sults in the appearing of the PD syndrome characterized by perturbations in the
respiration, phonation and articulation giving place to specific dysphonias and
dysarthrias which may characterize PD speech: hoarseness, breathiness, hypoki-
netic dysarthria, tremor, raised f0, jitter, low intensity (bradykinesia and rigid-
ity), poor prosody (monotonous speech), poor VOT (especially when switching
nasal to oral sounds), and deficient fluency (low syllable rate, longer inter-syllable
pauses, etc). Tremor in voice is one of the symptoms associated to PD, although
it may not be perceived in all cases. The reason is that either its intensity may
be very low, or that it appears in bands where it may not be perceived by simple
listening. Classically tremor in voice is separated into three bands (physiolog-
ical, neurological and flutter). If tremor is predominant over 10 Hz (flutter) it
will go unnoticed except for a trained expert. It is believed that tremor as a
correlate to PD appears first in these higher bands (flutter, jitter) to intensify
in amplitude and move to lower bands (neurological) as illness progresses. That
is why automatic detection of tremor becomes essential in PD studies. Tremor
in phonation may be characterized in different ways. The usual method is to
derive it from sustained long vowels. Frequency Modulation techniques and Em-
pirical Model Decomposition have been successfully used [19, 17]. In the present
work a different approach has been proposed. It is based on the detection of
vocal fold body mechanical stress, as this magnitude is directly related with
neuromotor activity of laryngeal muscles and preserve the semantic value of the
estimates. As tremor in voice may be the consequence of neuromotor instability
in the respiration, phonation or articulation, this approach presents the advan-
tage with respect to the others mentioned of ensuring that only phonation will
be expressed in the results. For such, it is essential to obtain precise estimates
of the biomechanical stress acting on musculus vocalis. The methods used in the
estimation of this correlate are vocal tract inversion by a lattice adaptive filter
[20], and biomechanical inversion of a 2-mass model of the vocal folds [21]. As a
result, an estimate of the vocal fold body mechanical stiffness ξn is produced for
each phonation cycle n. Afterwards, this parameter is modeled by an order-K
autoregressive system
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ξn =

K∑
i=1

aiξn−i + εn (1)

where a = {ai} are the model parameters and εn is the estimation error. This
modeling is carried out by another adaptive lattice inverse filter. The coefficients
of the equivalent transversal model aKn and the filter pivoting coefficients c =
{ci} may be used as tremor descriptors (see [15] for more details). Tremor is
expressed in terms of frequency, relevance and amplitude from the inverse model
in the domain of z = ejω

H(z) =
1

1−
K∑
1
aiz−i

=

K∏
i=1

z

z − zi
; zi = rie

jϕi (2)

where z = {zi} are the poles of the transfer function H(z), with modulus and
phase given by ri and ϕi. These are used to estimate tremor frequency fti and
relevance ρti as

fti =
ϕi

2π
〈f0〉 ; ρti =

1

1− ri
(3)

〈f0〉 being the average phonation fundamental frequency. The relevance (rel-
ative amplitude) of the estimate will be given by the modulus of the pole (ri).
Another important parameter is the root mean square tremor amplitude (rMSA),
given by

ηt =

1
Nk

∑
n∈Wk

[
ξKn − ξ̄K

]2

ξ̄2K
(4)

where Nk is the number of phonation cycles in the estimation window Wk.
An example of these parameter estimates from a sustained vowel /a/ uttered
by a PD patient (72 year old female) is shown in Fig. 1 modeled with a K = 3
order filter.

3 Materials and Methods

The present study has a marked exploratory nature, as 3-band tremor param-
eters estimated from the vocal fold body stiffness have not been used before
in PD detection, grading or monitoring. The intention of the study is to show
their performance in monitoring longitudinal studies of PD patients. Therefore
a database of recordings from a set of 50 male and 50 female normative subjects
free from organic or neurologic pathology selected by the ENT services of Hos-
pital Gregorio Marañón of Madrid has been used. Long sustained vowels (/a,
e, i, o, u/), a short sentence, and a text reading were recorded at a 44,000 Hz
sampling frequency and 16 bits from each subject. Fragments of 500 ms long
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(a) (b)

(c) (d)

(e) (f)
Fig. 1. a) Estimations of vocal fold body stiffness in 10−3 N/m per each glottal cycle n,
corresponding to a fragment of vowel /a/ 500 ms long. The upper trace is the absolute
value of the estimate ξn, the lower trace is the same estimate after de-biasing: ξn−〈ξ〉.
b) Values and distribution boxplots of the cyclical coefficients c1−3. c) Global tremor
root mean square amplitude ηt. d) Distribution boxplot of ηt. e) Estimations of the
frequency components of tremor in physiological, neurological and flutter bands. f)
Values and distribution boxplots of frequency components, showing well-conditioned
distributions (small skew, no outliers).
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Table 1. Parameters used in the study

P1. Fundamental frequency f0 P44. Cover mass unbalance

P2. Jitter P46. Cover stiffness unbalance

P3. Shimmer P60. Glottal gap due to contact defect

P5. Noise-harmonic ratio P61. Adduction defect

P35. Body mass (dynamic) P62. Closure permanent defect

P37. Body stiffness (ξn) P63. First order pivoting coefficient (c1)

P38. Body mass unbalance P67. Physiological tremor amplitude

P40. Body stiffness unbalance P69. Neurological tremor amplitude

P41. Cover mass P71. Flutter amplitude

P43. Cover stiffness P72. rMSA

of /a/ recordings were analyzed and the 20 means and std. deviations of the
parameters in Table 1 were used in the study.

The estimates produced from the male set were used as a normative dataset
to monitor four male PD patients from the Neurology Services of Hospital Ru-
ber Internacional of Madrid. The description of the cases is given in Table 2.
These patients were under pharmacologic treatment and speech therapy, which
included voice recordings identical to the ones mentioned for the normative sub-
jects, taken at their homes. Each patient’s stage was scored according to the
H&Y scale.

Table 2. Summary results for the four cases studied

Case Gender Age Diagnose Grade (S) Syndrome

S1 M 70 PD 2 (H&Y)
Bilateral, mild walk and
stability affection

S2 M 54 PD 2 (H&Y)
Bilateral, mild walk and
stability affection

S3 M 74 PD 4 (H&Y)
Limited walk, rigidity,
bradykinesia, dependent

S4 M 69 PD 1 (H&Y)
Unilateral, rest tremor,
mild walk and gait affection

A simple way to present estimation results vs the normative database is given
in Fig. 2. Each parameter mean i from subject j and phonation cycle n given as
Pijn is estimated on n as Paij = aven{Pijn}. This mean is compared to the sam-
ple population mean for the same parameter Pai = avek{Pikn} for k the speakers
in the normative sample to produce a normalized estimate Prij = Paij/Pai. Each
normalized estimate Prij corresponding to parameter i from subject j is repre-
sented on the sundial plot.

The normalized sample population averages correspond to the unity circle (in
melba). The dispersion values corresponding to 1.5 times the standard deviation
Psi = stdk{Pikn} over the mean of each parameter are represented as the melba
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Fig. 2. Comparison of evaluation results for case S3. Red: 3.7.14. Yellow: 7.7.14. Green:
14.7.14. Blue: 24.10.14. Values are normalized to the normative male database. The
upper right quadrant is associated to tremor parameters (P63, 67, 69, 71 and 72). The
lower right quadrant is associated to distortion parameters (P1, 2, 3 and 5). The upper
and lower left quadrants are associated to biomechanical parameters (P35, 37, 38, 40,
41 43, 44, 46, 60, 61 and 62). The inner melba circle marks the unity normative circle.
The outer melba polygon marks the 1.5 standard deviation boundary over the mean.

outer polygon. This polygon ensures that at least 93% of the normative popu-
lation is under this limit for a given parameter. This representation devotes the
first quadrant to neurological sensitive parameters (tremor), the second quad-
rant to distortion parameters (jitter, shimmer, etc.) and the third and fourth
quadrants to biomechanical parameters. Case S3 as depicted in Fig. 2 is a rep-
resentative example. It may be seen that during the first evaluation this patient
showed a strong alteration in the tremor indices (P67, 69, 71 y 72) as signaled by
the red polygon pointing to P67. During the next three evaluations (yellow, green
and blue) these indices became sensibly more reduced in response to treatment
(although not normalizing completely). On the other side, the biomechanical
unbalance parameters (P38 and 40) remained sensibly out of limits during the
four evaluations (feather pointing to P38). Adduction defects (P60 and 61) were
out of normative limits through all evaluations. This observation could be inter-
preted in the sense that unbalance and adduction defects (both biomechanical)
do not seem to be sensitive to specific neurological treatment. Their deviation
from normative values may be pointing to aging voice distortion (presbyphonia)
or to other organic dysphonias. This is a common situation in the other PD cases
studied (see specific results in Table 3).
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Table 3. Estimation results for the most relevant parameters (%). Relative grade
agreement is signaled in bold.

Case Date D.M.Y P2 P38 P40 P61 P67 P69 P71 P72 Grade(S) Grade (O)

S1 26.6.14 1.61 0.84 9.86 2.41 3.28 13.59 3.95 9.58 2 4,19

3.7.14 3.72 8.66 15.82 15.86 1.19 1.89 1.01 3.95 2 2,15

14.7.14 3.10 9.41 15.69 19.47 2.24 0.58 1.61 3.22 2 2,02

24.7.14 3.80 9.87 17.22 13.57 2.62 1.69 1.63 4.30 2 2,39

S2 2.7.14 1.33 0.78 3.41 2.74 0.77 0.43 0.62 1.54 2 0,66

8.7.14 3.29 11.18 17.37 11.92 2.69 3.31 6.66 8.02 2 3,85

10.7.14 1.69 3.20 6.53 9.60 1.88 2.60 2.50 3.76 2 2,00

14.7.14 1.42 0.91 3.76 13.35 1.08 0.80 0.63 1.42 2 0,96

S3 3.7.14 2.63 3.62 8.81 6.53 0.78 0.40 0.46 2.05 4 1,00

10.7.14 3.45 16.17 22.83 14.01 2.67 1.79 1.39 11.04 4 3,84

14.7.14 1.83 1.65 5.38 8.59 1.77 0.65 0.80 2.10 4 1,10

24.7.14 2.61 4.86 9.89 12.03 0.72 0.50 0.84 3.89 4 1,53

S4 8.1.15 1.08 1.01 3.08 21.05 1.62 0.62 0.46 2.95 1 1,38

21.1.15 0.06 0.19 1.25 15.21 0.20 0.27 0.50 1.18 1 0,67

28.1.15 1.87 1.76 5.54 9.01 0.41 0.26 0.28 1.37 1 0,73

4.2.15 1.16 0.76 3.09 37.45 1.09 0.42 0.22 2.07 1 1,43

The confirmation of this hypothesis is being evaluated in other ongoing stud-
ies. These plots will be used to present information to clinicians and speech
therapists for fast patient evaluation.

4 Results and Discussion

An important issue in monitoring pathology is that of grading, as short-term
timely monitoring of PD may be highly relevant for patient treatment and reha-
bilitation [9]. One of the intentions of the study was to relate speech correlates
(objective grading) with this evaluation scale (subjective grading), in timely evo-
lution. For such, a metrics had to be defined based on feature fusion, accordingly
to a weighting functional as:

ro = f

{ ∑
i∈SN

wiPi

}
(5)

where Pi are the feature estimates considered in the grading, wi are the
weights of the fusion, f is the function (usually a sigmoid mapping from 0 to 5)
and SN is the normative set of features considered (in this case the parameters
listed in Table 3). All patients were evaluated four times in a 3-4 week period
except one of them who was evaluated during a shorter interval (S2). The dis-
tortion, unbalance and tremor estimates from each phonation produced by each
patient at each evaluation date are compared. Patient S1 had a first evaluation
(26.6.14) showing moderate unbalances (P38 and P40) and a strong neurolog-
ical tremor (P69). Subsequent evolution showed large unbalances, but tremor
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experienced a strong reduction to more moderate values. The objective grade
was very large at the first evaluation. In subsequent evaluations it showed good
agreement with subjective grade. Patient S2 suffered four evaluations within two
weeks. The second one (8.7.14) showed a very much dysphonic condition with
large unbalances (P38 and P40) and a high neurological tremor (P.69). The to-
tal rMSA was also very large. The next two evaluations (10.7.14 and 14.7.14)
showed a significant reduction in biomechanical unbalance (P38 and 40) and in
all tremor bands. The agreement between subjective and objective grades was
not stable, as only one of the evaluations agreed (10.7.14). Patient S3 was eval-
uated four times within four weeks. The results of the first evaluation were rel-
atively normal (3.7.14). One week later the evaluation (10.7.14) showed a more
complicate condition with large unbalances (P38 and 40) and relatively large
tremor, both the objective and subjective grades being in agreement. The next
two evaluations (14.7.14 and 24.7.14) showed a relative reduction in unbalance,
and a larger reduction in tremor, therefore the objective grade was well below
the subjective. Finally patient S4 showed good agreement between the objective
and the subjective grade, as the neurological parameters (P67, 69, 71 and 72)
gave moderate estimates, whereas the adduction defect showed to be quite large
in most of the cases (P61). This parameter, as well as the biomechanical ones,
seem to be more related with organic pathologic or presbyphonic voicing than
with neurologic alterations, therefore the relative influence of these parameters
should be minimized in grading neurological disease.

5 Conclusions

The timely monitoring of PD using voice is a strong challenge. Through the
present study a first approach to this problem under a systematic methodology
has been presented. Although the limited nature of the number of cases pre-
sented, the most important findings established in their timely evaluation are
the following:

– An association of feature estimates under a given functional may help in pro-
ducing an objective estimate of the patient’s pathological severity, although
this study is being conducted on a larger database.

– It seems that there may be sudden surges of instability and tremor (critical
epochs) in the evaluation results from relatively short intervals in the two
cases graded 2 and in the case graded 4.

– In general, the objective and the subjective grades agree better during the
epochs than during the steady evaluations.

– The critical epochs in tremor and phonation stability do not seem to per-
sist in consequent evaluations, possibly due to the effects of medication and
rehabilitation.

– The sets of features monitoring biomechanics and tremor evolve differentially
with treatment, possibly pointing to different causes (neurologic vs organic
etiology).
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An important part of the study which has to be resolved prior to continue fur-
ther research is the differentiation in the sensitivity and specificity of monitoring
response associated to the biomechanical and tremor parameters, as these seem
to be influenced differently by organic than by neurologic pathologies. Another
open question is the best separation interval between subsequent evaluations,
either daily, weekly, or monthly, etc., and the adequate recording of medical and
rehabilitation protocols to better associate drastic changes in feature patterns
with treatment. Doubtless, these studies will help in the personalized care of
patients and in the optimization of treatment protocols.
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Abstract. This paper aims at analyzing the effects of the discretiza-
tion process of the continuous Difference-of-Gaussians models obtained
empirically by Enroth-Cugell and Robson (1966). The filter properties
of the Discrete DoG kernels were analyzed in the frequency domain and
their effects on input images were characterized by means of GLCM
descriptors. The results demonstrate that the DoG Kernels behaviour
range between true High-Frequency Enhancing filters and Band-pass fil-
ters depending on the discretization parameters. Moreover, the analysis
of filtered images suggest that those kernels that enhance contrast come
at a cost of higher entropy as well as lower spatial correlation.

Keywords: Retina · Difference of Gaussians · Discrete kernels ·
Contrast · Correlation · Entropy

1 Introduction

Kuffler found that retinal ganglion cells (RGCs) possesed Receptive Fields (RFs)
arranged into a center-surround organization. They were excited when a bright
stimulus was applied to the center region; and, conversely, were inhibited when
the same stimulus was applied to its surround [1]. This center-surround receptive
fields (RFs) were later mathematically described by Rodieck (1965) as the sum
of two Gaussian functions: a positive one, representing the center, and a wider
negative one representing the surround. This model was called the Difference-of-
Gaussians (DoG) model and has been widely used as a model to represent the
RFs of RGCs ever since. The parameters of the DoG model applied to RGCs
were first estimated by Enroth-Cugell and Robson (1966, 1984). They fitted
the model against contrast sensitivity curves that were obtained from recorded
responses of ganglion cells. For each recorded RGC, the parameters of the DoG
model, the radius and maximum amplitudes of both the center and surround
Gaussians, were obtained.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18914-7_26
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Later on, the responses of mammalian RGCs were found to depend on the
difference between the stimulus luminance applied to the center of their receptive
fields (RF) relative to the luminance applied to its surround, as well as the mean
levels of retinal illumination [5,6]. As the ratio between these parameters allows
to compute local contrast, the RGCs were naturally viewed as contrast detectors.
Under this paradigm, the role of the retina would be to transform the coding
of retinal signals from absolute levels of illumination to contrast values [7]. The
purpose of the early visual processing was later addressed by Marr and Hildreth
on its theory of edge detection [8]. They argued that intensity changes, i.e local
contrasts, could be the building blocks to construct a primitive description of the
image. As those changes can occur at different scales, the detection process would
have to operate at different resolutions of the incoming input. In order to satisfy
these requirements, a new operator, the second derivative, or the Laplacian, of a
Gaussian was proposed. The gaussian would work as an smoothing filter to set
the image scale, and the zero-crossings obtained from the Laplacian would signal
the intensity changes at that scale. An edge could then be perceived when a set
of intensity changes occur at any given location. Moreover, they showed that an
accurate approximation of the Laplacian of a Gaussian could be developed by
using a DoG function with an appropriate ratio σsurround/σcenter about 1.6.

A different view of the retina and the role of RGCs has its roots in the field of
information theory. Barlow (1961) suggested that as the visual stimulus is highly
redundant, i.e presents a high degree of spatial correlation, RGCs would have to
remove that redundancy in order to encode the information in a more compact
way. Following this line of thought, RGCs were proposed to transform the input
into a decorrelated output by means of either predictive [10] or transform coding
[11]. The efficient RGC filters estimated under these schemes showed similar
center-surround structures to those found experimentally.

This paper aims at analyzing the properties of the discrete versions of the DoG
models obtained experimentally by Enroth-Cugell and Robson. First, we wonder
about the dependency between the kernel properties with the parameters of the
discretization process. Second, we want to quantify the effect of the discrete
kernel on input images in terms of appropriate descriptors, such as contrast,
correlation and entropy. Finally, we discuss the values of these descriptors in
light of the predictions made by the aforementioned retinal paradigms.

2 Methods

2.1 Parameters of the DoG Model

The Difference-of-Gaussians model is made up with two gaussians: the first one
representing the excitatory center of the RF, the second one the inhibitory sur-
round of the RF. Figure 1 shows an schematic diagram of the model as it was
used by Enroth-Cugell and Robson [3,4], with their relevant parameters: the
maximum amplitudes kc and ks, and the radius rc and rs. The function is for-
malized as follows:
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DoG(r) = kce
−(r/rc)

2 − kse
−(r/rc)

2

(1)

being the relevant parameters: the maximum amplitudes kc and ks, and the
radius rc and rs. For each RGC, 17 cells reported in Enroth-Cugell and Robson
(1966) and 6 in Enroth-Cugell and Robson (1984), the theoretical contrast sensi-
tivity function derived from the DoG model was fitted to the empirical contrast
sensitivity function measured at different spatial frequencies. As a result, a set
of parameters (rc, rs, rs/rc, and ksr

2
s/kcr

2
c ) were estimated for each cell. For

brevity these parameters are not shown here but can be found in the original
papers [3,4].

2.2 Discrete DoG Kernels

The continuous DoG functions fitted to experimental data has to be converted
into discrete DoG kernels to operate with input images. In what follows, the four
steps required in that procedure are described.

As the continuous function can take infinite values, the first step consisted on
truncating it in order to set a finite range of values. Figure 2 describes the process
in one dimension. A variable T was defined to determine the width of the trunca-
tion: T = nT ∗ rc, where nT is an integer and rc the radius of the center.

The second step consists on sampling the continuous function. By setting the
size SxS of the kernel, the number of both the elements of the kernel matrix
as well as the sampling points of the continuous DoG function are set. Both
variables T and S define the step of the sampling process:

Step =
2T

S − 1
(2)

Fig. 1. The Difference-of-Gaussians model. The gaussian describing the excitatory cen-
ter (upper blue colored gaussian) is combined with the inhibitory surround (lower blue
colored gaussian). The result is the Difference-of-Gaussian function (pink). The rele-
vant parameters, amplitudes (kc, ks) and radius (rc, rs), for each gaussian are also
shown.



252 A. Arias et al.

Fig. 2. Discretization of the continuous DoG model: truncation (upper inset), sampling
(middle inset), and normalization (lower inset)

After the convolution of the input image with the discrete kernel, the output
image has to preserve the intensity ranges of the input. The third step there-
fore involves the normalization of the elements of the DoG kernel matrix. Each
element or weight wij of the matrix is normalized as follows:

wnorm
ij =

wij

ΣiΣjwij
(3)

Finally, the goodness of the discretization procedure has been assessed by
fitting back the normalized discrete DoG kernel to the original continuous DoG
function. The Levenberg-Marquart algorithm was used to solve the non-linear
least squares fitting problem. The results (not shown here) confirmed that the
parameter set (rc, rs, rs/rc, and ksr

2
s/kcr

2
c ) is preserved as well as other aspects

of the DoG function.

2.3 GLCM and Image Descriptors

As we want to analyze the images transformed by the DoG kernels in terms of
local contrasts as well as descriptors that quantify the efficiency of the transform,
histogram information is not enough. We therefore require information regarding
pixel intensities according to the spatial location of those pixels. There is a way
to manage these considerations by means of the Gray-Level-Coocurrence-Matrix
(GLCM) and the statistical descriptors derived from it. GLCM is a matrix where
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each element p(i, j) represents the joint probability that a pixel with gray-level i
occurs horizontally adjacent to a pixel with value j. Figure 3 shows an example
of how to construct such a matrix using an image patch with L = 5 gray levels
ranging from 0 to 4. The corresponding 5x5 unnormalized GLCM matrix at an
angle of 0 degrees, representing horizontal adjacency, is shown in the right inset.
The final GLCM matrix is computed by normalizing this matrix so that the sum
of its elements is equal to 1. The results shown in this paper were obtained with
GLCM matrices of size 256x256, to take into account the gray levels of an 8-bit
image representation, and 4 possible angles, to consider horizontal, vertical and
diagonal adjacencies.

A set of image descriptors can then be computed over the GLCM matrix. In
this work we have focused in those descriptors that better describe the image in
terms of contrast and efficient coding:

– Contrast. A measure of intensity changes between a pixel and its neighbor
over the whole image. This measure will be 0 for a constant image.

ΣiΣj(i− j)2pij (4)

– Energy. A measure of uniformity of the image. It is 1 for a constant image.

ΣiΣjp
2
ij (5)

– Correlation. A measure of how correlated a pixel is relative to its neighbor
over the entire image. The range of values is between 1 to -1 corresponding
to perfect positive and perfect negative correlations.

ΣiΣj
(i − μi)(j − μj)pij

σiσj
(6)

– Entropy. A measure of disorder or randomness of the elements of GLCM.
The entropy is 0 when p(i, j) = 1 for any given i and j, and is maximum
when all p(i, j) are equal.

−ΣiΣjpij log2(pij) (7)

2.4 Image Processing and Kernel Analysis

A comprehensive python simulation environment was developed to carry out
the discretization procedure as well as the analysis of the kernels presented in
the Results section. The environment takes advantage of some powerful python
libraries, such as: OpenCV, to convolve an image with a kernel; Numpy, to gen-
erate 2D kernels and compute 2D discrete Fourier transforms; Scipy, to solve the
non-linear least squares fitting problem described in section 2.2; and Matplotlib
to plot graphs and view images.
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Fig. 3. GLCM matrix: Image patch of size 3x3 and gray-level range [0, 4] (left) and
absolute frequencies for horizontal adjacency (right).

3 Results

For each of the 23(= 17 + 6) cells reported by Enroth-Cugell and Robson (see
section 2.1) a set of discrete DoG kernels were generated after varying the param-
eters of the discretization process being applied on the original continuous DoG
function. Two discretization parameters, the integer nT describing the width of
the truncation T and the size S of the kernel, were modified in order to obtain
each kernel of the set. The kernels were then analyzed in terms of its represen-
tation in both spatial and frequency domain, the Bode diagram, and the output
after convolving the kernel with an standard test input (Lena image). It can be
concluded that all set of kernels change with the discretization parameters in
a quite similar way regardless of the analyzed cell. On the basis of this result,
only cell number 1 of Enroth-Cugell and Robson (1966), was chosen to study
the impact of the discretization procedure.

The first objective was to analyze the properties of the discrete DoG kernels
corresponding to cell number 1. Figure 4 illustrates the Bode diagrams, which
plots the filter gain for each spatial frequency, for truncation values nT = 3 (first
row) and nT = 19 (second row) and kernels of increasing sizes. For nT = 3, the
shape of the filter gain changes with kernel size, starting as a High-Frequency
Enhancing Filter (HFEF) at small sizes and becoming a Band-Pass Filter (BPF)
at large sizes. The dependency is the same for nT = 19, but bigger kernel sizes
(more discretization points) are required to achieve the BPF filter. Furthermore,
with this truncation value, the gain is almost negligible for small sizes. These
results suggest that (1) the discretization or sampling of the continuous DoG
function is crucial to determine the behaviour of the discrete DoG kernel, and
(2) the response of the continuous DoG function in the frequency domain, which
is of a band-pass type, is better approximated with more dense discretizations.
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Fig. 4. Bode diagrams for different discretizations of the continous DoG kernel. The
case corresponds to cell number 1 of Enroth-Cugell and Robson (1966) with continuous
function parameterized as follows: kc = 100, ks = 15.9, rc = 0.32, rs = 0.76. Filter
gain is shown for truncation value nT = 3 (upper row) and nT = 19 (lower row), for
kernel sizes ranging from 5x5 to 45x45 (left to right columns).

Fig. 5. Output images for different discretizations of the continous DoG kernel. Results
after filtering the test input (Lena image) through the discrete DoG kernels. Each
output corresponds with the kernels shown in figure 4.

The output images (Fig. 6), obtained after convolving the input with the
kernels, allow to analyze the filtering carried out by the different discrete versions
of the DoG function. For nT = 3, the first kernel (nT = 3, S=5) amplifies high
frequencies so much that the image output looks rather noisy. The output looks
much better when the kernel behaves as a BPF at sizes S=15 and S=25. However,
the last kernel (S=45) removes high frequencies outside the band, i.e suppresses
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Total_out AVG_out AVG_diff

Contrast 3178.28 794.57 717.03

Energy 0.05 0.01 -0.03

Correlation 3.34 0.84 -0.14

Entropy 54.54 13.64 2.59

Size: 5x5
k_trunc: 3

Total_out AVG_out AVG_diff

Contrast 577.99 144.5 66.96

Energy 0.09 0.02 -0.02

Correlation 3.89 0.97 -0.01

Entropy 49.53 12.38 1.33

Size: 15x15
k_trunc: 3

Total_out AVG_out AVG_diff

Contrast 262.23 65.56 -11.98

Energy 0.13 0.03 -0.01

Correlation 3.95 0.99 0.01

Entropy 46.61 11.65 0.6

Size: 25x25
k_trunc: 3

Total_out AVG_out AVG_diff

Contrast 106.68 26.67 -50.87

Energy 0.17 0.04 0.0

Correlation 3.98 1.0 0.02

Entropy 44.42 11.11 0.06

Size: 45x45
k_trunc: 3

Total_out AVG_out AVG_diff

Contrast 310.16 77.54 0.0

Energy 0.16 0.04 0.0

Correlation 3.92 0.98 0.0

Entropy 44.2 11.05 0.0

Size: 5x5
k_trunc: 19

Total_out AVG_out AVG_diff

Contrast 494.43 123.61 46.07

Energy 0.11 0.03 -0.01

Correlation 3.87 0.97 -0.01

Entropy 47.43 11.86 0.81

Size: 15x15
k_trunc: 19

Total_out AVG_out AVG_diff

Contrast 4029.39 1007.35 929.81

Energy 0.05 0.01 -0.03

Correlation 3.21 0.8 -0.18

Entropy 55.32 13.83 2.78

Size: 25x25
k_trunc: 19

Total_out AVG_out AVG_diff

Contrast 3648.53 912.13 834.59

Energy 0.14 0.04 -0.0

Correlation 3.48 0.87 -0.11

Entropy 55.14 13.78 2.73

Size: 45x45
k_trunc: 19

Fig. 6. GLCM descriptors of output images. The set of 4 descriptors described in
section 2.3 is computed for each output image of figure 6. Each descriptor is computed
on the set of GLCM matrix, each one representing 4 adjacency types (see section 2.3).
AVGout represents the average of descriptor values along the 4 GLCM matrices, while
AVGdiff indicates the difference between AV Gout and the average value of the image
input.

a certain amount of detail, and generates a smooth version of the input image.
For nT = 19, the output is almost the same as the input at size S=5, it seems
to improve a bit with the weak gain provided with the kernel at size S=15, and
finally becomes noisy as the gain increases with the kernel showing a HFEF
behavior at size S=25. Remarkably, the result is still noisy at size S=45 even
though the kernel has became a BPF. It seems that the gain is indeed quite large
at higher frequencies.

The effects of theDoG kernels are better quantifiedwith theGLCMdescriptors.
Image contrast seems to depend on the gain of the filter at higher frequencies.
For nT = 3, the highest possitive AV Gdiff , the difference of average contrast
between the output and the input, corresponds to the image filtered with kernel
size S=5. This value becomes negative, i.e contrast is reducedwhen comparedwith
the input, with kernel sizes S=25 and S=45. For nT = 19, the AV Gdiff peak
is achieved with size S=25 and reduced when the BPF behavior appears at size
S=45. Image entropy seems to possitive correlate with image contrast, meaning
that contrast enhancements do correspond with entropy increases. On the other
hand, image correlation seems to be at odds with contrast. Contrast enhancements
appear to reduce the spatial correlation of the output image.

4 Discussion

The results indicate that the sampling of the continuous DoG function determine
the behaviour of the corresponding discrete DoG kernel. The discretization
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process could yield filters with either an HFEF or a BPF behaviour. If the goal
of the retina is to highlight or enhance contrast, it has to be done without ampli-
fying high-frequency noise, thus restricting the filter gain to a band of frequencies.
Moreover, enhancing average contrast comes at a cost of: (1) higher entropy, and
(2) lower spatial correlation. In terms of the languageof information theory, images
with higher entropies require longer size codes, i.e the amount of data required to
represent the image is increased rather than reduced. In terms ofmachine learning,
removing correlations could impede the learning of visual patterns. In closing, it
seems that the optimal discretization of the DoG models would have to satisfy a
trade-off between contrast, entropy and spatial correlation.
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Abstract. The overuse of antimicrobials promotes the resistance of an-
tibiotics, which is a great concern in hospitals. Clinical Guidelines are
essential documents that provide useful recommendations to clinicians
about the therapy. In order to obtain a Computerised Clinical Guide-
line, main efforts to represent this knowledge focus on ad-hoc data flow
models. However, they have had a low impact in the industry since they
generally neglect clinical standards or they are hard to maintain due to
the model complexity. In this work, we propose to step backward to use
rule-based approaches to obtain clinical rules, more simple to model and
easier to manage. We also review and discuss main rule representation
alternatives and we present a case study in the Ventilator Associated
Pneumonia from a Clinical Guideline.

1 Introduction

Antibiotic administration is widely extended to all stages of healthcare to treat
bacterial infections. Great efforts have been done in order to define policies to
keep the effectiveness of antibiotics, palliating the occurrence of resistances due
to an inappropriate and unnecessary use of them. In particular, hospital-acquired
infections in Intensive Care Units are a major concern, due to the patients’
conditions.

Clinical Guidelines (CGs) are a useful tool for intensivists to support their
medical decisions. Essentially, a CG is a document that provides a set of rec-
ommendations based on the best medical evidence available regarding diagnosis
or prescription among others. In this work, we draw our attention on CG for
infection diagnosis and antibiotic prescription assessment.

CGs have been used as a source of knowledge to build clinical decision support
system. According to [16] three key issues are identified: (1) modelling and com-
putable representation, (2) acquisition and (3) verification and execution. Most
efforts in the literature focus on the first issue in order to define a expressive and
free-ambiguous model.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18914-7_27
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There is a wealth of generic computerised CG languages such as ProForma,
ASBRU, GLIF or GLARE among others [16]. Other approaches deal with spe-
cific medical problems such as ONCOCIN or T-HELPER, designed for oncol-
ogy or HIV protocols. According to [6], key aspects to model computerised CG
are the primitives of the language, the complexity of the CG type, the domain
knowledge or the maintenance problems. Unlike the aforementioned models, Ar-
den syntax [4] has some impact in the industry. Arden syntax is a rule-based
language which simplicity allows modelling basic CGs using simple modules to
share the knowledge.

From the implementing point of view, clinical rules-based systems benefit from
solid formal models and mature technologies and there is a increasing interest on
prescription supervision and pharmaceutical validation [2]. Moreover, semantic
rule languages such as SWRL or production rule engines such as Drools provide
excellent platforms for the development of CDSS.

From the clinical point of view, rules as declarative expressions, are gener-
ally easy to interpret by clinicians. Furthermore, in the infection and antibiotic
management, there are evidences of effective knowledge representation using
rules. In [12] the detection of hospital-acquired infections a production rule was
proposed. Regarding the antibiotic selection issue, TREAT system uses a prob-
abilistic causal networks [13]. The MoniICU system [1] provides an infection
alert module for ICUs based on Arden modules. Recent works also propose an
automatic translation of these modules to Drools framework [10].

This paper is structured as follows. In Section 2 we propose an implementation-
oriented framework to analyse different rule-based approaches to model clinical
guidelines. Section 3 describes a case of use in VAP, modelling a CG from a
Ventilation-Associated Pneumonia guideline [5]. We discuss the results obtained
in Section 4. Finally, we present our conclusions and further research in Section 5.

2 Rule Model Analysis

In this work, we analyse the use of rule models to represent pieces of a clinical
guideline under the assumption that the results obtained must be adoptable by
the industry according to available technology. We propose to use the following
dimensions of study:

– Expressivity and capacity of the modeling language in terms of syntax flex-
ibility, logic expressivity and time management.

– Suitability of the rule model tot be easily adopted in the clinical domain, con-
sidering the physician interpretability and the interoperability with Clinical
Information Systems.

– Regarding the industry aspects, we consider the availability of reasoning en-
gines, the industry support, standardization and the maintenance capacities.

There is a wealth of rule models proposed in the literature. We cluster the
works reviewed in three main groups: specific clinical oriented languages to model
clinical guidelines using rules, production rule languages and semantic rule lan-
guages. The rest of the section presents a description of the different languages
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reviewed in each group and we finally present our comparative analysis according
to the abovementioned dimensions of study.

2.1 Clinical Rule Languages

Arden syntax [4] is a language for representing and sharing medical knowledge.
The Medical Logic Modules (MLMs) are the key component of Arden syntax.
MLMs are set of rules comprising the clinical knowledge to make a single med-
ical decision. The language allows both the typical if-then constructs used in
declarative production rules systems, as well as the use of classical procedural
components . The Arden ML syntax is a HL7 language certified as standard.
Although Arden ML has been available for more than 20 years now, it is not
widely used mainly due to its complex syntax and the lack of compilers and an
execution environment that allows validation.

2.2 Production Rule Languages

Drools [17] is a cross-platform Business Rule Management System (BRMS) writ-
ten in Java and developed by the JBOSS community open source projects, that
uses an enhanced implementation of the classical forward-chaining RETE algo-
rithm. The Drools language to represent knowledge in form or rules is based on
First Order Logic and with a Closed World Assumption (CWA). Drools reason-
ing capabilities are based on two main processes, the Authoring process and the
Runtime process: (1) the authoring process: involves the creation of rules files
(.drl files) which contain the representation of the rules knowledge base which
is used for representing the domain knowledge in a formal way; (2) the runtime
process: the rules knowledge base is also a runtime component of Drools, that can
instantiate one or more Working Memories at any time. The Working Memory
consists of a number of sub-components, including Event Support for Tempo-
ral Reasoning, Truth Maintenance System, Agenda and Agenda Event Support.
Furthermore, Drools Fusion allows the use of different temporal operators, both
for expressing discrete time or point-in-time or interval events. The temporal re-
lationships that can be expressed cover all the 13 temporal constraints between
events defined by Allen.

Finally, it is worth mentioning JESS [7], a production rule framework based
on Java technology. Jess models is a CLIPS-like language, popular among re-
searchers, and using an optimized version of the Rete algorithm with backwards-
chaining support. Several systems combines Jess with semantic rules as SWRL.

2.3 Semantic Rules

The Semantic Web Rule Language (SWRL) [9] is a tightly coupled hybrid tech-
nology that combines ontological conceptual reasoning based on Description
Logic with a Rule Language, extending the OWL expressiveness with Horn
Logic, in an Open World Assumption (OWA) scenario. SWRL is a proposed
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language for the Semantic Web that can be used to express rules as well as logic,
combining OWL DL with a subset of the Rule Markup Language (Rule ML
, itself a subset of Datalog ). SWRL is the most popular formalism to express
knowledge in rule form within the web community since it is based on OWL-DL:
all rules are expressed in terms of OWL concepts. SWRL has the full power of
OWL DL and extends it with a specific form of Horn-like rules. Classical reason-
ing in OWL-DL allows only limited use cases such as consistency checks, class
properties and relationships and instance classification.

The Rule Interchange Format (RIF) [11] was chartered by the World Wide
Web Consortium in 2005 as a standard for exchanging rules among web rule
engines that focuses on exchange rather than defining a single one-fits-all rule
language. In contrast to other Semantic Web standards, such as RDF, OWL and
SPARQL, it was immediately clear that a single language would not cover all
rules for knowledge representation and business modeling. RIF in fact provides
more than just a format: although RIF dialects were designed primarily for
interchange, each dialect is a standard rule language and can be used even when
portability and interchange are not required.

SparQL Inference Notation SPIN (SPIN)[18] is a W3C Member Submission
that has become the de-facto industry standard to represent SPARQL rules
and constraints on Semantic Web models. SPIN also provides meta-modeling
capabilities that allow users to define their own SPARQL functions and query
templates. Finally, SPIN includes a ready to use library of common functions.
SPIN allows to represent a wide range of business rules in SPARQL as RDF
Triples. In fact, SPIN is also referred to as SPARQL Rules. SPARQL is a well-
established W3C standard implemented by many industrial-strength RDF APIs
and all databases. This means that rules can run directly on RDF data without a
need for materialization. SPIN provides a framework that helps users to leverage
the fast performance and rich expressivity of SPARQL for various application
purposes.

Finally, there is a query language based on SWRL called SQWRL, a concise,
readable and semantically robust query language for OWL, as SPARQL under-
standing of OWL semantics is incomplete. SQWRL uses SWRL strong semantic
foundation as its formal underpinning and provides a small but powerful array
of operators. SPARQL cannot be considered to be a rule language, but a query
language exclusively over RDF, allowing to make one step transformation from
one RDF graph match to another, and iteratively apply SPARQL constructs
to simulate the functionality of a rule language in a rather complex way, for
example using Answer Set semantics or using the SPIN language, rule language
expressed in SPARQL constructs.

In Table 1 we summarize our analysis of the use of rule models to represent
pieces of a clinical guideline under the assumption that the results obtained must
be adoptable by the industry.
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Table 1. Rule language analysis. N/A:not available, FOL: first-order logic, CWA:
Closed World Assumption; HLP: Horn Language Program; DL: Description Logics;
DSL: Domain Specific Language.

Language Clinical Domain Industry
Syntax Logics Time Constructs Interop Engine Support Standards Maintenance

Arden
syntax

Arden
MLM

N/A
fuzzy logics

no
clinical
oriented

interchange
format

Arden Engine
(company)
Medexer

ASTM
HL7

no

Drools Java/Mvel
supports

FOL, CWA
yes

DSL
available

via drl files KIE platform JBoss project JRS-94 metadata

Jess Java/CLIPS supports FOL no no via clp files Jess Platform
(company)

Sandia Labs
no no

SWRL OWL-DL HLP∪DL no no no
Bossam/Hoolet/Pellet
(not full supported)

RuleML
W3C

submission
yes

RIF
exchange

rules
dialects

HLP
(dialects

vary)
no no

(generic)
interchange

format
N/A N/A

W3C
recomm.

yes

SPARQL RDF
query

N/A no no no Jena/Virtuoso
less support

after RIF
W3C

recomm.
–

SQWRL OWL rules
(over SWRL)

HLP∪DL
undecidable

no no no Protege OWL – N/A –

SPIN
RDF syntax

SPARQL
rules

N/A no no no
RDF/SPARQL

platforms
–

W3C
submission

–

3 Case Study

According to the Spanish Prevalence Study of Nosocomial Infections (EPINE)
reported in 2012, 7.1% of hospital patients suffered an infection in which Pneu-
monia is the second most frequent hospital-acquired infection affecting 20.92% of
all critically ill patients in Spain. Medical evidences highlight that about eighty
percent of nosocomial lung infections are associated with mechanical ventilation
[19]. In this case study, we focus on the Ventilator-Associated Pneumonia (VAP),
a specific lung infection of inpatients on breathing machines.

The sources of medical knowledge used in this work are two international ref-
erences of the medical literature: the VAP recommendations of the John Hopkins
Antibiotics Guidelines [5] and the definitions of Ventilator-Associated Events [3].

3.1 VAP Knowledge

In essence, this piece of guideline referring VAP is composed by a natural lan-
guage description of recommendations regarding:

1. The calculation of the Clinical Pulmonary Infection Score (CPIS) which is
an indicator of the possible presence of an pulmonary infection, a surrogate
tool to state a diagnosis.

2. Diagnosis recommendations based on CPIS value and other clinical factors.
3. Recommendations on antibiotic prescription according to the diagnosis hy-

pothesis.
4. Antibiotic empiric treatment (including duration) recommendations for each

diagnosis.
5. Antibiotic follow-up of treatment recommendations.
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The above-mentioned recommendations refer to symptoms, signs and other in-
formation that can be obtain from the patient’s medical record.

The CPIS description is an ambiguous free specification of the calculi of the
score according to the following medical parameters: temperature, peripheral
WBC, tracheal secretions, chest x-ray, progression of infiltrate from prior radio-
graphs, culture of ET suction and oxygenation (PaO2/FiO2).

Time also plays a key role on this medical knowledge, expressed in the form of
temporal information or thresholds on the duration of the temporal event. This is
the case of the diagnosis recommendations that lay on the CPIS value and other
conditions of the patient (e.g. hours of hospitalization and long-term facility
origin), resulting in one of the following diagnoses: VAP unlikely, Early-onset
VAP and Late-onset VAP. For instance: the patient may have an early-onset
VAP when CPIS is over 6 within first 72 hours hospitalization and the patient
does not come from long-term facility.

Similarly, in the recommendations on antibiotic prescription the therapy sug-
gested includes the duration of the antimicrobial administered. For example:
”Administration of Moxifloxacin 400 mg IV Q24H during 7 days when early-
onset VAP is suspected”.

Some other recommendations combine quantitative temporal constraints as
well as fuzzy expressions. The antibiotic follow-up of treatment recommendations
suggest to revise the therapy according to patient’s conditions. For example: the
doctor might consider to cancel te treatment or to alter the treatment duration
to 3 days (by default 7) when VAP is unlikely and the current CPIS is bellow or
equal to 6 after 3 days of treatment.

3.2 Rule Modelling

According to the clinical guidelines requirements (described in Section 3.1) and
the rule model analysis (presented in Section 2) we chose Drools as framework.

In particular, we have taken into account the following design considerations:

– Tracking: each rule must be traced back from the clinical guideline document,
the knowledge source.

– Authoring: design and validation of each rule is an iterative process that
requires version control.

– Modularity: rules must be grouped and activated (using the Drools agenda
functionality) according to the current state of the medical process (e.g.
diagnosing, therapy , following up, etc. ).

– Temporal dimension: time constraints of rules can modeled using the Drools
Fusion Complex Event Correlation capabilities, simulating real time scenar-
ios that allow checking for example how a patient’s response to treatment
has evolved over time.

Figure 1 depicts an example of a rule modeling a recommendation of the
VAP clinical guideline. The audit metadata block shows that the rule trace is
page = 81 and lines = 34 − 35 of the clinical guidelines documents, describing
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Fig. 1. Rule implemented

the author and version, as well as metadata of clinical actions for knowledge
base maintenance issues.

The rule description block consists of: (1) procedural information includ-
ing priority (salience = −50) and group execution block (agenda − group =
”follow − up”); (2) the antecedent of the rule (left hand side, LHS) and (2)
the consequence of the rule (right hand side, RHS). In the LHS the temporal con-
straint ”after 7 days of the beginning of treatment” is expressed as
after[7d] treatment.treatmentBeginDate. The fact treatmentBeginDate
should be stated in the hospital Clinical Information System.

3.3 Knowledge Base Implementation

Rules were modelled from the clinical guideline under the supervision of experts.
During this study 36 rules have been formalized that represent the VAP infection.
The resulting rules have been grouped into execution blocks to allow for a correct
rule execution flow, while rules remain declarative and therefore interpretable
by experts.

Figure 2 depicts the general structure of the rules implemented and the RETE
network using IDE Rule Workbench provided by Drools.

The resulting VAP rules can be classified in 6 types:

– CPI Score rules: given a set of patient’s symptoms, that we assume to be
part of the Patient Medical Record (PMR) in a Clinical Information System,
these rules calculate the final value of the CPI Score for a specific patient.

– Diagnosis rules: the diagnosis rules are decoupled from the treatment rules,
although the guidelines couple this knowledge. That means that first, a di-
agnosis is assessed for a given patient, and only when the diagnosis is known,
treatment rules can be activated.
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Fig. 2. Implementation of the knowledge base

– Treatment rules: these rules select the right treatment for a patient, using
as input the assessed diagnosis and other patient information coming from
the Patient Medical Record.

– Follow-up rules: these rules are in many cases temporal rules, as they check
the patient CPI Score after some days of treatment to decide if treatment
should be stopped, continued or complemented.

– Treatment notes rules: rules that show specific alerts regarding the treatment
of, for example, certain bacterial agents.

The rules are executed in this specific order, grouping them in the so called Drools
agenda-groups. Because when a fact is changed in the working memory with the
modify operand, Drools does not know which data has been actually changed,
all rules are activated again and therefore are candidates to fire again, possibly
generating infinite loops. This situation is a well known problem in Rule Based
Systems and Drools provide some special attributes and features to avoid many of
these situations (but not all).

4 Discusion

As shown in the case study, modelling a piece of clinical guideline requires a
large number of rules. Therefore, three key aspects should be discussed: language
expressivity, rule maintenance and computer performance. In this work, we focus
on production rule languages and semantic rule languages.

In general, production rule languages allow an easy maintenance of business
logic. While semantic languages (as SWRL, RIF or SPARQL) represent semantic
knowledge, Drools offers a pure syntactic knowledge representation.
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In semantic approaches, knowledge is represented using axioms between classes,
relations and individuals at conceptual level, semantic languages allow to reason
about the structure and therefore to obtain new knowledge, hidden or not pre-
viously known even for the expert, deriving new facts not literally present in the
ontology, but entailed by the semantics. In Drools, the knowledge you get is the
knowledge you code. On the other hand, semantic rule languages as SWRL are
not as expressive as Drools (for example negation is not available).

Even if Drools lacks of semantic expressive power in LHS or RHS, it can be
placed in the metadata section. Moreover, it is possible to share the knowledge
representation, through the knowledge base (.drl files) and the Java classes, but
is re-use is limited to same domain problem.

Regarding the computer performance, most OWL-based languages can lead
to undecidability of simple inference problems, especially when language expres-
siveness grows. A possible solution of this is the notion of DL-safe rules [14],
that restricts the use of SWRL rules to the A-box part of the DL knowledge
base, that is, individuals known to the ontology. There is no efficient support of
first-order reasoners to execute reasoning over SWRL. For this problem SWRL
rules are for example translated to existing rule systems as JESS [15].

The case study also highlights that time dimension plays a key role on the
clinical guideline representation. In this sense, temporal rules can be easily added
to the knowledge base by using the functionality provided by Drools Fusion.
On the other hand, temporal reasoning with SWRL is still a research area in
Semantic Web.

5 Conclusions

The aim of this work is to identify, in the antimicrobial prescription context, the
most suitable model to represent CGs using a rule-based approach. To this end,
we present a comparative analysis of current rule models and platforms consid-
ering expressivity, standardization and industry criteria. A second contribution
of this work is to analyse the rule-based representation of a piece of CG front
the VAP problem.

Previous studies on computerized CG deal with representing knowledge of
most of the CG document. They mainly focus on the extraction of clinical rules,
where the models proposed are highly expressive but complex. In this work, we
highlight the advantages of representing knowledge using rules which simplicity
allows an effective implementation and an easy transfer to the industry.

When medical knowledge is modeled, it is crucial to evaluate how the knowl-
edge is modeled, where it is stored, the use of norms and standards, and scala-
bility and performance. In [8], the authors review advantages and disadvantages
of several rule languages for decision support on cardiology. They conclude that
semantic rule technology provides reusable knowledge and the advanced reason-
ing capabilities are far better than those of Drools. The study also claims that
Drools is more difficult to maintain as knowledge evolves and new or modified
rules arise. Our conclusions differ from [8], since we also take into account the
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metadata elements of Drools. Drools however comes out as the champion regard-
ing expressiveness, mainly due to the possibility to add Java code to rules.

The experiments carried out with Drools for modeling a CG for the VAP
infection reveals the advantages of this rule approach. In particular, authoring
and tracking the rules to the original CG text is essential in order to validate the
rules by experts. Moreover, time management is essential and time constraint
primitives must be included in the rule language.

Future works will be focused on including other parameters in our study (such
as performance analysis and scalability) as well as the implementation of different
CG for antimicrobial management.
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Abstract. Many diagnosis support systems (DSS) are focused on pre-
cise disorders, being not useful for differential diagnosis (DD) or facing
comorbidities. Few DSSs offer a rich list of potential diagnoses and they
do not reflect complex relations between diseases to be diagnosed. We
present a model to allow collaboration of multiple heterogeneous diag-
nostic units (DU), which are actual DSSs, behaving as a whole system.
The heterogeneity of the DUs refers to the disease they diagnose and
the classification model they use to do so. This model offers a framework
to build multi-purpose DSSs, assuring their operability and functioning
despite the heterogeneity of the single diagnostic units.

Keywords: CDSS ·Diagnosis support systems ·Collaborative diagnosis ·
Group decision · Decision fusion

1 Introduction

The use of information and communication technologies (ICT) in the clinical
field began in the early 60’s of the last century, as computer science (CS) start
its growing. CS areas of research like artificial intelligence (AI) are nowadays
widely applied with this purpose. In fact many researches within AI, as other
areas of CS, are inspired by biological systems studied in biomedical science,
e.g., artificial neural networks, genetic algorithms, etc.

From the different ways CS technologies have been used to help practitioners
in their tasks, supporting clinical decision-making was one of the first. This is not
surprising since clinical practice is considered to be a continuous decision-making
process that lasts from the first contact with a patient with a set of sings and
symptoms, until the end of the cycle of clinical care, when the patient doesn’t
need any care. Clinical decision supports systems aim to help experts and other
role users involved in healthcare (clinicians, staff, patients,...,) in any decision-
making task that affects healthcare delivery. These systems provide knowledge
and person-specific information intelligently filtered or presented at appropriate
times, to enhance health and healthcare [1].

Diagnosis could be considered as the key stage during patients attention since
its results will condition later stages like treatment assignment or prognosis.

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 269–277, 2015.
DOI: 10.1007/978-3-319-18914-7_28
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The process that leads to a final diagnosis is one of the most complex activi-
ties within clinical practice. This complexity is inherent to the decision-making
task needed to perform diagnosis, and affects equally to artificial systems and
human individuals or groups focused on diagnosing [2]. Besides, new ways of
medical care are being developed, like evidence based medicine, which empow-
ered the development of new laboratory tests leading to a new type of attention
like personalized medicine. Nowadays diagnostic experts have at their disposal
vast amounts of clinical data related to patients that they have to analyse and
interpret at point of care in a very dynamic environment [3].

Is easy to imagine that all the previously shown difficulties can get worse in
cases which are clinically difficult to deal with. Situations where diagnosis is
a confusing and non obvious process, like comorbidities [4]. However, diagno-
sis support systems (DSS), have been traditionally focused on the diagnosis of
one disease, not being helpful to face complex diagnostic situations which in-
volve more than one disease and require the participation of multiple experts.
There are few exceptions of systems which perform differential diagnosis pro-
cesses (DDx)

Other common lack in current DSS due to its single-disease design, is that
they miss to reflect complex relations between diseases. Sometimes the diagno-
sis of a sign is useful to be considered as an input to diagnose other diseases,
e.g, hypertension and diabetes. The ability of dealing with diseases from multi-
ple fields is a desired feature in a DSS. Furthermore, generalization capability
improves the chances of a system to be accepted and used in daily practice. Di-
agnostic experts were more prone to use such systems that reflect more realistic
diagnoses.

We have developed a model to build and configure group DSSs to overcome
cited difficulties. Those group DSS are based on the collaboration of multiple
heterogeneous diagnostic units (DU), which are actual DSSs, behaving as a whole
system. The heterogeneity of the DUs refers to the disease they diagnose and
the classification model they use to do so. This model offers a framework to
build multi-purpose DSSs, assuring their operability and functioning despite the
heterogeneity of the single diagnostic units. Besides DUs interaction can reflect
relations between disorders are considered. The model is highly parametrized
so experts can easily set preferences about the way final diagnoses should be
emitted.

In the next sections we first give an overview of the fields related to our work
(section 2), then a general description of the model we present (section 3), followed
by a closer view on the output diagnose definition (section 4), and finally some
conclusions reached throughout the work done (section 5).

2 Related Works

In the first times of CDSS’s development they were mainly applied to diagnosis,
following the model of the ”Greek Oracle”. Computers were supposed to replace
human experts because they were expected to give the correct diagnose giving
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a rational explanation for it in all circumstances since they could store even
more knowledge diagnostic expert. This view was proved to be false, and there
was a shift of the views on these systems, to a more realistic scenario in which
computers support clinicians tasks, being those the ones who, using the system,
could offer better and more informed opinions. [5].

Nowadays there is a great consensus on the benefits that the use of CDSS
offer in multiple ways to healthcare. Studies like [6] show the effect of these
systems on healthcare actors (doctors, nurses, patients,...,), and the different
sort of outcomes they produce.

Besides those benefits there still limitations and drawbacks in the use of CDSS.
Recently, authors stated that the in the future DSS should cover the diagnosis
of diseases from multiple clinical environments, since there are complex cases
which involve many specialities. In [4], the authors show what they considered
challenging topics in clinical decision support that should be faced in the next
years. They highlight the suitability of combining recommendations for patients
with comorbidities and the need of architectures for sharing executable CDS
modules and services.

Traditionally, CDSSs were focused on a single disease. However, recently some
works tried to fulfil the need for systems that consider a wider set of diseases,
which could help to face comorbidities or cases in which a differential diagnose
process is needed. The obvious way to do this is by combining single decisions
related to different diseases. Some works tried this, like [7] and [8], but applied
to treatment assignment and clinical guidelines merging respectively. Regarding
diagnosis, authors of [9] present framework for decision fusion but having only
mammographic masses as targeted diagnosis.

Talking about DDx, we should refer the review about DDx generators done
by Bond et alt. [10]. In their review they compare recent and interesting DDx
solutions scoring them using 14 criterion, resulting ISABEL[11] and DxPlain [12]
with the highest scores.

These systems offer quite good diagnostic results but they are closed sys-
tems that don’t take profit of other systems.Their knowledge comes from the
accumulation of clinical knowledge related to diverse clinical field, nor from a
collaboration between other expert systems. Besides they don’t reflect complex
relations between diseases, i.e., that one disease can be a sign of a second one.

3 Model’s Description

In section 1 we introduced the convenience of having DSSs that support clini-
cians decision making task in complicated situations where diagnoses are unclear
or many diseases are involved. In traditional clinical practice those situations are
faced through processes that involve practitioners from different clinical special-
ities, e.g., DD. Besides, we established some ideas which drove the definition
of a model to guide the building of group DSS to perform a sort of DD. This
group DSS would be based on single specialized DUs that could interact reflect-
ing the possible sign-of and symptom-of that could exist between the diseases
they diagnose.
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To build our model we follow a bottom-up reasoning strategy. We began
focusing on the basis of a group DSS, the cited DUs. After that, we looked at
them from the outside paying attention to their needs of interaction with other
components of the system, i.e., other DUs, clinical databases (CDB) etc. Then,
we saw the need to describe the ways all these elements will interchange data.
Finally, when it came to data, we had to face the need for mechanisms to assure
the understanding between heterogeneous systems that use that clinical data,
and with the sources and destination of that data as well.

As a result, the model defines three basic components: diagnosis, control, and
communication. They are characterized by defining their functionality and the
sets of input and output data. In the following sections we go deeper into each
one. We can also see a structural diagram of the described components in Fig.1.

Fig. 1. Structural diagramof themain parts of the presentedmodel and their connections
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3.1 Diagnosis Component

This component mainly consists on the set of DUs that compound the group
DSS at a certain time. From the model’s point of view, each DU is a black box,
that is, we only pay attention to the way they interact with other elements.
Details about the classifying model the DU uses to diagnose and how this is
performed are not considered.

Each DU is an actual DSS focused on the diagnose of a certain disease, being
possible that more than one diagnoses the same disease. Every DU has a known
set of input features that they need to perform this task. The description of
these features is needed to feed the right clinical input data into the right way
to the DU and to manage its functioning within the group DSS once it is part
of it.

Regarding the DUs output, this would not only consist on a diagnostic value,
but also on statistical values related to its diagnosing performance: accuracy
rates, true positive and negative rates, false positive and negative rates, positive
and negative predictive values etc. Those values will be used to conform the final
diagnose as it is explained in section 4.

3.2 Control Component

The control component builds up the mechanisms to manage the global diagnosis
task. This task entails having an updated and precise image of the DUs that form
the group DSS at a time. Having a clear picture of each DU, we are able to reflect
the existing relations between the set of targeted diseases by the group DSS. For
instance, we can have a simple DU which diagnoses fever, whose output can be
used as an input, with other patient-related data, to diagnose other diseases to
which fever is a sign or a symptom.

Main functions of this component are:

– Management of DUs: discovering,information maintenance, interrelations,
etc.

– Management of the updated set of diseases that the group DSS considers.
– DD process driving: DUs selection, clinical data handling (gathering and

dissemination), global output emission (detailed in 3.1), etc.
– Interoperability maintenance, in a joint effort with communication compo-

nent (section 3.3).

3.3 Communications Component

Communication between elements and components of a group that must interact
to achieve their common goal is a key question. Moreover, in the clinical field
such thing is not easy due to the lack of standard frameworks and communication
protocols, being diverse the ways and languages used to make clinical systems
work together.

Communication component of the model will assure the interoperability among
its components and between them and CDBs or other systems that are the source
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and/or the destination of the clinical data. These origins of data could use different
clinical standards to store and transmit patient-specific data, butmainly standards
such as SNOMED-CT, ICD-10 and LOINC. Each of them is thought to codify or
classify clinical terminology, diseases/symptoms/signs, and clinical tests.

The group DSS would have to take into account all of those standards using
them all together. There could be cases in which an input, (e.g., a clinical test
value), is received using a standard that differs from the one that a DU expects.
In such cases, mapping and translation tasks would be needed in order to abstract
model’s components and users from this variety of communication protocols.

A way to do this is to define a simple new protocol to allow the communication
among model’s elements. For the sake of simplicity, this could be done using a
language like XML, and defining messages which encapsulate meta-data related
to the data that is to be transferred, e.g., standard used to codify the data,
if a value is missing or not, etc. This helps the communication and control
components to manage the sending and reception of data within the group DSS,
and from it to the outside.

4 Diagnosis Selection

One of the difficult questions that arise during a group diagnosis process of a
pathology and a patient is how to choose between divergent opinions when all
of them come from experts and are based on the same evidences. Besides this,
if we want to offer a list that includes diagnosis of multiple diseases, we have to
fuse decisions coming from multiple experts regarding multiple diseases. To do
so we will need on one hand to measure the goodness of each expert’s decision
and on the other hand, a procedure, which using such measurement’s results,
to choose between decisions through fusion and aggregation to build a final list
of diagnoses. In the following sections we show how we face both needs in our
proposal.

4.1 Measurement of Diagnosis Goodness

Analysing these situations we notice that this is a multi-objective problem where
a certain set of requirements should be met before accepting a decision. if we
have multiple options that do so, then we can use optimization procedures of
prioritised variables to choose between the candidate decisions which met the
set requirements.

For instance, when deciding about which treatment should be assigned to
a patient, first, it has to be considered the minimum criteria established by
the public health administration, regarding safety measures, possible secondary
effects and treatment efficacy. After meeting those requirements, it is time to
decide which variables optimization will be estimated. These variables could be
treatment’s associated cost (prescribe the cheapest drug) or efficacy (treatment
with a higher rate of recovery after its use).

A problem happens when the chosen decision does not imply an optimization
of the variables or neither meets some of the requirements. Then, subjective
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arguments like the expertise of the ones involved in the decision-making task
should be used to minimize the risk of the decision.To quantify such subjective
arguments is difficult. For instance, talking about expertise, we know that it
depends on the years of practise and the amount of times the decision expert
has faced the same or a similar situation. Moreover, subjective arguments don’t
assure the suitability of a decision. In group decision-making is common to avoid
these situations by reaching an agreement between the experts involved in the
decision group.

One of the main parts of the work we present is the mechanism used to reach a
final set of diagnoses. This model’s component contains a set of minimum needs,
i.e., requirements that DUs must meet, and zero or more variables to optimize
inspired by the way human experts groups come to a decision. In addition, DUs
have some attributes that allow to rank them using weights which are associated
with the diagnose they propose. We can group these attributes as follows:

– DUs variables (Du Var): this tag includes all the variables related to DUs,
which are used to score the diagnostic opinion a DU emits. This score is used
to weight each DU diagnose to build a global final diagnostic list. Examples
of these variables are: priorly estimated accuracy rate, sensitivity, specificity
and other clinical statistics related to diagnosis.

– Diagnostic variables (Di Var): within this group we include the vari-
ables associated with the diagnose decision whose values optimization will
be estimated for each DU decision. For instance: decision’s cost, prevalence,
morbidity etc.

– DUs description data (Du Desc):these data includes all th information
useful to identify each DU of the group DSS: diagnosed disease, id value,
etc.

– Diagnostic description data (Di Desc): this tag includes data associated
to the actual diagnose that a DU emits: description, diagnostic value etc.

All the attributes and data associated with DUs used in this process are in-
cluded in the metadata that model’s elements interchange using XML messages,
as it was explained in section 3.3.

4.2 Group Diagnosis Algorithm

The group decision algorithm used won’t be unique, on the contrary, different
versions of it will be configured depending on the precise DUs involved in the
diagnostic process. Diagnosis requirements and variables to optimize (section
4.1) will be considered also into the configuration process. All this information
will be included as metadata in configuration XML-based messages, containing
also the criteria for consensus or decision fusion. The criteria will be weighted
using a weighting function applied to each DU.

An example could be an algorithm to diagnose a patient who shows certain set
of signs and symptoms. The algorithm states that each DU should offer speci-
ficity and sensitivity rates over 50% diagnosing the targeted disease to consider
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their decision (minimum requirements). In addition, the set of diagnoses will be
ordered by its complexity, giving priority to those whose treatment is more sim-
ple (variables optimization). Finally, decisions from DUs will be weighted using
its sensitivity criteria.

5 Conclusions

In this paper we present a model that can be helpful to build group DSSs.
What is new in this model is that we follow a collaborative strategy to reach a
common diagnose. Multiple heterogeneous diagnostic units ), which are actual
DSSs specialised in the diagnosis of different, or coincident in some cases, diseases
will collaborate to fulfil a differential diagnosis process, behaving as a whole
system.

One of the main advantages of the model is that it defines ways to hide the
heterogeneity of the DUs when it comes the classification model they use to per-
form their task. This idea clearly simplifies the management and growing of the
global system, improving its modularity and scalability, which means that new
DUs would be easily added to the system. This property is interesting because
allows the system to easily adapt to changes in diagnostic procedures: new labo-
ratory tests, clinical findings, new relations between signs and symptoms etc.

Heterogeneity associated with the disease targeted by each DUs is also hidden
to users. This way the users have the perception of a global system able to go
through the diagnosis of the combined set of diseases.

Another important issue considered in the definition of the model its the im-
portance of interoperability. This issue is viewed from two sides, first from the
inner side of the group DSS. Each of its component could used different clinical
standards, and despite this, they are expected to work together. Secondly, the
group DSS implemented using this model will have to fit in actual clinical work-
flows, operating with other systems, i.e., electronic health records, laboratory
tests repositories etc. So to assure interoperability needs in both cases, we have
defined a new protocol based on XML, which includes metadata, that ease this
communication.

