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Abstract This chapter examines the problem of packing tetris-like items,
orthogonally, with the possibility of rotations, into a convex domain, in the presence
of additional conditions. An MILP (Mixed Integer Linear Programming) and an
MINLP (Mixed Integer Nonlinear Programming) models, previously studied by the
author (Fasano, Solving Non-standard Packing Problems by Global Optimization
and Heuristics. SpringerBriefs in Optimization, Springer Science C Business
Media, New York, 2014), are surveyed. An efficient formulation of the objective
function, aimed at maximizing the loaded cargo, is pointed out for the MILP
model. The MINLP one, addressed to the relevant feasibility sub-problem, has
been conceived to improve approximate solutions, as an intermediate step of a
heuristic process. A space-indexed model is further introduced and the problem of
approximating polygons by means of tetris-like items investigated. In both cases
an MILP formulation has been adopted. An overall heuristic approach is proposed
to provide effective solutions in practice. One chapter of this book focuses on the
relevant computational aspects (Gliozzi et al., Container loading problem MIP-
based heuristics solved by CPLEX: an experimental analysis. In: Fasano, G., Pintér,
J.D. (eds.) Optimized Packings and Their Applications. Springer Optimization and
Its Applications, Springer Science C Business Media, New York, 2015).
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4.1 Introduction

This chapter summarizes and extends results descending from a long-lasting
research effort aimed at solving complex three-dimensional packing problems
arising in the space industry [1]. In this challenging context, the relevant issues
could hardly be considered applying a standard typology. Quite often, indeed,
the operational scenarios to deal with are characterized by the presence of tricky
geometries and complex additional conditions that can even be of global impact,
such as in the case of balancing.

Often irregularly shaped and of non-negligible dimensions, the objects involved
cannot be realistically approximated in terms of single cuboids (i.e. rectangular
parallelepipeds). Significant effort has therefore been addressed to allow for tetris-
like items, i.e. objects consisting of clusters of mutually orthogonal (rectangular)
parallelepipeds. Similarly, the domains (containers) to take account of are generally
not box-shaped and often several internal volumes are not exploitable, since
these correspond either to clearance/forbidden zones or actual holes. Additionally,
separation planes (with no fixed position specified a priori) can partition the domain
into sub-domains. Some items may be requested to assume pre-defined posi-
tions/orientations or are subject to placement restrictions, such as the requirement
of having a given side parallel or orthogonal to a specified direction.

In order to cope with overall conditions such as balancing, when necessary in
addition to those mentioned above, a Global Optimization (GO) based view is highly
desirable. This is essentially based on a modeling philosophy, as opposed to a pure
algorithmic one, consisting of sequential procedures limited to local search.

A number of modeling-based works are present in the literature, although these
are usually restricted to the case of box-shaped items (e.g. [2–5]). On the other hand,
very interesting studies consider strongly irregularly shaped objects, even though the
adopted philosophy is mainly focused on local optimization [6–8].

This chapter emphasizes the solution of non-standard packing issues, in the
context outlined above, by a GO approach. Mixed Integer Linear/Non-linear
(MILP/MINLP) formulations have been conceived and a library of mathematical
models set up. This supports ad hoc heuristics, implemented to obtain satisfactory,
albeit probably sub-optimal (or at least non-optimal proven), solutions to a wide
collection of real-world instances [1].

The general problem of placing tetris-like items orthogonally into a convex
domain, without pair-wise intersection, so that the total volume loaded is maxi-
mized, is the main topic of this chapter.

Section 4.2 investigates a dedicated MILP model [1], specifically constructed
to overcome the challenging computational difficulties that are typically associated
with the problem in question, when formulated in terms of Mathematical Program-
ming. It is, indeed, well known that, even when single parallelepipeds are involved
(i.e., tetris-like items consisting of one component only), the relevant MILP models
available in the specialist literature (e.g., [3, 4]) are very hard to solve. This holds
also if a number of valid inequalities are purposely added. The model discussed in
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this section can be used to solve small-size instances, tout court. In addition, it can
advantageously be adopted as a basic element of the above-mentioned heuristics
that act recursively, following an overall greedy approach.

MINLP models (e.g., [2]) have been built up for the feasibility sub-problem,
derived from the general one, when a set of items need to be loaded (without
any possibility of rejection, provided that the instance is feasible) and no objective
function is assigned. Moreover, they can be adopted [1] to improve approximate
solutions where intersections between items are admitted, “minimizing” the overall
overlap (actually this optimization target is attained only partially, through surrogate
functions). An MINLP version, implemented for this specific case is summarized in
Sect. 4.3.

