
Chapter 9
Approximate Packing: Integer Programming
Models, Valid Inequalities and Nesting

Igor Litvinchev, Luis Infante, and Lucero Ozuna

Abstract Using a regular grid to approximate a container, packing objects is
reduced to assigning objects to the nodes of the grid subject to non-overlapping
constraints. The packing problem is then stated as a large scale linear 0-1 optimiza-
tion problem. Different formulations for non-overlapping constraints are presented
and compared. Valid inequalities are proposed to strengthening formulations. This
approach is applied for packing circular and L-shaped objects. Circular object is
considered in a general sense as a set of points that are all the same distance
(not necessary Euclidean) from a given point. Different shapes, such as ellipses,
rhombuses, rectangles, octagons, etc., are treated similarly by simply changing the
definition of the norm used to define the distance. Nesting objects inside one another
is also considered. Numerical results are presented to demonstrate the efficiency of
the proposed approach.

Keywords Packing problems • Integer programming • Large-scale optimization

9.1 Introduction

Packing problems generally consist of packing a set of items of known dimensions
into one or more large objects or containers to minimize a certain objective (e.g. the
unused part of the container or waste). Packing problems constitute a family of
natural combinatorial optimization problems applied in computer science, industrial
engineering, logistics, manufacturing and production processes (see, e.g., [1–4] and
the references therein).

I. Litvinchev (�)
Complex Systems Department, Computing Center, Russian Academy of Sciences,
Moscow, Russia
e-mail: igorlitvinchev@gmail.com

L. Infante • L. Ozuna
Faculty of Mechanical and Electrical Engineering, Nuevo Leon Sate University,
Monterrey, Mexico
e-mail: luisinfanterivera@gmail.com; luceroozuna@gmail.com

© Springer International Publishing Switzerland 2015
G. Fasano, J.D. Pintér (eds.), Optimized Packings with Applications, Springer
Optimization and Its Applications 105, DOI 10.1007/978-3-319-18899-7_9

187

mailto:igorlitvinchev@gmail.com
mailto:luisinfanterivera@gmail.com
mailto:luceroozuna@gmail.com

188 I. Litvinchev et al.

Along with industrial applications one may find packing problems in healthcare
issues (e.g., [5, 6]). Wang [6] considered automated radiosurgical treatment planning
for treating brain and sinus tumours. Radiosurgery uses the gamma knife to deliver
a set of extremely high dose ionizing radiation, called “shots” to the target tumour
area. For large target regions multiple shots of different intensity are used to cover
different parts of the tumour. However, this procedure may result in large doses due
to overlap of the different shots. Optimizing the number, positions and individual
sizes of the shots can reduce the dose to normal tissue and achieve the required
coverage.

Packing problems for regular shapes (circles and rectangles) of objects and/or
containers are well studied (see, e.g., a review by [7] for circle packing). In circle
packing problem the aim is to place a certain number of circles, each one with a fixed
known radius inside a container. The circles must be totally placed in the container
without overlapping. The shape of the container may vary from a circle, a square, a
rectangular, etc. For the rectangular container there are two principal types of objec-
tives [8, 9]: (a) regarding the circles (not necessary equal) as being of fixed size and
the container as being of variable size and (b) regarding the circles and the container
as being of fixed size and minimize “waste”. Examples of the first approach include:
minimize the perimeter or the area of the rectangle; considering one dimension
of the rectangle as fixed, minimize the other dimension (strip packing or open
dimension problem). For the second approach various definitions of the waste can
be used. The waste can be defined in relation to circles not packed or introducing a
value associated with each circle that is packed (e.g., area of the circles packed).

Many variants of packing circular objects have been formulated as nonconvex
(continuous) optimization problems with decision variables being coordinates of
the centres [7]. Non-overlapping typically is assured by nonconvex constraints
representing that the Euclidean distance separating the centres of the circles is
greater than a sum of their radii. The nonconvex problems can be tackled by
available nonlinear programming (NLP) solvers, however most NLP solvers fail to
identify global optima and global optimization techniques have to be used [2, 10].
The nonconvex formulations of circular packing problem give rise to a large variety
of algorithms which mix local searches with heuristic procedures in order to widely
explore the search space. We will refer the reader to review papers presenting the
scope of techniques and applications for regular packing problem (see, e.g., [8, 9,
11–13] and the references therein).

Irregular packing problems involve non-standard shapes of objects and/or con-
tainers. Irregular shapes are those that require non-trivial handling of the geometry
[14, 31]. One of the most common representations for irregular shape is a polyhedral
domain which may by nonconvex or multi-connected. Heuristic and metaheuristic
algorithms are the basis for the solution approaches (see [3, 15] and the references
therein).

Discrete approximations of objects by tetris-like items [3] and containers by grids
[15–20] were recently used to simplify packing problems. This approach allows
handling irregular shapes and reduces (approximately) packing problems to discrete
optimization problems. To the best of our knowledge, the proposal to use a grid was
first applied by Beasley [21] in the context of cutting problems.