At the time to emit the diagnose, the model offers multiple ways to show
output diagnostic data thanks that it is highly parametrized. Depending on
optimization of certain values or the fulfilling of set requirements diagnostics
results would vary.

For all the highlighted reasons, we consider that the model presented in this
paper is useful for building group DSSs, which can offer new and suitable ways
,through collaboration, to perform complex diagnostic processes, e.g., comor-
bidities, or others that entail the need of DDx.
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Abstract. The ability of walking brings us a great freedom in our daily
life. However, there is a huge number of people who have this ability
diminished or are not even able to walk due to motor disabilities. This
paper presents a method to detect the voluntary initiation and stop
of the gait cycle using the ERD phenomenon. The system developed
obtains a good accuracy in the detection of the rest and walking state
(70.5 % and 75.0 %, respectively). Moreover, the average detection of
the onset and ending instants of the gait is detected with a 65.2 % of
accuracy. Taking into account the number of intentions of initiation and
stop of the gait, the system reaches a good True Positive Rate (around
65%) but obtaining a still improvable False Positive Rate (15.4 FP/min
in average). By reducing this factor, this detection system can be used
in future works to control a lower limb exoskeleton or a wearable robot.
These devices are very useful for rehabilitation and assistance procedures
in patients with motor problems affecting their lower limb.

Keywords: EEG Signals · Gait analysis · ERD · Movement detection

1 Introduction

Brain-Machine Interfaces (BMI) represent a great help for people with disabil-
ities or motor damage. Due to spinal cord injury, stroke or other causes, these
patients might not have the chance of performing movements as common as
picking up a glass of water or walking. Different methods have been applied in
order to use BMIs to solve, or at least reduce, this kind of impediments [1,2].
Electroencephalographic (EEG) systems allow the measurement of the brain ac-
tivity over the motor cortex while subjects are performing motor tasks [3,4]. This
information can be used to control lower limb exoskeletons or wearable robots,
providing an alternative communication path between the brain (by detecting
the patient’s movement intention) and these devices [5,6].
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Current technology allows registering and processing EEG signals that occur
just before performing an action and thus it is possible to know the movement
intention [7,8,9]. This methodology allows assisting motor movements when it
is necessary. The detection of these movement intentions can be very useful in
motor rehabilitation processes. For instance, through this detection, an exoskele-
ton attached to the lower limb [10,11] could allow patients with disabilities to
walk. The coordination between the desire to execute a movement and the per-
formance of the action itself increases the likelihood of the brain to create new
communication channels due to neuronal plasticity [12]. Using this phenomenon,
the effects of rehabilitation could increase more efficiently.

There are two widely used neurophysiological phenomena that begin before
a voluntary action: the Bereitschaftspotential (BP or readiness potential) and
the Event-Related Desynchronization (ERD). The slow potential BP is generally
described as a decrease in the component closest to the DC component in EEG
signals [13]. On the other hand, ERD represents a decrease in the spectral power
of the EEG signals in the mu and beta frequency bands [14]. In this paper, a
methodology to detect the walking intention onset using a non-invasive system
based on ERD is presented. The main goal is the development of a system which
allows controlling an exoskeleton attached to the lower limb. These system could
be applied for both functional rehabilitation and assistance of walking.

2 System Architecture

The designed system is able to detect four different human gait states: Relax,
Start,Walking and Stop. To that end, a motion capture system is used to analyze
lower limb kinematic data to obtain real indices of these states. Afterward, the
brain activity is analyzed to detect the current state in each moment. The brain
signals are acquired using a non-invasive BMI system which provides 32 EEG
channels.

2.1 Brain-Machine Interface

EEG signals are recorded through 32 active Ag/AgCl electrodes (g.LADYbird
model - g.tec Medical Engineering GmbH, Austria) distributed over the scalp.
These electrodes are placed on the positions Fz, FC5, FC3, FC1, FCz, FC2,
FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6,
P3, P1, Pz, P2, P4, PO7, PO3, POz, PO4 and PO8 according to the Interna-
tional 10/10 System and covering central and parietal regions. A monoauricular
reference is placed on the earlobe and the ground is located on AFz. To ensure
a better placement of the electrodes, a g.GAMMAcap (g.tec Medical Engineer-
ing GmbH) is used. This cap allows a quick placement of electrodes. Moreover,
this system is able to reduce motion artifacts and electromagnetic interference.
The EEG signals are amplified using two g.USBamp (g.tec Medical Engineering
GmbH). The sample frequency used to acquire the signals is 1200 Hz. A com-
puter software developed in MatLab (The MathWorks, Inc., Natick, MA, USA)
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Fig. 1. INERTIAL MEASUREMENT SYSTEM. Position of the IMU sensors (1-
Lumbar, 2-Right thigh, 3-Right leg, 4-Right foot, 5-Left thigh, 6-Left leg, 7-Left foot).
Tech Hub that manages all the IMUs (A) and Inertial Measurement Unit (IMU) (B).

reads and processes the data acquired using the API (Application Programming
Interface) provided by the manufacturer (gUSBamp MATLAB API).

2.2 Motion Capture System

The motion capture system used in this work is the Tech MCS (Technaid S.L.,
Spain). This product is a complete wireless motion analysis system. It manages
seven Inertial Measurement Units (IMUs) which are used in the experiments
(see Figure 1). Each Tech-IMU (Technaid S.L.) integrates three different types
of sensors as an accelerometer, a gyroscope and a magnetometer.

In this work, the seven IMUs are distributed as follows: three sensors are placed
on each lower limb (foot, thigh and leg) and the last one is placed on a lumbar
position. Each IMU registers 19 variables corresponding to different parameters
as rotation (nine parameters corresponding to the rotation matrix), acceleration
(three parameters, m/s2), angular velocity (three parameters, rad/s), magnetic
field (three parameters) and temperature. Rotation parameters are used to detect
gait initiations and stops. This data are acquired through a HUB that is connected
to the PC USB port with a data acquisition frequency of 30 Hz.
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3 Experimental Procedure

3.1 Test Protocol

To detect the different states of human gait, brain activity will be analyzed. For
this purpose, a proper test protocol has been designed. The protocol consists
of the execution, on a voluntary basis, of several changes in the gait state of
the user. To that end the user performs, for each session, several initiations and
stops of walking without using any external stimulus to indicate each of these
changes. Voluntarily, users are asked to perform a total of 10 initializations
and stops of the gait process, with a waiting period of more than two seconds
between each of the changes. This requisite is applied to assure the minimum
window time required to detect the onset and the end of movement using the
ERD phenomenon (see Section 3.3).

Three male users aged between 22 and 29 years old (26.7±4.0) took part in
the experiment. Each of them carried out a total of 8 runs per session with
10 complete cycles of motion (relax/start/walking/stop). All of them completed
two sessions performed in two different days.

3.2 EEG Signals Processing

In order to enhance the EEG signals quality it is necessary to increase the signal-
to-noise ratio. The amplifier includes several internal filters that can be applied
to the input signals. Due to the fact that EEG signals are very noisy, two of
these internal filters are applied. In the current work, a low pass filter with a
cut off frequency of 100 Hz and a 50 Hz notch filter to eliminate the power line
interference have been applied. Moreover, an 8th order Butterworth band pass
filter programmed in MatLab from 5 Hz to 40 Hz is applied to remove artifacts
and the DC component, preserving only the information of the frequencies of
interest, which are mu and beta frequency bands (between 8 and 30 Hz).

Then, a spatial filter is applied to all EEG channels to reduce the contribution
of the remaining electrodes in each channel and therefore to better isolate the
information collected from each sensor. To do that, a Laplacian algorithm is
applied to all the electrodes. This algorithm uses the information recorded from
all the remaining electrodes and their distances to the sensor of interest. The
visual result is a smoother time signal which should contain only the contribution
coming from the particular position of the electrode. The Laplacian is computed
according to the formula:

V iLAP = V iCR −
∑
j∈Si

gijV jCR (1)

where V iLAP is the result of applying this algorithm to the electrode i, V iCR

is the electrode i signal before the transformation and,

gij =

1
dij∑

j∈Si
1
dij

(2)
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where Si contains all the electrodes except from the electrode i and dij is the
distance between electrodes i and j.

3.3 Data Selection

ERD is a phenomenon which refers to the decrease of the EEG signal power in
the mu and beta bands related to the preparation and performance of voluntary
motor tasks. This desynchronization starts about two seconds before the move-
ment onset as it is stated in [14]. The study shows that ERD appears over the
contralateral Rolandic region and becomes bilaterally symmetrical immediately
before execution of a right hand movement. Although the movement performed
in our experiment is not the same, we hypothesize that it may occur in the
same time interval and also over the motor cortex. When the performance of
the movement ends, the mu and beta bands recover the power and produce the
event-related synchronization (ERS).

Typically, ERD-based research uses around two seconds width windows to
analyze this phenomenon. As it is explained in Section 2.2, the kinematic data
recorded are used to determine the current state of the walking cycle. The de-
tection of the initialization and the stop of the gait allows the classification of
the data in four different groups (Figure 2). Data between three seconds prior to
gait onset and the onset itself is established as Start state. The same occurs with
the Stop state, which is considered between three seconds prior to the end of the
walking process and the end itself. Data between these states are considered as
Relax state (between a Stop and a Start) and Walking state (between a Start
and a Stop). With this procedure, a bigger amount of data is obtained for the
Walking and Relax states (twice the size of Start and Stop data approximately).
Using these data, the training model allows a better identification of these two
states (Walking and Relax) avoiding false detection (False Positive or FP) of the
Start and Stop states.

3.4 Feature Extraction

The four data groups obtained in Section 3.3 are segmented in windows of 1
second each 0.2 seconds (overlap of 0.8 seconds). Each window is processed
separately to extract the features which represent the task. The selected EEG
data are processed with a Fast Fourier Transform (FFT) to compute the spectral
power. The features are the sums of three frequency bands, 8-12 Hz, 13-24 Hz
and 25-30 Hz per each electrode which represent mu and beta bands, so 96
features define each class (32 electrodes, 3 features per electrode).

3.5 Classification

To determine the state of the walking cycle, a SVM-based (Support Vector Ma-
chine) classifier is used. The SVM classifier is a very useful technique for data
classification [15]. To do the classification, SVM makes use of a hyperplane or
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Fig. 2. DATA SELECTION. In this figure, the gyroscopes analysis is shown. START
and STOP detections are marked. Moreover, the data used as Start (A), Walking (B),
Stop (C) and Relax (D) are also represented.

groups of it in a very high (even infinite) dimensional space to distinguish the
different classes to classify. The accuracy of the SVM-based classifier depends
on the kernel used. In the case of a BMI system, generally a Gaussian kernel
or a Radial Base Function (RBF) is applied [16]. In this case, a SVM-based
system with a RBF kernel is used. A one-step multiclass strategy is used in the
SVM system. In order to create the model and to detect the gait state, the data
obtained following the procedure described in Section 3.4 are used.

After performing the classification of the four states (R:Relax, S:Start, T:Stop
and W:Walking) the following confusion matrix is obtained:

Detected
R S T W

Real

R
S
T
W

⎡
⎢⎢⎣
c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

⎤
⎥⎥⎦

where c11 is the Relax Success Rate, c22 the Start Success Rate, c33 the Stop
Success Rate and c44 the Walking Success Rate. The Relax Error Rate and
the Walking Error Rate correspond to c12 and c43, respectively. The remaining
elements of the confusion matrix do not affect a correct performance of the
system, as a consequence, they are not taken into account when calculating the
accuracy of the system.

To validate this system in the control of real devices such as an exoskeleton,
two more parameters are defined: True Positive Rate (TP) and False Positive
Rate (FP). TP represents the number of valid commands sent to the exoskeleton
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Table 1. Cross validation results. Relax and Walking states

SUCCESS RATE (%) ERROR RATE (%) FP/min
Relax Walking Relax Walking

User A.1 65.5 75.3 8.2 3.8 16.6
User A.2 63.7 75.7 13.1 6.7 18.7

User B.1 84.7 86.4 6.7 9.6 17.7
User B.2 69.4 63.6 11.1 8.9 22.3

User C.1 72.5 75.9 3.3 3.7 10.3
User C.2 67.2 73.1 4.9 2.4 6.9

Average 70.5 75.0 7.9 5.9 15.4

divided by the total number movement intentions for the states Start and Stop,
respectively. FP represents the number of incorrect detections during Walking
or Relax divided by the time the user stays in the corresponding state.

4 Results and Discussion

The results for the classification of the different gait states are shown in Tables 1
and 2. These results are calculated offline, by analyzing the data after an 8-fold
cross validation (each session run is used as a fold). In Figure 3, an example of
classification is shown (User A, one fold). In order to design a useful detection
system for the control of rehabilitation or assisting devices, it is important to
obtain a reliable behavior in the execution of control commands (Start and Stop
states in this case). As it was mentioned in Section 3.3, the method followed
allows a better detection of the rest periods (Relax state) and the continuous
walking (Walking state). In Table 1, the behavior of the system in the detection
of these states is shown.

Firstly, columns labeled as “SUCCESS RATE (%)” show the system accuracy
in the detection of Relax and Walking states. In columns labeled as “ERROR
RATE (%)” the error in the classification of these states is shown. An erroneous
Start detections during a Relax state or wrong Stop detections during walking are
considered as an error (or False Positive). Finally, the number of False Positives
detected per minute (column “FP/min”) is represented. This parameter is very
important in the design of this kind of control systems. The error rates show a
good classification index regarding this parameter (7.9% in Relax periods and
5.9% in Walking periods). However, the number of FP/min is too high (15.4
FP/min on average). This parameter should be reduced to be useful in a real time
application. Taking into account these accuracies, all the users obtained similar
results. However, User C achieved lower FP/min than the rest of the users.
Furthermore, Table 1 shows a good success rate for the Relax and the Walking
periods for all users, reaching and average of 70.5% and 75.0% respectively.

On the other hand, in Table 2, the success rate for the Start and the Stop
states are shown (columns labeled as “SUCCESS RATE (%)”). The number of
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Fig. 3. DATA CLASSIFICATION. Y-axis represent the task performed (0-Relax,
1-Start, 2-Stop and 3-Walking). Data marked as A represent the correct detection
of the four different states of the gait cycle. B is a not detected gait intention. C
represents an error in the classification which provoke False Positives.

Table 2. Cross validation results. Start and Stop detection

SUCCESS RATE (%) TP rate (%)
Start Stop

User A.1 34.4 26.3 82.2
User A.2 49.5 36.5 94.1

User B.1 32.2 16.4 62.9
User B.2 42.0 13.0 66.2

User C.1 15.1 8.5 55.8
User C.2 10.3 1.1 30.2

Average 30.6 17.0 65.2

events properly classified is represented in the “TP rate (%)” column. Regarding
success rates, these values are not very high. However, this accuracy does not
represent the actual control commands of the system, but the number of trials
that have been detected inside the movement window selected to analyze move-
ment intention (Start or Stop, according to the method explained in Section 3.3).
In relation to the “TP rate (%)”, User A obtained clearly a better classification
than User B and a remarkably higher rate than User C, who achieved the worst
results.
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5 Conclusions

In this paper, a method to detect different states during walking activities is
presented. The system shows the possibility of detecting gait onset and stop by
using the brain activity measured from EEG signals. The system shows a good
accuracy in the detection of these states but the number of False Positives is
still to high to apply this methodology to a real-time system. Future works must
reduce the number of FPs in order to increase the reliability of the system in
real-time applications. With this improvement, the system could be applied to
control a wearable robot in rehabilitation or assistance procedures performed
with patients with motor disabilities. To reduce these FPs, other data features
and classifiers must be tested.
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Abstract. The great usefulness of remote recording of biomedical sig-
nals in most aspects of daily life has generated an increasing interest in
this field. Traditionally, monitoring devices from clinical enviroments are
bulky, intrusive, and expensive. Thus, the development of wearable, mo-
bile, and low-cost applications is desirable. Nevertheless, recent improve-
ments in open-hardware allow developing low cost devices and portable
designs for biosignal monitoring in out-of-lab applications, such as sports,
leisure, e-Health, etc. This paper presents a low-cost wearable system
able to simultaneously record electrical brain and heart activity (i.e.
electroencephalography and electrocardiography). The system is able to
send biomedical data to a platform for remote analyses. Both software
and hardware are open-source. We assessed the system for its validity
and reliability in a real road environment.

Keywords: Brainwaves · eHealth ·Electrocardiogram ·Electroencephalo-
gram · Wearable platform

1 Introduction

Nowadays, humans face increasing operational task demands, where cognitive
skills are more important than physical ones [10, 13]. When operational safety
is a prime concern, it’s very relevant to know the actual operator’s cognitive
state (CS). Electroencephalographic (EEG) metrics are the most reliable current
measures to assess operator’s CS [9, 14, 15]. Electrocardiographic (ECG) data
(heart rate and other indices) also seems to be useful providing information
about operator’s CS [19]. However, the ability to objectively and sensitively
measure CS online in real scenarios remains a major challenge [12]. Both, EEG
and ECG have failed to gain traction in some applied domains -as driving safety-,
due to the technical and methodological difficulties of measuring these signals in
everyday tasks, and the intrusiveness and bulkiness of the equipment. In recent
years, user-friendly commercial mobile devices have overcome many of these
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Fig. 1. The evolution of the EEG monitoring systems from the Airborne Spectrum
32 (left) to the contemporary Emotiv Epoc Headset EEG system (right) (adapted
from [3,11]).

barriers [14]. The miniaturization of systems and new electronic approaches (e.g.
open-hardware platforms) provide solutions for mobile and wearable biosignals
recording [16–18]. Thus, current studies can rely on off-the-shelf systems to assess
operator’s CS non-invasively, via unobtrusive devices. These new devices offer
high recording quality, comparable to professional clinical systems, and permit
a good trade-off between costs and performance.

Examples of low-cost available EEG recording devices are the Emotiv EPOC
(Emotiv, San Francisco, CA, USA) - a 14 EEG-channels device, with wet
electrodes, able to measure attention levels [3]-, the Emotiv Insight (Emotiv, San
Francisco, CA, USA) -a 5 channels EEG device, able to detect facial expressions
(smile, blinking) [4]-, or the most affordableMindWave ($80,NeuroSky, San Jose,
CA, USA, see below), that provides EEG signals from a single dry-sensor [5].

Here, we developed a low-cost remote bio-monitoring platform for using in
real life tasks. The main features of our system include: a) low-cost recording
solutions, b) user-friendly interface for analyzing and visualizing biosignal data,
and c) low-invasive, comfortable, and portable elements. Finally, the system
allows continuous monitoring of operator, giving instant feedback about his/her
CS and location.

2 Platform Design

In the following sections, we will describe the platform’s hardware and software
design and an example of information recorded during its use during driving
tasks.
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2.1 Hardware Design

In order to achieve a minimally invasive wearable system and to avoid interfering
with the operator’s tasks, we selected a smarphone/tablet and a microcontroller
(Figure 2). The smartphone is a THL W200 (quad-core 1,5 GHz, 1GB RAM) [8]
and the microcontroller is an Arduino UNO board (Atmel ATMega328, 16 MHz,
14 digital I/O pins and 6 analog input pins) [1].

Fig. 2. Main hardware blocks of the recording system. The smartphone THL W200
and the microcontroller Arduino UNO collect data from different sensors (here, ECG,
EEG and pulse sensors) and send these data to the web server through a 3G/4G data
connection.

The microcontroller unit (MCU) collects data from two sensors. Heart rate is
detected by a PulseSensor [7] device, directly connected to one of the Arduino’s
analog inputs. Additionally, a set of three electrodes -connected to an Arduino
eHealth Shield [2]- records ECG signal.

An RN-XV (Figure 3) Wi-Fi Shield is superposed to the previous shield
to allow Arduino sending ECG data to the smartphone/tablet. EEG data is
collected by the NeuroSky MindWave Mobile headset [6] (Figure 4). This product
employs a single frontal dry electrode to record brain activity, and includes a
Bluetooth link to send EEG data to the smartphone/tablet.

As the smartphone/tablet only allows for one active connection, we chose
a combined Bluetooth/Wi- Fi scheme to connect both the EEG sensor and the
ECG to the MCU. The connection from the smartphone/tablet to the web server
uses a 3G/4G data connection. Once the connection type is programmed, the
Arduino script selects the Wi-Fi network to which it will be connected. The
connection of the PulseSensor consists of three terminals: GND (ground), V+
(power supply) and ANALOG (analog input). The sampling rate for PulseSensor
is two milliseconds, signaled by an interrupt, measuring systole, and dyastole.
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Fig. 3. Elements connected to the microcontroller unit: (A) PulseSensor (PulseSensor,
NY, USA)(http://pulsesensor.com/), (B) electrocardiogram Shield (Libelium Comuni-
caciones Distribuidas S.L., Zaragoza, Spain), (C) Wi-Fi Shield (Microchip, AZ, USA).
The microcontroller unit records data from two sensors (A, B) and sends these data
through the Wi-Fi shield (C) to the smartphone/tablet.

Fig. 4. (A) Neurosky Mindwave Mobile (NeuroSky, San Jose, CA, USA) used to
record EEG activity (http://store.neurosky.com) (B) Arduino UNO microcontroller
unit (adapted from http://en.wikipedia.org/wiki/Arduino).

The total cost of the components employed should cost less than $800 (ex-
cluding the web server).

2.2 Software Design

The software subsystem is composed of two main blocks: the smartphone/tablet
application and the web server application. The first one is intended for wearable
biosignals recording, while the server acts as a remote collector of the recorded
data for later analysis.

The basic software architecture is exhibited in Figure 5.
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Fig. 5. Software elements used to build the platform

Smartphone. The THL W200 smartphone terminal runs an application under
Android operating system, designed to collect the data from the three sensors
(EEG, ECG, and pulse sensor).

The application allows in-situ visualization of the recorded biosignals, while
it optionally can send the information to the remote web server. The application
consists of a main screen (user logging) and other three tabs (Figure 6). These
tabs allow visualizing EEG and ECG values, heart rate in beats per minute,
Bluetooth connection state, as well as a switch to send data to the web server.
Biosignals can be shown both in instant values and evolution charts.

Fig. 6. BioTracker R© screeshots for the smartphone/tablet. From left to right: login
screen, brain activity screen, real-time charts screen and ECG, heart rate screen.

The application manages two packages: adapter and biotracker, containing a
single class and eight classes respectively. The first package is responsible for
managing the application tabs (sliding between tabs). The second package is
responsible for managing the smartphone/tablet database to record biosignals.
It also includes the managing of user’s profiles, GPS parameters and real-time
charts. The application uses Bluetooth, GPS, Wi-Fi and 3G/4G data connection.
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Web Server. The web server receives all operator’s profiles and biosignals data,
and creates a list of routes. Each route (Figure 7) associates a sequence of GPS
coordinates to the biosignals recorded at that location, so a geographical tracking
of the evolution of the operator’s CS can be done.

The website contains a database that stores the values sent by the smartphone
application. Once the website receives the data, these are represented in different
charts and maps, for later analysis.

Fig. 7. BioTracker R© screenshot, web application. Login page(Left panel) and routes
recorded from a user (Right panel).

Fig. 8. Example of a route (Left panel), and biosignals for a selected point: brain ac-
tivity (Upper right panel), attention/meditation levels (Lower right panel) as provided
by NeuroSky’s algorithms.
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When the user logs in, the website shows a list with all routes recorded. Then,
an individual route can be selected, showing the map and the charts associated
to this route (Figure 8). Some additional parameters as altitude, latitude, and
speed can be shown.

3 Conclusions

The platform we developed represents a low-cost, wearable and non-invasive
solution able to on-line monitoring operator’s CS in real scenarios. Preliminary
tests have shown that our recording system works successfully, and it is able to
provide real-time biosignals, even when it is used during complex tasks, as on
road driving. In the next future, relevant sensors (e.g. optical sensors to record
gaze behavior) will be added to the platform and minor modifications will be
implemented to improve the system’s usefulness.
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Abstract. The aging issue threatens to collapse health public systems
in some regions of first world. Although telemedicine is one of the solu-
tions to avoid people insti-tutionalization, it has severe limitations and
not all medical services can be of-fered. While few years ago the electrical
complexity and cost of EEG systems prevented execution of clinical EEG
tests out of hospital, now services such as home-based video-EEG are pos-
sible. Conversely, some important clinical tests such as event-related po-
tentials cannot be executed remotely. The reason for that is the accurate
synchrony between local stimulus onset and remote starting of EEG acqui-
sition. In hospital, synchrony is guaranteed by means of a wired connec-
tion between stimulus display that triggers EEG recording while in home-
based testing this link normally does not exist. In this study we show an
effective way to execute event-related potentials based on asynchronous
EEG data transmission. We executed a dichotic listening paradigm with
forced-attention modality. The user goal was to detect the attended au-
dio sentence from the analysis of evoked auditory event-related potentials.
The rate of successful detection in both synchronous and asynchronous
modalities was compared and results revealed no significant difference.
Our asynchronous approach can be used in on-line acquisition of home-
based event-related potentials with remote processing.

Keywords: EEG Teleservices · Brain-computer interface · Brain area
networks
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1 Introduction

Event-related potentials (ERPs) are EEG signals elicited as response to a stimu-
lus (exogenous ERP) or internal event (endogenous ERP). Analysis of exogenous
ERPs constitutes a valuable technique in clinical assessment of the whole senso-
rial path-ways from the periphery up to the cortex. In an EEG trace, they appear
as deflections that occur at a certain number of milliseconds after stimulus onset
(e. g. N100, P300). They are extensively used in clinical practice because their
latencies point out well-known cognitive or physiological impairment.

Clinical ERP acquisition is performed in hospitals. Traditional reasons are
high cost of EEG devices, need of isolated chamber for experimentation and
clinical staff with expertise in EEG set up and electrical montages. Currently
this reason no longer exists. Modern wireless EEG headsets with dry electrodes
are capable of cheap and ubiquitous EEG acquisition by users with application
in Brain-computer Interfaces ([1],[2]). However, there is still an issue not resolved
yet by BCIs technology, which is synchronization between the stimulus display
and the EEG acquisition unit. ERPs acquisition requests accuracy in the range of
few milliseconds for an accurate clinical diagnosis. For this reason, clinical EEG
systems integrate both stimulation display and EEG acquisition unit and inter-
connect them at hardware level by means of a communication port. Conversely,
low-cost wireless EEG headsets do not offer this, thus being not adequate to ex-
ecute event-related paradigms. In summary, for both behavioral tests and ERPs
analysis, clinical EEG systems do offer a level of syn-chrony that wireless EEG
headsets cannot. This is the reason why most of the home-based EEG services
are not meant for ERPs. Next paragraph shows some representa-tive examples
of them.

The home-based and mobile EEG teleservice is gaining supporters. For in-
stance, in [3], ninety-nine percent of patients expressed a high degree of satis-
faction with re-mote video-EEG service. In [4] a home-based polysomnography
system for obstruc-tive sleep apnea diagnosis was proposed. The system was
equipped with wireless access for data and video communication via Skype. In
[5] four mobile EEG systems acquired epileptiform episodes and compared their
performances with satisfaction in users. Many other examples of teleservices
exist with of mobile and home-based acquisition of EEG and other biosignals
[6][7][8][9][10].These and other cases of mobile EEG tele-services have some clear
advantages (e. g. access to rural population, cost savings, etc.) and also some
downsides.The examples of mobile EEG tele-services mentioned before did not
require stimulation. Epileptic seizures or apnea normally manifest during many
seconds (or even minutes) and are not caused by exogenous events. Then, precise
synchrony between the starting and detection times is not necessary. In sum-
mary, mobile EEG tele-services are not meant for the execution of paradigms
that requires precise synchronization such as even-related paradigms.

Modern BCIs [1] are based on wireless, wearable and dry EEG headsets meant
not only for clinic, but for other personal uses [11][12][13], including mobile EEG
ser-vices. Mobile EEG headsets offer synchronization with the monitoring server
via proprietary protocols and techniques based on sequencing and time stamps
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inserted in the EEG raw data. However, the synchronization between the EEG
headset and a mobile media player (i.e. the stimulus display) does not exit. Out
of the lab, users are free to use any mobile device as media player (e.g. iPads,
smartphones, MP4 players, etc.) without guarantee of hardware compatibility
with the EEG headset. The wired connection between the media player and the
EEG headset is not only unfeasible in terms of hardware requirements, costs
and compatibility, but also a questionable approach from the usability point of
view in the context of Wireless Body Area Net-works. For this reason, most
of the applications developed for mobile EEG systems are not meant for ERP
paradigms. Conversely, they are intended for low frequency cerebral rhythms
or steady-state EEG responses [8] (e. g. alpha band, steady-state visual evoked
responses). In summary, ERPs measurement is not offered as a mobile EEG as
a teleservice.

In this paper, we propose an audio-media preamble as a way for synchroniza-
tion that virtually generates the wired connection between the media player and
the EEG headset. This preamble is a header that encapsulates the multimedia
data (i.e. the stimulation). It generates a synchronization preamble meant to
evoke a quasi-deterministic brain response that can be detected by the monitor-
ing unit with preci-sion of milliseconds.

2 Methodology

2.1 Subjects and Recordings

A total of two people (both males) participated in this study (31 and 41 years
old). The experiment was conducted in a laboratory of the Institute of Bioengi-
neering, University of Miguel Hernndez of Elche (Spain). The study was full
auditory without any type of visual stimulation or feedback. The volume of the
auditory stimulation was manually adjusted to the comfort level of each partic-
ipant. It was presented by means of earphones. All participants were previously
instructed with the procedure and methodology of this study and signed the
informed consent.

The electrical montage consisted of just one EEG active channel located on
the vertex (Cz, of the International 10-20 system) and referenced to the mean
value of the ear lobes. These positions of the were chosen because they match
reports of successful studies of auditory event-related potentials [14]. The ground
electrode was placed between Fpz and Fz. The recordings were acquired on a
Synamps 2, by Compumedics Neuroscan, were band-pass filtered between 1 and
100 Hz and were sampled at a rate of 1 KHz.

2.2 Auditory Message

The auditory message consisted of two parts, a preamble, which is intended for
syn-chronization purposes, and the stimulus itself, which is intended to evoke a
response for classification. Each auditory message was z-scored. Then, assuming
independent and uncorrelated messages the total energy was constant across
trials (see Fig. 1).
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Fig. 1. Auditory message structure. The auditory message is composed of a preamble
(left part of the auditory message) and a speech randomly chosen from CRM.

Speeches. Auditory messages were sentences from the Coordinate Response
Measure speech corpus (CRM) [15]. The corpus is commonly used in selective
attention experiments [16]. The auditory messages consist of seven words con-
taining three target words. They follow the structure Ready call-sign go to color
number now. Table 1 shows all possible target words.

Table 1. Target words of Coordinate Response Measure

Call-sign Color Number

”arrow”,”baron”, ”charlie” ”blue”, ”green” ”one”, ”two”, ”three”
”hopper”, ”laker”, ”ringo” ”red”, ”white” ”four”, ”five”, ”six”

”eagle”, ”tiger” ”seven”, ”eight”

Each speech was tagged to elicit the BPSK constellation. It was achieved by
modulating the amplitude (100% depth) of two carriers with a frequency of 5
Hz by the two respective speeches. The two carriers were counter-phased and
with the same frequency, namely 5 Hz. This procedure gave rise to two auditory
messages that were delivered one to left and the other to the right ear. There
is numerous papers that used this principle to elicit a reliable constellation of
BPSK signals [17]. Please refer to them for further details about the psycho
physiologic principles that justifies this.

Preamble. The preamble was generated by means of a pseudo-random code
convoluted with a tone-pip. The pseudo-random code consisted of a binary m-
seq of 255 codes length (8 taps). Each binary value was spaced out 25 msec
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before convolution with the tone-pip. The tone-pip had a total duration of 5
msec (1 msec. of rising and falling flanks and 3 msec. of plateau) m-seq of 8
taps (length=28-1=255). The header length was 6.375 sec. (255 codes spaced 25
msec. each one).

2.3 Procedure

The experiment consisted of a session that, in turns, consisted of twenty one
trials. In each trial, an allocution invited the participant to press a key. After-
wards, a tone-beep indicated the beginning of the auditory message. Finally a
beep sounded and an allocution signaled the end of the trial and the preparation
for the next one. The inter-trial resting time was up to the participant.

In each trial, an algorithm randomly selected speeches (half male half female
voices) formed with combinations of the target words of Table 1). Each speech
was encapsulated with the auditory preamble, thus forming the auditory message
presented in each trial (see Fig. 1).

We formed two auditory messages per trial, one was the target and the other
was considered a distracter. The auditory messages were concurrently delivered
although the onset of the second auditory message was delayed half a second
(see Fig. 2). The delivery order was first and second auditory message to left
and right ear respectively. Participants were cued to pay selective attention to
one of them and ignore the other. Cues to left and right were counterbalanced,
as well as the male and female voices of speeches (always male and feminine
voices to left and right ear respectively.

Fig. 2. Auditory messages delivery. The speech of the first auditory message was always
a male voice delivered to the left ear. The second one was always a female voice delivered
to the right ear with a delay of 0.5 sec. In the figure, target words are in bold. ¡P¿
stands for preamble. MV and FM stand for male and female voice respectively.

2.4 Feature Extraction and Classification

There are many approaches for the extraction and classification of EEG features
in either clinical or BCI applications or for brain insight. In this study we used
a simple approach to build a BPSK receiver. EEG acquisition of each trial was
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multiplied by a Tukey window (=0.20) and then, the DFT computed. Only the
coefficient corre-sponding to 4 Hz (C4) was extracted for posterior classification.

Classification of the attended auditory message was performed by mapping
the extracted feature (C4) into the BPSK constellation and by applying the
principle of minimum Euclidean distance. This principle, under some general
assumptions, is the optimal Bayesian classifier [36].

As BPSK constellation is composed of two counter-phased symbols. They
repre-sent the DFT components at 4 Hz. That means that both symbols are 180
separated or the equivalent in time 125 msec. Then, small errors in detection
of stimulus onset, for instance 14 msec, would give rise to a rotation of the
classification boundary of 20, thus running the classification results (see Fig. 3).

Fig. 3. Error in detection of classification boundaries. This example simulates extracted
features (small stars and diamonds) in a constellation of BPSK signals (big star and
diamond). The black dotted line represents the decision boundary based on the Eu-
clidean distance. A simple error of 14 msec in the detection of the stimulus onset, at
4 Hz, would cause a phase error of 20 in the decision boundary (grey dotted line). In
this example it could cause three additional errors in classification (grey circles) and
one success (grey rectangle).

3 Results

We mentioned in the methodological section that two people participated in this
study. After data analysis, we discover that EEG signals from one of the partic-
ipants were contaminated with high energetic electrical artifacts, thus making
his EEG rec-ord useless. Then, this section shows results of only one of them.
Table 2 shows the performance of the binary classification. The output of the
BPSK receiver was compared with the cue given participants in the 21 trials.

Bars of Fig. 4 represent, for each of the 21 trial, the time error in asynchronous
de-tection of the preamble taking as reference the synchronous onset detection.
Synchronous detection was considered the gold pattern.
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Table 2. Classification performance

SUT Synchronous Asynchronous
acc(%) C.I.(%) acc(%) C.I.(%)

S01 52 [32..71] 57 [36..75]

Fig. 4. Synchrony error

Fig. 5. Classification mismatch

Bars of Fig. 5 represent differences in classification of the attended stimulus.
In this figure, the output of the BPSK receiver of trials number 3, 12 and 14,
yielded different values when asynchronous and synchronous detection was used.
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4 Discussion

Table 2 shows the classification performance with synchronous and asynchronous
preamble detection. As we can see, the accuracy of the binary classification,
taken into consideration the confidence intervals (C.I.), is no better than chance
level. The methodology based on BPSK constellation of EEG signals for detec-
tion of attention in dichotic listening task was demonstrated in previous studies
[17][18][19] and is not under discussion in the present study. However, in this
experiment we could not prove that detection of attention was any better than
chance level. We may have an explanation for that. Studies based on BPSK re-
ceiver, use a in the experiment a stimulation frequency at 5 Hz. The reason for
that is because its half period, namely 100 msec, coincides with that of intervals
of potentials N100 and P200. So the BPSK receiver is optimized for 5 Hz. We
used 4 Hz instead of 5 Hz because the uncertainty of asynchronous detection of
the stimulus onset, could lead to severe error in the classification boundary, and
hence, in the final performance (see Fig. 3 for a detailed explanation) but at the
cost of a suboptimal experiment design.

We must keep in mind that the objective of this study is not the validation of
the approach based on the BPSK receiver for detection of attention, but to check
if the asynchronous detection of preamble could yield similar results to that of
the synchro-nous detection. In this regards, Fig. 4 shows that, a part of few trials,
namely four, the asynchronous detection of the preamble had approximately zero
error taken as refer-ence the synchronous one. Furthermore, only in three out of
twenty-one trials, the BPSK receiver yielded different classification.
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Abstract. Chronic Obstructive Pulmonary Disease (COPD) places an
enormous burden on the health care systems and causes diminished
health related quality of life. The highest proportion of human and eco-
nomic cost is associated to admissions for acute exacerbation of respira-
tory symptoms. The remote monitoring of COPD patients with the view
of early detection of acute exacerbation of COPD (AECOPD) is one of
the goals of the respiratory community. In this study, machine learning
was used to develop predictive models. Models robustness to exacer-
bation definition was analyzed. A non-knowled-ge based approach was
followed on data self-reported by patients using a multimodal tool during
a remote monitoring 6 months trial. Comparison of different classifier al-
gorithms operating with different AECOPD definitions was performed.
Significant results were obtained for AECOPD prediction, regardless of
the definition of exacerbation used. Best accuracy was achieved using a
PNN classifier independently of the selected AECOPD definition. Our
study suggests that the proposed data-driven methodology could help
to design reliable predictive algorithms aimed to predict COPD exac-
erbations and therefore could provide support both to physicians and
patients.

Keywords: COPD · Exacerbation · Telehealth · Symptoms · Question-
naire · Early detection · Data-Driven · Machine Learning

1 Introduction

COPD places an enormous burden on the health care systems and causes dimini-
shed health related quality of life. The highest proportion of human and economic
cost is associated to the use of expensive urgent healthcare and to admissions
for acute exacerbation of respiratory symptoms[1].

Telehealth enabled chronic care management services can effectively support
people with long term conditions at home. Recent studies have analysed how
home telemonitoring may affect to clinical outcomes, health relate quality of life
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(HRQOL) and cost of interventions[2]. Since early detection and treatment of
exacerbations may improve outcomes, the remote monitoring of COPD patients
with the view of early detection of acute exacerbation of Chronic Obstructive
Pulmonary Disease (AECOPD) is one of the goals of the respiratory community.
However, only a few studies have attempted to achieve early detection of AE-
COPD and consequently, currently available tools for monitoring and managing
COPD exacerbations are limited.

In clinical practice, telemonitoring of COPD is usually performed with pa-
tient diaries. Assessment in detecting exacerbations using traditional paper-
based methods of collecting symptoms have been reported but with a moderate
sensitivity and specificity pair [3]. However, studies focused on prediction of
AECOPD on a day-to-day basis through telehealth approaches have been re-
ported scarcely. The works published have been supported on using weekly or
biweekly reported physiological data, clinical diaries or a combination of them
[4,5]. Diary-keeping in COPD and ascertained items that best predicted emer-
gency attendances for exacerbations has been also evaluated [6].

In recent reported results from the exacerbations of COPD Tool (EXACT),
a daily diary for evaluating COPD exacerbation severity through monitoring of
patients was evaluated. EXACT scores increased from baseline were analyzed
at exacerbation onset. However, concerns remained about the ability of the EX-
ACT to accurately detect exacerbations[7]. In addition, unsupervised physiolog-
ical home telehealth measurements has been evaluated to predict the patient’s
condi-tion in advance[8,9]. Very recently, a Probabilistic Neural Network (PNN)
classifier was reported to be able to predict COPD exacerbations early with
4.8 days as average prior to AECOPD onset[10]. In late 2014, authors in [11]
tested a personalized thresholds algorithm using physiological measurements,
self-reported symptom scores and medicines. More lately, researchers in [12] ap-
plied a Radial Basis Function (RBF) classifier to early detect AECOPD with a
margin of 4.5 days as average prior to medical attention.

Despite of these reported efforts, the evidence to support the effectiveness of
home telemonitoring interventions for patients with COPD is limited and further
work is required[13]. The purpose of home telemonitoring of patients with COPD
to early detect and address AECOPDmay have not been reached because of poor
patients’ compliance[14] and for the lack of useful early predictors[15] and reli-
able predictive algorithms since conventional COPD monitoring systems apply
simple thresholds to patient data. Therefore, developing predictive algorithms
with clinical reliability is a priority for the future development of telemonitoring
of COPD.

On the other hand, many definitions of COPD exacerbations have been re-
ported. About 40 % of studies used events-based AECOPD definitions and 78%
applied symptoms-based criteria[16]. Events-based exacerbation is defined as
an attendance at a hospital emergency department or primary care unit with
worsening clinical symptoms. In some studies, self-administration of antibiotics
and/or corticosteroids in the case of patients with a self-management plan is
also considered in the definition of event-based exacerbation. The alternative
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approach of symptom-based definitions of exacerbation uses increasing of spe-
cific and nonspecific symptoms. The choice for a definition determines the num-
ber of exacerbations observed and as a consequence the algorithm performance.
Therefore, predictive algorithms should be robust independently of the applied
AECOPD definition.

In this study, data driven predictive models and their robustness to AECOPD
were analyzed. A non-knowledge-based approach using machine learning which
allowed to learn from past experiences and find patterns in clinical data was fol-
lowed. Machine learning and statistical techniques, by learning or training, were
used on data self-reported by patients using a multimodal tool during a remote
monitoring 6-months trial[17]. Comparison of different classifier algorithms op-
erating with different AECOPD definitions was performed. This study aimed to
provide further evidence in support of the hypothesis of the feasibility of early
prediction of COPD exacerbations based on the daily patient’s self-report of
symptoms applying pattern recognition techniques.

2 Patients and Methods

A sample of 16 COPD patients were equipped with a home base station to daily
respond to a questionnaire during 6 months.They were recruited in the Pneu-
mology and Allergy Department of the University Hospital Puerta del Mar of
Cadiz (Spain). Participants were all aged over 60 years and had a diagnosis of
COPD confirmed by spirometry, classified in groups C and D according to GOLD
guidelines [18]. Patients had cumulative tobacco consumption greater than 20
Packs-Year and at least two exacerbations treated with oral antibiotics or corti-
costeroids or one hospital admission for exacerbation in the past year. The pa-
tients were guided at home by a multimodal interface to record their symptoms
through a daily questionnaire. Details about the interface and the questionnaire
can be found in [17]. Likert item responses were assigned scores and forward
and backward imputation was used to handle missing diaries. Twelve predic-
tor variables were processed. Four additional input parameters were calculated:
average scores for symptoms associated with minor, major and complementary
symptoms and 3-days moving average applied to the total score. The target for
the classifier was defined as a categorical binary variable. The day of the exac-
erbation onset depended on the AECOPD definition applied. The procedure for
event-based exacerbations is detailed in [12]. For symptom-based episodes, the
methodology can be found in [10]. Therefore, prediction of exacerbations was
addressed as a classification problem.

Three different classifiers were trained, validated and compared: 1) a radial ba-
sis function neural network (RBF); 2) a k-means classifier and 3) a probabilistic
neural network (PNN). RBF was introduced by Powell [19] in 1987 for the pur-
pose of exact interpolation. A RBF network has three layers completely linked:
input, hidden layer of radial units and an output layer of linear units with a feed-
forward. Neurons in the hidden layer have Gaussians functions[20]. Secondly, k-
means non hierarchical cluster analysis was used. K-means is an unsupervised
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classifier that finds statistically similar groups in multifeatures space. K-means
iterative algorithm assigns each observation to the cluster with the nearest mean.
Within-groups the criterion used to minimize an objective function was the sum
of squares [21]. Finally, a PNN classifier was designed. PNNs have a similar struc-
ture to back-propagation neural networks. The main difference is in that the sig-
moid activation function is replaced by a statistically derived one. The decision
boundary implemented by the PNN asymptotically approaches the Bayes opti-
mal decision surface under certain easily met conditions [22].

For each of the aforementioned classifiers, the output was forwarded to a
simple decision rule in order to reduce the false positive rate. Two consecutive
days with a positive output in the classifier were needed to rise an alarm state.
10-Cross-validation was used to ensure stability of the results and to gauge the
generalizability of the classifiers. Evaluating the performance of the monitoring
system to early detect AECOPD is the primary objective of this study. Perfor-
mance of the classifier was assessed ac-cording to accuracy, sensitivity, specificity,
confusion matrix, positive predictive value (PPV) and negative predictive value
(NPV). MathWorks MATLAB® was used for graphical representation, signal
processing and statistical analysis.

3 Results

Along the 6-months pilot, 33 exacerbations were detected because of unscheduled
attendance at a hospital emergency or primary care units or self-administration
of antibiotics and/or corticosteroids. Table 1 illustrates the diagnostic perfor-
mance of the predictive designed classifiers considering an event based definition
of exacerbation episodes and before applying the 2-days decision rule.

Table 1.Diagnostic performance assessment of predictive models trained and validated
using event-based definition of AECOPD. TP: true positives (n); TN: true negatives
(n); FP: false positives (n); FN: false negatives (n); Se: sensitivity (%); Sp: specificity
(%); Acc: accuracy (%).

Algorithm Records TP FP TN FN Acc Se Sp

RBF 789 186 70 467 66 82.8 73.8 87.0

K-means 789 197 54 471 67 84.7 74.6 89.7

PNN 789 260 36 444 49 89.3 84.1 92.5

Concerning symptom based episodes, 41 events of exacerbationwere accounted
in the group of remote monitored patients. 33 out of this 41 episodes corresponded
to reported events while 8 events were non reported exacerbations detected by
symptoms monitoring. Table 2 details the diagnostic performance of the classi-
fiers designed according to a symptom based definition of exacerbation, before
applying the 2-days decision rule.

Table 3 summarizes the comparison results of the different validated predictive
algorithms depending on the selected AECOPD definition and the prodrome
period (7 or 14 days) used to define alarm states.
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Table 2.Diagnostic performance assessment of predictive models trained and validated
using symptom-based definition of AECOPD. TP: true positives (n); TN: true negatives
(n); FP: false positives (n); FN: false negatives (n); Se: sensitivity (%); Sp: specificity
(%); Acc: accuracy (%).

Algorithm Time Segments TP FP TN FN Acc Se Sp

RBF 99 15 6 26 52 67.7 36.6 89.7

K-means 117 30 15 61 11 77.8 73.2 80.3

PNN 94 33 3 50 8 88.3 80.5 94.3

Table 3. Diagnostic performance of predictive models from each classification method-
ologies, exacerbation definition and prodrome period (days) used for alarms definition.
Predictive range is expressed in days (mean ± std).

Algorithm AECOPD Definition Prodrome Predicted Predictive Range False alarms

RBF
Event-based

7 31 5.3 ± 2.1 20
14 31 7.1 ± 3.2 11

Symptom-based
7 15 4.4 ± 1.8 10
14 13 5.7 ± 3.4 6

K-means
Event-based[12]

7 31 4.5 ± 2.1 23
14 32 6.3 ± 3.3 15

Symptom-based
7 29 4.4 ± 2.0 24
14 30 5.7 ± 3.3 15

PNN
Event-based

7 32 4.5 ± 2.0 18
14 33 6.3 ± 3.3 8

Symptom-based[10]
7 31 4.5 ± 1.5 5
14 33 4.8 ± 1.8 3

4 Discussion

Results from this study provide evidence in support of the hypothesis of the
feasibility of early prediction of COPD exacerbations based on the daily remote
patient’s self-report of signs and symptoms. Data driven predictive algorithms
for predicting the occurrence of an exacerbation of COPD of a patient in the near
future were trained, validated and compared. Data were daily acquired during a
6-months telemonitoring pilot.

Significant results were obtained for AECOPD prediction, regardless of the
definition of exacerbation used. Best accuracy was achieved using a PNN classi-
fier and an interval for seeking (i.e. predicting) events of two weeks (prodrome)
independently of the selected AECOPD definition. For the events-based episodes,
100% of AECOPD were detected with a margin of 6.3 ± 3.3 days prior to on-
set. For symptoms-based episodes, 80.5% of AECOPD were predicted (33 out
of 41) with 4.8 ± 1.8 days prior to onset. Noteworthy is the low number of false
alarms generated by the system and high percentage of success in prediction of
non-reported exacerbations.

The choice for a definition of COPD exacerbation determines the number
of exacerbations observed. This could lead to the presentation of opportunistic
results in predicting AECOPD[16]. In this sense, the proposed method is robust
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since achieves good prediction results with two different widely used AECOPD
definitions.

Finally, a larger sample of patients would assist in determining whether the
findings reported in this work are replicable and generalizable, using leave-one-
subject-out cross validation (LOSO-CV) to avoid optimistic bias.

In conclusion, our study suggests that the proposed data-driven methodology
could help to design reliable predictive algorithm aimed to early detect COPD ex-
acerbations and therefore could provide support both to physicians and patients.
Importantly, we have shown that predictive algorithms can operate robustly with
independence of the adopted definition for COPD exacerbations, which is often
a controversial. Further studies are required to extend the conclusions and to
check the consistency of the results obtained.
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Abstract. We explore a novel approach in which BCI input is used to in-
fluence the behaviour of search algorithms which are at the heart of many
Intelligent Systems. We describe how users can influence the behaviour
of heuristic search algorithms using Neurofeedback (NF), establishing a
connection between their mental disposition and the performance of the
search process. More specifically, we used functional near-infrared spec-
troscopy (fNIRS) to measure frontal asymmetry as a marker of approach
and risk acceptance under a NF paradigm, in which users increased their
left asymmetry. Their input was mapped onto a dynamic weighting im-
plementation of A* (termed WA*), modifying the behaviour of the al-
gorithm during the resolution of an 8-puzzle problem by adjusting the
performance-optimality tradeoff. We tested this approach with a proof-
of-concept experiment involving 11 subjects who had been previously
trained in NF. Subjects were able to positively influence the behaviour
of the search process in over 58% of the NF epochs, resulting in faster
solutions.

1 Introduction and Rationale

In this paper, we introduce a novel BCI approach which maps neural signals onto
the behaviour of heuristic search algorithms. The theoretical inspiration for this
work is to return to the cognitive roots of heuristic functions, as representing
intuitive knowledge, meant to guide search behaviour in search spaces too large
to be explored systematically.

Our experimental setting consists in letting users influence the behaviour of
a heuristic search algorithm by expressing their eagerness to reach a solution
for a computation of unknown, but potentially significant, duration. The objec-
tive of this research is to explore how a real-time neurophysiological measure
of approach, which has been associated to eagerness [22] as well as risk accep-
tance [21], can be translated into potentially faster heuristic search, implemented
through a principled deviation from admissibility of the heuristic [14]. We thus
aim at reconciling a natural and a computational version of eagerness in search,
one that trades optimality for speed.

In terms of neural correlates, there is extensive work relating approach to
prefrontal cortex asymmetry [5,22], which can serve as a basis for EEG Neu-
rofeedback BCI [4]. In the work reported here, the input signal consists in a
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measure of prefrontal asymmetry using fNIRS-based NF, which is translated
into a dynamic modification of the heuristic function, rendering it less admis-
sible, but potentially more efficient. Successful BCI input should then result in
the faster computation of a near-optimal solution.

2 Previous and Related Work

Relationships between BCI and Intelligent Systems are complex [13]. Some of
the most significant research in BCI interfacing to intelligent systems has taken
place in the field of BCI-enhanced Information Retrieval. Gerson et al. [9] have
demonstrated increased human performance in satellite image analysis when
a BCI system was used to detect regions of interest despite very fast, almost
subliminal, visual scanning by users. Kapoor et al. [12] have used EEG-based BCI
in combination with computer vision to improve image categorisation. Eugster
et al. [8] have described how BCI could assist to automatically detect term
relevance during Information Retrieval tasks. In terms of BCI technology, frontal
asymmetry has been shown to be amenable to NF as part of clinical applications
[2], and more recently in affective BCI [4].

There has been significant previous research in the use of fNIRS for BCI
[20], including the measurement of task difficulty in conjunction with computer
gameplay [10], or as an additional input channel to interactive systems [19]. This
research has, however, primarily investigated fNIRS for passive BCI. In addition,
Doi et al. [6] have shown fNIRS to be well-suited to the study of emotional
responses in the prefrontal cortex, which is our target area.

3 Heuristic Search Properties

The study of mathematical properties of heuristic search has been pioneered by
Pearl [14], who has provided a solid foundation to the complexity and perfor-
mance analysis of heuristic search. In particular, he has identified the conditions
under which heuristic search could be made more computationally efficient by
relaxing some optimality requirements, which is since known as the precision-
complexity exchange [15]. This phenomenon serves as a basis for the implemen-
tation of our BCI-based influence on heuristic search.

We will be using the original dynamic weighting variant of A* proposed by
Pohl [15], in which the evaluation function is implemented as a weighted formula
of the type:

f(n) = (1− w) ∗ g(n) + w ∗ h(n) (1)

where w can be dynamically altered during the search process itself [7,11]. It
can be shown to be ε-admissible [7].

The 8-puzzle is a traditional search problem whose formal properties are well
described (Figure 1a), and on which the impact of dynamic heuristic weighting
could be properly assessed. The entire solution set of the 8-puzzle has been stud-
ied by Reinefeld [16], who has generated all 9!/2 solvable tile configurations, and
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(a) Initial and goal configurations for the
8-puzzle problem considered

(b) Impact of dynamic weighting on the
size of the 8-puzzle search space. In this
sample, dynamic weighting is applied once
23% of default search space expansion
(measured for w = 0.5) has been explored.

Fig. 1. (a) WA* search algorithm on 8-puzzle; (b) Impact of dynamic weighting.

computed all optimal solutions for all problem instances. These specific configu-
rations provide an interesting test bed to explore how search can be influenced,
by departing from admissibility of the heuristic. In particular, we have decided
to use the two configurations with the greatest number of solutions in our exper-
iments (64 solutions [16]) to allow interventions at various stages of the search
without compromising the path to the solution.

In their study of weighted A*, Hansen and Zhou [11] have shown that signifi-
cant performance improvements could be obtained with only marginally different
weightings, sometimes differing by as little as 1%. Further, they report that the
benefits of weighted A* applied to n-puzzle problems rest mostly in the reduced
number of nodes expanded. We have thus explored the impact of various weight-
ings on search speed and number of nodes explored (see Figure 1b). Our results
confirm that the most dramatic improvements both in space complexity and
time complexity take place for moderate deviations from standard A* evalua-
tion function, namely in the w = [0.5− 0.53] range (standard A* corresponding
to w = 0.5).

Interestingly, this departure from admissibility did not affect the quality of
the solution itself, as evidenced by tests with a configuration pair admitting one
single solution. Since the heuristic modification is meant to take place during
the search itself, we have explored the impact of weight modification at various
stages of the search, measured through the number of nodes visited. We found
the impact of dynamic weighting to be most significant when applied at an early
stage of the search progression (when less than 33% of nodes of a complete
solution search have been expanded). We also note that a 55% reduction in
search space can correspond to a much larger reduction in CPU time depending
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on the computer configuration (up to a seven-fold acceleration of computation),
because of the exponential complexity of A*. This will be detailed in Figure 5b
with results presentation.

Our A* implementation is a traditional one based on the version described in
Pearl [14]: it accepts dynamic weighting at a pre-defined stage of search, defined
in terms of % node expansions, which is passed as a parameter when launching
the search on a configuration pair. Its only 8-puzzle specific enhancement is
the use of a transposition table to avoid expanding inverse moves at a depth
of two, which would simply cancel the previous one [16]. It is developed in
Allegro Common Lisp from which a standalone executable has been generated
for integration with the fNIRS software analysis and NF platform. We used a
traditional, admissible, heuristic function for the 8-puzzle, defined as the sum of
all Manhattan distances between individual tiles in their current position to the
goal position.

4 Neurofeedback Experiment Design

We used fNIRS to operationalise BCI input, whichmeasures changes in blood oxy-
genation associated with the functional activation of the cerebral cortex (see [3]
for a general description of fNIRS).

Eleven adults (Age: M=37.18 years, SD=11.21, range=[20;52]; 3 female) pro-
vided written consent and participated in the experiment approved by a research
ethics committee at the authors’ institution. Subjects were seated in a dimly-
lit room in a comfortable chair to minimise movements, with the fNIRS probe
positioned over their forehead and covered with non-transparent fabric to pre-
vent ambient light reaching the sensors. Subjects only provided input through
the fNIRS probe. Each subject was compensated with an online retailer voucher
equivalent to $30.

Data was collected with an fNIR Optical Brain Imaging System (fNIR400)
by Biopac Systems, with 2Hz sampling rate. Raw fNIRS data and oxygena-
tion values were acquired using software provided by the device manufacturer
(COBI Studio and fNIRSoft v3.3). A 16-channel sensor with a fixed 2.5cm source-
detector separation was placed on the subjects’ forehead. We used measurements
of changes in oxygenated hemoglobin (Oxy-Hb), as opposed to deoxygenated or
total hemoglobin, because it is more commonly associated with neural activity
[17]. Oxy-Hb values were averaged over four leftmost and four rightmost chan-
nels (located over the left and right dorsolateral prefrontal cortex, respectively).
Average right Oxy-Hb was subtracted from average left Oxy-Hb to derive a
simple, real-time prefrontal asymmetry score reflecting differential changes in
oxygenation. An example of left-asymmetric prefrontal oxygenation is presented
in Figure 2a.

We developed bespoke experimental software for generating real-time feed-
back and interfacing with the WA* algorithm. Response time is an important
component of NF systems; however, Zotev et al. [23] reported successful fMRI-
based NF despite the approximately 7s delay of the BOLD signal. Since delay
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(a) Topographic image of asymmetric
dorsolateral prefrontal oxygenation in-
crease during a successful NF epoch, over-
laid on a brain surface image.

(b) The NF protocol is composed of
epochs of NF, Counting and Rest (see
text).

Fig. 2. (a) Topographic image (fNIRSoft by Biopac Systems); (b) NF protocol.

using fNIRS is comparable, we sought inspiration from the experimental protocol
of Zotev et al. [23].

In order to avoid the necessity of a lengthy NF training for the purpose of
the current research (i.e. influencing the search process with NF), we gave spe-
cific directions to the subjects in terms of the cognitive strategies that are most
likely to increase prefrontal asymmetry, without being prescriptive about the
actual thought contents. Additionally, we recruited subjects from a pool of vol-
unteers who have previously participated in EEG-based NF experiments and
thereby were familiar with associated cognitive strategies. None of the subjects
had previous experience with fNIRS.

Subjects received visual feedback in the form of a red cone symbolising the
search space. Successful NF (corresponding to left prefrontal asymmetry) re-
sulted in the cone shrinking, corresponding to a more focused search. At the
beginning of the protocol, subjects completed three free-practice runs lasting
one minute each to familiarise them with the system and allow them to explore
cognitive strategies. The practice runs were separated by rest periods and fur-
ther instructions (e.g. to expect a slight delay and some jitter in the feedback).
Subjects were also introduced to a counting task, where they were instructed
to mentally count backwards from 100 by subtracting a given integer. This task
was included to distract subjects attention from the cognitive strategies used
during NF (see [23]) and to promote prefrontal activation converging to baseline
after NF blocks.

Following practice, subjects completed six blockswith the following structure of
epochs: NF, Count, and Rest. Each epoch lasted 40 seconds. The last 10 seconds
of each Rest epoch (20 observations sampled at 2Hz) was used to calculate the
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Fig. 3. System Overview. Subjects equipped with a fNIRS sensor engage in a Neuro-
feedback task whose visual display is a metaphor for the search space they are trying
to reduce. Note that since each epoch (without the first 7s, shown in gray) contained
at least 66 observations (33s with 2Hz sampling frequency), we applied as threshold
criterion the t critical value for p = .05 (two-tailed) with 65 degrees of freedom (df),
tcrit(65) = 2.00.

baseline for the next block (see [17]). Rest epochs contained no specified cognitive
tasks and no feedback on prefrontal asymmetry, and theywere used to calculate the
baseline for successive blocks; therefore, Rest epochs were not analysed. Because
the hemodynamic response measured by fNIRS occurs in approximately 7 seconds
[3], the first 7 seconds of data in each NF and Count epoch were not analysed. An
overview of the experimental protocol is presented in Figure 2b.

Success in each NF epoch was determined by performing a one-sample t-test
on the asymmetry scores collected during the epoch against the test value of zero,
upon the completion of the epoch. This tested whether there was a statistically
significant increase in asymmetry against the baseline (measured during Rest),
since the mean of prefrontal asymmetry during baseline was defined as zero [1]. If
this test was significant, the effect-size measure r was calculated to characterise
the magnitude of difference from the baseline (see Figure 3).

The system operates through mapping the outcome of fNIRS NF onto param-
eters of the 8-puzzle heuristic search mechanisms. The main mechanism consists
in mapping the NF success score r onto the weighting coefficient w of WA*, at
the end of each NF epoch (see Figure 3). This takes place via a linear mapping
function, and ensures that departure from admissibility is proportional to the
level of success of NF. However, simply launching a heuristic search at the end
of an NF epoch would not benefit fully from the concept of dynamic weighting,
which is also based on a choice of when w should be updated during the search
process. The second mapping mechanism monitors the onset of fNIRS changes
during NF to determine one of three possible stages at which w will be modified
(23%, 29% or 35% of search, for a specific configuration pair). The entire NF
sequence thus proceeds as follows: i) after the start of NF, the system detects the
temporal pattern of variation and determines at which stage w is to be modified;
ii) WA* is launched and will pause at the predefined stage of search to receive a
new w value (Figure 3-1); iii) after completion of the NF block, the new w value
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(a) (b)

Fig. 4. Examples of average left and right oxygenation (Oxy-Hb) changes over time
during two successful blocks. Areas in gray represent the first 7s of each epoch (i.e.
the approximate delay of the hemodynamic response). Note that during the NF epoch,
Oxy-Hb increases bilaterally, with asymmetry to the left; during the Count epoch
following NF, Oxy-Hb decreases on both sides; during Rest, Oxy-Hb further decreases
towards baseline.

is passed to WA* (Figure 3-2), which resumes operation until reaching a solution
(which was guaranteed with the selected problem set). Thus, the outcome is the
reduction in search space (nodes explored) 1 obtained from successful NF input.

5 Results and Discussion

Out of all 66 blocks completed by the 11 subjects, 38 (58%) contained an NF
epoch with statistically significant left-side asymmetry; these blocks were con-
sidered successful during the experiment which triggered changes in the heuristic
search process2. Each subject had at least one successful block, and 8 subjects
(73%) had at least 3 successful blocks (i.e. half of blocks successful). No subject
achieved NF success on all 6 blocks.

Since fNIRS signals are relative values, it can be difficult to compare them
across subjects [18]; moreover, the magnitude of oxygenation changes can also

1 Reduction in nodes explored was used as the outcome metric, since this is machine-
independent (unlike, for example, reduction in solution time).

2 Note that NF success was determined real-time by the experimental software by run-
ning t-tests on asymmetry scores after the completion of each epoch. The assumption
of normality was not tested by the experimental software; however, post-hoc analyses
using bootstrapping resampling method on a subset of epochs resulted in accepting
the same epochs as successful. Additionally, post-hoc correction for family-wise error
yielded the same result, with the exception of a single epoch.
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(a) Scatterplot showing the distribution of
scores over the 38 successful NF epochs: r
and w values are aligned on mapping func-
tion.

(b) Graph showing search space reduction
across successful NF epochs (ranked low
to high) and corresponding w values. Per-
formance across subjects lead to significant
difference in terms of search behaviour due
to the exponential complexity of A*.

Fig. 5. (a) Mapping from r to w; (b) Search space reduction in successful epochs.

differ substantially across blocks within the same subject. Our mapping strategy
(described in the previous section) was designed to mitigate the issue of compa-
rability. We demonstrate this through two examples of a successful block from
two different subjects (see Figure 4).

Figure 4a shows a larger mean asymmetry during the NF epoch than Figure
4b (ΔOxy-Hb = .33 and .17, respectively); however, the dispersion of asymmetry
scores during the epoch was also larger compared to the mean (SD = .36 and .09,
respectively). In other words, left-side oxygenation was more consistently above
right-side throughout the NF epoch in Figure 4b; consequently, the t value was
larger (t is calculated using the mean, standard deviation and number of data
points), leading to a larger r value (r is based on t and the degrees of freedom),
mapped to a larger w value, leading to greater reduction in search space (see
Figure 3 for formulae).