An alternative formulation of the model reported in Sect. 4.2 (currently being
looked into) is presented in Sect. 4.4. The relevant MILP model extends, in the
case of tetris-like items and convex domains, previous formulations available in the
literature, based on the discretization of the domain and often referred to as space-
indexed or grid-based-position paradigms (e.g., [9, 10]). All models presented in
Sects. 4.2, 4.3, and 4.4 are suitable for considering additional conditions, such
as specific loading requirements or balancing. Nevertheless, these aspects, albeit
frequent in a number of real-world applications, are not considered in this chapter
and the reader is referred to [1] for an extensive discussion (except the space-
indexed formulation). Section 4.5 introduces the generation of (two-dimensional)
covering tetris-like items, providing outer approximation of polygons. The issue of
simplifying the representation of complex objects in such a way is a very interesting
optimization problem per se, especially considering its potential applications. The
three-dimensional extension is not surveyed in this chapter (since it is quite
straightforward). Section 4.6 proposes a novel heuristic approach, mainly based on
the MILP model presented in Sect. 4.2.

An extensive experimental analysis has recently been carried out, concerning
the MILP model presented in Sect. 4.2. One chapter of this book [11] reports and
examines the computational results available to date, in depth, highlighting the
advantages of the overall methodology suggested. Since this chapter is restricted
to the computational aspects (assuming the relevant model as known) the present
work serves also the scope of providing a topical framework. Fasano [1] offers
an extensive bibliography, both on packing problems in general and on the more
specific subjects considered here.

In order to state the general problem discussed in this chapter, the following
definition is introduced.

A tetris-like item is a set of rectangular parallelepipeds positioned orthogonally,
with respect to an (orthogonal) reference frame. This frame is called “local” and
each parallelepiped is a “ component”.

Hereinafter, “tetris-like item” will usually be simply referred to as “item,” if
no ambiguity occurs; similarly, “rectangular parallelepipeds” are referred to as
“parallelepipeds.”
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Fig. 4.1 Tetris-like item packing into a convex domain

A set I of N items, together with a domain D, consisting of a (bounded) convex
polyhedron, is considered (see Fig. 4.1). This is associated with a given orthogonal
reference frame, indicated in the following as the main frame. The general problem
is to place items into D, maximizing the loaded volume, considering the following
positioning rules:

• each local reference frame has to be positioned orthogonally, with respect to the
main one (orthogonality conditions);

• for each item, each component has to be contained within D (domain conditions);
• the components of different items cannot overlap (non-intersection conditions).

4.2 Direct MILP Formulation

An MILP model for the general problem stated in Sect. 4.1 is described next,
expanding on some aspects not pointed out in its previous discussion [1]. Recalling
the basic concepts introduced there, the main orthogonal reference frame has origin
O and axes wˇ , ˇ 2 f1; 2; 3g D B. It is assumed, without loss of generality, that
the whole domain D is entirely contained inside its first octant. Similarly, each local
reference frame, associated with every item, is chosen so that all item components
lie within its first octant. Its origin coordinates, with respect to the main reference
frame, are denoted by oˇi. The set ˝ of all (24 possible) orthogonal rotations,
admissible for any local reference frame, with respect to the main one, is introduced.

The set of components of a generic item i is denoted by Ci. For each item i,
the set Ehi of all (8) vertices associated with each of its components h is defined.
An extension of this set is obtained by adding to Ehi the geometrical center of
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component h. This extended set is denoted by
>
Ehi. For each item i and each possible

orthogonal orientation ! 2 �, the following binary (0–1) variables are introduced:

�i 2 f0; 1g, with �i D 1 if item i is chosen; �i D 0 otherwise;
#!i 2 f0; 1g, with #!i D 1 if item i is chosen and it has the orthogonal orientation
! 2 ˝; #!i D 0 otherwise.

The orthogonality conditions can be expressed as follows:

8i 2 I
X

!2�

#!i D �i; (4.1)

8ˇ 2 B; 8i 2 I; 8h 2 Ci; 8� 2 _

Ehi (4.2)

wˇ�hi D oˇi C
X

!2˝

W!ˇ�hi#!i:

Here wˇ�hi (8� 2 _

Ehi) are the vertex coordinates of component h, with respect to the
main reference frame, or its geometrical center (� D 0), relative to item i; W!ˇ�hi are

the projections on the axes wˇ of the coordinate differences between points � 2 _

Ehi

and the origin of the local reference frame, corresponding to orientation ! of item i.
The domain conditions are expressed as follows.

