Chapter 2
Dynamic Packing with Side Constraints
for Datacenter Resource Management

Sophie Demassey, Fabien Hermenier, and Vincent Kherbache

Abstract Resource managementin datacenters involves assigning virtual machines
with changing resource demands to physical machines with changing capacities.
Recurrently, the changes invalidate the assignment and the resource manager
recomputes it at runtime. The assignment is also subject to changing restrictions
expressing a variety of user requirements. The present chapter surveys this applica-
tion of vector packing—called the VM reassignment problem—with an insight into
its dynamic and heterogeneous nature. We advocate flexibility to answer these issues
and present BtrPlace, a flexible and scalable heuristic solution based on Constraint
Programming.

Keywords Datacenter resource management * Vector packing ¢ Dynamic side
constraints ¢ Constraint programming

2.1 Introduction

A datacenter is an infrastructure hosting computing machines. They supply different
resources (CPU, RAM, etc.) in limited amount to execute software applications
submitted by clients. Thanks to virtualization, a single physical machine (PM) can
simultaneously run multiple application components, each embedded in a virtual
machine (VM), if their total demand in each resource does not exceed the PM
capacity, i.e. the amount of resource supplied by the PM.
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A datacenter is a dynamic system since both demands and capacities vary
over time: continuously, VMs are submitted, stopped, or resized according to the
application needs; continuously, PMs are upgraded, powered on to support load
spikes, or halted for maintenance purpose or due to a failure; continuously, execution
rules are stipulated by the users of the datacenter—both the operators and the
clients—for performance or security purpose. A datacenter is also a market place
between the operators, who expect a maximal use of their resources at minimal
operation cost, and the clients, who negotiate quality of service (QoS) contracts.

The resource manager of a datacenter is responsible for provisioning the
submitted workload continuously. It assigns and reassigns VMs to PMs according
to the current resource and user requirements so as to optimize QoS, operation
costs and resource usage. The problem is a dynamic variant of vector packing with
heterogeneous side constraints [18]: dyrnamic since the manager reoptimizes the
problem at runtime, and heterogeneous since side constraints express a variety of
user requirements and preferences.

Datacenters are commonplace nowadays with the advent of cloud computing.
As their size keeps growing (to up to thousands of PMs in large IT companies)
they necessitate more automation in resource management. Resource managers with
advanced optimization abilities are, however, far from ubiquitous, as the dynamic
and heterogeneous nature of the problem remains one major issue.

In this chapter, our first aim is to review this application of vector packing—
which we call the VM REASSIGNMENT PROBLEM—with an insight into its two
characteristics: dynamicity and heterogeneity. About dynamicity, we further discuss
the induced problem of scheduling the reassignment actions. About heterogeneity,
we survey some user requirements and preferences met in practical and seminal
works. We provide generic formulations of these side constraints which may apply
to many other practical applications of packing.

Our second aim is to illustrate the need for flexibility in optimization tools
to address such characteristics. We present BtrPlace [7] our implementation of a
flexible resource manager for virtualized datacenters. BtrPlace relies on Constraint
Programming to provide dynamic reassignment and easy customization abilities
while yet ensuring performance and scalability.

The chapter is structured as follows: in Sect.2.2, we discuss the concepts of
dynamicity, heterogeneity, and flexibility in the context of resource management.
Section 2.3 formalizes the core packing problem and variants of the literature,
then describes the induced scheduling problem. Section 2.4 catalogues typical user
requirements. Sections 2.5 and 2.6 are devoted to BtrPlace and show empirical
evaluations. Section 2.7 presents our conclusions and future research directions.
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2.2 Flexible Resource Management

Datacenter resource management exhibits two facets: dynamicity and heterogeneity.
This section describes how resource managers should accordingly offer configura-
bility and extensibility. Flexibility refers to the combination of these two attributes.