The distribution of r scores mapped to w scores in successful NF epochs
is presented in Figure 5a. We only calculated r values for epochs where left-
side asymmetry was statistically significantly above 0 (i.e. the NF signal was
used to influence the algorithm only when there was statistical evidence for
left asymmetry). The lowest r value (.28) in Figure 5a shows that we could
reliably detect medium (and large) effect sizes (r ≥ .30) during 40 second-long NF
epochs with 2Hz sampling frequency. Although several NF epochs approached
the maximum r value of 1, which determined the maximum of the dynamic
weighting of the search algorithm, the distribution of scores demonstrates that
differential weighting was successfully applied based on the r effect-size measure.
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The percent reduction in search space as a result of successful NF input is pre-
sented in Figure 5b. Average reduction in nodes visited across the 38 successful
NF epochs was 39.5% (SD = 5.65). We used search space reduction compared
to the default search parameters as a measure of search behaviour improvement.
A reduction of search space of 50% can correspond to a reduction in computing
time between 50% and 90% depending on the computer configuration, in partic-
ular its memory size, due to the exponential complexity of A*. It should be noted
that in the vast majority of epochs, the system still returns an optimal length
solution rather than a near-admissible one. Overall, these findings support the
validity of our approach to defining NF success and mapping it to the behaviour
of the search algorithm.

6 Conclusions

We have introduced a hybrid approach to BCI, in which cognitive attitudes
could be used to guide computation. These preliminary results have established
the feasibility of BCI-based control of algorithmic behaviour. In particular, the
variations in BCI signal magnitude, across subjects and trials, can be mapped
onto several bands of search improvements (e.g. space reduction, Figure 5b),
which opens up the possibility of tuning of search algorithms’ behaviour.

Our approach may also suggest research directions for a new sort of integra-
tion between cognitive processes and AI software, potentially applicable to a
large set of problem-solving applications. The various neural signals that could
support this process are still to be explored, and the approach could be refined
to investigate more specific attitudes, such as risk acceptance.
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Abstract. This work proposes a procedure to measure the human capa-
bility to discriminate couples of English vocalic phonemes embedded into
words. Using the analysis of the EEG response to auditory contrasts in
an oddball paradigm experiment, the Medium Mismatch Negativity po-
tential (MMN ) is evaluated. When the discrimination is achieved, MMN
has a negative amplitude while positive or zero MMN amplitudes corre-
spond to the confusion of the two vocalic phonemes heard by the subject
performing the experiment. The procedure presented has many potential
usages for phonetic learning tools given its capability to automatically
analyze discrimination of sounds. This permits its usage in interactive
and adaptive applications able to keep track of the improvements made
by the users.

1 Introduction

Within the last years big amounts of economic and human resources have been
invested for the learning of a second language (L2 ). From an educative per-
spective the objective is to develop programs that maximize the efficacy of the
methods used for learning other languages. In many occasions it becomes diffi-
cult for the L2 learners to achieve fluency, specially when acquisition of L2 takes
place at a late age [13]. One of its main problems associated is the difficulty for
the oral comprehension [12]. Such problem, comes many times motivated by the
inability to discriminate the oral phonemes of the second language.

This work presents a EEG monitoring experiment to analyze the phonetic
discrimination process that takes place when hearing auditory stimuli. Native
Spanish speakers with limited English knowledge perform a passive learning
task with 10 phonological contrasts of English vowels embedded into words. For
each phonological contrast frequent and deviant stimuli are presented, and the
Medium Mismatch Negativity (MMN) [10] is proposed as phonological discrim-
ination index.

The usage of signal processing permits the automation of the analysis, extract-
ing information otherwise masked by the low SNRs characteristic of electrophi-
siological signals. It also offers the possibility to analyze on quasi real-time the
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DOI: 10.1007/978-3-319-18914-7_34



English Phonetics: A Learning Approach Based on EEG Feedback Analysis 323

auditory discrimination results of the subjects, becoming a potential feedback
tool for language learning applications based on information and communication
technologies, capable to adapt to individual user needs.

The rest of work is organized as follows. Section 2 describes the Medium Mis-
match Negativity and its application to measure the phonological discrimination
capability of the subjects under EEG monitoring. Section 3 details the procedure
followed in the experiment proposed. Section 4 describes the signal processing
done in the experiment to extract the discrimination analysis from the raw EEGs
registers. Results and conclusions are presented in Section 5.

2 Medium Mismatch Negativity

2.1 The MMN Component: An Index for Phonologic Discrimination

Speech is a sound wave with acoustic and temporal properties. Our perceptive
system extracts from it features that allow, finally, to identify speech phonemes.
Nevertheless humans do not make use of speech parameters in a sharp manner.
On the contrary, different sounds are grouped as examples or realizations of a
same phoneme. In other words our phonologic perception is categorical. Speech
signal is not perceived in a continuous way, but in a discrete manner [8]. Such
behavior becomes adaptive, in a way that the speakers from a certain language
categorize any sound they heard as an example of a certain phonetic category
existing in such language. Up to the age of 6-12 months humans can discrimi-
nate the complete repertory of phonemes of any language. But after that age,
the discriminative capacity is limited and sounds are grouped according to the
language they are exposed to [3],[6]. Adults have categories of phonemes useful
to understand the language they listen to.

A way to check the existence of phonetic categories for the sounds of a lan-
guage is through the analysis of an electrophisiological component sensitive to the
acoustic disparity among its phonemes named Mismatch Negativity (MMN).The
MMN component also called auditory disparity index when considering the cor-
tical evoked potentials associated to events (ERPs), was isolated at the end of
the 60’s [9]. MMN is obtained through an oddball paradigm experiment charac-
terized by the listening of auditory stimuli while the participants watch a movie
without sound (that is, a passive listening task). The stimuli presented can be
repetitive and frequent with a high probability of occurrence (standard stimuli)
or, they can be infrequent or deviant stimuli. The variation of the deviant stim-
ulus (consisting on its intensity, duration, frequency, acoustic complexity, etc)
compared to the standard stimulus is enough to produce the MMN. The MMN
component is characterized by a wave with a higher negative amplitude in the
case of infrequent stimuli compared to that of frequent stimuli, around 100-250
ms. after the presentation of the auditory stimulus. The electrophisiological ac-
tivity involved is located in the cortex frontal and central area. Several studies
have confirmed the utility of MMN as an index of phonologic discrimination
among phonemes of their language [10], proving that speakers have phonologic
categories associated to the sounds of the language they listen to and speak.
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2.2 Proposal: Phonological Discrimination of a Second Language
L2 Based on MMN

The catalog of phonemes is very different among languages, that often do not
present a fixed nor common set of them. For this reason, and given the catego-
rization of sounds made by adult language users, learners of a second language
L2 will present difficulties to perceive phonemes that do not exist in their mother
tongue L1.

Such difficulty increases with age and can vary for the different phonemes and
learners. It will be high in the case of learners with disorders in phonological cod-
ing like, for example dyslexia, which deserves a special remark. The difficulties
to integrate visual and auditory stimuli make the learning of L2 very hard for
dyslexic learnes[11]. The dual route model for reading [4] states two simultane-
ous paths to arrive to the meaning of a word during the reading process: the
visual route (words are compared without dividing them into phonemes) and
the phonological route (graphemes are converted into phonemes and gathered to
obtain the correct pronunciation of the word). If the reader suffers from dyslexia,
one or both routes do not work properly, and the auditory discrimination will
become difficult. The problem becomes bigger in languages classified as opaque
or deep, like English. Such languages present a complex phoneme-grapheme cor-
respondence and irregularities opposite to transparent languages that present
clear letter-sound correspondence and much regularity.

In such learning framework, this work proposes to use of the monitoring of the
MMN component as a feedback-index of phonological discrimination. If the L2
learning cognitive process is monitored in a personalized manner, the trouble-
some phonological categories could be identified. Individually adapted strategies
to strengthen the learning process could then be proposed. The usage of the
communication and information technologies plays a fundamental role for this
purpose. The automatic monitoring and processing of the learner’s electrophi-
siological answers permits the creation of adaptive, auto-configurative learning
tools personalized for each particular individual.

3 Description of the Experiment

3.1 Participants

The oddball paradigm experiment has been carried out for a set of 10 participants
with an average age of 25.30 years (standard deviation (sd) = 4.42). All of them
had learned English as a second language (L2 ) starting at the average age of
7.52 years (sd = 2.67). 6 of them had lived in an English speaking country for
an average time of 4.80 months (sd = 5.55). In order to know in detail their
level of English, the participants answered a questionnaire about their oral and
reading comprehension, and their oral and written communication skills. Table
1 shows the average results over a 1 to 10 scale [1].
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Table 1. Average and standard deviant of English skills self-valuation of the partici-
pants on a 1 to 10 scale

Reading comprehension 6.80 (sd = 2.09)
Oral comprehension 6.30 (sd = 1.88)

Writing skills 5.20 (sd = 2.29)
Oral skills 5.50 (sd = 2.27)

3.2 Material and Procedure

Participants heard 10 auditory contrasts or experimental conditions. In addition
a control condition was created in order to evaluate the acoustic perception
skills of the participants. The control condition was made up of pure tones with
a duration of 50 ms, at 2 different frequencies: 1000 Hz. for standard tones and
1050 Hz. for deviant tones. The rest of experimental conditions were made up of
phonological contrasts of English vowels. Table 2 shows the set of vowels selected
for the study, taken from [2].

Table 2. Phonemes of English vowels used in the experiment

/E/ /O:/ /i/ /@/ /ae/ /U/ /I/ /2/ /6/ /e/

All the stimuli (standard and deviant) had equivalent acoustic characteristics.
Their duration was 300 ms, being the difference among stimuli determined by the
relative location of their F1, F2 and F3 formants. Table 3 shows the phonological
contrasts used.

Each contrast (pure tones and English vowels) had a total of 400 standard
stimuli and 100 deviant stimuli. The order of presentation in the experiment
was pseudo-random assuring that each condition started with at least 5 stan-
dard stimuli and never having two consecutive deviant stimuli. The time gap
between 2 stimuli was set to 500 ms, and the order of presentation of the 11
conditions was randomize for each participant. The subjects were instructed to
the different conditions passively while watching a movie without sound. Stimuli
were presented binaurally with an approximate intensity of 70 dB. The experi-
mental session lasted around 1 hour 45 minutes, including 5 minutes rests after
each contrast session.

4 Signal Processing

The continuous EEG of 9 Ag/Ag-Cl electrodes inserted on a Neuroscan Quick-
cap elastic cap were registered during the experiment (500 Hz of sampling rate).
Electrodes F3, Fz, F4, Fc3, Fc4, C3, Cz and C4 of the international 10-20 sys-
tem [5] were chosen to detect the cortical endogenous answer generated with
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Table 3. Numbering of the phonological contrasts used in the study. Condition stands
for the type of stimulus -standard/deviant; Vowel specifies the vowels used. Word
stands for the lexical context on which the vowel is inserted. Spanish -yes/no- stands
for the existence/non-existence of the English vowel (L2 ) in Spanish (L1 ).

Contrast Condition Vowel Word Spanish

1 standard 6 hod no
1 deviant O: hawed no

2 standard 6 hod no
2 deviant E head no

3 standard @ whod yes
3 deviant U hood yes

4 standard 2 hud yes
4 deviant 6 hod no

5 standard I hid no
5 deviant E head no

6 standard E head no
6 deviant ae had no

7 standard ae had no
7 deviant 6 hod no

8 standard e hayed yes
8 deviant ae had no

9 standard e hayed yes
9 deviant E head no

10 standard i heed yes
10 deviant I hid no

contrasts described in the former section. Vertical ocular movements and blink-
ing were registered with electrodes located on the external side of each eye.
EEG potentials were referred to electrodes located on the left and right mas-
toids. Impedances were kept below 5 KΩ. EEGs were amplified with Neuroscan
Nuamps TM. The following steps were taken to process the EEG registers:

• EEGs were downsampled to 200 Hz and band-pass filtered in the band 0.5Hz-
30Hz.

• The eye-blinking noise was removed from the continuous EEG registers,
using Principal Component Analysis (PCA) by Singular Value Decomposi-
tion (SVD) [7]. Multichannel EEGs were separated into linearly independent
(temporally and spatially noncorrelated) components. Eye movement arti-
facts appear as one of this independent components that can be eliminated
before reconstructing the original EEG. This procedure can be implemented
as a spatial filter in the form of matrix applicable to the channel EEG in
real-time without redoing the time-consuming SVD.

• Continuous EEGs were epoched into temporal windows around the expected
stimulus evoked response: EEG time windows starting from 100 ms before to
600 ms after the stimulus is presented, were selected. The first prior 100 ms
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were used to eliminate artifacts or low frequency drifts through a baseline
correction.

• In order to increase the SNR of the ERPs, averages were done for each
experimental condition, and each type of stimulus. Averages of responses
per subject have also calculated.

• Medium Mismatch Negativity components were calculated.

5 Results and Discussion

After checking the capability of the subjects to discriminate standard and de-
viant pure tones, experiments were conducted following the description done in
Section 3. Figure 1 depicts five examples of contrast experiments. Average ERPs
for the standard stimuli are plotted in gray, while average ERPs for deviant stim-
uli are plotted in black. Left column subfigures show examples of subjects that
discriminated correctly the deviant vowel sound when heard, and produce a
higher negative amplitude of the ERP (black line) compared to that of the stan-
dard stimulus (gray line). If no auditory differences are perceived both ERPs
have similar amplitudes. Examples of this latter case are shown in the right
column subfigures.

In order to evaluate the possible differences between standard and deviant
stimuli on each vowel contrast, a T-Student analysis has been done with a 95%
confidence interval comparing the amplitudes on each contrast separately [1].
Table 4 shows in columns 2 and 3 the average amplitude (M ) obtained in all
standard and deviant contrasts. Column 4 presents the Medium Mismatch Neg-
ativity amplitude (infrequent condition minus standard condition).

Table 4. Average amplitudes (microvolts) for standard and deviant contrasts. Medium
Mismatch Negativity).

Contrasts Standard M Deviant M MMN

/6/-/ O:/ 0.87 0.61 -0.26
/6/-/E/ 0.54 0.58 0.04
/@/-/U/ 1.35 1.27 -0.08
/2/-/6/ 1.05 0.90 -0.15
/I /-/E/ 0.57 0.49 -0.08
/E/-/ae/ 1.36 0.98 -0.38
/ae/-/6/ 0.63 0.66 0.03
/e/-/ae/ 0.70 0.40 -0.30
/e/-/E/ 0.58 0.36 -0.22
/i/-/I / 1.16 0.22 -0.93

Aside the average outcomes for the different contrasts, the individual results
(per subject and per contrast) obtained in this work have a direct application
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(a) contrast hod/hawed discriminated (b) contrast hod/hawed not discriminated

(c) contrast hod/head discriminated (d) contrast hod/head not discriminated

(e) contrast hud/hod discriminated (f) contrast hud/hod not discriminated

(g) contrast hid/head discriminated (h) contrast hid/head not discriminated

(i) contrast hayed/head discriminated (j) contrast hayed/head not discriminated

Fig. 1. Average ERPs for each vowel phoneme contrast presented to several subjects.
Black/gray lines depict the ERP after the standard/deviant stimulus.
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in the learning of a second language. Once they are pointed at, learners can
focus on the phonological discriminations they have difficulties with. Given the
advantages of the automatic signal processing proposed, the tool offers an on-line
mechanism to individually adapt the learning process to the needs of the user
with the possibility to keep track of the progresses achieved. The fact that the
oddball paradigm experiment proposed does not need active attention makes the
procedure optimal for children with difficulties of attention.
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Abstract. In the past few years, numerous efforts have been devoted to the seg-
mentation and characterization of the human heart from various medical image
techniques. This paper addresses the first results of parametric deformable models
defined in the Fourier domain as a tool to characterize the shape of the heart. The
main advantage of these models is their high speed of adaptation to the dataset
and their robustness against noise. In addition, due to their explicit parametric ty-
pology, different parameters of its dynamical behaviour can be derived from their
mathematical expression. This article details the mathematical framework of de-
formable models defined in the frequency domain as well as the preprocessing
and practical implementation of the model used in this application to model the
cardiac cycle of the whole heart.

Keywords: Parametric deformable model · Fourier domain · Cardiac modelling ·
Motion tracking · B-splines

1 Introduction

The analysis of the motion and deformation of the heart is a topic with a considerable
interest in the literature due to the great impact of the cardiovascular disease (CVD) as a
cause of death. In recent years, several approaches have been proposed [1–3]. In [4–6],
a detailed review of the most known methods for cardiac motion analysis are presented.

Due to the elastic nature of the heart and the robustness to noise of B-splines, de-
formable models based on B-splines are an interesting approach for cardiac charac-
terization [2, 7–9]. This work proposes the use of frequency-based multidimensional
parametric deformable models [10] instead of commonly used spatial-based implemen-
tations for the motion characterization of human heart, given that the frequency-based
framework offers an efficient implementation [11].

The paper is organized as follows: In Section 2 we describe the formulation of a
multidimensional parametric deformable model and we provide the equation of motion
of the model defined in the frequency domain. Section 3 details the practical implemen-
tation of the algorithm, Section 4 shows the results of the segmentation of the whole
heart in 4D CT data, and finally Section 5 closes the paper with the conclusions.

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 330–339, 2015.
DOI: 10.1007/978-3-319-18914-7_35
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2 Multidimensional Parametric Deformable Models

Multidimensional parametric deformable models stand for the generalization of the ac-
tive contours described by Liang et al. [12]. These model are defined as an e-dimensional
time-varying hypersurface evolving in the d-dimensional space R

d by means of a para-
metric function,

v := v(s, t) = [v1(s, t), . . . ,vd(s, t)]�, (1)

where s := [s1, . . . ,se] with s j ∈ [0,Lj], e � d and e,d ∈ N is the vector of parametric
variables in the spatial domain, t is time and vi(s, t) represents the coordinate function
for each dimension i.

We consider the process of data modelling as a dynamic process. This means that
the dataset under analysis changes over time. Under this assumption, the shape of the
model is governed by the following energy functional,

E(v, t) = S(v, t)+P (v, t). (2)

The first term, S(v, t), is related to the internal deformation energy, which characterizes
the elastic deformation of a flexible model [13]. This component smooths the shape
of the model and rules its behaviour of elasticity and rigidity. Besides, the energies
represented by the term P (v, t) commonly generates forces to attract the model to the
edges of the dataset. Consequently, this term is obtained from the multidimensional
data, although different restrictions such as non-lineal internal forces inside the model
can also be included.

The shape of the model is obtained by minimizing the term of energies E(v, t). By
applying the calculus of variations, the energy functional (1) reaches a minimum when
the Euler-Lagrange equation is satisfied [12]. This can be generalized for the multi-
dimensional case resulting in a system of d decoupled partial differential equations
(PDEs)[10],

µ(s)∂tt vi(s, t)+ γ(s)∂t vi(s, t)− ∂s1

(
α(s)∂s1 vi(s, t)

)−·· ·− ∂se

(
α(s)∂se vi(s, t)

)
+(

∂s1s1 + · · ·+ ∂sese

)(
β(s)∂s1s1vi(s, t)+ · · ·+β(s)∂sese vi(s, t)

)
=

q
(
v(s, t)

)
, 1 � i � d, i ∈ N, (3)

where ∂t and ∂tt denote, respectively, first and second partial derivative with respect to
time, and ∂s j and ∂s js j with respect to the parametric variables s j . The parameters α(s)
and β(s) control the elasticity and rigidity of the model respectively, and µ(s) and γ(s)
provide its mass and damping densities. Finally q

(
v(s, t)

)
represents the external forces

derived from P (v, t). The equation (3) stands for the necessary condition for the model
at equilibrium, enabling the calculation of each coordinate function separately.

In order to apply Eq. (3) by means of a discrete processing system, both spatial and
temporal variables should be discretized. The discretization in the spatial domain is
done by means of the finite element method (FEM) [14]. The domain [0,Lj] of each
parametric variable s j is partitioned into Nj finite subdomains. Hence, the model v(s, t)
can be expressed as the union of N =N1N2 · · ·Ne elements vn

i (s, t), each one represented
using shape functions N(s) and nodal variables un

i (t), i.e.
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vn
i (s, t) = N(s)un

i (t), (4)

where n = [n1, . . . ,ne] are the indexes of the element in each coordinate function.
By applying the Galerkin’s method [15] to Eq. (3) for each finite element and assem-

bling both expressions and nodal variables for all elements, the motion equation of the
whole system can be written in matrix form as [10],

Mdtt ui(t)+Cdtui(t)+Kui(t) = qi(t), (5)

where M, C and K represent the global matrices of mass, damping and stiffness respec-
tively, and qi(t) is the external forces vector.

The matrices M, C and K depend on the shape function N(s) used in the spatial
discretization and the parameters of the model α, β, µ and γ. These matrices show
interesting properties, i.e. they are dispersed and nested circulant, which allows their
simple calculation for models of any number of dimensions from the matrices of one-
dimensional models. The system matrices for one and two-dimensional models are pro-
vided in [16], being computed for finite differences and B-spline shape functions. As
stated in [16], through the use of different shape functions, the behaviour of the resulting
model can be influenced to fit the desired application.

The time variable in Eq. (5) is discretized, t = ξΔt, i.e. uξ = ui(ξΔt), where Δt is
the time step and ξ ∈ N is the iteration index. The time derivatives are also replaced
by their discrete approximations, resulting in a second-order iterative system, which
provides the equation of motion of the model.

Then, the discrete spatial domain is translated into the frequency domain by using the
e-dimensional discrete Fourier transform (eDF T ). The frequency approach reduces
the computational cost by several orders of magnitude in each of the dimensions of the
model, as can be seen in [11]. The Fourier formulation also allows us to isolate the
spectral components of the nodes of the model for the current iteration ξ,

ûξ = ĥ
(
a1ûξ−1 + a2 ûξ−2 +(ηf̂)−1q̂ξ−1

)
, (6)

where û, f̂ and q̂ are the eDF T ’s of their respective spatial sequences, η = m/Δt2 +

c/Δt, γ = Δt c/m , a1 = 1+(1+ γ)−1 and a2 =−(1+ γ)−1.
Internal forces are imposed by the e-dimensional low-pass filter ĥ and external forces

are applied by means of q̂. The filters ĥ for one and two dimensional models are detailed
in [17]. The spectral characteristics of filter ĥ depend on the parameters α, β and η,
influencing in the behaviour of the model.

Given that the processing of each spectral component of the model is completely
independent of the other components, the high degree of parallelization of the iterative
system (6) is noteworthy. Thus, software implementations adapted to multicore hard-
ware are able to exploit this feature increasing the speed of processing.

3 Practical Implementation of the Method

The aim of this work is to segment and characterize the shape and volume of a human
heart and analyse their evolution over time. For this purpose, 4D medical data must be
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processed using the method described in Section 2. The four dimensions of the provided
dataset involve three spatial variables and one temporal variable.

Therefore, the proposed formulation should be applied in R
3, i.e., d = 3. In addition,

since the region of interest is the outer edge of the heart, it is appropriate the use of a
two-dimensional model, i.e. e = 2, which behaves as a balloon that inflates and deflates
following the shape of the heart. The dynamic analysis is achieved by applying the
whole process for all 3D cardiac frames n f , throughout the whole cardiac cycle. The
template used for the model is depicted in Fig. 1, where parametric variables s1 and s2

portray the edges of the data along the xy plane and z axis respectively.
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Fig. 1. Model used for the motion analysis of the heart

Algorithm 1 summarizes the procedure for the fitting of the model to the data. This
method allow us to calculate the nodes of a parametric two-dimensional model from
the three-dimensional scenario for each cardiac frame. Then, from the time-varying
surface of the heart defined by these nodes, deformation and motion analysis can easily
be performed.

Parameters α = β = 0.1 and η = 1 are fixed based on the dynamics and assumed
elasticity and rigidity for the deformable model, whereas parameter γ = 0.48 is cal-
culated from the spectra of the dataset, in order to optimize the speed of convergence
[18, 19]. The size of the model {N1,N2} = {64,45} is fixed according to the dimen-
sions of the dataset. Finally, B-spline is chosen as shape function [20], since it enables
the minimization of noise and data artefacts, specially when the spectrum of the data is
mainly low pass. The performance of B-spline and finite difference deformable models
to characterize 3D data in noisy environments is addressed in [16].
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Algorithm 1. Iterative process
Data: 4D medical dataset, I.
Result: Nodes of 2D model for each frame n f : unf .

1 Parameter setting
2 2D system filter computing, ĥ
3 Data preprocessing, I′
4 Gradient of data calculation, FI′

5 for n f := 1 to MaxFrame do
6 Model initialization and freq. translation û
7 while (eξ > TOL and ξ ≤ maxiter) do
8 Computing of q̂ξ−1 for each ûξ−1

9 Second order iterative system Eq. (6)
10 Calculation of adjustment error, eξ
11 ξ ← ξ+1

3.1 Preprocessing and Gradient Calculation

Before calculating the external forces used in the method, a preprocessing should be
applied to the medical data under analysis. Note that although a CT dataset has been
used in this experiment, the use of the method with MRI data is alike.

The first step comprises the application of a three dimensional low pass filter with
a impulse response of size 3× 3× 3. This allows a reduction of the impulsive noise
without compromising the accuracy of the model fitting. Additionally, basic operations
of mathematical morphology are applied [21].

Fig. 2 illustrates this procedure. Fig. 2(a) represents a slice of the initial volume after
the low-pass filtering. Then, the extended-maxima transform is applied [22], depicted
in Fig. 2(b). Next, we join the disconnected points applying subsequently a closing to
the data, as shown in Figs. 2(c) and 2(d). Finally, by considering the dataset as a binary
array internal pixels are removed, Fig. 2(e).

A two-dimensional filter based on B-splines is then applied to each slice. The re-
maining outline, depicted in Fig. 2(f), defines the edge of the heart and is used for the
external forces calculation. Since the coordinate z of the nodes is held constant allowing
motion only in x and y directions, gradients of the data are calculated for both directions,
FI;x and FI;y. Figs. 2(g) and 2(h) show the slice 32 of these three-dimensional gradient
arrays.

3.2 Filtering Process

Once the spectrum of the system filter ĥ has been calculated [17], the fitting process can
be applied by the iterative process described by Eq. (6). As detailed in Algorithm 1, the
entire process is applied to each cardiac frame. For the first frame, n f = 1, the model is
initialized as a cylinder around the heart, as shown in Fig. 3(a). In subsequent frames
instead, initialization is performed from the position of the model in the previous frame.

At each iteration ξ, the array of external forces, q, is calculated from the gradient
of the data FI as well as the position of the nodes u. Note that the overall iterative
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Fig. 2. Computation of external forces: (a) Slice z = 32 of the low-pass filtered first frame of
the 4D dataset; (b-e) Preprocessing steps; (f) B-splines based two-dimensional filtering, (g-h)
Gradients in x and y directions, FI;x and FI;y.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Adjustment process of the model to the target. Left column, adjustment for the first cardiac
frame n f = 1 of the 4D dataset: (a) Iteration ξ= 0; (c) iteration ξ= 50; (e) iteration ξ= 300. Right
column, model adjusted to the target for the following cardiac frames: (b) n f = 2; (d) n f = 3; (f)
n f = 4.
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process is performed in the frequency domain. For this reason, external forces need to
be translated into the Fourier domain, q̂. This process is executed until model is close
enough to the outline of data.

4 Results and Discussion

Figure 3 depict the results of the experiment. The left column of Fig. 3 illustrates the
process of adaptation of the model for the first cardiac frame n f = 1. Likewise, the right
column of Fig. 3 shows the final adjustment to the dataset for three cardiac frames,
n f = {2,3,4}. A similar process has been applied to the 20 frames of the dataset. As
can be seen, the deformable model is able to follow the shape of the heart, allowing its
characterization over time.

Since the boundaries of the heart are now defined by a parametric function, the de-
formation and motion of the data can be easily analyzed. Fig. 4 shows an application of
this study. Here, the model v has been used to estimate the volume of the heart along
the cardiac cycle. Other parameters such as velocity or acceleration at any point of the
data can easily be calculated from the model v.
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Fig. 4. Volume of the heart throughout the cardiac cycle

5 Conclusions

In this paper a parametric deformable model implemented in the frequency domain has
been proposed to characterize the shape of a heart over time. The iterative process used
for the adaptation of the model to the data is completely formulated in the frequency
domain, providing a high computational efficiency.

This paper has shown the preliminary results provided by the frequency-based de-
formable model to characterize the shape of the whole heart over time. The practical
implementation and preprocessing steps have been described and applied to a 4D CT,
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where the parametric formulation of the model allows to derive dynamical parameters
such as the volume over time.

As a future work, a comparative evaluation of existing methods to characterize the
shape of the whole heart will be performed. Additionally, the proposed method will be
applied to the segmentation and tracking of the left ventricle, due to the interest of this
part of the heart in the literature [4, 6].
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18. Verdú-Monedero, R., Morales-Sánchez, J., Weruaga, L.: Convergence analysis of active con-
tours. Image and Vision Computing 26, 1118–1128 (2008)

19. Berenguer-Vidal, R.: Formulación de modelos deformables paramétricos multidimension-
ales en el dominio de la frecuencia. PhD thesis, Escuela Técnica Superior de Ingenieros de
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Abstract. This paper describes an application of variational image reg-
istration. The method is based on an efficient implementation of the
diffusion registration formulated in the frequency domain. The goal is
to register anatomical and functional brain images of the same patient
to facilitate the process of functional localization. This non-rigid image
registration of different modalities makes possible to obtain a geometric
correspondence which allows for localizing the functional processes that
occur in the brain. In order to evaluate the performance of the proposed
method, visual and numeric results of registration are shown. The qual-
ity of the registration results is measured by considering the peak signal
to noise ratio (PSNR), the mutual information (MI) and the correlation
ratio (CR).

Keywords: Variational image registration · Non-rigid deformation ·
Medical image

1 Introduction

Image registration is the process of finding the optimum geometrical transfor-
mation which relates corresponding points of two dataset (images or volume
images) of the same scene taken at different times, from different viewpoints,
and/or by different sensors [1], [2], [3]. Geometrically, the image registration
consist of aligning one of the datasets, known as the template set (T) with the
other set, known as the reference set (R).

Applied to medical imaging, image registration tries to find the correspon-
dence between datasets at different times or with different acquisition devices.
The registration process helps to improve the diagnosis and tracking of a wide
group of pathologies, as well as assist to plan the most appropriate treatment.

Among the applications of medical image registration, the registration of func-
tional and anatomic images (intra-patient) of the brain of the same patient is
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an essential part of the functional localization process [4]. The functional im-
ages of the brain, for example, functional magnetic resonance images (fMRI)
or positron emission topographies (PET) do not have detailed structural in-
formation and do not provide a specific anatomical location of the functional
information, hence it is necessary to analyse them along with anatomical images
as, for example, magnetic resonance images (MRI). This type of registration is
known as multimodal registration due to the different contrast and intensity of
the datasets. The most important part of the multimodal registration process is
to find the univocal correspondence between the functional and anatomic images
of a patient when usually the correspondences are not visible in both imaging
modalities. The functional images have a spatial resolution, signal to noise ratio
and contrast lower than anatomical images. PET and fMRI images provide very
vague and imprecise brain structures; on the other hand, MR images usually
have a high resolution and definition of the brain structures.

For many years, researchers have developed and implemented registration
algorithms for medical imaging applications. In [5], non-rigid registration tech-
niques are evaluated on thoracic CT images. Particularly, the liver segmentation
is an open challenge [6], which provides an interesting setting for comparing
image registration methods. A novel collection of medical image registration al-
gorithms in C++ based on ITK [8] can be found in [7]. However, this collection
restricts non-rigid transformations to B -spline models [9] or physical model-
based splines [10], not taking into account non-parametric registration methods
(i.e. the approach proposed in this paper or, i.e. [11] and [12]).

In this work, we address the registration of anatomical images (MRI) and
functional images (fMRI and PET) in order to obtain a correspondence between
images of both modalities. The method is based on an efficient implementation
of variational image registration, which is at least two times faster than other
approaches in the spatial domain [13].

2 Variational Image Registration

In this work the datasets are volumes of images obtained from medical studies
(MRI, fMRI, PET), R, T : R3 → R, and the registration will produce a non-
rigid displacement field u : R3 → R

3 that will make the transformed template
dataset be similar to the reference dataset, T (x− u(x)) ≈ R(x), where u(x) =

(u1(x), u2(x), u3(x))
�

and x is the spatial position x = (x1, x2, x3) ∈ R
3.

The non-parametric registration can be approached in terms of the variational
calculus, by defining the joint energy functional to be minimized:

J [u] = D[R, T ;u] + αS[u]. (1)

The energy termD measures the distance between the deformed template dataset
and the reference dataset; S is a penalty term which acts as a regularizer and
determines the smoothness of the displacement field; and α > 0 weights the
influence of the regularization.
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The distance measure D is chosen depending on the datasets to be registered.
When dealing with datasets from different sources or modalities (multimodal
registration), statistical-based measures are more appropriate. In this application
the correlation ratio [14] has been used.

The regularization term S gives the smoothness characteristics to the dis-
placement field [11]. In this work we use the diffusion term, which is given by
the energy of first order derivatives of u:

Sdiff[u] =
1

2

3∑
l=1

∫

R3

‖∇ul‖2 dx. (2)

As described in [12], the joint energy functional (1) can be translated into the
frequency domain by means of Parseval’s theorem, then J [u] = J̃ [ũ], where

J̃ [ũ] = D̃[R̃, T̃ ; ũ] + α S̃[ũ], (3)

with ũ(ω) = (ũ1(ω), ũ2(ω), ũ3(ω))� being the frequency counterpart of the
displacement field, ω = (ω1, ω2, ω3) is the three dimensional variable in the
frequency domain, and where the distance measure D̃ and the regularization
term S̃ are now defined in the frequency domain.

According to the variational calculus, a necessary condition for a minimizer ũ
of the joint energy functional (3) is that the first variation of J̃ [ũ] in any direction
(also known as the Gâteaux derivative) vanishes for all suitable perturbations.
This leads to the Euler-Lagrange equation in the frequency domain:

f̃(ω) + α Ã(ω) ũ(ω) = 0, (4)

where f̃ is the 3D Fourier transform of the external forces, FT {∇D[R, T ;u]},
and Ã is a diagonal 3 × 3 matrix whose elements are scalar functions which
implement the spatial derivatives in the frequency domain [13], allowing for
their computation by means of products:

Ãii(ω) = 2

3∑
m=1

(1− cosωm) , i = 1, ..., 3. (5)

The Euler-Lagrange equations (4) in the frequency domain provide a stable
implementation for the computation of a numerical solution for the displace-
ment field, and in a more efficient way than existing approaches if the three-
dimensional fast Fourier transform is used [13]. To solve (4), formulated in the
frequency domain, a time-marching scheme can be employed, yielding the fol-
lowing equation:

∂tũ(ω, t) + f̃(ω, t) + α Ã(ω) ũ(ω, t) = 0, (6)

where ∂tũ(ω, t) = (∂tũ1(ω, t), ∂tũ2(ω, t), ∂tũ3(ω, t))� (in the steady-state
∂tũ(ω, t) = 0 and (6) holds (4)). Equation (6) is solved by discretizing the
time, t = ξτ , τ > 0 being the time-step and ξ ∈ N being the iteration index, and
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the time derivative of ũ(ω, t) is replaced by the first backward difference. Using
the notation ũ(ξ)(ω) = ũ(ω, ξτ), the following semi-implicit iterative scheme
comes out:

ũ
(ξ)
l (ω) = H(ω)

(
ũ
(ξ−1)
l (ω)− η−1 f̃

(ξ−1)
l (ω)

)
, (7)

where l = {1, 2, 3}, η = 1/τ and H(ω) is the following 3D low pass filter H(ω) =
(1 + η−1αÃii(ω))−1. An implementation based on the 3D FFT is, in terms
of efficiency, two times faster than the fastest implementation available in the
spatial domain [13], which is the DCT-based algorithm included in the FLIRT
toolbox [15] for the diffusion and curvature registration methods [16].

3 Results

This section shows the results of the registration process between anatomic im-
ages (MRI) and functional images (fMRI and PET) of the brain. To evaluate the
performance of the registration method, two experiments have been proposed.
In Experiment 1 the MRI dataset and the fMRI dataset have been registered
whereas in Experiment 2 the MRI dataset and the PET dataset have been reg-
istered. The sizes of the original datasets are 336 × 336 × 200 voxels (MRI),
64 × 64 × 30 voxels (fMRI) and 128 × 128 × 46 voxels (PET). Due to the fact
that registration method needs that the datasets have the same dimensions, ini-
tially the spatial range shared by the datasets is identified. Subsequently the
datasets are re-sampled by a non-integer factor by means of a decimation and
interpolation steps, achieving datasets with the same dimensions, 128×128×64.

The registration parameters used in Experiment 1 are α = 20, τ = 1, ε = 100.
In Experiment 2, the registration parameters are α = 50, τ = 1, ε = 150. The
similarity measure minimized in both experiment has been the correlation ratio,
given that the datasets are multimodal.

Figure 1 shows the registration process between the fMRI volume as the
reference dataset (R) and the MRI volume as the template dataset (T ). The
first column shows three slices of the reference dataset, the third column shows
three slices of the template dataset, and the second column shows three slices of
the registered dataset. Numerical measurements of the registration process have
been gathered in Table 1. This results have also been compared with the results
provided by the Elastix toolbox [7]. In order to evaluate the results of the reg-
istration the following similarity measurements have been done: peak signal to
noise ratio (PSNR), mutual information (MI) and correlation ratio (CR). As can
be seen, the proposed registration method gets better results in the registration
process than Elastix.

Figure 2 shows the results of Experiment 2. In this case, the reference dataset
(R) is the MRI volume and the template dataset (T ) is the PET volume. The
first column shows three slices of the reference dataset, the third column shows
three slices of the template dataset and the second column shows three slices
of the registered dataset. Numerical measurements of the registration process
have been gathered in Table 2, where the results provided by the proposed
method have been compared with the results provided by Elastix. Once again
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R(x) T (x− u(x)) T (x)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Experiment 1: registration of fMRI and MRI (128 × 128 × 64). First column:
reference dataset (fMRI). Second column: registered template. Third column: template
dataset (MRI). First row: slice #20. Second row: slice #30. Third row: slice #40.

the proposed registration method achieves better results in the registration than
Elastix.

Regarding the computational time, the proposed registration method, im-
plemented in C++, needs 0.72 seconds per iteration to register datasets of
128 × 128 × 64. On the other hand, Elastix needs 1.28 seconds per iteration
to register the same datasets.
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R(x) T (x− u(x)) T (x)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Experiment 2: registration of MRI and PET (128 × 128 × 64). First column:
reference dataset (MRI). Second column: registered template. Third column: template
dataset (PET). First row: slice #20. Second row: slice #30. Third row: slice #40.

Finally, It is worth stressing that the registration process shows excellent
results applied to multimodal datasets. However, in both experiments, the results
of the registration are not perfect. Nevertheless, it should be also taken into
consideration other factors that hinder the registration process (e.g. little shared
information between datasets, different scales or the shape relation of the voxels).
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Table 1. Similarity measures computed for Experiment 1

Before registration After registration Elastix [7]

PSNR(dB) 21.64 29.33 28.70

MI(bits) 1.01 1.24 1.17

CR(%) 64.54 90.55 88.53

Time (s) −− 71 126

Table 2. Similarity measures computed for Experiment 2

Before registration After registration Elastix [7]

PSNR(dB) 17.29 27.56 26.40

MI(bits) 0.82 1.17 1.12

CR(%) 62.85 88.27 85.53

Time (s) −− 108 192

4 Conclusion

This paper addresses an efficient implementation of variational image registra-
tion of anatomic (MRI) and functional (fMRI and PET) intra-patient images
of the brain. The method is based on an efficient implementation of the dif-
fusion registration formulated in the frequency domain. This method has been
implemented in C++ and has been compared with Elastix toolbox [7]. Results
on different experiments show the ability, efficiency and high accuracy of the
proposed method to estimate the deformation existing in datasets with a lower
computational cost.

5 Future Work

As future work, a graphical interface will be developed to facilitate the regis-
tration tasks between the brain images of different modalities. This interface
will use the library developed in C++ that implements the proposed algorithm.
The fact of using the programming language C++ along with the implemen-
tation of the registration algorithm in the frequency domain will provide high
computational efficiency and minimum execution times.
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Abstract Content analysis of pollen grains in the atmosphere is an im-
portant task for preventing allergy symptoms, studying crop production
or detecting environmental changes. In the last decades, a lot of palyn-
ological labs have been created to collect, prepare and analyse airborne
samples. Nowadays, this task is done manually with optical microscopes,
requires trained experts and is time-consuming. The development of new
computer vision systems and the low price of storage systems have im-
proved the solutions towards an automated palynology. Some recognition
problems have been solved with better quality images and other with 3D
images, but localisation in real airborne samples, with debris, clumped
and grouped pollen grains needs to be improved in order to achieve an
automatic system useful for biological labs. In this manuscript, we ana-
lyse the advances achieved in the last years and explain a new low-cost
methodology, that imitates the human expert labour using computa-
tional algorithms based on image characteristics and domain knowledge
to detect pollen grains. The current results are promising (81.92% of re-
call and 18.5% of precision) but not enough to develop an automated
palynology system.

Keywords: Automatic localisation · Pollen grain · Debris · Airborne ·
Light microscope · Digitised image · Data sharing

1 Introduction

The analysis of bio-images is fundamental to paleoenvironmental reconstruction,
climate change, forensic science or medical studies. It is done by qualified experts
that perform complex, tedious and time consuming tasks, detecting and counting
biological particles like pollen grains. To improve the expert labor and the biolo-
gical studies, in the last two decades a lot of research groups have been working
in the development of automatic systems. The advances in hardware techno-
logy have provided new acquisition systems able to get better data, quicker and
with higher resolution. Furthermore, thanks to the reduction of storage costs,
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it is possible to save much more additional data than before. So, nowadays, we
have to deal with huge amounts of data that require to be processed, linked and
explained.

In the last years, the pollen grain localisation and recognition problem has
been studied by different research groups. Table 1 summarises the results of
different studies using light microscope, the most common and economic system
to analyse samples. Automatic localisation in pure samples with isolated objects
shows very good results, with high recall and precision [2,3,15,1,14,5,10,13] but
when the sample is real, with grouped or clumped pollen grains and debris,
the results get worse [11,14]. Automatic recognition shows good performance
when the images have good focus, isolated pollen grains and few number of taxa
[10,12,15].

Table 1. Overview of published attempts about automatic pollen grain localisation

The current methodology for airborne pollen quantification is widely adopted
around the world, with volumetric Hirst sampler type [9] in Europe or Rotorod
type [8] in North America. Pollen grains and other particles in the air impact
on an adhesive-coated transparent tape that progress over time. Each daily ad-
hesive tape is stained to improve the visibility of the pollen grains and later,
a palynology expert analyses manually the sample, using an optical microscope
according to the protocol. Other methods to quantify the particles of airborne
have been studied recently, such as the Coriolis air sampler and Hirst sampler,
which performance is compared in [4]. The results in quantity are quite similar
but the recording methodology changes, causing problems in temporal studies
and when comparing with old stored samples.
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The use of bio-images with contextual features helps experts knowing more
information to improve their decisions. All image analysis results need to be
checked according to the domain knowledge of the task, but this knowledge is
difficult to elicit. Therefore, we use the spiral methodology based on the com-
parison between automatic results with experts’ ground truth to solve complex
problems, in this case, the automatic detection and identification of pollen grains.
Thanks to the reduction of storage costs, it is possible to save all samples in di-
gital format, allowing data sharing and visual evaluation of results. The advances
in image processing improve the palynology research minimising human errors,
allowing reanalysis of data and increasing the information extracted from im-
ages. This advances together with a good organisation of all factors that take
part in the biological process offer huge opportunities of new research projects,
like prediction or reconstruction of palynological environments.

The novelty of this manuscript resides on using a semiautomatic system that
combines scan and analysis of daily samples, offering a solution when the images
are from real airborne, with imperfect focus and higher taxa number (around
40 types as recommend in [6]). The method for detecting and identifying pollen
grains, explained in section 2, is composed of two steps: a low resolution analysis
to find the objects and a high resolution analysis to identify them. In section 3
we explain the materials and methods to find pollen grains in real samples. In
section 4 we show the results obtained, focusing our attention in the detection
problem when the sample shows real context imperfections (bad focus, debris,...)
and comparing the results with a ground truth done manually by palynological
experts. Finally, in section 5 we discuss about the results and present conclusions.

2 Semiautomatic Pollen Grains Counting Methodology

The Spanish pollen counting protocol has beed defined by the Spanish Aerobio-
logy Network (REA) [7] and fulfils the requisites of the European Aeroallergen
Network (EAN), that provides a large data base when all members share their
data. The protocol in Europe to analyse the content of pollen grains and spores
in the atmosphere is based on air-suction to stick the suspension particles on a
transparent tape. The tape is cut in daily fragments, mounted in a glass slide and
stained to colour fuchsia the pollen grains and other vegetal particles. Then, an
expert explores the sample manually with transmitted light microscope, counting
and classifying different pollen grains.

To automate this process, the sample is scanned with digital and motorised
transmitted light microscope and then, the real daily sample is analysed with a
computer vision system. The schema of the semiautomatic pollen grains counting
system is presented in figure 1. It is a low cost system, that can be easily installed
in a biology lab.

The system is composed of two modules: i) a low resolution module where 2D
images are used to detect pollen grains and ii) a high resolution module that
uses 3D images (Z stack) to identify different pollen types.

As adhesive tape thickness is greater than pollen grain dimension, their po-
sition in Z axis vary as is shown in figure 2a. In the low resolution phase, the
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Fig. 1. Overview of the semiautomatic system developed

minimum digitised area contains several particles and each one could have dif-
ferent Z positions over the tape. In consequence, the image may present areas
with imperfect focus. This problem has less influence in the high resolution phase
because the digitised area is reduced and centred over a pollen grain.

(a) (b)

Fig. 2. (a) Pollen grain situation in Z axis over adhesive tape (b) Focus mesh of 49
equidistant dots

2.1 Digitalisation System

In low resolution (x 100 magnification), the scan system first analyses the focus
in equally spaced grid inside the sample (figure 2b). Then, the daily sample is
scanned using the best focus mesh. The focus values are used to adjust the Z
level along the sample, improving the image quality.

In high resolution (x 400 magnification), the system acquires a stack of images
centred in a specific point where it is supposed to exist a pollen grain. We use the
focus mesh and pollen grain diameter to calculate Z position, number of images
(Z stack) and thickness (Z step).
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2.2 Detection System

The pollen grain detection system analyses 2D daily images (around 36480 x 14400
pixels) to find objects with similar characteristics to pollen grain. Some areas may
have imperfect focus, debris and the pollen grains could be broken or grouped. The
system consists of five steps and its diagram is presented in figure 3:

1. Background elimination: White background and dark objects are removed
using an adaptive threshold

2. Colour threshold: Pink objects are selected using HSV and RGB threshold
filter.

3. Shape filter: Objects with low eccentricity are removed.
4. Size filter: Objects with sizes out of the range of pollen grains (10 - 300 um

of diameter) are removed.
5. Colour, shape and texture classifier: Object colour, shape and texture fea-

tures are analysed to discriminate between pollen or non-pollen.

Fig. 3. Inference diagram of the pollen grain detection system

2.3 Identification System

The identification system utilises 3D images centred on each pollen grain to
extract multiple features. The number of images in Z stack and their Z step de-
pends on the object diameter detected in the previous phases. We use shape, size
and texture features to identify the pollen grain types. Also, we use contextual
variables like the probability of each pollen type to appear in a specific date to
improve the results.
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2.4 Verification System

An user-friendly program interface has been developed to show the image to
the palynological expert to help deciding the pollen type in case the automatic
identification system fails. If the expert, viewing the digital image, can not decide
the type, the verification system will connect with the microscope, allowing the
expert to adjust the focus to decide the type. Also, the verification system allows
experts to evaluate the results of the automatic system. They can modify types
or add/remove pollen grains.

3 Materials and Methods

In this study, we use 12 daily samples of airborne pollen grains. Each daily
sample starts at 12:00 pm and corresponds to the 15th day of each month of
2012. The samples were collected using a Hirst-type volumetric spore trap [9]
located in the city of Toledo (39°51’54.6"N 4°02’30.4"W, 529 m). The adhesive
tape is stained with fuchsine and mounted in a glass slide.

The sample is scanned with an optic / digital microscope “NiKON 80i” with
micro-positioning device “Prior H101 ProScann II” and NIS Elements Basic Re-
search software (version 4.11) of NIKON. Daily sample size is 48 x 19 mm and
is formed with a mosaic of RGB images of 640 x 480 pixels with 1.34 um/pixel.
The focus mesh was manually done because the autofocus function stopped in
debris instead of pollen grain.

Image analysis was done with Matlab software (version 8.1.0.604). In the first
phase of analysis, the low resolution system detects possible pollen grains. In
each candidate pollen grain, the high resolution system acquires a stack of RGB
images of 640x480 pixel with 0.34 um/pixel. In the second phase of analysis, the
system identifies the type of pollen grains with this image stack.

According to REA protocol, the experts analyse 4 horizontal lines for each
sample of 48 mm x the diameter of the field of vision of the microscope (in
our case 0.5 mm). To compare the results of three methods: 1) optical manual
(analog method), 2) digital manual and 3) digital automatic, we analyse similar
areas with the new methodology.

4 Results

The number of pollen grains detected manually by one expert in the four ho-
rizontal lines of each sample (REA protocol) is shown in table 2. It shows the
number of objects detected with the analog method and with the digital method
using both low resolution and high resolution images. The greatest number of
pollen grains appears in spring, with levels around 1000-2000 pollen grains. In
the rest of months the presence of pollen grains varies between 0 to 50. In the
digital method the number of detected pollen grains is higher than in analog
method because the localisation of each line has a variation of 2 mm (thickness
of line mark) however the magnitude order is similar.



354 E. Díaz-López et al.

Table 2. Comparison of the number of pollen grains per month with different methods:
analog (optic) and digital with low and high resolution

It is worthy to note that, in real samples, there are a large variation in the
visual characteristics of pollen grains. In the analysed samples exist 24 pollen
types of the approximately 38 pollen types characteristic of this region, with
different values of colour, size and date. The pollen type variation is shown in
figure 4, on the left we show the pollen type distribution per sample and on the
right different sub-images, on top a sample full of debris and on bottom some
grouped pollen grains. Size variation is between 37 to 2564 pixels. In figure 5 left
is shown the size variation of some pollen types. The colour pixel distribution
per sample is shown in 5 right. Often, the identification of all pollen grains is
not possible . In this study, the 0.33% of pollen grains were not identify in the
analog method and the 15.9% in the digital manual method. It could be due a
bad stack of images, without enough features to discriminate between various
grain types or an incorrect focus.

Fig. 4. Pollen type distribution (left) and images of some samples (right)
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Fig. 5. Pollen size variability (left) and RGB colour distribution (right)

The results of our pollen grain detection method is shown in table 3. In this
table, we show the number of pollen grains detected by experts (#expert), the
number of pollen grains detected by automatic method (#detected) and the
number of undetected pollen grains (#undetected). The mean true positive rate
per sample is 89.4 ∓ 16.9%.

The number of objects with similar colour and shape features than pollen
grains is very high. To reduce this number we have used a decision tree classifier
that uses colour, shape and texture blob features to recognise real pollen grains.
Using the circular Hough transform and the classifier with local and regional
features we reduce 86.5% the number of false negatives. After the classifier we
obtain a TP rate of 81.92 ∓ 13.24% and a still elevated number of FP (18.85
∓21.24% of precision), that will be removed in the next phases.

Table 3. Automatic method results per month
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5 Discussion and Conclusion

The automatic acquisition and analysis of real airborne samples is a complex
task. The presence of debris, bubbles and other particles creates difficulties to
analyse the focus of daily image to obtain a mesh of Z position to improve the
quality of the image. Also, the presence of different pollen grains over time, their
colour variance per type and sample, and their high variability in size and shape,
force to select soft threshold levels to reduce the number of undetected pollen
grains but it produces a high number of FP.

The proposed method obtains promising results because around 82% of pollen
grains are detected. On the other side, the behaviour of classifier is quite good,
removing 86% of false positives, however the number of non pollen grains that
enter the system is also too high. Therefore, he initial detection method needs
to be improved in order to reduce the number of false positives.

Our results are in line with other authors who work with real samples and
a high number of pollen grains, but it is necessary to improve theses results to
fulfil an automated palynology system.

Future works include the development of a focus function to stop in pollen
grains and the reconfiguration of the colour detection method to reduce the
number of initial objects.
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Abstract. This paper addresses a fully automatic segmentation method
for ultrasound images of the common carotid artery. The goal of this pro-
cedure is the detection of the arterial walls to assist in the evaluation of
the arterial diameter. In other words, the main objective is the segmen-
tation of the region corresponding to the lumen of the vessel, where the
blood flows. The evaluation of the Lumen Diameter (LD) provides use-
ful information for the diagnosis of arterial diseases. The monitoring of
LD and Intima-Media Thickness (IMT) is crucial in the early detection
of atherosclerosis and in the assessment of the cardiovascular risk. The
proposed methodology is completely based on Machine Learning and it
applies Auto-Encoders and Deep Learning to obtain abstract and effi-
cient data representations. Thus, the segmentation task is posed as a
pattern recognition problem. The different architectures designed have
shown a good classification performance. In addition, the results obtained
for some ultrasound images of the common carotid artery can be visu-
ally validated in this work. The final automatic segmentation is quite
accurate, and it is possible to conclude that it will lead to a precise and
reliable measurement of the lumen diameter.

1 Introduction

An early medical diagnosis of arterial diseases, is crucial for prevention and
treatment of cardiovascular diseases (CVD), which remain the major cause of
death in the world [18]. In this sense, the study of anatomical features of the
human arteries by means of non-invasive ultrasound imaging is widely used as
form of diagnosis [12].

Among the arterial diseases, atherosclerosis stands out as the leading underly-
ing pathological process that causes a large proportion of CVD, such as myocar-
dial infarction and stroke [18]. Atherosclerosis involves a progressive thickening
of the arterial walls by fat accumulation, which hinders blood flow and reduces
the elasticity of the affected vessels. The Intima-Media Thickness (IMT) of the
Common Carotid Artery (CCA) is considered as an early and reliable indicator

© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 358–367, 2015.
DOI: 10.1007/978-3-319-18914-7_38
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Fig. 1. Longitudinal view of the CCA in an ultrasound image

of atherosclerosis [16]. Besides, the evaluation of the artery diameter provides
useful additional information for the diagnosis [13].

As can be seen in Fig. 1, the walls of blood vessels present three different
layers, from innermost to outermost, intima, media and adventitia. The IMT
is defined as the distance from the lumen-intima interface (LII) to the media-
adventitia interface (MAI) and it should be measured preferably on the Far
Wall (FW) of the CCA within a region free of atherosclerotic lesions (plaques)
[16], where the double-line pattern corresponding to the intima-media-adventitia
layers can be clearly observed (see Fig 1). This double-line pattern is not always
visible in the Near Wall (NW) of the vessel. The internal diameter of the artery,
or Lumen Diameter (LD), is defined as the distance from the LII in the NW, if
it is visible (MAI, otherwise), to the LII in the FW.

In the last two decades, several solutions have been proposed for the seg-
mentation of the carotid artery in ultrasound images [11,7]. Attending to the
methodology applied, it can be found algorithms based on edge detection and
gradient-based techniques, dynamic programming, active contours, statistical
modelling, Hough transform or proposals based on combinations of the afore-
mentioned techniques. Most of the proposed methods are not completely auto-
matic and they require user interaction. Moreover, only a few of methods process
both the NW and the FW in order to measure the LD [17,15,14,8,1].

This work addresses a fully automatic segmentation technique completely
based on Machine Learning to extract the NW and FW boundaries from ultra-
sound CCA images and, therefore, to assist in the evaluation of the LD. The
purpose of the proposed method is to complete the function of previous works
by the same authors [9,10], which are focussed on the IMT measurement using
related techniques.

The remainder of this paper is structured as follows. After this introduction,
Sect. 2 describes the proposed methodology. In particular, Sect. 2.1 introduces
the machine learning concepts used in this work, while in Sect. 2.2 and 2.3, the
strategies for the arterial walls detection and the lumen boundaries extraction
are explained in detail. Some of the results obtained are shown in 3. Finally, the
main extracted conclusions close the paper.
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2 Methodology

Fig. 2 shows an overview of the proposed segmentation methodology. Firstly,
a given ultrasound CCA image is pre-processed to automatically detect the re-
gions of interest (ROIs), which are the near wall and the far wall of the blood
vessel. Then, those pixels belonging to the ROIs are classified to detect the lu-
men boundaries. As commented in Sect. 1, our method is completely based on
Machine Learning. In particular, Deep Learning techniques and Auto-Encoders
have been applied in the ROIs detection stage, and all the networks employed
are founded on Extreme Learning Machine.

Lumen
Diameter

Far Wall 
Detection

Boundary
Recognition

Ultrasound
CCA Image

Machine Learning Approach

Near Wall 
Detection

Fig. 2. Flow chart of the proposed method for the CCA segmentation

2.1 Machine Learning Techniques

In the last decade, Extreme Learning Machine (ELM) has emerged as a powerful
tool in the learning process of Single-Layer Feed-Forward Networks (SLFN) by
providing good generalization capability at fast learning speed [5]. Given N ar-
bitrary distinct samples (xn, tn), where xn ∈ R

d is an input vector and tn ∈ R
m

its corresponding target vector, the output of a SLFN with M hidden neurons
and activation function f(·) is given by

yn =

M∑
j=1

βjf(wjxn + bj), n = 1, ..., N ; (1)

where wj = [wj1, wj2, ..., wjd] is the input weight vector connecting the input
units and the j-th hidden neuron, βj = [βj1, βj2, ..., βjm] is the output weight
vector connecting the j-th hidden neuron and the output units, and bj is the bias
of the j-th hidden neuron. If it is assumed that SLFN can approximate these N
samples with zero error, then, there exist βj , wj and bj such that

M∑
i=j

βjf(wjxi + bj) = ti, i = 1, ..., N. (2)

ELM is based on the randomly initialization of the input weights and biases
of SLFN. Thus, the network can be considered as a linear system and the N
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equations in the expression (2) can be written compactly in the following form:

HB = T; (3)

where T ∈ R
N×m is the targets matrix, B ∈ R

M×m is the output weights matrix
and H ∈ R

N×M is the hidden layer output matrix. Thereby, the training is
reduced to solve the linear system in Eq. (3), whose smallest norm least-squares
solution is given by:

B̂ = H†T; (4)

where H† is the Moore-Penrose generalized inverse matrix of H. Moreover, in
order to improve the robustness and generalization performance, a regularization
term (C) can be added to the solution [4]:

B̂ =

(
I

C
+HTH

)−1

HTT (5)

Although ELM provides an efficient training for SLFN, the performance of
machine learning methods and applications highly depends on the selected fea-
tures for the representation of the problem. Thus, to make progress towards the
Artificial Intelligence (AI), the new perspectives in Machine Learning are nec-
essary based on learning data representations that make more accurate classi-
fiers/predictors [2]. In this sense, Deep Learning has emerged as set of algorithms
that attempt to model more abstract and useful representation of the data by
means of architectures with multiple non-linear transformations [3].

Among the various deep learning architectures, this work focuses on deep
networks based on Auto-Encoders (AE). In particular, the ELM Auto-Encoders
(ELM-AE) introduced in [6] have been used in the detection of the arterial walls
(NW and FW). Auto-encoders are SLFN performing unsupervised learning in
the sense that an AE is trained to reconstruct its own inputs, i.e. tn = xn (see
Fig. 3). Therefore, in the hidden layer of the AE takes place a feature mapping:
if M < d (number of hidden neurons < input data dimension), a compressed
data coding is obtained as hidden layer output; while if M > d, the result is a
sparse representation of data.

HNM

. . .

. . .

x1

x2

xd

x1

x2

xd

HN1

. . .

FEATRURE MAPPING

Fig. 3. Structure of a generic Auto-Encoder
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Fig. 4. Strategy for the detection of arterial walls in CCA ultrasounds

2.2 Detection of the Arterial Walls

This section describes the first stage of the proposed methodology, in which the
carotid walls (NW and FW) are located in a completely automatic way by means
of a deep architecture for Pattern Recognition (see Fig. 4).

Two different ELM-AE have been designed to obtain useful and efficient repre-
sentations of image blocks. Then, the coding obtained from each AE is classified
as ‘NW’, if the pattern of the near wall is recognized (‘non-NW’, otherwise) for
the near wall auto-encoder (NW-AE), or as ‘FW’, if the pattern of the far wall
is recognized (‘non-FW’, otherwise) for the FW-AE.

The size of the image blocks to process is 39×39 pixels, i.e. the ELM-AE
has an input data dimension of 1,521 features. Two datasets have been used
in the learning process of these systems. On one hand, the dataset employed
to design the architecture for the near wall detection consists of 15451 samples
(50% from each class: ‘NW’ and ‘non-NW’, respectively). On the other hand,
the far wall dataset consists of 13776 observations equally distributed between
‘FW’ class and ‘non-FW’ class. Table 1 specifies the distribution of samples for
each dataset. In both cases, two thirds of samples are intended for training and
the remaining for testing.

For the configuration of the NW-AE and the FW-AE, an exhaustive search
of the number of hidden neurons and the regularization parameter (M and C,
respectively) by means of a cross-validation procedure has been performed in
each case. In particular, 25 different values for M (50, 100, 150 ..., 1000, 1100,
1200, ..., 1500) and 20 different values for C (2−9, 2−8, ..., 210) have been con-
sidered. The NW-AE and the FW-AE were retrained 50 times for every pair of
values and their mean performance have been analysed. The optimal coding is
obtained with 1200 hidden neurons for the two different AE. The connections
between these new features (hNW, hFW) and the corresponding system outputs
(yNW, yFW) are analytically calculated according to Eq. (5).

2.3 Recognition of the Lumen boundaries

The segmentation of the carotid lumen in the ultrasound images is carried out
by means of a classification of pixels belonging to the ROIs (NW and FW) previ-
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Table 1. Specification of samples used in the design of the architectures for the detec-
tion of the arterial walls

Near Wall Detection Far Wall Detection
‘NW’ ‘non-NW’

∑
‘FW’ ‘non-FW’

∑

Training Data 5150 5150 10300 4592 4594 9186
Testing Data 2575 2576 5151 2296 2294 4590∑

7725 7726 15451 6888 6888 13776

ously detected. In particular, the intensity values from a certain neighbourhood
centred on the pixel to classify provide the necessary contextual information to
an ELM classifier for the recognition of the lumen boundaries. In the present
study, the neighbourhoods consist of 45×3 pixels, i.e. input patterns with 135
features. Thus, two ELM classifiers have been implemented: one for processing
the NW pixels (detected according to the strategy in Fig. 4) in order to extract
the inner boundary of the near wall (‘NW-boundary’), and other which classifies
the FW pixels for detecting the LII in the far wall (‘FW-LII’ ). Therefore, both
classifiers perform a binary classification.

The labelled dataset used in the design and supervised training process of the
NW-classifier consists of 8000 patterns, which are distributed equally among the
two classes: ‘NW-boundary’ and ‘non-NW-boundary’. In a similar manner, 8000
samples (50% from ‘FW-LII’ class and 50% from ‘non-FW-LII’ class) constitute
the dataset used in the FW-classifier design. During the learning process, each
dataset was randomly divided into two subsets: two thirds for training and the
remaining for testing.

Once again, a cross-validation procedure over the number of hidden neurons
and the regularization term is needed in each case to find the optimal design
parameters of these architectures. In this case, M was varied in the range from
10 to 2000 hidden neurons and 38 different values for C (2−18, ..., 219) were
considered. The NW-classifier and the FW-classifier were retrained 50 times for
every pair of values and their mean performance have been analysed. From this
analysis, it is deduced that the optimal architecture for the NW-classifier consists
of 1400 hidden neurons, whereas for the FW-classifier the optimal value of M is
1000 neurons.