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 189

This work is a continuation of Litvinchev and Ozuna [17]. Using a regular grid
to approximate the container, packing is reduced to assigning the objects to the
nodes of the grid subject to non-overlapping constraints. Different formulations
for non-overlapping are considered and compared. Valid inequalities are proposed
to strengthening formulations. This approach is applied for packing circular and
L-shaped objects. Circular object is considered as a set of points that are all the
same distance (not necessary Euclidean) from a given point. This way different
shapes, such as ellipses, rhombuses, rectangles, octagons, etc. can be treated by
simply changing the norm used to define the distance. Nesting objects inside one
another is also considered. Numerical results are presented to demonstrate efficiency
of the proposed approach.

The rest of the work is organized as follows. In Sect. 9.2 integer program-
ming approximation of the packing problem is presented along with different
formulations for non-overlapping. In Sect. 9.3 the proposed approach is applied to
packing circular objects. Experimental results for packing different circular shapes
are provided to demonstrate usefulness of valid inequalities proposed in Sect. 9.2.
L-shaped objects and containers are considered in Sect. 9.4, while Sect. 9.5 presents
concluding remarks and directions for the future research.

9.2 Basic Constructions

Suppose we have non-identical objects Gk, k 2 K D f1; 2; : : : Kg which have to
be packed in a container G. In what follows we will use the same notation Gk, G
for the domain in R

n and for its boundary assuming that it is easy to understand
from the context what do we mean. It is assumed that no two objects overlap with
each other and each packed object lies entirely in the container. Denote by Sk the
area of Gk. Let at most Mk objects Gk are available for packing and at least mk of
them have to be packed. Denote by pi, i 2 I D f1; 2 : : : ; ng the nodes of a grid
covering the container, pi 2 G. It is assumed that the position of the object in the
container is completely characterized by the position of its reference point. Define
binary variables xk

i D 1 if the reference point of the object Gk is assigned to the node
i; xk

i D 0 otherwise. In what follows we will say that the object is assigned to the
node i if the corresponding reference point is assigned to that node and will denote
this as Gi

k. For fixed i, k let

Nik D
n

j; l W i ¤ j such that Gi
k overlaps with Gj

l

o
:

Let nik be the cardinality of Nik W nik D jNikj. Then the problem of maximizing the
area covered by the objects can be stated as follows:

max
X
i2I

X
k2K

Skxk
i (9.1)

190 I. Litvinchev et al.

subject to

mk �
X
i2I

xk
i � Mk; k 2 K; (9.2)

X
k2K

xk
i � 1; i 2 I; (9.3)

xk
i D 0 for Gi

kn
�
G \ Gi

k

� ¤ ¿ for i 2 I; k 2 K; (9.4)

xk
i C xl

j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik; (9.5)

xk
i 2 f0; 1g ; i 2 I; k 2 K: (9.6)

Constraints (9.6) ensure that the number of objects packed is between mk and Mk;
constraints (9.3) that at most one object is assigned to any node; constraints (9.4)
that Gk cannot be assigned to the node i if Gi

k is not totally placed inside G; pair-
wise constraints (9.5) guarantee that there is no overlapping between the objects;
constraints (9.6) represent the binary nature of variables.

Remark 2.1 Linear non-overlapping constraints (9.5) are equivalent to a single
quadratic constraint

Q.x/ �
X

i;k
xk

i

X
j;l2Nik

xl
j D 0 .� 0/ : (9.7)

If (9.7) holds, then for xk
i D 1 we have

X
j;l2Nik

xl
j D 0 yielding xl

j D 0; .j; l/ 2 Nik,

and if xl
j D 1 at least for one pair .j; l/ 2 Nik, then xk

i D 0. Thus (9.5) can be
considered as a specific linearization of (9.7). Other linearizations and relaxations
of (9.7), e.g. used for the quadratic assignment problem [22] can also be considered.

Below we present different formulations for the non-overlapping constraints
(9.5) which remain valid for the general definition of Nik.

By the definition of Nik if .j; l/ 2 Nik, then .i; k/ 2 Njl. Thus a half of the
constraints in (9.5) are redundant since we have:

xk
i C xl

j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik;

xl
j C xk

i � 1; for j 2 I; l 2 K; .i; k/ 2 Njl:

We may eliminate any (none) of these two constraints to get the reduced
equivalent formulation. This can be represented by multiplying constraints (9.5) by
a fixed �l

j 2 f0; 1g:

xk
i �

l
j C xl

j�
l
j � �l

j; for i 2 I; k 2 K; .j; l/ 2 Nik; (9.8)

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 191

subject to �l
jC�k

i � 1. This way either one of the redundant constraints is eliminated
(�l

j C �k
i D 1) or no-one (�l

j C �k
i D 2). Since eliminating redundant constraints

does not affect the feasible set, the problem (9.1)–(9.6) is equivalent to (9.1)–(9.4),
(9.6), (9.8) for any � fulfilling the normalized condition

� 2 ƒ D ˚
�l

j 2 f0; 1g W �l
j C �k

i � 1; .j; l/ 2 Nik
�

:

Similar to plant location problems [23] we can state non-overlapping conditions
in a more compact form. Summing up constraints (9.7) over .j; l/ 2 Nik we get

xk
i

X
.j;l/2Nik

�l
j C

X
.j;l/2Nik

�l
jx

l
j �

X
.j;l/2Nik

�l
j; for i 2 I; k 2 K: (9.9)

Proposition 2.1 For any � 2 ƒ constraints (9.5), (9.6) are equivalent to constraints
(9.6), (9.9).

