
Chapter 6
Cutting and Packing Problems with Placement
Constraints

Andreas Fischer and Guntram Scheithauer

Abstract In real-life problems of cutting and packing very often placement
constraints are present. For instance, defective regions of the raw material (wooden
boards, steel plates, etc.) shall not become part of the desired products. More
generally, due to different quality demands, some products may contain parts of
lower quality which are not allowed for other goods. Within this work we consider
one- and two-dimensional rectangular cutting and packing problems where items of
given types have to be cut from (or packed on) raw material such that an objective
function attains its maximum. In the one-dimensional (1D) case, we assume for
each item type that allocation intervals (regions of the raw material) are given
so that any item of the same type must be completely contained in one of the
corresponding allocation intervals. In addition, we deal with problems where the
lengths of the 1D items of a given type may vary within known tolerances. In
the two-dimensional (2D) case, where rectangular items of different types have to
be cut from a large rectangle, we investigate guillotine cutting under the condition
that defective rectangular regions are not allowed to be part of the manufactured
products (even not partially). For these scenarios we present solution strategies
which rely on the branch and bound principle or on dynamic programming. Based
on properties of the corresponding objective functions we discuss possibilities to
reduce the computational complexity. This includes the definition of appropriate
sets of potential allocation (cut) points which have to be inspected to obtain an
optimal solution. By dominance considerations the set of allocation points is kept
small. In particular, the computational complexity becomes independent of the unit
of measure of the input data. Possible generalizations will be discussed as well.
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6.1 Introduction

In real-life problems of cutting and packing placement constraints are present very
often. For instance, defective regions of the raw material (wooden boards, steel
plates, etc.) shall not become part of desired products. More generally, due to
different quality demands, some products may contain parts of lower quality which
are not allowed for other goods. For packing problems forbidden regions may exist
where no objects must be placed. Due to the strong relationship between cutting and
packing problems this paper mostly concentrates on cutting problems.

6.1.1 Aims and Scope

We consider one- and two-dimensional rectangular cutting problems where items
of given types have to be cut from raw material such that an objective function
attains its maximum. Such problems are also called 1D or 2D rectangular knapsack
problems. Two scenarios will be discussed in detail. In the first, some rectangular
parts of the raw material are not allowed to be used at all. In the second more general
scenario, different quality demands are considered.

In the 1D case, we assume for each item type that allocation intervals (regions
of the raw material) are given so that any item of the same type must be completely
contained in one of the corresponding allocation intervals. In the 2D case, where
rectangular items of different types have to be cut from a large rectangle, we
investigate guillotine cutting under the condition that defective rectangular regions
are not allowed to be part of the manufactured products (even not partially).
Different qualities of the raw material are described by allocation areas.

Furthermore, we also deal with problems where the lengths (or width) of the
(one- or two-dimensional) items of a given type may vary within known tolerances.

For these scenarios we present solution strategies which rely on the branch and
bound (B&B) principle or on dynamic programming (DP). Based on properties
of the corresponding objective functions we discuss possibilities to reduce the
computational complexity. This includes the definition of appropriate sets of
potential allocation (cut) points which have to be inspected to obtain an optimal
solution. By dominance considerations the set of allocation points is kept small.
In particular, the computational complexity becomes independent of the unit of
measure of the input data.

Some generalizations will be discussed as well. Finally, we hope that techniques
from this area can be used and extended to new fields, for example for the placement
of chips and other electronic parts on boards.
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6.1.2 Related Work

Cutting and packing (C&P) problems with defective or forbidden regions were
studied in the past. In the earlier survey paper by Sweeney and Paternoster [15]
some work related to this topic is referenced, whereas in the recent typology of
C&P [17] the topic is only briefly addressed. Therefore, we give a short overview
on articles that are relevant for our work.

Hahn [6] presented a recursive DP-based procedure to solve a 2D cutting problem
with defects. She suggested a three-stage guillotine cutting scenario with vertical
cuts in the first stage.

Herz [7] presented a recursive B&B-based procedure for the 2D rectangular
knapsack problem (without defects) to obtain canonical patterns by introducing
discretization points, see the definition of allocation points in Sect. 6.2. Dowsland
[4] used certain discretization points to analyze the structure of optimal (and nearly
optimal) solutions and the objective function for the manufacturer’s pallet loading
problem, a special 2D knapsack problem where only one type of pieces (rotatable
by 90ı) has to be packed.

Beasley [2] presented a 0/1 model and a tree-search procedure for 2D non-
guillotine rectangle packing including the occurrence of forbidden regions. Upper
bounds are computed from a Lagrangian relaxation problem which are improved by
the help of a subgradient ascent method. We will not use the approach in [2] since
it requires a very large number of 0/1-variables.

In Terno et al. [16] a principle used by Nicholson [8] was applied to 2D rectangle
cutting and packing problems leading to the concept of reduced sets of allocation
(or cut) points (cf. Sect. 6.2). The book (Scheithauer [12]) presents a renewed
description of this concept.

For the three-stage guillotine cutting of defective boards a recursive procedure
was developed by Scheithauer and Terno [13]. In particular, appropriately reduced
sets of allocation points were applied.

Algorithmic approaches for 1D cutting problems with different quality demands
were addressed by Sweeney and Haessler [14]. Such problems which are modeled
by allocation intervals and pieces of variable length were also investigated in
Scheithauer [11]. The latter paper generalizes real-world problems in hardwood
cutting. Similar problems are considered in Rönnqvist [9] and Rönnqvist and
Åstrand [10], where a discretization of the board is used.

6.1.3 General Notation and Assumptions

We assume throughout the paper that all input data are positive integers. The set of
positive integers is denoted by Z>. In the 1D case, the length of the raw material is
given by L. The pieces i 2 I WD f1; : : : ; mg which shall be cut have the lengths `i.
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Moreover, profit coefficients �i for i 2 I are known. Additionally, in the 2D case,
the raw material has width W, whereas the rectangular pieces are of widths wi. It is
always assumed that

maxf`i j i 2 Ig � L and maxfwi j i 2 Ig � W

holds. For later use we define

`min WD minf`i j i 2 Ig; wmin WD minfwi j i 2 Ig:

and

` WD .`1; : : : ; `m/>; w WD .w1; : : : ; wm/>; � WD .�1; : : : ; �m/>:

Moreover, in case that a maximum of indexed numbers is taken over an empty index
set the maximum is set to 0. In order to describe (parts of) objects we use

Œa; b� � Œc; d� WD f.x; y/ 2 R
2 j a � x � b; c � y � dg

and, for short, b � d WD Œ0; b� � Œ0; d�, where a; b; c; d 2 ZC with a � b and c � d.
By ZC the set of all non-negative integers is denoted. If not stated otherwise, we
allow that several copies of a piece can be obtained from the raw material. For the
sake of simplicity, we do not consider a (positive) kerf nor least distances between
two allocation points within a pattern. Furthermore, in the 2D case we do not allow
rotation of pieces for the same reason.

6.2 Reduced Set of Potential Allocation Points

The (standard) Knapsack Problem (KP) is a basic problem also within the field of
cutting and packing. This problem consists of finding a vector x� 2 Z

mC such that x�
satisfies the capacity constraint a>x � b and the objective c>x attains its maximum
for x D x�. For short, we write

KP(c; a; b) W
X

i2I

cixi ! max subject to
X

i2I

aixi � b; xi 2 ZC for i 2 I;

(6.1)

where a D .a1; : : : ; am/> 2 Z
m
>, c D .c1; : : : ; cm/> 2 Z

m
>, and b 2 Z> are given.

If we consider a>x � y with a parameter y 2 R, then we obtain the following
optimal value function f W R ! ZC [ f�1g related to KP(c; a; b):

f .y/ WD max

�P
i2I

cixi j P
i2I

aixi � y; xi 2 ZC for i 2 I

�
for all y 2 R; (6.2)
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where f .y/ WD �1 for any y < 0. It is well known that f is piecewise constant
and non-decreasing. Its jump discontinuities are non-negative integers. The set of
all these jump discontinuities of f depends on c and a and is a subset of

S.a/ WD
(

r D
X

i2I

aixi j xi 2 ZC; i 2 I

)
: (6.3)

The fact that the optimal value function of KP(c; a; b) changes (increases) only at
discrete points can be used in B&B or DP approaches to reduce the computational
complexity of solving the knapsack problem.

If the knapsack problem (6.1) is used to model a cutting problem we call S.a/

set of potential allocation points. Replacing c by � , a by `, and b by L we see
that KP(�; `; L) models a 1D cutting problem. In this case, xi denotes the number
how often piece i is cut. The set S.`/ contains infinitely many elements whereas the
points (coordinates) for cutting the raw material are bounded by L. Therefore, we
introduce the finite set

S.`; L/ WD fr 2 S.`/ j r � Lg ; (6.4)

Of course, S.`; L/ contains all those jump discontinuities of the optimal value
function arising from KP(�; `; L) which are not larger than L. Depending on � ,
additional points may belong to S.`; L/ as well. Thus, the question arises whether
one can describe the set of jump discontinuities exactly. This is possible in the
important case when � D `. Then, the knapsack problem KP(`; `; L) has the optimal
value function f given by

f .y/ D max

(
X

i2I

`ixi j
X

i2I

`ixi � y; xi 2 ZC; i 2 I

)
for all y 2 R

and S.`; L/ is exactly the set of those jump discontinuities of f which are not larger
than L.

Let x� denote a solution of KP(�; `; L) with `>x� < L, i.e., there is some waste
of raw material. Then, to cut the items according to x�, infinitely many possibilities
exist to choose a pattern, i.e. the coordinates of the items of the solution. If the
items are placed as left as possible on the raw material, the number of such patterns
is finite, all the waste lies right of the items, and all coordinates of the cut positions
belong to S.`/. Such patterns are often called normalized or left-justified. Herz [7]
used the terms discretization point for r 2 S.`/ and canonical for left-justified
patterns.