3 Results

This section shows the results extracted from the present study. First of all,
the performance of the architectures designed for the arterial walls detection
and for the lumen segmentation is analysed in terms of classification accuracy
(ACC), sensitivity (SEN) and specificity (SPEC). The last two describe the
ability of the system to identify positive results and negative results, respectively.
Table 2 shows this analysis for the proposed systems over the corresponding
testing datasets. As can be seen, the different architectures have shown a good
classification performance.
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Table 2. Performance of the proposed architectures over the corresponding test sets.
Mean ± standard deviation from 50 trials

Near Wall Far Wall Lumen Segmentation
Detection Detection NW-classifier FW-classifier

ACC (%) 99.11±0.10 98.69±0.12 98.39±0.11 99.66±0.05
SEN (%) 100.00±0.01 99.50±0.12 99.81±0.09 99.95±0.04
SPEC (%) 98.23±0.21 97.88±0.21 96.98±0.21 99.36±0.10

Fig. 5. Example of results: ROIs detection (left); NW with output of the NW-classifier
and manual segmentations superimposed (right-top); FW with output of the FW-
classifier and manual segmentations superimposed (right-central); final lumen contours
(right-bottom)

In addition, the results obtained for some ultrasound images of the CCA are
visually validated. In order to validate the precision of the proposed segmenta-
tion technique, the automatic results are compared with four manual tracings
for each contour performed by two different experts. Thus, Figs. 5-7 show exam-
ples of processed ultrasound images. Left images depict the result of the stage
for the NW and FW detection. Right-top images show the NW detected with
the NW-boundary pixels recognized by the NW-classifier highlighted in white
and the corresponding manual segmentations superimposed (dotted lines). In a
similar manner, right-central images show the FW with the FW-LII pixels rec-
ognized by the FW-classifier and manual segmentations superimposed. As can
be seen, the lumen boundaries are properly identified and the classification re-
sults cover the variability of the manual segmentations. However, it is necessary
to define the final contours from the output of the classifiers. In this case, the
final lumen boundaries are defined as the mean points of the positive outputs
of the classifiers along the longitudinal axis. Finally, right-bottom images depict
the final automatic segmentations for the carotid lumen (dashed lines). In view
of these results, it is possible to appreciate that our automatic segmentation is
quite accurate and, therefore, it will lead to a precise measurement of the LD.
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Fig. 6. Example of results: ROIs detection (left); NW with output of the NW-classifier
and manual segmentations superimposed (right-top); FW with output of the FW-
classifier and manual segmentations superimposed (right-central); final lumen contours
(right-bottom)

Fig. 7. Example of results: ROIs detection (left); NW with output of the NW-classifier
and manual segmentations superimposed (right-top); FW with output of the FW-
classifier and manual segmentations superimposed (right-central); final lumen contours
(right-bottom)
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4 Conclusions

This paper proposes a segmentation method for ultrasound images of the com-
mon carotid artery completely based on Machine Learning, in order to detect
the arterial walls and to extract the lumen boundaries in a reliable and auto-
matic way. In particular, the suggested architectures are based on the Extreme
Learning Machine. Furthermore, concepts of Deep Learning and Auto-Encoders
have been used to obtain useful data representations for solving the detection of
the near wall and far wall of the blood vessel. The segmentation task is posed
as a pattern recognition problem.

The accuracy of the proposed methodology is characterized from different
points of view. On one hand, the performance of the architectures designed for
the arterial walls detection and for the lumen segmentation is exhaustively anal-
ysed in terms of classification accuracy, sensitivity and specificity. The different
systems have shown a good classification performance. On the other hand, a vi-
sual validation of the results for some ultrasound images is shown. As reference of
target results, four manual tracings for each contour performed by two different
experts are taken into account. In all the examples analysed, the lumen bound-
aries are properly identified and the classification results cover the variability of
the manual segmentations. Moreover, the final automatic segmentation is quite
accurate. Thus, it is possible to conclude that it will lead to a reproducible and
reliable measurement of the lumen diameter. Future works must be focussed on
a better characterization of these preliminary results on a larger image database.

Acknowledgements. Authors would like to thank the Radiology Department of ‘Hos-
pital Universitario Virgen de la Arrixaca’ (Murcia, Spain) for their collaboration and
for providing the ultrasound images used.
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Monedero, R., Larrey-Ruiz, J., Sancho-Gómez, J.L.: Frequency-domain active con-
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Abstract. The effects of epilepsy in a patient can be significantly re-
duced with medical treatment. However, in some patients or after some
time the anti-epileptic drugs do not take effect, being candidates to
surgery. Preliminary studies of the patient are usually limited to EEG
and MRI, and the epileptic focus is located using brain imaging algo-
rithms that do not provide enough certainty to the specialist. In this
work four of the most widely used free distribution neuroimaging soft-
ware are tested with real epileptic data (EEGLab, SPM, LORETA, and
Cartool), with the objective of illustrating their capabilities for locating
the epileptic focus. As a result, a novel methodology for robust estima-
tion that includes the advantages of the four software is proposed.

1 Introduction

Epilepsy is a neurological disorder which affects around 50 million people world-
wide. Socially, epilepsy patients are target of discrimination and prejudgment
that regularly lead to social stigma. The most common treatment for epilepsy
is the use of anti-epileptic drugs (AEDs). When the treatment with AEDs fails,
patients become candidates to surgical removal of the affected region. It is maybe
the most underused treatment proved as effective, especially because of the po-
tential side effects of the surgery due to wrong localization of the focus. Also,
surgical procedure is commonly developed when the social and psychological
effects are irreversible [5].

Surgical injury removal based on Positron Emission Tomography (PET) and
Magnetic Resonance Images (MRI) gives free seizure results between 60-90 % of
the patients after surgery. However, due to the possibility of epilepsy not related
to cerebral injury, electroencephalography (EEG) appears as a complementary
tool to localize the source of focal epilepsy [5,2].

EEG brain imaging aims to estimate the location and strength of current
sources in the brain based on EEG data. Several studies have shown that is
possible to locate the source of epileptic activity with certain accuracy using
dipolar localization methods [9]. Also, with the implementation of more advanced
techniques, it is possible to locate the epileptic source in patients with magnetic

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18914-7_39
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resonance negative focal epilepsy (MRN-E), i.e., no visible injury in MRI [2].
However, to the knowledge of the authors there is not a study comparing the
performance of the software tools used to process the EEG data and locate the
epileptic focus.

Several free distribution software are currently used to process EEG data, but
not necessarily for localization of epileptic foci. Some of the most widely used
are: EEGLab, SPM, LORETA, and Cartool. EEGLab is a toolbox for MATLAB
that processes EEG, MEG and other electro-physiological data, it provides In-
dependent Component Analysis (ICA) for artifact removal and neural activity
reconstruction [4]. ICA consists in minimizing the statistical dependence among
resulting components [8]. SPM is a MATLAB toolbox that includes the Multiple
Sparse Priors algorithm for EEG brain imaging [10]. LORETA includes the in-
verse solution algorithms proposed by Dr. Pascual Marqui [11]. Finally, Cartool is
a standalone software that provides the Lehman micro-states methodology that
has been used for localizing epileptic foci [3]. The idea underlying this method
is to select time periods of the EEG data for source analysis, on the basis that
different scalp maps must have been originated by different configurations of
neural sources [9].

In this paper real epileptic data are used to compare the mentioned free
distribution software (EEGLab, SPM, LORETA, and Cartool), emphasizing in
their advantages and disadvantages for processing EEG data and locating the
epileptic focus. In the discussion section a novel methodology combining the
advantages of the four software is proposed for increasing the robustness of the
solution. Supplementary material with the dataset used and implementation
details is available in the web-site: click here.

2 Materials and Methods

2.1 Data Description

The data consist of 100 spikes from an EEG study of a patient diagnosed with
epilepsy. EEG signals were acquired using a model 15 Neurodata amplifier system
with 64 channels from Grass Telefactor. The amplified signal was digitized using
a 64 channels National Instruments A/D converter model 6071 with 256 Hz
sampling rate and 12 bits of resolution. Spike selection was performed by a
neurologist with experience in reading EEG data (Dr. Camilo Borrego). The
spikes were visually identified over a single electrode (AFz), 500 ms before and
after the peak of each spike were marked as trials. Then, all selected spikes
were concatenated in a single file for processing. Fig. 1 shows 32 channels of five
extracted trials.

2.2 Data Processing

The implementation details of the methodology used for processing the EEG
data and obtaining the epileptic focus location, consist in data epoching and

http://sistemic.udea.edu.co/investigacion/epilepsy/?lang=en
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Fig. 1. 32 channels of 5 trials, each trial of 1 s long. Marks labeled as 1 and 2 are
placed at the start of each trial and peak of each spike, respectively. This figure was
obtained with EEGLab 10.2.5.8b.

baseline removal before extracting trials (500 ms around spikes peaks, see Fig. 1).
Once the trials are concatenated into a single file, the EEG data is prepared for
filtering. Frequencies within the range 1–30 Hz are of special clinical and psycho-
logical interest [1]; thus, a bandpass filter within these frequencies is performed.

An ICA analysis is performed over epoched data using INFOMAX algorithm
(Called RunICA in EEGLab), in order to remove artifacts and not event related
EEG activity. Those components with negligible contribution to data ERP (<
2 %, unless suspects of deep low voltage epileptic foci) between −100 and 0 ms
time range are discarded (i.e., out of the raising of the spike), and pruned EEG
data is re-generated with the remained independent component ERPs. A second
ICA is executed over the pruned EEG data, but this time only independent
component ERPs with high contribution to the epileptic spike between −65
and 0 ms time range are selected. The objective of these two ICA runs is to
remove not only external artifacts, but also non-related brain activity. Remaining
independent components are expected to have high contribution during the spike
raising phase, where epileptic foci are located [9]. Fig. 2 shows an example of the
top 7 independent component ERPs with more contribution between -100 and
0 ms, obtained with EEGLab.

2.3 Software Implementation

EEGLab has been used as basis of this work because the other software used
for comparison do not include an ICA implementation, and EEGLab processed
data can be exported to the other software. Hence, source localizations with
SPM and LORETA software were performed with both software specific and
EEGLab processed data.
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Fig. 2. Top 7 independent component ERPs with higher contribution between −100
and 0 ms. Note that they contribute with approximately 96 % to ERP. This figure was
obtained using EEGLab 10.2.5.8b.

Specifically for SPM, data epoching and baseline removal stages are performed
in order to extract data trials, and the bandpass filter (between 1–30 Hz) is
applied. Subsequently, a single ERP is acquired using robust averaging with an
offset about 3 for weighting function over data trials [10]. As robust averaging
may re-introduce high-frequencies into the data [10], a second bandpass filter
within the same frequencies (1 and 30 Hz) should be applied. SPM does not
allow comparing results among time stamps of the spike as LORETA and Cartool
do, but the robust averaging tool helps neglecting those solutions that do not
correspond to the epileptic spike.

Cartool requires separation of trials in different files. Baseline correction and
bandpass filtering (1–30 Hz) are applied over separated data trials. Once the
data is averaged, micro-state segmentation using T-AAHC analysis is applied to
ERP data as final stage. Fig. 3 shows the indicators that measure the reliability
of each segmentation and the ERP GFP segmentation in micro-states.

2.4 Source Localization

Nowadays, several EEG source reconstruction algorithms are accepted as robust
and reliable; however, they may not be as precise as expected for epileptic foci
localization, or they may fail and the expert cannot notice immediately. In this
sense, the fact that the four software compared in this work propose a differ-
ent inverse solution, may provide enough confidence about the location of the
epileptic foci. Also, not always the specialist has a structural MRI of the patient
in preliminary studies. Hence, in this work source localization is computed with
MRI templates provided by each software.
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Fig. 3. Illustration of the indicators that measure the reliability and the segmentation
selected with the marker line. Note that the micro-state labeled with 5 represents the
raising phase of the GFP. This figure was obtained with Cartool 5.51.

The inversion algorithms used in this work (because they are implemented
in the software) are: Dipole fitting, LORETA, MSP, and LAURA. They all are
based on the general linear model:

Y = KJ + ε (1)

where the EEG data Y ∈ �Nc of Nc electrodes is generated from the linear
relation between Nd dipolar sources of neural activity J ∈ �Nd distributed
through the cortical surface (this may be a problem with some deep epileptic
sources), and a forward model represented by the lead field matrix K ∈ �Nc×Nd .
The data is affected by zero mean additive Gaussian noise p(ε) ∼ N (0, R), with
R ∈ �Nc×Nc the noise variance.

All solutions used in this work are based on the same covariance-weighted
Tikhonov regularization (see [7] for a comprehensive review):

Ĵ = QKT (KQKT +R)−1Y (2)

with (·)T the transpose operator. This solution is based on Bayesian assump-
tions for the prior neural activity: p(J) ∼ N (0, Q), with Q ∈ �Nd×Nd ; in order

to estimate the neural distribution Ĵ ≈ J . The difference between the inverse
solutions relays in the way of computing Q.

EEGLab uses non-linear dipole fitting –DIPFIT– estimation. Dipole fitting
is a non-linear single dipole estimation that assumes Nd = 1 with non-fixed
position, and moves the dipole until it reaches the minimum norm error. This
algorithm is known for having local minima that may affect the solution, and for
having low noise rejection. The use of only those ICA components related with
the phenomenon of interest is imperative.

LORETA software contains different implementations of the LORETA al-
gorithm. It consists in defining Q as a weighted Laplacian that smooths the
solution. This algorithm is robust and its variations sLORETA and eLORETA
[11] are effective for single source problems such as the epileptic focus. However,
the smoothed solution may affect the estimation of the epileptic focus extension.
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SPM provides its own LORETA implementation, but its recommended al-
gorithm is the Greedy Search implementation of the Multiple Sparse Priors al-
gorithm. This algorithm divides the prior variance Q as the weighted sum of
possible source locations (similar to LORETA), and it optimizes the estimation
using the negative variational free energy as cost function [6].

Finally, Cartool is based on the LAURA algorithm [12]. This algorithm in-
cludes electromagnetic models in Q, in order to better explain the electric current
propagation between the neural source and the electrodes. It is worth to mention
that the main improvement of Cartool is not the inversion algorithm, it is the
micro-state strategy that focuses the epilepsy specific problem.

3 Results

In this section, real epileptic data of a single selected subject is used for illus-
trating how the compared software can be used for increasing the robustness
of the source localization. The data was processed with EEGLab and with the
respective processing tools of each software. Where possible, the EEGLab pro-
cessed ERP (using ICA) was compared with the software specific tools in order
to determine the advantages and disadvantages of each software.

In EEGLab, DIPFIT was used for source localization. DIPFIT is an EEGLab
plug in that can perform independent components source localization by fitting
an equivalent current dipole model using a 4-shell spherical model. Independent
components with activation within the time range of the raising phase of the
spike were selected for inverse solution; however, only residual variance values
of up to 45 % were achieved, making this method unfeasible without a subject
specific head model. Also, the user experience selecting the correct independent
components is highly related to good results.

In LORETA software, LORETA algorithm was applied using a 3-shell spheri-
cal model. Two EEG datasets were generated for reconstruction, the original one
and the exported from EEGLab. Fig. 4 shows the inverse solution with LORETA
algorithm to ERP processed with LORETA, and data ERP processed with ICA
exported from EEGLab as mentioned above. Note that the right temporal lobe
is active in both source reconstructions; However, source reconstruction with
EEGLab processed data indicates a lower activation in left temporal lobe, and a
more concentrated active area in the right temporal lobe. It may be associated
to less noise levels and better artifact rejection due to the ICA processing.

For SPM source localization, the MSP algorithm was performed using the
EEG BEM model template. A second EEG pruned data processed with ICA
was exported from EEGLab. After uploaded, a robust averaging and a second
bandpass filter stage were applied as well as mention above. A time window (−23
to −3 ms) focused on the raising phase was used for the inverse solution of each
EEG data mentioned in previous section. Fig. 5 shows the inverse solution for
both EEG datasets plotted at −16 ms. The data processed with SPM presented
strong active areas in temporal and frontal lobes, and several blurred regions
that can be associated with ghost sources introduced by noise and artifacts.
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(b) Source localization for data pro-
cessed with ICA

Fig. 4. Source localization at 30 % of the GFP raising phase of software specific pro-
cessed data, and data processed with EEGLab ICA, performed with LORETA algo-
rithm. Note how data processed with ICA shows a smaller active region over the left
temporal lobe. This figure was obtained with LORETA 2014.06.25.

(a) Source localization for SPM pro-
cessed data

(b) Source localization for data processed
with ICA

Fig. 5. Source localization computed with SPM, performed with MSP algorithm over
−23 to −3 ms time range. Note how data processed with ICA shows less phantom
regions with lower activity. In addition, note that explained variance is higher for ICA
processed data. This figure was obtained with SPM8.

Note that ICA processed EEG data presented a well defined inverse solution
with a strong active region in the right temporal lobe, and blurred regions with
less power.

For Cartool, LAURA algorithm was applied using L-SMAC model [3] with
5000 dipoles in the gray matter. Inverse solution was applied over the micro-
state marked as 5 (see Fig. 3). Fig. 6 shows the source localization performed
with LAURA algorithm. There is activity in cerebellar area and right temporal
lobe. In order to make the source localization visible, it was necessary to set
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up the amplitude threshold such that the active area is displayed. However, the
threshold setting was arbitrary and the extend area did not provide information
about source strength.

Fig. 6. Illustration of source localization performed with LAURA algorithm over GFP
raising phase, computed with Cartool 3.51. There is a large active region in the right
temporal lobe and cerebellar area.

4 Discussion and Conclusion

in this work four popular free toolbox software for neuroimaging (EEGLab,
LORETA, SPM, and Cartool) were analyzed and compared, by processing and
reconstructing real epileptic activity. The objective of this work was to propose
a methodology for robust data processing and epileptic source localization, ac-
counting the advantages and features of each software in order to improve the
source estimation, and allow the user to compare and validate results.

In EEGLab, source localization is related to ICA component selection. Usually
high amplitude components are related to spike peak and consequently with
a propagated discharge of epileptic activity; however, components with lower
amplitude present before the spike peak are suitable candidates to explain the
epileptic source. Thus, the main limitation in EEGLab is that a good localization
depends on the user experience.

SPM data processing was somewhat similar to EEGLab. However, each soft-
ware provided different features for artifact rejection. EEGLab offers ICA, a well
known tool for eliminating artifacts, but also for neglecting non-interest neural
activity. Despite SPM is not designed to treat with spontaneous potential prob-
lems like epileptic discharges, it is possible to locate the source of the epileptic
foci by limiting the source reconstruction to a specific time frame (spike raising
phase).

LORETA software allows using previous processed ERP data from EEGLab.
This software was easy to use with a intuitive user interface. Inverse solution
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results were faster than EEGLab and SPM, and its graphical interface was more
suitable. Its inverse solution was performed over time (dynamic) allowing the
user to acquire the source reconstruction at a mark time, a suitable characteristic
to the selected criteria.

Despite Cartool is not as intuitive as LORETA, SPM or EEGLab, graphically
Cartool is superior and faster than MATLAB based software. Cartool offers other
processing tools such asmicro-state segmentation, potential maps correlation, and
other useful statistical approaches specific to epileptic focus source localization.

As a conclusion, Cartool can be used as a standalone software for source
localization, and its results can be validated with a mixture of EEGLab data
processing with ICA, followed by a source localization stage performed with
SPM and LORETA.
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Abstract. A novel Weighted Unscented Kalman Filtering method is
introduced for neural activity estimation from electroencephalographic
signals. The introduction of a weighting stage improves the solution by
extracting relevant information directly from the measured data. Besides,
a discrete nonlinear state space model representing the brain neural ac-
tivity is used as a physiological constraint in order to improve the esti-
mation. Moreover, time-varying parameters are considered which allow
describing adequately healthy and pathological activity even for localized
epilepsy events. Performance of the new method is evaluated in terms of
introduced error measurements by application to simulated EEG data
over several noise conditions. As a result, a considerable improvement
over linear estimation approaches is found.

Keywords: Inverse problem · Unscented kalman filtering · Relevance
analysis

1 Introduction

Neural activity estimation is the main task performed by brain mapping ap-
plications. The main challenge is to estimate the location, magnitude and time
evolution of current sources that produce the measured electroencephalographic
(EEG) signals [1]. This problem is considered as a mathematically ill-conditioned
ill-posed inverse problem [8]. To make the problem tractable and to increase the
reliability of the solution, a priori mathematical, anatomical and physiological
information are included into the solution [7].

It is possible to use nonlinear dynamics models for neural activity as pro-
posed by [1]. Those nonlinear models are more realistic and make possible bet-
ter approximation of the real dynamic model of neural activity. However, at the
same time, they increase the computational load and require more elaborate
techniques for estimation of parameters. Nevertheless, nonlinear models could
perform a better estimation for real EEG signals improving the analysis of the
resultant estimated neural activity [7]. By considering time-varying parameters
into the neural activity model a better estimation of neural activity can be per-
formed since the variable model takes into account the variability of the process.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18914-7_40
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The variability of the process should also be considered in the covariance matri-
ces used for describing the neural activity variability from normal to pathological
states [2].

We present a neural activity estimation method solving the dynamic inverse
problem within a weighted Kalman filter framework and using a nonlinear phys-
iology based constraints that consider parameters evolution. The introduction
of a weighting stage improves the solution by extracting relevant information
directly from the measured data. The analysis is made up from simulated EEG
signals for several signal-noise ratios over a realistic head model calculated with
the boundary elements method. The solution of the weighted inverse problem
is achieved by using a Kalman filtering method where current densities and
parameters of the physiological model are estimated simultaneously.

2 Materials and Methods

2.1 Inverse Problem Framework

The general dynamic state space system of the EEG inverse problem is as fol-
lows [4]:

yk = Mxk + εk, (1a)

xk = f (xk−1, · · · ,xk−m,wk) + ηk, (1b)

where vector yk∈Rd×1 holds the EEG electrical activity on the scalp measured
by the d electrodes at the time instant k; vector xk∈Rn×1 is the current density
of each source (i.e., neural activity), being n the number of distributed sources
throughout the brain; and M∈Rd×n is the lead field matrix that can be com-
puted as a quasi-static approximation of the Maxwell and Poisson’s equations
for specific head models [5]. The lead field matrix associates the current density
inside the brain, xk, to the scalp measures, yk.

Besides, the vector εk∈Rd×1 represents the observation noise, f :Rn �→R
n is a

non-linear vector function of order m that models the dynamics of the neural
activity, the vector wk∈Rp×1 holds the p parameters of the function f , and
ηk∈Rn×1 is a random vector representing the additive process noise.

For describing the parameter evolution that is inherent to physiological mod-
els, we assume the dynamic behaviour of the forward problem ruled in the form:

wk = g (wk−1) + εk, (2)

where g:Rp �→R
p is a linear vector function of first order that models the dy-

namics of wk, and εk∈Rp×1 is the noise affecting the p time-varying parameters.
Here, the noise variables are assumed in the form: εk∼N (0,Cε), ηk∼N (0,Cη),

εk∼N (0,Cε), being Cε=σ2
εId, Cη=σ2

η

(
L�L

)−1
and Cε=σ2

ε Ip the covariance
matrices of the measurement noise (see Eq. (1a)), the process noise (Eq. (1b)),
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and the vector parameter noise (Eq. (2)), respectively. The real-valued scalars
σ2
ε , σ

2
η and σ2

ε are their corresponding variances.
Consequently, we get a discrete state space model representing the brain neu-

ral activity that assumes each source evolving independently from others so that
each source dynamical behavior becomes time-varying [1]. Thus, the model-
derived features allow describing adequately normal and pathological activity
even for localized epilepsy events. Then, the time-varying model of the EEG
inverse problem is defined as follows:

f (xk−1,xk−2,xk−τ ,wk) = (a1In + b1L)xk−1

+ a2x
2
k−1 + a3x

3
k−1 + a4xk−2 + a5xk−τ , (3)

where A1=a1In+b1L, A2=a2In, A3=a3In, A4=a4In, and A5=a5In with In the
identity matrix sizing n×n; L∈Rn×n is a spatial Laplacian matrix containing
the spatial interactions among sources; f is a time varying vector function since
wk can change from one sample to another; and the set of parameters associated
with the dynamics of Eq. (3) is wk with p=6 defined as w�

k =
[
a1 b1 a2 a3 a4 a5

]
.

Therefore, the resulting nonlinear discrete representation in Eq. (3) can be
assumed as the neural activity model that is grounded on physiological knowl-
edge. Further, the model is reformulated in the form of a first order dynamic
system, yielding:

[
xk

xk−1

]

︸ ︷︷ ︸
zk

=

[
f (xk−1,xk−2)

xk−1

]

︸ ︷︷ ︸
f(zk−1)

+

[
I
0

]

︸︷︷︸
B

ηk (4a)

yk =
[
M 0

]
︸ ︷︷ ︸

C

[
xk

xk−1

]

︸ ︷︷ ︸
zk

+εk (4b)

whereC∈Rd×2n is the augmented representation of the output matrix,B∈R2n×n

is the noise matrix, and vector zk∈R2n×1 includes the brain current densities
reconstructing the brain neural activity.

2.2 Dynamic Inverse Problem using Weighted Unscented Kalman
Filtering

The weighted dynamic inverse problem, based on the above-described time-
varying dynamical model, is now stated within the following optimization frame-
work:

minimize
xk,wk

‖Pk (yk −Mxk)‖2 (5)

subject to ‖xk − f (x̂k−1, · · · , x̂k−m,wk)‖2 = 0,

‖wk − g (ŵk−1)‖2 = 0.
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where notation ‖ · ‖ stands for the Euclidean norm, x̂k−i is the state estimated
at the k−i instant, ŵk−1 is the parameter estimated at the k−1 sample, whereas
Pk∈Rd×d is the weighting matrix directly associated to the noise measurement
covariance.

Although the weighting matrix allows a non-uniform minimization of the
terms of Eq. (5), this devised optimization task can be solved iteratively just
for one variable at a time while the other variables remain fixed. As suggested
in [9], calculation of the needed posterior mean and covariance of the process
can be carried out trough the Unscented Kalman Filter that introduces a sigma
matrix X k−1∈R2n×(2n+1) as follows:

X k−1 =
[
ξ
(0)
k−1 ξ

(1)
k−1 · · · ξ(2n)k−1

]

being ξ
(i)
k−1∈R2n×1 the samples neighboring ẑk−1 defined by:

ξ
(i)
k−1 =

{
ẑk−1 + sgn(i− n)δΣ

(n−i sgn(i−n))

k−1 , i = 0, . . . , 2n, i �= n

ẑk−1, i = n

where Σ
(i)

k−1 is the i-th column of the matrix square root of Σk−1, and δ∈R+

(usually set to a small positive value) determines the spread of the sigma points
over the neighborhood of ẑk−1.

The sigma matrix X k−1 is propagated through the nonlinear system as
X k=f (X k−1) , where X k is the prior sigma matrix having the corresponding
prior mean and covariance defined as follows:

ẑ−
k ≈

2n∑
i=0

ωm
i ξ

(i)
k

Σk ≈
2n∑
i=0

ωc
i

(
ξ
(i)
k − ẑ−

k

)(
ξ
(i)
k − ẑ−

k

)�
+BΣηB

�

where ωm
i and ωc

i are the weights associated to the mean an variance calculation,
respectively.

For estimating the neural activity through the filtering task, however, the
solution accomplishes two sequential UKFs (one for estimating states and an-
other for parameters) that involve the weighting matrix Pk, as described in
Algorithm 1.

3 Results AND Discussion

3.1 Experimental Set-up

The most common approach to assessing the performance of the inverse solution
is to make use of simulated data taking advantage that the underlying source
activity is known, and thus the methods can be objectively validated. With
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Algorithm 1. Weighted Dual Kalman filtering under Non linear Con-
straints

Initialize with ẑ0, ŵ0, Σ0, Σw0 ;
for k = 1 → T do

Estimate Pk

Time update equations for parameter filter:
ŵ−

k = ŵk−1

Σ−
wk

= α−1Σwk−1

Sigma points:

X k−1 =
[
ξ
(0)
k−1 ξ

(1)
k−1 · · · ξ

(2n)
k−1

]

Time update equations:
X k = fk (X k−1)

ẑ−
k =

2n∑

i=0

ωm
i ξ

(i)
k

Σ−
k =

2n∑

i=0

ωc
i

(
ξ
(i)
k − ẑ−

k

)(
ξ
(i)
k − ẑ−

k

)�
+BΣηB

T

Measurement update equations:

Gk = Σ−
k C�P�

k

(
PkCΣ−

k C�P�
k +Σε

)−1

ẑk = ẑ−
k +GkPk

(
yk −Cẑ−

k

)

Σk = (I −GkPkC)Σ−
k

Measurement update equations for the parameter filter:

Gw
k = Σ

ŵ−
k
(Cw

k )�
(
Cw

k Σ
ŵ−

k
(Cw

k )� +Σe

)−1

ŵk = ŵ−
k +Gw

k Pk

(
yk −Cẑ−

k

)

Σwk = (I −Gw
k Cw

k )Σ−
wk

end

this aim, a time-varying EEG simulation lasting 1s and sampled at 250Hz is
carried out. Assuming that all sources have the same propagation model, the
neural activity simulations that include normal and pathological behavior are
accomplished using the discrete nonlinear model described in Eq. (3), where the
following parameter values are fixed: τ=20, a1=1.0628, b1=−0.12, a2=0.000143,
a3=−0.000286, a4=−0.42857, a5=0.008, and |ηk| ≤ 0.05. For simulation of the
normal and pathological states, the parameter a1 varies ranging from 1.0628 till
1.3 while a4 ranges from −0.428 to −1, at the fixed time sample k=125 (i.e.,
t=0.5s).

Provided the simulated activity xk, the resulting EEG measures yk are the
multiplication of the source current density by the lead field matrix, that is,
yk=Mxk + εk, where εk is set to get the following testing values of Signal-to-
Noise Ratio (SNR)[dB ]: 30, 20, and 10. The head structure used in the solution
of the inverse problem is shown in Fig. 1, where the number of electrodes is
fixed as d=34 , and n=5000 sources are involved in the solution. All sources are
perpendicularly located on the tessellated surface of the cortex. This assumption
takes place since the main EEG generators are the pyramidal cortical neurons,
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whose dendrite trunks are locally oriented in parallel and pointing perpendicu-
larly to the cortical surface [3]. Moreover, the lead field matrix M is calculated
using a head model that considers the effects of the skin, skull, and cortex in the
propagation of the electric fields. The computation of the matrix M is carried
out using the Boundary Element Method approach that is explained in detail
in [5].

 

 

Electrodes
Sources

Fig. 1. Positions of the sources and electrodes used in the simulations and reconstruc-
tions

As regards the evaluation of the considered estimation methods of neural
activity, their performance is computed in terms of the following error measure:

κ = ‖X̂ −X‖2F , κ ∈ R
+

where the matrix X∈Rd×T holds the dipole activity and the measuring sensors
of electrical activity through all time instants, respectively. It must be noted that
the projected error describes the inaccuracy relating to the recoverable solution,
i.e., the part of the solution that is in the space rank of M , which is assumed,
mathematically, to be the best reconstruction possible. Notation ‖ · ‖2F stands

for the Frobenious norm of the argument defined as ||J ||2F=
√∑m1

i=1

∑m2

j=1 j
2
ij ,

where jij is the ij element of J∈Rm1×m2 .

3.2 Validation of the Weighting Kalman Filtering

In order to carry out the proposed estimation method of neural activity in
Eq. (3), we propose to compute the weighting matrix Pk involved in the cost
function Eq. (5) through an introduced relevance analysis stage. To this end,
the weighted Unscented Kalman filtering (WUKF) approach is developed for
solving the optimization task in Eq. (5). Nonetheless, the concept of weighting
matrix may be used in other approaches for accomplishing the Inverse Problem
Solution.

For evaluation sake, the following meaningful versions of the weighting matrix
are considered [2]:
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a) P = I, being I∈Rd×d the identity matrix, that is, the unweighted matrix.
b) P = diag(

√
ρ)−1, where ρ∈Rd×1 is the variance of each j-th measuring chan-

nel, for j=1, . . . , d, considering all samples k = 1, . . . , T . (termed ρ method),
c) P = diag(

√
α)−1, where α∈Rd×1 represents a relevance measure that is

computed for each j- channel throughout the whole sample set (Q−αmethod).

The effect of the noise level on the estimation of P by calculating the cor-
responding matrix weights for several values of SNR (except for the case a)
assuming the unweighted matrix version). Figs. 2b and 2a show the estimated ρ
and α weight values, respectively, that turn out to be stable enough within the
testing range of noise.
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Fig. 2. Computation of the preprocessing relevance weights for different values of SNR

In practice, the computational burden due to the weighting matrix calcula-
tion may be intractable because of the involved matrix sizes. To cope with this
drawback, estimation of the P is carried out in a moving frame version. Thus, a
downsized time-varying matrix Pk∈Rd×d is now computed for each k-th frame.

(a) ρ (b) α

Fig. 3. Weight estimation of Pk through the time framed approach using a 30-samples
frame for ρ and Q−α methods
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t = 0.0 t = 0.1 t = 0.2

(a) True activity

(b) Estimated activity using P = I

(c) Estimated activity using P = diag
(√

ρ
)−1

(d) Estimated activity using P = diag
(√

α
)−1

Fig. 4. Brain mapping of simulated and estimated neural activity for the studied
weighting matrices: P=I, P=diag

(√
ρ
)−1

and P=diag
(√

α
)−1

The minimal number of samples to provide confident framed matrix calculation
is fixed experimentally. As shown in Fig. 3, the 30-sample window results in a
feasible frame for both considered cases of the relevance weighting matrix (ρ and
Q−α methods).

As shown in Fig. 4 displaying the simulated and estimated neural activity for
several weighting matrices at t=0, 0.1, 0.2 s, the use of WUKF leads to an im-
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(a) Estimation using the nonlinear time
varying model
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(b) Estimation using the linear time vary-
ing model

Fig. 5. Achieved κ error and dispersion values of the compared weighting matrices
using linear or nonlinear dynamic models of the brain neural activity

provement of the estimation of the weighting matrix of either relevance method
(ρ and Q−α)

Fig. 5 shows the κ error of neural activity reconstruction computed for all
compared weighting matrix. As seen, WUKF employing the Q−α method reaches
better performance using either linear or nonlinear dynamic models representing
the brain neural activity. The improved performance of Q−α method for source
localization may be explained by the properties of vector α extracting a rele-
vance measure from each measurement channel. In contrast, the ρ method only
considers the variance of each channel [2]. In other words, the relevance value
assessed by the Q−α method is more sensitive to significant changes of the elec-
trical signal going through the channels. In contrast, the variance estimated by
the ρ method only computes the dispersion just close the mean value.

4 Conclusions

We address the weighted dynamical inverse problem of EEG neural activity esti-
mation, using a new method to improve the model through a weighted approach.
The obtained results demonstrate that the models with including weighting ma-
trices perform better than the assumed model. This improvement is because the
model with weighting matrices corrects the initial assumptions of a uniformly
distributed variance, from observations. These results are confirmed for simu-
lated signals over several SNR values where the weighted model using the Q−α
method provides the best performance.

In case of the Weighted Dynamic Inverse Problem solution based on a Kalman
Filtering Framework, it is clear that the weighted method improves the model
through the selection weighting matrices. Attained results demonstrate that the
models with time varying weighting matrices perform better than models with
fixed ones. These results are confirmed for simulated signals over several SNR
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values where the time varying weighted model reached the best performance.
The improved performance can be justified by an adequate representation into
the weighting matrices of the brain dynamics variability during normal and
pathological electroencephalographic signals. In contrast with the works reported
in [4,7] where the covariance is time invariant, a time variant weighting matrix
which means a time varying covariance is the plausible result when two different
events are considered into the same measurements frame.

As a future work, the authors plan to expand the discussed methodology for
the selection of weighting matrices related to the neural activity behavior and
describing the parameter evolution that is inherent to physiological models. This
consideration should improve the spatial variability of the model representing the
brain neural activity related to pathological signals during local and generalized
epilepsy events.
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Abstract. Estimation of neural activity using Electroencephalography
(EEG) signals allows identifying with high temporal resolution those
brain structures related to pathological states. This work aims to
improve spatial resolution of estimated neural activity employing time-
varying dynamic constraints within the iterative inverse problem frame-
work. Particularly, we introduce the use of Dynamic Neural Fields (DNF)
to represent neural activity directly related to epileptic foci localization
adequately. So, we develop a DNF-based time variant estimation model
in the form of an Iterative Regularization Algorithm (IRA) that car-
ries out neural activity estimation at every time EEG sample. The IRA
model performance that is evaluated on simulated and real cases is com-
pared with the baseline static and dynamic methods under several noise
conditions. To this end, we use different error measures showing that the
IRA estimation model can be more accurate and robust than the other
compared methods.

Keywords: EEG inverse problem ·Neuroimaging · Time varying model ·
Dynamic regularization · Dynamic Neural Field

1 Introduction

Neuroimaging carries out mapping information analysis within the brain by
non-invasively estimating activity of distributed neural networks. Among brain
mapping techniques, neuroimaging based on Electroencephalography (EEG) sig-
nals is widely used due to its high temporal resolution and low implementation
cost [1]. However, spatial resolution of the EEG-based neuroimaging is very poor
since it reflects activity estimation triggered by a few thousands of neural gen-
erators, having just a very reduced set of scalp measures (typically, a couple of
tens). The baseline linear solution of this estimation task (EEG inverse prob-
lem) is the static model (LOw REsolution TomogrAphy –LORETA) that does
not account for temporal information, making statistically indistinguishable two
sources next to each other. Meanwhile, to improve brain mapping quality, spatial
and temporal dynamics inherently of neural activity should be considered within
the solution framework [2].

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 388–397, 2015.
DOI: 10.1007/978-3-319-18914-7_41
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So as to include both dynamics, a dynamical estimation model can be used
constraining the solution to some predefined geometric or physiological restric-
tions. Thus, Dynamic Neural Fields (DNF) approximate non-linear dynamic
models improving brain mapping quality since these non-linear models are more
realistic and allow better-representing neural activity dynamics [3]. However,
their use increases the computational burden and requires more complex param-
eter estimation techniques. In practice, there are two main issues be considered
for the dynamic inverse problem solution: A proper choice of the dynamical
model for neural activity and the reduction of computational load preserving
the spatial and temporal dynamics of measured EEG data [4].

Here, we introduce the use of Dynamic Neural Fields to estimate neural ac-
tivity adequately during either normal or pathological states directly related to
epileptic foci localization. So, we develop a DNF-based time variant estimation
model in the form of an iterative regularization algorithm that carries out neural
activity estimation at every time sample. At the same time, the iterative dynamic
model changes over time without significantly increasing the computational cost.

2 Methods

2.1 Forward Problem for EEG Generation

We will consider dynamic systems described by the following equations:

yk = Mxk + εk, (1a)

xk = f (xk−1, . . . ,xk−m,wk) + ηk, (1b)

wk = g (wk−1) + εk, (1c)

where vector yk∈Rd×1 holds measured EEG data on d scalp electrodes at the
time instant k, vector xk∈Rn×1 is the current density of each source (neural
activity), being n the number of distributed sources inside the brain. Vector
εk∈Rd×1 is the observation noise, f∈Rn×1 is a non-linear vectorial function of
order m modeling the current density dynamics, vector wk∈Rp×1 holds the p
parameters of the function f , ηk∈Rn×1 is a random variable describing additive
process noise, g∈Rp×1 is a linear vectorial function of first order modeling dy-
namics of wk, εk∈Rp×1 is the noise of the p∈N time varying parameters, and
M∈Rd×n is the Lead Field Matrix that relates current density inside the brain
xk to the measure set yk. Lead field matrix can be computed as a quasi-static
approximation of the Maxwell and Poisson’s equations head models [5].

Thus, Eq. 1a is a discrete time measure, Eq.1c is the parameter evolution, and
Eq. 1b is the state evolution of current density dynamics to be modeled by DNF,
incorporating corticothalamic connectivity and thalamic nonlinearity [3,6]:

(
1

γ2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇2

)
x (r, t) = q (ρ) (2)

where γa∈R is the mean decay rate, ra∈R is the mean range of axons a, and
q(r)=qmax/(1+exp((−ρ(r)−θ)/σ)), being q(r) the r-th element of vector q∈Rn×1,
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that is the mean firing rate of excitatory and inhibitory neurons. Vector q is non-
linear related to mean potentials ρ∈Rn×1, being θ∈R+ the mean firing threshold,
σ∈R+ its standard deviation, and qmax∈R+ the maximum firing rate.

For simulation of EEG data, we use a discretized version of continuous time
model in Eq. 2 as follows:

f (xk−1, . . . ,xk−2) = A1xk−1 +A2x
2
k−1 +A3x

3
k−1 +A4xk−2 +A5xk−τ , (3)

where A1=a1In+b1L, A2=a2In, A3=a3In, A4=a4In, and A5=a5, In∈Rn×n is
the identity matrix, L∈Rn×n is the spatial Laplacian matrix holding all spatial
interactions among sources, and τ∈R+ is a delayed feedback.

2.2 Neural Activity Estimation within Inverse Problem Framework

As a concrete solution of the dynamic inverse problem, estimation of both neural
activity, xk, and discrete non-linear parameters, wk, can be formulated from
Eqs. (1a) to (1c) in the form of the following optimization task:

minimize
xk,wk

‖P (yk −Mxk)‖2 (4)

subject to ‖Q (xk − f (x̂k−1, · · · , x̂k−m,wk))‖2 = 0,

‖R (wk − g (ŵk−1))‖2 = 0.

where the state estimation x̂k−i is done at k-i step, ŵk−1 is the parameter also
estimated at the k−1 step, andP∈Rd×d,Q∈Rn×n, andR∈Rp×p represent weight-
ing matrices that are related to the noise covariance matrices of the measure set
yk, state, and parameter equations, respectively. Also, the following equivalent
representation of the norm || · || is considered: ‖P (a−b)‖2=(a−b)� P�P (a−b) .

Providing all weighting matrices allow non-uniform minimization, the regu-
larized functional is obtained from Eq. 4 in terms of the following functional:

Φ (xk,wk, λ, γ) = ‖P (yk −Mxk)‖2

+ λ ‖Q (xk − f (x̂k−1, · · · , x̂k−m,wk))‖2

+ γ ‖R (wk − g (ŵk−1))‖2 , (5)

where λ∈R+ and γ∈R+ are the regularization parameters ruling minimization of
each functional term. For the simplification sake, the aforementioned relationship
between weighting and the covariance matrices are redefined as follows: The

covariance matrix the of scalp measures, Σ=
(
P�P

)−1
, with Σ∈Rd×d, the state

covariance, Λ=
(
Q�Q

)−1
/λ, with Λ∈Rn×n, and the parameter noise covariance

Γ=
(
R�R

)−1
/γ, with Γ∈Rp×p.

The above multivariate optimization task is solved by iteratively optimiz-
ing one variable at a time, while remaining variables are kept fixed [4]. Con-
sequently, given a known state estimation x̂k, estimation ŵk is in the form:

ŵk=
(
G�

k Λ
−1Gk + Γ−1

)−1 (
G�

k Λ
−1x̂k+ Γ−1g (ŵk−1)

)
. Likewise, provided the
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known parameter set, ŵk, estimation of the current density vector x̂k is also per-
formed by minimizing functional in Eq. 5 with respect to xk. In the end, we get
the following estimation x̂k :

x̂k=
(
In−ΛM� (

MΛM�+Σ
)−1

M
) (

ΛM�Σ−1yk+f (x̂k−1, . . . , x̂k−m, ŵk)
)

Overall, the dual iterative estimation of ŵk and x̂k requires only some inverse
calculations sizing p×p and d×d, respectively, making this method suitable for
tractable computational implementation of neural activity.

2.3 Inverse Problem with Dynamic Constraints

As dynamic constraints in the inverse problem solution, we consider the following
two approaches based on the DNF model:

– Linear model that does not consider the delayed state as consequence of the
introduced by the extra-cortical loop nor non-linear terms, i.e., a2=a3=0:

f (xk−1,xk−2w) = A1xk−1 +A4xk−2, (6)

where the parameter set w (p=3) is assumed, i.e., w�=
[
a1 b1 a4

]
.

– Non-linear model that includes the non linear terms of Eq. 3, but it ignores
the extra-cortical neural feedback (higher order lag):

f (xk−1,xk−2,w) = A1xk−1 +A2x
2
k−1 +A3x

3
k−1 +A4xk−2, (7)

where A1=a1In+b1L, A2=a2In, A3=a3In, and A4=a4In∈Rn×n, being In
the identity matrix and L∈Rn×n a spatial Laplacian matrix holding all spa-
tial interactions among sources [4]. In this case, the set of parameters w with
p=5 is determined, namely, w�=

[
a1 b1 a2 a3 a4

]
.

3 Experimental Set-Up

A common approach to assess the EEG inverse solution is the use of simulated
EEG recordings where brain activity is known, so that estimation quality can be
objectively validated. To this end, we simulate a set of EEG recordings lasting
1 s at sample rate of 250Hz. So as to to represent the simulated brain activity
time series, the following discrete version of the DNF model is used:

xk = A1xk−1 +A2x
2
k−1 +A3x

3
k−1 +A4xk−2 +A5xk−τ + ηk, (8)

where the parameter values are fixed to be as τ=20, a1=1.0628, b1=−0.12,
a2=0.000143, a3=−0.000286, a4=−0.42857, a5=0.008, and ‖ηk‖≤0.05. Besides,
to simulate normal and pathological states, value a1 ranges from 1.0628 to 1.3,
while a4 from −0.428 to −1, at sample k=125 (t=0.5 s). On the other hand, to
get unbiased evaluation of IRA, different activity is simulated avoiding the gener-
ation model in Eq. 8. Instead, activity is simulated as a damped sinusoidal signal
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with 10Hz central frequency. Additionally, to obtain the simulated EEG yk for
a known activity xk, the current density of sources is multiplied by the lead field
matrix in the form: yk=Mxk+εk, where εk is set to achieve the following values
of Signal-to-Noise Ratio (SNR): 30, 20, and 10 dB.

Here, IRA performance is assessed for several noise conditions under either
linear or non-linear dynamic constraints. Obtained results are compared with
both the LORETA and the baseline Kalman filter-based version given in [7] in
terms of the following error measures:

εr = ‖MX̂ − Y ‖2F ; εs = ‖X̂ −X‖2F ; εp = ‖X̂ −
∑

i∈rank(M)

〈X,vi〉vi‖2F

where ‖ · ‖F is the Frobenious norm, vi∈Rn×1 is the i-th right singular vector of
matrix M, matrices X∈Rn×K and Y ∈Rn×K hold measured activity on dipoles
and the sensor measures for all time instants, respectively. It must be quoted
that the value εp∈R+ describes the error relating to the recoverable solution,
i.e., to that solution part embedded on the row space spanned by matrix M and
that is assumed mathematically the best possible reconstruction.

The testing head structure assumes d=34 and n=5000, where all sources are
placed on the tessellated cortex surface and are perpendicular to it. Lead field
matrix computation is carried out using the Boundary Element Method ap-
proach [5]. In practice, accuracy achieved by reconstruction methods is directly
influenced by the used number of scalp electrodes. However, accuracy increases
until 128-256 electrodes. From this point onwards, the use of additional elec-
trodes should not increase reconstruction accuracy since supplied SNR gets
worse. We use a very low dimensional model consisting in d=34 electrodes. So,
reducing further the electrode number will worsen accuracy.

In the sequel, we make the following assumptions: during calculation of ob-
servation noise covariance, the measured noise is independent among sensors,
i.e., P=Id. In matrix Λ, measured noise in each source is related to the noise
coming from its respective neighbors. Thus, the weighting matrix Q is fixed to
be as the Laplacian matrix containing all spatial relationships among sources, as
suggested in [7]. Lastly, the weighting matrix R is set to represent independence
among the p model parameters, i.e., R=Ip. Another aspect to be considered
is the appropriate choice of the hyper-parameter values, λ and γ, that highly
influences estimation quality. Specifically, estimation of covariance matrices Λ
and Γ strongly depends on the fixed regularization parameters. To this end, sev-
eral methods can be used, including L-curve, General Cross-Validation (GCV),
and the Akaike’s Bayesian Information Criterion, as described in [8]. Here, we
calculate hyper-parameter values using the following minimization function:

argmin
λ,γ

||Mxk(λ, γ)− yx||2
tr(In −MT (λ))2

where T (λ) is the inverse operator defined as T (λ)=ΛM�(MΛM� +Σ)−1.
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4 Results

Fig. 1 displays the activity of current dipoles placed around the sensorimotor
area and the achieved simulated activity reconstruction using each considered
method for several noise conditions. The activity is generated using the DNF-
based model shown in Eq. 8.

Fig. 1. Comparison of neural activity estimation for several noise conditions around
the sensorimotor area, simulated by DNF-based generation model

(a) DNF-based generation (b) IRA3 (c) IRA5

(d) Damped sinusoid (e) IRA3 (f) IRA5

Fig. 2. Activity on the scalp EEG and temporal evolution of the DNF-based model
parameters estimated using IRA
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(a) IRA3 (b) IRA5 (c) IRA3 (d) IRA5
Damped sinusoidal signal DNF-based generation model

Fig. 3. Estimated temporal parameter evolution using the Kaczmarz’s method

(a) Residual Error. (b) Standard Error. (c) Projected Error.
DNF-based generation model

(d) Residual Error. (e) Standard Error. (f) Projected Error.
Damped sinusoidal signal

Fig. 4. Performance for each of the considered methods under several noise conditions.
– · –IRA5 —IRA3 – –KAL · · · LORETA

Fig. 2a shows a concrete case of simulated activity with normal and patho-
logical states where an abrupt change occurs from one state to other at t=0.5 s.
This change is also observed in Figs. 2b and 2c displaying parameter temporal
evolution for the linear (herein, termed IRA3) and non linear models (IRA5)
estimated by the IRA algorithm. Likewise, in case of simulated activity using
the damped sine, simulated activity (see Fig. 2d) holds several smooth changes
that are also reflected by similar parameter temporal evolution for both models.

In order to validate model identification ability of the IRA algorithm, the
Kaczmarz projection algorithm of parameter estimation is considered that is
an iterative approximated solution of linear equation systems. To this, we as-
sume that dynamics of EEG data and neural generators are the same. So, the
Kaczmarz algorithm is applied to the channel with the biggest variance esti-
mated by either estimation linear or non-linear model. It must be quoted that
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Kaczmarz-based parameter estimation is carried out apart from neural activity
reconstruction using DNF-based (see Figs. 3a and 3b) or Damped sinusoidal
(Figs. 3c and 3d) simulated activities.

As a result, for both cases of simulated activity, Fig. 4 shows obtained error
measures varying noise condition. The results obtained for the standard error are
statistically significant for every SNR value. On the other hand, for residual and
projected errors, the results are statistically significant only for an SNR of 10 dB.

(a) Segment 1.

(b) Segment 2.

Fig. 5. Reconstruction of the brain activity for two real EEG recordings
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(a) Model parameters for segment 1.
Right: IRA3. Left: IRA5.

(b) Model parameters for segment 2.
Right: IRA3. Left: IRA5.

Fig. 6. Parameter temporal evolution for the real EEG recordings

Note that for the standard and residual errors, values obtained by LORETA are
shown 1×10−3 times smaller for the clarity sake of the comparison.

Fig. 5 shows reconstruction of two real EEG segments. Recordings are clipped
from a long pathological EEG data with focal epilepsy collected during rou-
tine clinical practice (Instituto de Epilepsia y Parkinson del Eje Cafetero from
Pereira). EEG data is recorded from a male aged 24 years, in awake resting
state. Electrodes are placed according to the 10-20 system and data is sampled
at rate of 1 kHz with 16-bits-resolution. For analysis purpose, each 1 s time series
is segmented from the long recording at the beginning of the ictal event, that
is at t=0.5 s. It is worth noting that a preprocessing stage to remove noise or
artifacts is not considered for the real EEG recordings since they are not signif-
icantly contaminated. Finally, Fig. 6 shows temporal evolution of the dynamic
model parameters for each considered real EEG segment.

5 Conclusions

A new algorithm to estimate neural activity is presented that is based on the
assumption that by introducing a time-varying DNF-model under the concrete
regularization approach quality of estimated brain activity should improve. Be-
sides, time-varying parameters needed to represent DNF-models allow detecting
those brain dynamics changes clearly indicating on different transition intervals
between the various neurological states.

Based on the obtained performance of simulated and real EEG data, we con-
clude that the proposed IRA method gets better estimation accuracy of neural
activity reconstruction than one achieved by the static solution (LORETA) or
the dynamic solution including a time-invariant model (Kalman filter). This ad-
vantage holds within a wide span of SNR values. In addition, the computational
cost achieved by IRA algorithm is lower when compared to other methods where
the model parameters are calculated off-line, i.e., Kalman filter.

As a future work, we will consider inclusion of informative priors in the esti-
mation model. That is, using covariance matrices that are data-based, but not
on pre-structured approaches as minimum norm estimates or LORETA. Also,
a more complex model to update parameters should be considered to allow the
method accurately identifying systems generating neural activity.
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Abstract. Many medical applications commonly make use of brain mag-
netic resonance images (MRI) as an information source since they provide
a non-invasive view of the head morphology and functionality. Such infor-
mation is given by the properties of head structures, which are extracted
using segmentation techniques. Among them, multi-atlas-based method-
ologies are themost popular, allowing to consider prior spatial information
about the distribution of brain structures. These approaches rely on a non-
linear mapping of the information of the most relevant atlases to a query
image. Nevertheless, methodology effectiveness is highly dependent on the
mapping function and the atlas relevance criterion, being both of them
based on the selection of an MRI similarity metric. Here, a new spatially
weighting measure is proposed to enhance the multi-atlas-based segmen-
tation results. The proposal is tested in an MRI segmentation database
for state-of-the-art image metrics as means squares, histogram correla-
tion coefficient, normalized mutual information, and neighborhood cross-
correlation and compared against other spatial combination approaches.
Achieved results show that our proposal outperforms baseline methods,
providing a more suitable atlas selection.

Keywords: Magnetic resonance imaging · Image similarity metric ·
Multi-atlas segmentation · Template selection

1 Introduction

Segmentation of brain structures using magnetic resonance images (MRI) have
been used in several medical applications, as the pathology progression anal-
ysis [1] and brain mapping [2]. Thus, many automatic approaches have been
proposed, being the atlas-based ones the most employed. In these approaches,
a priori knowledge about the structures of interest, e.g., shape and intensity
distribution, can be better propagated from atlases to a query subject. To this
end, the atlases are usually non-linearly mapped to the query image space so
that they can serve as segmentation guiding references.

Recently, the use of multiple atlases has been proved to outperform single
or averaged atlases, when each labeled image is correctly aligned with the tar-
get image independently, and their contributions are further combined [3]. The

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 398–407, 2015.
DOI: 10.1007/978-3-319-18914-7_42
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most widely used combination approach is the majority voting (also known as
label voting or decision fusion) since it leads to fast implementation and accu-
rate performance whenever the atlases are suitable selected. The majority voting
strategy assigns to each voxel the label that most atlases agree. For example,
the iterative STAPLE algorithm that linearly weighs each atlas according to its
performance using the expectation maximization [4]. In [5], a similar approach is
discussed that allows combining atlases at fine scales by weighting all atlases lo-
cally. Although presented results show that their proposal outperforms the global
atlas weighting in segmentation accuracy, however, the mapping or registration
of all atlases to a single query subject may become impractical for large image
sets. Mostly, because the computational cost increases linearly with the number
of atlases. Also, if the training set holds heterogeneous population, the achieved
results can be biased because of anatomically unrepresentative images [6].

In order to overcome the above issues, atlas selection approaches are also
included in the pipeline so that only the most appropriate candidate segmenta-
tions, for a given subject, are propagated and combined to provide the outcome.
Moreover, the selection criterion is usually based on an introduced image simi-
larity metric, being one the most popular the mutual information between query
and atlas images. However, since the measure is assessed globally, it is biased to-
wards large regions (as the background) instead of the small relevant structures,
e.g. basal ganglia. In an attempt to cope with this restriction, structure-wise at-
las selection is suggested in [7] to segment the brain MRIs based on the highest
local mutual information. Also, an adaptive method for a local combination is
proposed so that a subset of templates and their weighting are estimated inde-
pendently at image localities [8]. The main drawback of these approaches lies in
the requirement of a deformable registration stage measuring the image similar-
ity for all atlases. That procedure is computationally much more expensive than
linearly mapping all the images into a common reference space.

Bearing in mind all described above constraints, we propose a new spatially
weighting procedure of the well-known image metrics for supporting the atlas
selection within a multi-atlas-based segmentation scheme. Specifically, we study
the mean squares (MS), histogram correlation coefficient (HCC), normalized
mutual information (NMI), and neighborhood cross-correlation (NCC). Our ap-
proach computes independently the metric at regular image partitions; then all
partition similarity values are linearly combined to get a single similarity out-
come. The combination parameters are properly tuned to match the optimal
atlas selection from a pre-labeled image set, being extracted by an offline ex-
haustive search. Our new linear combination scheme is compared with the global
metric assessment, and with two other state-of-the-art combination approaches,
for the subcortical brain MRI segmentation task. Carried out experiments show
that our proposal outperforms the selection results for all considered metrics. In
this paper, image similarity metrics for atlas selection and linear combination
criteria are initially introduced. Then, all carried out experiments to evaluate
the effectiveness of the metrics for atlas selection are described and discussed.
Finally, some concluding remarks and future work are provided.
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2 Materials and Methods

Let X={Xn,Ln:n=1, . . . , N} be a labeled MRI dataset holding N pairs of seg-
mented images, where Xn={xn

r∈R:r∈Ω} is the n-th MR image, the value r in-
dexes the spatial elements, and the matrix Ln={lnr∈[1, C]:r∈Ω} is the provided
image segmentation into C∈N classes, which for 3D volumes holds dimension
Ω=R

Ta×Ts×Tc , with {Ta, Ts, Tc} as the Axial, Sagittal, and Coronal real-valued
sizes, respectively.

2.1 Image Similarity Metrics

The similarity between a given image pair, {Xn,Xm}, can be assessed by using
one of the following widely employed metrics:

Mean Squares (MS): This metric that is based on the average square differ-
ence along the space is embedded into a Gaussian kernel function, yielding the
following bounded similarity measure:

s{Xn,Xm} = exp

{
− 1

2σ2
E
{
(xn

r − xm
r )

2
: ∀r ∈ Ω

}}
∈ [0, 1]; (1)

where σ∈R+ is the kernel bandwidth. Notation E {·} stands for the expectation
operator.

Histogram Correlation Coefficient (HCC): This metric calculates similarity be-
tween image histograms as follows:

s{Xn,Xm} =
E {h(xn

r , x
m
s )(xn

r x
m
s − x̄nx̄m) : ∀r, s ∈ Ω}

E {h(xn
r )(x

n
r − x̄n)2}E {h(xm

r )(xm
r − x̄m)2} ∈ [0, 1] (2)

where h(xn, xm)∈R+ is the joint histogram between both input images, and
x̄υ∈R, with υ∈{m,n}, is the average intensity of the respective input image Xυ.

Normalized Mutual Information (NMI): This similarity value measures the nor-
malized mutual information of a couple of images as:

s{Xn,Xm} =
H {Xn}+H {Xm}

H {Xn,Xm} − 1 ∈ [0, 1] (3)

where notation H {Xn,Xm} stands for the joint entropy between Xn and Xm.

Neighborhood Cross-Correlation (NCC): This metric is widely used within the
Advanced Normalization Tools (ANTs) framework, and computes the normal-
ized cross correlation of voxel neighborhoods between two images [9]:

s{Xn,Xn} =
E
{
(xn

s − x̄n
s )

2 (xm
s − x̄m

s )2 : ∀s ∈ Ω
}

E
{
(xn

s − x̄n
s )

2
}
E
{
(xm

s − x̄m
s )

2
} ∈ [0, 1] (4)
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where xn
s∈Rq×q×q is the set of intensity levels in a q-sized neighborhood around

the s-th voxel of the image Xn, and x̄n
s=E {xn

s :∀s∈Ω} .
It is worth noting that MS and NMI measures are re-written from their original

definition so that all of the above similarity metrics share the same interpretation.
Namely, s=0 implies the complete mismatch between images, while s=1 – an
absolute match achieved only if Xn=Xm.

2.2 Spatial Enhancement of Image Metrics

Since all studied metrics are computed over the whole image, they do not ac-
count for local content similarities. Therefore, these measures are biased towards
the large similar regions, as the background, masking the relationship between
common image structures. Besides, those similarities lack in robustness against
artifacts. For instance, the intensity inhomogeneity (being a low-frequency arti-
fact) changes the image intensity distribution along the space. The most common
approach to overcome this issue is to compute the metrics at all local regions,
which should be further combined adequately into a single metric value.

To this end, the image X is split into P different regular blocks, {Ωp : p∈P}.
Hence, each image is seen as a set of non-overlapped blocksX={Ξp∈Rρa×ρs×ρc},
with P=

∏
v Pv, ρv=Tv/Pv, and Pv the number of partitions along the axis v

(v∈{a, s, c}). Consequently, the following P -dimensional vector of metrics holding
each the block-wise similarity value is obtained:

s{Xn,Xm} = {sn,mp = s{Ξn
p ,Ξ

m
p }; ∀p ∈ [1, P ]}

With the aim of building a new bounded scalar similarity metric, ζ, we make
use of a linear combination of the elemental block-wise measures, namely,

ζn,m = w�s{Xn,Xm}, ζn,m ∈ R[0, 1]

where w={wp}∈RP is the combination vector that is subject to
∑

p∈P wp=1.
Since each weight has to account mostly for the influence of the corresponding

region on the resulting metric ζn,m, we assume the vector w to be dependent on
the partition size. In the case of the equally-sized blocks, the combination vector
is computed as follows [10]:

wp =
ρaρsρc
TaTsTc

=
1

P
, (5)

As a result, the combination vector estimated in Eq. 5 leads to the plain
averaged block distance, that is, ζn,m=E

{
s{Ξn

p ,Ξ
m
p :∀p∈[1, P ]}} . In practice,

each block holds a different amount of information depending on its content or
its relevance to the task at hand. Regarding this, the contribution of each block
can be achieved as its average intensity variance:

wp =
1

ω
E
{
var

{
Ξn

p

}
; ∀n ∈ [1, N ]

}
(6)

where ω∈R+ is the normalization factor.
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2.3 Supervised Image Metric Learning

Basically, we are looking for a metric supporting the Atlas selection within the
multi-atlas-based segmentation task. Therefore, we propose to use the provided
set of segmented images of the dataset X to learn the corresponding combination
weights for improving the segmentation accuracy. For this purpose, the follow-
ing similarity matrix Zw={zn,mw ∈R+:m,n=1 . . .N}∈RN×N holding all pair-wise
metric values is built as a function of the estimated combination weights:

zn,mw = ζ{Xn,Xm} =

P∑
p=1

wps
n,m
p ; ∀n,m ∈ [1, N ], (7)

where Sp={sn,mp :m,n=1 . . .N} is the similarity matrix attained at the p-th
block. Since all considered metrics are equivalent to bounded similarity mea-
sures, each of the Sp matrices becomes a positive definite symmetric (PDS)
kernel matrix, as well as their linear combination Zw.

On the other hand, for the n-th image in the dataset X , the vector of optimal
atlas selection order on can be found by an exhaustive search as

on = {onm = i ∈ N : ‖Ln −Li‖Ω ≥ ‖Ln −Lj‖Ω : ∀i < j} (8)

where ‖ · ‖Ω is a norm in the image domain. Then, a supervised PDS kernel
matrix K={kn,m=km,n}∈RN×N holding the best possible symmetric selection
order is computed as

kn,m = (onm + omn )/2N (9)

Thus, the similarity metric ζ can be learned by finding the weights wp maxi-
mizing the correlation between Zw and the objective kernel matrix K as follows:

max
w

〈Z ′
w,K ′〉F

‖Z ′
w‖F ‖K ′‖F , (10)

where 〈·, ·〉F denotes the inner product and | · | the Frobenius norm, Z ′
w and

K ′ are the centered kernel matrices of Zw and K, given by K ′=HKH with
H=

[
I − 11�/N

]
, and 1∈RN×1 is the all-ones vector.

Consequently, the solution within the optimization problem in Eq. 10 (known
as the kernel centered alignment –KCA) for calculatingw is given by [11]:

w =
A−1b

‖A−1b‖ (11)

A ={apq = 〈S′
p,S

′
q〉F ; ∀p, q ∈ [1, P ]} ∈ R

P×P

b ={bp = 〈S′
p,K

′〉F } ∈ R
P×1

3 Experimental Set-Up

In order to evaluate all studied metrics within the multi-atlas-based segmentation
task, they are performed to select the most similar labeled images for estimating
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the segmentation of a query image. To this end, the majority voting scheme
is considered for labeling each voxel since the segmentation quality is mostly
dependant on the selection strategy. Additionally, the well-known Dice Index
similarity is measured to evaluate the segmentation performance.

3.1 Database

Here, the dataset tested is the one used in the MICCAI 2012Multi-Atlas Labeling
and Statistical Fusion challenge1 that is a subset of the Open Access Series
of Imaging Studies (OASIS) database. This data collection holds T1-weighted
structural MRI scans from 35 subjects (13 males and 22 females), aging from
18 to 90 years. Each 256×256×287-sized MRI volume has a voxel size of 1×1×
1mm. All images were expertly labeled with 26 structures. Due to our research
interest lies in Parkinson surgery, only the following structures are considered:
hypothalamus (HYPO), amygdala (AMYG), putamen (PUT), caudate nucleus
(CAUD), thalamus (THAL) and pallidum (PAL)Fig. 1 shows a sample of an
image subject as well as its provided segmentation.