8ˇ 2 B; 8i 2 I; 8h 2 Ci; 8� 2 Ehi (4.3)

wˇ�hi D
X

�2V

Vˇ� ���hi;

8i 2 I; 8h 2 Ci; 8� 2 Ehi

X

�2V

���hi D �i (4.4)

Here V is the set of vertices delimiting D, Vˇ� are their coordinates (with respect to
the main reference frame) and ���hi are non-negative variables. These conditions
correspond to the well-known necessary and sufficient conditions for a point to
belong to a convex domain.

The non-intersection conditions are represented by the constraints shown below,
see [1] for more details:

8ˇ 2 B; 8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.5-1)

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � �C

ˇhkij

�
;

8ˇ 2 B; 8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.5-2)
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wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � � �̌

hkij

�
;

8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.6)

X

ˇ2B

�
�C

ˇhkij C � �̌
hkij

�
� �i C �j � 1;

8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.7-1)

X

ˇ2B

�
�C

ˇhkij C � �̌
hkij

�
� �i;

8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.7-2)

X

ˇ2B

�
�C

ˇhkij C � �̌
hkij

�
� �j:

Here the constants Dˇ are the sides (respectively parallel to the main reference frame
axes) of the parallelepiped, of minimum dimensions, containing D; wˇ0hi and wˇ0kj

are the center coordinates, with respect to the main reference frame, of components
h and k of items i and j, respectively; L!ˇhi and L!ˇkj are their side projections on
the wˇ axes, corresponding to the orientation !; �C

ˇhkij and � �̌
hkij 2 f0; 1g.

The constraints (4.7-1) and (4.7-2) have been introduced with the purpose of
tightening the model (they are not taken account of in the following). It is worth
noticing that, in some particular situations, the above non-intersection constraints
((4.5-1), (4.5-2) and (4.6)) should be properly complemented, in order to avoid
solutions that could hardly be considered as appropriate in practice (see [1]).
Nonetheless, these aspects will be omitted here.

The most straightforward formulation relevant to the objective function, to
maximize the volume loaded, is the following:

max
X

i2I

Vi�i; (4.8)

where Vi represents the volume of item i.
The formulation represented by expressions (4.1)–(4.8) (with possible variants

regarding the constraints) is notoriously inefficient, even when restricted to single
parallelepipeds only, and the situation tends to become even worse when tetris-like
items are involved.
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The following expression has thus been suggested [1] as a promising alternative
to (4.8):

max
X

i2I; h2Ci

VhiP
˛2A

L˛hi

X

ˇ2B;

!2�

L!ˇhi#!i; (4.9)

where L˛hi, ˛ 2 f1; 2; 3g D A, are the sides of the generic component h of item i. It
is assumed, without loss of generality, that L1hi � L2hi � L3hi.

As easily seen, the functions (4.8) and (4.9) are equivalent for any integer-
feasible solution. Indeed, the following implications hold:

8i 2 I; 8h 2 Ci �i D 0 ()

X

ˇ2B;

!2˝

L!ˇhi#!i

X

˛2A

L˛hi

D 0; (4.10-1)

8i 2 I; 8h 2 Ci �i D 1 ()

X

ˇ2B;

!2˝

L!ˇhi#!i

X

˛2A

L˛hi

D 1: (4.10-2)

Both derive from (4.1), the second, in particular, is true in virtue of the fact that, in
any integer-feasible solution: 8i 2 I=�i D 1, 9Š! 2 ˝=#!i D 1.

Since objective functions (4.8) and (4.9) are equivalent, they give rise to the same
optimal (or sub-optimal) integer solutions. Nonetheless, quite different behaviors
occur when dealing with (partial or total) LP-relaxations of the MILP model (as
usually utilized by the solvers), making the choice for the second one highly
preferable. Some considerations follow, in support of this point.

First of all, it is worth recalling that non-trivial intrinsic difficulties make the
MILP approach very intricate, per se [1]. This is the case, for instance, of the implicit
transitivity conditions. Considering, indeed, the generic triplet of components
h, h0, h00 of items i, i0, i00, respectively, these can be expressed as follows: if,
along the axis wˇ , h precedes h0 and h0 precedes h00 then h precedes h00, along
the same axis. A major concern, moreover, is certainly represented by the non-
intersection constraints (4.5-1) and (4.5-2), since they are of the big-M typology
(well known for being, in general, very tough to cope with). Consequently, it is
not surprising at all that a strong tendency to item overlapping prevails in the
LP-relaxed solutions, making the task of finding an integer-feasible solution (albeit
sub-optimal) demanding. As an immediate consideration, it should be noticed that
the MILP model, related to (4.8), is characterized by a very weak correlation of the
non-intersection constraints (4.5-1) and (4.5-2) with the �i variables appearing in
the objective function (the association is attained only indirectly through (4.1) to
(4.4) and (4.6)). On the contrary, (4.9) acts directly on the terms L!ˇhiª!i, appearing
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in (4.5-1) and (4.5-2), “minimizing” (in terms of a surrogate objective function),
the overall overlapping between items. In order to see this point better, it is useful
to introduce the variables lˇhi D