For a set T � ZC and y 2 RC let pT.y/ and sT.y/ denote the predecessor of y
with respect to T and the successor of y with respect to T , respectively, i.e.,

pT.y/ WD maxfr 2 T j r � yg and sT.y/ WD minfr 2 T j r � yg
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for all y 2 Œminfr 2 Tg; maxfr 2 Tg�. In terms of the 1D cutting problem, pS.`/.y/

denotes the largest allocation point less than or equal to y, and sS.`/.y/ denotes the
least length of raw material needed to obtain a length of y. With other words, pS.`/.y/

is the maximum usable length when the raw material has length y. Obviously, we
have

y � `min < pS.`/.y/ � y for all y � `min

and

pS.`/.y/ C pS.`/.L � y/ � pS.`/.L/ for all y 2 Œ0; L�:

The knapsack problem KP(c; a; b) can be solved by means of the following
backward dynamic programming (BDP) algorithm. If set T used in this algorithm
contains at least all jump discontinuities of the optimal value function of KP(c; a; b),
then Algorithm BDP provides a function g W T ! ZC by which a solution
of KP(c; a; b) can be easily determined. For example, T WD S.a; b/ would do
the job. Later on, it will turn out that Algorithm BDP can even successfully be
used for solving knapsack problems if T contains only a certain subset of jump
discontinuities.

Algorithm BDP
Input: c, a, b, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y < pT.b/ do
(3) y WD sT.y C 1/,
(4) g.y/ WD max

i2I
fci C g.pT.y � ai// j y � aig.

Theorem 1. Let T contain at least all jump discontinuities of the optimal value
function f of KP(c; a; b). Then, if Algorithm BDP is used for determining g W T !
ZC, it holds

f .y/ D g.pT.y// for all y 2 Œ0; b�:

This well-known result can be also obtained for the following forward dynamic
programming (FDP) algorithm.

Algorithm FDP
Input: c, a, b, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y � pT.b � minfai j i 2 Ig/ do
(3) For all i 2 I with y C ai � pT.b/ do
(4) g.sT.y C ai// WD maxfg.sT.y C ai//; ci C g.y/g,
(5) y WD y,
(6) Repeat y WD sT.y C 1/ until g.y/ < g.y/.
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Note that T D S.a; b/ implies sT.y C ai/ D y C ai 2 T for all i 2 I and all y 2 T
with y C ai � b. Thus, sT.y C ai/ can be replaced by y C ai in Step (4) of Algorithm
FDP. Moreover, because of the repeat-loop in Step (6), some updates in Steps (3)
and (4) can probably be saved compared to Step (4) of Algorithm BDP.

The worst-case complexity of both algorithms, BDP and FDP, is O.b C mjTj/
since y is increased at most b times, and at most m comparisons are done in the
max-terms for each element of T . Thus, both are pseudo-polynomial algorithms.

In order to determine a reduced set of allocation points that is sufficient to
obtain an optimal solution of KP(c; a; b) by Algorithm BDP or FDP we will apply
some dominance condition (cf. [12, 16]). For that purpose we let b > maxi2I ai be
satisfied. In view of the separability of the optimal value function f we have

f .b/ D max
0<y�b=2

ff .y/ C f .b � y/g:

Since f is piecewise constant with jump discontinuities in S.a/ it further follows that

f .b/ D max
0<y�b=2

ff .pS.a/.y// C f .pS.a/.b � y//g
D max

r2S.a/; 0<r�b=2
ff .r/ C f .pS.a/.b � r//g: (6.5)

By pS.a/.r/ � pS.a/.b � pS.a/.b � r//, we obtain

f .b/ D max
r2S.a/; 0<r�b=2

ff .pS.a/.b � pS.a/.b � r/// C f .pS.a/.b � r//g:

This formula motivates the definition of the reduced set of potential allocation
points by

Sred.a; b/ WD fpS.a/.b � r/ j r 2 S.a; b/g:

Consequently, we have

f .b/ D max
r2T; 0<r�b=2

ff .r/ C f .pT.b � r//g with T WD Sred.a; b/: (6.6)

Theorem 2. Let f denote the optimal value function of KP(c; a; b/. If Algorithm
BDP (or Algorithm FDP) with T D Sred.a; b/ is used to determine g W T ! ZC,
then

f .r/ D g.r/ for all r 2 T and f .y/ � g.pT.y// for all y 2 Œ0; b�

holds.

Due to Sred.a; b/ � S.a; b/, the recursion (6.6) might be less expensive than
the one in (6.5). Moreover, dependent on the instance, significant savings are
possible if Algorithms BDP or FDP are applied for the solution of KP(c; a; b) with
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Table 6.1 Potential allocation points for Example 1

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S.a; b/ ? ? ? ? ? ? ? ? ? ?

Sred.a; b/ ? ? ? ? ? ?

f .y/ 0 5 10 12 15 17 20

T D Sred.a; b/. Note that using Sred.a; b/ instead of S.a; b/ is an application of the
Nicholson-principle [8]. Since pS.a/.y/ � pSred.a;b/.y/ and sS.a/.y/ � sSred.a;b/.y/ for
all y 2 Œ0; b�, the application of Algorithm FDP with T D Sred.a; b/ does, in general,
not any longer provide left-justified patterns.

Example 1. Let us consider the instance of the knapsack problem KP(c; a; b) with
c WD .12; 10; 5/>, a WD .9; 7; 4/>, and b WD 15. In Table 6.1, the elements of the
sets S.a; b/ and Sred.a; b/ are marked by ?. Additionally, the optimal value function
f is tabulated at their jump discontinuities. ut

In Example 1, we have jSred.a; b/j < jS.a; b/j < b. Moreover, we see that in this
example the set of jump discontinuities is not a subset of Sred.a; b/. In general, the
cardinality of S.a; b/ and Sred.a; b/ strongly depends on the input data. Nevertheless,
there is a high potential to save memory and computation time by using Sred.a; b/

instead of S.a; b/. Moreover, the cardinality does not change if the unit of measure
is changed, for instance from cm to mm.

Investigations how to compute S.a; b/ efficiently can be found in [3]. The
computational amount for determining S.a; b/ and Sred.a; b/ is bounded from above
by O.mb/. More precisely, it is bounded by O.b C mjS.a; b/j/ due to the application
of Algorithm FDP for KP.a; a; b/.

6.3 The 1D Cutting Problem with Fix-Lengths

In the 1D case the presence of defective parts which are not allowed for any piece
leads to independent smaller problem instances. Therefore, we consider only the
scenario with different quality demands.

6.3.1 Problem Description

The following 1D cutting problem is considered: Pieces of various lengths `i, i 2 I,
and different quality demands q 2 Q have to be cut from a non-homogeneous
raw material of length L in such a way that all allocation conditions (i.e., quality
demands) are met and the total value of obtained pieces is maximal.
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Such problems arise, for instance, in timber cutting. In that case, the length of the
pieces is, in general, assumed to be variable within a given range but in this section
we restrict the pieces to have fix-lengths, which is also of high interest. The more
general case of pieces with variable lengths will be considered in the next section.

In order to formulate the cutting problem precisely, we consider several quality
types q 2 Q. To each quality type q 2 Q there is at least one piece i 2 I which is
of this type. Conversely, each piece i 2 I is assigned to a quality type q.i/ 2 Q. Let
Iq � I denote the set of all pieces of quality type q, i.e., Iq D fi 2 I j q.i/ D qg.
Hence, we have [q2QIq D I and Iq \ Ip D ; for p; q 2 Q with q ¤ p.

Intervals of the raw material where exactly one quality demand is fulfilled will be
called allocation intervals Ak � Œ0; L� with k 2 K WD f1; : : : ; jKjg. These intervals
are considered as given. The quality demand satisfied in Ak is denoted byeq.k/ 2 Q.
Any allocation interval Ak can be described by

Ak WD Œbk; ek� � Œ0; L� with ek � bk � minf`i j i 2 Ieq.k/g:

It is possible that different allocation intervals are of the same quality type. Two
intervals Aj and Ak (j ¤ k) may overlap, even if they fulfill the same quality demand.
In the latter case, we assume Aj 6� Ak. Without loss of generality it can be assumed
that

b1 � b2 � � � � � bjKj and ek � ekC1 if bk D bkC1:

For any piece i 2 I we require without loss of generality that there is a

k 2 Kq.i/ WD fk 2 K j eq.k/ D q.i/g

so that `i � ek�bk. This means, any piece i 2 I with allocation point yi 2 Œbk; ek�`i�

will be completely contained in an allocation interval with quality type q.i/.
For example, in hardwood cutting a quality demand could be that no more

than one sound knot per reference length is allowed. Then, the occurrence of two
sound knots within the reference length causes two partially overlapping allocation
intervals.

The value of a piece i 2 I is again denoted by �i. In general, pieces of the
same quality type may be obtained several times from the raw material, either from
the same allocation interval (if it is sufficiently large) or from different allocation
intervals of this quality type.

The cutting problems we consider consist of determining a (cutting) pattern that
has a maximal total value of the obtained pieces.

A pattern � can be described by a (finite) sequence of triples .it; yt; kt/, t D
1; : : : ; t� with yt C `it � ytC1 for t D 1; : : : ; t� � 1 where it denotes the index of the
t-th placed piece, yt is the allocation point of piece it, and kt gives the corresponding
allocation interval. Hence,
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0 � y1; y1 C `i1 � y2; � � � ; yt� C `it� � L;

bkt � yt; yt C `it � ekt ; q.it/ D eq.kt/ for t D 1; : : : ; t� :

Obviously, all allocation points can be considered to be integral.

6.3.2 Modeling

In order to formulate an integer optimization model it is assumed in this subsection
that each piece is packed at most once. This can be done without loss of generality
defining piece i several times with different indexes. We describe the allocation of a
piece i 2 I by means of a 0/1-variable zi as follows:

zi WD
(

1 if piece i 2 I is allocated (should be cut);

0 otherwise.

If the allocation point of piece i is at yi, the piece covers the interval Ti.yi/ WD
Œyi; yi C `i� but only if it has been packed, i.e., if zi D 1. Hence, the allocation
problem can be modeled as follows where int A denotes the interior of set A:

X

i2I

�i � zi ! max (6.7)

subject to

zi 2 f0; 1g; yi 2 ZC; for all i 2 I; (6.8)

int Ti.yi/ \ int Tj.yj/ D ; for all i; j 2 I with i < j and zi C zj D 2; (6.9)

for each i 2 I with zi D 1 there are q 2 Q and k 2 Kq

with i 2 Iq and Ti.yi/ � Ak:
(6.10)

Condition (6.9) ensures that the packed pieces do not overlap each other. Condi-
tion (6.10) guarantees that the allocation is done within an appropriate allocation
interval.