2.2.1 Configurable Managers for Dynamic Datacenters

The infrastructure and the workload of a datacenter are highly volatile. They change,
at variable pace and at variable intensity, as the user activities change and as failures
occur. For example, the operators renew PMs in batches every month, they upgrade
the PMs overnight, a hardware failure occurs about every day or week [11], the
clients submit new applications every hour, and the load of service applications
(such as websites) varies in minutes with spikes occurring at morning and off-peaks
during weekends. These changes give the VM reassignment problem its dynamic
nature and impact it in different ways:

Repair The problem is not to compute a new assignment but to repair a corrupted
one. When changes invalidate the current assignment (e.g., when the new resource
demand of a VM suddenly exceeds its current host capacity), the resource manager
must compute a new valid assignment, then plan the appropriate reconfiguration
actions: powering PMs on and off, launching and migrating VMs either live or off by
cloning. These actions affect the performance of the applications during a significant
time (e.g., about 10s to halt or migrate live a VM of 1 GB RAM [17]). They
also incur extra operation costs due to energy consumption and hardware usage.
Hence, the resource manager should minimize the effects of the reconfiguration
when computing a new assignment.

Reactivity Since the changes cannot be predicted accurately (e.g., when and where
the next hardware failure will occur) and since the applications run in degraded
mode while their requirements are violated and during the reconfiguration, a
resource manager must (1) operate at runtime, (2) compute solutions quickly, and
(3) compute fast reconfiguration plans.

Elasticity In addition to computing an assignment, the resource manager may
command the VM and PM states (e.g., launch, halt, sleep) to accommodate
the requirements. For example, it may adjust the number of replicas of a service
according to the datacenter load and the required degree of fault tolerance. In
these settings, the numbers and sizes of the VMs and PMs become new variables of
the problem.

Structural Changes Finally, the changes affect not only the numeric values (the
resource requirements) but also the logical constraints (the user requirements) of
the problem. From one execution to another, the resource manager is then likely to
solve a new optimization problem, not just a new instance of the problem.
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Configurability is a required attribute of autonomic resource managers to address
structural changes. A configurable resource manager takes as input the current
assignment and the new user and resource requirements to merge them into
its internal optimization model. If the current assignment violates at least one
requirement, it then solves the model. For usability, the manager must offer a
high-level interface to specify the new requirements. For reactivity, the internal
reformulation of these requirements is expected to be fast. For robustness, the
structural changes of the model should not deteriorate the performance of the
solution algorithm.

2.2.2 Extensible Managers for Heterogeneous Datacenters

The infrastructure and the usage make each datacenter unique. The development
of an universal resource manager remains utopian. Furthermore, each resource
manager must deal with the heterogeneity inherent to its own datacenter.

Infrastructure and Workload The design of a datacenter depends on its function
(e.g., for private business, internet service, or cloud computing). The size is a major
characteristic as it varies from ten PMs gathered in a room to thousands of PMs
geographically distributed. Resource management in such distinct environments
refers to distinct problems and requires distinct solutions. Though, any resource
manager must be scalable at some extent to support the probable growth of its
infrastructure.

Within a datacenter, resources and machines come with a great diversity.
Different types of resources are either provided by the PMs (e.g., CPU, RAM, disk
storage, network interfaces) or shared by groups of PMs (e.g., licenses). Different
PMs supply different types of resources and have different capacities. Furthermore,
the PMs are connected through a hierarchical network offering different classes of
bandwidth and latency.

Similarly, the workload usually presents a great heterogeneity in sizes and shapes
from one application to another. This heterogeneity prevents to rely on symmetry
arguments to help solve the packing problem.

User Requirements and Preferences Operators—who own or manage the
infrastructure—and clients—who submit or use the applications—have multiple
needs in terms of resource allocation. Clients expect a reliable QoS to guarantee
the optimal execution of their applications by contracting service level agreements
(SLAs). SLAs describe low-level metrics (e.g., the resource demand) and logical
conditions on the relative assignment of VMs to express different concerns
(e.g., grouping communicating VMs on PMs close to each other for performance
purpose). Since the client pays for his SLAs and is refunded when violations
occur, the operator is willing to enforce QoS while reducing operation costs
(e.g., minimizing the number of powered PMs). Operators have strict requirements
too, either permanent (e.g., isolating management services on specific PMs for
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security purpose) or temporary (e.g., freeing PMs to prepare for a maintenance).
Hence, a great variety of user requirements and preferences exist. The resource
manager must handle a number of them simultaneously at each reassignment step.