X

!2˝

L!ˇhi#!i. For each component h of the generic

item i, they represent indeed the lengths of the sides parallel to each wˇ axis,
respectively (and consequently lˇhi 2 Œ0; L3hi�, when an LP-relaxation is applied).

In order to go deeper into this matter, it is worth pointing out that a necessary
condition for integer-feasibility is provided by the following (cf. 4.10-2):

8i 2 I; 8h 2 Ci �i D 1 )
X

ˇ2B;

!2˝

L!ˇhi#!i D
X

˛2A

L˛hi: (4.11)

When an LP-relaxation is applied to the model associated with objective function
(4.9), the inequalities below hold:

8i 2 I; 8h 2 Ci

X

ˇ2B;

!2˝

L!ˇhi#!i �
X

˛2A

L˛hi; (4.12)

with #!i 2 Œ0; 1�.
In order to show this, a single component h of item i is selected. As easily

gathered, depending on the specific orientation ª!i taken by item i, each variable lˇhi

can assume only one value out of the following: L1hi, L2hi and L3hi. More precisely,
the following logical conditions hold:

8˛ 2 A .l1hi D L˛hi/ _N .l2hi D L˛hi/ _N .l3hi D L˛hi/ ; (4.13-1)

8ˇ 2 B
�
lˇhi D L1hi

� _N
�
lˇhi D L2hi

� _N
�
lˇhi D L3hi

�
; (4.13-2)

where “_N ” represents the “exclusive or.” As a straightforward consequence of what

is specified above, for each ˛ and ˇ, there are eight cases in which lˇhi D L˛hi,
implying that the component side of length L˛hi is parallel to the reference axis wˇ .
The subsets ˝˛ˇhi � ˝, with ˛ 2 A and ˇ 2 B, are hereafter introduced: they
represent, for each ˛ and ˇ all the orientations ! 2 ˝ such that lˇhi D L˛hi.
Evidently, the following conditions hold (with h and i fixed):

8˛ 2 A [
ˇ2B

˝˛ˇhi D ˝; (4.14-1)

8˛ 2 A; 8ˇ; ˇ0 2 B ˝˛ˇhi \ ˝˛ˇ0hi D Ø: (4.14-2)
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The equalities below are thus respected, in virtue of (4.1):

X

ˇ2B

lˇhi D
X

˛2A

X

!2˝˛ˇhi;
ˇ2B

L˛hi#!i D
X

˛2A

L˛hi �i; (4.15)

with #!i; �i 2 Œ0; 1�. This proves the validity of inequalities (4.12).
The key point associated with objective function (4.9) may be summarized

as follows. It induces, indeed, in any LP-relaxation, to attain the upper bounds
corresponding to (4.12), and thus to satisfy the (necessary) integer-feasibility
conditions (4.11). On the other hand, the overall item overlapping, controlled by
(4.5-1) and (4.5-2) is (indirectly) “minimized.” The adoption of objective function
(4.9) has proved very efficient in practice [11].

4.3 An MINLP Model for the Feasibility Sub-problem

Non-linear formulations addressing the orthogonal placement of rectangles inside
convex domains are available in the literature (e.g., [2, 12, 13]). The following
section recalls an MINLP approach put forward in [1, 14], to which the reader is
referred for a more in-depth discussion. The general packing problem, as stated in
Sect. 4.1, is considered here in terms of feasibility only, i.e. it is expected that a
number of preselected items can be loaded (otherwise the problem is infeasible).

For this purpose, all the variables �i, corresponding to the given set of items,
are set to one, keeping the orthogonality and domain constraints (4.1), (4.2), (4.3)
and (4.4) unaltered. Since no objective function is provided a priori, an ad hoc
one is introduced. It consists of penalty functions, representing the non-intersection
constraints (4.5-1), (4.5-2) and (4.6) that are eliminated from the model. The
corresponding expression is shown below:

min

8
ˆ̂̂
<̂

ˆ̂̂
:̂

X

ˇ2B;
i;j2I=i<j;

h2Ci;k2Cj

max

8
<

:��
wˇ0hi � wˇ0kj

�2 C
"

1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
#2

�rˇhkij; 0

9
=

; C KP

X

i; j2I=i<j;
h2Ci; k2Cj;

Y

ˇ2B

rˇhkij

9
>>>>=

>>>>;

:

(4.16)
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Here rˇhkij 2
h
0; D2

ˇ

i
, whilst KP is a positive coefficient (that represents an

appropriate “weight”); the other terms have been defined in Sect. 4.2. The general
problem, as stated in Sect. 4.1, has thus been reformulated in terms of an MINLP.