Proof If constraints (9.5) are fulfilled, then obviously constraints (9.9) hold by
construction. Now let constraints (9.9) are fulfilled. Define

N1
ik D

n
.j; l/ 2 Nik W �l

j D 1
o

; N0
ik D

n
.j; l/ 2 Nik W �l

j D 0
o

; N1
ik [N0

ik D Nik;ˇ̌
N1

ik

ˇ̌ D n1
ik;

ˇ̌
N0

ik

ˇ̌ D n0
ik:

By (9.9) we have

xk
i n1

ik C
X

.j;l/2N1
ik

xl
j � n1

ik

and hence,

if xk
i D 1; then xl

j D 0 for .j; l/ 2 N1
ik: (9.10)

By the definition, if .j; l/ 2 Nik, then .i; k/ 2 Njl. Thus by (9.9) we have

xl
j

X
.i;k/2Njl

�k
i C

X
.i;k/2Njl

�k
i xk

i �
X

.i;k/2Njl

�k
i for j 2 I; l 2 K: (9.11)

In particular, (9.11) is fulfilled for .j; l/ 2 N0
ik. Since �l

j C �k
i � 1, then for

.j; l/ 2 N0
ik all �k

i in (9.11) are positive (�k
i D 1). Then by (9.11) we have:

if xl
j D 1 for at least one .j; l/ 2 N0

ik; then xk
i D 0: (9.12)

Note that constraints (9.5) can be interpreted in two ways. First if xk
i D 1, then

xl
j D 0 for all .j; l/ 2 Nik. Second, if xl

j D 1 for at least one .j; l/ 2 Nik, then xk
i D 0.

Combining (9.10) and (9.12) we may conclude that if constraints (9.9) are fulfilled,
then (9.5) hold. �

192 I. Litvinchev et al.

Remark 2.2 In Galiev and Lisafina [16] the compact formulation

xini C
X
j2Ni

xj � ni for i 2 I (9.13)

was used to represent non-overlapping constraints for the case of packing identical
circles. This corresponds to a singleton set K and all multipliers � equal to 1 in (9.9).

Remark 2.3 Proposition 2.1 remains true for nonnegative (not necessary binary)
multipliers � subject to �l

j C �k
i ¤ 0. The proof is similar.

As follows from Proposition 2.1, the non-overlapping constraints can be stated
in different forms (see [20] for an illustrative example). We have a family of
formulations equivalent to (9.5) and obtained for different multipliers � in (9.9).
To compare equivalent formulations, let

P1 D ˚
x � 0 W xk

i C xl
j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik

�
;

P2 D
8<
:x � 0 W xk

i

X
.j;l/2Nik

�l
j C

X
.j;l/2Nik

�l
jx

l
j �

X
.j;l/2Nik

�l
j; i 2 I; k 2 K

9=
; ;

where multipliers � in P2 fulfil the normalizing condition stated in Proposition 2.1.

Proposition 2.2 P1 � P2.

Proof Since constraints of P2 are a linear combination of those in P1 with
nonnegative multipliers �, then P1 � P2. To show that P1 � P2 we need to find
a point in P2 that is not in P1.

This point can be constructed as follows. Choose .i; k/ 2 Njl and .j; l/ 2 Nik such

that
X

.j;l/2Nik

�l
j;

X
.i;k/2Njl

�k
i � 2. Set to zero all the variables except xk

i , xl
j. Obviously

all constraints in P2 corresponding to zero variables are fulfilled. Define xk
i , xl

j to
fulfil the two remaining constraints as equalities:

xk
i

X
.j;l/2Nik

�l
j C xl

j D
X

.j;l/2Nik

�l
j; xl

j

X
.i;k/2Njl

�k
i C xk

i D
X

.i;k/2Njl

�k
i :

Denote nik D
X

.j;l/2Nik

�l
j; njl D

X
.i;k/2Njl

�k
i with nik; njl � 2. The corresponding

solution of the two equations above is

xk
i D njl .nik � 1/

njlnik � 1
< 1; xl

j D nik
�
njl � 1

�

njlnik � 1
< 1

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 193

with

xk
i C xl

j D 1 C 1 C njlnik � njl � nik

njlnik � 1
> 1:

This point violates corresponding constraint in P1 and hence P1 � P2 as
desired. �

As follows from Proposition 2.2, the pairwise formulation (9.1)–(9.6) is stronger
than the compact one (9.1)–(9.4), (9.6), (9.9) in the sense of Wolsey [23].

In general, checking if the object is not totally placed inside the container is
tricky. However, for a convex container and a polygonal object this problem can be
simplified as stated below.

Proposition 2.3 Let G be a convex set and Gk be a (not necessary convex) polygon.
Let vt

ki; t D 1; : : : ; Tk be all vertices of Gi
k. Then Gi

k � G iff vt
ki 2 G; t D

1; : : : ; Tk.