Extensibility refers, for a software, to the ease to design and to implement new
functionalities. Resource managers release new features to clients on a regular basis.
For example, the widely used VMware vSphere and Amazon EC2 were updated
to support additional requirements, such as VM-to-PM affinity [13] or dedicated
PMs [2]. Extensible resource managers should enable operators to implement
desired features. One approach of extensibility is to rely on a modular framework
providing an extensible set of primitives to express each feature.

2.2.3 Related Works

Flexibility is a recent concern in datacenter resource management. Pioneer
approaches focused on scalability issues and proposed ad-hoc approximation algo-
rithms ignoring everything but CPU and memory requirements [6, 16, 17, 25, 27].
The increasing energy consumption and the rise of SLAs shifted the goal of resource
management to compromise between power saving and QoS guarantee. Ad-hoc
partially configurable algorithms have been proposed to support these models
(e.g., [13, 20]). The extensibility of these algorithms is, however, not discussed
and the experiments limited to datacenters with less than 50 PMs. In the context
of the Roadef/EURO Challenge 2012 [23], Google described a VM reassignment
problem with a fixed set of eight user constraints including five violation penalties
to minimize. The dataset consisted of synthetic instances up to 5,000 PMs and 20
resources to solve in 5 min. The competing algorithms were evaluated with regard
to their optimization performance, not their flexibility.

Approaches based on Constraint Programming address extensibility but their
experiments are often limited to datacenters of ten PMs (e.g., [5]). BtrPlace and
its former version Entropy [17, 19] use Constraint Programming with the aim to
address flexibility together with scalability. Currently, BtrPlace is bundled with 16
high-level user requirements but users already developed their own. It also provides
a simple configuration language to invoke these side constraints on the fly. BtrPlace
computes solutions for simulated instances of 5,000 PMs in less than 1 min.

2.3 Problem Statement

This section describes the core VM REASSIGNMENT PROBLEM—without user
requirements—as a multi-dimensional vector packing problem. It also presents
several objective variants and the induced reconfiguration scheduling problem.
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2.3.1 The VM Reassignment Problem

Definition 1. A datacenter consists of a set &2 of PMs (the bins) and a set % of
resources (the dimensions). A workload consists of a set #" of VMs (the items). Each
PM p € & provides a given amount of each resource r € %, called its capacity and
denoted c,,. Each VM v € ¥ requires to run a given amount of each resource
r € Z, called its weight, and denoted w,,. A feasible configuration is an assignment
M of the VMs in ¥ to the PMs in &7 that satisfies the resource requirements:

Z Wy <cpr Ype P re.
veM—1(P)
Given a current source configuration My : ¥ — 22, new capacities ¢ € NZ>*#
and new weights w € N”*#_ the VM REASSIGNMENT PROBLEM is to find a
target configuration M : ¥V — & satisfying the new resource requirements while
optimizing a given quantitative performance goal f (M) € R.

2.3.2 Performance Goals

The performance goal estimates the quality of the target configuration M and of the
reconfiguration process to reach M from M, in terms of service to the clients and of
financial and energy savings for the operators. Performance goals are context-bound
but, by contrast to the user requirements, they generally do not vary over time.

A single performance goal is typically integrated with the model as a function to
optimize. A weighted sum allows to merge multiple goals as one objective function.
However, intensive experiments and practical knowledge are needed to calibrate the
weights accurately. An alternative is to bound the function values of a given goal
by means of a hard constraint and to reoptimize the problem with progressively
tightened bounds. For goals expressing user preferences, the user requirements are
modeled as soft constraints that trigger penalty costs possibly proportional to the
degree of violation; the objective then is to minimize the sum of the penalties.