To transform the previous model into an integer linear program (ILP) we define
0/1-variables uij, i; j 2 I, i < j, and vik, i 2 I, k 2 Kq.i/ as follows:

uij WD
(

0 if piece i is packed left to piece j; i.e., yi C `i � yj;

1 if piece i is packed right to piece j; i.e., yj C `j � yi;

and

vik WD
(

1 if piece i 2 I is packed within Ak;

0 otherwise.
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Conditions (6.9) and (6.10) can now be replaced by

yi C `i � yj C L.2 � zi � zj C uij/ for all i; j 2 I with i < j;
yj C `j � yi C L.3 � zi � zj � uij/ for all i; j 2 I with i < j;

(6.11)

yi � bk C L.zi C vik � 2/ for all i 2 I; k 2 Kq.i/;

yi C `i � ek C L.2 � zi � vik/ for all i 2 I; k 2 Kq.i/;
(6.12)

yi � Lzi for all i 2 I; (6.13)

X

k2Kq.i/

vik D zi for all i 2 I; (6.14)

uij 2 f0; 1g for all i; j 2 I with i < j;
vik 2 f0; 1g for all i 2 I; k 2 Kq.i/:

(6.15)

Conditions (6.11) are redundant if piece i or j is not allocated. Otherwise, if
zi C zj D 2, because of uij 2 f0; 1g one of the two conditions in (6.11) is non-trivial.
If item i is not packed, or if i is not packed within Ak, then restrictions (6.12) are
redundant. If an item is not used, then condition (6.13) ensures that the allocation
point of this item is set 0. By (6.14) it is required that a corresponding allocation
interval exists if item i is packed.

The number of binary and integer variables can become very large in general.
To solve the ILP (6.7), (6.8), (6.11)–(6.15) within a real time application scenario,
we will describe B&B or DP approaches. B&B with depth first search (LIFO)
has the advantage that good feasible solutions are found quickly so that time
termination criteria can be applied. For a DP algorithm the computational amount
(run time needed to solve an instance) can be well estimated because of its pseudo-
polynomiality.

6.3.3 Sets of Potential Allocation Points

For the allocation problem (6.7)–(6.10) the optimal value function v W Œ0; L� ! ZC
is defined by

v.y/ WD max
y;z

(
X

i2I

�izi j (6.8)–(6.10) hold and yi C `i � y for all i 2 I with zi D 1

)

for all y 2 Œ0; L�. The function v is non-decreasing since the feasible region enlarges
if y increases. The optimal value function is piecewise constant since only a finite
number of different sequences of packed pieces exists. Moreover, v is continuous
from the right.
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In case that

.0; L/ n
[

k2K

int Ak ¤ ;

the packing problem can be separated into some smaller problems which can be
solved independently from each other. The optimal value of the original problem is
the sum of the optimal values of the smaller problems. In the following it is always
assumed that the packing problem is not separable, i.e.,

[

k2K

int Ak D .0; L/: (6.16)

Hence, b1 D 0 and maxfek W k 2 Kg D L.
Let S�.�; `/ denote the set of jump discontinuities of v for an instance with input

data L 2 Z>, ` 2 Z
m
>, � 2 Z

m
>, and Ak D Œbk; ek� for k 2 K. Our aim is to find a

superset of S�.�; `/ which is independent of � and as small as possible.

Theorem 3. For any ` 2 Z
m
> and any � 2 Z

m
>, the inclusion

S�.�; `/ � Sap.`/ WD
[

k2K

.bk ˚ S.`// \ Œ0; L�:

is fulfilled where bk ˚ S.`/ WD fy j y D bk C r; r 2 S.`/g.

Note that set Sap.`/ does not only depend on ` but also on the given allocation
intervals. For simplicity we do not show this dependence in the notation of Sap.`/

and of other sets that will be defined later.

Proof. To each jump discontinuity of the optimal value function belongs a left-
justified pattern. Any left-justified pattern has allocation points only at the beginning
of an allocation interval, i.e. at bk for some k 2 K, or at points bk C r with r 2 S.`/.
All these points define set Sap.`/. ut
Corollary 1. For all r 2 Œ0; L � 1� \ Z and all y 2 .r; sSap.`/.r C 1// we have
v.y/ D v.r/ D v.pSap.`/.y//.

In general, we can even obtain a set bSap.`/ that is smaller than Sap.`/ but still
allows to obtain an optimal solution of problem (6.7)–(6.10). To this end, a
more sophisticated procedure is used. Its basic principle is the construction of all
possible combinations (patterns) in dependence of the quality demands and the
corresponding items. For example, if we have an allocation interval Ak with bk D 0

and an item i 2 Ieq.k/ with `i > ek, then item i cannot be placed with allocation
point 0. Therefore, it might happen that `i 2 S.`/ is not a jump discontinuity of v.
A similar situation arises if, for item i, no allocation interval Ak with q.i/ D eq.k/

and bk D 0 exists. Then, item i cannot be placed with allocation point 0. Therefore,
in general, the use of S.`/ in the definition of Sap.`/ leads to a proper superset of the
jump discontinuities.
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The description of the procedure to obtain a reduced set bSap.`/ which still con-
tains all jump discontinuities of v requires some notation. For y 2 fbk W k 2 Kg, let

Kb.y/ WD fk 2 K j bk D yg; Qb.y/ WD fq 2 Q j q D eq.k/; k 2 Kb.y/g;

and, for y 2 Œ0; L/, let

Q.y/ WD fq 2 Q j 9k 2 Kq with bk � y; y C minf`i j i 2 Iqg � ekg;
k.y; q/ WD maxfk 2 Kq j bk � yg for all q 2 Q.y/;

K.y/ WD fk 2 K j k D k.y; q/; q 2 Q.y/g

be defined. The set Q.y/ represents all quality types q 2 Q for which a sufficiently
large allocation interval Ak with eq.k/ D q exists such that a piece i 2 Iq with
allocation point y can be obtained. If for q 2 Q.y/ several allocation intervals contain
points y and y C minf`i j i 2 Iqg, then we take that with largest bk and collect them
in K.y/.

Then the procedure to construct the set bSap.`/ starts at by WD 0. Then, we begin
to construct by ˚ S.`/ by successively adding the lengths of those items which can
be placed because of an existing allocation interval. At each point bk, k 2 K, where
an allocation interval begins, the construction of bk ˚ S.`/ restricted to feasible
placements has to be started.

Initialization The first jump discontinuities can arise when a leftmost piece is
allocated at pointby WD 0:

bS WD f`i j i 2 Iq; `i � ek.0;q/; q 2 Qb.0/g [ f0g:

Since Qb.0/ represents all qualities having an allocation interval beginning at 0,
all pieces of Iq, q 2 Qb.0/, can be placed at 0 which fit within the corresponding
allocation interval, i.e., which are not longer than ek.0;q/.

General Step Let

byb WD minfLI bk j bk >by; k 2 Kg; bys WD minfy 2 bS j y >byg:

Here, byb denotes the coordinate of the next allocation interval which allows the
placement of further items, whereas forbys there is already a feasible pattern which
can possibly be extended.

If byb < bys, then by WD byb and, because of the new allocation interval, all
corresponding pieces are placed:

bS WD bS [ fbyg [ fby C `i j i 2 Iq; by C `i � e
k.by;q/

; q 2 Qb.by/g:
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Otherwise, ifbyb � bys, thenby WD bys and all pieces belonging to Q.by/ and of suitable
length are placed:

bS WD bS [ fby C `i j i 2 Iq; by C `i � e
k.by;q/

; q 2 Q.by/g:
The algorithm terminates if no further piece can be placed, i.e., if

by > L � minf`i j i 2 ILg; where IL WD
[

k2KWekDL

Ieq.k/:

Then, the set bSap.`/ is given by the lastly obtainedbS.
The time for determining bSap.`/ is bounded by O..jKj C m/jbSap.`/j/ since by is

increased at most jbSap.`/j times and, for each suchby, the identification of Qb.by/ or
Q.by/ costs at most O.jKj/ and not more than m pieces are considered.

According to the previous procedure the next result follows.

Theorem 4. For any ` 2 Z
m
> and any � 2 Z

m
>, the inclusions

S�.�; `/ � bSap.`/ � Sap.`/:

hold.

Thus, in analogy to Theorem 1, it is sufficient to usebSap.`/ for a recursion based on
DP for solving the 1D cutting problem with fix-lengths. To this end, let T WD bSap.`/

be defined.

Algorithm FDP-FL
Input: � , `, L, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y � pT.L � minf`i W i 2 ILg/ do
(3) For all k 2 K.y/ and all i 2 Ieq.k/ with y C `i � ek do
(4) g.sT.y C `i// WD maxfg.sT.y C `i//; �i C g.y/g,
(5) y WD y,
(6) Repeat y WD sT.y C 1/ until g.y/ < g.y/ or y 2 fbk j k 2 Kg.

The worst-case complexity of Algorithm FDP-FL is O..jKj C m/jTj/ since y is
increased at most jTj times and, for each such y, the identification of K.y/ needs
O.jKj/ time and at most m pieces are considered.

Theorem 5. If Algorithm FDP-FL is used with T WD bSap.`/ to determine
g W T ! ZC, then it holds

v.y/ D g.pT.y// for all y 2 Œ0; L�;

where v is the optimal value function of problem (6.7)–(6.10).
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Moreover, the setbSap.`/ can be advantageously applied within B&B approaches for
solving the 1D cutting problem with fix-lengths (6.7)–(6.10).