Proof If Gi
k � G; then obviously all vertices of Gi

k are in G. Let now
vt

ki 2 G; t D 1; : : : ; Tk. Consider the convex hull of Gi
k, conv

�
Gi

k

� Dn
y W y D

X
t
˛tv

t
ki;

X
t
˛t D 1; ˛t � 0

o
. Since all vertices of Gi

k are in G, then

by convexity of G any convex linear combination of vertices also belongs to G and
hence conv

�
Gi

k

� � G. By the definition of convex hull, Gi
k � conv

�
Gi

k

�
and hence

Gi
k � G as desired. �

Good upper (dual) bounds are very important to solve integer programming
problems. We may expect that the upper bound obtained by the linear programming
relaxation of the problem (9.1)–(9.6) provides a poor upper bound for the optimal
objective. For example, for packing equal circles in a rectangular container the
objective value of the LP-relaxation grows linearly with respect to the number of
grid nodes (see [20] for details).

To tightening the LP-relaxation we consider valid inequalities ensuring that no
grid node is covered by two objects. To present this family, define matrix [˛k

ij] as
follows. Let ˛k

ij D 1 if Gi
k covers a node j, ˛k

ij D 0 otherwise. The following
constraints ensure that no nodes of the grid can be covered by two objects:

X
k2K

X
j2I

˛k
ijx

k
j � 1; i 2 I: (9.14)

Note that (9.14) is not equivalent to the non-overlapping constraints (9.5).

194 I. Litvinchev et al.

9.3 Circular Objects

Define a circular object Ck as a set of points that all are at most the distance Rk from
a given point called centre, Ck D fy W ky � y0kk � Rkg. Here the norm used to define
the object is not necessary the Euclidean [32]. Let dij be the distance between node
points i, j in the sense of the norm used to define the circular object.

The set Nik in (9.5) is now defined as follows: Nik D ˚
j; l W i ¤ j; dij < Rk C Rl

�
.

For matrix [˛k
ij] in (9.14) we have ˛k

ij D 1 for dij < Rk, ˛k
ij D 0 otherwise.

Using different norms we can use constructions of the previous section for
packing different geometrical objects of the same shape. For example, a circular
object in the maximum norm kyk1 WD maxr fjyrjg is represented geometrically by

a square, taxicab norm kyk1 WD
X

r
jyrj yields a rhombus. In a similar way we may

handle rectangles, ellipses, etc. Using a superposition of norms, we can consider
more complex circular objects. For

kyk WD maxr

n
jyrj ; �

X
r
jyrj

o

and a suitable 0:5 < � < 1 we get an octagon, an intersection of a square and a
rhombus.

A numerical experiment was designed to evaluate the performance of different
non-overlapping formulations and to see the impact of the valid inequalities for
packing circular objects in a rectangular container.

In the first part of the experiment the test bed set of 9 instances from ([16],
Table 3) was used for packing maximal number of circles into a rectangle of
width 3 and height 6. A rectangular uniform grid of size � along both sides of the
container was used. It was assumed that the supply of the objects is unlimited and
constraints (9.2) were relaxed. Similar to [16] the nodes located too close (close than
a radius) to the boundary were eliminated from consideration and thus constraints
(9.4) were omitted. In all experiments optimization problems were solved by the
system CPLEX 12.6 [24]. The runs were executed on a desktop computer with CPU
AMD FX 8350 8-core processor 4 GHz and 32 GB RAM.

The following four formulations were compared: pairwise formulation (9.1)–
(9.6) (Cmpl), reduced formulation (9.1)–(9.6) without redundant constraints
(CmplH), compact formulation (9.13) as in Galiev and Lisafina [16] (Cmpct),
and compact formulation obtained by summing up constraints in the reduced
formulation (9.1)–(9.6) (CmpctH). All these four formulations were combined
with valid inequalities (cuts) (9.14), the corresponding formulations are denoted
by CmplC, CmplHC, CmpctC, CmpctHC. The results of the numerical experiment
are given in Table 9.1. Here the first three columns present instance number,
circle radius, and grid size �. The last columns give CPU time (in seconds) for
different formulations. For all problem instances mipgap D 0 was set for running
CPLEX. In this table asterisk indicates that the computation was interrupted after

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 195

Table 9.1 CPU-time for circles (gap 0 %)

R � Cmpl CmplC CmplH CmplHC Cmpct CmpctC CmpctH CmpctHC

1 0.5 0.125 2 2 1 1 276 4 5 4

2 0.625 0.078125 71 15 41 11 1,040 35 50 12

3 0.5625 0.0625 337 82 186 75 11,666 87 831 72

4 0.375 0.09375 6 9 4 4 2,698 29 169 92

5 0.3125 0.078125 96 163 114 189 * 819 * 1,027

6 0.4375 0.546875 17,437 1,392 17,654 1,379 * 39,347 * *

7 0.25 0.0625 * 3,531 * 3,178 * * * *

8 0.275 0.06875 132 87 177 87 * 2,523 * 2,860

9 0.1875 0.046875 * 17,437 * * * * * *

Table 9.2 LP-relaxations

n� LP O LPC R LPC C LPC E LPC

1 697 348:5 18 19 28 33:43 18 19 34 36

2 1,403 701:5 9 10 15 16:87 10 10 21 25

3 2,449 1; 224:5 12 14:0743 20 22:25 13 14:07 27 29:91

4 1,425 712:5 26 30:9485 39 41:37 32 36:33 59 68:86

5 2,139 1; 069:5 41 53:4043 76 94:76 45 53:4 99 110

6 3,666 1; 833:5 20 22:5537 35 39:72 21 23:86 43 49:787

7 3,649 1; 824:5 72 90:9767 127 157:96 74 90:98 137 182

8 2,880 1; 440 50 59:014 75 79:53 61 72 108 134:56

9 6,897 3; 448:5 106 134:342 167 182:28 140 162 261 273:61

the computation time exceeded 12-h CPU. Number of binary variables and optimal
packings are presented in Table 9.2 in columns (n�) and (C), correspondingly.