It is immediately seen that the objective function (4.16) is non-negative and that
a zero-global-optimal solution of the above defined model exists if and only if the
constraints (4.1), (4.2), (4.3), (4.4), (4.5-1), (4.5-2) and (4.6) (with all variables �i

set to one) define a feasible region. This objective function, indeed, “minimizes” the
intersection between items (indirectly) and any global optimum provides a solution
to the feasibility sub-problem under discussion.

The MINLP model outlined in this section, even if theoretically suitable for
solving the general problem stated in Sect. 4.1, when a given set of items is requested
to be loaded, is, per se, very hard to solve. Search for sub-optimal solutions can
however be profitably adopted to improve the initial or intermediate ones, obtained
by heuristic procedures [1], where intersection between items is admitted. In such a
case, the MINLP model is utilized to reduce the overall overlapping.

4.4 Grid-Based Position MILP Model

The space-indexed approach (e.g., [9, 10]) can be advantageously reconsidered to
include operational scenarios that are quite frequent in practice. Relevant extensions,
albeit still addressed to box-shaped items and domains, are aimed at allowing for
additional conditions, such as stability and load bearing (cf. [15]). This section
focuses instead on a grid-based-position MILP model, conceived as an alternative
to the one discussed in Sect. 4.2, focusing on the orthogonal packing of tetris-like
items, inside a convex region.

The given domain (of Sect. 4.1) is discretized, so that it is associated with a set
of internal points whose coordinates are supposed to be integer. The main reference
frame, still defined as in Sect. 4.1, thus becomes a unit-cube grid, whose node
coordinates are indicated as .n1; n2; n3/ 2 D. Tetris-like items are grouped on a
typology basis. The set of all types 	 is denoted by T.

The following assumptions relevant to each tetris-like item are made:

• the local reference frame has a pre-fixed orientation (orthogonal with respect to
the main one);

• the local reference frame origin can only be positioned on grid points; all
component vertices have integer coordinates.

Remark 4.1 It should be observed that the prefixed orientation assumption does
not represent an actual limitation. Orthogonal rotations of the same object can,
indeed, simply be considered by introducing a set of pre-oriented items (one for
each possible orthogonal orientation).
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For each type 	 , the sub-set of grid points in which the local frame origin can
be positioned (so that the corresponding item is entirely inside the domain D) is
introduced. It is denoted hereinafter by D	 .

The binary variables �	n1n2n3 2 f0; 1g are then defined, with the following
meaning:

�	n1n2n3 D 1 if one item of type 	 is positioned with its local reference origin in
the grid node of coordinates (n1, n2, n3);

�	n1n2n3 D 0 otherwise.

A possible modeling of the general problem (of Sect. 4.1) is shown next,
considering the orthogonality, domain, and non-intersection conditions. The first are
implicitly respected by the orientation of each item type that is imposed a priori. The
second ones are stated by introducing, for each type 	 , the grid point sub-sets D	 .
The non-intersection conditions, instead, need to be expressed through dedicated
constraints.

The following inequalities prevent the positioning of more than one local
reference frame in the same grid points:

8n1; n2; n3 2 D
X

	2T=

n1;n2;n32D	

�	n1n2n3 � 1: (4.17)

Furthermore, for each pair (	 , 	 0) of item types (including the case when 	 0 D 	 )
and each grid node .n1; n2; n3/ 2 D	 , the set F	 0	n1n2n3 is introduced. Except for
point (n1, n2, n3), it contains all the forbidden positions, for all item types, when a 	

one is assumed to be placed in (n1, n2, n3). Each set F	 0	n1n2n3 is built as follows:

• position virtually any item i of type 	 (indicated as i	 ) in node .n1; n2; n3/ 2 D	 ;
• identify for any item i	 0 all the surrounding nodes .n01; n02; n03/ 2 D	 0 where

overlapping between i	 0 and i	 would occur (at least partially), should i	 0 be
positioned in (n 0

1, n 0
2, n 0

3).