6.3.4 Applying the Nicholson Principle

In the following we apply the Nicholson principle [8, 16] to obtain a further
reduction of the sets Sap.`/ andbSap.`/ of potential allocation points. Let

S ap .`/ WD
[

k2K

.ek 	 S.`// \ Œ0; L� where ek 	 S.`/ WD fy j y D ek � r; r 2 S.`/g:

denote the set of potential allocation points maximal in the following sense: for any
y 2 S ap .`/ there is a combination of piece lengths whose first (leftmost) piece, say
i, has allocation point y and which is not feasible for allocation points for i larger
than y. Then, a first reduced set of allocation points is obtained by the Nicholson
principle as follows:

Sred
ap .`/ WD fpT.y/ j y 2 S ap .`/g with T WD Sap.`/:

Theorem 6. If Algorithm FDP-FL is used with T WD Sred
ap .`/ to determine

g W T ! ZC, then it holds

v.y/ D g.y/ for all y 2 T;

where v is the optimal value function of problem (6.7)–(6.10).

Proof. Similar to the optimal value function v defined in Sect. 6.3.3 for the
allocation problem (6.7)–(6.10), but now looking from L to 0, we can define another
optimal value function Qv W Œ0; L� ! ZC by

Qv.y/ WD max
y;z

(
X

i2I

�izi j (6.8)–(6.10) hold and yi � y for all i 2 I with zi D 1

)
:

The function Qv is non-increasing since the feasible region shrinks if l increases.
Since v.L/ and Qv.0/ are the optimal values of the same problem, obviously we have
v.L/ D Qv.0/. Let the sequence of triples .it; yt; kt/, t D 1; : : : ; t� with yt C`it � ytC1

for all t represent any normalized optimal pattern � of problem (6.7)–(6.10). If �

does not consist of a single piece with length L, then there exists y� 2 .0; L/\Sap.`/

with

v.L/ D Qv.0/ D v.y�/ C Qv.y�/ D maxfv.y/ C Qv.y/ j y 2 Œ0; L�g:
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As y� any element in fyt; yt C `it j t D 1; : : : ; t�g \ .0; L/ can be taken. Therefore,
we have

maxfv.y/ C Qv.y/ j y 2 Œ0; L�g D maxfv.y/ C Qv.y/ j y 2 Sap.`/g

but we have to prove

maxfv.y/ C Qv.y/ j y 2 Sap.`/g D maxfv.y/ C Qv.y/ j y 2 Sred
ap .`/g:

To see this, we assume there exist r 2 Sred
ap .`/ and y 2 Sap.`/ n Sred

ap .`/ with r < y <

sT.r C 1/ DW r0 and v.y/ C Qv.y/ > maxfv.y/ C Qv.y/ j y 2 Sred
ap .`/g.

Assuming v.y/ D v.r/ then v.r/C Qv.r/ � v.y/C Qv.y/ since Qv is non-increasing.
Hence, we have v.r/ < v.y/.

Assuming Qv.y/ D Qv.r0/ then v.r0/ C Qv.r0/ � v.y/ C Qv.y/ since v is non-
decreasing.

It remains the case that Qv.y/ > Qv.r0/. Then there is y0 2 S ap .`/ with y0 � y and
Qv.y/ D Qv.y0/. Since y 2 Sap.`/ and y0 2 S ap .`/ with y0 � y we have a contradiction
to y … Sred

ap .`/. ut
Corollary 2. Among all optimal solutions of problem (6.7)–(6.10) there is a cutting
pattern whose allocation points are all in Sred

ap .`/.

In order to further reduce the set Sred
ap .`/ we will apply the Nicholson principle again

by using bSap.`/ instead of Sap.`/. In analogy to the construction of bSap.`/ in the
previous subsection, a set bS ap .`/ of rightmost allocation points can be constructed.
Only those items are regarded which can be placed because of the existence of a
corresponding allocation interval. For any y 2 bS ap .`/, there is a feasible pattern � ,
i.e., a sequence of triples .it; yt; kt/, k D 1; : : : ; t� with yt C `it � ytC1 for all t,
whose first (leftmost) piece i1 has allocation point y1 D y. This pattern becomes
infeasible for all y0 with y0 > y if y1 WD y0 and any choice of the allocation points
y2; : : : ; yt� with yt C `it � ytC1 for all t. The construction requires some notation.
For y 2 fek j k 2 Kg, let

Ke.y/ WD fk 2 K j ek D yg; Qe.y/ WD fq 2 Q j q D eq.k/; k 2 Ke.y/g;
and, for y 2 .0; L�, let

Q.y/ WD fq 2 Q W 9k 2 Kq with ek � y; y � minf`i j i 2 Iqg � bkg;
k.y; q/ WD minfk 2 Kq j ek � yg for all q 2 Q.y/;

K.y/ WD fk 2 K j k D k.y; q/; q 2 Q.y/g:
be defined.

Initialization Rightmost allocation points are obtained if a piece is allocated at a
point in

bS WD fL � `i j i 2 Iq; `i � L � bk.L;q/; q 2 Qe.L/g [ fLg:
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Since Qe.L/ represents all qualities having an allocation interval ending at L, all
pieces of Iq, q 2 Qe.L/, can be placed at L � `i which fit within the corresponding
allocation interval, i.e. which are not longer than L � bk.L;q/. Letby WD L.

General Step Let

bye WD maxf0; ek j ek <by; k 2 Kg; bys WD maxfy 2 bS j y <byg:
Here, bye denotes the coordinate of the next allocation interval which allows the
placement of further items, whereas for bys there is already a feasible pattern in
the interval Œbys; L� which can possibly be extended. If bye > bys, then by WD bye and,
because of the new allocation interval, all corresponding pieces are placed:

bS WD bS [ fby � `i j i 2 Iq; by � `i � b
k.by;q/

; q 2 Qe.by/g:

Otherwise, if bye � bys, then by WD bys and all pieces belonging to Q.bys/ and suitable
length are placed:

bS WD bS [ fby � `i j i 2 Iq; by � `i � b
k.by;q/

; q 2 Q.by/g:
The algorithm terminates if no further piece can be placed, i.e., if

by < minf`i j i 2 I0g; where I0 WD
[

k2KWbkD0

Ieq.k/:

Then, the set bS ap .`/ is given by the lastly obtainedbS .

The time to determine bS ap .`/ is similar to that needed for bSap.`/ and is bounded
from above by O.mL/.

Now, we are able to define the announced reduced set of allocation points by

bSred
ap .`/ WD fpT.y/ j y 2 bS ap .`/g with T WD bSap.`/ (cf. Sect. 6.3.3):

Now, because of construction, we have bSred
ap .`/ � bSap.`/ and moreover

Theorem 7. If Algorithm FDP-FL with T WD bSred
ap .`/ is used to determine

g W T ! ZC, then it holds

v.y/ D g.y/ for all y 2 T;

where v is the optimal value function of problem (6.7)–(6.10).

The theorem can be proved in analogy to Theorem 6. The time needed for computing
all g-values according to Theorem 7 is bounded by O.mjbSred

ap .`/j/.
Corollary 3. Among all optimal solutions of problem (6.7)–(6.10) there is a cutting
pattern whose allocation points are all inbSred

ap .`/.
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Similar to Theorem 2, the use of Sred
ap .`/ or bSred

ap .`/ does not guarantee to obtain
all values v.y/ of the optimal value function v for y 2 .0; L/, nevertheless v.L/ and
a corresponding optimal pattern can be determined.

Example 2. Let the unit of measurement be millimeter. An arbitrarily long wooden
board of width W D 300 has to be cut into strips with widths of 40, 50, or 60. The
cutting kerf is 2.5. Due to different quality demands, strips of width 50 can only be
obtained within the interval Œ50; 200�, and strips of width 60 only within Œ150; 225�.
Multiplying all data by 2, adding 5 to the item widths and to the overall width to
regard the kerf, and dividing all widths by 5 leads to a 1D cutting problem with
the following input data: L D 121, item lengths `1 D 17, `2 D 21, `3 D 25, and
allocation intervals A1 D Œ0; 121�, A2 D Œ20; 80�, A3 D Œ60; 90�. Then, we obtain
jS.`; L/j D 41, jSred.`; L/j D 23,

jSap.`/j D 67; jS ap .`/j D 73; jSred
ap .`/j D 35;

jbSap.`/j D 29; jbS ap .`/j D 36; jbSred
ap .`/j D 12;

and

bSred
ap .`/ D f0; 17; 20; 34; 41; 51; 58; 62; 68; 87; 104; 121g:

ut
The computation of any of the introduced sets of potential allocation points takes a
pseudo-polynomial amount of time. Due to its smaller cardinality, the application of
bSred

ap .`/ can save computational effort in DP and B&B approaches if compared to the
use of other sets of allocation points. If instances have to be solved which only differ
in the profit coefficients � , the construction of bSred

ap .`/ has to be done only once.

6.4 The 1D Cutting Problem with Variable Lengths

In some cutting tasks the lengths of desired items should not be fixed in advance.
Instead, they can vary within known tolerances. For example, this is useful for
producing finger joined lumber. There, items of various lengths (but with the same
profile) are put together to obtain stripes of desired lengths.

6.4.1 Problem Formulation

Now, in contrast to the previous section, the lengths of the items to be cut are not
fixed. Rather, it can take any value within a given range. More precisely, the length
of piece i (i 2 I) is again denoted by `i. However, `i is now a variable with
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`i 2 Œli; li� .i 2 I/;

where li and li are given positive integers with 0 < li � li; i 2 I. Items with fix-
lengths can also be considered by simply setting li D li.

The value of item i with length l is denoted by Q�i.l/. The function Q� is required to
be affine, non-decreasing, and non-negative. For the sake of simplicity, we assume
Q�i.l/ D �i � l with some given �i > 0 for all i 2 I.

Problems of this kind occur, for instance, related to hard wood cutting. There,
pieces of various lengths (but with the same cross section) are put together using the
finger-joining technology to get profiles of arbitrary length (see, e.g., [1]).

6.4.2 Modeling

In order to formulate a mixed-integer optimization model with 0/1-variables it
is assumed in this subsection that each piece is allocated at most once (as in
Sect. 6.3.2). The allocation of piece i is described by a 0/1-variable zi defined as
follows:

zi D
(

1 if piece i 2 I is allocated (should be cut);

0 otherwise.