As we can see from Table 9.1, CPU time for complete formulations is lower than
for the compact, especially for large instances. Eliminating redundant constraints
typically (but not always) reduces CPU time. Although eliminating redundancy does
not change corresponding LP-relaxation, it may affect the path selected by branch
and bound technique and thus result in increase/decrease of CPU time.

Introducing valid inequalities decreases CPU time for all problem instances
and for all problem formulations. Although introducing valid inequalities slightly
increases time to solve the LP-relaxation, the effect of improving quality of the LP-
bound becomes more important for the convergence of the overall branch and bound
scheme. That is why CPU time decreases significantly for hard instances 6, 7, 9,
while for “easy” instances the decrease may be relatively modest. Moreover, with
valid inequalities CPU time necessary to get provably optimal solution (mipgap D 0)
is comparable with that reported in Galiev and Lisafina [16] for their heuristic
approach.

Table 9.2 presents values of the LP-relaxations with/without valid inequalities
for packing equal circles (C), ellipses (E), rhombuses (R) and octagons (O) into the

196 I. Litvinchev et al.

Fig. 9.1 Packing equal circular objects for instance 7

same 3 � 6 rectangle using the same values � for the grid. The standard Euclidean
and taxicab norms were used to define circles and rhombuses, while norms

kyk WD �
2y2

1 C y2
2

�1=2
and kyk WD max

n
jy1j ; jy2j ;

�
1=

p
2
�

.jy1j C jy2j/
o

were used for ellipses and octagons. The same values of radii as in Table 9.1 were
used to define circular objects. In Table 9.2 the first three columns present instance
number, number of binary variables (n�) and value of the LP-relaxation without
valid inequalities (LP). For all circular objects the optimal value of the LP-relaxation
was 0.5n� (all variables equal to 0.5). The last eight columns give the value of the
optimal integer solution (in bold) and the value LPC of the LP-relaxation improved
by the valid inequalities (next to bold). We see that introducing valid inequalities
improves significantly the quality of the LP bound for all shapes of the objects. The
detailed study of this subject for the case of circles one can find in Litvinchev et al.
[20] for the same test bed instances. Packings for the instance 7 are presented in
Fig. 9.1.

In many applied problems packing smaller objects inside a larger one is
permitted. For example, in tube industry the tubes are produced in a continuous
extract machine and cut to the length of the container used for shipping. Before
being placed in the container they may be inserted inside other, thicker tubes, so
that usage of container space is maximized. Since all the tubes have the same length,
maximizing container load is equivalent to maximizing the area filled with circles
(rings) in a section of the container. Similar problems arise, e.g. in stacking up
different containers to form a tower [25] and in visualization of large hierarchical
data by 3D nested cylinders [26]. In tube industry the process is usually named
telescoping [27], in optimized packing context the terms nesting [2] or recursive

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 197

packing [28] are used. Although the term nesting is also used for packing irregular
objects [15], we will use nesting for packing smaller objects inside larger ones
assuming that it is easy to understand from the context what do we mean.

To consider nesting circular objects inside one another, we only need to modify
the non-overlapping constraints. In order to Ci

k be non-overlapping with other
objects being packed (including objects placed inside Ci

k), it is necessary that xl
j D 0

for j 2 I; l 2 K, such the Rk � Rl < dij < Rk C Rl for Rk > Rl. Let

�ik D ˚
j; l W i ¤ j; Rk � Rl < dij < Rk C Rl; Rk > Rl

�
:

Then the non-overlapping constraints for packing circular objects with nesting can
be stated as

xk
i C xl

j � 1; for i 2 II k 2 KI .j; l/ 2 �ik: (9.15)

Constraints (9.3) have to be omitted in case of nesting.
If nesting is permitted it may be necessary to take into account the difference

between external and internal sizes of the object, i.e. consider the object as a
circular ring (a region bounded by two concentric circular objects) having a positive
thickness. To consider nesting-subject-to-thickness we need only to redefine the set
�ik. Let gk be the thickness of the circle Ck. For �ik defined as

�ik D ˚
j; l W i ¤ j; Rk � gk � Rl < dij < Rk C Rl; Rk � gk > Rl

�

we get non-overlapping constraints similar to (9.15).
The results for packing two different octagons in a square 30 � 30 container

maximizing the total area of the packed objects are presented in Table 9.3. Here the
first three columns give instance number, radii, and a number of grid nodes (integer
variables). The last columns give the total area without nesting (N�), with nesting
(NC) and with nesting and thickness (NCT), number of small (O1) and large (O2)
objects packed, as well as corresponding CPU time in sec. The thickness gk was
defined as 0.1Rk. The packings obtained for the instance 1 are presented in Fig. 9.2.