The inequalities below prevent the overlapping of items, on the basis of the
forbidden positions:

8	; 	 0 2 T; 8n1; n2; n3 2 D	 (4.18)

X

n01;n02;n032F	0	n1 n2 n3

�	 0n01n02n03 � .1 � �	n1n2n3 / jF	 0	n1n2n3 j ;

where jF	 0	n1n2n3 j indicate the cardinalities of the corresponding sets.
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For each typology 	 , a maximum number N	 of items are available. These
conditions are represented as follows:

8	 2 T
X

n1;n2;n32D	

�	n1n2n3 � N	 : (4.19)

The objective function has the following form:

max
X

	2T;
n1;n2;n32D	

V	 �	n1n2n3 ; (4.20)

denoting by V	 the volume associated with each item type 	 .
It should be noticed that, whilst the discretized model discussed in this section is

very simple, since it consists of three groups of constraints only, the generation of
both sets D	 and F	 0	n1n2n3 is, instead, non-trivial. An ad hoc preprocessing phase
has to be envisaged, in order to generate the model instances in practice. These quite
tricky aspects are not discussed here.

As for the model discussed in Sect. 4.2, also in this case additional conditions,
such as balancing, could quite easily be introduced. They are, however, not
taken into account here. It should, moreover, be observed, that the grid-based
position model, as formulated in this section is (at least) theoretically susceptible
to extensions contemplating any irregularly shaped item type. In such cases, the
above-mentioned pre-processing phase should be carried out appropriately.

4.5 An MILP Approach for the Tetris-Like Approximation
of Irregular Items

The problem of approximating irregular objects, in terms of covering, by means of
tetris-like items, can be regarded per se as an optimization problem. This section
provides some topical insights, restricting the discussion to the two-dimensional
case of convex polygons (the three-dimensional generalization is quite straightfor-
ward). More precisely, the issue under consideration can be stated as follows:

Given a convex polygon, cover it with a minimum-surface tetris-like item, consisting
of NR components (rectangles).

Evidently, the larger NR is, the better approximation of the polygon is possible.
Moreover, in the problem general statement formulated above, it could be implicit
that the dimensions of each rectangle may vary with continuity within given ranges.
The formulation provided hereinafter, however, is based on quite a simplified
approach. It restricts the selection of the rectangles to a finite number of possibilities,
resulting from a proper discretization carried out a priori.
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Fig. 4.2 Polygon covering by a (2D-)tetris-like item

Given a pre-oriented polygon, we shall consider it with respect to an orthogonal
frame with origin O and axes wˇ , ˇ 2 f1; 2g D B (the same symbolism already
utilized in the three-dimensional case is maintained, as no ambiguity occurs). The
axis w1 will represent the “horizontal,” while w2 the “vertical” one. The edges of
the polygon are subsequently discretized, by drawing “horizontal” straight lines that
identify a set of border points including all polygon vertices, see Fig. 4.2.

The sets of all such lines and points are indicated as H and 
 respectively,
corresponding to generic indexes r and � . For each pair of lines .r; r0/ 2 H, all the
enclosed border points determine the set 
 rr 0 . The relevant coordinates are referred
to as Wrr 0 ˇ� , with ˇ 2 B and � 2 �rr0.

For each 
 rr 0 , the following lower and upper bounds are defined:

8ˇ 2 B Wrr0ˇ D min
�2
rr0

˚
Wrr0ˇ�

�
; Wrr0ˇ D max

�2
rr0

˚
Wrr0ˇ�

�
: (4.21)

The rectangle Rrr 0 , corresponding to the straight lines r and r0, delimited by the
vertices listed here, is introduced:

Vrr0LL
�
Wrr01; Wrr02

�
; Vrr0LU

�
Wrr01; Wrr02

�
; (4.22)

Vrr0UL
�
Wrr01; Wrr02

�
; Vrr0UU

�
Wrr01; Wrr02

�
:

Next, the binary variables �rr0 2 f0; 1g are defined as:

�rr0 D 1 if rectangle Rrr 0 is selected as a component of the covering tetris-like
item;

�rr0 D 0 otherwise.
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The (continuous) variables below are also introduced:

8� 2 �; 8r; r0 2 H ��rr0 2 Œ0; 1� :

They are assigned as per the following condition:

��rr0 D 1 if the border point � 2 � is covered by the selected rectangle Rrr 0 ;
��rr0 D 0 otherwise.