The allocation point of piece i is again denoted by yi. Then piece i with length `i

covers the interval Ti.yi; `i/ WD Œyi; yi C `i� if it has been placed, i.e., if zi D 1.
Hence, the cutting (allocation) problem can be modeled as follows:

X

i2I

�i � `i � zi ! max (6.17)

subject to

zi 2 f0; 1g; `i; yi 2 RC i 2 I; (6.18)

lizi � `i � lizi i 2 I; (6.19)

int Ti.yi; `i/ \ int Tj.yj; `j/ D ; for all i; j 2 I with i ¤ j; (6.20)

for each i 2 I with zi D 1 there are q 2 Q and k 2 Kq

with i 2 Iq and Ti.yi; `i/ � Ak:
(6.21)

Condition (6.20) ensures that the packed pieces do not overlap each other and
condition (6.21) guarantees that the packing of a piece is done within an allocation
interval of related quality.
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Note that the optimization model (6.17)–(6.21) has a nonlinear objective func-
tion. Similar to Sect. 6.3.2, the restrictions (6.20) and (6.21) can be linearized using
the same 0/1-variables uij, i; j 2 I, i < j, and vik, i 2 I, k 2 Kq.i/.

6.4.3 Optimal Value Function

For the optimization problem (6.17)–(6.21) the optimal value function v W Œ0; L� !
RC is defined by

v.y/ WD max
z;y;`

(
X

i2I

�i`izi j (6.18)–(6.21) hold and yi C `i � y for all i with zi D 1

)
:

The function v is continuous from the right and non-decreasing since the feasible
region enlarges if y increases. Moreover, v is piecewise affine since only a finite
number of different sequences of allocated pieces exists and the functions Q�i

providing the profit of pieces i 2 I were assumed to be linear. By the same reason,
the domain of v can be partitioned into intervals where v is either constant or linearly
increasing with slope in f�1; : : : ; �mg.

Example 3. Let the following instance of a cutting problem be given:

I WD f1; 2; 3g; Q WD f1; 2g;
l1 WD l2 WD 30; l1 WD l2 WD 50; l3 WD 20; l3 WD 100;

�1 WD �2 WD 8; �3 WD 5;

A1 WD Œ0; 60�; A2 WD Œ70; 100�; A3 WD Œ0; 100�;

I1 WD f1; 2g; I2 WD f3g;
K1 WD f1; 2g; K2 WD f3g:

Figure 6.1 shows the optimal value function v for Example 3. The leftmost gap of v

v(y)

y20 30 50 57.5 70 100

740

500
400

240

100

650

Fig. 6.1 Optimal value function v for Example 3
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at y D 20 arises since item 3 with length `3 D l3 D 20 and allocation point y3 D 0

is placed. This leads to v.20/ D �3`3 D 100. For y 2 Œ20; 30/, placing item 3 with
length `3 D y and y3 D 0 provides v.y/ D �3`3 D 5y. If y D 30, then item 1
(instead of item 3) is placed with `1 D 30 and y1 D 0. For y 2 Œ30; 50/, placing
item 1 with length `1 D y and y1 D 0 yields v.y/ D �1`1 D 8y. If y 2 Œ50; 57; 5/

then placing item 1 with y1 2 Œ0; y � 50� is optimal so that v remains constant
in this interval. For y 2 Œ57:5; 70/, both item 1 and item 3 are placed with y1 D 0,
`1 D y�20, y3 D y�20, `3 D 20. This yields v.y/ D �1`1C�3`3 D 8.y�20/C100.
For y 2 Œ70; 100/, the length of item 1 becomes maximal, namely `1 D l1 D 50

with y1 D 0 and the length of item 3 is `3 D y � 50 with y3 D 50. Therefore,
v.y/ D 400 C 5.y � 50/. Finally, the rightmost gap occurs at y D 100 because of
the optimal pattern with y1 D 0, y2 D 70, y3 D 50, `1 D 50, `2 D 30, `3 D 20 and
v.100/ D 740. ut

Note that the allocation pattern with the optimal value v.L/ might be not unique.
For example, the optimal lengths of two items of the same quality need not be unique
but their sum is the same for all optimal patterns with the same sequence of items.

Since yi and `i are non-negative real numbers, infinitely many points become
potential allocation points. However, the subsequent theorem shows that a finite
subset of allocation points suffices to define an optimal (allocation) pattern.

In case of variable lengths, a pattern � is a finite sequence of quadruples
.it; yt; `t; kt/

t�
tD1, where it denotes the index of the t-th placed piece, yt is the

allocation point of piece it, `t is its length, and kt gives the corresponding allocation
interval.

Theorem 8. Among all optimal patterns for problem (6.17)–(6.21) there is a
pattern � with

yt 2 Sap.l; l/ for all t D 1; : : : ; t�

where A WD fbk; ek j k 2 Kg and

Sap.l; l/ WD ��
A ˚ S.l/ ˚ S.l/

� [ �
A 	 S.l/ 	 S.l/

�� \ Œ0; L�:

Note that the time required for determining Sap.l; l/ is bounded by O.mL/.

Proof. We consider the allocation of two items of not necessarily different qualities,
say items 1 and 2, with corresponding allocation intervals A1 D Œb1; e1� and A2 D
Œb2; e2�, respectively. We show that optimal patterns exist having allocation points y1

and y2 belonging to Sap.l; l/. More general cases can be proved inductively. Without
loss of generality we can assume that the allocation intervals overlap as in Fig. 6.2.
Otherwise, the allocation problem can be separated into two smaller problems which
can be dealt with independently. Moreover, to keep the case by case analysis short
we only consider cases where additionally

l1 C l2 � e2 � b1 � l1 C l2 and 2li > li; ei � bi < li C li for i D 1; 2
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b1 b2 e1 e2

Fig. 6.2 Overlapping allocation intervals

holds. These conditions ensure that both items can be placed but not more than 2.
Cases which do no fulfill these conditions can be handled analogously. Since an
optimal pattern depends on the profit coefficients �1 and �2 several cases have to be
considered:

Case 1: Let �1 D �2. As much as possible of the available length should be used,
i.e., one of the two solutions

y1 D b1; `1 D minfl1; e1 � b1g; y2 D b1 C `1; `2 D minfl2; e2 � y2g;
or

`2 D minfl2; e2 � b2g; y2 D e2 � `2; y1 D b1; `1 D minfl1; y2 � b1g
is optimal.

Case 2: Let �1 > �2. Then `1 should be as large as possible.

Subcase 2a: Let e1 � b1 � l1. If e2 � b1 C l1 C l2, then

y1 D b1; `1 D l1; y2 D maxfb2; b1 C l1g; `2 D e2 � y2:

describes an optimal pattern.
If e2 < b1 C l1 C l2, an optimal pattern is given by

y1 D b1; `1 D e2 � l2 � b1; y2 D e2 � l2; `2 D l2 if l2�2 � .l1 � `1/�1;

y1 D b1; `1 D l1; item 2 is not allocated if l2�2 < .l1 � `1/�1:

In any case we have y1; y2 2 Sap.l; l/.
Subcase 2b: Let e1 � b1 < l1. If e2 � e1 � l2 then

y1 D b1; `1 D e1 � b1; y2 D e1; `2 D minfl2; e2 � e1g

provides an optimal pattern.
If e2 � e1 < l2 , the pattern given by

y1 D b1; `1 D e2�l2 � b1; y2 D e2�l2; `2 D l2 if l2�2 � .e1�b1�`1/�1;

y1 D b1; `1 D e1�b1; item 2 is not allocated if l2�2 < .e1�b1�`1/�1;

is optimal as well. Again, we always have y1; y2 2 Sap.l; l/.

Case 3: Let �1 < �2. Then `2 should be as large as possible. The corresponding
subcases can be dealt with like in Case 2. ut
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Similar to the case of only fix-lengths, the packing problem can be separated
into some smaller problems if condition (6.16) is violated which can be solved
independently from each other. So we assume again that (6.16) is fulfilled.

6.4.4 Packing a Single Piece

In order to compute the optimal value v.L/, the allocation of a single piece is
considered in the following and will become a basic element in the DP and B&B
solution approaches presented below.

Any feasible pattern within an interval Œ0; l� yields a lower bound for v.l/. The
current best lower bound for v.l/, obtained in a solution process, is denoted as h.l/.

The function h has analogous properties as v. Hence, there is a description of h
by a finite sequence .y

j
/ of coordinates that at least contains all jump discontinuities

and all kinks of h. Any two neighboring points y
j
; y

jC1
define a so-called basic (or

reference) interval Bj WD Œy
j
; y

jC1
/. The end point y

jC1
belongs to the basic interval

BjC1 since h is continuous from the right.
For any interval Bj, the function h can be described by

h.y/ D ˛j C ˇj.y � y
j
/ for all y 2 Bj:

To solve the cutting problem (6.17)–(6.21), a procedure is used which consists of
successively placing single pieces. In principle, if piece i with length `i 2 Œli; li� and
allocation point y 2 Bj is added to the current pattern (which determines h in Bj)
then, depending on �i and ˇj, an improved pattern might be obtained for the interval
Œy

j
C li; y

jC1
C li/. Note that in general, due to the variability of `i 2 Œli; li� and y 2 Bj,

infinitely many patterns exist. In contrast to this, the number of different sequences
of items is finite and can be reduced by means of upper bounds and dominance tests.
Details can be found in [11].

Because of the variability just mentioned it is not possible to consider single
allocation points, rather it is necessary to handle intervals of allocation points. To
this end, the basic intervals Bj, defined by the current h-function, can be used.