Table 9.3 Packing 2 different octagons

R1, R2 n� N- O1, O2 CPU NC O1, O2 CPU NCT O1, O2 CPU

1 0.6, 6.3 441 627.48 85, 4 1 842.21 265, 4 1 804.37 233, 4 1
2 0.6, 6.3 961 699.06 145, 4 6 971.05 373, 4 3 910.209 322, 4 5
3 1, 5.3 441 699.35 41, 6 1 952.82 119, 6 1 922.99 110, 6 1
4 1, 5.3 961 750.09 114, 4 57 1,158.27 181, 6 129 1,019.1 139, 6 49

198 I. Litvinchev et al.

Fig. 9.2 Packing two octagons for instance 1

Fig. 9.3 L-object

9.4 L-shaped Objects and Containers

In this section we consider packing L-shaped objects. These shapes appear, e.g. in
packing interpretations of scheduling with non-constant operational cycles [3]. Let
L-object (see Fig. 9.3) be a superposition of rectangles (A � b) and (a � B) with
edges parallel to the principal axes, A > a > 0, B > b > 0 and the principal corner
considered as a reference point.

To state the problem (9.1)–(9.6) we need to specify constraints (9.4), (9.5),
i.e. present a constructive way to check if the object is totally placed inside the
container and if the objects overlap. Suppose we have two L-objects, Li and Lj, with
the reference points located at (y1i, y2i) and (y1j, y2j). Introducing binary variables
zi; zj 2 f0; 1g these objects can be represented as follows:

Li D
n

.y1; y2; zi/ W zi 2 f0; 1g ; 0 � y1 � y1i � Ai C zi .ai � Ai/ ;

0 � y2 � y2i � bi C zi .Bi � bi/
o
;

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 199

Lj D
n �

y1; y2; zj
� W zj 2 f0; 1g ; 0 � y1 � y1j � Aj C zj

�
aj � Aj

�
;

0 � y2 � y2j � bj C zj
�
Bj � bj

� o
:

We wonder if Li \ Lj ¤ ¿. This holds if the system of inequalities

max
˚
y1i; y1j

� � y1 � min
˚
y1i C Ai C zi .ai � Ai/ ; y1j C Aj C zj

�
aj � Aj

��
;

max
˚
y2i; y2j

� � y2 � min
˚
y2i C bi C zi .Bi � bi/ ; y2j C bj C zj

�
Bj � bj

��

is consistent at least for one combination of binary zi, zj. This can be verified by
inspection.

Substituting zi D zj D 0 yields

max
˚
y1i; y1j

� � min
˚
y1i C Ai; y1j C Aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C bi; y2j C bj

�
:

For zi D zj D 1 we have

max
˚
y1i; y1j

� � min
˚
y1i C ai; y1j C aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C Bi; y2j C Bj

�
:

Substituting zi D 1; zj D 0 yields

max
˚
y1i; y1j

� � min
˚
y1i C ai; y1j C Aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C Bi; y2j C bj

�
:

And finally for zi D 0; zj D 1 we get

max
˚
y1i; y1j

� � min
˚
y1i C Ai; y1j C aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C bi; y2j C Bj

�
:

Thus if at least one pair of inequalities above hold, then Li \ Lj ¤ ¿. In a similar
way we can check overlapping for the other composite objects, e.g., for star-shapes
represented as a superposition of a square and a rhombus.

To check if L-object is totally placed inside a convex container we can use
Proposition 2.3 since all vertices of the object are easily identified. However, for
rectangular and L-shaped containers with all edges parallel to the principal axes we
can state constraints (9.4) based on simple geometrical considerations.

Below we present results of a numerical experiment for packing L-objects in
rectangular and L-shaped containers. The normalized objective was defined as the
total area of the objects divided over the area of the smallest object. For the case of
equal objects the normalized objective coincides with the number of objects.

In the first part of the experiment the test bed set of 6 instances was used
for packing maximal number of equal L-objects into a rectangular container of
width 3 and height 6. Two types of the objects were considered with the shapes
corresponding to A D B D 2R and B D 0:5A D 2R. The thickness of

200 I. Litvinchev et al.

Table 9.4 Equal L-objects

R n� z LP LPCC T TCC Z LP LPCC T TCC

1 0.5 3,321 37 1,163 135.5 16 11 22 1,029 117:2 25 14

2 0.625 2,145 20 680.7 107.7 4 3 10 580.1 79:08 4 4

3 0.5625 2,556 25 851.7 127.5 8 5 14 739.8 92:45 8 8

4 0.375 5,778 75 2,223 271.6 150 150 42 2,036 195:6 610 330

5 0.3125 8,385 116 3,379 384.9 1; 867 620 71 3,144 275:4 3; 581 1; 930

6 0.4375 4,186 48 1,537 201.5 76 76 29 1,383 146:5 73 55

Table 9.5 Packing 2 different L-objects

R1, R2 n� z L1 L2 T LR LRCC L1C L2C TC
1 0.6, 6.3 3,969 750 309 4 * (12 %) 78; 384 5,980 681 4 * (7.8 %)
2 0.6, 6.3 3,969 447.5 227 2 530 51; 404 4,931 400 2 * (6.0 %)
3 1, 5.3 1,369 271.2 215 2 17 8; 458 1,352 197 6 * (5.7 %)
4 1, 5.3 1,369 147.2 91 2 16 6; 221 1,107 114 3 440