Because of the theoretic cost models, the large size of the instances, the
computational complexity of the problem, and the allowed solution time, resource
managers do not seek optimality when solving the VM reassignment problem in
practice.

2.3.2.1 Scoring the Target Configuration
Workload Consolidation aims at gathering the workload into the minimum

number of PMs to power off the unused PMs [6, 17, 25, 27]. With no user require-
ments, the model coincides with the actual Multi-Dimensional Vector Packing
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Problem [15]. A more elaborated model, matching the Capacitated Facility Location
Problem, estimates the energy consumption through a fixed cost for each active
PM and an execution cost for each pair of VM-PM [12]. Consolidation policies
enforce PMs to run at full load. This tends to multiply resource shortages, thus
reconfigurations, when the workload is subject to load spikes.

Load Balancing is a performance-oriented policy. It spreads the VMs across the
PMs to get a desired load rate on each PM. Such policy can be achieved by
minimizing the maximum load over all PMs [1], the sum of the deviations from
the desired load rate [24], or the sum of the penalty costs for exceeding a desired
safety capacity [23].

SLA Protection refers to policies expressing client satisfaction. An example
of global satisfaction is to maximize the number of running applications [24].
The problem maps then to the Multiple Knapsack Problem. Individual client
demands—such those described in Sect.2.4—may also be turned into soft con-
straints then integrated with the objective when their satisfaction is more desired
than required [23].

2.3.2.2 Scoring the Reconfiguration Process

The actions to execute on VMs and PMs to reach the target configuration from the
source configuration impact the performance of the datacenter: they provoke down-
times and significant delays, and incur direct operation costs. The reconfiguration
score reflects this impact and often dominates the target configuration score in many
applications [4, 6, 17, 25, 27]. In fact, performance goals based on reconfiguration
scores limit the distance between a source and a target configuration, thus preserve
the stability of configuration scores.

Local Changes For instance, the workload consolidation policy yields no energy
savings if PMs are turned on and off too frequently. Therefore the performance
goal should limit the number of PM state transitions rather than the number of
powered PMs. Limiting the number of VM migrations is less trivial. To minimize
changes, most works on consolidation [4, 6, 19] and load balancing [14] solve the
violations locally—one at a time or altogether—by repairing only a minimal subset
of assignments. The decomposition obviously hinders optimality but drastically
reduces the problem size.

Migration Numbers An alternative is to focus on minimizing the reconfiguration
impact due, in particular, to the VM migrations. In the Load Rebalancing prob-
lem [14], the goal is to minimize the number of migrations. In [1], a hard constraint
enforces to move less than k£ VMs. In [23], the maximum number of migrations per
application is minimized as well as the weighted sum of migrations between each
pair of PMs to simulate network bandwidth conservation.
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Fig. 2.1 Impacts of the resource (a, b) and user (c¢) requirements on the reconfiguration from M,
to M: (a) requires to halt v; before migrating v,, (b) prevents to migrate live both v; and v,
(c) prevents to migrate live both v and v, if they are in conflict

Action Durations In addition to the number of actions, [23] minimizes the sum of
the predefined impacts of the actions. The action duration—including preparation
and transfer times—is a relevant indicator of the impact. The duration can itself be
evaluated as a function of the type of the action and of the size of the object. Several
works consider this criterion in priority. They minimize either the duration of the
whole reconfiguration process [21] or the sum of the completion times [17].

2.3.3 Scheduling the Reconfiguration Actions

Due to the resource limitations, the reconfiguration actions may have to be
scheduled in a specific order. Figure 2.1a depicts such a situation: since PM p;
supplies not enough RAM to run VMs v; and v, together, the resource manager
must halt v; before starting the migration of v; to p;.

Enabling live migrations makes the resource constraints still harder since a VM
consumes resources on both the source and the target PMs during all the time of
its live migration. As a result, a cycle of live migrations may cause a deadlock
forbidding to reach the target configuration. Figure 2.1b illustrates this worst case: a
cycle occurs between the live migrations of v; and v, since none of the two available
PMs has enough RAM to colocate the two VMs at any time.