Fig. 1. Left to Right: Axial, Sagittal, and Coronal views as well as the ground-truth
segmented structures

3.2 Image Preprocessing

For the sake of comparison within a single common space, all images are spatially
normalized into the Talairach space. Thus, each image is rigidly aligned to the
ICBM atlas (MNI305-template) allowing to extract the morphological feature set
accurately from each considered image. To this end, the Advanced Normalization
Tool (ANTS) is employed using a quaternion based mapping and the MI metric
as parameters.

In order to perform the label propagation, every pre-labelled image is also
spatially mapped into the query image spatial coordinates (target space) with
a non-linear transformation so that query and atlas images match the best.
Further, the registration procedure is performed using the ANTS tool having
the following default parameters: elastic deformation as the mapping function
(Elast), MI as the similarity metric, and 32-bins histograms for estimating the
probability density functions. Lastly, to get a finer alignment, the registration

1 https://masi.vuse.vanderbilt.edu/workshop2012

https://masi.vuse.vanderbilt.edu/workshop2012
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is performed at three sequential resolution levels: i) the coarsest alignment with
a resolution of 1/8 × Original space, and 100 iterations, ii) the middle resolu-
tion 1/4×Original space and 50 iterations, and iii) the finest deformation with
a resolution of 1/2×Original space parameter and 25 iterations, the Gaussian
regularization method is employed (σ=3).

3.3 Metric Parameter Learning

For including spatial information, each similarity metric is assessed separately
at different locations of the image. To this end, the MRI volumes are regularly
partitioned into P=27 blocks (3 partitions along each dimension). Then, the
outcome metric is computed for all image pairs as a weighted linear combina-
tion of all local measures. Here, three different parameter tuning approaches are
considered. The first one assumes that the contribution of each block to the
similarity metric is equal for all of them. Therefore, the similarity metric cor-
responds to the averaging of the local measures. For the second approach, the
weights are computed as the average intensity variance in each block as in Eq. 6.
In this way, the shape differences on the brain structure intensity changes are
considered as more relevant to the resulting metric than homogeneous regions.
For the third approach, the weights are computed based on the contribution to
the kernel centered alignment with respect to the objective kernel matrix K as
introduced in Eq. 11. In this paper, K∈[0, 1]N×N is built from the ordered label
image similarity in the training set:

knm =(Onm +Omn)/2N (12a)

On = {i ∈ {[1, N ]− n} : �(Ln,Li) ≥ �(Ln,Lj)∀i < j} , (12b)

where �∈R+ is the known Dice Index similarity, defined as:

�(L,L′) = E {2〈Lc,L
′
c〉/(‖Lc‖1 + ‖L′

c‖1) : ∀c ∈ [1, C]} (13)

Fig. 2 shows the 3D scatter plotting all resulting weights, where the coor-
dinates of each element are the spatial location of the image partition while
the color and size are directly proportional to the value. As shown in Fig 2a,
the central image region has the highest variance. Anatomically, this partition
corresponds to basal ganglia location having tissue structures with high variant
shape and intensity. However, the scatter plot also shows a substantial amount
of variance on the corners. This dispersion should be related to the partial pres-
ence of the scanned head and background, but not necessarily to the intensity
dispersion. According with Fig. 2b to 2e, the weight distribution for all metrics
exhibit the similar behavior. The corresponding weight to the central region is
higher than other ones; i.e. the similarity metric assessed in this region is more
correlated to the supervised kernel matrix than in boundary regions.

3.4 Evaluation of Similarity Metrics

We consider the leave-one-out validation scheme to evaluate the performance
of the resulting metrics. In this case, all metrics are used to carry out an atlas
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Fig. 2. Resulting weight distribution for the variance criterion and all considered met-
rics. Markers are located at the center of each partition. Color and size are directly
proportional to weight parameter value.

selection task for the atlas-voting segmentation approach in the target image
space. Finally, the metric performance is assessed with the Dice Index similarity.

Fig. 3 shows obtained results of multi-atlas segmentation obtained by each
tested metric and using all templates selected within the common space. As seen,
the achieved accuracy gets close to the global computation when all weights be-
come equal. Although the accuracy obtained by the MS metric should tend to the
one of equally-weighted case, in practice both outcomes differ because of com-
putational accuracy issues, but their resulting selection curves are statistically
similar. Moreover, the noise artifact produces a high-variability of intensity, lead-
ing to unsuitable weights and a biased metric. About the weights computation,
the similarity metric slightly improves the accuracy in comparison to the global
and equally-weighted metrics if the variance intensity is taken into account. On
the other hand, our proposed approach achieves the highest accuracy with an
optimal atlas selection for all tested metrics. The approach outperforms not only
all other benchmark combination methods, but also the accuracy obtained with
the whole data-set.
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Fig. 3. Average Dice Index similarities versus the number of selected atlases for all
considered metric tuning approaches

4 Discussion

We propose a new spatially weighting criterion to improve similarity metrics
aiming to measure image correspondences to support atlas selection on a multi-
atlas segmentation scheme. Our proposed measure outperforms the widely used
equal and variance-based weighting on the tested similarity metrics.

In accordance with the obtained results, it is clear that the spatially weighted
metrics outperform the global ones. However, the computation of weights be-
comes an important task. The equal weighting provides spatial information in
terms of partition size, but the content inside each locality is not taken into
account. Hence, it performs the worst among all weighting approaches.

With the purpose of capturing shape differences on brain structures, the vari-
ance criterion weighs each block according to the intensity variance on it. How-
ever, the background on the images biases the weights computation towards
image edges, which contain just partially the scanned head. Moreover, the in-
herent noise reduces the performance of a variability-based criterion.

Meanwhile, we propose to use a supervised kernel matrix aiming to learn
the combination weights for the similarity metric. In this sense, the weights
are computed according to the contribution to the kernel centered alignment
with respect to the supervised kernel matrix. An advantage of our proposal is
that the closed form to the kernel alignment solution provides an easy imple-
mentation for weights computation, while the construction of supervised kernel
matrix is carried out only once off-line. As a result, we assess a suitable image
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similarity metric as an atlas selection criterion. Therefore, the similarity-based
atlas ranking correlates correctly with the segmentation accuracy for subcortical
structures. Actually, the learned metric can provide a subset of atlases achieving
a higher accuracy for the label propagation than the whole dataset provides.
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Abstract. We investigate the use of the iLU preconditioning within the
framework of the Anisotropic-Finite-Difference based Solution for the
EEG Forward Problem. Provided the minimal error of representation,
comparison of the convergence rate and computational cost is carried out
for several competitive numerical solver combinations. From the testing
on real data, we obtain that combination of the biconjugate gradient
solver and incomplete LU factorization results in a numerical solution
that outperforms the other considered approaches in terms of accuracy
and computational cost. We validate this numerical solution combination
against analytical spherical mode. Also, testing on realistic head mod-
els (with high anisotropic areas and heterogeneous tissue conductivities)
shows high accuracy and low computational cost.

1 Introduction

There are several techniques for monitoring and extracting from the human brain
more refined information allowing better results in clinical applications like medi-
cal treatment, surgery planning, or more generalized brain research tasks. Among
those non-invasive techniques, the Magnetic Resonance imaging (MRI) or Com-
puted Tomography (CT) have widely shown that its synergy with functional
analysis techniques, particularly ElectroEncephaloGraphy (EEG), can overcome
weakness of single modality analysis. Extracted multi-modal information is use-
ful in diagnosis and preoperative stages of brain surgery, being usually the only
suitable analysis tool due to the high risk of alternative surgical interventions
[1]. The different tissues are segmented from neuroimages such MRI or CT. The
MRI, CT scans conform a volume with a large number of slices in a series of
two-dimensional images. Every slice must be registered in the same coordinate
system in order to obtain a coherent three-dimensional volume. After the reg-
istration stage, the data set contains a gray scale volume of the head with the
different tissues in it [2]. The general areas to be segmented from the volume are
the scalp, where the EEG electrodes are placed, the skull, the cerebrum spinal
fluid, the gray matter and the white matter, but, nowadays, several tissues are
considered for the segmentation stage in order to obtain more realistic/acurate
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forward models [1]. Nowadays there are several toolboxes that handles the image
processing stage with good results (SPM, FSL, FreeSurfer, Lony) [2]. As far as
EEG is a meaningful signal, the electrical activity of a local group of neurons can
be modeled as a current dipole [3]. Moreover, dipoles can be localized within the
brain using a conductivity model of the human head volume (source localization
problem). Therefore, accurate and realistic forward solver must be develop in
order to improve the EEG source localization. There are several methodologies
to solve the forward problem, each one having its own advantages and weak-
nesses depending on the necessity of the user, regarding to this, the most used
solutions are: spherical models [4], Boundary Finite Elements (BEM), Finite El-
ements Method (FEM), Finite Difference Method (FDM) and Finite Volumetric
Method [3]. Since image data (MRI,CT) are usually acquired in regular formats
of digitalization (mostly, 1×1×1), we used FDM that can be straightforwardly
adapted to the grid. The solution of the Poisson equation in a volume conductor
medium (forward problem) using FDM numerical approximations derives in a
large linear system with a ill-posed coefficient matrix. The numerical stability
and computational burden of this type of problem highly depends on the condi-
tional number of the coefficient matrix, therefore, in order to improve the numeric
properties of the coefficient matrix, suitable preconditioners must be applied. In
this sense, [5] introduce an anisotropic FDM formulation with a Successive Over
Relaxation (SOR) solver, but, due to the stationary nature of the algorithm, the
technique takes to much time to solve realistic head models, in contrast, [6] pro-
pose a fictitious domain data ordering allowing Fourier type preconditioning and
obtaining fast and accurate realistic forward model calculations. In this work,
we analyse several numerical solutions for the anisotropic FDM problem in the
fictitious domain, finding a suitable preconditioning solver combination, allowing
accurate and fast forward calculations in highly anisotropic and heterogeneous
realistic head models.

2 Methods

2.1 Anisotropic-Finite-Difference Based Solution of the EEG
Forward Problem

The forward problem consists in the calculation of the electrical potential field
on the scalp surface (provided the geometry and electrical conductivity of the
head volume) for a given position, orientation, and magnitude of the dipole cur-
rent sources. Due to measured EEG/MEG frequencies are usually below 100Hz
and electric and magnetic field time derivatives are typically much smaller than
ohmic currents, we can neglect the nonstationary electromagnetic field terms [3].
Therefore, in order to determine the electrode potential field, V ∈Rm (being m
the number of electrodes) generated by a brain current dipole with volumet-
ric conductivity Σ∈R3×3, we make use of the quasi-static approximation of the
Maxwell’s and Poisson equations as follows:

∇ (Σ(r)∇V (r)) = ∇J(r), (1)
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where J∈Rm is the electric current density and r∈R3×1 is the point of detection
holding the direction and position dipole. Σ(r) is the conductivity tensor with
the direction-dependent conductivity that for isotropic conductivity becomes a
diagonal matrix. For the anisotropic case, however, Σ(r) varies according to
the position in the anisotropic compartment. Namely, at the interface between
two different tissue compartments (medium change), two boundary conditions
take place. Particularly, if assuming all current leaving one compartment with
conductivity σ1∈R3×3 through the interface enters the neighboring compartment
with conductivity σ2∈R3×3, the current density at the head surface reads (termed
Neumann boundary condition) [7]:

{
J1 · en = J2 · en
(σ1∇V1) · en = (σ2∇V2) · en

(2)

where en is the normal component on the interface. Likewise, another bound-
ary condition also holds for interfaces not connected with air, stating that by
crossing the interface the potential cannot have discontinuities (Dirichlet bound-
ary condition), i.e.: V1=V2.

For numerical solving, Eq. 1 can be transformed into a set of linear equations
modeling the volume conduction. For this end, we use a cubic grid in which each
cube (or element) has a conductivity tensor that can vary between neighbouring
elements, so that the directions of the anisotropy are changed along the coordi-
nate system axes of the head model. In [5], an approach (termed finite difference
method in anisotropic media – aFDM ) is presented to handle anisotropic prop-
erties of tissues, where a finite difference formulation for the Laplace’s equation
is extended to the Poisson’s equation (see Eq. 1) that is valid everywhere in a
piecewise inhomogeneous anisotropic medium. Since image data (MRI,CT) are
usually acquired in regular formats of digitalization (mostly, 1×1×1), aFDM can
be straightforwardly adapted to the grid.

We make use of the fictitous domain Sj described in [8] to enclose the irregular
volume conductor data in a rectangular grid with zero redundance with N (dis-
cretization number) partitions in each direction, allowing not only a direct data
ordering, but also, a soft diagonal predominant, symmetric coefficient matrix.
Finally, we use a set of finite-difference approximations of the spatial derivatives
on the rectangular grid with a 19-point stencil with 8 voxels sharing the same
vertex V j , building a finite difference linear equation for the vertex V j

i in the
stencil Sj around V j .

18∑
i∈Sj

σj
i V

j
i −

⎛
⎝

18∑
i∈Sj

σj
i

⎞
⎠V j = I (3)

where V j
i ∈R is the scalar-valued potential at the i-th neighbor vertex of the j-

th node in the stencil Sj. I∈R is the dipole current, and σj
i∈R are the coefficients

depending on the conductivity tensor and the internode distance, which are fixed
to ensure the Neumann and Dirichlet boundary conditions [9].
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2.2 Anisotropic-Finite-Difference Linear System Solution

The finite difference formulation derived in Eq. 3 form a linear equation sys-
tem (LES), Ax=b, with A∈Cn×n nonsingular and b∈Cn, with the following
properties on the coefficient matrix A:

– The coefficient matrix is square and sparse with only 19 non zero entries
per row. Matrix dimension becomes N×N×N, where N is the discretization
number.

– The coefficients connecting the same pair of neighbouring voxels are identi-
cal, resulting in a symmetric matrix A having weak diagonal dominance.

– The LSE Ax=b possesses infinite solutions differing only in an additive con-
stant.

To date, several iterative solvers have been developed for a regular LES that can
also be extended to the system matrix A holding the above-described restric-
tions. Yet, the choice of the solver depends to a large extent on two considera-
tions: the convergence speed to achieve a given accuracy and the computational
complexity of each iteration. The baseline stationary solver is the Successive
Over-Relaxation (SOR) introducing a relaxation factor that reduces errors of
succeeding approximations until all errors are within specified limit. This factor
depends strongly upon the properties of the matrix, A, and its choice is not
necessarily easy, resulting in algorithms that are not quite efficient in terms of
their computational cost.

Regardless the solver, however, matrix convergence in finite-precision arith-
metic remains a crucial issue. Namely, the more ill-conditioned the system matrix
A (that is, the larger its condition number defined as ‖A‖‖A−1‖), the slower
the convergence of the steepest descent method. To cope with this drawback,
preconditioning techniques are introduced to improve the condition number of
a nonsingular matrix, M , making the resulting condition number M−1A much
smaller than in the original matrix A.

In practice, the combination of solvers with preconditioning procedure (nu-
merical solution combination – NSC) based on incomplete LU (iLU) factor-
izations constitutes an effective class of methods for solving the sparse linear
systems arising from the numerical approximation of partial differential equa-
tions. In this work, we used two different solvers (GMRES and BiCG-Stabilized)
and different preconditioners (including Choletsky, LU, iLU and also the adapt
isotropic circulant Fourier-Jacobi deffined by [6]) to compare different NSC’s in
terms of computational time and accuracy.

3 Experimental Set-Up

In order to test the effectiveness of the iLU preconditioningwithin theAnisotropic-
Finite-Difference based Solution for the EEG Forward Problem, we compare its
convergence rate and numerical stability to other competitive numerical solution
combinations, for a given accuracy. Then, we validate the best iLU-based numer-
ical solution against a concrete analytic method to demonstrate the efficiency of



412 E. Cuartas-Morales et al.

the proposed numerical approach in the highly heterogeneous anisotropic case. All
tests are carried out using a 7-shell spherical headmodel with anisotropic skull and
white matter compartments. Lastly, we also validate the iLU numerical solution in
a realistic head model white anisotropic skull and white matter derived from high-
resolution MRI data.

Multi Shell Anisotropic Spherical Model: The validating spherical head model
is a 7-shell anisotropic skull and white matter layers [4]. The shells represent
the scalp, the skull, the cerebral spinal fluid (CSF), gray matter (external and
thalamic inner sphere) and white matter. We use the following external ra-
dius [m]: 0.092 (scalp), 0.084 (skull), 0.076 (CSF), 0.068 (GM), 0.050 (WM),
0.020 (GM); all tissues having conductivity values [S/m]: 0.33 (scalp), 0.018
(anisotropic skull with 1:10 radial/tangential ratio), 1.79 (CSF), 0.33 (brain),
and 0.14 (anisotropic white matter with 9:1 radial/tangential ratio). For the
anisotropic skull and white matter, we apply rotational transformation to the
local coordinate system for reorienting the eigenvectors in a normal direction
from the concentric spheres. Additionally, we carry out testing for 10 different
values of image resolution in order to analyze the conditional number of the
system matrix.

3.1 Testing of Convergence Rate and Computational Cost

We compare a set of Anisotropic-Finite-Difference based solutions that include
combination of four widely-known preconditioners (Cholesky, LU, iLU, Fourier-
Jacobi) together with two baseline non-stationary solvers (GMRES,
BiCG-Stabilized) and the baseline stationary SOR solver (without any precon-
ditioning). Besides, since the Cholesky preconditioner is just devoted to the
GMRES solver and the Fourier Jacoby for BiCG solver, only these concrete com-
binations are considered, respectively. As a result, we get the following set of nu-
merical solution combinations: SOR, GMRES, GMRES–Cholesky, GMRES–LU,
GMRES–iLU, BiCG, BiCG–LU, BiCG–iLU, BiCG–Fourier-Jacoby. It must be
noted that the used version of the BiCG is the stabilized one.

The convergence rate is calculated as the lowest number of iterations that
each NSC at hand requires for reaching its minimal error of representation.
Specifically, We calculate this amount as the residual error value assuming the
more complex image resolution, that is, 6×6×6,mm. Another important aspect
of comparison is the minimal amount of the residual set that each NSC must
reach to make it workable in practical applications. Here, we fix this value as
10−13. Numerical computation shows that the plain SOR gets the worse con-
vergence since it needs 350 iterations to reach its lowest error of representation
close to 1.8×10−7; this amount remains far from the fixed minimal residual set.
As seen in Fig. 1 showing the achieved outcomes of residual error as depen-
dence of the testing iteration number, the GMRES algorithm performs a bit
better than SOR, and BiCG improves even better. Besides, the use of either
preconditioning, iLU or LU, leads to a less number of iterations, improving the
NSC convergence. Moreover, the latter preconditioner improves the convergence
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Fig. 1. Convergence rate of the compared NSC algorithms. Dashed line remarked in
red stands for the fixed minimal residual set.

rate remarkably. In fact, the best NSC is the BiCG-Stabilized LU that reaches
the needed residual value just after five iterations. Likewise, the Cholesky and
Fourier Jacoby preconditioners improve the convergence rate of their correspond-
ing solvers. Nevertheless, the use of preconditioning does not mean that the NSC
algorithm should reach the fixed minimal amount of residual set error (dashed
line remarked in red). Thus, the GMRES, BiCG, and BiCG–Fourier-Jacoby al-
gorithms hang up on some intermediate values close to∼10−10. In turn, the
GMRES–iLU, GMRES–Cholesky, and GMRES–LU converge towards a lower
residual value (∼10−12); still, that amount is not enough. Certainly, the BICG–
LU and BICG–iLU are the only algorithms to reach the fixed minimal error of
representation.

On the other hand, the computational cost of each iteration turns out to
be different in dependence on the used preconditioning approach. For having a
common base time to compare computational cost units, we make the time unit
as the one spent by the baseline stationary SOR solver. Thus, the time unit is
20.1949 s that is appraised in a workstation 8 core Intel Xeon CPU E5-2687W

with 64Gb RAM, using the Matlab software environment. Table 1 shows the
computational time that each NSC requires for reaching its intrinsical final con-
dition stop. Thus, the second column displays the time that each preconditioning
procedure spends. As expected, the LU is very much expensive than the other
preconditioners, being the iLU the fastest one. The third column shows the time
spent by the solver after preconditioning, where the GMRES employs more time
that the BiCG. The total amount of time required by each NSC that is shown
in the last column is the sum of the previous two columns. As a result, the most
expensive NSC is the BiCG–LU, while the fastest – the BiCG–iLU (in as much
as 860 times!). Although there are two NSC providing also small computational
(BiCG and BiCG–Fourier Jacoby), they do not fit with needed minimal amount
of residual error. As a consequence, the BiCG–iLU is the best NSC in terms of
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Table 1. Achieved computational time. Notation ∗ stands for the algorithms reaching
the fixed minimal residual error

NSC Preconditioning Solver Total cost

SOR – 1.0000 1.00
GMRES – 4.1998 4.20
GMRES–Cholesky 3.4400 1.0826 4.52
GMRES–LU 257.0000 0.5903 258
GMRES–iLU 0.0018 4.2279 4.23
BiCG – 0.3543 0.35
BiCG–LU∗ 257.0000 0.4153 258.00
BiCG–Fourier Jacoby 0.0540 0.3223 0.37
BiCG–iLU∗ 0.0018 0.2991 0.30

computational cost under fixed value of error representation. Further, we test
the BiCG–iLU for 10 different values of numerical resolution, where N is the
number of divisions in one direction in the cubic fictitious domain (being N3 the
number of rows of the system squared matrix). As seen in Fig. 2a, the highest
the resolution – the large the number of needed iterations. This fact may be
explained by the conditional number that is computed for the studied range of
numerical resolution. As shown in Fig. 2b, the conditional number grows expo-
nentially when increasing the division number N. Therefore, for high resolutions,
the coefficient matrix size becomes bigger and is most difficult to solve due to
the obtained larger conditional number. However, the BiCG–iLU remains stable
even under the largest conditional number 1.63×1014, achieved for N=61.

(a) Convergence rate (b) Conditional number

Fig. 2. Conditional number and convergence rate of BiCG–iLU for different values of
numerical resolution

3.2 Validation of BiCG–iLU Numerical Solution

We validate the concordance of the NSC to a suitable analytical solution. To
this end, we make use of the spherical head model having 6×6×6,mm voxel size.
Fig. 3 shows the Potential (μV ) versus the electrode channel number computed
for the proposed 7-layered spherical head model. The continuous line displays
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the BiCG–iLU employing aFDM while the circles show the analytical poten-
tials calculated employing the multishell anisotropic spherical model described
above. Both, the numerical and analytical, solutions match correctly in com-
puting the potentials for a single source placed at the gray matter area in the
normal disposition to the gray matter sphere. Here, the electrodes are placed
in 6 different rings covering the entire surface of the scalp surface. Validation

Fig. 3. Validation of BiCG–iLU numerical Vs analytical potentials on the scalp for a
spherical head model

of BiCG–iLU is also carried out on realistic head models. Particularly, we the
chosen NSC on realistic head models comprising an isotropic representation with
a highly anisotropic head model. Image preprocessing is carried out using 3D
Slicer built-in modules. The preprocessing steps included: MRI bias correction
(N4 ITK MRI bias correction) and registration (BRAINS) for movement correc-
tion. We obtain detailed tissue models from the T1-weighted and TOF volumes
by using the pipeline described in [10]. The model contain WM, GM, CSF,
skull, eyes, muscle, fat, arteries, and skin. The arteries segmentation mask is
processed to estimate the direction of blood flow, obtaining a normalized vector
map describing the maximum anisotropy inside the arteries. The MRI segmen-
tation holds 9 different tissues with different conductivity values [S/m]: (scalp
= 0.33; fat = 0.4; muscle = 1.1112; skull = 0.020; eye = 0.0505; CSF = 1.538;
GM = 0.3333; WM = 0.14; blood vessels = 0.28). Since the skull and white
matter have strongly anisotropic behavior [3], we use a 1:10, radial:tangential
anisotropic setup for the skull, based on the volume constraint of the isotropic
value. For the anisotropic white matter, DWI are corrected for motion, eddy cur-
rents and field inhomogeneities. Diffusion tensor images (DTI) are reconstructed
with Diffusion-Toolkit. Finally, registration of DTI images to the anatomical
T1 image space is performed using the FSL tool with the preprocessed DWI b0
image.

Performance of the BiCG–iLU in highly anisotropic aFDM formulations is
carried out for two different realistic head models. The Fig. 4a shows a simplify
5-tissues head model that we set to be completely isotropic. In contrast, we define
a 9-tissues head model with anisotropic skull and white matter, including fat,
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(a) MRI segmentation

(b) Dipole estimation error

Fig. 4. a) Validation of BiCG–iLU numerical Vs analytical potentials on the scalp for
a spherical head model b)MRI segmentation. c) Dipole estimation error due to neglect
the anisotropic behaviour of skull and white matter tissues in realistic head models.

muscle, eyes and even blood vessels tissues. In accordance to [5], we calculate the
dipole estimation errors due to neglect multiple tissue segmentation including
the anisotropic skull and white matter. The solver takes about 4 minutes to
solve the coefficient matrix for a given source for a 1×1×1mm resolution with
N=256. Therefore, the algorithm shows a feasible numerical stability even in
the presence of highly anisotropic areas, and larger heterogeneity tissues.

4 Discussion and Concluding Remarks

We discuss the use of the iLU preconditioning within the framework of the
Anisotropic-Finite-Difference based Solution for the EEG Forward Problem. To
this end, we carry out the comparison of several numerical solver combinations in
terms of convergence rate and computational cost. Since there is a need for fast,
but accurate forward solver, the minimal error of representation is also included
as an additional consideration. From the obtained results of the comparison on
real data, we infer that the BiCG solver outperforms the other considered ap-
proaches: GMRES and SOR. Furthermore, the BiCG is the only one to reach the
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fixed amount of residual error. In order to reduce the computational cost signif-
icantly, however, a proper choice of the preconditioner for a particular matrix is
probably more important than using the optimal outer-level iterative solver. We
show that the LU preconditioners is not efficient under the considered settings.
On the contrast, the incomplete LU preconditioner improves the solver perfor-
mance. Thus, the BiCG–iLU results in the best NSC in terms of computational
cost within a wide range of numerical resolution. However, if the amount of
residual error is relaxed down to∼10−10, the use of BiCG–Fourier Jacoby leads
to a workable NSC.

Validation process comparing numerical and analytical models is carried out
and shows that the BiCG–iLU as a numerical approximation accurately matches
the potentials over the scalp. Specifically, we select a source placed in the outer
gray matter sphere in a 76 artificial electrode configuration covering the entire
surface of the sphere with 6 parallel rings. BiCG–iLU performs high accuracy and
low computational cost even for realistic head models with high anisotropic areas
and heterogeneous tissue conductivity considerations. As a result, the calculation
time for a 1×1×1mm lasts 4 minutes; this amount of time is very competitive in
comparison to other aFDM solution techniques reported in literature.

One of the promising approaches for improving the solver performance is
the use of the fictitious domain enclosing the data in a redundant low zero
voxelization, allowing a straightforward data ordering in the coefficient matrix.
Instead of using the fictitious domain, we hypothesize that an inhomogeneous
data ordering considering only the non-zero entries of the volumetric model
should reduce the size of the coefficient matrix and the number of potential
unknowns. As a result, we may improve memory allocation and, at the same
time, reduce the whole amount of numerical operations. As future work, the
authors plan to test the discussed NSC in realistic head data extracted from
EEG recordings, in order to measure the influence of volumetric anisotropic
medium on the performance of the source localization problem.
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Abstract. The waveform of physiological signals carries useful infor-
mation about the brain states. Automated computational algorithms
are used in clinical medicine for extracting this information that can-
not be read directly by visual inspection. Nonetheless, difficulties arise
in the extraction because the intrinsic rhythms of the waveforms vary
with the changes in the state of the brain. That is the case for elec-
troencephalogram (EEG) signals from Epileptic seizure events. Here, we
address the extraction of information from EEG signals by using a novel
methodology that quantitatively measures the intrinsic rhythms of EEG
waveforms related to healthy or Epileptic seizure events. In this method,
the customized wavelet is used to estimate the EEG rhythms and then
the relevance analysis with Fuzzy entropy and Stochastic measure are
used to discriminate between seizure free and seizure states. The classifi-
cation stage is based on classification performance using a support vector
machine classifier. The pertinence of the proposed methodology during
the Epileptic seizure identification is discussed, and future directions are
presented.

Keywords: Customized wavelet · Epileptic seizure detection · Relevant
analysis · Brain state classification

1 Introduction

Electroencephalography (EEG) signals reflect the electrical activity of popula-
tions of neurons that differ in their characteristic waveforms, termed physiological
rhythms. These rhythms vary in the frequency of their activity, ranging from slow
to fast (0.5 – 30 Hz ) (δ, θ, α, and β, respectively). Physiological rhythms dra-
matically vary with changes in the state of the brain, and close correspondence
has been established with pathological states related to epileptic seizures. In
particular, δ and θ rhythms change their characteristics in frequency and ampli-
tude to a larger extent than α waves during epileptic events [1]. These changes
in the typical behavior of the rhythms can be used to assist the localization of
the epileptogenic zone once the epilepsy is diagnosed [2].

c© Springer International Publishing Switzerland 2015
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However, for the automatic epileptic seizure identification, the contribution of
each frequency sub-band must be first disassociated carefully. In this line of anal-
ysis, digital signal processing techniques applied to EEG signals have provided
new insights into the dynamics of the physiological rhythms during the evalu-
ation of different clinical disorders related to epileptic seizures. For evaluating
the contribution of physiological rhythms to the EEG signal in discriminating
different brain states, there are two stages to be carried out: i) estimation of
the time-variant physiological rhythms and ii) relevance evaluation of the esti-
mated rhythm in relation to the state of the brain. Regarding the former item,
several time-frequency and time-varying decomposition methods have been pro-
posed to represent the dynamic properties of the EEG signal. Among the most
popular methods are the Short-Time Fourier Transform (STFT) [7], the Dis-
crete Wavelet Transform (DWT) [11], the Time-variant Autoregressive Models
(TVAR) [10], and the Exponentially Damped Sinusoids (EDS) [3]. In this work, a
wavelet approach is followed by using an optimal DWT, which is constructed by
an evolutive procedure for creating signal-dependent wavelet analysis [5]. This
optimal DWT has been shown to outperform classical wavelets for extraction of
discriminant information from physiological signals and different altered brain
states such as the ones during Parkinson disease and drowsiness [13].

Regarding the relevance evaluation stage, the analysis of the individual frequency
band components in the time-domain has proven to supply useful insight into the
physiological rhythms. In particular, the use of relevance weights to determine the
optimal frequency band that is subject specific has been presented in [12]. In or-
der to get the relevance weights of the extracted rhythms using DWT, we develop
the Fuzzy entropy relevance analysis (FRA). For the sake of comparison, the rel-
evance weights obtained with FRA are contrasted with the ones accomplished by
the Stochastic relevance analysis presented in [8]. Fromthe individual rhythms that
represent the current brain state, the relevanceweights are estimated for improving
the analysis/classification performance of the extracted rhythms.

2 Processing Methods

The proposed methodology comprises the following steps: i) Feature extraction
from the rhythms of the EEG signal extracted using a customized DWT, ii) Rele-
vance analysis of rhythms for the identification of epileptic andnormal brain states.

2.1 Wavelet Customization for Extraction of EEG Rhythms

This work employs the DWT for the EEG rhythm extraction, where selection of
a suitable wavelet as well the number of decomposition levels is carried out. The
number of decomposition levels is chosen to be five that yields the approximate
frequency bands of the EEG physiological rhythms. Lower level decompositions
have negligible magnitudes in a standard EEG. Each rhythm is associated with
the signal reconstructed (i.e., inverse wavelet transform) from the wavelet coef-
ficients of the level matching the frequency band of each rhythm.
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In order to implement the DWT-based time-frequency analysis, the input
signal, lasting N samples, x∈{xi=1, . . . , N}, is projected into an orthogonal (or
bi-orthogonal) space, which is created by scaling and translating one single wave-
like function (called wavelet mother). The successful representation of signals
mainly depends on the proper selection of the wavelet mother. Although there are
plenty of wavelet prototypes reported in the literature, the existing wavelets may
be not adequate for every application. Furthermore, there is not an established
rule that states the best wavelet for a given task. Therefore, it is a usual task to
test more or less arbitrarily a big amount of different wavelet functions to find
one suited for the data at hand [14]. For this reason, the present study employs
an evolutionary methodology for the creation of a customized wavelet function
based on the use of Genetic Algorithms (GA).

The GA-based procedure for optimization of wavelet functions that has been
discussed elsewhere [5] is summarized as follows: Initially, we extract from themea-
sured signal set,X∈Rn×N , a subset of training signalsXe⊂X, whereXe∈Rm×N

and X={xi:i=1, . . . , N}, being n the number of the whole recorded EEG signals
andm the number of recordings selected for training (m<n). Then, each input sig-
nal is decomposed using the wavelet transform up to level l=5 by using cascade
lifting schemes. The use of lifting schemes is conditioned by their fast and flexible
implementation of the discrete wavelet transform, comprising a prediction filter
p={pi:i=1, . . . , Np} and an update filter u={ui:i=1, . . . , Nu} with order Np and
Nu, respectively. The former filter, which is associated to the wavelet function in
the classicalwavelet scheme, is devoted to extract high frequency components from
the input signal by eliminating low order polynomials. As a result, we obtain the

detail wavelet coefficients d(l)=x
(l−1)
o −p ∗ x

(l−1)
e , where xo are the odd samples

of x (Notation ∗ stands for the convolution). In turn, the update operator is re-
lated to the scaling function and the extraction of the approximating coefficients

a(l)=x
(l−1)
e −u∗d(l),wherexe are the even samples ofx. Afterward, we generate the

feature vectorφ∈R1×k holding the wavelet energy of the detail coefficients at level
l=5, and the approximation coefficients at level l=5. For including the frequency
band of every rhythm, We fix k=6 as explained below.

Owing to the focus of the present content in discriminating brain states, the GA
cost function is stated as a measure evaluating the classifier performance of the
feature vector φ. For avoiding wrapped measures that may increase considerably
the computational burden, rather we use a filter measure without validating any
concrete classifier. Namely, we introduce as the cost function the Davies-Bouldin
index JDB∈R(0, 1) thatmeasures the separability among classes. It is worth noting
that theJDB assesses, at the same time, both the compactness of eachand theglobal
dispersion among classes. This index requires the computation of class–to–class
similarity defined as, rij=(sii−sjj)/ejj , where sii and sjj are the dispersion of the
i-th and j-th classes, respectively, and computed as follows:

sjj =

√√√√E

{
k∑

m=1

‖φn,m − μj,m‖2 : ∀n = 1, . . . , Nj

}
, (1)
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where notation E {·} stands for the expectation operator and eij is the Euclidean
distance between their mean values, given by ei,j=‖μi − μj‖, where Nj is the
number of signals belonging to the i-th class. φn,k is the n-th sample vector of
the i-th class over the k-th dimension, and μi,k is the mean value of class i over
k-th dimension. The fitness function is obtained through determining the worst
case of separation for each class and averaging these values, i.e.: JDB=rij/2,
where i = normal, j = epileptic.

The terminating step of the procedure is given by the GA optimization of
the filters u and p of the lifting scheme. The GA operates in a guided manner
by following symmetrical linear phase and filter normalization constraints [6].
These constrains secure the linear phase, symmetry, compact support, and nor-
malization of lifting filters, in other words, the associated wavelet and scaling
functions. Furthermore, the GA procedure only evolves Np/2+Nu/2− 2 values
because of the introduced constraints.

2.2 Relevance Analysis of Physiological Rhythms

All physiological rhythms are extracted from the measured EEG signal set by
using the corresponding inverse wavelet coefficients that correctly reconstruct
each i-th waveform (noted as yi). Namely, a5→δ,d5→θ,d4→α,d3→β. How-
ever, we should measure the relevance of each physiological rhythm vector in
distinguishing between normal and pathological states of the brain activity. Here,
we introduce the Fuzzy entropy Relevance Analysis (FRA) based on an improved
estimation of the Shannon entropy using fuzzy sets, defined as follows [9]:

H {Ξ,y} =
∑
c∈C

h(Ξ,y | c), H {Ξ,y} ∈ R(0, 1) (2)

where Ξ is the fuzzy set of the membership of feature y in class c∈C, h(Ξ,y|c)
is the fuzzy entropy of class c expressed as:

h(Ξ,y | c) = −f(Ξ,y | c) log f(Ξ,y | c)
being f(Ξ,y|c) the summation of membership of feature y in class c, divided by
the membership of feature y in all C classes. That is,

f(Ξ,y | c) =
∑

y⊂c μΞ(y)∑
y⊂C μΞ(y)

here, μΞ(y) denotes the membership of a given rhythm y belonging to the fuzzy
set Ξ.

The fuzzy entropy measure in Eq. 2 is assumed to evaluate the relevance of the
each rhythm. Thus, the higher the value ofH {Ξ,y} for a given waveform feature
y – the lower its contribution in distinguishing between classes. Consequently, we
make the FRA-based relevance weight of the rhythm at hand, wF(yi)∈R(0, 1),
as follows:

wF(yi) = (1 −H {Ξ,yi})/max
∀i

(1 −H {Ξ,yi}),
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For the sake of comparison, we also use the weights derived from the Stochastic
relevance analysis (SRA) using latent variable decomposition techniques [8]. La-
tent variable decomposition finds a transformation mapping of the
k–dimensional stochastic waveform set, Y ∈Rk×N , into a reduced q–dimensional
stochastic set, Ŷ ∈Rq×N , where reduction dimension holds whenever k<q. So,
there is the need for a matrix Γ who preserves maximally data information.
min
Γ�

E
{
(y−Γ�ŷ)�(y−Γ�ŷ)

}
. The relevant measure wS obtained with the usual

explained variance criterion is:

wS(y) = E
{|ν2j Vj | : ∀j = 1, . . . , p

}
(3)

where νj is the ordered eigenvalues of Γ and Vj is the set of singular values
ranked by the decreasing amplitude. The SRA measure allows capturing the
stochastic information embedded in the physiological rhythms.

3 Results

3.1 Electroencephalographic Recording Database

For validating the proposed rhythm extraction methodology, we use the database
of epileptic and normal EEG data collected at the Instituto de Epilepsia y Parkin-
son del Eje Cafetero, Pereira, Colombia [8]. The collection includes 160 EEG sig-
nals from 20 channels placed on the head according to the International 10− 20
standard for EEG electrode placement. Set A holds 80 recordings labeled as nor-
mal (seizure-free) from 20 patients each one with four recordings, whereas set E
has 80 signals labeled as presenting epileptic activity from another 20 patients;
each one with four recordings. A neurologist examined the database to label the
epileptic events. Recordings were done under video control to secure an accurate
determination of the different seizure stages. EEG signals were sampled at 256Hz
with 12-bit resolution and 2 min duration. Fig. 1 illustrates typical EEG signals
with normal and seizure episodes and evidence that measured perturbations ob-
scure the brain activity. EEG signals were acquired in a non-regulated condition.
Noise of the EEG recording included the muscle artifacts as well as 60 Hz power
line interference. All EEG recordingswere digitally band-pass filtered (with a But-
terworth filter of order 10, stopband frequencies 0.5–40Hz ) and normalized to the
absolute greatest value of each recorded EEG signal.

3.2 Tuning of Customized DWT for Rhythm Extraction

As described above, the reconstruction of the DWT coefficients produces an
estimation of the neural activity, where each decomposition level is associated
with the respective rhythm as shown in Table 1. The procedure explained above
is used to customize the wavelet filter for extraction of the EEG rhythms. In
order to perform the training procedure, we randomly select 30% of the whole
set of EEG Data. Fig. 2 shows 10 different customized EEG wavelet and scaling
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Normal

Seizure

Fig. 1. Typical EEG 10-s segments of the considered subsets, normal (A) and epileptic
seizure (E)

Table 1. Used Daubechies-6 filter wavelet levels in rhythm bandwidth estimation.
256 Hz (DS2)

Rhythm Decomposition Frequency

β d3 16-32
α d4 8-16
θ d5 4-8
δ a5 0-4

functions produced by running 10 times the GA-based optimization procedure
fed by various initialization parameters.

Once the customized DWT are calculated, the relevance analysis is carried
out relevance analysis on the physiological rhythms. Fig. 3 shows the relevance
weights provided by both approaches, FRA and SRA. It is worth noting that the
estimated weights should be normalized by their maximum value for handling
their comparison. Since the higher the estimated relevance weight – the more
relevant the respective rhythm, α proves to the most suitable rhythm for seizure-
free EEG signals for either method of computation. This finding confirms several
studies of the α rhythm remarking its topographic distribution (maximum am-
plitude over occipital regions) and high reactivity (have strong attenuation when
passing from a normal to alert state). For the seizure–free class, however, both
relevance approaches differ in estimating the second weight: the θ rhythm for
SRA while β for FRA. In terms of affecting the seizure class, the SRA performs
the following weights ranked by decreasing relevance (see Fig. 3): δ, θ, α, β
while FRA does δ, α, θ, β. As a result, the δ rhythm gets the largest rele-
vance (FRA or SRA) weight. Furthermore, this low-frequency rhythm may be
present in some brain states such as deep sleep or high concentration, its in-
creased activity may be an indication of focal epilepsy on the temporal region
of the brain [2]. The second strongest weight is the θ (for SRA) that has been
strongly associated with epilepsy [4] while the α rhythm (estimated by FRA)
still has not been, meaning that both relevance approaches differ in estimating
the second weight again.
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lines) for EEG analysis using the procedure described in [5]
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Fig. 3. Estimated weights using SRA and FRA for seizure (left) and normal (right)
events of neural activity

The rhythm diagrams introduced in [8] are used to get better interpretation
of the assessed feature set Fig. 4. Here for SRA the higher weight is related for
δ + θ for SRA and δ + α for FRA.

3.3 Classifier Performance Using Rhythm Relevance Weights

We use a Super vector machine (SVM) classifier for validating the performance in
discriminating between the considered classes of neural activity. The SVM classi-
fier is trained under the conventional cross-validation procedure, which consists
in dividing the database into 10 folds each one having an equal number of EEG
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θ
θ+3σ

θ

θ−3σ
θ

δ
δ+3σ

δ

δ−3σ
δ

β β+3σ
β

β−3σ
βα α−3σ

α
α+3σ

α

(a) SRA Weights

       

 

 

 

 

 

 

 

θ
θ+3σ

θ

θ−3σ
θ

δ
δ+3σ

δ

δ−3σ
δ

β β+3σ
β

β−3σ
βα α−3σ

α
α+3σ

α

(b) FRA Weigths

Fig. 4. Rhythm diagram estimated with SRA and FRA

signals per class. The classifier performance is measured in terms of the accuracy,
sensitivity and specificity, defined by:

aac(%) =
Nc

NT
∗100; ase(%)=

NTP

NTP +NFN
∗100; asp(%)=

NTN

NTN +NFP
∗100

where Nc is the number of correctly classified signals, NT is the total number of
signals used to feed the classifier, NTP is the number of true positives (objective
class accurately classified), NFN is the number of false negatives (objective class
classified as reference class),NTN is the number of true negatives (reference class
classified as objective class), and NFP is the number of false positives (reference
class classified as objective class). The classification measures of performance
along with the respective standard deviations are presented in Table 2. The best
classifier performance is (aac=98.26%, ase=100%, asp=98.59%).

Combining the information of the physiological rhythms as represented by
the SRA and FRA values, the classification potential of EEG signals during
normal or epileptic seizures can be improved. Relevance weights can be grouped
according to the following four training scenarios for SRA analysis (rhythms by

Table 2. Computed classification accuracy adding their SRA and FRA weights ranked
by their decreasing relevance

Classification Performance

Rhythms aac(%) ase(%) asp(%)

δ 95.21 ± 2.35 94.24 ± 1.46 95.54 ± 2.21
δ + θ 99.07 ± 0.85 100.00 ± 0.00 99.41 ± 1.12

δ + θ + α 97.26 ± 1.71 96.63 ± 2.44 97.91 ± 1.92
δ + θ + α+ β 96.26 ± 1.78 96.83 ± 2.13 97.48 ± 1.17

δ 95.35 ± 2.21 94.42 ± 1.36 95.68 ± 2.24
δ + α 96.15 ± 1.93 95.36 ± 1.83 97.82 ± 1.41

δ + α+ θ 97.45 ± 1.83 96.21 ± 2.12 97.86 ± 1.95
δ + α+ θ + β 96.08 ± 1.55 96.12 ± 1.95 97.16 ± 1.31
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decreasing relevance, indicated on the first column on Table 2): 1) δ rhythm, 2)
δ + θ, 3) δ + θ + α, and 4) δ + θ + α + β. When validation is carried out using
the classification measures introduced above, it is evident that low-frequency
band rhythms provide the largest discriminant information for the classification
task. The starting contribution of the δ rhythm is high and is the greatest when
considering both δ+θ. However, classifier performances decreased when including
higher band rhythms. In comparison, FRA suggests that the combination of
δ+α+θ rhythms provides the highest discrimination of EEG signals 3. However,
the combination reaching the best classification scenario is for SRA with δ + θ
rhythms.

Table 3. Best classification scenario with optimal DWT + SRA, compared with a
classical DWT with a Daubechies 6 filter + SRA

Classifier Performance

Rhythms aac(%) ase(%) asp(%)

δ + θ 99.07 ± 0.85 100.00 ± 0.00 99.41 ± 1.12

δ + θ 97.38 ± 1.51 96.29 ± 1.86 98.24 ± 1.32

Lastly, Table 3 shows the best classification scenario achieved with the optimal
DWT acc=99.07% and SRA. For the sake of comparison, the same scenario is
repeated with a classical DWT with the Daubechies 6 filter. As shown, the
optimal DWT outperforms the classical wavelet.

4 Conclusions

This work discusses a methodology for automatic extraction of discriminant
information from physiological rhythms of EEG signals generated during normal
and epileptic brain states. Estimation of the physiological rhythms is performed
using an optimal discrete wavelet transform that is tailored specifically for the
current application.

On other hand, we suggest the use of two different methodologies of rhythm
relevance analysis (Fuzzy relevance analysis ans Stochastic relevance analysis),
yielding the same outcomes of the strongest weights that enough for distinguish-
ing between seizure–free and seizure events of neural activity. Finding of both
classes are in line with other reports in the literature. However, either approach
estimates the intermediate rhythm weights distinctly, meaning that further re-
search is to be carried out for improving the knowledge about the EEG rhythms.

We use a Super vector machine classifier for validating the performance of
the estimated relevance weights. Results obtained in a real database show that
relevance weights provide high accuracy in discriminating between the considered
classes of neural activity (seizure–free and seizure events)

Future lines of research include the application of the discussed methodol-
ogy to analyze other brain activities and to determine the feasibility of seizure
prediction.
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7. Kiymik, M.K., Güler, I., Dizibüyük, A., Akin, M.: Comparison of STFT and
wavelet transform methods in determining epileptic seizure activity in EEG signals
for real-time application. Computers in Biology and Medicine 35, 603–616 (2005)
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Abstract. Based on the assumption that brain activity appears in local-
ized brain regions that can vary along time, yielding spatial and temporal
non-stationary activity, we propose a constrained M/EEG inverse solu-
tion, based on the Fused Lasso penalty, that reconstructs brain activity
as dynamic small and locally smooth spatial patches. Thus, our main
contribution is to provide neural activity reconstruction tracking non-
stationary dynamics. We validate the proposed approach in two different
ways: i) using simulated MEG data when we have previous knowledge
about spatial and temporal signal dynamics, and ii) using real MEG
data, particularly we use a faces perception paradigm aimed to examine
the M170 response. In the former case of validation, our approach out-
performs conventional M/EEG-based imaging algorithms. Besides, there
is a high correspondence between brain activities presented on the eval-
uated real MEG data and the time-varying solution obtained by our
approach.

Keywords: Brain mapping · Fused Lasso · M/EEG · Non-stationary
activity · Structured sparsity

1 Introduction

The human brain study is an important and exciting area due to its complex-
ity and functionality. Consequently, a better understanding of these facts may
lead to the treatment of brain diseases or even to interpret the human cogni-
tive process. Hence, nowadays the discovery of non-invasive brain imaging tech-
niques have become in a field with boosted interest. The most accepted imaging
techniques providing high temporal resolution are the Magnetoencephalographic
(MEG) and Electroencephalographic (EEG) that have been widely used to study
brain dynamics. Both techniques allow identifying and analyzing neural rhythms,
evoked potential responses (ERPs), epileptic spikes, among other applications.
However, the number of locations measuring Magnetic/electrical activity is rela-
tively small (a couple of hundreds) while the discretized brain activity generators
(sources) reaches as much as several thousand. This task, commonly known as

c© Springer International Publishing Switzerland 2015
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known as the M/EEG inverse problem, poses a heavily ill-posed problem [1].
Consequently, to ensure a unique and optimal brain activity reconstruction is
necessary to provide prior information [2].

A straightforward approach to supply prior information about neuronal activ-
ity is to impose some constraints on geometrical or physiological properties of the
brain. Mainly, restrictions are considered in the spatial (by inserting an a priori
covariance matrix) or temporal (through state space models) domains. In the first
case (spatial constraints), most of the state-of-the-art approaches assume brain
activity represented by a small/sparse set of spatial basis functions (termed spa-
tial blobs or patches). Thus, brain activity is a linear combination of several pre-
defined spatial patches. The following patch-based approaches are the most rep-
resentative: Automatic Relevance Determination (ARD) , Greedy Search (GS),
Multiple Sparse Priors (MSP) [3,4], Sparse Basis Field Expansion (S-FLEX) [5].
Yet, spatial distribution of those methods states that the active brain patches
remain the same throughout the entire solution interval [6]. Such an assumption
is far from being totally realistic in many practical tasks where brain activity
may have strong spatiotemporal dynamics and non-stationarities [7]. On the
other hand (temporal constraints), most of the approaches include dynamic in-
formation through state space models [8,9], however, sophisticated tuning along
with an increased computational burden make those methods infeasible when
the number of brain activity generators becomes large enough. In this paper,
our basic assumption is that brain activity can be also represented by a set of
small and locally smooth spatial patches varying smoothly over time, in such
a way that we can include both spatial and temporal non-stationary dynamics
to improve the accuracy of neural activity reconstruction. Namely, based on the
fused lasso penalty, first introduced in [10], we encourage the solution to get
temporal homogeneity and spatial sparsity, introducing a set of time-varying
spatial constraints. This definition leads to a solution with spatial coherence,
but considering at the same time the non-stationarity of M/EEG recordings.

2 Methods

This section proceeds as follows: First, we re-introduce the conventional scheme
for the M/EEG inverse problem solution. Latter, we describe our contribution
that shows how the problem can posed in terms of the spatial basis set, and how
the solution can be encouraged to present sparse and time homogeneous activity.

2.1 M/EEG Inverse Problem

In order to represent the electromagnetic field magnitude measured by the scalp,
we assume the following linear model [2]:

Y = LJ +Ξ, (1)

where Y ∈RC×T is the M/EEG data measured by C sensors at T time sam-
ples, J∈RD×T is the amplitude of the D current dipoles, distributed through
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the cortical surface with fixed orientation perpendicular to it, and L∈RC×D

(commonly termed lead field matrix ) is a gain matrix representing the rela-
tionship between the dipoles and M/EEG data. Besides, we assume that the
M/EEG data are affected by zero mean Gaussian noise Ξ∈RC×T with covari-
ance cov{Ξ}=QΞ=λΞIC∈RC×C , being λΞ∈R+ the noise variance. Assuming
this model, the maximum a-posteriori (MAP) estimate of J can be found by
minimizing the following cost function [1]:

argmin
J

{||Y −LJ ||2F +Θ(J , λi)}, (2)

where ||.||F stands for the frobenius norm, Θ(J)∈R+ is a function formalizing
the constraints imposed upon the source activity and λi∈R+ is a regularization
parameter for each constraint.

Y = LΦsH +Ξ

Sparse and time-varying hyperparameters

Fig. 1. Illustrative representation of the proposed method. Top: a set of spatial basis
Φs are generated, bottom: solution encouraging sparse and smooth time-varying is
obtained.

2.2 Sparsity and Temporal Homogeneity Constraints

In practice, methods encouraging focal solutions have been found to yield better
source reconstructions [5]. Consequently, the current density can be expressed
as a linear combination of locally smooth, but spatially confined spatial basis
functions:

J = ΦsH , (3)

where Φs∈RD×S holds S spatial basis functions, and H∈RS×T is a matrix of
weighting coefficients to be estimated. In order to enforce sparsity and temporal
homogeneity, we introduce the following regularization penalty [11]:

Θ(J , λs, λt) = λs||H ||1 + λt

T−1∑
t=1

||ht+1 − ht||1 (4)
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where λs and λt∈R+ are the spatial and temporal regularization parameters,
and ht∈RC×1 stands for the t-th column of H .

Sparsity is encouraged by the first penalty term, which assigns a large cost
to matrices with large absolute values, and thus effectively shrinking elements
towards to zero. This situation means that just a few basis of the spatial dictio-
nary will explain the main brain activity. The second penalty term encourages
temporal homogeneity by penalizing the difference between consecutive time
points, yielding an smooth solution over time. An schematic representation of
the proposed algorithm is provided in Fig. 1.

3 Experiments

3.1 Simulated MEG Data

The most common approach to assess the M/EEG inverse solution is the use of
simulated recordings where brain activity is known, so that estimation quality
can be objectively validated. In this work, simulations are carried out using an
MEG system geometry based on the third-order synthetic gradiometer configu-
ration of a 274 channel whole head CTF MEG system. The activity is simulated
for one, three, and five active dipoles having random location. For the simula-
tion of non-stationary MEG activity, the time series of the active dipoles are
generated using real Morlet wavelets with length of 1.5s, sampled at 120Hz. As
suggested in [6], the simulated time series have the following parameters:

– Random central frequency witsh a mean of 9Hz and standard deviation of
2Hz, sampled from a Gaussian distribution.

– Random time shift generated by normal distribution with standard deviation
of 0.05 s and mean value selected as shown in Table 1.

Table 1. Mean values for simulated Morlet wavelets

# of active sources Mean value

1 [0.75]s
3 [0.375, 0.75, 1.25]s
5 [0.25, 0.5, 0.75, 1, 1.25]s

Afterwards, each simulated MEG is calculated by multiplying the simulated
brain activity by the lead field matrix, as shown in Eqs. 1. Also, measurement
noise is added to get SNR levels of −5, 0, 5, 7, 12, and 14 dB.

For source space modelling, we made use of a tessellated surface of the gray-
white matter interface with 8196 vertices (possible source localizations) with
source orientations fixed and being perpendicular to the surface. Also, the mean
distance between neighborhood vertices is adjusted at 5mm, and the leadfields
are computed using a single-SHELL volume conductor. To compare the perfor-
mance of proposed approach, these simulated data are then source-reconstructed
using the proposed, and the Multiple Sparse Prior inversion schemes.
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Implementation Issues: The parameters used in the proposed approach are se-
lected as follows:

– As explained in detail in [12], we obtained an spatial projector U∈RC×Ĉ ,
that depends on the forward model. It is obtained from the singular value
decomposition of the LL� matrix. The default selection in the SPM software
framework removes all modes with eigenvalues inferior to e−16 of the mean.

Then, a new lead field matrix L̂=U�L∈RĈ×D and a new MEG dataset

Ŷ =U�Y ∈RĈ×T are computed.
– The spatial dictionary comprises S=512 basis covering all the entire cortical

surface Φs={q1, . . . , qS}, being qs∈RD×1 each element of the dictionary.
These functions are locally determined on the basis of brain anatomy with
compact spatial support. The spatial extent of a source prior is determined
by a smoothing operator that employs a Green’s function based on a graph
Laplacian that was computed using the vertices and faces provided from a
cortical surface mesh derived from a structural MRI [13]:

QG = eσA (5)

being qs are selected columns of the matrix QG, where A∈{0, 1}D×D is
a matrix that denotes the neighborhood properties of the vertices. Also,
depending on the smoothness parameter σ, the green function connects the
patch points from a central vertex up to its 8-th order neighbor. As in the
SPM framework, we selected λ=0.6 to obtain a trade-off between spatial
accuracy and local coherence.

– To solve the high dimensional and large scale problem posed in Eqs. 2 and 4,
we used two different approaches: i) an extension of the mono-dimensional
split Bregman Fused-LASSO (sBFLasso) solver [14], and ii) and algorithm
based on proximal-gradientmethod used for optimizing the structured multi-
task regression, named Graph-guided fused LASSO (GFLasso).

– The most critical issue for solving both the sBFLasso and the GFLasso
algorithms are the spatial (λs) and temporal (λt) regularization parameters.
For solving this issue, we empirically tuned both parameters, giving more
weight to the spatial term. As a result, we get less parameters different to
zero with a not so smooth temporal behavior.

Results of simulated data: As assessment measure, we use the averaged corre-
lation, at the active dipole positions, between the simulated and reconstructed
time-series. Thus, the reconstruction is highly penalized if it does not appear
in a close neighborhood of any simulated source, yielding an spatio-temporal
assessment. For each SNR value and source number (one, three, and five active
sources), the experiment is repeated over 100 times. The noise and the simulated
signal parameters are drawn randomly for each run. It should be noted that the
simulation scenario is designed to imitate an event-related experimental design,
in which the activity is time-locked to a given stimulus. Consequently, the higher
the number of simulated sources – the more non-stationary the obtained MEG.
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(c) five active sources.

Fig. 2. Assessed quality of achieved activity reconstruction for different estimation
methods: –MSP –sBFLasso –GFLasso
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Fig. 2 shows the measures of activity reconstruction obtained for different
estimation methods: sBFLasso, GFLasso, and MSP. As seen in Fig. 2a, the
MSP overcomes the proposed approach (greater mean and median values) for
one simulated source.

As seen in Fig. 2b Fig. 2c, however, the performance of the proposed approach
improves as the number of sources increases (i.e. increasing the non-stationary
signal content) for three and five simulated sources, respectively. This situation
points out on greater mean and median performance values, and remains for low
SNR values, specifically −5 and 0 dB. For three active sources, the performance
of the MSP improves as the SNR increases, matching the proposed approach
performance. However, our approach gets the best results for all the SNR values
in the most demanding scenario in terms of non-stationary activity (that is, five
active sources).

3.2 Reconstruction of Brain Neural Activity Using Real MEG Data

Database description: we use the MEG data measured from a single subject
while he made symmetry judgements on faces and scrambled faces (for a detailed

Fig. 3. Source level real data analysis: In the left, the response of the dipole with higher
activity at t=170ms, and in the right, reconstructed activity mapped over the cortical
surface
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description of the paradigm see [15]1). The MEG data were acquired on a 275
channel CTF/VSM system, using second-order axial gradiometers and synthetic
third gradient for denoising and sampled at 480Hz. There are actually 274 MEG
channels in this dataset since the system it was recorded on had one faulty sensor.
The epochs (168 faces and 168 scrambled faces) were baseline-corrected from
−200ms to 0ms. Also, data were down-sampled at 200Hz, and averaged over
each condition. For modelling of the source space, we used a tessellated surface of
the grey-white matter interface with 8196 vertices (possible source localizations)
with source orientations fixed and being orthogonal to the surface. Finally, a
single-shell head model was constructed to compute the forward operator L.

Results of real data: The experiment is designed to examine the M170 response
(analogous to the N170 response recorded by event-related potentials – ERP),
which is a component occurring approximately 170ms after stimulus onset. The
M170 for normal subjects is face-selective with a consistently higher amplitude
to faces than to a wide variety of other visual stimulus categories [16].

Fig. 3 shows the obtained results for real data analysis. It can be seen that
for both conditions, obtained activity by using the proposed approach corre-
sponds spatially to the one obtained by the MSP framework, as seen in the 3D
reconstructions. Additionally, it can be noticed in the response of the dipole with
higher activity (left panel), that the peak found by both Fused Lasso approaches
matches the M170. Also, as expected, the peak is higher for the faces condition.

4 Discussion and Concluding Remarks

The proposed approach addresses reconstruction of non-stationary brain activity
by introducing a set of time-varying spatial constraints based on the Fused Lasso
penalty. The basic assumption is that brain activity can be represented by a set of
small and locally smooth spatial patches that vary smoothly over time, yielding
sparse and time homogeneous brain activity reconstructions. Consequently, the
main contribution of our approach is to deal with spatial and temporal non-
stationary dynamics. Based on the obtained results, the following aspects are to
be taken into consideration:

– For the generation of the spatial basis, we use a set of 512 patches shaped like
Gaussian functions extended over all the cortical surface. As an alternative
to improve the performance of the proposed approach, a higher number of
spatial basis, could be used. Also, a prior estimation of active cortical patches
could be done.

– Themost critical issue for solving theMEG inverse problembased on the Fused
Lasso restriction is the tuning of the spatial λs and temporal λt regularization
parameters. In turn, the spatial termrestricts thenumber ofpossible active cor-
tical patches (encouraging spatial sparsity). The temporal term,which is based

1 This database can be downloaded from http://www.fil.ion.ucl.ac.uk/
spm/data/mmfaces/

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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on a Markovian restriction, promotes temporal smoothness over the hyperpa-
rameters, yielding time-varying solutions that follow non-stationary activity;
that is the case of the ERPs. In here, we empirically tune both parameters,
however, these can be tuned based on some information criteria as proposed in
[11], or based on the residual noise variance [5].

As future work, the authors plan to extend the applicability of the proposed
reconstruction method in time-varying brain connectivity analysis.
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Abstract. The analysis of coactive regions during a Motor Imagery
(MI) task becomes an important issue for revealing the primary neu-
ral activity provided by movement intentions. This information should
be useful in the design of Brain Computer Interface systems. In this
work, a connectivity analysis strategy for the MI paradigm using short-
time features and kernel similarities is proposed. Since the imagination
and execution of tracking movements are associated with neural rhythm
power changes in the μ and β bands, we estimate three representative
short-time feature extraction methods (Power spectral density, Hjort,
and wavelet parameters). Moreover, a kernel-based pairwise similarity
is computed among channels to highlight brain coactive areas during a
MI task. In addition, the influence of an EEG preprocessing stage before
computing the short-time features and the similarity among channels is
studied. The attained results demonstrate that our approach can capture
the main brain activity relationships in accordance with the MI paradigm
clinic findings.

Keywords: Connectivity analysis · Motor imagery · Short-time analy-
sis · Kernel methods

1 Introduction

Brain Computer Interface (BCI) aims to assess brain activity patterns by an-
alyzing multi-channel time-series extracted from electrical recordings, resulting
from neuron interactions, e.g., Electroencephalography signal (EEG). The main
BCI assumption is that the neural activity generated by the brain is independent
of its normal output pathways of peripheral nerve techniques. Then, the elec-
trical activity of brain function might provide a new non-muscular channel for
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sending messages and commands to the external world [1]. Thus, the analysis of
the human sensorimotor functions from EEG signals can help people with phys-
ical disability or degenerative neuropathologies, where BCI systems are based
on the cognitive neuroscience paradigm termed as Motor Imagery (MI) [2]. The
MI relies on brain activity patterns of the imagination of a motor action, e.g.,
the imagination of hand movements [3].

In this sense, the analysis of coactive regions during an MI task becomes
an important issue for revealing the primary neural activity provided by move-
ment intentions [4]. However, as there are millions of functionally interconnected
neurons, the neural system becomes highly distributed, dynamic, and complex.
Therefore, the human brain behaves as a complex network of structural and
functional interconnected regions [5]. Several computational methods have been
proposed to find the brain regions working together, as both, the coherence
and the correlation. The coherence is a simple frequency-dependent measure of
association between two processes and the correlation is a measure of linear de-
pendence. Nonetheless, these mentioned measures just capture linear relations
in frequency and time domain, respectively, being a strong assumption about
the brain region communication process [6]. On the other hand, other measures
of dependency are used in the state of the art, for instance, the Generalized
Measure of Association (GMA) is used for finding interconnected brain areas on
the analysis of others cognitive tasks [7].

We aim to encode brain connectivity across multiple cortical areas by finding
spatial similarity among measured EEG channels. In this sense, we introduce
a kernel-based pairwise Inter-Channel Similarity (K-ICS). We test the K-ICS
method changing two stages: Data enhancement and Feature extraction. The
Data enhancement is realized with the purpose of extract primarily MI infor-
mation using the Empirical Mode Decomposition (EMD) method [8]. Later, the
feature vector is estimated using three representative short-time feature extrac-
tion methods in order to highlight neural power changes in MI paradigm [9]. We
compare the performance of K-ICS against correlation and GMA methods. The
results based on short-time features and K-ICS is able to capture the main brain
activity relationships in accordance with clinical findings of channel activation
for MI task reported in the literature.