L-object was defined as a D b D 0:3R in both cases. A rectangular uniform grid
of size � D 0:15R (a half of the thickness) was used. The results of the numerical
experiment are given in Table 9.4. The first three columns present instance number,
value of R and a number of binary variables n�. The next five columns present
indicators for the case A D B: the optimal value of integer solution z; value of
the LP-relaxation without and with valid cuts, LP and LPCC; CPU time in sec.
to get integer solution without and with valid cuts, T and TCC. The last five
columns present similar indicators for the case B D 0:5A. For all problem instances
mipgap D 0 was set for running CPLEX.

As we can see from Table 9.4 introducing valid inequalities improves signifi-
cantly the LP-bound and reduces CPU-time, especially for hard instances.

In the second part of the experiment two different L-objects were packed in
a square 30 � 30 container maximizing the total normalized area of the packed
objects. Four instances were considered according to the shape of the objects. For
instances 1 and 3 A D B D 2R and for instances 2 and 3, B D 0:5A D 2R. In all
cases a D b D R. Two values of R were considered and for R D R2 (large object)
the minimal number of the objects to be packed was set to two, m2 D 2 in (9.2).

The results are presented in Table 9.5. Here the first four columns give instance
number, radii R1, R2, number n� of grid nodes (integer variables) and the value z
of the optimal solution. Columns 5 and 6 give the number of small (L1) and large
(L2) objects in the optimal solution, while column 7 indicates corresponding CPU
time in sec. for the case of using the valid inequalities (9.14). Asterisk indicates
that the computation was interrupted after the computation time exceeded 1,800 s.
CPU time and the value in parenthesis gives the corresponding mipgap. Columns 8
and 9 present the value of the LP-relaxation without (LR) and with (LRCC) valid
inequalities. The last three columns give the number of objects packed (L1C, L2C)

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 201

Fig. 9.4 Instances 1, 2

Fig. 9.5 Instances 3, 4

and CPU time (TC) for the case of nesting allowed. Optimal packings for instances
1–4 are presented in Figs. 9.4 and 9.5 for the case without nesting and in Figs. 9.6
and 9.7 for nesting allowed.

In the final part of experimentation L-shaped container was considered for A D
B D 30, a D b D 12. Two instances were considered according to the shape of
the two different L-objects. For the first instance A D B D 2R for both objects and
for the second B D 0:5A D 2R. In all cases a D b D R. Two values of R were
used, R1 D 1, R2 D 5:3 and for R D R2 we set m2 D 2 in (9.2). A rectangular
uniform grid of size � D min fR1; R2g D 1 was used giving n� D 637 grid nodes
in the L-container. The optimal solution was obtained in less than 1 s. CPU time.
For the first instance (A D B D 2R) the optimal solution gives 108 small and 2 large

202 I. Litvinchev et al.

Fig. 9.6 Instances 1, 2 with nesting

Fig. 9.7 Instances 3, 4 with nesting

L-objects without nesting and (120, 4) for nesting allowed. For the second instance
(B D 0:5A D 2R) we get (33, 2) and (71, 2) objects, respectively. The optimal
packings are presented in Figs. 9.8 and 9.9.

9.5 Conclusions

Integer programming formulations were considered for approximated packing
objects in a container. Using a grid approximation of the container packing problems
can be transformed into optimal assignment of the objects (reference points) to
nodes of the grid subject to non-overlapping constraints. In this work we used

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 203

Fig. 9.8 Instance 1

Fig. 9.9 Instance 2

linear non-overlapping constraints. However, as noted in Remark 2.1, the problem
(9.1)–(9.6) is closely related to the quadratic assignment problem and corresponding
approaches can be also used for packing problems. Some results in this direction are
in course.

Valid inequalities (9.14) were proposed to strengthening the formulation and
our numerical experiments demonstrate that the value of the LP-relaxation can be
tightened significantly by (9.14). Moreover, aggregating valid cuts not only improve
the value of the relaxation, but also change the structure of the optimal LP-solution.
A simple LP-based heuristic is proposed in Litvinchev et al. [29] for packing circular
objects.

Grid approximation of the container results in a large-scale integer optimization
problem. Using decomposition and/or aggregation techniques [30] to split the nodes

204 I. Litvinchev et al.

of the grid into smaller subsets (container decomposition) and/or creating “macro
nodes” (nodes aggregation) may be helpful to cope with high dimension. Some
results in this direction are in course.

A critical question in grid approximation is how to choose parameters of the grid,
e.g. shape and number of nodes, to get a reasonable trade-off between computational
burden and proximity to the true optimal packing. The use of non-uniform and/or
adaptive grids seems to be interesting direction for the future research.

Acknowledgements This work was partially supported by Grants from RFBR, Russia (12 01
00893 a), and CONACYT, Mexico (167019).

