
Chapter 13
Optimized Object Packings Using
Quasi-Phi-Functions

Yuriy Stoyan, Tatiana Romanova, Alexander Pankratov, and Andrey Chugay

Abstract In this chapter we further develop the main tool of our stud-
ies, phi-functions. We define new functions, called quasi-phi-functions, that we use
for analytic description of relations of geometric objects placed in a container taking
into account their continuous rotations, translations, and distance constraints. The
new functions are substantially simpler than phi-functions for some types of objects.
They also are simple enough for some types of objects for which phi-functions could
not be constructed. In particular, we derive quasi-phi-functions for certain 2D&3D-
objects. We formulate a basic optimal packing problem and introduce its exact
mathematical model in the form of a nonlinear continuous programming problem,
using our quasi-phi-functions. We propose a general solution strategy, involving:
a construction of feasible starting points, a generation of nonlinear subproblems
of a smaller dimension and decreased number of inequalities; a search for local
extrema of our problem using subproblems. To show the advantages of our quasi-
phi-functions we apply them to two packing problems, which have a wide spectrum
of industrial applications: packing of a given collection of ellipses into a rectangular
container of minimal area taking into account distance constraints; packing of a
given collection of 3D-objects, including cuboids, spheres, spherocylinders and
spherocones, into a cuboid container of minimal height. Our efficient optimization
algorithms allow us to get local optimal object packings and reduce considerably
computational cost. We applied our algorithms to several inspiring instances: our
new benchmark instances and known test cases.
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13.1 Introduction

Optimal packing problem is a part of operational research and computational
geometry. It has multiple applications in modern biology, mineralogy, medicine,
materials science, nanotechnology, robotics, coding, pattern recognition systems,
control systems, space apparatus control systems, as well as in the chemical indus-
try, power engineering, mechanical engineering, shipbuilding, aircraft construction,
civil engineering, logistics, etc. At present, the interest in finding effective solutions
for packing problems is growing rapidly. This is due to a large and growing number
of applications and an extreme complexity of methods used to handle many of them.
We refer the reader to [1] for typology of the class of problems.

These problems are NP-hard [2], and, as a result, solution methodologies
generally employ heuristics, e.g. [3–16]. Some researchers develop approaches
based on mathematical modeling and general optimization procedures; e.g. [17–25].

Our approach is based on mathematical modeling of relations between geometric
objects and thus reducing the Optimal Packing Problem to a nonlinear programming
problem. We use the phi-function technique [26, 27] for an analytic description of
relations of objects to be packed in a container taking into account their continuous
rotations, translations, and distance constraints. In [28] we review our phi-functions.
One may also find there a clear definition of a phi-function. There we construct a
mathematical model of a basic placement (cutting and packing) problem using phi-
functions as a constrained optimization problem. We propose a solution strategy
for placement problems. The paper also considers a layout problem encountered in
space engineering and provides a number of computational results for 2D- and 3D-
applications. The complete class of phi-functions for basic 2D-objects are derived
in [29]. The functions allow us to cover a wide spectrum of irregular packing
problems involving arbitrary shaped 2D-objects, bounded by circular arcs and line
segments; see, e.g., [30]. Phi-functions for the simplest 3D-objects under continuous
rotations, such as parallelepipeds, convex polytopes, and spheres, are considered
in [31, 32]. But some of these phi-functions (especially for 3D-objects) happen
to be rather complicated, analytically, and difficult in practical use. Our attempts
to construct convenient phi-functions for more general types of objects have been
futile.

In this chapter we further develop the concept of phi-functions, introducing a new
class of functions, called quasi-phi-functions. The functions can be described by
analytical formulas that are substantially simpler than those used for phi-functions,
for pairs of some types of 2D- and 3D-objects (convex polygons, circles, circular
segments, cuboids, spheres, cylinders, disks, and convex polytopes). They also are
simple enough for some types of rotating objects for which phi-functions could not
be constructed. In particular, we find convenient quasi-phi-functions for ellipses,
and for certain 3D-objects including, so-called, spherocylinders, spherocones. The
use of quasi-phi-functions allows us to handle new types of objects, but there is
a price to pay: now the optimization has to be performed over a larger set of
parameters, including the extra variables used by our new functions. To demonstrate
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high efficiency of our quasi-phi-functions we consider two practical problems of
packing a collection of ellipses into a rectangular container of minimal area as
well as packing a collection of given 3D-objects (cuboids, spheres, spherocylinders,
spherocones) into a cuboid container of minimal height. We derive here quasi-phi-
functions to describe non-overlapping and containment constraints for appropriate
pairs of rotating objects and develop efficient optimization algorithms. In this
chapter the reader will find theoretical results presented in our works [33, 34].