The following inequalities correlate the variables ��rr 0 and �rr 0 :

8r; r0 2 H=r < r0 X

�2
rr0

��rr0 D j
rr0j �rr0; (4.23)

where j
rr0j indicates the cardinality of 
 rr 0 . These expressions highlight the
obvious implication that if a rectangle Rrr 0 is selected, then all the associated border
points are covered by it (and vice versa). With this in mind, the inequalities below
are introduced to guarantee that each border point is actually covered:

8� 2 

X

r;r02H=r<r0

��rr0 � 1 : (4.24)

Since the number of selected rectangles has to be equal to NR, the following
equations hold:

X

r;r02H=r<r0

�rr0 D NR: (4.25)

The objective function is stated below:

min
X

r;r02H=

r<r0

Srr0�rr0; (4.26)

where the terms Srr 0 represent the surfaces associated with each rectangle,
respectively.

Remark 4.2 Ingenuity is needed to extend the approach proposed to non-convex
polygons. As a first consideration, the rectangles Rrr 0 should be split in the
corresponding sub-rectangles actually covering parts of the polygon. This way, each
term Srr 0 would be calculated (more precisely) as the sum of the sub-rectangles’
surfaces. The situation is even more complicated when the non-convexities are
related to the presence of internal “holes.” All these aspects may well become the
subject of a dedicated research.



4 A Modeling-Based Approach for Non-standard Packing Problems 81

4.6 Heuristics

An overall modeling-based heuristic methodology has been developed to tackle
real-world scenarios, generally consisting of large-scale instances, characterized
by tricky geometries dealt with by tetris-like approximations, in the presence of
additional conditions such as balancing. In [1] a range of models and procedures
were discussed in a general framework, providing the basis to build alternative
solution strategies. A novel and promising approach, representing the objective of
ongoing research, is, instead, discussed here (see [11] for experimental results).
Prior to proceeding with the topical discussion, the basic concept of abstract
configuration [1] is recalled, providing the following two definitions.

Constraints of the types

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
;

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
;

corresponding to either �C
ˇhkij D 1 or � �̌

hkij D 1 in (4.5-1) and (4.5-2), respectively,
are called relative position constraints.

Given a set of N items and the corresponding NC pairs of components belong-
ing to different items, an abstract configuration consists of NC relative position
constraints, exactly one for each pair, giving rise to a feasible solution in any
unbounded domain.

A method to extract an abstract configuration from any approximate solution,
with intersections between items, has been shown [1]: this subject is not discussed
here, referring to the cited work. As previously, the whole process discussed in this
section is essentially based on the following modules: Initialization, Packing, Item-
exchange, and Hole-filling. In the versions investigated here, they are based on the
MILP model presented in Sect. 4.2. In the following, the heuristic overall logic is
outlined first and then the basic modules are considered.

4.6.1 Overall Logic

As in the heuristics looked into in the previous work, the search algorithm consists
of a recursive procedure that, at each step, activates one of the above-mentioned
modules. An abstract configuration is generated at each step tentatively improving
the previous one; the best-so-far solution is retrieved when the current step does not
meet its objective. The search process is terminated when a satisfactory, albeit non-
optimal proven solution (in terms of loaded volume) is found. Since for real-world
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instances the computational task is quite demanding, at each step, only sub-optimal
solutions are sought, interrupting the optimization on the basis of suitable stopping
rules.

The Initialization phase is aimed at solving a feasibility sub-problem, with the
scope of providing a good starting abstract configuration. An LP-relaxation of
the general MILP model of Sect. 4.2 is adopted. All the N items available are
considered, although some of them may be rejected subsequently, during the search
process. This module seeks for a first approximate solution, enclosing all the items
inside the domain and “minimizing” their total overlapping indirectly. An abstract
configuration is directly provided by the solution obtained. The MINLP model
of Sect. 4.3 may be adopted, if opportune, to further reduce (although without a
guarantee for eliminating) the intersection between items. In this case, a procedure
able to extract abstract configurations from approximate solutions with overlapping
has to be available.

The abstract configuration derived from the Initialization step is imposed to the
Packing module that offers, by means of the general MILP model of Sect. 4.2, a
non-approximate (albeit usually still sub-optimal) solution, maximizing the loaded
volume and rejecting items if necessary. Both Item-exchange and Hole-Filling
phases are devoted to the improvement, if possible, of the Packing solution,
providing (if successful) upgraded abstract configurations. Also for these steps the
general MILP model of Sect. 4.2 is utilized, and non-approximate solutions are
found.

The Item-exchange module is aimed at carrying out advantageous exchanges
between non-loaded and loaded items. Two subsets of non-loaded and loaded
items, respectively, are selected. The relative positions (corresponding to the current
abstract configuration) relevant to both subsets are set free. A further optimization
step, aimed at maximizing the loaded volume, is subsequently performed. If, in the
thus obtained solution, the loaded volume has been increased, the current abstract
configuration is upgraded correspondingly. Otherwise, the best-so-far solution is
retrieved. Alternatively, relative position exchanges can be activated among a subset
of non-loaded items only, in order to perturb the current abstract configuration.