A common approach handles the reconfiguration scheduling problem separately
after computing the target configuration [17, 27]. It requires to recompute both
the reassignment and the scheduling if cycles occur. Furthermore, this two-phase
approach disallows to consider the actual impact of the reconfiguration process
within the reassignment problem.

As a workaround, [23] tightens up the resource constraints to ensure that all live
migrations may happen simultaneously: the total requirement of both the newly
assigned VMs and the previously hosted VMs must not exceed a PM capac-
ity. This workaround discards feasible configurations by making permanent the
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temporary tighter resource requirements induced by live migrations. In addition,
it permits to violate user requirements during the reconfiguration. Figure 2.1c
considers the conflict constraint forbidding to colocate the two VMs v; and v,.
To enforce this constraint, one of the VMs must be stopped during the migration
of the other one, then relaunched on its target PM. The impacts of these service
interruptions and delays are not considered in the reassignment model of [23].

Bin et al. [5] consider the continuous satisfaction—including during the
reconfiguration—of one user requirement in a particular use case. BtrPlace [7]
generalizes this principle to any user requirements: by handling reassignment and
scheduling as one global problem, it enforces the continuous satisfaction of the
requirements [10] and controls the reconfiguration impact explicitly.

2.4 User-Defined Side Constraints

In this section, we present a catalog of packing side constraints issued from the
literature and from practical user requirements. For each constraint, we discuss its
main application contexts, cite some referring works, and introduce a mathematical
set formulation using notations of Table 2.1.

spread(V) assigns all the VMs in V onto pairwise distinct PMs [7, 19].It is named
conflict in [23], VM-VM affinity in [13] and GroupAntiAffinity in [22]. Spread is
relevant to clients for fault-tolerance purpose by avoiding a single point of failure.

card(M(V)) = card(V).
gather(V) assigns all the VMs in V onto the same PM [7, 19]. It is named VM-VM

anti-affinity in VMWare DRS[13]. Gather is relevant to clients for performance
purpose by improving the intercommunication of a group of VMs.

cardM(V)) = 1.

Table 2.1 Notations

pE P Physical machines (PMs)

vEY Virtual machines (VMs)

r€x Resources

¢r €N Capacity of PM p in resource r

wyr € N Requirement of VM v in resource r

My € 2”7 | Source configuration
M€ 27 | Target configuration

PC ¥ A set of PMs
c? - 22 | A set of sets of PMs
vCy A set of VMs

C” <27 | A setof sets of VMs
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ban(V, P) assigns all the VMs in V onto PMs not in P [7, 19]. It is named VM-PM
anti-affinity in VMWare DRS[13]. Ban is relevant to operators for maintenance
purpose—by freeing PMs before an upgrade—or for security purpose—by
preventing client VMs to run on operator dedicated PMs.

M(V)NP=0.

fence(V, P) assigns all the VMs in V onto PMs in P [7, 19]. It is named VM-PM
affinity in VMWare DRS [13]. Fence is relevant to operators for security purpose
by partitioning VMs and PMs according to their compatibility.

M(V) C P.

mostlySpread(V,n) assigns all the VMs in V to at least n € N PMs [7]. It is
named soft VM-VM affinity in VMWare DRS [13]. mostlySpread is a soft version
of spread when only a minimum number of distinct PMs is required.

card(M(V)) > n.

quarant ine(P) prevents the PMs in P to relocate their initial hosted VMs and
to host new VMs [7, 13, 19]. Quarantine is relevant to operators for security
purpose by isolating compromised PMs.

Vp e P,M ' (p) = My (p).

among(V, C?) assigns all the VMs in V onto PMs belonging to a single group
of C7 [7, 19, 28]. Among is relevant to clients and operators for performance
purpose by running strongly communicant VMs on PMs with low network
latency.

3P e Cc? ,M(v) CP.

root(V) prevents to reassign any VMs in V [7]. It is available as a property in [13].
Root is relevant to clients and operators for performance purpose by attaching
VMs to some peculiar device.