The paper is organized as follows. Section 2 describes the theoretical back-
ground of the proposed approach. Section 3 provides an overview of the exper-
iments and results from tested methods. Finally, in section 4, we present the
conclusions of the work.

2 Materials and Methods

2.1 Feature Vector Extraction

Let Ψ={Y (r):r=1, . . . , R∈N} be a set of R raw EEG data trials, where Y (r)∈RC×T

is the r-th observed trial with C∈N channels y
(r)
c ∈RT (c∈[1, C]) and T∈N time

samples. Besides, let Υ={l(r)∈{−1,+1}} be the class label set of Ψ, termed the
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MI paradigm condition. Since the imagination and execution of tracking move-
ments are associated with task-related power changes in the μ (8–13Hz ) and
β (13–30Hz ) rhythms [10], several parameters characterizing these waveforms
are examined [9]. Instead of a long-term parameter set extracted from the input
EEG data, however, we incorporate throughout this study a set of short–time
parameters, where each EEG signal frame is quantified by a single feature vector.

Power Spectral Density Parameters (PSD): We compute PSD for each
EEG channel yc∈Y , noted as s∈RNB , where NB∈N is the number of frequency
bins fixed according to the spectral band of each rhythm at hand. Provided the
EEG sample frequency Fs∈R+, the PSD vector s={sf :f=1, . . . , NB} (with sf∈R
and NB=�Fs/2�) is computed by means of the nonparametric Welch’s method
applied to a set of M∈N overlapping segments, which are split from the in-
put EEG vector. Due to the non–stationary nature of EEG data, the piecewise
stationary analysis is carried out over the set of extracted overlapping segments
that are further windowed by a smooth-time weighting windowα∈RL lasting L∈N
(L<T ). Thus, we accomplish a set of windowed segments {vm∈RL:m=1, . . . ,M},
where vmi ∈R (i=1, . . . , L) is the i-th element of vm. Further, the modified pe-
riodogram vector u={uf∈R+:f=1, . . . , NB}, u∈RNB , is computed based on the
Discrete Fourier Transform as follows:

uf =

M∑
m=1

∣∣∣∣∣
L∑

i=1

vmi exp (−j2πif)

∣∣∣∣∣
2

.

In the end, each PSD parameter is computed as sf=uf/(Mν), being
ν=E

{|αi|2 :∀i∈L
}
. Notation E {·} stands for the expectation operator.

Hjorth Parameters: For each windowed segment vm, the following time-
domain parameters are extracted:

– Activity, σ2
v∈RM , where eachm-th element is directly described by the signal

power variance:

σ2
m = var (vm) , (1)

where var(·) is the variance operator.

– Mobility, φv∈RM , this parameter measures the signal mean frequency:

φm =
√
var (vm′)/var (vm), (2)

being v′ the derivative of v.

– Complexity, ϑv∈RM , holding parameters measuring frequency variations as
the deviation of the signal from the sine shape:

ϑm = φ′
m/φm. (3)
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Wavelet-Based Parameters: The Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT) are carried out to capture the spec-
tral dynamics from EEG trials usually having nonstationary spectral compo-
nents [11]. The former inner-product-based transformation quantifies similarity
between one equally sampled time series sampled at time intervals δt∈R and
the base function γ (η) (termed mother wavelet) ruled by the dimensionless pa-
rameter vector η∈R. Namely, each time element of the CWT vector ςg∈CT is
extracted from yc at scale g∈R by accomplishing their convolution with the
scaled and shifted mother wavelet:

ςgt =
T∑

τ=1

yτγ
∗ ((τ − t)δt/g), (4)

where notation (∗) stands for the complex conjugate. For building a picture
showing amplitude variations through time in eq. (4), both procedures are used:
the Wavelet scaling g and translating through the localized time index t∈T. In
turn, the DWT adequately addresses the trade-off between time and frequency
resolution for nonstationary signal analysis. DWT also provides multi-resolution
and non-redundant representation by decomposing the considered time-series
into a number of sub-bands at different scales, yielding a more precise time-
frequency information about yc [12]. Aiming to extract suitable time-frequency
information from the DWT, the detail parameter vector bj∈C at level j is defined
as follows:

bjt =
∑
k∈Z

aj,kψj,k(t), (5)

where aj,k=
∑

t∈T ythj,k(t), with aj,k∈C, hj,k(t)∈C is the impulse response of a
given wavelet filter. Then, provided the wavelet ψ (·) , the DWT-based decom-
position of yc is computed as yt=

∑
j∈Z

∑
k∈Z aj,kψj,k(t).

Lastly, once the short-time parameters mentioned above are computed for
every channel yc, several of their statistical measures are applied to extract the
feature vector xc∈RQ, with Q∈N.

2.2 Kernel-Based Connectivity Analysis

Let ϕ:RQ→H be a nonlinear mapping function from the original feature space,
R

D, to a Reproducing Kernel Hilbert Space (RKHS), H. Regarding this, a con-
nectivity measure between channels {xi,xj}, ∀i, j∈C, can be computed as a pair-
wise kernel-based similarity measure κ (xi,xj)=〈ϕ(xi), ϕ(xj〉, where κ (·, ·) is a
positive definite kernel function. In addition, the so-called “kernel trick”avoids
the need for computing directly ϕ(·). Moreover, due to the universal approxima-
tion ability, the well-known Gaussian kernel is employed commonly to estimate
the pair-wise sample relationship as follows:

g (xi,xj ;σ) � exp
(−‖xi − xj‖22/(2σ2)

)
, (6)
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where σ∈R+ is the kernel band-width and ‖ · ‖2 stands for the 2-norm. So, based
on eq. (6), a Kernel-based Inter-Channel Similarity (K-ICS) matrix K∈RC×C

can be computed as follows [13]: kij=g(xi,xj;σ). Hence, the matrix K encodes
the information about the main brain activity connections for each EEG trial.

3 Experiments and Results

EEG database: We carry out experimental testing using the well-known Motor
Imagery (MI) database provided by the Berlin Brain-Computer Interface group1.
These data, employed in the BCI competition IV (2008), were collected under
the cognitive neuroscience paradigm of imagination of hand movements. The
database (noted as D1) holds EEG signals recorded from seven subjects belonging
either to the left or right-hand class [3]. From each subject, the recordings were
measured in 59 EEG positions, being the sensorimotor area the most densely
covered by the electrodes. All signal set was preprocessed as follows: Firstly,
band-pass filtered between 0.05 and 200Hz, then digitized at 1000Hz, and lastly,
down-sampled at Fs=100Hz, but previously an order 10 low-pass Chebyshev II
filter had been employed having stop-band ripple 50 dB down and stopband edge
frequency 49Hz. For each person, the whole MI session was conducted without
feedback, performing 100 repetitions per class. The EEG data was recorded for
4 s while a cue (an arrow) was pointing either side on one screen. Recordings
were interleaved by a blank screen pause and a fixation cross shown to the
screen center (either pause lasting 2 s). Overall, the set of EEG signals Ψ={Y (r):
r=1, . . . , 200} (with Y (r)∈R59×400) was acquired for each subject going under
evaluation.

In order to assess the proposed methodology as a suitable tool to support
connectivity analysis tasks, we carry out the following three stages: i) EEG
data enhancement, ii) feature extraction, and iii) brain connectivity estima-
tion. In the beginning, signal representation is enhanced by using the Empirical
Mode Decomposition (EMD) providing adaptive extraction of the main MI in-
formation [8,9]. The EMD iteratively estimates each zero-mean Intrinsic Mode
Function (IMF) amplitude based on the first order derivative criterion until the
residual value asymptotically becomes a small constant, when no more IMF
terms can be further decomposed. All first NI<N IMF terms are calculated,
where we fix NI=4 for the purpose of accentuating MI information concentrated
in the μ and the β rhythms [8].

During the next stage, the short-time parameter set is initially calculated,
where the window size is set as L>Fr/Fs for computing the PSD and the Hjort
parameters. As suggested in [14], the smallest considered frequency is Fr=8Hz.
In the case of the CWT analysis, we use a couple of Morlet wavelets [15]: one
centered at 10Hz (to extract the μ band) and another at 22Hz (β band). For
DWT analysis, the Symlet wavelet (Sym-7) is used to compute the detail pa-
rameter vector bj as to include both rhythms, resulting in the second and third
DWT levels [9]. From the computed short-time parameter set, we extract the

1 http://bbci.de/competition/iv/desc 1.html

http://bbci.de/competition/iv/desc_1.html
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feature vector as follows: The norm and two first statistical moments of the PSD
s for both brain activity bands, while the maximum value and two first statisti-
cal moments of the Hjorth and WT parameters. As a result, we get the feature
vector sizing x∈R27 (Q=27) computed for each channel.

In the last stage of the brain connectivity estimation, the Gaussian kernel es-
timates the pairwise relationships among channels as in eq. (6), fixing the kernel
bandwidth based on the maximization of the information potential variabil-
ity [16]. For the sake of comparison, we also estimate the connectivity between
channels by using the Pearson’s correlation measure [17] and the Generalized
Measure of Association (GMA) [7]. The latter allows computing each pair-wise
inter-channel dependence preserving time resolution and generalizes the concept
of relationship by reflecting the distance between realizations rather than their
absolute locations. Due to temporal restrictions, GMA is estimated on the basis
of the raw EEG time-series as well as on the enhanced EEG time-series. The
Pearson’s correlation is also calculated from the feature vectors.

For illustrative purposes, we show the assessed values of brain connectivity
related to just the subjects numbered as S1, S2, and S7 in D1. The mean inter-
channel dependencies per MI condition, i.e., imagination of left or right hand,
are shown in figs. 1 to 3, where all maps of the coactive brain areas are computed
taking as reference the Cz channel location of the 10-20 system.

figs. 1a to 1f show the obtained Pearson’s correlation computed from the raw
temporal representation. As seen, we get high values of connectivity dependency
between channels that are spread over the entire head for both MI conditions.
Almost the same values of connectivity are assessed for the enhanced EEG sig-
nal, meaning that the inclusion of this stage barely influences on the estimated
measure. Nonetheless, the Pearson’s correlation computed from the feature vec-
tors leads to a notorious activation over the C-electrodes as seen in figs. 1g to 1l.
The observed activation should be related to the Homunculus, i.e., the Motor
Function Area (MF). Such behavior is supported by the MI paradigm clinical
findings stating that the primary brain active regions must be related to the
motor system [18].

In contrast, the GMA-based connectivity computed from raw EEG data clearly
shows that the joint activity of the MI task gets more localized over the scalp
as seen in figs. 2a to 2c. In fact, high values of the association are accomplished
close to the Cz channel (central brain region over the Homunculus and the MF).
Yet, a joint activation also appears around the Primary Motor Cortex (PCM -
FC electrodes) that is assumed not to play a fundamental role in the MI pro-
cess. Likewise, the observed activity in Parietal Cortex (CP electrodes) area
most likely reflects the movement mode but not the imagery mode [19]. Here,
the signal enhancement makes the GMA-based inter-channel highlight areas that
are coactive during the MI task, especially, around the MF region (see figs. 2d
to 2f). However, the attained connectivity representation is not in accordance
with the modern findings of the clinical MI paradigm.

As seen in figs. 3a to 3c showing the connectivity values of K-ICS obtained
from the raw data, the main brain connectivity are mapped over the MC central
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Fig. 1. Connectivity analysis results based on Pearson’s correlation measure. First
row- raw time-series representation. Second row- enhanced time-series rep-
resentation. Third row- feature vector extracted from raw data. Fourth row-
feature vector extracted from enhanced EEG data.
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Fig. 2. Connectivity analysis results for GMA. First row - raw time-series represen-
tation. Second row- Enhanced EEG data.



446 L.F. Velasquez-Martinez et al.

S1 C1

 

 
S1 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) S1, σK = 9.70

S2 C1

 

 
S2 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) S2, σK = 11.24

S7 C1

 

 
S7 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) S7, σK = 9.18

S1 C1

 

 
S1 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) S1, σK = 3.99

S2 C1

 

 
S2 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) S2, σK = 4.03

S7 C1

 

 
S7 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) S7, σK = 4.27

S1 C1 S1 C2

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(g) S1, σK = 9.24

S2 C1

 

 
S2 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(h) S2, σK = 8.90

S7 C1 S7 C2

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(i) S7, σK = 9.07

S1 C1 S1 C2

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(j) S1, σK = 8.89

S2 C1

 

 
S2 C2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(k) S2, σK = 8.66

S1 C1 S1 C2

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(l) S7, σK = 9.10

Fig. 3. Connectivity analysis results based on the proposed approach. First row- raw
time-series representation. Second row- enhanced time-series representation.
Third row- Feature vector extracted from raw EEG data. Fourth row- Fea-
ture vector extracted from enhanced EEG data.

region (around the Cz electrode) having some spotted activations in the PCM
and the PC areas. However, those PCM activations vanish when the K-ICS
measure is applied to the enhanced signal as shown in figs. 3d to 3e. An improved
connectivity estimation is performed when the K-ICS measure is calculated from
the feature vector regardless of whether the EEG recordings have been enhanced
(see figs. 3g to 3l). These results of the estimated brain connectivity resemble
the state-of-the-art MI clinic findings.

4 Concluding Remarks

In this work, a connectivity analysis strategy based on short-time features and
kernel similarities is proposed. Our approach is tested as a tool to highlight
brain areas that are coactive during a MI paradigm task. Due to the imagina-
tion and execution of tracking movements are associated with neural rhythm
power changes in the μ and β bands, we consider three representative short-time
feature extraction methods that have been widely applied in many MI studies:
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PSD, Hjorth, and Wavelet methods. Thus, each EEG channel is represented as a
feature vector encoding some statistical measures from the calculated short-time
parameters. Afterwards, a kernel-based pairwise similarity is computed among
channels to highlight brain areas that are coactive during a MI paradigm task.
Moreover, the influence of a EEG preprocessing stage before computing the fea-
ture vector and the brain connectivity is studied. In addition, the well-known
Pearson’s correlation and the GMA are tested as baselines for estimating the
inter-channel relationships.

We consider the use of EMD for enhancement of EEG data. Grounded on
the obtained results, we show that this case of enhancement stage applied on
raw data may facilitate the estimation of relevant brain activity regions. More-
over, a consistent localization of brain active regions increases when we compute
the described short-time features from the EEG records. Indeed, a suitable brain
connectivity behavior is achieved when the proposed feature extraction is applied
over the raw EEG data. In this regard, the introduced short-time features high-
light the main power variations in the μ and β rhythms allowing to identify the
underlying neurological user mechanism during the MI task [20]. Now, with re-
spect to the Person’s correlation technique, it is possible to notice that a suitable
brain connectivity representation is achieved when short-time features are com-
puted from the EEG signals. Besides, the GMA-based connectivity is not able
to highlight the main brain areas that are coactive during the MI task. In con-
trast, attained results demonstrate that our approach, which includes short-time
feature extraction and K-ICS, can capture the main brain activity relationships
in accordance with the MI paradigm clinic findings.

As future work, authors plan to test the introduced approach over different
MI paradigms and other Brain Computer Interface tasks. Furthermore, an online
extension of the introduced connectivity analysis strategy can be proposed to
include directly the temporal variations of the inter-channel relationships.
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11. Corralejo, R., Hornero, R., Álvarez, D.: Feature selection using a genetic algorithm
in a motor imagerybased brain computer interface. In: IEEE EMBC (2011)

12. Carrera-Leon, O., Ramirez, J.M., Alarcon-Aquino, V., Baker, M., D’Croz-Baron,
D., Gomez-Gil, P.: A motor imagery bci experiment using wavelet analysis and
spatial patterns feature extraction. In: 2012 Workshop on Engineering Applications
(WEA), pp. 1–6. IEEE (2012)
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19. Velásquez-Mart́ınez, L.F., Álvarez-Meza, A.M., Castellanos-Domı́nguez, C.G.: Mo-
tor imagery classification for BCI using common spatial patterns and feature rel-
evance analysis. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz
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Abstract. This paper falls under the idea of introducing biomimetic
miniature air vehicles in ambient assisted living and home health appli-
cations. The concepts of active disturbance rejection control and flatness
based control are used in this paper for the trajectory tracking tasks in
the flapping-wing miniature air vehicle (FWMAV) time-averaged model.
The generalized proportional integral (GPI) observers are used to ob-
tain accurate estimations of the flat output associated phase variables
and of the time-varying disturbance signals. This information is used in
the proposed feedback controller in (a) approximate, yet close, cancela-
tions, as lumped unstructured time-varying terms, of the influence of the
highly coupled nonlinearities and (b) the devising of proper linear output
feedback control laws based on the approximate estimates of the string
of phase variables associated with the flat outputs simultaneously pro-
vided by the disturbance observers. Numerical simulations are provided
to illustrate the effectiveness of the proposed approach.

1 Introduction

The creation of flapping wing micro air vehicles (FWMAV) is a challenging prob-
lem. The potential benefits for insect-like flapping wing micro air vehicles are
numerous [1]. The hovering ability of insects, coupled with the ability for a quick
transition to forward flight, provide an ideal indoor/outdoor reconnaissance plat-
form for search and rescue, reconnaissance and surveillance and ambient assisted
living and home health, among others [2]-[8]. Indeed, this paper falls within a
project called “Improvement of the Elderly Quality of Life and Care through
Smart Emotion Regulation”. The long-term objective of the project is to find
solutions for improving the quality of life and care of ageing adults at home by
using emotion detection and regulation techniques. We believe that miniature
air vehicles at home settings are capable of including some sensors that capture
the mood of the ageing adults.

Different control methods have been found in the literature. Deng et al. devel-
oped in [9] a nominal state-space linear time-invariant model in hover through

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 449–458, 2015.
DOI: 10.1007/978-3-319-18914-7_47
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Fig. 1.Coordinate systems and longitudinalmotion of FWMAVwith respect to the earth
frame

linear estimation. Also, a LQG controller was designed and compared with a PD
controller. A state feedback attitude controller control scheme using the sensor
output as feedback was designed by Schenato et al. [10]. Campolo et al. realized
in [11] a geometric approach to robust attitude estimation, derived from multiple
and possibly redundant bio-inspired navigation sensors, for attitude stabilization
of a micromechanical flying insect.

The use of time-averaging theory has been used within the control of FWMAV
because it helps to simplify the complex aerodynamics associated to the flapping
wings [12]-[13] because the aerodynamic forces and torques, generatedby thewings,
affect the behavior of the FWMAV only by their mean values since the dynam-
ics of the body are much slower than the flapping wings ones. Deng et al. pro-
vided a methodology to approximate the time-varying body dynamics caused by
the aerodynamic forces with time-invariant dynamics using averaging theory and
a biomimetic parametrization of wing trajectories [14]. Also, a Linear Quadratic
Gaussian (LQG) controller was designed which does not require the knowledge of
an accuratemodel for the insectmorphological parameters, such asmoment of iner-
tia andmechanical part’s sizes, nor an accuratemodel of the aerodynamics.Rifäı et
al. developed in [15] a bounded state feedback control of the forces and torques and
takes into account the saturation of the actuators driving the flapping wings and
Khan et al. realized in [16] a differential flatness based non-linear controller based
on the time-averaging theory for the control of the longitudinal dynamics of FW-
MAV.

Taking into consideration the highly nonlinear nature of the FWMAV, active
disturbance rejection control (ADRC) appears as an excellentmethodology for the
control of uncertain linear and nonlinear systems (see the work of Han [17] for the
initial theoretical aspects of this new area of research). The objective of ADRC
stems in the accurate estimation of the unknown part of the controlled system dy-
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namics and proceed to cancel its effects in the feedback control law. Gao and its
coworkers have proposed new advances in controllers, including practical applica-
tions, in a similar manner to that of Han [18], [19].On the other hand, Sira-Ramı́rez
and its coworkers have contribute to the area emphasizing the use of generalized
proportional integral (GPI) observers [20]-[22].

In this line of action, in this article, we propose a robust observer-based linear
output feedback control scheme for the trajectory tracking tasks in the flapping-
wing miniature air vehicle time-averaged model. The linear observer-based con-
troller design approach rests on using highly simplified models of the inputs differ-
ential parameterizations, provided by the flatness property.Within the simplifica-
tion task proposed, only the order of integration of the subsystems and the con-
trol inputs, along with their associatedmatrix gains, are retained in full detail. All
the additive nonlinearities, including their state couplings and complexities, are re-
garded as, unstructured, time-varying signals that need to be online estimated, and
canceled, at the controller specification within an Active Disturbance Rejection
Control Scheme. After input gainmatrix cancelation, the resulting system consists
of pure integration (linear) perturbed systems with time-varying additive distur-
bances. A set of linear extended observers, here denominated asGPI observers, are
capable of accurate on-line estimations of: (1) the output related phase variables;
(2) the, state dependent, additive perturbation input signal itself; and (3) the es-
timation of a certain number of the perturbation input time derivatives. This last
feature facilitates the task of perturbation input prediction as GPI observers are
the most naturally applicable to the control of perturbed differentially flat nonlin-
ear systems [23]-[25].

The remainder of the article is structuredas follows: Section2presents theflapping-
wing miniature air vehicle time-averaged model and its flatness property. Addi-
tionally, this section proposes a simplified model of the system and formulates the
problem to be solved. Section 3 describes the active disturbance rejection controller
design and the results are applied for the stabilization and trajectory tracking prob-
lem of the time-averagedmodel for the flapping-wingminiature air vehicle. Section
4 presents the obtained simulation results and, finally, Section 5 is devoted for the
conclusions of this study and future works.

2 ProblemFormulation and Its Flatness Property

2.1 System Dynamics

Consider the following time-averaged model for the flapping-wing miniature air
vehicle (FWMAV) based on Newtonian approach derived in [16]:

ẋ = vxCθ + vzSθ (1)

ż = −vxSθ + vzCθ (2)

θ̇ = ω (3)

v̇x = −gSθ − ωvz + Fx (4)

v̇z = −gCθ + ωvx − Fz (5)

ω̇ = −Fx

E
(6)
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whereSθ = sin θ,Cθ = cos θ, g is the gravity acceleration, (x, z) are the coordinates
of the center ofmass in the earth frame, θ represents the pitch angle, (vx, vz) express
the velocity of the body of the FWMAV in the body frame and ω is the angular
velocity of the body and (Fx, Fz) represent the aerodynamic forces. The constant
E = Ib

md , being Ib the moment of inertia of the body about the y axis of the body
frame,m is the mass and d denotes the distance from the axis of oscillation to the
center of mass of the body. Fig. 1 shows the coordinate systems and longitudinal
motion of the FWMAV with regard to the earth frame.

2.2 Flatness of the System

According to the theory of differential flatness [21], a dynamic system, ẋ = f(x,u),
with x ∈ R

n and u ∈ R
m, is said to be differentially flat if there exist,m, differen-

tially independent variables calledflat outputs (differentially independentmeaning
that they are not related by differential equations), which are functions of the state
vector and, possibly, of a finite number of time derivatives of the state vector (i.e.,
derivatives of the inputs may be involved in their definition), such that all system
variables (states, inputs, outputs, and functions of these variables) can, in turn, be
expressed as functions of the flat outputs and of a finite number of their time deriva-
tives. This parameterization establishes a one-to-onemapping from the states and
the inputs to the flat outputs.

The proposed system is differentially flat with flat outputs given by the coordi-
nates of the Huygens center of oscillation [22] given by:

F = x+ ESθ, L = z + ECθ (7)

Proposition 1. The flapping-wing miniature air vehicle given in (1)-(6) is differ-
entially flat, with flat outputs given by F and L, i.e., all system variables in (1)-(6)
can be differentially parameterized solely in terms of F , L, and a finite number of
their time derivatives.

Proof. If the equations given in (7) are differentiatedwith regard to time, we obtain
the first and second derivatives of the flat outputs:

Ḟ = ẋ+ EωCθ = vxCθ + vzSθ + EωCθ (8)

L̇ = ż − EωSθ = −vxSθ + vzCθ − EωSθ (9)

F̈ = ξSθ (10)

L̈ = g + ξCθ (11)

where ξ = − (
Fz − Eω2

)
is defined as a new virtual input vector. Upon operating

with (10) and (11) we achieve:

ξ =

√

F̈ 2 +
(
L̈− g

)2

; θ = arctan

(
F̈

L̈− g

)

(12)

Sθ =
F̈

√

F̈ 2 +
(
L̈− g

)2
; Cθ =

L̈− g
√

F̈ 2 +
(
L̈− g

)2
(13)
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If the expressions (10) and (11) are differentiatedwith regard to time, it is obtained

F (3) = ξ̇Sθ + ξωCθ; L(3) = ξ̇Cθ − ξωSθ (14)

Rearranging terms in (14) yields

ξ̇ =
F̈F (3) +

(
L̈− g

)
L(3)

√

F̈ 2 +
(
L̈− g

)2
; ω = θ̇ =

F (3)
(
L̈− g

)
− L(3)F̈

F̈ 2 +
(
L̈− g

)2
(15)

Now, operating with (4) and (5) one obtains

vx = ẋCθ − żSθ = ḞCθ − L̇Sθ − Eω (16)

vz = ẋSθ + żCθ = Ḟ Sθ + L̇Cθ (17)

Combining (16) and (17) with (13) and (15), we conclude that vx and vz are also
functions of (Ḟ , L̇, F̈ , L̈, F (3), L(3)). On the other hand, differentiating expressions
(14) with regard to time and rearranging terms

F (4) = Sθ ξ̈ − ξCθ

E
Fx − ω2ξSθ + 2ξ̇ωCθ (18)

L(4) = Cθ ξ̈ +
ξSθ

E
Fx − ω2ξCθ − 2ξ̇ωSθ (19)

Similarly, upon operating with (18), it is achieved

ξ̈ = SθF
(4) + CθL

(4) + ω2ξ (20)

Fx =
−ECθ

ξ
F (4) +

ESθ

ξ
L(4) + 2

Eωξ̇

ξ
(21)

Finally, substituting (12), (13) and (15) into (20) shows that all the systemvariables
can be expressed as a function of (F,L) and their derivatives, proving that the flat
output vector composed by (F,L) constitute a flat output vector for system (1)-(6).

2.3 SimplifiedModel and Problem Formulation

On the basis of (20), we adopt the following simplified perturbed model for the
underlying FWMAV (18):

[
F (4)

L(4)

]

=

[
Sθ − ξCθ

E

Cθ
ξSθ
E

]

︸ ︷︷ ︸
N (θ,ξ)

[
ξ̈
Fx

]

+

[
ϕF

ϕL

]

︸ ︷︷ ︸
ϕ(t)

(22)

whereϕ(t) = [ϕF , ϕL]
T involves state dependent expressions, the possibly unmod-

eled dynamics and external unknown disturbances affecting the system. We lump
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all these uncertain terms into an unknown but uniformly absolutely bounded dis-
turbance input that needs to be on-line estimated by means of an observer and,
subsequently, canceled from the simplified system dynamics via feedback in order
to regulate the flat output vector, [F,L]T , towards the desired reference trajectories
[F ∗, L∗]T . Finally,the formulation of the problem is stated as follows:Given a de-
siredflat output vector of reference trajectories [F ∗, L∗]T , devise a linearmulti-input
output feedback controller for system (22) such that the flat output vector [F,L]T is
forced to track the given referenceflat output vector [F ∗ , L∗]T .This objectivemust be
achieved even in the presence of unknown disturbances and coupling nonlinearities,
represented by [ϕF , ϕL]

T .

3 GPI Observer-Based Active Disturbance Rejection
Controller

A GPI observer including a reasonable, self-updating, time-polynomial model is
considered for each unknown component disturbance input vector ϕ(t). For this
internal model, we use for each component ofϕ(t) an unspecified element of a fifth

order family of time-polynomials, denoted byϕ
(6)
1 (t) = [ϕ

(6)
1F , ϕ

(6)
1L ]

T = 0. TheGPI
observer based flat output feedback controller is devised as follows:

[
ξ̇
Fx

]

=

[
Sθ̂s

Cθ̂s

−EC
θ̂s

x̂is

ES
θ̂s

x̂is

]

︸ ︷︷ ︸
N−1(θ,ξ)

[
νF
νL

]

(23)

with

νF = −ϕ̂1Fs + [F ∗(t)](4) −
3∑

i=0

kF
i

(
F̂ (i)
s − [F ∗](i)

)

νL = −ϕ̂1Ls + [L∗(t)](4) −
3∑

i=0

kL
i

(
L̂(i)

s − [L∗](i)
)

(24)

where the quantities with subindex s are smoothing observer variables which are
carried out by means of the following clutching function, avoiding possible large
peaks in their high gain induced responses:

sf (t) =

{
1 for t > ε
sin8

(
πt
2ε

)
for t ≤ ε

(25)

with ε = 2 [s]. The design coefficients kFi and kLi , i = 0, 1, 2, 3, are chosen so that
the dominant characteristic polynomials are 4th-degreeHurwitz polynomials, i.e.,

pF (s) = s4 + kF
3 s3 + kF

2 s2 + kF
1 s+ kF

0 ∈ Hurwitz4(s)

pL(s) = s4 + kL
3 s

3 + kL
2 s

2 + kL
1 s+ kL

0 ∈ Hurwitz4(s) (26)

render an asymptotically, exponentially convergence of the flat output error vec-
tor, [eF , eL]

T = [F − F ∗, L − L∗]T , towards a small vicinity of the origin of the
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tracking error phase space. Furthermore, the variables F̂ (j) = Fj and L̂(j) = Lj ,
j = 0, 1, . . . , 3 are generated by:

Ḟ0 = F1 + λF
8 (F − F0)

Ḟ1 = F2 + λF
7 (F − F0)

Ḟ2 = F3 + λF
6 (F − F0)

Ḟ3 = Sθ ξ̈ − ξCθ

E
Fx + ϕ1F + λF

5 (F − F0)

ϕ̇1F = ϕ2F + λF
4 (F − F0)

ϕ̇2F = ϕ3F + λF
3 (F − F0)

ϕ̇3F = ϕ4F + λF
2 (F − F0) (27)

ϕ̇4F = ϕ5F + λF
1 (F − F0)

ϕ̇5F = λF
0 (F − F0)

L̇0 = L1 + λL
8 (L− L0)

L̇1 = L2 + λL
7 (L− L0)

L̇2 = L3 + λL
6 (L− L0)

L̇3 = Cθ ξ̈ +
ξSθ

E
Fx + ϕ1L + λL

5 (L− L0)

ϕ̇1L = ϕ2L + λL
4 (L− L0)

ϕ̇2L = ϕ3L + λL
3 (L− L0)

ϕ̇3L = ϕ4L + λL
2 (L− L0)

ϕ̇4L = ϕ5L + λL
1 (L− L0) (28)

ϕ̇5L = λL
0 (L− L0)

where the design coefficients λF
i and λL

i , i = 0, 1, . . . , 8, are chosen so that the
reconstruction error dynamics dominant characteristic polynomials are 9th-degree
Hurwitz polynomials, i.e.,

pFo(s) = s9 + λF
8 s

8 + λF
7 s

7 + . . .+ λF
1 s+ λF

0 ∈ Hurwitz9(s)

pLo(s) = s9 + λL
8 s

8 + λL
7 s

7 + . . .+ λL
1 s+ λL

0 ∈ Hurwitz9(s) (29)

and their roots are located sufficiently far from the imaginary axis, in the left half
of the complex plane, then the trajectories of the flat output estimation error vec-
tor, [ẽF , ẽL]

T = [F − F0, L − L0]
T , and of its time derivatives, will converge to

a small neighborhood of the origin of the phase space of the observer estimation
error. The further away the roots are located in the left half of the complex plane,
the smaller the radius of the disk representing the neighborhood around the origin
of the estimation error phase space will be.
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4 Numerical Simulations

Numerical simulations were carried out in order to verify the efficiency of the pro-
posed approach in terms of quick convergence of the tracking errors to a small
neighborhood of zero and smooth transient responses. The system parameters are:
m = 2.5 ·10−3 [kg] and Ib = 8.125 ·10−7 [kgm2].The flat output vector [F,L]T has
been designed to track the following reference trajectories:

F ∗ = R sin (At) + E sin (α(t)) (30)

L∗ = R [cos (At)− 1]− z0 +E cos (α(t)) (31)

where R = 7 [m], z0 = 0.5 [m], A = 2π/30 [rad/s] and α(t) = B1 sin (B2t) being
B1 = π/180 [rad] and B2 = 2π/30 [rad/s].

The time sampling used in all the simulations is T = 0.001 [s]. The observer
gains, {λF

8 , . . . , λ
F
0 } and {λL

8 , . . . , λ
L
0 } were selected by identifying, term by term,

the coefficients of the polynomials given in expression (29) with those of a desired

Hurwitz polynomial given by pobs(s) =
(
s2 + 2ζoωnos+ ω2

no

)4 · (s+ po), with
ωno = 15, ζo = 1.5 andpo = 15.Ontheother hand, the controller gains,{kF3 , . . . , kF0 }
and {kL3 , . . . , kL0 }, governing the dominant dynamics, were set by identifying, term
by term, the coefficients of the polynomials given in expression (26) with the Hur-

witz polynomial pcont(s) =
(
s2 + 2ζcωncs+ ω2

nc

)2
, with ωnc = 2, ζc = 1. Fig. 4a

and Fig. 4b illustrate the path tracking and the closed loop trajectories for the co-
ordinates of the center of mass (x, z) in the earth frame showing that the system
follows the desired trajectory in an accurate manner. On the other hand, Fig. 4c

Fig. 2.Evolution of: (a) Coordinate x of the center ofmass in the earth frame; (b)Coordi-
nate z of the center of mass in the earth frame; (c) State-dependent estimated disturbance
ϕF and; (d) State-dependent estimated disturbance ϕL
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and Fig. 4d depict the evolution of the GPI observer state dependent disturbance
estimation.

5 Conclusions and FutureWork

This paper is related to the introduction of biomimeticminiature air vehicles in am-
bient assisted living and home health applications. Indeed, the proposal described
falls within the complete project“Improvement of the Elderly Quality of Life and
Care through Smart Emotion Regulation”. The long-term objective of the project
is to find solutions for improving the quality of life and care of the elderlywho can or
wants to continue living at home by using emotion detection and regulation tech-
niques.We believe thatminiature air vehicles at home settings can carry some fun-
damental sensors to capture the mood of the ageing adult.

In this way, this particular work has explored, within the context of the tra-
jectory tracking problem, the use of approximate, yet accurate, total active dis-
turbance rejection schemes, based on linear GPI observers, for the flapping-wing
miniature air vehicle time-averaged model. Numerical simulations were provided
where the efficiency of the proposed control method is assessed. Finally, in future
work, we try to extend this control scheme to the full 6 DOF flight dynamics.

Acknowledgments. Thisworkwaspartially supported by SpanishMinisterio deEconomı́a
y Competitividad / FEDER under TIN2013-47074-C2-1-R grant.
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Abstract. Even in its early stages, the cognitive deficits in persons with
dementia (PwD) can produce significant functional impairment. Demen-
tia is characterized by changes in personality and behavioral function-
ing that can be very challenging for caregivers and patients. This paper
presents results on the use and adoption of a cognition assistive system
to support occupational therapy to address psychological and behavioral
symptoms of dementia. During 6 months we conducted an in situ sys-
tem evaluation with a caregiver-PwD dyad to evaluate the adoption and
effectiveness of the system to ameliorate challenging behaviors. Evalua-
tion results indicate that intervention personalization and touch-based
systems interfaces encouraged the adoption and the positive effect in
reducing challenging behaviors in PwD and decreases caregiver burden.

Keywords: Non-pharmacological interventions ·Occupational therapy ·
Cognitive assistive systems · Ambient assisted living

1 Introduction

Dementia is characterized by the loss of intellectual functions to the extent that
it interferes with daily activities [1]. For instance, memory difficulties in PwD
can impact on self-confidence, may lead to withdrawal from day-to-day activities,
anxiety, and depression. Family caregivers are also affected due to the practical
impact of memory problems on everyday life and to the strain of frustration that
can result from it [2]. Besides cognitive decline, PwD presents Behavioral and
psychological symptoms of dementia (BPSD), which are defined as ”symptoms
of disturbed perception, thought content, mood, behavior frequently occurring
in patients with dementia [3]. Psychological symptoms of dementia relate to anx-
iety, depression, and psychosis whereas behavioral symptoms include aggression,
apathy, agitation, disinhibited behaviors, wandering, nocturnal disruption, and
vocally disruptive behaviors. Such behaviors are typically identified by observa-
tion of the PwD and only considered challenging when they affect other people

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 459–468, 2015.
DOI: 10.1007/978-3-319-18914-7_48
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or cause self-injury. It is estimated that behavioral symptoms occur in as many
as 90% of PwDs [4]. These challenging behaviors are associated with high levels
of distress in both PwD and their caregivers.

1.1 Occupational Therapy for Dementia Treatment

The care for a PwD is a complex and challenging task since the natural evolution
of dementia is one of progressive decline, requiring increasing degrees of care,
and gradually deteriorating individuals cognitive, physical, and social functions.
There is a growing agreement that dementia treatment should initiate with non-
pharmacological interventions to ameliorate challenging behaviors such as those
aforementioned because they address the psychosocial/environmental causing
the behavior [4]. Non-pharmacological interventions have been classified as: a)
cognitive/emotion-oriented interventions; b) sensory stimulation interventions;
c) behavior management techniques; and d) other psychosocial interventions
such as Occupational Therapy. To maximize the effect of these interventions,
requires an individualized intervention planning and execution according to the
unique needs and strengths of the PwD [3]. There is evidence that occupational
therapy (OT) is effective in dementia treatment [5,6]. The focus of OT is to
improve PwD ability to perform activities of daily living promoting their in-
dependence and participation in social activities and to reduce the burden on
the caregiver. Typical OT intervention involves the assessment of PwD abilities,
training family caregivers in skills such as problem solving and coping strategies,
and to implement environmental and compensatory strategies to assist the PwD
to engage in meaningful activities. multicomponent psycho-social interventions
that are tailored and focused on the patientcaregiver dyad are the most effective
in dementia [6]. Occupational therapists can play an important role in the care
of the PwD, given their expertise at understanding the complex relationships
between person, environment and occupation required for successful activity ex-
ecution. Therapists accompany PwD during the course of the disease, providing
education and skills training, and supporting the caregivers.

1.2 Assistive Technologies for Dementia Treatment

Ambient Intelligence (AmI) has been recognized, as a promising approach for im-
proving home and community-based care, aiming at mitigating dementia effects
on individuals and families [7]. Ambient intelligence is a new paradigm in in-
formation technology aimed at empowering peoples capabilities by the means of
digital environments that are sensitive, adaptive, and responsive to human needs
[8]. The development of AmI systems to support dementia treatment, should
consider that non-pharmacological interventions not only need to be adapted to
the particular PwD and caregiver needs, but also may need to evolve or change
as the dementia progresses. An Ambient-assisted Intervention System (AaIS)
uses AmI to improve PwDs quality of life by identifying the presence of BPSDs,
deciding on an appropriate intervention, and either modifying the environment
or persuading the PwD or the caregiver to act on the systems advice [9]. This
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paper presents results on the use and adoption of an AaIS to support personal-
ized occupational therapy interventions to address psychological and behavioral
symptoms of dementia.

2 Personalized Ambient-Assisted Interventions

Assistive technologies have the potential to assist occupational therapist in gath-
ering assessment data, executing interventions, and monitoring responses to ther-
apy. For example, the Engaging Platform for Art Development (ePAD) enable
PwD independent access to art creation [10]. ePAD is customizable such that an
art therapist can choose themes and tools that they feel reflect PwD needs and
preferences.

The AaIS approach consists on a set of autonomous and collaborative agents
that implements the services depicted in Figure 1. Thus, a behavior analysis
agent identify BPSD episodes, which can be explicitly observed and reported by
the caregiver, or alternatively, they can be inferred by analyzing the information
perceived from agents attached to sensors located in the environment or worn
by the PwD. Agitation, for instance, is manifested via repetitive movement and
verbal expressions such as shouting or continuous talk. Finally, once there is
evidence that the PwD is exhibiting a BPSD, a decision model agent is used
to select on a behavioral intervention, which will be enacted through ambient
actuator agents that: a) Intervene directly to change the configuration of the
physical environment; b) Communicate with the caregiver to recommend an
action to perform; or, c) Communicate with the PwD to suggest an activity or
provide him with information that could change his current behavior. Our model
for tailoring the AaIS services is supported by an ontology, which is described in
[9] . The system user interface is based on two components: AnswerBoard and
AnswerPad. AnswerBoard is a public ambient display implemented on a touch
screen LCD computer. Located in a common area within the PwDs home, it
provides information of their activities for the current day, the current date, and
time of day. Reminder messages are displayed on the AnswerBoard to prompt
the patient on relevant events on his agenda, such as medication. The caregiver
may create reminder notes from scratch or select one of the predefined templates
completing the required information.

AnswerPad is an application running on an Android mobile phone with touch
screen. It includes different widgets aiming to offer the PwD time and place
awareness, reminder notes, cues on his/her current activity, and to maintain the
connection with his/her social network. AnswerPad collects data from the mobile
phones sensors to feed the intervention engine. Additionally, caregivers may use
AnswerPad to manage elders daily activities, keep track of his/her whereabouts,
create reminder notes, and keep a diary of patient’s.

3 Study Design

This section describes a case of study in which the effectiveness of the AaIS to
support occupational therapy interventions is evaluated. The participants in the
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Fig. 1. Ambient-assisted intervention system architecture and applications

study were Jose a 70 years male with Alzheimers disease (MMSE=17), their
primary caregivers Ana (wife, 66 years old) and Sonia (daughter, 43 years old).
The study involved the visits of a therapist to the participants home during a
period of 20 weeks. The therapist applied non-pharmacological intervention to
address BPSD as suggested in clinical guidelines. Variables observed during the
study were:

– The presence and severity of challenging behaviors estimated by the scores
of the Cumming’s neuropsychiatric inventory questionnaire (NPI-Q) to eval-
uate the effect of the intervention on the behavior in the PwD [11].

– The occurrence of apathy measured by the apathy evaluation scale (AES),
developed to measure the apathy resulting from neurological diseases [12].

– Caregiver burden is the psychological state resulting from the combination
of physical, emotional job and social restrictions associated with caring for
a sick person. In the study the outcome of the Zarit burden interview (ZBI)
was used to observe variations in the subjective burden reported by the
caregiver [13].

– Caregiver Self-efficacy, which refers to a subjective belief that a person has
about his/her ability to successfully carry out certain kinds of behavior. This
was observed using the revised scale for caregiving self-efficacy (RSCSE) [14].

Additionally, caregivers kept a diary of PwD behavior to document incidents
they considered problematic, unusual changes in behavior, health status, mood or
memory problems. Caregivers reported each incident by describing the incident,
the response of relatives to the incident, and the context in which it occurred
(date and time). This information was reviewed on interviews with caregivers
during follow-up visits, which enabled us to assess the effect of the intervention
on the behavior of the participants. The study was divided in two stages.

3.1 Stage A: Intervention with Traditional Artifacts

In this first stage, and for a period of 4 weeks, the therapist implemented a com-
bination of strategies using traditional means, which included the use of external
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memory aids, cognitive training, reminiscence therapy, and techniques to enhance
communication. In assessment interviews, caregivers expressed a particular con-
cern about the lack of interest of Jose for any type of activity during the day. They
noted that Jose spends most of the day asleep in his room. To address this behav-
ior, and in agreement with caregivers, the therapist defined a weekly schedule of
activities that could be attractive for the PwD. For instance, Jose enjoys solving
crossword and Sudoku puzzles prior the dementia onset. So, one the activities re-
quired solve crossword puzzle using pencil and paper. Visits were performed three
times a week and during these visits the primary caregiver was involved. In each
visit, the therapist guided the session consisting in the execution of three activi-
ties scheduled for the day. To perform each activity a maximum time of 30 minutes
was allocated in order to avoid fatigue of the participants. During rest periods of
10 minutes between each activity the therapist promoted communication between
the PwD and his caregiver. Another concern for caregivers was the refusal of Mr.
Jose to take his medication. They need to remind him the medication schedule and
monitor intake. Often Jose hid the pills in his pocket or mouth for later disposal.
Due this situation, an external memory aid based intervention was implemented
trough a whiteboard (40cm x 30cm) placed in the kitchen for displaying his medi-
cation schedule, and the use of paper cards with written instructions contained in
a labeled pill organizer.

3.2 Stage B: Intervention Supported with AaIS

In the second stage of the study the AaIS supported the intervention. The AaIS
services were tailored according the particular needs of the participants. As in
the first stage, the therapist conducted the sessions alternating the execution ac-
tivities supported by the AaIS with activities using traditional artifacts. As part
of the deployment of the AaIS, AnswerBoard was installed on a 20-inch touch-
screen computer over a table in the living room. On the agenda of activities An-
swerBoard the weekly schedule of predefined activities are added. AnswerBoard
displays the agenda of activities previously defined in stage A. To complete the
deployment of the AaIS, two mobile phones running AnswerPad were given to
Mr. Jose and their caregivers. Using AnswerPad the caregivers created and deliv-
ered medication reminders and other activities prompts, which Mr. Jose would
receive in his AnswerPad or in the AnsswerBoards screen. AnswerBord included
of two games:

a) Memorama: A card game in which all the cards are laid face down on the
touchscreen display and two cards are flipped face up over each turn (Fig.
2a). The object of the game is to turn over pairs of matching cards. The user
chooses two cards touching the screen to turns them face up. If cards show
the same picture, the cards disappear displaying part of the background
image. If they dont show the same picture, they are turned face down again.
The game ends when the last pair of cards has been picked up.

b) Alphabet soup: In this activity, the participant is presented with a list of
words that must be found in a grid of letters showing in the touchscreen
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display (Fig. 2b). Each list has words of one of the following categories: a)
animals; b) objects in the house; c) months of the year; d) names of family
members; e) fruit; and f) countries. Each list has a maximum of 20 and a
minimum of 10 words.Words can appear horizontally, vertically or diagonally
in the grid. Participants mark each found word dragging their finger over the
word. If the word matches a word on the list, the word is highlighted and
removed from the list.

a) b)

Fig. 2. Activities implemented on AnswerBoard a) Memorama; b) Alphabet soup

Research has proposed matching activities to individual interests and retained
skills to engage persons with dementia and maintain involvement [15]. The selec-
tion of games implemented was stirred by the adoption of similar activities that
Mr. Jose found enjoyable. During the first week was observed that Mr. Jose had
difficulties to identify and select the words in Alphabet soup activity. The game
interface was customized increasing the font size and the dimensions of the grid
in which the letters are shown. Likewise, caregivers pointed out that a hear im-
pairment in Mr. Jose some-times prevented him for hearing the reminders audio
notification in AnswerPad, so it was configure to vibrate whenever it received
the reminder.

4 Evaluation Results

In this section we present the results obtained from the application of assessment
instruments, interviews with caregiver and system usage data obtained from the
logs generated by the AaIS.

4.1 Results on Adoption and Usability

The average daily running time of AnswerBoard, was 11:30 h (σ=5:53 h). The
average number of days used in a week was 6.7 days. Figure 3 shows the average
hours of daily use for each week of the stage B of the study.

Figure 4 shows the number of reminders received by the participant through
Answer-Board classified into four categories: a) Medications: Reminders for med-
ication; b) Activities: Reminders about the activities on the agenda; c) Prompt-
ing: Directions to support an activity; d) Orientation: Reminder for temporal or
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Fig. 3. AnswerBoard average daily usage

spatial orientation. All the reminders were created and delivered through An-
swerPad by the caregivers. As shown in fig 4, the predominant type of reminder
is for medication, except for the month of May, since only the last week of the
month the system was deployed. The decrease in the number of medication re-
minders from August is associated with the removal of medications prescribed
to Mr. Jose by his family physician.

Fig. 4. Reminders delivered to the PwD using AnswerPad

With respect to the activities implemented through AnswerBoard. For activity
Memorama an average daily use of 29 minutes (σ=42 m) was observed, and on
average the activity was performed 5 times a day (σ=4). The average time to
complete the Memorama was 6 minutes (σ= 6 m). The Alphabet Soup activity
average daily use was 37 minutes (σ=26 m). The average daily usage was 6
(σ=4) times.

4.2 Results on Challenging Behaviors and Caregiver Burden

This section presents the results obtained from the application of assessment
instruments. Table 1 summarizes the results obtained in 20 weeks of the study.
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The results are shown in ordered pairs in which the first value corresponds to
results re-ported by Ms. Ana (C2), and the second as reported by Sonia (C3).

Table 1. Results from assessment instruments

APR MAY JUN AGO
Instrument C2 C3 C2 C3 C2 C3 C2 C3

Apathy AES 64 54 63 54 60 50 49 51
NPI-Q Total 27 19 15 16 14 15 14 13
NPI-Q apathy subscale 4 3 3 3 3 3 3 2
NPI-Q depression subscale 0 4 0 3 2 3 3 2
Caregiver burden ZBI 36 31 34 28 21 16 17 18
Caregiver self-efficacy RSCSE 81 39 83 41 83 45 90 49

Throughout the study Ana reported incidents in 7 of the 12 NPI-Qs sub-
scales (μ=17.5, σ=5.5). Sonia reported incidents in 4 of the 12 NPI-Qs subscales
(μ=15.75, σ=2.17). The results of the apathy evaluation scale (AES) show a
slight variation in the scores reported by both caregivers Ana (μ=58.20, σ=5.56)
and Sonia (μ=53.20, σ=2.48). The correlation of the scores reported by care-
givers is weak (Υ=0.21). The maximum score in the scale is 72 points. In PwD
a score greater than 41.5 points indicates the presence of pathological apathy.

The Zarit Burden Interview (ZBI) has a maximum score of 88 points and ques-
tions are grouped into three categories: a) Consequences of care in the caregiver
(11 questions, 0-44 points), b) beliefs and expectations of their caregiving skills
(7 questions, 0-28 points), and c) Relationship of caregiver-patient (4 questions,
0-16 points). The average rating of the ZBI observed for Ana is 24 (σ=9.44). The
average rating of the ZBI observed for Sonia is 21.2 (σ=7.03). The correlation
ZBI scores reported by the caregivers is very high (Υ=0.97).

The revised scale for caregiving self-efficacy (RSCSE) measures the perceived
ability of caregivers to deal with challenging behaviors of elders with cogni-
tive impairment. The mean scores reported by Ana is 84.13 (σ=3.05), which is
considerably high compared to the average scores observed in Sonia (μ=47.47,
σ=8.98).

5 Discussion

The analysis of the study focuses on the effects of the intervention on issues such
as medication, apathy, overload/efficacy of caregivers and adoption system. The
logs generated by the AaIS show that at least 12 hours a day the system was
running. Also, the system logs show that nearly seven days a week participants
used the system. One of the basic functions of AaIS evaluated in the study was
the intervention based on external memory aids. From the analysis of data from
the system log can be observed a reduced response time to reminders. To remove
the reminder note from the AnswerBoard screen the user has to touch over the
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reminder. It was observed that typically Mr. Jos, after reading the reminder note,
went to the kitchen for a glass of water, took the medication and deactivated the
reminder. On average, the reminders were visible in AnswerBoard for 5 minutes
(σ = 13 minutes) before being removed, and 88.22% of the reminders were
eliminated in less than 5. The skill to remove the reminders improved throughout
the study. In the first four weeks 28.95% of the reminders were removed within 2
minutes after being displayed on the AnswerBoard. After 18 weeks, 49.07% were
removed in less than 2 minutes. Further evidence of the adoption of the system is
derived from qualitative data gathered from interviews with the caregivers and
the therapists log. Ana: I feel good because now I know hes taking his pills, not
like before. He hid the pills and now he doesnt I feel safer now because already
taking the pills. Sonia: Very helpful. It really is. Because now, even when we are
busy. He asks us: ”Do I have to take the pill right now?” And that helped us.

During home visits it was observed that normally when Mr. Jos read the re-
minder, either from AnswerBoard or AnswerPad, he went to the kitchen, grabbed
a glass of water, took the medication and deactivated the reminder. Given the
positive response to medication reminders, it was possible to implement an auto-
mated reminders strategy. Reminders were scheduled to automatically deliver to
AnswerBoard and AnswerPad, relieving the caregivers responsibility of creating
the reminders.

As noted in the previous section, quantitative variation in the results of ap-
athy sub-scale of the NPI-Q shows a decrease during the study. Likewise, the
assessment of apathy by AES shows a reduction in scores reported by the care-
givers. Although scores remain above the cutoff (41.5) suggesting the presence
of apathy in PwD, the results of the interviews provide evidence of an increase
in the motivation of Jose in performing activities. Ana: I see him more awake
at all. More cheerful too. Better mood, because before he was sleep most of the
day. He was very quiet, not talking, and now he ask questions. Sonia: He is more
active now. He can last 2 to 3 hours playing. He is entertained and no longer
sleeps. For instance, yesterday I ask him to take a nap in the afternoon and he
said: ”No, I’ll be here for a while”.

6 Conclusions and Future Work

We have presented an ambient intervention system to support occupational ther-
apy aimed at addressing psychological and behavioral symptoms of people suf-
fering from dementia. The approach leverages the cognitive remnants resources
of PwD and allows them to take some active role to help themselves. Since de-
mentia has very broad effects on the person and their caregiver, the proposal has
a comprehensive approach that takes into account their needs to individualize
treatment. The system relieved the caregiver of the task of continually support-
ing the PwD in medication and to maintain PwD engagement in pleasurable
activities. Our findings suggest that PwD might expect greater benefits from
personalized intervention.
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Abstract. The syndrome of hemispatial neglect is usually associated to
a lesion of the brain and is characterized by a reduced or lack of awareness
of one side of space, even though there may be no sensory loss. Although
it is extremely common, it has proven to be a challenging condition
both to understand and to treat. This paper focuses on reviewing this
syndrome and proposing new therapies based on multisensory feedback
in a virtual environment. These therapies have been designed to improve
the awareness of the neglected side by using visual, auditory and haptic
feedback.

1 Introduction

After a hemisphere of the brain sustain a damage, a deficit of both attention to
and awareness of one side of space can be observed. This is a syndrome that has
been called Hemispatial neglect and has been defined as a failure to attend to
the “contralesional” side of space, that is, to the opposite side of the damaged
hemisphere [8]. Usually, this syndrome is the result of a damage to the right
cerebral whose consequence is a visual neglect of the left-hand side of space
[23]. Right-sided spatial neglect seldom appears because there is a redundant
processing of the right space by both the left and right cerebral hemispheres.
However, most of the left-dominant brains only process the left space by using
the right cerebral hemisphere [26].

Although it mostly affects visual perception (’visual neglect’) [7], neglect in
other forms of perception, such as auditory [2] and tactile [10], can also be found,
either alone or in combination with visual neglect. As Mattingley and Bradshaw
stated [18], from a clinical perspective, tactile neglect may be the most salient
manifestation of a lateralized attentional impairment. In addition to this sensory
neglect, the patient can also suffer other problems such as motor neglect due to
a reduced use of the contralesional hemisphere. Therefore, this syndrome greatly
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lessen people’s ability to carry out some simple tasks of daily life such as washing
up, dressing, eating and even strolling.

This syndrome is extremely frequent among people with Acquired Brain In-
jury (ABI)[19] and among older people after suffering a stroke, one of the main
causes of hemispatial neglect. A recent study [21] states that the Total European
2010 cost of brain disorders was 798 billion euros, among which 37% was direct
health care cost, 23% was direct non-medical cost, and 40% was indirect cost.
Particularly the cost associated with stroke and traumatic brain injury was 64.1
and 33.0, respectively. Thus, it can be stated that this is a relevant problem not
only due to the difficulties it can cause to the people that suffer this syndrome
but also to its associated costs.

In order to treat this brain disorder some techniques for diagnosis and reha-
bilitation have been proposed [23]. Related to diagnosis, several simple bedside
screening tests have been developed. The assessment of hemispatial neglect is
done by using just pencil and paper tests that consist in asking the patient
drawing tasks such as line bisection, target cancellation or copies [1]. Patients
with hemispatial neglect make incorrect bisections, fail to cancel the targets on
the left side, etc. Regarding treatment, the most common techniques are behav-
ioral intervention and drug treatments. The treatments do not have the same
effectiveness for every patient because everyone has a different combinations
of cognitive deficits. Also, it is important to keep in mind that those patients
who have damaged certain areas of their brain, could be unresponsive to the
treatment.

Hemispatial neglect is not a unitary deficit; instead, it involves neglect of
different portions of space and hence different functions. In addition, as Bon-
ato stated [6] the performance of brain-damaged patients is negatively affected
by increased task demands, which can result in the emergence of severe aware-
ness deficits for contralesional space even in patients who perform normally on
paper-and-pencil tests. Finally, although most of the researchers have prevalently
attended to the visual symptoms of neglect, others [13][12] have highlighted that
this syndrome has an impact on non-visual sensory modalities as well. In par-
ticular, neglect-related symptoms have been described in the haptic, tactile and
auditory modalities. This conception fits well with the fact that areas usually
affected by lesions causing neglect are known to contain multisensory neurons
responsible for the convergence and integration of information coming from dif-
ferent senses to build multiple multisensory representations of space. Taking into
account all of these characteristics of the hemispace neglect we have developed
a novel system that allows the therapists to design their own therapies so that
they can be adapted to each specific patient. In particular, these therapies not
only stimulate the visual sense but also include other sensory stimuli, mainly au-
ditory and haptic ones. Thus, we can talk about multisensory therapies applied
to hemispace neglect patients.

This paper is organized as follows. First, in the next section, we give an
overview of the application of virtual reality to the evaluation and treatment of
hemispace neglect. Section 3 describes the new tool that allows the therapists to
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design their own therapies. Finally, last section provides some final conclusion
and future works.

2 Related Work

Virtual reality (VR) environment is a computer-simulated environment that can
simulate physical presence of individuals in places of the real or imagined worlds.
VR can be either non-immersive or immersive, depending on the device used to
provide visual feedback [22]. Non-immersive systems use a monitor to provide
visual feedback, while fully immersive systems commonly use head mounted
displays.

Several VR-based therapy methods for hemispatial neglect have been
proposed up to date [25] [11]. For instance, the eye-patching technique was
integrated in a VR environment [3] to hide parts of the virtual world. This
environment also included auditory stimulation, both lateralized and spatial, as
well as a variant of optokinetic stimulation implemented as a flow of dots su-
perimposed over the virtual world. This environment was extended later on to
simulate the hemispatial neglect [4]. This simulation showed to be useful not
only to determine the potential of a particular rehabilitation technique but to
help the rehabilitation staff and the relatives to get a better understanding of
the patient’s condition. VR and auditory stimulation were also employed in oth-
ers applications such as [20] and [15]. Myers et al. [20] integrated several aids in
their application, including partial patching of the right hemispace and auditory
stimulation. Another interesting aid was a variation of optokinetic stimulation
that consisted in a virtual dog moving from right to left in one of the rooms of
the virtual house. On the other hand, Kim et al. [15] developed several aids to
assist the patients in tracking a visual target. They incorporated auditory stim-
ulation in their application in the form of a bilateral alerting tone. Visual aid to
direct the attention of the participant towards the target was also provided.

There are already experimental data documenting the effectiveness of using
VR-based therapy methods. For instance, a recent study [16] suggests that VR
training may be a beneficial therapy for patients with hemispatial neglect af-
ter stroke. For instance, Castiello et al. [9] used a PC screen for visual display
combined with a DataGlove for hand-motion tracking. They suggested that the
virtual hand was incorporated as part of patients’ body so that the space repre-
sentation was extended to include that virtual space. Katz et al. [14] analyzed the
efficiency of a non-immersive virtual environment training for safe street crossing
of right hemisphere stroke patients with regard to computer based visual scan-
ning tasks. After nine hours of training (distributed over 4 weeks), both control
and experimental groups of participants with hemispatial neglect improved on
standard hemispatial neglect measures. However, experimental group achieved
better results on some measures of the real street crossing. Smith et al. [24] also
carried out a single-subject experiment with 4 patients with hemispatial neglect
who carried out several tests, before and after training in a VR environment with
developed VR environment. The main conclusion was that patients show slight
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Fig. 1. System’s parts

improvements on their test and also reported some improvements on everyday
tasks such as reading.

However, we propose that training of patients with Hemispatial neglect us-
ing both VR and haptic feedback may be a potential new intervention option
because it can stimulate new learning and foster an accelerated recovery. The
haptic human-computer interaction is has been defined as the interaction be-
tween a human computer user and the computer user interface by means of the
powerful human sense of touch. Haptic hardware has been discussed and ex-
ploited for some time, particularly in the context of computer games. However,
so far, little attention has been paid to the general principles of haptic HCI in
neglect rehabilitation. As far as we know, only a system [5] combining VR and
haptic feedback has been developed to overcome the lack of proper quantifica-
tion of neglect that occurs when using traditional the Behavioural Inattention
Test. In this work, we propose a new environment that provides therapists with
facilities to customize the therapy according to the special needs of patients with
hemispatial neglect.

3 A Tool for Multisensory Rehabilitation of Hemispace
Neglect

The main goal of the system developed is to aid experts as well as patients in
the process of hemispatial neglect rehabilitation by using multisensorial feedback
in VR environment. On the one hand, the system proposed enable experts to
design therapies customized according to the specific characteristics of each pa-
tient, and monitor the results of each exercise done by the patients. On the other
hand, patients only have to deal with their exercise, without worrying about the
configuration of the application. Furthermore, the exercises have been designed
as games in order to take advantage of their playful and engaging aspect, en-
couraging patients to keep on their rehabilitation process.

Figure 1 shows the functional parts of the system developed and their re-
lationships with the system’s roles. As can observed, the therapist creates an
XML configuration file to define the patient’s environment and the therapies to
perform. Moreover, thanks to this configuration file, each patient always have
his/her rehabilitation environment properly configured. As soon as a configura-
tion file is created, the therapist can try and assess the designed game immedi-
ately.
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3.1 Senses Stimulated

The system has been developed to enable therapists to define which patient’s
senses they want to stimulate and test. The senses that can be stimulated in a
game are:

– Visual : A virtual world where the user can interact and move will be pre-
sented by means of a computer monitor or a VR system. This sense is critical,
since patients suffering from hemispatial neglect do not respond properly to
visual stimuli.

– Aural : To support the rehabilitation of eyesight, aural stimuli will be used
to help the patient to determine when a hazard is approaching and proceed
consequently.

– Haptic: The users can feel vibrations on both sides of their bodies, depending
on which the origin of the hazards is in the virtual worlds. The haptic system
has been implemented by means of the VitaKi prototype [17], which can send
haptic stimuli to a set of vibrators located on the patients’ skin or clothes.

3.2 Therapies Supported

The system provides the therapist with support to create the following three
types of games, therapies indeed:

1. Path. The main goal of this game is to train the patients in a real-world
situation, namely to walk through an environment full of obstacles which
they must dodge in order not to collide with them. While playing this game,
the patients try to select the right path, so that their avatars start to move
forwards while a series of obstacles appear. The goal is to avoid such obstacles
by moving right or left (see Figure 2).
In this game, the patient, by means of its avatar, can move along six roads
or lanes. If an obstacle appears in the lane where the patient is currently, the
audio system starts to play a sound to warn him/her. This sound is higher,
as closer the patient is to the obstacle. Similarly, the haptic system starts to
transmit a harder-and-harder vibration to the user. If the obstacle is in an
adjacent lane, the system’s behavior is similar, but the stimuli are weaker
and they are applied only to the patient’s body part closer to the location
of the obstacle in the virtual world (i.e. if the obstacle is in the user’s right
lane, he/she would feel a vibration on his/her right arm).
If the patient’s avatar collide with an obstacle in the virtual world, he/she
will lose one live and, if he/she changes to a different lane without a collision
hazard, that is, there is no near obstacle in the current lane, an unnecessary
change of lane will be accounted. The game will end satisfactorily when all
the obstacles set by the therapist have been dodged. If the user loses all the
lives, reach the unnecessary changes number, the game would end but in a
not satisfactory manner.
The user’s movements, the number and position of the obstacles which were
dodged successfully and unsuccessfully, as well as the number of lives and
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Fig. 2. From leftmost top to bottommost right: (1) Path game, (2) Shield game and
(3) Shield while walking game

unnecessary movements are saved along with their timestamp in a log file.
This log file can be always consulted and used by the therapist to virtually
recreate the patient’s results. Hence, this log files are a comprehensive log of
the patient’s evolution over time.

2. Shield. The goal of this game is, once again, to train the patient in a possible
real-world situation where several moving objects can collide with him/her.
In this game, patients will have to defend themselves against those objects
coming towards them. Thus,the system throws several virtual objects to the
patient’s avatar, then the patient will have to move down that of the two
walls that enables him/her to avoid their collision with the avatar (see Figure
2). If the patient moves down the wall on time and the object collide with it,
a correct protection will be accounted. However, if the object collides with
the avatar, the patient will lose a live. Alternatively, if the patient anticipates
and defends a position too early, it will be accounted as an error. The game
will end when the patient avoids all the objects, loses all the lives or reaches
the maximum number of errors, winning in the first case and losing in the last
two. The number of lives, points, objects avoided and errors will be logged
as in the previous game, thus enabling the therapist to access to previous
patient’s results.
As in the previous game, the audio and haptic system will warn the patient
that an object has been thrown, being these stimuli increasingly stronger
depending on the hazard distance. In the event that an object is thrown,
but it will not collide with the avatar, the user will be warn as well, but with
less intensity.