In the following we provide a construction procedure in which a current solution
(pattern) for Œ0; y

jC1
/ is extended by placing a single piece i with allocation point in

Bj, if possible. The placing of piece i is considered simultaneously for all allocation
points y 2 Bj and all suitable lengths `i 2 Œli; li�. For that, two cases have to be
distinguished (see Sects. 6.4.4.1 and 6.4.4.2).
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6.4.4.1 Packing a Piece i with ”i � “j

Let i 2 Iq for some q 2 Q, and let �i � ˇj. In order to find a pattern with value as
large as possible, piece i has to be placed with an allocation point in Bj D Œy

j
; y

jC1
/

as small as possible because of �i � ˇj. Hence, allocation points are both y
j
(if there

is k 2 Kq with y
j

2 Ak and ek � y
j

� li) and the points bk for all k 2 Kq with

y
j

< bk < y
jC1

. Without loss of generality, let �1; : : : ; �� denote those allocation

points with y
j

� �1 < � � � < �� < y
jC1

DW ��C1. Let k.�p/ 2 Kq denote the

corresponding allocation interval, i.e., bk.�p/ D �p, for all p D 1; : : : ; �. The length
`i of piece i which should be placed with allocation point �p, is bounded by the
remaining length of the corresponding allocation interval and its maximal length,
i.e., by

minfek.�p/ � �p; lig; for p D 1; : : : ; �:

For p D 1; : : : ; �, the following formula has to be applied to update the function h
to possibly get an improved pattern with rightmost piece i:

h.y/ WD
�

maxfh.y/; h.�p/ C �i.y � �p/g; if y 2 Œ�p C li; minfek.�p/; �p C lig�;
h.y/ otherwise:

(6.22)

Moreover, the placing of piece i with maximum length and variable allocation point
has to be considered as well and leads to a further update of h for p D 1; : : : ; �:

h.y/ WD
�

maxfh.y/; h.y � li/ C �ilig; if y 2 Œ�p C li; minfek; �pC1 C lig�;
h.y/ otherwise:

(6.23)

Formulas (6.22) and (6.23) are based on the following proposition.

Proposition 1. Let i 2 Iq with �i � ˇj. For any pattern Ti.y; l/ WD Œy; y C l� � Ak

with q D eq.k/, which is caused by the allocation of piece i with allocation point
y 2 Bj and length l 2 Œli; li�, there is a pattern Ti.y�; l�/ with y� D �p for some
p 2 f1; : : : ; �g or l� D li so that Ti.y�; l�/ dominates Ti.y; l/ in respect to �il.

The proposition is a consequence of Theorem 8.

6.4.4.2 Packing a Piece i with ”i < “j

Let i 2 Iq with �i < ˇj. In difference to above, the placement of piece i has to be
done with an allocation point as large as possible and length as short as possible.
For p D 1; : : : ; �, the following formula for updating h.y/ has to be applied.

h.y/ WD
�

maxfh.y/; h.y � li/ C �ilg; if y 2 Œ�p C l; minfek.�p/; �pC1 C lig�;
h.y/ otherwise:

(6.24)
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Here, y � li is the related (varying) allocation point. Because of �i < ˇj, the packing
of piece i with a length `i > li is only necessary for the allocation point ��C1 WD y

jC1

if there exists k 2 Kq with ek � y
jC1

> li. But y
jC1

belongs to the next basic interval,

BjC1, and will be considered there since h.y
jC1

/ � limy"y
jC1

h.y/.

Proposition 2. Let i 2 Iq with �i < ˇj. For any pattern Ti.y; l/ � Ak with q D eq.k/,
which is caused by the allocation of piece i with allocation point y 2 Bj and length
l 2 Œli; li�, there is a pattern Ti.y�; l�/ with y� D y

jC1
or l� D li which dominates

Ti.y; l/ in respect to �il.

Formulas (6.22)–(6.24) cause, in general, a change of the basic intervals Bj0 for
j0 � j. If the update of h by these formulas led to a new function h with (partially)
increased function values, then the new h need not be monotonously increasing.
Therefore, we have to further update this new h by

h.y/ WD maxfh.y0/ j y
j
� y0 � yg for all y 2 Œy

j
; L� (6.25)

so that it becomes monotone again.

6.4.5 Solution Approaches

In the subsection we provide two solution approaches for the problem with pieces
of variable length where we apply the update rules discussed in Sects. 6.4.4.1 and
6.4.4.2.

6.4.5.1 Branch and Bound Algorithm

The B&B algorithm presented below is based on the LIFO strategy. Appropriate
upper bounds, denoted as Qu.�/, are given in [11] where Qu.y/ � v.L/ � v.y/ for all
y 2 Œ0; L�. Without loss of generality, we assume �1 � �2 � � � � � �m. Branching
will be made with respect to

• the basic intervals and
• the pieces which can be allocated next according to a basic interval.

The index � denotes the branching depth in the algorithm. For any basic interval Bj,
the label �j denotes whether the basic interval Bj is already investigated for further
branching (then �j D 0), or if it has still to be considered (then �j D 1). Furthermore,
QB� D ŒQy�;by�/ denotes the current basic interval. Note, the initial basic interval
QB0 D Œ0; L� is reduced in Step (4) when the first pieces are placed, and the same
can happen for other basic intervals during the algorithm. The branching strategy
presented here uses the LIFO principle (depth first search), but modifications are
obviously possible.
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6.4.5.2 FDP Algorithm

For the solution of the considered cutting problem also a FDP method can be used.
The general principle of the FDP is similar to the FDP algorithm for the knapsack
problem in Sect. 6.2. It computes optimal values v.y/ and corresponding patterns
for each y � L, where y is successively increased. Thereby, the values v.y/ are
obtained by updating the function h in such a way that, starting from a known
optimal solution, feasible pieces are placed with all suitable lengths l to possibly
get a better solution.

As in the B&B algorithm, intervals of allocation points are considered. In the
B&B algorithm, after investigating the basic interval Bj other intervals Bj0 with
y

j0C1
� y

j
have to be considered in general (due to backtracking), and therefore

it can happen that Bj (or a subset of it) has to be considered anew if hj has been
(partially) increased. Using the FDP approach, the basic interval Bj is considered
exactly once, namely if h.y/ D v.y/ for all y 2 Bj holds. This can also be guaranteed
in a B&B algorithm when an appropriate branching strategy (based on breadth first
search) is used.

Note that during the allocation of a piece with allocation points in Bj further tests
with upper bounds can be used as in the B&B algorithm. If piece i is feasible and
y

j
C li < y

jC1
holds, then Bj can be split (i.e., y

jC1
can be reduced) in a suitable

way. Moreover, during the update process only partitions of Œ0; L � minfli j i 2 ILg�
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have to be considered since there is no feasible allocation point within the interval
.L � minfli j i 2 ILg; L/.

In the worst case, O.mjSap.l; l/j/ updates according to (6.22)–(6.25) have to be
done in Step (3) of the algorithm. A single update requires at most O.li/ time.

An advantage of the FDP approach can be the relatively constant and well
assessable expense to solve an instance (pseudo-polynomiality of the algorithm).
In general, this is not the case for the B&B method, where some examples can
require much more computation time as in average. However, in general, good (near
optimal) solutions are found quickly by a B&B algorithm with LIFO strategy so that
a termination after a predefined time span is reasonable for on-line scenarios.

6.5 The 2D Cutting Problem with Quality Demands

In this section we consider 2D cutting problems. Rectangular pieces have to be
cut from a larger rectangle of non-homogeneous raw material such that the yield
is maximal. Thereby some rectangular parts of the raw material are not allowed to
be used for some pieces because of bad quality. We investigate two cases: firstly,
so-called defective regions, or simply defects, cannot be used to obtain desired
pieces, and secondly, different quality demands are considered. We analyze the case
of fixed dimensions of the pieces and give appropriate sets of allocation points,
usable in DP and B&B approaches. We also discuss the case when one of the size
parameters can vary.
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6.5.1 Forbidden Regions

In this subsection we consider the case that some parts of the raw material cannot be
used at all to obtain a desired piece. The next subsection is devoted to the discussion
of different quality demands.

6.5.1.1 Problem Formulation

Let a rectangle of raw material (wood, metal, glass, etc.) of length L and width W
be given. Moreover, the pieces i 2 I WD f1; : : : ; mg to be cut are of length `i, width
wi and have profit coefficient �i. Only guillotine cuts are allowed to obtain desired
pieces. The part of the raw material used for each piece has to be defect-free. The
aim is to maximize to total yield of the cutting pattern. We denote by .xi; yi/ the
allocation point of piece i, i.e., if piece i is placed with allocation point .xi; yi/ then
it covers the rectangular region Œxi; xi C `i� � Œyi; yi C wi�. Hence, a 2D pattern can
be described by a set of triples .it; xit ; yit /, t D 1; : : : ; �, where it 2 I denotes the t-th
placed piece and .xit ; yit / the corresponding allocation point.

Since only guillotine cuts can be applied we can assume, without loss of
generality, that all defective parts of the raw material are described by rectangles
or a finite union of rectangles. Let Dk, k 2 K WD f1; : : : ; jKjg, denote the defective
parts with

Dk WD Dk.ak; bk; ck; dk/ WD f.x; y/ j ak � x � ck; bk � y � dkg � Œ0; L� � Œ0; W�;

and define

D WD
[

k2K

Dk:

6.5.1.2 Sets of Allocation Points: No Defects

If K D ;, the well-known recurrence formula of Gilmore and Gomory [5] can be
applied to obtain an optimal pattern with no restriction on the number of stages. Let
u.L0; W 0/, with L0 2 Œ0; L� and W 0 2 Œ0; W�, denote the optimal value for rectangle
L0 � W 0 D Œ0; L0� � Œ0; W 0�. Then, as a consequence of Theorem 1 we have

Theorem 9. Let T` WD S.`; L/ and Tw WD S.w; W/. Then,

u.L0; W 0/ D u.pS.`/.L
0/; pS.w/.W

0// for all L0 2 Œ0; L�; W 0 2 Œ0; W�; (6.26)

where u.L0; W 0/ is obtained by the following recursion:
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u.L0; W 0/ WD maxf�.L0; W 0/; g.L0; W 0/; h.L0; W 0/g for all L0 2 T`; W 0 2 Tw

(6.27)

with

�.L0; W 0/ WD maxf�i j i 2 I; `i � L0; wi � W 0g;
g.L0; W 0/ WD maxfu.r; W 0/ C u.pT`

.L0 � r/; W 0/ j 0 < r � L0=2; r 2 T`g;
h.L0; W 0/ WD maxfu.L0; s/ C u.L0; pTw.W 0 � s// j 0 < s � W 0=2; s 2 Twg:

Note that u.L; W/ can also be computed using the reduced sets of allocation points
T` WD Sred.`; L/ and Tw WD Sred.w; W/. In this case, the “=” in (6.26) has to be
replaced by “�” but “=” holds in particular for all .L0; W 0/ 2 Sred.`; L/�Sred.w; W/.