Vv eV, M(v) = My(v).

split(C”) prevents to collocate VMs belonging to two different groups in C”’
(the groups are pairwise disjoint) [7]. It is available as the dedicated instances
feature in Amazon EC2 [2]. Split is relevant to clients for security purpose by
isolating groups of VMs from supposed malicious VMs.

VYV, e CV VVy e CV\{VILM(V) N M(V,) = 0.
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splitAmong(C”, C?) assigns each group of VMs belonging to two different
groups in C” to distinct groups in C? (the groups are pairwise disjoint) [7, 19].
It is a generalization of the availability zones in Amazon EC2 [2]. SplitAmong
is relevant to clients for fault-tolerance purpose by isolating replicated VMs on
dedicated PMs.

VVi e C” ¥Vy e €7\ {V1},3P, Py € C7 . M(V)) € P1.M(V>) C Py, and Py # P5.

maxOnline(P,n) forces at most n € N PMs in P to run [7]. MaxOnline is relevant
to operators for performance purpose by restricting the number of running PMs
due to license restrictions or cooling and powering limited capacities [9].

card(PNM(¥)) < n.

capacity(P,r,c) forces the total amount of resource r consumed on the PMs in
P to be lower than ¢ € N [7]. Capacity is relevant to operators for performance
purpose by restricting access to a shared resource, such as the number of Internet
Protocol addresses.

E Wyr < C.

veM—L(P)

spreadAmong(V, C?) assigns the VMs in V to at least n € N groups of PMs
among C? . It is named spread in [23]. SpreadAmong is relevant to clients for
fault-tolerance purpose.

card{P € CT|M(V) NP # @} > n.
dependency(Vy, V,, C) given a partition C of the set of the PMs, assigns the VMs
in V; to elements of C that run at least one VM in V; [23]. Dependency is relevant

to clients for performance purpose.

C(M(V1)) € C(M(V2)).

2.5 BtrPlace: A Flexible Resource Manager

In this section, we present BtrPlace, an open source resource manager based on
Constraint Programming [7]. BtrPlace is the evolution of the former consolidation
manager Entropy [17] with a focus on flexibility [18, 19].



30 S. Demassey et al.
2.5.1 Global Design

For regular users, BtrPlace is a configurable VM reassignment algorithm bundled
with 16 placement constraints addressing security, performance, reliability, and
fault-tolerant concerns. The algorithm takes as input (1) a description of the infras-
tructure extracted from a monitoring service and (2) a collection of resource and user
requirements declared through an API and configuration scripts [19]. The algorithm
first checks if the current infrastructure satisfies all the requirements. If not, it
computes a new valid VM-to-PM assignment and a schedule of the reconfiguration
actions. For advanced users, BtrPlace is an extensible VM reassignment algorithm
where third-party developers can implement and integrate new constraints and
extensions. BtrPlace is employed for different usages by companies and in research
projects such as the Fit4Green European project [12] which addresses energy
efficiency in datacenters.

2.5.2 Implementing Flexibility

The flexibility of BtrPlace results from the composability of its core Constraint
Programming model through the use of global constraints [3]. In Constraint
Programming, a combinatorial problem is modeled as variables taking their values
in discrete sets called domains and constraints that represent the required relations
between the variables. Each constraint provides a dedicated algorithm to identify
and filter values in a variable domain that are inconsistent with regard to the relation
and to the other variable domains. A propagation algorithm calls the filtering
algorithms in turn until no more inconsistencies are detected. If a domain becomes
empty, the problem is proved to be infeasible. If all domains are singletons, then
they figure a solution. Otherwise, a decision tree is built. Successively at each node,
a variable-value assignment to explore is selected—in a heuristic order called the
branching strategy—and the propagation algorithm is recalled.

Flexibility is a strength of Constraint Programming compared to other paradigms
like Mathematical Programming or SAT solving: A Constraint Programming model
decomposes a problem in global constraints which are altogether processed by a
generic algorithm. As a constraint may express any logical relation, a user can
embed a part of the complexity of his problem in one constraint as soon as he
can define a reasonably efficient filtering algorithm for it. Finally, any Constraint
Programming solver supplies a—usually extensible—set of fundamental constraints
which can be easily invoked through predicates to compose a model. BtrPlace relies
on the Java open-source solver Choco [8].