The Hole-filling module has the scope of incrementing the loaded volume, by
exploiting the empty spaces still available. For this purpose, a subset of unloaded
items is selected. All relative positions (corresponding to the current abstract config-
uration), relevant to them are set free and a further optimization step performed (to
maximize the loaded volume). Again, the current abstract configuration is upgraded
only if an improvement has been obtained with the new solution.

The four modules discussed above can be activated repeatedly, following dif-
ferent strategies (e.g., the Initialization itself could, time after time, be executed
also during the process, with the imposition of “partial” abstract configurations,
restricted to subsets of items already loaded). In the following, the use of the general
MILP model of Sect. 4.2, corresponding to each phase, is illustrated.
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4.6.2 Use of the General MILP Model

The Initialization module, in the version considered here, focuses on the use of a
specific LP-relaxation of the general MILP model of Sect. 4.2. As the relevant sub-
problem is expressed in terms of feasibility, all variables �i (8i 2 I) are set to 1. The
lˇhi variables, introduced in Sect. 4.2, are reconsidered instead. These are not defined

any longer as lˇhi D
X

!2˝

L!ˇhi#!i, but simply as continuous variables subject to the

following bounds:

8ˇ 2 B; 8i 2 I; 8h 2 Ci L1hi � lˇhi � L3hi: (4.27)

Here, as previously specified, L1hi and L3hi represent the sides associated with h,
of minimum and maximum length, respectively. The non-intersection conditions
(4.5-1) and (4.5-2) and the objective function (4.9) are rewritten as follows:

8ˇ 2 B; 8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.28-1)

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
lˇhi C lˇkj

� � Dˇ

�
1 � �C

ˇhkij

�
;

8ˇ 2 B; 8i; j 2 I=i < j; 8h 2 Ci; 8k 2 Cj (4.28-2)

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
lˇhi C lˇkj

� � Dˇ

�
1 � � �̌

hkij

�
;

max
X

i2I;h2Ci

VhiX

˛2A

L˛hi

X

ˇ2B

lˇhi: (4.29)

If the sub-problem related to the model above is infeasible, then all lower bounds
L1hi (in 4.27) are subsequently reduced until a feasible solution is obtained. The
variables �

C=�
ˇhkij , for which in the obtained solution �

C=�
ˇhkij D 1, directly provide an

abstract configuration for the subsequent steps of the heuristic procedure. They are
referred to as Q�C=�

ˇhkij .
The Packing, Item-exchange, and Hole-filling modules exploit, totally or par-

tially, the currently available abstract configuration. The non-intersection inequali-
ties (4.5-1) and (4.5-2) corresponding to the above-mentioned Q�C=�

ˇhkij variables are
maintained in the model (in addition to (4.6)), whilst the others are eliminated
together with all the redundant �

C=�
ˇhkij variables (i.e., those that are not correlated
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to any Q�C=�
ˇhkij ). The non-intersection constraints, relative to the (thus “imposed”)

abstract configuration, are hence rewritten, for the relevant indexes, in the following
form:

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � �C

ˇhkij

�
; (4.30-1)

_N

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � � �̌

hkij

�
(4.30-2)

�
C=�
ˇhkij � �i C �j � 1; (4.31)

with �
C=�
ˇhkij 2 Œ0; 1� (i.e. they are no longer considered as binary variables).

4.7 Conclusion

Non-standard packing problems that involve non-box-shaped items and domains, in
the presence of additional constraints, are usually very tough to solve. This chapter,
extending the author’s previous work, discusses the issue of placing tetris-like items
orthogonally into a convex domain. A Global Optimization point of view, focused
on MILP/MINLP formulations, is looked into for the purpose of providing models
that are suitable for treating additional loading restriction rules and global conditions
such as balancing.

An efficient heuristic procedure, aimed at finding satisfactory solutions to
real-world instances, is proposed. This approach will be the objective of future
investigation, focused on the MILP/MINLP search strategies.

The issue of covering irregularly shaped objects with tetris-like items consisting
of a given number of components of minimum total volume, itself, leads to a non-
trivial optimization problem. Insights on its two-dimensional version, relevant to
the optimal outer approximation of polygons, are provided. A further contribution
appearing in this book is dedicated to the computational aspects relevant to the
MILP model discussed in this chapter.
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