3. Shield while walking. Following the same principles of the previous game, this
one includes the user’s movement in order to make more difficult to identify
which objects could hit the avatar (see Figure 2). The goal still is to train
the patient in real-world situations, like crossing a street.
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3.3 Therapist Environment

The therapist’s environment is the most complex and configurable of the system,
since it provides support for the configuration of the system as well as for the
development of personalized therapies. Those options which are common to all
the games can be configured by using the form shown in Figure 3(a). The keys
that the patient should press to activate the left and right action are set here.
This enables the therapist to decide whether the rehabilitation procedure will
be performed by using either one or two hands. Another configuration option is
to establish whether the image will be shown by means of a computer screen or
a VR headset. Finally, another option enables the therapist to pair the haptic
device with the system by using Bluetooth.

Fig. 3. From leftmost top to bottommost right: (a) General configuration form, (b)
“Path” game configuration form, (c) “Shield” game configuration form and (d) “Shield
while walking” game configuration form

In order to enable the therapist to configure the “Path” game, the form shown
in Figure 3(b) has been created. It can be used to set the number of collisions,
the number of unnecessary movements a patient can use to pass a level, the speed
that he/she will walk at (in meters per second) as well as the maximum distance
the patient can move within a lane without causing an unnecessary movement
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(in meters). Finally, the obstacles that the patient will find along his/her path
are established here. With this aim, the therapist has to create each obstacle by
setting its position along the path (in meters), the lane where it will be located,
and the stimuli to activate (visual, aural or haptic).

The form shown in Figure 3(c) can be used to configure the “Shield” game.
The therapist will set the options number of lives as well as the maximum number
of errors and times that walls can be move down. It is also used to set the number
and configuration of each object to be thrown to the avatar (at which time to
throw it, its speed and direction, whether it is supposed to hit the avatar, and
the stimuli to activate).

For the third game, “Shield while walking”, the form shown in Figure 3(d)
can be used to set the same options than in the previous game as well as the
avatar’s speed.

Once the therapist has finished of setting the different options by using these
forms, they are recorded in XML files for their use. This facilitates that they
can be used in different computers and by different patients just by copying the
XML file as needed.

3.4 Patient Environment

The patient environment is the more straightforward one. The patient only has
to open the application and choose the therapies previously configured by the
therapist and recorded as XML files. The system will use with the information
included in such files and will present the therapy to the patient in an automatic
way. In this manner, even people who are not used to dealing with computers
will be able to use this system without the assistance of a therapist. All the data
recorded while the user is executing a therapy, i.e. movements performed, lives
lost, points, etc., will be saved in a different XML that the therapist will be able
to see and analyse afterwards.

4 Conclusions and Future Works

As was stated in the introduction, people can suffer hemispatial neglect after a
brain injury or a stroke. This neglect can affect not only visual perception but
also other forms of perception such as auditory and tactile. One of the main
problems derived from this disorder is that it greatly affects people in their daily
life as they can find difficulties even to stroll or dress. For this reason, every
effort to help these people to overcome this disorder is welcome.

For this aim, a system has been developed focusing mainly on one of the
special needs when treating people with hemispatial neglect: customization. As
was presented in the previous section, the therapists can configure totally how the
therapy will be carried by establishing senses to stimulate, obstacles, movements,
etc. They can even establish which key of the keyboard will be used by the patient
in order to require him/her to use one or two hand or whether the patient will
use a VR headset. This enables therapist to carry out motor rehabilitation as
well.
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Moreover, the literature analysis showed that the existing tools focus just
on visual neglect and use just visual stimuli by means of VR environments.
For this reason, the system was developed to be a step forward by facilitating
the system supporting haptic and aural stimuli in addition to the visual ones.
Finally, thanks to the use of a VR environment and the presentation of therapies
as games, therapist can improve patient engagement.

Therefore, the experience of the VR application approach on neglect rehabil-
itation suggests that this element seems a promising approach for motor and
cognitive rehabilitation, with a wide range of applicability. As ongoing work, we
are conducting several experiments with both patients and therapies to evaluate
the usability of the system.
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Abstract. This paper introduces a study on the relationship between
emotion regulation and color preference. In the described pilot study,
participants are asked to label uniform color images by using opposite
meaningful words belonging to four semantic scales, namely “Tension”
(ranging from Relax to Stress), “Temperature” (Coldness toWarmness),
“Amusement” (Boredom to Fun) and “Attractiveness” (Pleasantness to
Unpleasantness). Simultaneously, the participants have to indicate if they
feel certain emotions while observing each colored image, as well as to
rate the intensity of the feeling. The labeled emotions are “Joy”, “Hap-
piness”, and “Sadness”. The results demonstrate that people generally
perceive color emotions for one-colored images in similar ways, though
showing some variations for males and females. Several conclusions about
the relations between color and emotions are presented.

Keywords: Color emotion · Emotion regulation · Color preference

1 Introduction

Emotional well-being has become paramount for computer based systems as well
as applications and gadgets related to health care, and nursing, among others [1].
This article is based on the assumption of the power of color to change mood. The
described proposal falls within the project“Improvement of the Elderly Quality
of Life and Care through Smart Emotion Regulation” [2], [3]. The objective of
the project is to find solutions for improving the quality of life and care of the
elderly who can or wants to continue living at home by using emotion detection
and regulation means. Cameras and body sensors are used for monitoring the
ageing adults’ facial and gestural expression, activity and behavior, as well as
relevant physiological data. This way the older people’s emotions are inferred
and recognized. Music, color and light are the stimulating means to regulate
their emotions towards a positive and pleasant mood. This article introduces
the first steps in the use of color to regulate affect.

c© Springer International Publishing Switzerland 2015
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Besides of the typical popular beliefs that tend to construct some unsophisti-
cated ideas as “red is stimulating” and “blue is tranquil” [4], there is a consider-
able number of studies which do present empirical results on this topic. So, we
believe that color is strongly related to emotional state, and it brings informa-
tion about emotions as well as can influence on them. So, assuming that color
affects the emotional state of a person (and specifically ageing adults), a new
approach to the evaluation of the influence between color and mood is proposed.
The evaluation is based on a color emotion test. Firstly, the computerized test
is aimed to discover and evaluate the participants’ preference to color. Then,
relations between color and emotion are established with the objective of facil-
itating emotion regulation. We have to highlight that a pilot experimentation
with adult people is performed in this initial work. An exhaustive experimenta-
tion with ageing adults is foreseen in a close future.

2 On Color and Emotion Regulation

It has been demonstrated that color characteristics like chroma, hue or lightness
produce an impact on emotions [5], [6]. It has also been proved that chromatic
images transmit emotionally charged information on contrary to the achromatic
ones [7]. Contrary to chroma and lightness, the hue of a color does not affect the
emotional state [5]. Another work [8] points out that the older observers show
strong preference to colors with higher chroma, and the younger prefer achro-
matic colors. A study on color-emotion associations reveals that the principal
hues comprise the highest number of positive emotions, and are followed by the
intermediate hues and achromatic colors [9]. Based on the obtained responses,
the green color attained the highest number of positive emotions, followed with
yellow, blue, red and purple. Among the intermediate hues the most preferred
include blue-green, red-purple, yellow-red and purple-blue. For the achromatic
colors, the most attractive color is white in a great measure, followed by black
and, finally, gray.

An emotion manifests psychological and physiological changes. It can be de-
tected through identification of facial expressions, bodily and behavioral changes
[10]. The use of emotionally charged words allows studying changes in feelings and
moods in and indirect manner [11]. For example, semantic scales “warm/cool”,
“heavy/light”, “active/passive”, and “like/dislike” are used to evaluate color emo-
tion for a two-color model [8]. Also, twelve emotion variables represented with
word pairs have been studied [8]. In [12] semantic word pairs are used as indicators
for emotion expression factors: “bright-dark” (activity factor), “like-dislike”
(evaluation factor) and “strong-weak” (potency factor).

Nevertheless, evaluation with semantic scales has often been claimed to be
more generalized than self-report instruments. The latter are more subjective
as they do rely on the participants both rational and irrational own assessment
of the emotional experience. For instance, contrary to the indirect measurement
approach, a self-reported evaluation of emotions is presented for the case of
emotion elicitation using films [13]. This approach has been used in psychological



Evaluation of Color Preference for Emotion Regulation 481

practice, where participants directly rate their feelings [13] or indicate them from
the available sets [14].

3 Color Emotion Evaluation

As it has been seen previously, many attempts have been undertaken so far
to evaluate the potential relations between color and emotion. Factor analysis,
correlation analysis and ANOVA are the most widely used classification methods
for color emotion. These have been used in a great number of research (e.g. [8],
[15], [12], [16], [11], [17], and [18]). RGB-histograms for measuring statistical
properties of color images are related to color emotion vectors [11].

Identification and clustering are the two procedures that are commonly used
to study the relationship between emotion and color. Among these methods, one
of the most visible and understandable interpretation is decision trees. [19] con-
siders the application of this method through studying dependencies of hue and
given brightness level choice for geographically different groups of participants.
Also, a cluster analysis for web site designers to evaluate color preference has
been described [18]. With the purpose of studying color emotion, [12] uses factor
analysis, and, if it fails, it changes to independent component analysis with the
intrinsic statistical properties of data.

In the current study, some considerations are made to properly approaching
the evaluation of the relation between emotions and colors. The first consider-
ation refers to the nature of emotion measurement. As it has been discussed
before, emotions can both be detected and evaluated with semantic words and
through reporting about the own emotional state. Reasonably, the optimal so-
lution emerges from a combination of these two approaches, as shown in Fig. 1.
This approach has been accepted for this study as it offers the following advan-
tages: (a) possibility of a comprehensive assessment of changes in the subject’s
reactions, (b) mutual confirmation at the coincidence of the responses, and, (c)
indirect proof of the sincerity of answers.

The second consideration is that the subsystem, which includes all information
on each participant and color, has to be seen as a complex system. Next, in order
to model an emotion modulation system for the experiment, the relationship
between the dependent and independent variables is presented as black box
model (see Fig. 2).

The four input variables of the subsystem are: age, gender, initial emotional
state, and color. Here, only the “color” variable is independent. It is the only
one that can be changed within the given subsystem. After the test is carried
out and all the answers are stored into a database, the information is processed
within a black box, and the final output dependency F (x) is calculated. Although
different methods can be applied for classification, it has been decided to base
on decision trees. One of the advantages of their use is that they allow building
tree-like structures of dependencies between variables. Such structures are easily
understandable and can be well processed. Another advantage is their possibility
to cut off unnecessary leaves and branches, thereby simplifying the structure of
the model.
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Fig. 1. Emotion evaluation model

Fig. 2. The model of the complex subsystem for emotion modulation

3.1 Description of the Experiment

The experimentation is carried out in a specially organized room with white
colored walls, where each participant is placed in front of a computer. Evaluation
of color preference with the aim of regulating emotions is performed with a
software application. The graphical user interface of the test is shown in Fig. 3.

The test lasts up to 30 minutes, depending on the test participant who may
answer the complete questionnaire quicker or slower. Each participant is asked
to judge about each of the 32 images which are included in the image set. The set
of images consists, first, of uniform or textured one-color pictures, and, second,
of images taken form nature, mostly landscapes, where one dominating color is
prevailing. The colors used in the pilot study are gray, light blue, pink, dark
blue, light brown, brown, violet, green, light green, red, orange, and yellow. A
sample of the image set is provided in Fig. 4.
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Fig. 3. Graphical user interface for the experimentation

Since the purpose of this study is to explore the possibility of “improving” the
emotional state, the number of emotions under study have been limited to the
following “basic” ones: sad and happy. When the test starts, the participant is
asked to label the randomly appearing images for the following semantic scales,
where each scale is represented with two opposite semantic words:

1. “Tension”: Relax / Stress
2. “Temperature”: Coldness / Warmness
3. “Amusement”: Boredom / Fun
4. “Attractiveness”: Pleasantness / Unpleasantness

Next, each participant reports if he/she felt one of emotions “Joy”, “Happi-
ness”, and “Sadness”. The choice of these emotions is based on the premise that
the practical purpose of this study is to find mechanisms to improve mood. It
is therefore important to check whether participants experienced the feelings of
joy, happiness and sadness. The participant also indicates a value corresponding
to the intensity of each feeling.

Each of the semantic scales can be evaluated with a value from the set
[−2,−1, 0, 1, 2]. Referring to the self-reported emotions, they also should be
ranked similarly with a a discrete integer value within the interval [−9, . . . , 9]
(see Fig. 5).
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Fig. 4. Some pictures from the image set

3.2 Description of the Results

Sixteen graduate males and females aged from 25 to 36 years old have taken
part in the pilot test. The results show marked similarities in the opinions about
colors for the participants of the pilot test. Thus, the outcomes demonstrate that
people generally perceive color emotions for one-colored images in a similar way.
The highest values for the semantic scale “Temperature” are for red and orange
colored images. The highest value for “Tension” (Relax ) is for light brown or
sandy color, which is also associated with “Attractiveness” (Pleasantness). The
semantic scale “Amusement” is characterized with green, dark blue, gray, and,
finally, violet for Boredom, and with pink, red, yellow and orange for Fun.

When the test participants report about their emotions, both men and women
indicate that brown and light blue images produce no feeling of “Joy”. The find-
ings reveal that the major part of participants rate as maximum their feeling of
“Happiness” for light brown (sand). The pictures that receive the next intensive
rates are those colored in pink and violet colors for women, and in orange for
men. With respect to “Joy”, pink, red, orange and yellow are indicated. “Sad-
ness” correlates with dark brown, gray, and, in a lesser extent, violet. For a small
part of participants feeling of “Joy” is strongly related with “Happiness”.
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Fig. 5. Graphical user interface with questions

4 Conclusions

This article has described the first steps in the use of color to regulate affect. The
proposal is based on the assumption of the power of color to change mood. It
belongs to a running project denominated “Improvement of the Elderly Quality
of Life and Care through Smart Emotion Regulation”. The objective of the
project is to find solutions for improving the quality of life and care of ageing
adults living at home by using emotion elicitation.

After assuming that color affects the emotional state of a person, a new
approach to the evaluation of the influence of color in mood has been proposed
in this paper. The evaluation is based on a color emotion test. Firstly, the com-
puterized test evaluates the participants’ preference to color. Then, relations be-
tween color and emotion are established with the objective of facilitating emotion
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regulation. In the described pilot study, participants are asked to label uni-
form color images by using opposite meaningful words belonging to four se-
mantic scales, namely “Tension” (ranging from Relax to Stress), “Temperature”
(Coldness toWarmness), “Amusement” (Boredom to Fun) and “Attractiveness”
(Pleasantness to Unpleasantness). At the same time, the participants have to in-
dicate if they feel certain emotions while observing each colored image, as well as
to rate the intensity of the feeling. The labeled emotions are “Joy”, “Happiness”,
and “Sadness”.

The results demonstrate that people generally perceive color emotions for one-
colored images in similar ways, though showing some variations for males and
females. Several conclusions about the relations between color and emotions are
presented. It is important to consider that the pilot experimentation has been
performed at this stage with adult people, but not with elderly people. The
initial results obtained will help to advance into an exhaustive experimentation
with ageing adults in a close future.
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M.T.: A framework for recognizing and regulating emotions in the elderly. In:
Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868,
pp. 320–327. Springer, Heidelberg (2014)

3. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Im-
provement of the elderly quality of life and care through smart emotion regulation.
In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS,
vol. 8868, pp. 348–355. Springer, Heidelberg (2014)

4. O’Connor, Z.: Colour psychology and colour therapy: caveat emptor. Color Re-
search & Application 36(3), 229–234 (2011)

5. Xin, J.H., Cheng, K.M., Taylor, G., Sato, T., Hansuebsai, A.: Cross-regional com-
parison of colour emotions Part I: Quantitative analysis. Color Research & Appli-
cation 29(6), 451–457 (2004)

6. Xin, J.H., Cheng, K.M., Taylor, G., Sato, T., Hansuebsai, A.: Cross-regional com-
parison of colour emotions Part II: Qualitative analysis. Color Research & Appli-
cation 29(6), 458–466 (2004)

7. Jue, J., Kwon, S.M.: Does colour say something about emotions?: Laypersons’
assessments of colour drawings. The Arts in Psychotherapy 40(1), 115–119 (2013)

8. Ou, L.C., Luo, M.R., Sun, P.L., Hu, N.C., Chen, H.S.: Age effects on colour emo-
tion, preference, and harmony. Color Research & Application 37(2), 92–105 (2012)

9. Kaya, N., Epps, H.: Color-emotion associations: Past experience and personal pref-
erence. In: Proceedings of the AIC 2004 Color and Paints, Interim Meeting of the
International Color Association, vol. 5, p. 31 (2004)



Evaluation of Color Preference for Emotion Regulation 487

10. Picard, R.W.: Emotion research by the people, for the people. Emotion Re-
view 2(3), 250–254 (2010)

11. Solli, M., Lenz, R.: Color emotions for multi-colored images. Color Research &
Application 36(3), 210–221 (2011)

12. Hanada, M.: Analyses of color emotion for color pairs with independent component
analysis and factor analysis. Color Research & Application 38(4), 297–308 (2013)

13. Rottenberg, J., Ray, R.D., Gross, J.J.: Emotion elicitation using films. In: Hand-
book of Emotion Elicitation and Assessment, pp. 9–28. Oxford University Press,
New York (2007)

14. Desmet, P.: Measuring emotion: Development and application of an instrument to
measure emotional responses to products. Funology, 111–123 (2005)

15. Gao, X.P., Xin, J.H., Sato, T., Hansuebsai, A., Scalzo, M., Kajiwara, K., Guan,
S.S., Valldeperas, J., Lis, M.J., Billger, M.: Analysis of cross-cultural color emotion.
Color Research & Application 32(3), 223–229 (2007)

16. Küller, R., Mikellides, B., Janssens, J.: Color, arousal, and performance - A com-
parison of three experiments. Color Research & Application 34(2), 141–152 (2009)

17. Choi, C.J., Kim, K.S., Kim, C.M., Kim, S.H., Choi, W.S.: Reactivity of heart
rate variability after exposure to colored lights in healthy adults with symptoms
of anxiety and depression. International Journal of Psychophysiology 79(2), 83–88
(2011)

18. Bonnardel, N., Piolat, A., Le Bigot, L.: The impact of colour on Website appeal
and users’ cognitive processes. Displays 32(2), 69–80 (2011)

19. Lechner, A., Simonoff, J.S., Harrington, L.: Color-emotion associations in the phar-
maceutical industry: understanding universal and local themes. Color Research &
Application 37(1), 59–71 (2012)



Elicitation of Emotions through Music:

The Influence of Note Value

Alicia Fernández-Sotos1, Antonio Fernández-Caballero2(�),
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Abstract. This article is based on the assumption of the power of mu-
sic to change the listener’s mood. The proposal studies the participants’
changes in emotional states through listening different auditions. This
way it is possible to answer to the question if music is able to induce
positive and negative emotions in the listener. The present research fo-
cuses on the musical parameter of note value through its four basic com-
ponents of the parameter note value, namely, beat, rhythm, harmonic
rhythm and rhythmic accompaniment to detect the individual prefer-
ences of the listeners. The initial results prove that the influence of beat
in music for eliciting emotions is dependent of the personality of each
participant in terms of neuroticism and extraversion.

Keywords: Emotion regulation · Music · Note value · Beat · Rhythm

1 Introduction

This article is based on the assumption of the power of music to change the lis-
tener’s mood. The proposal falls within the project“Improvement of the Elderly
Quality of Life and Care through Smart Emotion Regulation” [1], [2]. The objec-
tive of the project is to find solutions for improving the quality of life and care of
the elderly who can or wants to continue living at home by using emotion elici-
tation techniques. Cameras and body sensors are used for monitoring the ageing
adults’ facial and gestural expression, activity and behavior, as well as relevant
physiological data [3], [4]. This way the older people’s emotions are inferred and
recognized. Music, color and light are the stimulating means to regulate their
emotions towards a positive and pleasant mood. This article introduces the first
steps in the use of music to regulate affect.

The aim of the article is to study the listener’s changes in emotional state
through playing different auditions. This way, it is possible to come to the con-
clusion if music is able to induce positive and negative emotions in the listener.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18914-7_52
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The present research focuses on one principal musical parameter, namely, the
note value. In this sense, the article introduces a series of tests aimed at detecting
the individual preferences related to the four basic components of the parameter
note value, that is, beat, rhythm, harmonic rhythm and rhythmic accompani-
ment. In our opinion, the information obtained from the experimentation will
be crucial to understand the mood baseline of the listener before entering into
the task of detecting and regulating his/her emotional state.

The tests described below are based on the belief that there is a custom in-
ternal criterion in the perception of the beat of a particular music piece. When
listening to a piece that maintains a constant beat, although this tempo is not
altered at all, listeners use to experience changes in tempo stability. They may
perceive music as faster as or slower than the initial tempo [5]. Therefore, it is
believed that there exists an inter-individual parameter to judge the tempo of
a hearing, Each individual senses tempo (or beat) in a particular way. More-
over, the conclusion is that there is no absolute notion of tempo. The conclusion
cones after making a theoretical review of the structural relationships that af-
fect the perception of musical tempo [6]. The intensity, harmony and harmonic
rhythm directly influence the perception of tempo by listeners. The previously
cited research addresses the individual preference of the listeners from a varying
age (preteens, teens and adults) perspective. The participants listen six musical
fragments of different styles where the beat is modified. The listeners report
about their beat preferences and they compare the perceived tempos in compar-
ison with the original tempos of the performances. The study concludes with the
assertion that the human ear tries to supply its own tempo to the perceived one
(tempo thought to be the right one) in order to ensure a meaningful coordination.

Lastly, this proposal combines the previously mentioned studies with a recent
research [7] which is centered in the analysis of harmonies to demonstrate their
influence in the induction of emotions. We attempt to formulate a categorization
of different beats, rhythms, harmonic rhythms and rhythmic accompaniments
which cause changes in the emotional state of a music listener through conducting
a series of tests. The idea is to associate emotional terms to the listened auditions.
Also, it is relevant to categorize musical chords and scales so powerful as to cause
specific emotional states in the audience.

2 Preference and Musical Tests

Firstly, a test is performed to discover individual preferences towards beat,
rhythm, harmonic rhythm and rhythmic accompaniment. Secondly, a series of
experiment, consisting of four different musical tests, are carried out for the sake
of studying the changes in the participants’ emotions from the musical parameter
note value. Thus, it will be possible to prove the capacity of inducing emotions
through the several variations of the note value parameter.
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2.1 Preference Test

The first test studies and evaluates the personality factors of each listener (par-
ticipant). We start from the hypothesis that the personality is a determinant
factor in music perception. So, before the participants perform the four musi-
cal tests described below, they have to respond to sixty questions which enable
evaluating these personality factors. The questions are extracted from the NEO-
PI-R (“Revised Neo Personality Inventory”) test belonging to the well-known
“Big Five Personality Factors”. In this particular case, its reduced version “NEO
Five-Factor Inventory” (NEO-FFI) is used. This test analyzes human factors in
relation to his/her levels of neuroticism, extraversion, openness, kindness and
responsibility. However, although the sixty questions apply, this study focuses
on the factors of neuroticism and extraversion to establish prototypes of people.
The prototypes are subsequently converted into prototypes of listeners, allowing
to obtain individualized information from the tests contained in the next part
of the overall experimentation.

2.2 First Musical Test: The Pulse

There is no doubt that the beat is the essential element of note value. Indeed,
the rhythm is based around the beat. The beat enables perceiving music in an
organized manner. It forms the basis on which the melodic-harmonic lines are
built. The promotion in children of perception, acquisition and reproduction of
the beat is a widely advocated topic. This practice has a positive effect on reading
assignments, learning vocabulary, math and motor coordination of the younger
[8]. Children perceive better the responses that they receive from the exterior
through a constant beat, allowing giving logical sense to their world. This element
is present in daily actions as observed in speech and body movements made by
the human being [9]. On the one hand, there is a social synchrony between human
movements; the tempo is an underlying social interaction organizer [10]. On this
basis, Norris shows that two individuals in contact tend to synchronize their
movements and they reach to establish a common beat pattern. Tempos are also
observed in verbal discourse, for example when a question is posed and an answer
is provided. This fact is noted in the gestures and movements associated with
the discourse. Moreover, this situation also occurs in listening to background
music. It is worth highlighting that the listener synchronizes his/her movements
with the beat perceived in music.

Thus, the first musical test that is proposed here focuses on the evaluation
of three tunes by the listener. The three melodies are really the same one, but
it is varied on two occasions by altering the beat. The piece is titled “Walking
on the Street”, framed in a suite called “Three Little Bar Songs Suite” (see
Fig. 1). It has been written by the contemporary composer Juan Francisco Man-
zano Ramos. We wanted to start with this little piece in non-classical style to
bring variety to the experimentation. The different experiments combine both
classical and contemporary elements of music. The only requirement is that both
music pieces share a tonal harmonic language, with a harmonic rhythm of classi-
cal music and repetitive rhythmic parameters. This enables to highlight each of
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Fig. 1. “Walking on the Street” theme and 3 variations

the auditions to categorize them correctly. So, in this way, we have a piece which
rhythm uses constantly alternating dotted notes (providing a touch of swing)
and syncopated notes in prominent places. Then, changes are provided to the
harmonic rhythm used.

The order of appearance of each melody is random for each listener in the
computer program. However, notice that the three melodies are available to
the listener. The beats to be listened are 90, 120 and 150 beats per minute,
respectively. The listener presses on each of the buttons of the melodies and labels
them in the way he/she considers them more suited. The labeling lists have been
formulated through following a list of antonyms. The following ones have been
considered: “Relaxing - Stressing”, “Expressionless - Striking”, “Boring - Funny”
and “Pleasant - Unpleasant”. It is important to highlight that the listener can
select the same word for more than one melody. Finally, on a second program
screen, the listener checks on each melodic version the type “Like”, “Dislike”,
“Irrelevant” to categorize his/her tastes related to the beats.
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2.3 Second Musical Test: The Rhythm

In relation to the rhythm, typically the basic rhythmic figures are addressed in
duple measure, or triple measure present in the continuous movements of the hu-
man being as, for instance, walking. Jaques Dalcroze emphasizes the importance
of implementing the rhythmic movements, perceived in music and represented
through the human body in its rhythmic part, in the right balance of the ner-
vous system. Dalcroze stresses that the rhythm is movement and all motion is
material. Therefore, any movement is in need of space and time. Thus, Dalcroze
starts from the binary rhythm in his teaching, associating it to freely walking.
Thus, one of the basic methodologies used is the association of black rhythmic
figure (basic beat in measure two by four) with walking, quavers with running,
and quavers with dotted note and semiquavers with jumping.

In this sense, the second musical test is geared to the variation of the rhythm
parameter. In other words, it is the variation of the rhythm of the melody without
altering the melodic line or harmonic rhythm or beat. To do this, from the main
melody of the symphony “Surprise” by Haydn, three rhythmic variations are
established (see Fig. 2). The listener hears and labels what the melody suggests
to him from the list of antonyms used in the first musical test. The listener sorts
the melodies from lowest to highest in order of personal preference. The theme is
characterized by the use of rhythmic black and white figures. For this, the original
melody is slightly modified, especially in the last four bars where a cadence
amendment is made. Variation number 1 is characterized by the predominance
of the rhythmic formula of two quavers. A slight variation is introduced in the
sixth bar in order to bring interest to the resolution of the theme. The second
variation is characteristic for the use of simple combinations of the representation
of semiquavers, that is, rhythmic formulas of four semiquavers, two semiquavers-
quaver and quaver-two semiquavers. Finally, the third variation uses syncopated
notes, dotted notes and triplets, all in value of a beat.

2.4 Third Musical Test: The Harmonic Rhythm

Thirdly, there is the harmonic rhythm. In this musical test of individual prefer-
ence, participants are exposed to listening two movements of two sonatas. Physi-
ological data are captured to see the listener’s response to the harmonic rhythm.
The two sonata movements have chosen because one remains a clear quadrature
and another not, breaking the periods of traditional phrase constructed from
sequences composed of four and eight bars. Thus, in addition to studying the
behavior before the rhythmic-harmonic changes, it is judged whether the quadra-
ture influences the way music is perceived. Orff, along with other contemporary
educators, stresses the importance of organizing the musical rhythmic patterns
in sentences of two, four or eight bars, proportionally. This arrangement provides
adequate mental models that facilitate the understanding of the works. Musi-
cal phrases are equated to oral language, also highlighting the use of musical
elements in their natural form without modification. Thus it can be seen that
natural and spontaneous songs hold a quadrature system. Moreover, notice that
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Fig. 2. “Surprise” theme and 3 variations

Martenot argues that a musical phrase must be the principle for the realiza-
tion of rhythm. Therefore, in the different experiments the intentionality that
a melodic line supports each of the proposals is always maintained, even when
what is really intended is to measure rhythmic accompaniments to the central
proposal.

Thus, the third musical test provides the listener with two sonatina move-
ments. The first of them is the first movement of the sonatina in sonata form
named “Sonatina for clarinet and piano in SibM” from Wolfgang Amadeus
Mozart (see Fig. 3a). The second one is the first movement of the “Sonata no.
1 for trumpet and piano in MibM” by James Hook in rondo form (see Fig. 3b).
Both sonatas are performed in a version for clarinet and piano, so that the change
of instrumental timbre does not affect the listener. For ease of listening and un-
derstanding of both works a basic sheet music indicating color and squares is
used. It is marked with lighting on the computer screen during the performance.
Each measure is lit so that the listener understands the several parts of the piece,
repetitions or variations thereof, and listening is comprehensive. After listening
each of the pieces, the participant writes a phrase that describes his/her feeling.
The physiological data from listeners are considered for evaluation of the musical
test. The labels described in the previous tests in relation to their physiologi-
cal data are used. This is to analyze what happens when listening to these pieces.
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Fig. 3. Rhythmic schemes. Left: First movement of the Mozart sonatina. Right: First
movement of the Hook sonatina.

There is a special focus on the possible variations in acceleration or decelera-
tion of harmonic rhythm. To this end, a scheme of harmonic rhythm has been
provided for each of the pieces.

2.5 Fourth Musical Test: The Rhythmic Accompaniment

Finally, the fourth musical test intends to associate some types of rhythmic ac-
companiments to emotional states. To do this, listeners hear different rhythmic
fragments on an equal harmonic basis, altering only the rhythms of accompani-
ments in each case. The listener is offered the theme and seven variants based
on both classical and modern music. In this case, the variant executed by the
clarinet is excluded in the main melody (theme). It remains unchanged, so that
the rhythmic variation does not influence the response of the listener. Therefore,
all variations in the rhythm accompaniment (but never in the harmonic rhythm)
are performed by the piano. For this, a specific composition that adheres to the
above parameters is used. It is entitled “Theme and seven rhythmic variations
(Eight versions of accompaniment to an unaltered melody harmony)” by the
composer Juan Francisco Manzano Ramos.

The theme features a chord accompaniment (basic links from a chord) in
white, with the use of black to mark the end of every sentence, thus adapting
the harmonic rhythm. Variation I is characterized by the use of triplets in the
right hand of the piano in a headless manner (always beginning with a silence),
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Fig. 4. An excerpt of “Theme and seven rhythmic variations”; theme and variation I

which the left hand completes with a shared chord (see Fig. 4). The use of passing
notes in the right hand should be emphasized.

Variation II is characterized by the use in the left hand of an Alberti bass in
semiquavers, with a tessitura focused on the central “do”. Moreover, the right
hand supplements the above with blacks in a tessitura an octave higher (with
repetition of chords through white). Variation III is characterized by the use of
demisemiquavers. The first beat starts with an upward deployment of the chord
(arpeggio), which the left hand completes in the second beat. The fourth beat
always supposes a return to the initial situation with the deployment of the
chord in the left hand. Variation IV uses the “pasodoble” rhythm with use of
the characteristic contretemps. Thus, the left hand takes the bass (alternating
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the fundamental note and the fifth of the chord), and the right hand makes
the harmonic filler with the use of contretemps. Variation V uses an example
of blues, alternating swing in its accompaniment (right hand), while the left
hand holds the bass in quaver notes, alternating with strange notes the proper
chord. Variation VI is ragtime, with the characteristic rhythm in both right and
left hands. Variation VII is an example of using rhythmic asymmetry in the
accompaniment. Thus, the use of octaves with chords without thirds in rhythms
that do not follow a particular pattern is alternating with a variety of tessituras.

3 Data and Results

At this moment of research some basic and limited experimentation has been
performed. This study has involved ten people from different ages. The initial
results prove that the influence of note value in music for eliciting emotions is
dependent of the personality of each participant in terms of neuroticism and
extraversion. Although the number of participants is too little to draw clear
conclusions, we believe that there is some evidence about some general tendencies
related to the results obtained from the influence of beat.

The most neurotic people appreciate less difference between “Stressing” and
“Relaxing” when the beat is varied. People with greater differentiation between
levels of neuroticism and extraversion (standing out in introversion or neuroti-
cism, but not the other) show a greater perception in the increase of expressive-
ness (from “Expressionless” to “Striking”) with an increasing beat. Extroverted
listeners show a more proportional correlation to the description of “Pleasant”
vs. “Unpleasant” regarding increased or decreased beat correlation.

The results for the other tests draw no clear conclusions, as there are too
few participants. The number of possibilities grows a lot from musical test 1
to 4, and, obviously there is a need of working with a much higher number of
individuals.

4 Conclusions

This article has described the first steps in the use of music to regulate affect. The
proposal is based on the assumption of the power of music to change mood. It
belongs to a running project denominated “Improvement of the Elderly Quality
of Life and Care through Smart Emotion Regulation”. The objective of the
project is to find solutions for improving the quality of life and care of ageing
adults living at home by using emotion elicitation.

The proposal has studied the participants’ changes in emotional states through
listening different auditions. The present research has focused on the musical pa-
rameter of note value through its four basic components of the parameter note
value, namely, beat, rhythm, harmonic rhythm and rhythmic accompaniment
to detect the individual preferences of the listeners. The initial results prove
that the influence of beat in music for eliciting emotions is dependent of the
personality of each participant in terms of neuroticism and extraversion.
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It is important to consider that the experimentation has been performed on
a limited number of subjects. It is foreseen to engage into an exhaustive experi-
mentation with ageing adults in a close future.
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M.T.: A framework for recognizing and regulating emotions in the elderly. In:
Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868,
pp. 320–327. Springer, Heidelberg (2014)

2. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Im-
provement of the elderly quality of life and care through smart emotion regulation.
In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS,
vol. 8868, pp. 348–355. Springer, Heidelberg (2014)

3. Costa, A., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-
driven agenda for intelligent home care of the elderly. Expert Systems with Appli-
cations 39(15), 12192–12204 (2012)

4. Fernández-Caballero, A., Castillo, J.C., Rodŕıguez-Sánchez, J.M.: Human activity
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Abstract. In this paper, we enhance systems interacting in healthcare
domains by means of incorporating emotionally sensitive spoken conver-
sational interfaces. The emotion recognizer is integrated in these systems
as an intermediate phase between natural language understanding and
dialog management in the architecture of a spoken dialog system. The
prediction of the user’s emotional state, carried out for each user turn in
the dialog, makes it possible to adapt the system dynamically selecting
the next system response taking into account this valuable information.
We have applied our proposal to develop an emotionally sensitive con-
versational system adapted to patients suffering from chronic pulmonary
diseases, and provide a discussion of the positive influence of our proposal
in the perceived quality.

Keywords: Conversational Interfaces ·Dialog Systems ·Emotion Recog-
nition · E-therapy · Adaptation · Spoken Interaction · Mobile Interfaces

1 Introduction

Conversational interfaces [17] have been proven useful for providing the general
public with access to telemedicine services, promoting patients’ involvement in
their own care, assisting in health care delivery, and improving patient outcome
[4]. Bickmore and Giorgino defined these systems as being “those automated
systems whose primary goal is to provide health communication with patients
or consumers primarily using natural language dialog” [4].

During the last two decades, these interfaces have been increasingly used in
healthcare and E-therapy providing services such as interviews [16], counseling
[12], chronic symptoms monitoring [14], medication prescription assistance and
adherence [5], changing dietary behavior [8], promoting physical activity [9],
helping cigarette smokers quit [18], or speech therapy [19].

The proposal that we present in this paper is focused on the design of health-
care systems in which speech is the only modality used as input and output for
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the system. On the one hand, speech and natural language technologies allow
users to access applications in which traditional input interfaces cannot be used
(e.g. in-car applications, access for disabled persons, etc.). Also speech-based in-
terfaces work seamlessly with small devices and allow users to easily invoke local
applications or access remote information. For this reason, conversational agents
are becoming a strong alternative to traditional graphical interfaces, which might
not be appropriate for all users and/or applications domains [17].

Health dialog systems must confront social, emotional and relational issues in
order to enhance patients satisfaction. However, although emotion is receiving
increasing attention from the dialog systems community, most research described
in the literature is devoted exclusively to emotion recognition. For example, a
comprehensive and updated review can be found in [20,3].

Emotions affect the explicit message conveyed during the interaction and is
frequently mentioned in the literature as the most important factor in establish-
ing a working alliance in healthcare applications [5]. They change people voices,
facial expressions, gestures, and speech speed. Emotions can also affect the ac-
tions that the user chooses to communicate with the system. Emotions have
also been recently considered as a very important factor of influence in decision
making processes.

Despite its benefits, the recognition of emotions in dialog systems presents
important challenges which are still unresolved. The first challenging issue is
that the way a certain emotion is expressed generally depends on the speakers,
their culture and environment. Another problem is that some emotional states
are long-term (e.g. sadness), while others are transient and do not last for more
than a few minutes. Thus, it is not trivial to select the categories being an-
alyzed and classified by an automatic emotion recognizer. Also there is not a
clear agreement about which speech features are most powerful in distinguishing
between emotions.

In this paper, we describe a proposal that address these important issues by
developing affective dialog models for healthcare conversational systems, which
take into account both emotions and the dialog acts in the users’ utterances to
select the next system action. Our approach for emotion recognition is focused
on recognizing negative emotions that might discourage users from employing
the system again or even lead them to abort an ongoing dialog. The dialog
manager of the system tailors the next system answer to the user emotional
state by changing the help providing mechanisms, the confirmation strategy,
and the interaction flexibility.

2 Our Proposal to Develop Emotionally Sensitive
Conversational Interfaces

A spoken dialog system integrates five main tasks to deal with user’s spoken ut-
terances in natural language: automatic speech recognition (ASR), natural lan-
guage understanding (NLU), dialog management (DM), natural language gener-
ation (NLG), and text-to-speech synthesis (TTS). We propose to add an emotion
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recognizer in this architecture to process the users’ emotional state during the
interaction, which is considered as an additional valuable input for the dialog
manager to select the next system action.

Our proposal to develop an emotion recognizer is based solely in acoustic and
dialog information because in most application domains the user utterances are
not long enough for the linguistic parameters to be significant for the detection
of emotions. Our recognition method, based on the previous work described in
[7], firstly takes acoustic information into account to distinguish between the
emotions which are acoustically more different, and secondly dialog information
to disambiguate between those that are more similar. We are interested in recog-
nizing negative emotions that might discourage users from employing the system
again or even lead them to abort an ongoing dialog. Concretely, we have con-
sidered three negative emotions: anger, boredom, and doubtfulness, where the
latter refers to a situation in which the user uncertain about what to do next).

Following the proposed approach, our emotion recognizer employs acoustic
information to distinguish anger from doubtfulness or boredom and dialog in-
formation to discriminate between doubtfulness and boredom, which are more
difficult to discriminate only by using phonetic cues.

This process is shown in Figure 1. As can be observed, the emotion recognizer
always chooses one of the three negative emotions under study, not taking neutral
into account. This is due to the difficulty of distinguishing neutral from emotional
speech in spontaneous utterances when the application domain is not highly
affective. This is the case of most spoken dialog systems, in which a baseline
algorithm which always chooses “neutral” would have a very high accuracy,
which is difficult to improve by classifying the rest of emotions, that are very
subtlety produced.

The first step for emotion recognition is feature extraction. The aim is to
compute features from the speech input which can be relevant for the detection
of emotion in the users’ voice. We extracted the most representative selection
from the list of 60 features shown in Table 1. The feature selection process
is carried out from a corpus of dialogs on demand, so that when new dialogs
are available, the selection algorithms can be executed again and the list of
representative features can be updated. The features are selected by majority
voting of a forward selection algorithm, a genetic search, and a ranking filter
using the default values of their respective parameters provided by the Weka
toolkit.

The second step of the emotion recognition process is feature normalization,
with which the features extracted in the previous phase are normalized around
the user neutral speaking style. This enables us to make more representative
classifications, as it might happen that a user ’A’ always speaks very fast and
loudly, while a user ’B’ always speaks in a very relaxed way. Then, some acoustic
features may be the same for ’A’ neutral as for ’B’ angry, which would make the
automatic classification fail for one of the users if the features are not normalized.

Once we have obtained the normalized features, we classify the corresponding
utterance with a multilayer perceptron (MLP) into two categories: angry and
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Fig. 1. Schema of the proposed emotion recognizer

doubtful or bored. The precision values obtained with the MLP are discussed
in detail in [7], where we evaluated the accuracy of the initial version of this
emotion recognizer. If an utterance is classified as angry, the emotional cate-
gory is passed to the dialog manager of the system. If the utterance is classified
as doubtful or bored, it is passed through an additional step in which it is clas-
sified according to two dialog parameters: depth and width. Dialog context is
considered for emotion recognition by calculating these parameters.

Table 1. Features defined for emotion detection from the acoustic signal [11,22,15]

Groups Features Physiological changes
related to emotion

Pitch Minimum value, maximum value, mean, me-
dian, standard deviation, value in the first
voiced segment, value in the last voiced seg-
ment, correlation coefficient, slope, and error
of the linear regression.

Tension of the vocal
folds and the sub glottal
air pressure.

First two for-
mant frequen-
cies and their
bandwidths

Minimum value, maximum value, range,
mean, median, standard deviation and value
in the first and last voiced segments.

Vocal tract resonances.

Energy Minimum value, maximum value, mean, me-
dian, standard deviation, value in the first
voiced segment, value in the last voiced seg-
ment, correlation, slope, and error of the en-
ergy linear regression.

Vocal effort, arousal of
emotions.

Rhythm Speech rate, duration of voiced segments,
duration of unvoiced segments, duration of
longest voiced segment and number of un-
voiced segments.

Duration and stress con-
ditions.
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Depth represents the total number of dialog turns up to a particular point
of the dialog, whereas width represents the total number of extra turns needed
throughout a subdialog to confirm or repeat information. This way, the emotion
recognizer has information about the situations in the dialog that may lead to
certain negative emotions, e.g. a very long dialog might increase the probability
of boredom, whereas a dialog in which most turns were employed to confirm
data can make the user angry.

The computation of depth and width is carried out according to the dialog
history, which is stored in log files. Depth is initialized to 1 and incremented
with each new user turn, as well as each time the interaction goes backwards
(e.g. to the main menu). Width is initialized to 0 and is increased by 1 for each
user turn generated to confirm, repeat data or ask the system for help.

Then, the dialog manager tailors the next system answer to the user state
by changing the help providing mechanisms, the confirmation strategy, and the
interaction flexibility. The conciliation strategies adopted are, following the con-
straints defined in [6], straightforward and well delimited in order not to make
the user loose the focus on the task. They are as follows:

– If the recognized emotion is doubtful and the user has changed his behavior
several times during the dialog, the dialog manager changes to a system-
directed initiative and adds at the end of each prompt a help message de-
scribing the available options.

– In the case of anger, if the dialog history shows that there have been many
errors during the interaction, the system apologizes and switches to DTMF
(Dual-Tone Multi-Frequency) mode. If the user is assumed to be angry but
the system is not aware of any error, the system’s prompt is rephrased with
more agreeable phrases and the user is advised that they can ask for help at
any time.

– In the case of boredom, if there is information available from other interac-
tions of the same user, the system tries to infer from those dialogs what the
most likely objective of the user might be. If the detected objective matches
the predicted intention, the system takes the information for granted and
uses implicit confirmations.

– In any other case, the emotion is assumed to be neutral, and the next system
prompt is decided only on the dialog history.

3 Practical Application: Patients with Domiciliary
Oxygen Therapy

Domiciliary oxygen therapy has been used during the last five decades to alle-
viate reduced arterial oxygenation (hypoxemia) and its consequences [13,2]. It
is considered to be the only therapeutic approach that can prolong survival in
patients with chronic pulmonary diseases. This therapy is also aimed at reliev-
ing dyspnea and improving exercise capacity and sleep quality. Patients have
portable cylinders, concentrators and portable liquid systems as well a pulse



Towards Emotionally Sensitive Conversational Interfaces for E-therapy 503

oximeter that monitors the oxygen saturation of a patient’s blood and changes
in blood volume in the skin. The pulse oximeter is usually incorporated into a
multiparameter patient monitor, which also monitors and displays the pulse rate
and blood pressure [21].

We have applied our proposal to develop and evaluate an adaptive system that
provides functionalities oriented to these patients. The system is able of greeting
the patient, conducting a chat, assessing the patient’s behavior since the last
conversation, collecting data to monitor the patients’ current state, providing
feedback on this behavior, setting new behavioral goals for the patient to work
towards before the next conversation, promoting medication adherence, pro-
viding personalized tips or relevant educational material, creating a self-report
survey with questions assessing the patient’s attitude towards the agent, pro-
viding nearest pharmacies on duty, and personalized farewell exchanges. The
information offered to the patient is extracted from different web pages. Several
databases are also used to store this information and automatically update the
data that is included in the application.

The greeting and farewell functionalities have been designed to achieve the
personalization of the system right from the beginning of the interaction, modi-
fying the structure of the initial and ending prompts to incorporate not only the
name of the patient, but also additional functionalities like encouraging them to
follow personalized advices.

Given that continuous control and monitoring is a key factor for these dis-
eases, this is one of the main functionalities of the system. The data collected
by the system are the patient’s oxygen saturation level, heart rate, and blood
pressure (systolic and diastolic values). The system validates and analyzes the
data, providing some immediate feedback to the patients regarding their current
progress as well as communicating the results to doctors at the hospital who are
able to review the patient’s progress graphically and deal with alerts generated
by the system concerning abnormal developments.

The evolution of the patient is also taken into account in the personalized tips
functionality (e.g., “drink often to avoid dehydration”, “keep a varied and bal-
anced diet”, “try to keep in the same weight”, “avoid caffeine and salty food”,
“eat in a relaxed environment without hurry”, “visit the doctor at the first
evidence of cold or influenza”, etc.). Also for these patients it is important to re-
ceive support, as they sometimes suffer from anxiety and diminished self-esteem
because the illness deeply affects their social life.

The chat functionality extends this goal by means of personalized forms re-
lated to educational hints explaining details of their illness (e.g., how the respira-
tory system works and what are the consequences of their treatment so that they
can better face them). The medication adherence functionality emulates previ-
ous works [5,1] to remind patients to take all their medications as prescribed in
the medical profile. Finally, the pharmacies functionality is based on dynamic
information automatically provided by the system and related to the current
location of the terminal and the daily updated list of pharmacies on duty.
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A previously developed automatic user simulation technique [10] has been em-
ployed to generate the dialog corpus required for learning the neural networks for
the emotion recognizer. To generate the emotion label for each turn of the simu-
lated user, we employ a rule-based approach based on dialog information similar
to the threshold method employed as a second step in the emotion recognizer
described in the previous section. In each case, the method chooses randomly
(0.5 probabilities) between an emotion (doubtful, bored, or angry) and neutral.
The probability of choosing the emotion rises to 0.7 when the same emotion was
chosen in the previous turn, which allows simulating moderate changes of the
emotional state. Although the simulated users resemble the behavior of the real
users in the initial corpus acquired for the task (the changes in the emotional
state correspond to the same transitions observed in the dialog states), they are
more emotional, as the probability of neutral in this corpus was 0.85. This way, it
is possible to obtain different degrees of emotional behavior with which evaluate
the benefits of our proposal.

4 Preliminary Evaluation

For comparison purposes, we have developed two systems providing the func-
tionalities described in the previous section. The baseline system does not carry
out any adaptation to the user, while the emotionally sensitive system integrates
an emotion recognizer developed following our proposal. A total of 30 recruited
users participated in the evaluation, aged 51 to 69 (mean 57.2), 67% male, five
with chronic pulmonary diseases. Although not all users suffered from them,
they were recruited taking into account the age range which is more affected by
these disorders. Additionally, the design of the application and its functionalities
was carried out with the continuous feedback of several patients and the medical
personal that treats them.

A total of 90 dialogs was recorded from the interactions of the recruited users,
15 users employed the emotionally sensitive system, and 15 users employed the
baseline version of the system. The users were provided with a brochure describ-
ing the scenarios that they were asked to complete and main functionalities of
the system. A total of 45 scenarios was defined to consider the different queries
that may be performed by users. Each scenario specified a set of objectives that
had to be fulfilled by the user at the end of the dialog and they were designed
to include and combine the complete set of functionalities previously described
for the system.

We asked the recruited users to complete a questionnaire to assess their subjec-
tive opinion about system performance. The questionnaire had eight questions:
i) Q1: How well did the system understand you?; ii) Q2: How well did you un-
derstand the system messages?; iii) Q3: Was it easy for you to get the requested
information?; iv) Q4: Was the interaction rate adequate?; v) Q5: If the system
made errors, was it easy for you to correct them?; vi) Q6: How much did you feel
that the system cares about you?; vii) Q7: How much did you trust the system?;
viii) Q8: With which frequency would you continue working with the system?
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The possible answers for each one of the questions were the same: Never/Not
at all, Seldom/In some measure, Sometimes/Acceptably, Usually/Well, and Al-
ways/Very Well. All the answers were assigned a numeric value between one
and five (in the same order as they appear in the questionnaire). The following
subsections present the results obtained for the four types of evaluation metrics
previously described.

Table 2 shows the average results obtained with respect to the subjective eval-
uation carried out by the recruited users. As can be observed, the two systems
correctly understand the different user queries and obtain a similar evaluation re-
garding the user observed easiness in correcting errors made by the ASR module.
However, the emotionally sensitive system has a higher evaluation rate regarding
the user observed easiness in obtaining the data required to fulfill the complete
set of objectives defined in the scenarios, as well as the suitability of the interac-
tion rate during the dialog. Ratings of satisfaction, ease of use, trust, and desire
to continue using the system were also improved by the emotionally sensitive
system. Together, these results indicate that the conversational system repre-
sents a viable and promising medium for helping patients with the described
diseases.

The following main conclusions can also be extracted from the analysis of the
results obtained for the different questions and systems. With regard questions
Q1 and Q2 (users understanding system responses and system understanding
users responses), the analysis of the results showed that there were not significant
differences between the two systems. This might be because of both systems
integrated the same ASR, NLU and TTS modules. A similar conclusion can be
extracted from the analysis of the facility of correcting errors (question Q5).

Regarding the easiness of obtaining information (question Q3) and the ad-
equacy of the interaction rate (question Q4), the emotionally sensitive system
improves the results obtained with the baseline system. The same conclusion
can be extracted from the analysis of the users’ perception about the credibil-
ity and concern transmitted by the system (questions Q6 and Q7). Users also
significantly prefer to continue working with the emotionally sensitive system,
which obtained the highest mean and lowest standard deviation for question 8.
In our opinion, this can be explained by the user’s adaptation achieved by the
introduction of our proposal in the emotionally sensitive system.

Table 2. Results of the subjective evaluation with real users (For the mean value M:
1=worst, 5=best evaluation)

Baseline Emotionally sensitive System
Q1 M = 4.62, SD = 0.37 M = 4.82, SD = 0.34
Q2 M = 3.65, SD = 0.24 M = 3.93, SD = 0.27
Q3 M = 3.84, SD = 0.56 M = 4.36, SD = 0.34
Q4 M = 3.43, SD = 0.28 M = 4.24, SD = 0.29
Q5 M = 3.27, SD = 0.59 M = 3.34, SD = 0.57
Q6 M = 3.71, SD = 0.41 M = 4.30, SD = 0.35
Q7 M = 4.22, SD = 0.46 M = 4.51, SD = 0.26
Q8 M = 3.80, SD = 0.42 M = 4.47, SD = 0.36
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5 Conclusions and Future Work

Emotions are frequently mentioned in the literature as the most important factor
in establishing a working alliance in healthcare applications. In this paper, we
contribute a proposal to develop emotionally sensitive spoken conversational
interfaces for healthcare applications. Our proposal is focused on recognizing
negative emotions that might discourage users from employing the system again
or even lead them to abort an ongoing dialog. The recognized emotion is used as
an additional valuable information to select and adapt the next system response.

We have provided a practical application of our proposal by means of a system
that provides personalized services for patients suffering from chronic pulmonary
diseases. From a set of dialogs acquired with recruited users we have studied the
influence of the emotional adaptation on the quality of the services that are
provided by the system.

As future work, we want to carry out a detailed study with a large number
of patients in a continuous use of the system during several months. We are
also interested in extending and evaluating our proposal for emotion recognition
considering its combination with sentiment analysis approaches analyzing the
text transcription hypothesis provided by the ASR module.
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Abstract This proposal is framed within the group’s general working
line of applying artificial intelligence techniques to advance in early mild
cognitive impairment diagnosis. If impairment in semantic production
was studied in previous works, now we rely on the reduced ability to
reproduce or copy simple figures, part of standardized neuropsychological
tests designed to assess mild cognitive impairment. Although the long-
term goal of this project is to work with all figures from these tests, in this
paper we will focus on the automatic analysis of the alternating graphs
figure. We develop a quantitative descrition of different features that
appear to be very abstract in the test norms and define new features
that are not considered so far. Results with just one figure are quite
promising (77.7% precision and 77.1 recall).

Keywords: Drawing analysis · Mild Cognitive Impairment · Alzheimer
disease · Drawings in neuropsychological tests · Test Barcelona

1 Introduction

It is known that mild cognitive impairment (MCI) is detected in the very early
stages of Alzheimer disease (AD) and other neurodegenerative dementias, which
is essential for achieving maximum effectiveness in pharmacological treatments
and cognitive therapies. One part of standardized neuropsychological tests de-
signed to assess MCI include reproducing or copying figures. The main idea of
this work is to analyse, using artificial intelligence techniques, from a typical
pattern or standard of each one of the figures with which we have worked in an
investigation on early detection of mild cognitive impairment [1,2,3], the extent
to which certain distortions from the standard may indicate of different profiles
and degrees of MCI. These figures come from the Mini Examen Cognoscitivo
(MEC) [4], the Test Barcelona [5], and the Rey complex-figure Test [6].

The processes and cognitive functions —cognitive domains— that are sup-
posedly assessed by the execution of these figures are: the executive function,
visual and/or visuospatial perception, motor skills, and spatial memory. In each

c© Springer International Publishing Switzerland 2015
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of these functions or processes, the traits or components (control, inhibition,
planning, etc.) involved in the patterns to be analyzed can be defined, for ex-
ample, following the indications of Dr. Peña Casanova with regard to the draw-
ings of alternating graphs and loops [5].

An important complementary aspect is to be able to obtain not only the
distortion with regard to the standard figure at any given time, but also to be
able to determine how this evolves over the years, an aspect that can be analyzed
in the future, as it constitutes the data of our longitudinal research.

Although the long-term goal of this project is to work with all figures from the
above-mentioned tests, we present herein only the results of the figure alternating
graphs, which is one of the subtests of the Barcelona Test. The diagnostic value
of this test, selected for this automatic exploratory analysis, lies in the fact
that in its execution are involved some executive function components, such as
seriation, planning, flexibility, inhibition, as well as praxic capacity.

The task consisted of copying one figure, one in which peaks and plateaus
should alternate. Following the test norms, scoring is done according to the
quality of the copy, assigning 0 to 2 points for each one of them. The distor-
tions that can emerge in the execution of these figures can be of different types:
variations in the size of the execution of the figure, alteration of features by
addition or deletion, scribbling, perseverations, rotations, etc. These errors or
alterations in the reproduction of the drawing may be markers of more severe
dysfunctions, which can be of an apraxic type, in which the executive functions
are also involved, as in Alzheimer’s type dementia [7].

Whereas in other types of standardized tests that assess episodic memory,
verbal fluency, etc. it is much easier to obtain normative data that allow scoring
free from subjectivity, in these types that involve reproducing and copying fig-
ures, it is much more difficult, imposing the subjectivity and some discretionality
by the evaluator. Although scoring criteria exist, there is a large component of
subjectivity, that can undermine the reliability if discrepancies among the evalu-
ators are not corrected [8]. As a result of this lack of agreement in the correction,
there may be an important margin of error in the detection of certain problems
of motor skills, visual and visuospatial perception, etc. within the framework
of a general plan for early detection of MCI, either prior or not, to AD. The
method proposed herein is a method of Artificial Intelligence (A.I), inexpensive,
easy to apply and implement and that provides a convergence of criteria of both
methods: the manual one and the automatic one. This could lead to discovering
certain aspects of figure execution that may be significant for the early detection
of alterations within the framework of specific cognitive domains.

In previous publications, our group has worked to define an economic pro-
cedure for MCI diagnosis by analysing cognitive alterations affecting declarative
semantic memory [9,10]. As in this work, our goal there was to objectify and
automate the analysis of a test that, because of its low cost, it could be used
for routine clinical evaluations or screenings that could lead to more expensive
and selective tests that confirm or rule out the disease accurately. We confirmed
that, in this context, Bayesian networks are the most appropriate tool for this
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purpose because they allow us to combine previous knowledge with case data
(the network structure, the qualitative part of the model, is obtained from psy-
chology experts and epidemiological studies, and the network parameters, the
quantitative part of the model, are learnt automatically from epidemiological
studies and a linguistic corpus of oral definitions [11].

Other non-conventional diagnostic methods proposed to evaluate the cognitive
state of patients or even to detect motor deficiencies caused by a brain haem-
orrhage from monitoring daily activity. In particular, Matic et al. analyse the
act of getting dressed [12] and Kearns et al. analyse the tortuosity in movement
paths—irregular movements—of elderly people with cognitive impairment [13].

The remainder of the paper is organised as follows: Section 2 describes the
materials and methods, i.e., the sociodemographic and clinical data of the par-
ticipants in the study and purpose specific automatic method for alternating
graphs drawing analysis. In section 3 we present the experimental results. Fi-
nally, section 4 presents our concluding remarks as well as the future lines of
research.

2 Materials and Methods

2.1 Participants

The sample (N = 40 participants) was recruited from a larger sample of par-
ticipants in an ongoing longitudinal study (ref. SEJ 2004-04233 and SEJ 2007-
63325) focused on determining the prevalence the different MCI subtypes [1,3].
The participants were recruited in the Autonomous Community of Madrid,
Spain. They were assessed longitudinally with a neuropsychological battery dur-
ing an average period of 3 years. MCI was defined as having a score of 1.5 SD
below the mean in at least 2 of the tests applied. Depending on the data ob-
tained through the different neuropsychological assessments, the participants
were classified in one of the following cognitive profiles: healthy individuals
(n=16)—expected performance according to references scales—or MCIs (n=24).
Of the MCI group, after a 3-year follow-up, 10 of them had a diagnosis compat-
ible with an initial phase of probable AD (see Table 1).

2.2 Methods

We have defined a purpose specific automatic method for alternating graphs
drawing analysis. The general approach considered in this paper consists of
the following steps: 1) drawing digitalisation, 2) drawing segmentation, 3) line
extraction, 4) pattern matching and characterization and 5) MCI diagnosis.
Figure 1 shows an example with the intermediate results of each one of these
steps.

Drawing Segmentation. After digitalisation with a standard scanner, a gray-
scale image is obtained (Fig. 1.a). The image contains two figures, the pattern
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Table 1. Baseline sociodemographic and clinical descriptive data of healthy, MCI and
MCI-converters

Healthy MCI MCI-Converters
n = 16 n = 14 n = 10

Mean (SD) Mean (SD) Mean (SD)

Gender (female) 13 (81.25%) 11.00 (4.24) 4 (40%)

Age (years) 69.75 (4.85) 72.57 (5.31) 71.60 (5.08)

Formal education (years) 11.00 (4.24) 5.50 (6.51) 8.30 (5.53)

Geriatric Depression Scale (GDS) 3.44 (2.78) 3.93 (2.99) 4.20 (3.39)(Yesavage scale)[14]

Functional level 0.59 (0.45) 0.67 (0.57) 1.00 (1.00)(Blessed scale) [15]

Cognitive status 33.50 (2.47) 29.14 (3.78) 30.30 (2.00)(MEC 0-35)[4]

and the manual drawing. Histogram analysis is performed in order to segment
the objects from the background. It is assumed that background is white and
that the drawing is a continuous black line that comprises a small amount of
the image pixels. Due to the fact that posterior pattern analysis is simplified if
segmentation obtains a thin object, an iterative threshold selection is used that
evaluates the results and stops when more than two big objects are obtained
(Fig. 1.b). After that, the region of interest is rescaled in x and y to a standard
size. The segmented line quality depends tremendously on the conditions under
which the drawing is performed, the pen type, and the scanning process.

Line Extraction. Line thickness is various pixels wide and we therefore need to
thin it down. We have used mathematical morphology for extracting the skeleton,
which is very noisy and contains many small branches that must be eliminated
(Fig. 1.c) Assuming that both line ends are in the x-coordinate extremes, the rest
of braches are eliminated by deleting iteratively the endpoints. If small loops are
detected, they are broken and the intermediate branches are eliminated again.
The final result is a continuous line with no loops. Then, we use the recursive
Douglas-Peucker line simplification algorithm to approximate the curve with line
segments to a specified tolerance (Fig. 1.d).

Pattern Matching and Characterization. In this point, we have to make
clear that our interest is not limited to recognise the alternating graph pattern
or to assess if the pattern is copied correctly or not, instead, we are interested in
wider assessment metrics that serve us to discriminate between groups of people.
Because the alternating graph consists of repeating five times the peak-plateau
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(a)

(b)

(c)

(d)
Figure 1. Peak-Plateau drawing segmentation and segment decomposition. a) scanned
image; b) segmented image; c) skeleton extraction and d) segment approximation
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pattern, which in turn consists of a sequence of various segments with differ-
ent orientations (ascending, descending and horizontal segments), we analyse
whether the segments found in the drawing match the pattern or not. The result
is a measure of the number of valid and invalid segments found in the drawing.
Table 2 summarises the list of features used for characterising the alternating
graph that allows us to compare it with the model.

Table 2. List of features used for characterising the peak-plateau drawing

Feature Description
height_pattern_diff height difference between pattern and drawing
width_pattern_diff width difference between pattern and drawing

drawing_tilt tilt of the drawing with respect to the sample.
vertical_dist_to_model vertical distance between drawing and model

X_scale_factor scale factor in X coordinate used for drawing normalization
Y_scale_factor scale factor in Y coordinate used for drawing normalization

alternance variable associated with a perfect match between drawing
and model in the five peak-plateau pattern

#valid_patterns number of valid peak-plateau patterns
phase_diff average x coordinate difference between pattern and drawing

plateau_width average width of the horizontal segment in plateau subpatterns
#segments total number of detected segments

#valid_segments number of drawing segments that match the pattern segments
#invalid_segments number of drawing segments that does not match the pattern

average_segment_tilt average tilt of the drawing segments
last_segm_match last consecutive valid segment

DCL Diagnosis. We have built a supervised machine learning classifier us-
ing the dataset described in subsection 2.1. In this stage of the study, we are
interested in the analysis of the discrimination power of the different features.
Therefore, we have used a J48 decision tree to implement the classifier because
of ease of understanding. Due to the small sample size, we have used leave-one-
out cross-validation for evaluating the classifier, which allows to use the largest
possible training sample while keeping a reliable performance estimation.

3 Experimental Results

The final features included in the decision tree are #invalid _segments,
X_scale_factor and vertical_dist_to_model. It is worth noting that
#valid _segments is not very discriminative and it is highly correl-
ated with #invalid_segments. Besides, the most discriminative measures,
vertical_dist_to_model and X_scale_factor, are not considered in the
neuropsicological tests. The results are quite promising (0.777 precision / 0.771
recall) having in mind the limitations imposed by the small sample size and the
fact that the analysis is based on just one item of one test. As mentioned in
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the introduction, the expert’s score in this test is quite generic and only dis-
tinguishes three possible values: good performance (2), good performance with
some defects (1) and mistake (0).