The time needed for computing u.L0; W 0/ for all .L0; W 0/ 2 T` � Tw according
to formula (6.27) is bounded by O.jT`j jTwj.m C jT`j C jTwj//. A reduction to
O.jT`j jTwj.jT`j C jTw/j/ can be achieved by an appropriate initialization which
avoids the consideration of �.L0; W 0/ for each .L0; W 0/, see [12].

6.5.1.3 Sets of Allocation Points: With Defects

If K ¤ ;, the sets of potential allocation points increase since every defective part
Dk causes new potential allocation points, e.g., the right end ck of Dk probably allows
the allocation of pieces with x-coordinate ck, and the left border ak of Dk can cause
that a piece i has x-allocation coordinate ak � `i. This is in difference to Theorem 9
since now regions are not allowed for allocation.

To simplify the description we define an artificial defect with coordinates a0 D L,
b0 D W, c0 D d0 D 0 and set K0 WD K [ f0g. Let S�L .�; `/ and S�W.�; w/ denote
the sets of jump discontinuities in L- and W-direction of the optimal value function
v W Œ0; L� � Œ0; W� ! ZC for the problem with defects.

Theorem 10. For any ` 2 Z
m
>, w 2 Z

m
> and � 2 Z

m
>, we have

S�L .�; `/ � Sap
L .`/ WD

[

k2K0

.ck ˚ S.`// \ Œ0; L�;

S�W.�; w/ � Sap
W .w/ WD

[

k2K0

.dk ˚ S.w// \ Œ0; W�:

Moreover, with T` WD Sap
L .`/ and Tw WD Sap

W .w/,

v.L0; W 0/ D v.pT`
.L0/; pTw.W 0// for all .L0; W 0/ 2 Œ0; L� � Œ0; W�:

holds.
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The proof is similar to that of Theorem 3 but now, two dimensions have to be
considered. The result of Theorem 10 can be strengthened with respect to the
computational complexity by applying the Nicholson principle similar to Sect. 6.3.4.
Let

S L .`/ WD
[

k2K0

.ak 	 S.`// \ Œ0; L�; S W .w/ WD
[

k2K0

.bk 	 S.w// \ Œ0; W�

denote the sets of potential allocation points maximal in the sense that, e.g., for any
x 2 S L .`/ there is a combination of piece lengths whose first (left-most) piece, say i,
has allocation point x and which is not feasible for allocation points for i larger than
x (and similar in W-direction). We define the reduced sets of allocation points by

Sred
L .`/ WD fpS

ap
L .`/.x/ j x 2 S L .`/g � Sap

L .`/;

Sred
W .w/ WD fpS

ap
W .w/.y/ j y 2 S W .w/g � Sap

W .w/:

Similar to the 1D case, in general Sred
L .`/ and Sred

W .w/ are not supersets of S�L .�; `/

and S�W.�; w/, respectively, but contain sufficiently many points to compute the
optimal value v.L; W/.

In order to obtain v.L; W/ some modifications in comparison with the recur-
sion (6.27) have to be done. The essential difference to the case K D ; is that now
the yield of a rectangular region R WD ŒL0; L00� � ŒW 0; W 00� of raw material depends
on its position because of the varying quality. That means, the yield function used
in a DP recursion is now defined by

�.R/ WD
�

u.L00 � L0; W 00 � W 0/; if R \ int D D ;;

0; otherwise:

Thus, a DP recursion to compute v which uses the sets of allocation points Sred
L .`/

and Sred
W .w/ is given by the following procedure.

For all R WD ŒL0; L00� � ŒW 0; W 00� with L0; L00 2 Sred
L .`/ and W 0; W 00 2 Sred

W .w/ set

v.R/ WD
�

0; if L00 � L0 < `min or W 00 � W 0 < wmin;

maxf�.R/; g.R/; h.R/g otherwise
(6.28)

with

g.R/ WD maxfv.L0; r; W 0; W 00/ C v.r; L00; W 0; W 00/ j r 2 Sred
L .`/; L0 < r < L00g;

h.R/ WD maxfv.L0; L00; W 0; s/ C v.L0; L00; s; W 00// j s 2 Sred
W .w/; W 0 < s < W 00g:
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Theorem 11. Let T` WD Sred
L .`/ and Tw WD Sred

W .w/. Then,

v.L0; W 0/ D v.0; pS
ap
L

.L0/; 0; pS
ap
W

/ for all .L0; W 0/ 2 T` � Tw

holds, where v is defined by the recursion (6.28).

The proof is similar to that of Theorem 6 where the L- and W-directions have to be
taken into account.

The computation of v.0; L0; 0; W 0/ for all .L0; W 0/ 2 T` � Tw according to (6.28)
requires at most O.jT`j2jTwj2.jKj C jT`j C jTwj// time, since, due to the dependence
on the defective regions, O.jT`j2jTwj2/ optimal values v.R/ have to be computed
with a DP approach. Obviously, this estimation is rather rough. For instance, if R is
defect-free and u.R/ is known, v.R/ can be determined in constant time.

Since, in general, a large number of v.R/-values is needed, the application of a
B&B approach becomes more favorable. As upper bound for v.R/ we can simply
use u.L00 � L0; W 00 � W 0/ as defined in (6.26) but tighter bounds which regard the
existence of defects should be preferred.

The number of small rectangles R D ŒL0; L00� � ŒW 0; W 00� used to define
subproblems in a B&B algorithm can be further reduced since, e.g., ŒL0; L00�\Sred

L .`/

can contain allocation points which are not meaningful for dissecting ŒL0; L00�. In
principle, appropriate reduced sets of allocation points can be defined for each R
similar to those for L � W. Therefore, in order to keep the number of subproblems
in a B&B approach small, for each R the reduced set of allocation points should be
computed as follows. Let Ka.R/; : : : ; Kd.R/ denote those defects which are relevant
for allocating pieces into the rectangle R:

Ka.R/ WD fk 2 K j L0 C `min � ak < L00; .W 0; W 00/ \ Œbk; dk� ¤ ;g;
Kb.R/ WD fk 2 K j W 0 C wmin � bk < W 00; .L0; L00/ \ Œbk; ck� ¤ ;g;
Kc.R/ WD fk 2 K j L0 < ck � L00 � `min; .W 0; W 00/ \ Œbk; dk� ¤ ;g;
Kd.R/ WD fk 2 K j W 0 < dk � W 00 � wmin; .L0; L00/ \ Œbk; ck� ¤ ;g:

The corresponding sets of allocation points are

QSL.R/ WD ..L0 ˚ S.`// [ fS.ck ˚ S.`// j k 2 Kc.R/g/ \ ŒL0; L00�;
QSW.R/ WD ..W 0 ˚ S.w// [ fS.dk ˚ S.w/ j k 2 Kd.R/g/ \ ŒW 0; W 00�;
QS L .R/ WD ..L00 	 S.`// [ fS.ak 	 S.`// j k 2 Ka.R/g/ \ ŒL0; L00�;
QS W .R/ WD ..W 00 	 S.w// [ fS.bk 	 S.w// j k 2 Kb.R/g/ \ ŒW 0; W 00�:

Applying the Nicholson principle, we define reduced sets of allocation points for a
single rectangular region R by

QSred
L .R/ WD fpQSL.R/.x/ j x 2 S L .R/g; QSred

W .R/ WD fpQSW .R/.x/ j x 2 S W .R/g;
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and we have

QSred
L .R/ � Sred

L .`/ \ ŒL0; L00�; QSred
W .R/ � Sred

W .w/ \ ŒW 0; W 00�:

By the above construction we obtain

Theorem 12. Let us consider the 2D cutting problem for the rectangle R D
ŒL0; L00� � ŒW 0; W 00� with defective parts. Then, among all optimal patterns of this
problem, there is an optimal pattern having only allocation points with coordinates
in QSred

L .R/ and QSred
W .R/.

6.5.2 Allocation Areas

Here we investigate the more general case that the raw material consists of areas of
different qualities. Obviously, the case with forbidden regions, as discussed in the
previous subsection, can be seen as a special case, in which for all items the same
parts of the raw material can be used.

6.5.2.1 Problem Formulation

The following 2D cutting problem is considered. Rectangular pieces i of various
dimensions `i � wi, i 2 I, and different quality demands q.i/ 2 Q have to be cut
from a non-homogeneous raw material of size L�W in such a way that all allocation
conditions (i.e., quality demands) are met and the total value of obtained pieces is
maximal. It is allowed that pieces can be cut several times.

As in Sect. 6.4, the set Q denotes the set of all different quality demands.
Moreover, let Iq � I denote the set of all pieces with quality demand q, i.e.,
Iq WD fi 2 I j q.i/ D qg. We assume [q2QIq D I and Iq \ Ip D ; for q ¤ p,
q; p 2 Q.

Parts of the raw material, where a quality demand is fulfilled, are represented by
an allocation area Ak, k 2 K WD f1; : : : ; jKjg. We assume that exactly one quality
q D eq.k/ 2 Q is assigned to each k 2 K, that the allocation areas are given in the
form

Ak D f.x; y/ j ak � x � ck; bk � y � dkg � Œ0; L� � Œ0; W�;

and that, for any k 2 K, there is i 2 Ieq.k/ with

`i � ck � ak; wi � dk � bk:

We allow that allocation areas can occur several times but then for different qualities,
and that they can overlap although if they belong to the same quality demand. But
we assume Ak 6� Aj for all k; j 2 Kq, k ¤ j and all q 2 Q, where Kq WD fk 2 K j
q D eq.k/g.
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For example, if in hardwood cutting a quality demand requires that no black
knot is allowed, then the occurrence of a black knot causes up to four partially
overlapping allocation areas.

6.5.2.2 Sets of Potential Allocation Points

For the 2D allocation (cutting or packing) problem let v W Œ0; L� � Œ0; W� ! ZC,
denote the optimal value function. This function is non-decreasing. Moreover, it is
piecewise constant since only a finite number of different sequences of allocated
pieces exists.

Clearly, if [k2K.ak; ck/ ¤ .0; L/ or [k2K.bk; dk/ ¤ .0; W/, then the problem can
be split into subproblems or the size of the raw material can be reduced.