For each call to the reconfiguration algorithm, BtrPlace generates the Constraint
Programming model in two phases. The first phase generates the core model
including decision variables for the VM assignments, the PM states, the starting
times of the reconfiguration actions, and ad-hoc constraints of vector packing and
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scheduling. The second phase specializes the core model with the resource and
user requirements. Each component attaches variables of the core model with new
generated variables through some global constraints of the Choco API. The resulting
model is solved heuristically by a truncated branch-a-bound.

The extensibility of BtrPlace has yet some limitations. It cannot infer the next
VM states, or perform multiple actions on a same element during a reconfiguration.
It also historically focuses on hard constraints. Problems that are vastly organized
over soft constraints such as the one formulated for the Roadef challenge [23] could
be supported by the framework of BtrPlace but are not currently implemented.

2.5.3 The Optimization Algorithm

The optimization problem—assignment and scheduling—is obviously NP-hard and
is intractable for medium to large-size datacenters. The BtrPlace algorithm uses two
heuristic strategies to accelerate the resolution.

The filter optimization limits the set of VMSs to reassign [19]. Each constraint uses
a dedicated algorithm—similar to the filtering algorithm—to check the viability of
the current assignment. On failure, it computes a set of candidate VMs to migrate
to resolve the conflict. For example, the spread constraint checks if the VMs to
spread are already on distinct PMs. If not, it selects all collocated VMs. All other
VMs are fixed to their initial PM in the model prior to its resolution.

Our second strategy relies on a truncated DFS branch-and-bound with a dedi-
cated branching heuristic. The heuristic first focuses on the assignment variables in
decreasing order of criticality: first the running VMs that are no longer hosted on
a suitable PM, then all other running VMs, and finally the new VMs to launch. To
minimize the number of migrations, the heuristic tries to assign a VM first to its
current PM, then to the other possible PMs in random order.

2.6 Evaluation of BtrPlace

Highly available (HA) web applications are typical applications running on data-
centers. Their architecture illustrates typical user requirements. They are usually
composed of three tiers: one deserves static HTTP content, a second one handles
the business logic and the last one manages data. To ensure performance and fault-
tolerance, each tier is composed of replicated VMs to run on distinct PMs. The
replicas of the last tier run databases that must synchronize themselves. To reduce
the synchronization latency, they have to run on PMs close together.

To evaluate BtrPlace empirically in a realistic context, we generated workloads
made of HA web applications. Each application uses between 6 and 30 VMs with at
least two VMs per tier. The resource requirements of the VMs are defined according
to one of 12 templates; all VMs in a same tier instantiate the same template.
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Each template defines a demand in RAM ranging from 1 to 3 GB and a maximum
CPU usage ranging from 30 to 60 uCPU. The CPU consumption varies at any time
randomly between 20 and 90 % of its maximum usage. User requirements may be
attached to a HA application by means of one spread constraint per tier (to model
fault-tolerance) and one among constraint over the VMs of the third tier (to model
synchronization latency).

To evaluate the scalability of BtrPlace, we considered a large datacenter of 5,000
PMs each providing 200 uCPU and 16 GB RAM. To evaluate the impact of the
resource usage, we varied the consolidation ratio from 3 to 6 VMs on each PM in
accordance with a common observation of real service-oriented datacenters [26].
This amounts to up to 1,700 applications running a total of 30,000 VMs and an
overall resource usage varying from 36 to 73 %. For each consolidation ratio, we
generated 50 instances for different source configurations.

We considered two scenarios of reconfiguration: LT simulates Load Increases
and NR simulates a maintenance for Network Rewiring. In LI, the CPU demand
of 10 % of the applications increases by 30 % (capped at 100 %): it increases the
overall demand by an average of 5 %. In NR, 5 % of the PMs are randomly selected
to be powered off for maintenance: it corresponds to the rate of rewiring observed
in Google’s datacenters at any moment [11].