4 Conclusions y Further Research

In this paper we have demonstrated that AI techniques can offer solutions to
support the automatic analysis of drawings included in neuropsychological tests
for the assessment and diagnosis of MCI. The main advantage of the automatic
analysis is that it includes a larger amount of metrics for characterising the
drawings, which makes it more quantitative, robust and user independent.

We have implemented an automatic system alternating graphs analysis and we
have found discriminative metrics for diagnosing MCI. The fundamental problem
in machine learning AD diagnosis, as in most neurological studies, is the absence
of a training dataset large enough to build a reliable AD diagnosis system using
supervised learning. We have to recognise that with this small sample size, we
can only conclude that these proposed features are good candidates for MCI
diagnosis, but they alone can not distinguish between different MCI types. In
future works we will broaden the sample and will combine features from different
figures to improve the classification performance. Therefore, this work intends
to be a pilot study of a much broader work in which, from the longitudinal data
already available, we can make different types of analysis:

– Longitudinal analysis of healthy controls: comparing, over a series of years,
the execution patterns of healthy control subjects, to verify their stability in
the execution of the figures.

– Longitudinal analysis of the stable MCIs: the same type of comparative
approach but in subjects with stable MCI, to attempt to answer the following
questions: Is the execution of the figures stable? Of all of them? For how long?

– Longitudinal analysis of the MCIs that evolve to AD: the same in subjects
with an evolutionary MCI to Alzheimer’s disease or another dementia.

– Transversal analysis of the different types of MCI: the same in subjects with
various types of MCI: amnestic, multidomain and nonamnestic.

– Relationship between the figure drawing and ideomotor praxia: to study the
relationship between the execution of the figures and the ideomotor praxia
obtained by the same subjects in other tests.

– Socio-demographic analysis: to analyze the relationships between socio-
demographic variables, such as age, gender and level of education, and the
execution patterns of the above-mentioned figures.
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Universidad Técnica Particular de Loja, Marcelino Champagnat S/N, 1101608, Loja,

Ecuador
hfgomez@utpl.edu.ec

2 Dpto. Inteligencia Artificial. Escuela Técnica Superior de Ingenieŕıa Informática,
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Abstract. Loitering is a common behaviour of the elderly people.
We goal is develop an artificial intelligence system that automatically
detects loitering behaviour in video surveillance environments. The first
step to identify this behaviour was used a Generalized Sequential Pat-
terns that detects sequential micro-patterns in the input loitering video
sequences. The test phase determines the appropriate percentage of in-
clusion of this set of micro-patterns in a new input sequence, namely
those that are considered to form part of the profile, and then be identi-
fied as loitering. The system is dynamic; it obtains micro-patterns on a
repetitive basis. During the execution time, the system takes into account
the human operator and updates the performance values of loitering in
shopping mall. The profile obtained is consistent with what has been doc-
umented by experts in this field and is sufficient to focus the attention
of the human operator on the surveillance monitor.

1 Introduction

Modelling and automatic identifying human behaviour is an area that has been
developed significantly over the last few years in artificial intelligence and artifi-
cial vision. The aim of this type of investigations corresponds to the social need
for more security in particular, but also in general, in the form of automatic
observation of behaviour, such as in the health sector. We worked under the as-
sumption that it was possible to develop a system that emulated the ability of an
expert in recognizing loitering behaviour by considering a set of repeated actions
(micro-patterns) that are part of the loitering profile. This system updates the

c© Springer International Publishing Switzerland 2015
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profile with the contribution of a human operator, with the aim of covering the
widest possible positive cases. The system is interactive and dynamic, because
it enables interaction between the system and the human operator and because
it facilitates the updating of the loitering profile.

We worked with the Generalized Sequential Patterns (GSP) algorithm to ob-
tain the micro-patterns (patterns comprised of a small number of sufficiently
repeated events). Srikant and Agrawal [1] use GSP to obtain sequential patterns
based on data about consumer shopping habits at supermarkets. In our study,
we had to change the input sequences of shopping behaviour to input sequences
of labelled loitering activities from video surveillance to obtain micro-patterns
that characterized the target behaviour. These micro-patterns constituted the
loitering profile for identifying loitering behaviour in video surveillance domains.
These micro-patterns are initially identified by positive sequences and loitering
characteristics. Afterwards, a sensitivity analysis is performed on new cases of
loitering sequences. Another step is the testing phase, which enables us to de-
termine the appropriate percentage of inclusion for this set of micro-patterns in
a new input stream. Since the system is dynamic, it obtains micro-patterns on
a repetitive basis; the sensitivity analysis is continually updated too. During the
execution time, the system takes into account the human operator annotations
and updates the performance values.

The next section presents a review of works related to the learning and se-
quential micro-pattern recognition of human behaviour. After, we describe the
proposed system based on micro-pattern matching with GSP and the selection
of those micro-patterns that best characterized (profile) the target situation.
Section 4 provides details of the experiments and the last section of the article
consists of our conclusions and also proposes new areas of related research.

2 Related Work

Park, et al. [2] use a probabilistic scoring function to calculate the temporal
similarity of event sequences with behavioural patterns that are defined as a
priori, that is, they identify Daily Living Activities (DLA) of people at home,
such as reading, listening to music, etc. Their approach consists of identifying
previously known behaviour using more explicit knowledge.

In our research, we examined the repetition of the occurrence of an event, or
several events, that led to the expected behaviour. Robertson, et al. [3] for ex-
ample, use rules of behaviour with a probabilistic algorithm, namely the Hidden
Markov Model (HMM), which identifies the behaviour of pedestrians crossing a
street in various situations such as when there is a lot of traffic, or when the
traffic lights change, etc. Other studies (e.g., see [4–6]) identify the behaviour
of people in video images based on the recognition of human movements. For
example, a sequential analysis of events was used with HMM to detect domestic
accidents, and to identify health problems such as feinting and cardiac arrests,
etc.

Chikhaoui et al. [7] use GSP to search behavioural patterns of persons during
their daily routines with the objective of distinguishing individual behaviour.
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The results show that there are clear differences between individual and typical
behaviour of people in activity day live. Moreover, it is relatively easy to model
normal behaviour. For example, the daily activity of a person at home in the
morning is often the same, and can thus be modelled a priori [8]. We believe
this proposed approach is innovative and has the potential of opening investi-
gation into adjacent domains of research, such as in healthcare and psychology.
However, this proposal is not an attempt to replace the human operator who
monitors peoples behaviour; instead, it should be viewed as a practical alter-
native for preventing delinquent behaviour using state of the art surveillance
technology (GSP and sensitivity analysis).

3 Loitering Behavior Identification Based on Sequential
Micro-Patterns

It shows the methodological structure of both stages or scenarios of our proposal:
the a priori training/learning process and the identification of patterns (Fig.1),
and the stage when the system is in operation (Fig. 2).

In the training stage (Fig. 1), the first step (1) is to find micro-patterns us-
ing GSP. As mentioned in the introduction, micro-patterns are small patterns
comprised of several sufficiently repeated events of loitering behaviour. In order
to obtain these, we must have a series of positive case sequences. Each sequence
represents the behaviour of a person and is obtained by labelling the individ-
ual activities of the monitored person for each second of video surveillance, e.g.
walk, walk, stop, stop, walk, walk, stop, stop. It may be assumed that vision al-
gorithms can recognize these events (see [6, 8–10]), or that they can be labelled
manually or semi-manually.

To obtain the micro-patterns, GSP searches all frequent sequences in the
database. Frequent sequences are those whose frequency exceeds a threshold
value known as minimum support. In first stage, GSP searches for these frequent

Walk, Walk, Stop, Stop

Loitering events
      sequences

Normal and Loitering 
         sequences

Verify adequate
% of inclusion

of the sequences
in Profile

walk, walk, walk, 
stop, stop, stop, 
   turn-rigth, 
  turn-rigth-stop

GSP
Training

Video

Micro-patterns

Sensitivity Analysis

Profile

Fig. 1. Identify loitering human behavior: Training stage
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Fig. 2. Identify loitering human behavior: Test stage

sequences in the database (using hashing tree algorithm) from the sequences of
size 1 (a sequence that contains 1 item), with 1-sequence frequent (candidate se-
quences); and from these, GSP builds sequences with size 2 (a sequence composed
of 2 items) and select the frequent 2-sequence. Frequent 2-sequences (candidate
sequences) are joined with frequent 1-sequences in order to form sequences of
size 3. With these sequences, other sequences of higher orders are generated.
GSP search ends when there are sequences of a desired length that appears
more frequently in the database. Finally, in the second stage, GSP removes non-
candidate sequences and as such obtains frequent sequences, known in this study
how micro-patterns . A sensitivity analysis is applied to all the micro-patterns.
Then, the most reliable ones for the target situation are selected, which form a
more representative behaviour profile (see Fig. 1). The sensitivity analysis of the
micro-patterns is carried out as follows:

Recognize (match) a p micro-pattern in a new sequence (s) implies extracting
an s sub-sequence from s, which is of the same length as p, and calculate the
Levenshtein distance (L) [11, 12] between p and s. If L is less than the threshold
α, there is therefore an occurrence with a positive result. This is repeated for all
the s that form part of s. We defined the matching threshold (α) as in [13] (In
this case, it is related to football strategies). This is done to determine when a
micro-pattern appears in a sequence. The use of this threshold is justified since
it is difficult for an entire micro-pattern to appear exactly in the new sequence,
given the variability of behaviour (see [14, 15]).
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Test the initial micro-patterns with new sequences (this time with positives
and negatives). The micro-patterns were sorted according to their F1Score metric
since we wanted to detect as many positives as possible without affecting the
precision value (equilibrium). The most characterizing micro-patterns comprise
the behaviour profile. Determine the appropriate inclusion percentage of a profile
in a sequence. This process consists of determining which percentage of inclusion
of the profile patterns in the input sequence provides better results, or best
characterizes the behaviour, because as we can see from the test results in the
following section, it is important to maintain equilibrium, seeing that if too high
percentage of precision is required, the performance index is low. Once the system
is activated, we can examine the loitering profile within the input sequences i.e.
with the aim of generating a warning for the human operator.

In Fig. 2, we can see a diagram of the execution stage. During this stage, which
begins with the processing of the images, the input sequences are obtained to
verify whether any of them correspond to the loitering profile, and generate the
corresponding warning for the human operator. Thanks to the intervention of
the human operator, the system can learn in a continuous manner and not only
during the training stage. The execution stage considered the following factors:

Where the frequency sequence did not reach a level greater than the min-
imal support it was discarded automatically. This is something, which occurs
only in GSP (the training phase). Although these sequences were automati-
cally discarded by the system, there is also a way of retrieving them. On the
other hand, if the new sequences that are inputted into the system contain the
discarded sequences, their frequency will increase. Moreover, if this sequence
frequency reached a higher level than the minimal support, this sequence was
determined to be a micro-pattern. Consequently, we needed to repeat the entire
training phase and the sensitivity analysis again. Therefore, it could be con-
cluded that whenever there was a new micro-pattern, there would also be other
micro-patterns.

During the updating of the sensitivity analysis, we observed that it was neces-
sary for the human operator to determine whether true positive or false negative
cases were needed, or if, by default, neither of these options were required. After-
wards, the human operator updated the sensitivity analysis of micro-patterns,
namely those that constituted the profile.

4 Experimentation

The experimentation dataset, training and testing, is comprised of the following:
35 loitering sequences from CAVIAR-Project [16] test-bed contain footage from
a camera situated in a shopping centre alley (outside a shopping mall).

Loitering video observation and manual labelling of events: 100 video record-
ings of loitering behaviour, recorded by video surveillance systems, were ana-
lyzed. As with other previous examples, a security assistant observed each of the
video recordings for 40 seconds (timestamp). Then, the observations were man-
ually registered in a software program specially designed for this investigation.
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The 135 positive sequences were obtained from a single file of input sequences
for the GSP. Group (b) was created in the same way. We generated 100 sequences
by labelling negative events. Finally, we obtained a dataset of 235 mixed se-
quences. By using the 135 positives sequences to train the GSP, we were able to
obtain micro-patterns. The results showed that with the value MS = 0.4 (where
40% of the sequences include the micro-pattern) and α = 2 (where the distance
from the micro-pattern is less than or equal to 2), we were able to obtain the
required micro-pattern data. The values that were obtained during the testing
phase provided the most accurate results.

For the sensitivity analysis of loitering behaviour (see Table 1), we used 135
positive sequences with their respective number (100) of negative sequences.
This procedure helped us to obtain micro-patterns in order to make the desired
profile. Finally, we used the same sequences (235 sequences) to determine the
optimal percentage of micro-patterns. By also having the micro-patterns appear
in a sequence we were able to ensure that the sequence contained the profile of
loitering behaviour, thus obtaining new F1Score:

Table 1. Sensitivity analysis of micro-patterns obtained with GSP

Micro-patterns Precision Recall F1 Score

walks, walks, walks, stops, stops, stops, walks, walks, walks 0,85 0,94 0,89
stops, stops, stops, stops, stops, walks, turns-right, walks,
walks, turns-right, walks

0,73 0,96 0,82

stops, stops, stops, walks, walks, walks, walks, stops, stops,
turns-left, walks

0,71 0,96 0,81

stops, stops, stops, stops, walks, walks, walks, turns-right,
turns-right, browses, browses

0,81 0,96 0,87

walks, walks, walks, stops, stops, stops, walks, walks, walks 0,85 0,94 0,89

As can be seen from the Table 2, the results with the highest values are
observed when the sequences contain 75 % of the profile micro-patterns (see row
highlighted in bold). These results are considered valid (see [15, 16]) for this
study as they provide a high recall value and because the level of precision does
not severely decrease, but instead gradually increases based on the fact that the
input sequences contain the optimum number of micro-patterns. The optimum
percentage (75 %) of inclusion of the micro-patterns in the input sequences is
thus determined by the highest value of the F1Score (0.91).

It is worth highlighting the trend, that where there is a precision level of 0.64,
this indicates that a greater number of false alerts are generated compared with
the values of the last three rows of the table (0.93). This theory can be sustained
when we examine what happens with a precision level of 1.00. Where there is an
optimum precision level of 1.00, there will be minimal false alerts. The precision
value and the recall value rise and fall alternately, i.e. where one value increases
the other value decreases. The precision and recall values are mutually dependent
and the F1Score shows the relationship between these values.
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Table 2. Sensitivity analysis to determine the optimal percentage of inclusion in the
profile

Percentage of inclusion in the profile Precision Recall F1 Score

35 0,64 0,98 0,77
40 0,64 0,976 0,77
45 0,67 0,97 0,79
50 0,71 0,95 0,81
55 0,74 0,943 0,82
60 0,74 0,94 0,82
65 0,74 0,94 0,82
70 0,76 0,94 0,84
75 0,89 0,94 0,91
80 0,9 0,919 0,90
85 0,9 0,87 0,88
90 0,93 0,865 0,89
95 0,93 0,84 0,88
100 0,93 0,77 0,84

To explain this point further from a theoretical perspective, the system iden-
tifies the maximum number of loitering sequences (recall) in relation to the
minimum number of false alerts (precision). Therefore, the equilibrium between
precision and recall can be found where the F1Score is 0.91.

The experimentation found that if there is no equilibrium between these values
(i.e. when the number of input sequences is too small to generate representative
micro-patterns of loitering behaviour), we must increase the number of input
sequences by labelling more video recordings. For this reason, it is essential to
achieve equilibrium between precision and recall values.

Table 3. Performance results of micro-patterns (new test)

Micro-patterns Precision Recall F1 Score

walks, walks, walks, stops, stops, stops, walks, walks, walks 0,64 0,94 0,76
stops, stops, stops, stops, stops, walks, turns-right, walks,
walks, turns-right, walks

0,67 0,94 0,78

stops, stops, stops, walks, walks, walks, walks, stops, stops,
turns-left, walks

0,73 0,91 0,81

stops, stops, stops, stops, walks, walks, walks, turns-right,
turns-right, browses, browses

0,77 0,9 0,82

walks, walks, walks, stops, stops, stops, walks, walks, walks 0,64 0,94 0,76
stops, stops, stops, stops, stops, walks, turns-right, walks,
walks, turns-right, walks

0,67 0,94 0,78

stops, stops, stops, walks, walks, walks, walks, stops, stops,
turns-left, walks

0,73 0,91 0,81
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To test whether our online system worked, we performed a final test to check
the learning capacity of the system with 100 new positive and 100 new negative
sequences. In this case (see Table 3), the sensitivity analysis did not generate
new micro-patterns, as there were not any sequences that reached the minimum
support level. Therefore, there did not exist sufficient changes in the sensitivity
analysis to produce new micro-patterns. Although the sensitivity analysis could
be updated, we still used the same micro-patterns. As we can see below, the F1
score remains high, and as with the example of loitering behaviour, the results
confirmed the micro-pattern percentage inclusion of 75% (see Table 4).

Table 4. Sensitivity analysis to determine the optimal percentage of inclusion in the
profile (new test)

Percentage of inclusion in the profile Precision Recall F1 Score

35 0,56 0,66 0,60
40 0,62 0,64 0,62
45 0,66 0,67 0,66
50 0,67 0,67 0,67
55 0,67 0,67 0,67
60 0,67 0,72 0,69
65 0,67 0,72 0,69
70 0,7 0,74 0,71
75 0,7 0,77 0,73
80 0,7 0,7 0,7
85 0,7 0,68 0,68
90 0,66 0,61 0,63
95 0,74 0,53 0,61
100 0,87 0,53 0,65

The results from Table 1 and Table 4 (i.e. after updating the sensitivity anal-
ysis of the selected micro-patterns) show that the obtained profile is used to
distinguish between normal and potential theft behaviour. Furthermore, with
the sequences that were used in the experimentation stage, the proposed system
is capable of distinguishing between normal and loitering behaviour, a problem
that was not, however, resolved in [17]. Indeed, this finding constitutes another
important contribution to our study.

5 Conclusions

In this paper, we aimed to test the hypothesis that there is a common denom-
inator in loitering behaviour which human experts are capable of identifying,
namely in determining target scenarios, but which, at the same time, may re-
sult in difficulties when actually defining them. Our subsequent approach to this
problem consisted of generating automatic alerts for human operators based
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on the creation of a pre-selected loitering profile and the implementation of a
sensitivity analysis.

There were occasional occurrences of false alerts during the testing phase.
These false alerts may be reduced by obtaining the optimum percentage of in-
clusion of micro-patterns in the input sequences and by repeating the sensitivity
analysis. However, the proposed system is designed in such a way that, theo-
retically once it is fully installed and operational, it would work on its own by
automatically generating message alerts for the human operator, who, in turn,
would take the necessary security action.

This entire process is based on the identification and labelling of what we call
elementary or basic activities, namely events that are recognizable by artificial vi-
sion algorithms or intelligent sensory monitoring techniques (segmentation, tar-
geting, tracking and classification). By using these labelled sequences, i.e. where
loitering behaviour usually occurs, we can obtain sequential micro-patterns with
the GSP algorithm. After doing a sensitivity analysis with sequences showing
normal (negative) and loitering (positive) behaviour, the most characteristic
micro-patterns were selected, thereby confirming the loitering behaviour profile.

During runtime, i.e. when an input sequence contains the optimal percentage
of the profile, a message alert is raised for the human operator. The human
operator would then confirm the true positives and mark the false negatives.
This human interaction with the system therefore helps to update the sensitivity
analysis of the profile. Moreover, in real time the results that are originally
discarded can likewise be recovered if their frequency of occurrences reaches the
minimum required level.

To test our hypothesis, we carried out an experiment on the identification of
loitering behaviour in a shopping mall. This scenario was chosen because they
represented situations that fulfilled the conditions of the main areas of gerontol-
ogy i.e Alzheimer. In this case, we manually labelled the video recordings, thus
facilitating the sequencing of event labels.

Our results strongly suggest, therefore, that the implementation of a micro-
pattern profile in video surveillance situations helps in the prediction and pre-
vention of loitering activity, thereby serving as a fundamental tool for the human
operator.
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Abstract. As the population increases in the world, the ratio of health
carers is rapidly decreasing. Therefore, there is an urgent need to create
new technologies to monitor the physical and mental health of people
during their daily life. In particular, negative mental states like depres-
sion and anxiety are big problems in modern societies, usually due to
stressful situations during everyday activities including work. This paper
presents a machine learning approach for stress detection on people using
wearable physiological sensors with the final aim of improving their qual-
ity of life. The presented technique can monitor the state of the subject
continuously and classify it into ”stressful” or ”non-stressful” situations.
Our classification results show that this method is a good starting point
towards real-time stress detection.

Keywords: Stress detection · Wearable physiological sensors · Assistive
technologies · Signal classification · Quality of life technologies

1 Introduction

As the population increases in the world, the ratio of health carers is rapidly
decreasing. Actually, the Organisation for Economic Co-operation and Devel-
opment (OECD) warns about future shortages of available health workers and
doctors [3]. Therefore, there is an urgent need to create new technologies to
monitor the health of people, both physical and mental, during their daily life
with the aim of supporting health workers, caregivers, and doctors in their tasks.
These technologies, also known as Quality of Life Technologies (QoLTs), have
emerged as the concept of applying findings from different technological areas
to assist people and improve their quality of life.

An emerging research topic inside QoLTs is their application to psychology
and self-therapy to improve the mood of people and thus, their quality of life.
Although there exist several technologies to support the health of people at the
physiological level, the technologies that are able to provide similar support at
the mental level are almost inexistent.
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Treating negative mental states in people is becoming a priority in our new
societies. In particular, stress is a big problem in modern populations due to the
increment of stressful situations during everyday activities including work. Stress
is a natural reaction of the human body to an outside perturbing factor. The
physiological responses to stress are correlated with variations in heart rate,
blood volume pulse, skin temperature, pupil dilation, electro-dermal activity
[18,17,13]. Stress may have beneficial effects on fighting the stress factor, like
increasing reflexes, but it was determined that long term stress is correlated
with various health problems like depression and premature ageing [16], [9].

Stress is creating new problems that have a great impact in our societies and
economies. For example, according to the Mental Health Foundation in UK [2],
around 12 million adults in the UK visit their general practitioner doctor (GP)
each year with mental health problems, most of which are related to stress.
As a consequence, 13.3 million working days are lost per year due to stress
problems. Moreover, according to the World Health Organization [4], stress has
a cost of around 8.4 million to UK enterprises. Finally, current appointments for
national health mental services in UK, such as Cognitive Behavioural Therapy
(CBT) [5] are taking 3-6 months to be processed, with the subsequent danger
for the patient because cumulative stress may have broad negative consequences
on societal well-being and costs [15]. Thus, the research of this paper emerges
as a necessity to create new wearable technologies to monitor stress on people
during their daily life.

This paper presents a machine learning approach for stress detection on peo-
ple using wearable physiological sensors with the final aim of improving their
quality of life. Moreover, the presented technique monitors the state of the sub-
ject continuously and classifies it into ”stressful” or ”non-stressful” situations.
Finally, our classification results shows that our approach is a good starting
point towards real-time stress detection and treatment.

2 Wearable Physiological Sensors

In this paper we aim to detect stress in people using wearable sensors that
measure physiological responses. In particular, we have used the BioNomadix
module from Biopac, model BN-PPGED [1] as shown in Figure 1.

The BN-PPGED is worn as a wristband on the non-dominant hand of a sub-
ject with two electrodes situated on two fingers that measure the electro-dermal
activity (EDA) and the pulse plethysmograph (PPG) signals. EDA, sometimes
measured as electrodermal response, skin conductance activity, or galvanic skin
response, is an indication of skin sweating activity. PPG, also known as Blood Vol-
ume Pulse (BVP), is obtained using a pulse oxiometer which illuminates the skin
and measures the differences in light absorption. The amount of light that returns
to the PPG sensor is proportional to the volume of blood in the tissue [14].

In our experiments the EDA and PPG physiological signals were acquired at a
1000 Hz sampling frequency. After the acquisition the signals were down-sampled
to 10Hz.Afterwards, a filtering andartefact removal approachwas appliedbyusing



528 V. Sandulescu et al.

Fig. 1. BioNomadix model BN-PPGED and MP150 station by biopac [1]

the routines included in theAcqKnowledge software [1]. In adittion,AcqKnowledge
was used to extract the PPG autocorrelation signal and the Heart Rate Variability
(HRV). HRV represents the beat-to-beat variability over a given period of time
and is computed by calculating the standard deviation of the average of normal-
to-normal heartbeats [14].

The BN-PPGED connects though wireless to a Biopac MP150 communication
station as shown in Figure 1. The MP150 station directly connects to a computer
that runs AcqKnowledge 4 software for real-time data acquisition [1]. In this way,
the subject wearing the sensors can move freely while the experiments and the dif-
ferent signals are send through wireless to a computer.

3 Classification of Physiological Signals

In our approach we classify the state of each person at 0.1 seconds intervals. Each
state is composed of four measurements: PPG value (ppg), PPG autocorrelation
value (ppgau), HRV value (hrv), and EDA value (eda). Thus, we represent each
sample at time t as the feature vector xt = {ppgt, ppgaut, hrvt, edat}, where t is
sampled at 0.1 seconds intervals.

Each sample xt was labelled according to the state of the person at that time,
i.e. stressed, or not stressed. Thus, our dataset was composed of the measurements
obtained at each time interval together with their corresponding label as D =
{(xt, lt)}, with lt ∈ L = {stressed, not stressed}. The state of the person lt was
defined by the activity that personwas performing at time t during the experiment
(see Section 4).

The classification of the sampled meassurements was done using a support vec-
tor machine (SVM) [8,6]. Support vector machines take as input a set of n feature
vectors xi together with their labels yi ∈ Y = {1,−1}. The idea behind SVMs is to
find the hyperplane that maximizes the distance between the examples of the two
classes {1,−1}. This is done by finding a solution to the optimization problem

min
w,b,ξ

C

n∑
i=1

ξi +
1

2
‖w‖2 , (1)
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subject to the condition

yi
(
wTφ(xi) + b

) ≥ 1− ξi , (2)

wherew is thenormal to thehyperplane, and ξi ≥ 0 are slackvariables thatmeasure
the error in the misclassification of xi. In addition, we use a radial basis function
(RBF) kernel

K(xi, xj) = exp
(−γ‖xi − xj‖2

)
, γ > 0 (3)

In our case, we map our original labels L = {stressed, not stressed} into Y =
{1,−1} so that our examples could be used in a SVM.

4 Experimental Setup

To check the validity of our stress detector we prepared an experimental setup
where different subjects experimented different stressful situations. In this section
we will describe the complete experimental setup and protocol.

In the study presented in [9], more than 200 stress experiments are reviewed in
terms of activities involved in the experiments and the cortisol responsesmeasured
on the subjects performing these activities. According to the same source, themost
effective tasks for inducing stress are public speaking and cognitive tasks, because
during these tasks the highest increases in cortisol levels aremeasured. This is why
our designed experiment contained both a public speaking task and a cognitive
task.

Our final designed experiment is based on the Trier Social Stress Test (TSST)
[12]. This is a very popular experimental setup and it has been used in more than
4000 sessions during the last decades [9]. The TSST consists of a neutral task fol-
lowed by a public speaking task, a cognitive task and another neutral task in the
end. Each neutral task consists of 2 minutes of predefined neutral questions like:
”Howdo youfind theweather today” or ”Howdid you get here?”.The public speak-
ing is a 5 minute interview for a desired job. After this, the participant is asked to
count back in steps of 13, starting from 1022. This is the cognitive task. All the pre-
vious tasks are performed in front of a live audience and avideo camera.The camera
is only used to induce the stress more reliably [9], so the recordings are not stored.
The neutral tasks are thought as non-stressful situations, while the speaking and
cognitive tasks are considered stressful situations.

In more detail, our protocol for the TSST was as follows.When the participants
enter the experiment room, they are given verbal and written information about
the procedures involved in the experiment. The participants are asked to fill in a
consent form and to confirm that they do not suffer from any cardiovascular or
anxiety disorder that might be affected by experiencing stress or that might affect
the results of the experiment.

After being briefed, the participants are asked to fill in a State Trait Anxiety In-
ventory (STAI) [10] to estimate the current level of stress.They are then fittedwith
the sensors. There is a 2minutes period of timewhen the participants are asked pre-
defined neutral questions, in order to determine the baseline, which we will used as
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neutral state. Afterwards, the participants are asked to sit at a desk and prepare a
presentation for an job interview job during 3 minutes. They are given a pen and
a paper for this. When the 3 minutes time expires, they are asked to hand out the
sheet of paper and stand up in a predefined square on the ground and begin their
presentation. During the 5 minutes of the presentation, the participants are en-
couraged to speak continuously. If the participants stop during the presentation,
at the first pause, they are told about the remaining time and asked to continue. At
the next pause, they are asked a set of predefined typical interview questions like:
”What are your strengths/weaknesses?”, ”Where do you see yourself in 5 years?”
and so on. After the 5 minutes presentations. The participants are explained a cog-
nitive task and the 5 minutes timer is started. Whenever the participants say the
wrong number, they are asked to start again from 1022. At the end of the cognitive
task, the participants are given a short time to relax, while given another debrief.
Then another two minutes of neutral questions are recorded. Finally, the partici-
pants are then asked to fill in the STAI questionnaire to estimate the current level
of stress and the general level of stress.

5 Experimental Results

The previous TSST session was conducted on 5 participants {P1, P2, P3, P4, P5},
that were volunteering students from the School of Psychology, at the University
of Lincoln, aged 18 to 39, both males and females.

The goal of these experiments is to check the performance of our approach to
create a personalized stress detector for eachparticipant. For this reasonwe created
independent datasets of measurements for each participantD = {D1, D2, D3, D4,
D5}. The size of datasets Dk, i.e. number of feature vectors (c.f. Section 3), were
|D1| = 11620, |D2| = 13450, |D3| = 13740, |D4| = 13740, and |D5| = 13000.

We trained a SVMk for each participant using the corresponding dataset Dk

and evaluated the classifier according to it. For each SVMk we used 75% of the
corresponding datasetDk for training and the remaining 25% for testing. To create
this sets we used a stratified selection to ensure the same class distribution in the
subset as in the original set. Then the training and set data were scaled to have
values in the [−1, 1] range.

In our experiments we used the LIBSVM library [7]. Moreover, following the
method in [11], the parametersC and γ for each SVMk were selected by grid-search
using cross-validation.

The results of the different detectors are shown in Table 1. We can see that we
obtain very good detection results in all the participants, with accuracies over 82%
in two cases, and precissions over 80% in the majority of the patients.

The individual confusionmatrices for eachparticipant are shown inTable 2. The
results suggest a bias to classify non-stressful states as stressed.We think this is due
to the fact that people remained stress during short periods of times during the
transitions to neutral tasks, since they need time to relax. However, this transition
time was not taken into account in these results.



Stress Detection Using Wearable Physiological Sensors 531

Table 1. Classification accuracy and precision

Participant No. Accuracy [%] Precision [%]

P1 78.90 80.19
P2 73.26 73.61
P3 83.08 83.87
P4 82.82 83.20
P5 76.83 76.67

Table 2. Individual confusion matrices

Participant No. P1 P2 P3 P4 P5
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stressed 94.04 5.95 88.21 11.79 90.50 9.50 91.55 8.44 91.62 8.38

not stressed 60.62 39.38 50.73 49.27 29.49 70.51 32.53 67.47 49.36 50.64

6 Conclusions

In this paper we have presented an approach for stress detection using wearable
physiological sensors. Our approach is able to analyse the state of the subject at
any instant an decide about his/her stress situation. Detection results in our ex-
periment demonstrate that our approach is a good starting point towards real-time
mental mood detection and treatment on people to improve their quality of life.
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Abstract. Millions of elderly people around the world use the walker
for their mobility; nevertheless, these devices may lead to an accident.
One of the cause of these accidents is misjudge the terrain. The main
objective of this work is the implementation of a ground change detector
in real time on a small and light embedded system that can be clipped on
a rollator. As a long-term goal, this device will allow users to anticipate
entering dangerous situations. We implemented an algorithm to detect
ground changes based on color histograms and texture descriptor given
as inputs to multi-layer perceptrons. Experiments were performed both
off-line and with an embedded system. The obtained results indicated
that it is possible to have an accurate detector which is able to distin-
guish ground changes in real-time.

Keywords: Ground change detector · Embedded system · Artificial
Neural Network (ANN) · Elderly care · Gerontechnology

1 Introduction

The world is facing a situation without precedents. The proportion of old people
and the expectation of life increase everywhere. The number of elederly people
is projected to grow up to more than 2 billions, by 2050 [1]. Reducing severe
disability from disease and health conditions is one key to holding down health
and social costs.

The rollator (Fig. 1), widely spread among elderly, aims at helping users keep
their independence and mobility. However, these tools can lead to falls, especially
in urban areas and buildings. They occur when the user misjudges the nature
of ground, which can happen in any kind of familiar or unknown environments.
Approximately, 87% of elderly people falls are attributable to walkers use [2].

Various prototypes of “intelligent walkers” are motorized, equipped with route
planning and obstacle detection, relying on active sensing (laser, sonar, IR ligth),
or passive sensing (RFID tags, visual signs) [3,4,5]. Such aids are complex, thus
expensive and exist only at prototype level. In practice, their use is limited to
indoor situations due to their short battery life.

c© Springer International Publishing Switzerland 2015
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2015, Part I, LNCS 9107, pp. 533–542, 2015.
DOI: 10.1007/978-3-319-18914-7_56
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Fig. 1. Typical walker with four wheels, handles with breaks and a seat

In this work, we present the “EyeWalker” project which aims at developing
a low-cost, ultra-light computer vision-based prototype for users with mobility
problems. This device is meant to be small and lightly embedded; it would be
easily fixed on a standard rollator. One of the goals is to warn users before they
enter in a dangerous ground. It has to operate in indoor and outdoor environ-
ments. The users initially targeted by this project are elderly persons that still
live independently.

In this work, our goal is to asses the accuracy of our ground change detector
and to determine at which image resolution it could be used in a real time
implementation. Our key idea is based on the estimation of changes of brightness,
color and textures under real environmental conditions and on the reduction of
image resolution, in order to reduce the time processing.

This paper is organized as follows: Section 2 describes the material and the
methodology to detect ground changes. Section 3 presents the experiments in-
volving off-line and embedded systems at different resolutions, before concluding
remarks.

2 System Design

This section briefly describes the methodology to detect the ground change, the
different hardware set-up used for the off-line and embedded systems and the
datasets used to compare both systems.

2.1 Detection Process

We would like to prevent in real time the falls related to the loss of balance
caused by the ground change. As a result, the ground change detection is based
on the comparison between the current frame and the average of k previous
frames.

The procedure is divided in two different steps. Firstly, we extract the image
descriptor from the current frame and the average of the k previous frames.
Secondly, we use an Artificial Neural Network (ANN) trained on color histograms



An Embedded Ground Change Detector for a “Smart Walker” 535

Fig. 2. General block diagram to detect ground changes

and a texture descriptor to decide whether to warn the user. The block diagram
to detect ground changes is illustrated in Fig.2.

Image Descriptor

From each video frame, we calculate an image descriptor based on colors and
textures. Specifically, a similarity measure between the current image and the k
previous image is determined and provided to a neural network.

For the color feature, different types of color space were tested in [6]. As
a result, the HSV color space demostrated to be the most suitable. From the
image, we obtain the normalized color histogram hc for each color channel using
the following equation:

hH,S,V
ci =

ni

N
, i = 0, . . . , 255 (1)

where ni is the number of pixels with color label i and N is the total number of
pixels in the image for each channel.

As a texture feature, the Local Edge Pattern (LEP) was used. LEP describes
the spatial structure of the local texture according to the organization of edge
pixels. To compute the LEP histogram, an edge image must be obtained first.
The edge image is obtained by applying the Sobel edge detector to intensity
gray level. The binary values are then multiplied by the corresponding binomial
weights in a LEP mask, and the resulting values are summed to obtain the LEP
value.

The LEP value is defined as [7],

LEP (n,m) =
∑
i,j∈I

Ke(i, j)× Ie(n,m) (2)

where Ie(n,m) denotes the binary image, Ke is the LEP mask and LEP (n,m)
is the LEP value for the pixel (n,m). The LEP mask is given by:

Ke =

⎛
⎝

1 2 4
128 256 8
64 32 16

⎞
⎠ (3)
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Finally, the LEP normalized histogram he can be computed from

hei =
ni

N
, i = 0, . . . , 511 (4)

where ni is the number of pixels with LEP value i and N is the total number of
pixels in the image.

Fig.3 shows the methodology to extract the Image Descriptor. For each new
frame we start from the calculation of the average image of the k previous frames.
The next step consists in the processing of the current frame and the averaged
image. Specifically:

– we apply the blur filter to reduce image noise and reduce detail;
– we convert the image from the RGB to the HSV color space;
– we calculate the histograms for H, S and V color variables;
– we transform the RGB image into a gray level image;
– we apply the Sobe filter to detect the edges;
– we use the LEP filter and calculate the LEP histogram.

We take into account the values of each bin in the histograms (H,S,V channels
and LEP) as an image descriptor. Since we have three color channels, each
channel having 256 bins and a texture channel represented by 512 bins, the final
Image Descriptor contains 2560 bins (Fig. 4). Principal Component Analysis
(PCA) is used to reduce the dimensionality of the image descriptor to 200 bins.

Fig. 3. Block diagram to extract Image Descriptor

Ground Change Detector

The color’s distribution and LEP are used to obtain a distance measure between
two images characterising the inhomogeneity of a surface. Specifically, this is
calculated between the current image and the average of the k previous images.
To measure the similarity between frames, several methods were presented in
[8]. Here, to distinguish the ground change we implemented an Artificial Neural
Network (ANN).

We used a multilayer perceptron with n neurons in the input layer, m hidden
layers and 2 neurons in the output layer. Values for n and m were determined
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Fig. 4. Image Descriptor configuration

empirically in [6]. The output layer has two neurons, one represents the detection
of the ground change and the other indicates unchanged ground. In this neural
network, the input vector theoretically is represented as a vector of 2560 neurons
(see Fig. 4). In order to fulfil the real time requirements, the size of the input
vectors was reduced to 200 neurons by means of PCA.

2.2 Set-Up

A set of outdoor video sequences were collected from a campus path at Geneva
University using the walker shown in Fig.1. This data set was recorded with
two set-ups, the first set-up (video set-up I) is a walker equipped with a color
webcam (Logitech HD Webcam C510, 8 Mpixels) with a resolution of 640x480
pixels. The second set-up (video set-up II) is based on the camera sensor “Caspa
VL” (Fig.7(a)) with a image resolution of 752x480 pixels. The cameras were
located 60 cm from the ground. The covered visual field region is about 130 cm
long, as shown in Fig.5. We use a total of six videos recorded at different times
for the first set-up, each video containing between 188 and 313 frames and two to
four ground change transitions. For the second set-up, 25 videos were recorded
with 1687 frames in total. At the Fig.6 shows an example of both video sets.
Note that videos were recorded at an approximative speed of 0.6 m/s (2.3 km/h)
with a frame rate of 25fps.

Fig. 5. Walker set-up for the detection of ground changes

The final system is composed by the camera sensor and the computer. In the
first set-up, the color webcam is connected to a Dell computer with an Intel(R)
Core(TM) i7-2600 CPU (3.4 GHz). For the second set-up, the detector was
implemented in the Linux operating system with the use of the OpenCV library
[9]. Specifically, the camera sensor “Caspa VL” [10] is connected to a “Tobi”
platform (Fig.7(b)) [11] with Overo R© (Computer On-Module) coard [12]. Tobi
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(a) Video set-up I (b) Video set-up II

Fig. 6. Video sets image examples

(a) Caspa VL (b) Tobi Platform

Fig. 7. Hardware embedded system

and Overo R© work with a ARM Cortex-A8 (Texas Instruments DaVinci DM3730
up to 1GHz capable) CPU with 512MB RAM.

3 Experiments

3.1 Implementation Comparisons

One of the goals of this research was to investigate the plausibility of migrating
from the off-line system (Matlab) to embedded system (C++).

During the calculation of the histograms a substantial difference between the
results obtained in MatLab and OpenCV was discovered. For the color feature,
differences in the HSV conversion between both systems were found. On one
hand, the biggest difference is observed in the S component and the smallest is
for the V component.

On the other hand, differences in the implementation of the Sobel edge de-
tection operator and gray scale images in MatLab and OpenCV are the main
reasons of the discrepancy in the textural descriptor. One of the first major prob-
lems encountered during the migration process was the different implementation
of the Sobel Filter. The implementation of the standard method for the Sobel
edge detection in MatLab and OpenCV is quite different. In MatLab the result is
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a binary image, whereas in OpenCv it is a gray level image. Moreover, the stan-
dard Sobel function does not give any binary image and requires the additional
applying of the threshold and “skeleton” in OpenCV. Because of this, there is
a significant difference that is characterized by a Peak Signal to Noise Ratio
(PSNR) equal to 64.46dB. PSNR is an unit to measure the image distortion.

Other source of difference is the sensor camera. The camera Caspa VL is not
a camera of full value. The pictures produced by the Caspa sensor are the results
of applying the Bayer filter (see example at Fig. 8).

(a) Before processing (b) After processing

Fig. 8. Bayer filter result

The Bayer filter mosaic is a color filter array (CFA) for arranging RGB color
filters on a square grid of photo sensors. The raw output of Bayer-filter sensors
is referred to as a Bayer pattern image. Since each pixel is filtered to record only
one of three colors, the data from each pixel cannot fully specify each of the red,
green, and blue values on its own.

3.2 Evaluation

To assess the performance of our approach, an extensive and systematic evalua-
tion in terms of accuracy and processing time of image resolution were conducted
on a data set labelled manually.

The two classes, ground change and no change, are defined as follows: a frame
is labelled positive as soon as a ground change enters the visual field and it
remains positive until the user is completely on the new terrain; the frame is
labelled negative, otherwise [6]. To compare the methods, we use the confusion
matrix shown in Table 1, where accuracy is defined as:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(5)

In our system, we have two critical values. The first one is the missing alarm
because it can generate an accident. We however must minimize the false positive
rate to ensure user acceptance. And the second one is the processing time.

We tested our detector in both videos set-ups. To evaluate the classifiers for
each video set-up, we performed a ten-fold cross-validation by creating 10 differ-
ent training/validation pairs by sliding the training data window by 10% each
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Table 1. Terminology use for the evaluation

Condition

Ground change No change

S
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te

m
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e
s
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lt

Ground
change

True positive “tp”
(Correct alarm)

False Positive “fp”

(Unexpected alarm)

No change
False negative “fn”
(Missing alarm)

True negative “tn”
(Correct absence of

alarm)

time. Then, for each of the training/validation pair, we performed 10 classifica-
tory runs. We trained each run using the corresponding training set. Afterwards,
we evaluated the classification using the rest of the dataset.

To determinate how the image resolution affects the performance of our al-
gorithm, we tested different scales of resolution reduction between 1 to 16. The
results shown on Table 2 were obtained using the video set-up I and Table 3
with the video set-up II.

Table 2. Comparison of accuracy, false alarm, missing alarm using different image
resolutions on the video set-up I

Image resolution Accuracy (%) False Alarm (%) Missing Alarm (%)

640x480 99.59 0.16 1.12

320x240 99.52 0.17 1.37

160x120 99.17 0.41 2.06

80x60 99.11 0.67 2.41

40x30 98.17 0.77 4.93

Table 3. Comparison of accuracy, false alarm, missing alarm using different image
resolutions on the video set-up II

Image resolution Accuracy (%) False Alarm (%) Missing Alarm (%)

752x480 98.28 1.02 2.78

376x240 98.06 1.12 3.19

188x120 97.86 1.32 3.40

94x60 97.41 1.47 4.29

47x30 96.32 2.08 6.126

The purpose of this experiment is to see the influence of the resolution in
terms of accuracy, false alarm and missing alarm rate. For the first video set-up,
we have a difference of 1.42% in terms of accuracy between the biggest and the
smallest image resolution. With the second video set-up, this difference is around
2%. Fig. 9 shows the performance of our detector and the impact of the scaling.

An evaluation criterion is the processing time between the input image and
the instant of detection. In these experiments, the average of processing time for
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(a) Video set-up I (b) Video set-up II

Fig. 9. Receiver operating characteristic (ROC) curves of two videos set-up with dif-
ferent images resolutions

a full image is around 7 s. This time is not acceptable on a real-time system.
Table 4 shows the impact of scaling in the execution time. The main idea is to
determine a good compromise between accuracy and execution time. Hence by
reducing the resolution eight times for each dimension, the processing time is
close to 0.3 s with fairly good accuracy.

Table 4. Comparison of time execution using different image resolutions on the video
set-up II.

Image resolution Execution Time (ms)

752x480 7097.10

376x240 1855.71

188x120 602.03

94x60 295.92

47x30 227.41

4 Conclusion

In this paper, we presented an embedded ground change detector aiming at
warning walker’s users before entering dangerous situations. This detector was
based on a multilayer perceptron processing the current frame and a number of
preceding frames.

The obtained results demonstrated the possibility to implement a ground
change detector in real-time on an embedded system. Moreover, image resolution
reduction showed that image resolution reduction has small impact on accuracy
loss, but with a high reduction factor of time.

Finally, the very promising results allow us to advocate the view that our de-
tector could be possibly embedded in a device showing high accuracy in realistic
situations.
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Duque-Muñoz, L. I-419
Duro, Richard J. II-117, II-138

Ellis, David I-526
Emmerich, Michael II-127
Esnaola, Urko II-98
Estevez, Julian II-291

Favela, Jesús I-459
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Gómez-Vilda, P. I-238
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López-Delis, Alberto I-143
Lopez-Gordo, M.A. I-203, I-296,

I-305, II-451
Lopez-Guede, Jose Manuel II-311
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Molina, José Manuel I-498,

II-339, II-359
Montemayor, A.S. II-166
Montero, Aaron I-58
Montero, Francisco I-469
Morales, J.M. I-288
Morales, R. I-449
Mora-Mora, Higinio II-271
Morell, Vicente II-251, II-261
Morell-Gimenez, Vicente II-281
Moreno, A. Belén II-79
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Rivas-Casado, A. II-222
Rodellar-Biarge, V. I-238
Rodriguez, Alvaro II-419
Rodriguez, Francisco B. I-58
Rodriguez, M.A. II-203
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Villó, Isidro II-51

Weiss, Viviana I-533

Yang, Zhiwei II-127
Yin, Hujun II-389

Zaki, Shireen Mohd II-389
Zapata, Juan II-20


	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Automated Diagnosis of Alzheimer's Disease by Integrating Genetic Biomarkers and Tissue Density Information
	1 Introduction
	2 Database
	2.1 Image Preprocessing
	2.2 Density Computation
	2.3 Selection of Most Relevant Brain Regions

	3 Experimental Results
	3.1 Diagnostic Relevance of Brain Regions
	3.2 Integrating ApoE Genetic Data
	3.3 Classification

	4 Conclusions

	A Neural Model of Number Interval Position Effect (NIPE) in Children
	1 Introduction
	2 Materials and Method
	2.1 The Task
	2.2 The Model

	3 Results
	4 Conclusions and Future Directions

	A Volumetric Radial LBP Projection of MRI Brain Images for the Diagnosis of Alzheimer's Disease
	1 Introduction
	2 Methodology
	2.1 Local Binary Patterns
	2.2 2D Projection Using Spherical Coordinates
	2.3 Projecting 3D LBP Features

	3 Experimental Results
	3.1 Database
	3.2 Classification Experiments

	4 Conclusions and Future Works

	Telemetry System for Cochlear Implant Using ASK Modulation and FPGA
	1 Introduction to the Telemetry System
	2 Design and Simulation of the Telemetry System
	2.1 Design and Simulation of the Telemetry System Using System Generator
	2.2 Emulation Using the HDL Coder and Xilinx ISE Design Suite

	3 Results
	3.1 Verification of the Telemetry System Design Using System Generator
	3.2 Emulation Using Xilinx ISE Design Tools, Results

	4 Conclusion and Recommendations

	MBMEDA: an Application of Estimation of Distribution Algorithms to the Problem of Finding Biological Motifs
	1 Introduction
	2 Materials and Methods
	3 Results
	4 Discussion and Conclusion

	Towards a Generic Simulation Tool of RetinaModels
	1 Introduction
	2 Neural Models of Retinal Cells
	3 Simulations of Physiological Experiments
	4 Discussion

	Specialist Neurons in Feature Extraction Are Responsible for Pattern Recognition Process in Insect Olfaction
	1 Introduction
	2 Neural and Network Model
	3 Neural Sensitivity
	4 Selection Criteria of Generalist and Specialist Neuron
	5 Odor Patterns
	6 Results
	6.1 Only the Most Specialist Neurons are Required for a Good Odor Classification

	7 Discussion and Conclusions

	Intensity Normalization of 123 I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear Regression Approach
	1 Introduction
	2 Materials and Methods
	2.1 DaTSCAN SPECT Dataset
	2.2 Intensity Normalization Approaches
	2.3 Multivariate Linear Regression (MLR) Model
	2.4 Intensity Normalization Using MLR

	3 Results and Discussion
	3.1 Image Analysis
	3.2 Statistical Analysis
	3.3 Quantitative Classification Performance of Parkinsonism

	4 Conclussion

	Independent Component Analysis-Based Classification of Alzheimer's Disease from Segmented MRI Data
	1 Introduction
	1.1 ICA Application to Segmented MRI Images

	2 Classification Using Support Vector Machines (SVM)
	3 MRI Brain Image Database
	4 Experiments and Results
	5 Analysis
	6 Conclussion

	Trajectories-State: A New Neural Mechanism to Interpretate Cerebral Dynamics
	1 Introduction
	2 The Multilevel Description
	3 Neural Activity and Encoding States
	4 Formal Languages, Neural Networks and Deterministic Finite Automata
	5 A New Kind of Neural Mechanism: Trajectories-State
	6 Discussion 

	Global and Local Features for Char Image Classification
	1 Introduction
	2 Feature Extraction
	2.1 Global Features
	2.2 Local Features

	3 Classification Algorithms
	4 Building and Evaluating Classification Models
	4.1 Suppot Vector Machine Evaluation
	4.2 Random Forests Evaluation

	5 Final Remarks

	On the Automatic Tuning of a Retina Model by Using a Multi-objective Optimization Genetic Algorithm
	1 Introduction
	2 Evolutionary Multi-objective Strategy for Tuning a Retina Model
	3 Material and Methods
	4 Case Studies
	4.1 Study of Convergence of Kullback–Leibler Divergence and Firing Rate Absolute Difference as Quality Metrics to Compare PSTHs
	4.2 Multi-objective Tuning of Retina Model

	5 Conclusions
	6 Conclusions

	Creating Robots with Personality: The Effect of Personality on Social Intelligence
	1 Introduction
	2 Method
	2.1 Robot
	2.2 Experimental Design
	2.3 Participants
	2.4 Task
	2.5 Questionnaires
	2.6 Procedure

	3 Results
	3.1 Reliability Analysis 
	3.2 Hypotheses Analysis

	4 Discussion

	Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database
	1 Introduction
	2 Materials and Methods
	2.1 MIT-BIH Dataset
	2.2 Data Preparation
	2.3 Artificial Metaplasticity Neural Network Model
	2.4 Network Structure Selection and AMMLP Algorithm

	3 Results
	3.1 Measures of Quality
	3.2 Model Evaluation
	3.3 Performance Evaluation
	3.4 Error Evolution

	4 Discussion
	5 Conclusions

	Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User's Intentionality
	1 Introduction
	2 EMG-Controlled FES-Assisted Therapy for Neurorehabilitation
	2.1 Bilateral Coordination Training
	2.2 Upper-Limb Motor Recovery Through an EMG-Controlled Bilateral FES-Assisted Therapy

	3 Experimental Methods
	3.1 Protocol
	3.2 Data Analysis and Pre-processing Techniques
	3.3 Feature Extraction and Classification Methods
	3.4 Post-processing Techniques

	4 Results
	5 Conclusions and Future Work

	Decoding of Imaginary Motor Movements of Fists Applying Spatial Filtering in a BCI Simulated Application
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Data Processing and Experimental Design
	2.3 Evaluation

	3 Results
	4 Discussion

	The Koniocortex-Like Network:A New Biologically Plausible UnsupervisedNeural Network
	1 Introduction 
	2 Homeostatic Properties: Metaplasticity and Intrinsic Plasticity in Rate Code Neurons
	3 Step by Step Development of the Koniocortex Like Network 
	3.1 The ``Bayes Decision Rule Framework"
	3.2 Forced WTA Network with Intrinsic Plasticity 
	3.3 Non-forced WTA Network with Lateral Inhibition 
	3.4 Koniocortex-like Network, KLN 

	4 Conclusions

	Towards an Integrated Semantic Framework for Neurological Multidimensional Data Analysis
	Some Results on Dynamic Causal Modeling of Auditory Hallucinations
	1 Introduction
	2 Background
	3 Abstract Functional Model
	4 Anatomical Model
	5 Dynamic Causal Modeling
	6 Some Experimental Results
	7 Conclusions

	Retinal DOG Filters: High-pass or High-frequency Enhancing Filters?
	1 Introduction
	2 Methods
	2.1 Parameters of the DoG model
	2.2 Discrete DoG kernels
	2.3 Baseline filters
	2.4 Image processing and kernel analysis

	3 Results
	4 Discussion

	Spatio-temporal Dynamics of Images with Emotional Bivalence
	1 Introduction
	2 Material and Methods
	3 Results
	4 Conclusions

	Interstimulus Interval Affects Population Response in Visual Cortex in vivo
	1 Introduction
	2 Experimental Methods
	2.1 Surgery
	2.2 Visual Stimulation
	2.3 Extracellular Recording
	2.4 Data Analysis

	3 Results
	4 Conclusion

	Towards the Reconstruction of Moving Images by Populations of Retinal Ganglion Cells
	1 Introduction
	2 Material and Methods
	3 Results
	4 Conclusions

	FPGA Translation of Functional Hippocampal Cultures Structures Using Cellular Neural Networks
	1 Introduction
	2 Methods
	2.1 Cell Culture Preparation
	2.2 Experimental Setup
	2.3 Analysis Performed

	3 Results
	4 Non-linear Space-Variant DTCNN Model for FPGA Implementation 
	5 Hardware Implementation of a DTCNN Model for Hippocampal Cell Cultures
	6 Conclusions

	Parkinson's Disease Monitoring from Phonation Biomechanics
	1 Introduction
	2 Phonation Model and Tremor Characterization
	3 Materials and Methods
	4 Results and Discussion
	5 Conclusions

	Retinal DOG Filters: Effects of the Discretization Process
	1 Introduction
	2 Methods
	2.1 Parameters of the DoG Model
	2.2 Discrete DoG Kernels
	2.3 GLCM and Image Descriptors
	2.4 Image Processing and Kernel Analysis

	3 Results
	4 Discussion

	Computable Representation of Antimicrobial Recommendations Using Clinical Rules: A Clinical Information Systems Perspective 
	1 Introduction
	2 Rule Model Analysis
	2.1 Clinical Rule Languages
	2.2 Production Rule Languages
	2.3 Semantic Rules

	3 Case Study
	3.1 VAP Knowledge
	3.2 Rule Modelling
	3.3 Knowledge Base Implementation

	4 Discusion
	5 Conclusions

	 Abstracting Classification Models Heterogeneity to Build Clinical Group Diagnosis Support Systems
	1 Introduction
	2 Related Works
	3 Model's Description
	3.1 Diagnosis Component
	3.2 Control Component
	3.3 Communications Component

	4 Diagnosis Selection
	4.1 Measurement of Diagnosis Goodness
	4.2 Group Diagnosis Algorithm

	5 Conclusions

	Using EEG Signals to Detect the Intention of Walking Initiation and Stop
	1 Introduction
	2 System Architecture
	2.1 Brain-Machine Interface
	2.2 Motion Capture System

	3 Experimental Procedure
	3.1 Test Protocol
	3.2 EEG Signals Processing
	3.3 Data Selection
	3.4 Feature Extraction
	3.5 Classification

	4 Results and Discussion
	5 Conclusions

	Low-cost Remote Monitoring of Biomedical Signals
	1 Introduction
	2 Platform Design
	2.1 Hardware Design
	2.2 Software Design

	3 Conclusions

	Asynchronous EEG/ERP Acquisition for EEG Teleservices
	1 Introduction
	2 Methodology
	2.1 Subjects and Recordings
	2.2 Auditory Message
	2.3 Procedure
	2.4 Feature Extraction and Classification

	3 Results
	4 Discussion

	A Machine Learning Approach to Prediction of Exacerbations of Chronic Obstructive Pulmonary Disease
	1 Introduction
	2 Patients and Methods 
	3 Results
	4 Discussion 

	Brain-Computer Interfacing to Heuristic Search: First Results
	1 Introduction and Rationale
	2 Previous and Related Work
	3 Heuristic Search Properties
	4 Neurofeedback Experiment Design
	5 Results and Discussion
	6 Conclusions

	English Phonetics: A Learning Approach Based on EEG Feedback Analysis
	1 Introduction
	2 Medium Mismatch Negativity
	2.1 The MMN Component: An Index for Phonologic Discrimination
	2.2 Proposal: Phonological Discrimination of a Second Language L2 Based on MMN

	3 Description of the Experiment
	3.1 Participants
	3.2 Material and Procedure

	4 Signal Processing
	5 Results and Discussion

	Dynamic Modelling of the Whole Heart Based on a Frequency Formulation and Implementation of Parametric Deformable Models
	1 Introduction
	2 Multidimensional Parametric Deformable Models
	3 Practical Implementation of the Method
	3.1 Preprocessing and Gradient Calculation
	3.2 Filtering Process

	4 Results and Discussion
	5 Conclusions

	Multimodal 3D Registration of Anatomic (MRI) and Functional (fMRI and PET) Intra-patient Images of the Brain
	1 Introduction
	2 Variational Image Registration
	3 Results
	4 Conclusion
	5 Future Work

	Localisation of Pollen Grains in Digitised Real Daily Airborne Samples
	1 Introduction 
	2 Semiautomatic Pollen Grains Counting Methodology
	2.1 Digitalisation System
	2.2 Detection System
	2.3 Identification System
	2.4 Verification System

	3 Materials and Methods
	4 Results
	5 Discussion and Conclusion

	Estimation of the Arterial Diameter in Ultrasound Images of the Common Carotid Artery
	1 Introduction
	2 Methodology
	2.1 Machine Learning Techniques
	2.2 Detection of the Arterial Walls
	2.3 Recognition of the Lumen boundaries

	3 Results
	4 Conclusions

	Comparison of Free Distribution Software for EEG Focal Epileptic Source Localization
	1 Introduction
	2 Materials and Methods
	2.1 Data Description
	2.2 Data Processing
	2.3 Software Implementation
	2.4 Source Localization

	3 Results
	4 Discussion and Conclusion

	Weighted Filtering for Neural Activity Reconstruction Under Time Varying Constraints
	1 Introduction
	2 Materials and Methods
	2.1 Inverse Problem Framework
	2.2 Dynamic Inverse Problem using Weighted Unscented Kalman Filtering

	3 Results AND Discussion
	3.1 Experimental Set-up
	3.2 Validation of the Weighting Kalman Filtering

	4 Conclusions

	Neural Activity Estimation from EEG Using an Iterative Dynamic Inverse Problem Solution
	1 Introduction
	2 Methods
	2.1 Forward Problem for EEG Generation
	2.2 Neural Activity Estimation within Inverse Problem Framework 
	2.3 Inverse Problem with Dynamic Constraints

	3 Experimental Set-Up
	4 Results
	5 Conclusions

	Supervised Brain Tissue Segmentation Using a Spatially Enhanced Similarity Metric
	1 Introduction
	2 Materials and Methods
	2.1 Image Similarity Metrics
	2.2 Spatial Enhancement of Image Metrics
	2.3 Supervised Image Metric Learning

	3 Experimental Set-Up
	3.1 Database
	3.2 Image Preprocessing
	3.3 Metric Parameter Learning
	3.4 Evaluation of Similarity Metrics

	4 Discussion

	iLU Preconditioning of the Anisotropic-Finite-Difference Based Solution for the EEG Forward Problem
	1 Introduction
	2 Methods
	2.1 Anisotropic-Finite-Difference Based Solution of the EEG Forward Problem 
	2.2 Anisotropic-Finite-Difference Linear System Solution

	3 Experimental Set-Up
	3.1 Testing of Convergence Rate and Computational Cost
	3.2 Validation of BiCG--iLU Numerical Solution

	4 Discussion and Concluding Remarks

	EEG Rhythm Extraction Based on RelevanceAnalysis and Customized Wavelet Transform
	1 Introduction
	2 Processing Methods
	2.1 Wavelet Customization for Extraction of EEG Rhythms
	2.2 Relevance Analysis of Physiological Rhythms

	3 Results
	3.1 Electroencephalographic Recording Database
	3.2 Tuning of Customized DWT for Rhythm Extraction
	3.3 Classifier Performance Using Rhythm Relevance Weights

	4 Conclusions

	Estimation of M/EEG Non-stationary Brain Activity Using Spatio-temporal Sparse Constraints
	1 Introduction
	2 Methods
	2.1 M/EEG Inverse Problem
	2.2 Sparsity and Temporal Homogeneity Constraints

	3 Experiments
	3.1 Simulated MEG Data
	3.2 Reconstruction of Brain Neural Activity Using Real MEG Data

	4 Discussion and Concluding Remarks

	Connectivity Analysis of Motor Imagery Paradigm Using Short-Time Features and Kernel Similarities
	1 Introduction
	2 Materials and Methods
	2.1 Feature Vector Extraction
	2.2 Kernel-Based Connectivity Analysis

	3 Experiments and Results
	4 Concluding Remarks

	Robust Linear Longitudinal Feedback Control of a Flapping Wing Micro Air Vehicle
	1 Introduction
	2 Problem Formulation and Its Flatness Property
	2.1 System Dynamics
	2.2 Flatness of the System
	2.3 Simplified Model and Problem Formulation

	3 GPI Observer-Based Active Disturbance Rejection Controller
	4 Numerical Simulations
	5 Conclusions and Future Work

	Use and Adoption of a Touch-Based Occupational Therapy Tool for People Suffering from Dementia
	1 Introduction
	1.1 Occupational Therapy for Dementia Treatment
	1.2 Assistive Technologies for Dementia Treatment

	2 Personalized Ambient-Assisted Interventions 
	3 Study Design 
	3.1 Stage A: Intervention with Traditional Artifacts 
	3.2 Stage B: Intervention Supported with AaIS

	4 Evaluation Results
	4.1 Results on Adoption and Usability
	4.2 Results on Challenging Behaviors and Caregiver Burden

	5 Discussion
	6 Conclusions and Future Work

	Multisensory Treatment of the Hemispatial Neglect by Means of Virtual Reality and Haptic Techniques
	1 Introduction
	2 Related Work
	3 A Tool for Multisensory Rehabilitation of Hemispace Neglect
	3.1 Senses Stimulated
	3.2 Therapies Supported
	3.3 Therapist Environment
	3.4 Patient Environment

	4 Conclusions and Future Works

	Evaluation of Color Preference for Emotion Regulation
	1 Introduction
	2 On Color and Emotion Regulation
	3 Color Emotion Evaluation
	3.1 Description of the Experiment
	3.2 Description of the Results

	4 Conclusions

	Elicitation of Emotions through Music: The Influence of Note Value
	1 Introduction
	2 Preference and Musical Tests
	2.1 Preference Test
	2.2 First Musical Test: The Pulse
	2.3 Second Musical Test: The Rhythm
	2.4 Third Musical Test: The Harmonic Rhythm
	2.5 Fourth Musical Test: The Rhythmic Accompaniment

	3 Data and Results
	4 Conclusions

	Towards Emotionally Sensitive Conversational Interfaces for E-therapy
	1 Introduction
	2 Our Proposal to Develop Emotionally Sensitive Conversational Interfaces
	3 Practical Application: Patients with Domiciliary Oxygen Therapy
	4 Preliminary Evaluation
	5 Conclusions and Future Work

	Automatic Drawing Analysis of Figures Included in Neuropsychological Tests for the Assessment and Diagnosis of Mild Cognitive Impairment
	1 Introduction
	2 Materials and Methods
	2.1 Participants
	2.2 Methods

	3 Experimental Results
	4 Conclusions y Further Research

	Identification of Loitering Human Behaviour in Video Surveillance Environments
	1 Introduction
	2 Related Work
	3 Loitering Behavior Identification Based on Sequential Micro-Patterns
	4 Experimentation
	5 Conclusions

	Stress Detection Using Wearable Physiological Sensors
	1 Introduction
	2 Wearable Physiological Sensors
	3 Classification of Physiological Signals
	4 Experimental Setup
	5 Experimental Results
	6 Conclusions

	An Embedded Ground Change Detector for a ``Smart Walker"
	1 Introduction
	2 System Design
	2.1 Detection Process
	2.2 Set-Up

	3 Experiments
	3.1 Implementation Comparisons
	3.2 Evaluation

	4 Conclusion

	Author Index