Let S�L .�; `/ and S�W.�; w/ denote the coordinates of the jump discontinuities in
L- and W-direction of the optimal value function v. Our aim is to find supersets of
S�L .�; `/ and S�W.�; w/ which are independent on �i, i 2 I.

Theorem 13. For any ` 2 Z
m
>, w 2 Z

m
> and � 2 Z

m
>, we have

S�L .�; `/ � Sap
L .`/ WD

[

k2K

.ak ˚ S.`// \ Œ0; L�;

S�W.�; w/ � Sap
W .w/ WD

[

k2K

.bk ˚ S.w// \ Œ0; W�:

Moreover, with T` WD Sap
L .`/ and Tw WD Sap

W .w/, for all .L0; W 0/ 2 Œ0; L� � Œ0; W�,

v.L0; W 0/ D v.pT`
.L0/; pTw.W 0//

holds.

The proof is similar to that of Theorem 3. The result of Theorem 13 can be
strengthened with respect to the computational complexity by applying the Nichol-
son principle similar to Sect. 6.3.4. Let

S L .`/ WD
[

k2K0

.ck 	 S.`// \ Œ0; L�; S W .w/ WD
[

k2K0

.dk 	 S.`// \ Œ0; L�:

denote the set of potential allocation points maximal in the sense that, for any x 2
S L .`/, there is a combination of piece lengths whose first (left-most) piece, say i,
has allocation point x and which is not feasible for allocation points for i larger than
x (and similar in W-direction). Applying the Nicholson principle, we define reduced
sets of allocation points

Sred
L .`/ WD fpS

ap
L .`/.x/ j x 2 S L .`/g; Sred

W .w/ WD fpS
ap
W .w/.x/ j x 2 S W .w/g:
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Theorem 14. Let us consider the 2D cutting problem for the rectangle R D
ŒL0; L00� � ŒW 0; W 00� with quality demands. Then, among all optimal patterns of this
problem, there is an optimal pattern having only allocation points in Sred

L .`/ and
Sred

W .w/.

The proof is similar to that of Theorem 6.
The essential difference to the case without quality demands is again the fact that

the yield of a rectangular region R WD ŒL0; L00� � ŒW 0; W 00� of raw material depends
on its position because of the varying quality. That means, the yield function used
in a DP recursion is defined as follows:

�.R/ WD
(

0; if I.R/ D ;;

maxf�i j i 2 I.R/g otherwise;

where I.R/ WD fi 2 I j 9k 2 Kq.i/ W R � Ak; L00 � L0 � `i; W 00 � W 0 � wig.
Thus, a DP recursion to compute v which uses the sets of allocation points Sred

L .`/

and Sred
W .w/ is then as follows:

For all R WD ŒL0; L00� � ŒW 0; W 00� with L0; L00 2 Sred
L .`/ and W 0; W 00 2 Sred

W .w/ set

v.R/ WD
(

0; if L00 � L0 < `min or W 00 � W 0 < wmin;

maxf�.R/; g.R/; h.R/g otherwise

with

g.R/ WD maxfv.L0; r; W 0; W 00/ C v.r; L00; W 0; W 00/ j r 2 Sred
L .`/; L0 < r < L00g;

h.R/ WD maxfv.L0; L00; W 0; s/ C v.L0; L00; s; W 00// j s 2 Sred
W .w/; W 0 < s < W 00g:

The amount of time required to determine all v.R/-values can be estimated as in
Sect. 6.5.1.

Because of the dependence on the allocation areas, now O.jSred
L .`/j2 � jSred

W .w/j2/

optimal values v.R/ have to be computed with a DP approach. Due to this possibly
large number, the usage of a B&B approach becomes more favorable. As upper
bound for v.R/ one could simply use u.L00 � L0; W 00 � W 0/ but bounds which regard
the allocation areas should be preferred.

Similar to the previous subsection, the number of small rectangles R D ŒL0; L00��
ŒW 0; W 00� used to define subproblems in a B&B algorithm can be further reduced.
Therefore, for each R, the relevant allocation points should be computed as follows.
Let Ka.R/; : : : ; Kd.R/ denote those allocation areas which are relevant for allocating
pieces into a rectangle R:
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Ka.R/ WD fk 2 K j L0 < ak � L00 � `min; .W 0; W 00/ \ Œbk; dk� ¤ ;g;
Kb.R/ WD fk 2 K j W 0 < bk � W 00 � wmin; .L0; L00/ \ Œbk; ck� ¤ ;g;
Kc.R/ WD fk 2 K j L0 C `min � ck < L00; .W 0; W 00/ \ Œak; dk� ¤ ;g;
Kd.R/ WD fk 2 K j W 0 C wmin � dk < W 00; .L0; L00/ \ Œak; ck� ¤ ;g:

The corresponding sets of allocation points are given by

QSL.R/ WD ..L0 ˚ S.`// [ fS.ak ˚ S.`// j k 2 Ka.R/g/ \ ŒL0; L00�;
QSW.R/ WD ..W 0 ˚ S.w// [ fS.bk ˚ S.w/ j k 2 Kb.R/g/ \ ŒW 0; W 00�:
QS L .R/ WD ..L00 	 S.`// [ fS.ck 	 S.`// j k 2 Kc.R/g/ \ ŒL0; L00�;
QS W .R/ WD ..W 00 	 S.w// [ fS.dk 	 S.w// j k 2 Kd.R/g/ \ ŒW 0; W 00�:

Applying the Nicholson principle, we obtain the reduced sets of allocation points

QSred
L .R/ WD fpQSL.R/.x/ j x 2 S L .R/g; QSred

W .R/ WD fpQSW .R/.y/ j y 2 S W .R/g;

and we have

QSred
L .R/ � Sred

L .`/; QSred
W .R/ � Sred

W .w/:

Finally, we get

Theorem 15. We consider the 2D cutting problem for the rectangle R D ŒL0; L00� �
ŒW 0; W 00� with quality demands. Then, among all optimal patterns of this problem,
there is an optimal pattern which has only allocation points with coordinates in
QSred

L .R/ and QSred
W .R/.

Another option to reduce the number of subproblems in a B&B approach consists in
replacing S.`/ and S.w/ by those sets which contain only combinations of lengths
of items which can be feasibly placed within R.

6.5.3 Generalizations

As a generalization of the problem considered in the previous subsection, one may
allow that the pieces have a variable size in one dimension and a fixed size for the
other. Here we consider pieces with fixed widths and allow that the length `i of
piece i can take any value in Œli; li�. A related application occurs in hardwood cutting
where, in general, the variable lengths are much larger than the fixed widths.

Although, from the theoretical point of view, it would be favorable to use a non-
staged guillotine cutting technology, in practical application two-stage guillotine
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cutting (and probably, three-stage) is mostly used. We consider here an exact two-
stage guillotine cutting (cf. [5]) with horizontal cuts, (i.e., in L-direction) in the first
stage. No trimming is allowed. Different quality demands are represented again by
allocation areas.

As a naive (basic) solution approach one can compute for each different width Qwj

and each potential allocation point y the optimal value v.y; Qwj/ for the part of raw
material Œ0; L� � Œy; y C Qwj�. In order to limit the computational amount the set of
potential allocation points has to be defined appropriately, for instance as Sred

W .w/.
The computation of v.y; Qwj/ is in fact a 1D cutting problem whose input data are
obtained as follows. For a piece i 2 I with wi D Qwj and an allocation area Ak D
Ak.ak; bk; ck; dk/ with k 2 Kq.i/, the restriction of Ak to the strip Œ0; L�x � Œy; y C Qwj�

determines the allocation interval Œak; ck� for item i if Œy; y C Qwi� � Œbk; dk� and
li � ck � ak.

Having computed all values v.y; Qwj/ an optimal combination of the strips can be
obtained by solving a 1D cutting problem in W-direction.

Depending on the real cutting technology, the positions of cross (vertical) and rip
(horizontal) cuts can be restricted by reduced sets of allocation points in a similar
way.

Moreover, practical requirements, such as a least distance between two cut
(allocation) positions or a positive kerf, can be regarded within the proposed solution
approaches or in the definition of sets of allocation points. If there are restrictions
on how often a piece shall be placed, then an appropriate definition of the set S.`/

should be used, namely

bS.`; u/ WD
(

X

i2I

`ixi j xi � ui; xi 2 ZC; i 2 I

)
:

6.6 Conclusions

Within this paper we considered one- and two-dimensional cutting and packing
problems with additional placement constraints. Such constraints can be caused
by defective parts of the raw material or by parts which satisfy different quality
demands. We identified appropriate (reduced) sets of potential allocation points
that do not depend on the profit coefficients. These sets either cover the set of
jump discontinuities of the optimal value function of the allocation problem, or at
least contain appropriate allocation points which still allow to compute an optimal
pattern.

The proposed sets of potential allocation points strongly depend on the real data.
If there are very small-sized pieces or many defects or different quality regions, the
cardinality of these sets can be large but not greater than the corresponding size
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parameter of the raw material. In case of rather large pieces a high potential to
save computational costs arises if the proposed sets of allocation points are used.
Moreover, the cardinality of these sets does not change if the unit of measure is
changed.

In the one-dimensional case, the explicit computation of a (reduced) set of
potential allocation points may look as a meaningless expense, but the basic
principle of its definition can be regarded directly within the solution approach as
shown in the algorithms for 1D cutting problems with allocation intervals.

In the two-dimensional case, the construction of the (reduced) sets remains, in
fact, a one-dimensional task since both dimensions can be handled independently.
The use of the proposed sets of potential allocation points can lead to a significant
reduction of the number of states, which have to be considered in a DP based
approach, and, in a similar way, to a reduction of the number of subproblems which
arise during a B&B based solution process. In particular, these reductions are of
high importance in cases with complex quality demands.

An appropriate use of the profit coefficients of a problem might be helpful to
further reduce the number of allocation points so that the computational effort for
obtaining an optimal pattern can be reduced. This topic is left for future research.
Moreover, we would like to mention that the definition of good allocation areas
might become a non-trivial task if difficult quality demands have to be met, for
example one may think of conditions on the number of knots within a certain area
of a wooden board.
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