References

1. Baltacioglu, E., Moore, J.T., Hill, R.R.: The distributor’s three-dimensional pallet-packing
problem: a human-based heuristical approach. Int. J. Oper. Res. 1, 249–266 (2006)

2. Castillo, I., Kampas, F.J., Pinter, J.D.: Solving circle packing problems by global optimization:
numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)

3. Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics.
Springer-Verlag, Berlin (2014)

4. Frazer, H.J., George, J.A.: Integrated container loading software for pulp and paper industry.
Eur. J. Oper. Res. 77, 466–474 (1994)

5. Stevenson, D., Searchfield, G., Xu, X.: Spatial design of hearing aids incorporating multiple
vents. Trends Hear. 18 (2014). doi:10.1177/2331216514529189

6. Wang, J.: Packing of unequal spheres and automated radiosurgical treatment planning. J. Comb.
Optim. 3, 453–463 (1999)

7. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and
methodologies. Adv. Oper. Res. (2009). doi:10.1155/2009/150624

8. Lopez, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of
containers. Eur. J. Oper. Res. 214, 512–525 (2011)

9. Lopez, C.O., Beasley, J.E.: Packing unequal circles using formulation space search. Comput.
Oper. Res. 40, 1276–1288 (2013)

10. Pinter, J.D., Kampas, F.J.: Nonlinear optimization in Mathematica with MathOptimizer
Professional. Math. Educ. Res. 10, 1–18 (2005)

11. Akeb, H., Hifi, M.: Solving the circular open dimension problem using separate beams and
look-ahead strategies. Comput. Oper. Res. 40, 1243–1255 (2013)

12. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles
within triangles, rectangles and strips. Comput. Oper. Res. 37, 1318–1327 (2010)

13. Stoyan, Y.G., Yaskov, G.N.: Packing congruent spheres into a multi-connected polyhedral
domain. Int. Trans. Oper. Res. 20, 79–99 (2013)

14. Bennel, J.A., Olivera, J.F.: A tutorial in irregular shape packing problems. J. Oper. Res. Soc.
60, 93–105 (2009)

15. Toledo, F.M.B., Carravilla, M.A., Ribero, C., Oliveira, J.F., Gomes, A.M.: The dotted-board
model: a new MIP model for nesting irregular shapes. Int. J. Prod. Econ. 145, 478–487 (2013)

16. Galiev, S.I., Lisafina, M.S.: Linear models for the approximate solution of the problem of
packing equal circles into a given domain. Eur. J. Oper. Res. 230, 505–514 (2013)

17. Litvinchev, I., Ozuna, L.: Packing circles in a rectangular container. Paper presented at the
1st international congress on logistics and supply chain, Mexican Institute of Transportation,
Queretaro, Mexico, 24–25 October 2013

http://dx.doi.org/10.1177/2331216514529189
http://dx.doi.org/10.1155/2009/150624

9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting 205

18. Litvinchev, I., Ozuna, L.: Integer programming formulations for approximate pack-
ing circles in a rectangular container. Math. Probl. Eng. (2014). Article ID 317697,
doi:10.1155/2014/317697

19. Litvinchev, I., Ozuna, L.: Approximate packing circles in a rectangular container: valid
inequalities and nesting. J. Appl. Res. Technol. 12, 716–723 (2014)

20. Litvinchev, I., Infante, L., Ozuna, L.: Approximate circle packing in a rectangular container:
integer programming formulations and valid inequalities. Lect. Notes Comput. Sci. 8760,
47–61 (2014)

21. Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search procedure. Oper.
Res. 33, 49–64 (1985)

22. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems, Revised Reprint. SIAM
(2012)

23. Wolsey, L.A.: Integer Programming. Wiley, New York (1999)
24. ILOG CPLEX, Mathematical programming optimizers. Version 12.6 (2013)
25. Bortfeldt, A., Wäscher, G.: Constraints in container loading—a state-of-the-art review. Eur. J.

Oper. Res. 229, 1–20 (2013)
26. Wang, W., Wang, H., Dai, G., Wang, H.: Visualization of large hierarchical data by circle

packing. CHI ’06 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, April 22–27, Montreal, Canada, pp. 517–520 (2006)

27. George, J.A.: Multiple container packing: a case study of pipe packing. J. Oper. Res. Soc. 47,
1098–1109 (1996)

28. Pedroso, J.P., Cunha, S., Tavares, J.N.: Recursive circle packing problems. Int. Trans. Oper.
Res. (2014). doi:10.1111/itor.12107

29. Litvinchev, I., Infante, L., Ozuna, L.: LP-based heuristic for packing circular-like objects in a
rectangular container. Math. Probl. Eng. (to appear)

30. Litvinchev, I., Tsurkov, V.: Aggregation in Large Scale Optimization. Kluwer, Boston (2003)
31. Burke, E.K., Hellier, R.S., Kendall, G., Whitwell, G.: Irregular packing using the line and arc

no-fit polygon. Oper. Res. 58, 948–970 (2010)
32. Litvinchev, I., Infante, L., Ozuna, L.: Packing circular-like objects in a rectangular container.

J. Comput. Syst. Sci. Int. 54, 259–267 (2015)

http://dx.doi.org/10.1155/2014/317697
http://dx.doi.org/10.1111/itor.12107

	9 Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting
	9.1 Introduction
	9.2 Basic Constructions
	9.3 Circular Objects
	9.4 L-shaped Objects and Containers
	9.5 Conclusions
	References