BtrPlace ran on one core of an Intel Xeon X3440 at 2.53 GHz with 16 GB RAM
running Linux 2.6.32-5-amd64 and Sun’s JVM 1.8.0. We gave a time limit of 5 min
and stopped BtrPlace at the first solution.

Impact of the Number of VMs Figure 2.2 shows that the solution time grows
with the number of VMs, as expected by the complexity of the problem. However,
it never exceeds 30s in the NR case—which is almost the time to halt or to migrate
one large VM. Instances of LTI appear to be much harder as only one of the 50
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Fig. 2.2 Solution time according to the number of VMs
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instances with 25,000 VMs was solved within the five allotted minutes and all
instances having 30,000 VMs hit the timeout. The difference comes from the filter
optimization that reduces the problem size more effectively in the NR case. In NR
the algorithm only reassigns VMs that have to be restarted after a failure, while in
LT all the VMs assigned to overloaded PMs are considered. It amounts to 1,500
VMs and 3,000 VMs, respectively, on average for the largest instances. The gap
of performance is also explained by the intrinsic difficulty of the LI case due to
the tighter resource constraints. The number of nodes explored grows exponentially
with the consolidation rate.

To address this scalability issue, we envisage three solutions. A first solution is to
provide a stronger filtering algorithm of the vector packing constraint since our cur-
rent implementation is limited on purpose to reduce the memory consumption and
to speed up the resolution for large and easy instances. To preserve genericity, we
could automatically adapt the filtering level according to the instance characteristics.
A second solution is to rely on stronger branching strategies. The strategies must
remain instance-independent or, at least, auto-adaptive. The last solution proposed
in [19] automatically splits instances into independent sub-problems.

Impact of the User Constraints In the previous experiments, no applications were
constrained by the HA requirements (i.e., with spread and among constraints). In
Fig. 2.3, we vary the percentage of applications with HA requirements and compute
the solution time overhead on the solving process for scenarios NR and LI.

We observe that the overhead is acceptable in both cases as it never exceeds one
third of the total solution time. In the worst case, the average overhead is 11 s (34 %)
in NR and only 4s (11 %) in LI. This low overhead demonstrates that the resource
constraints are dominant. We also observe that with 25,000 VMs, the total solution
time decreases when there is up to 66 % of the constraints in the NR case and 100 %
in the LT case. This phase transition reveals that the reduction of the search space
due to the side constraints may compensate the extra computation time.
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Fig. 2.3 Impact of the user constraints over the solution time. (a) NR; (b) LI
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2.7 Conclusion and Future Works

The resource manager has the critical task to efficiently deploy the client applica-
tions throughout a datacenter. This involves to assign VMs to PMs and to revise
the assignment recurrently as the environment changes. This optimization problem
matches the multi-dimensional vector packing problem with various objectives and
side constraints depending on the context. For the past years, many companies and
researchers have proposed meaningful solutions for their own context.

In this chapter we advocated an unifying approach that would be able to embrace
all these specificities. We emphasized the dynamic and heterogeneous nature of
resource management and proposed flexibility as a solution. We assessed this
approach through BtrPlace, a flexible and scalable solution based on Constraint
Programming. While fully generic optimization algorithms may not always be faster
than ad hoc solutions, our experiments showed that BtrPlace is effective to manage
thousands of highly available web applications running on thousands of PMs.

In future works, we plan to keep improving BtrPlace in terms of performance
and flexibility. Regarding performance, we will develop enhanced algorithmic
components (partitioning, filtering, branching) to address the scalability issue when
solving both large and difficult instances. Regarding configurability, our next step
is to make the algorithm auto-adaptive. Similarly to the model, the solver will
automatically invoke the right algorithmic components with respect to the instance
characteristics. Finally regarding extensibility, we plan to add support for soft
constraints—to manage user preferences in addition to user requirements—and
for network concerns—by modeling new elements like topology, bandwidth, and
latency. One main challenge will be to multiply the case studies to further assess the
gain of flexibility.
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