The chapter is organized as follows: in Sect. 13.2 we define our new quasi-
phi-functions for an analytical description of non-overlapping, containment, and
distance constraints; we also discuss their general properties. In Sect. 13.3 we
define quasi-phi-functions for certain types of convex 2D- and 3D-objects needed in
applications. In Sect. 13.4 we formulate a basic optimal packing problem, construct
its mathematical model, using our quasi-phi-functions, in the form of a nonlinear
programming problem with nonsmooth functions, and develop a general solution
strategy. In Sect. 13.5 we formulate the optimal packing problem of ellipses taking
into account continuous ellipse rotations and distance constraints as a continuous
nonlinear programming problem with smooth functions; describe the algorithm
to search for “good” local optimal solutions for the problem which involves a
fast starting point and efficient local optimization procedures. In Sect. 13.6 we
formulate the optimal packing problem of 3D-objects, including spherocylinders
and spherocones, and based on characteristics of its mathematical model, describe
an efficient solution algorithm, using local and global optimization methods. We
provide some computational results of several instances for 2D- and 3D-optimal
packing problems, illustrated with pictures, in Sect. 13.7, and finish with some
concluding remarks in Sect. 13.8.

13.2 Quasi-Phi-Functions and Their Properties

Let A � Rd and B � Rd be closed phi-objects, d D 2; 3; one can find a precise
definition of phi-objects, e.g., in [26, 27]. We assume that at least one of these
objects is bounded. Position of the object A is defined by a vector of placement
parameters (vA, �A), where vA is a translation vector and �A is a vector of rotation
parameters: for 2D object vA D .xA; yA/ and �A is a rotation angle; for 3D-object
vA D .xA; yA; zA/ and �A D �

�z; �x; �y
�
, where � z, � x, � y are rotation angles,

respectively: from axis OX to OY, from axis OY to OZ and from axis OX to OZ.
We denote the vector of variables for the object A by uA D .vA; �A/ and the vector
of variables for the object B by uB D .vB; �B/. The object A, rotated by angles
� z, � x, � y (in this order), translated by vector vA, will be denoted by A(uA).

Definition 1 A continuous and everywhere defined function ˚ 0AB(uA, uB, u 0)
is called a quasi-phi-function for two phi-objects A(uA) and B(uB) if max

u02U

ˆ0AB
.uA; uB; u0/ is a phi-function ˚AB(uA, uB) for the objects. Here u0 is a vector of
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auxiliary variables, that takes values in some domain U � Rn (which may depend
on the shapes of objects A and B).

The concept of quasi-phi-functions and basic characteristics of quasi-phi-
functions formulated in the form of theorems are introduced in [33].

We emphasize that according to the definition, a quasi-phi-function ˚ 0AB for a
pair of objects A and B can be constructed by many different formulas, and we can
choose the most convenient ones for our optimization algorithms.

Next we discuss general properties of quasi-phi-functions. Let ˚ 0AB(uA, uB, u 0)
be a quasi-phi-function for two phi-objects A(uA) and B(uB).

Property 1 If ˆ0AB
.uA; uB; u0/ � 0 for some u0, then int A .uA/ \ int B .uB/ D ¿.

Here int A denotes the topological interior of object A.

Property 2 Let P .uP/ D f.x; y; z/ W  P D ˛ � x C ˇ � y C � � z C �P � 0g be a half-
space (for d D 2 it will be a half-plane; see below); here, uP D �

�xP; �yP; �P
�
, ˛ D

sin �yP; ˇ D sin �xP � cos �yP; � D cos �xP � cos �yP (note ˛2 C ˇ2 C �2 D 1).
If A;B � R2, then P .uP/ D f.x; y/ W  P D ˛ � x C ˇ � y C �P � 0g, where uP D
.�P; �P/ ˛ D cos�P, ˇ D sin�P. Suppose˚AP(uA, uP) is a phi-function for A(uA) and
P(uP) and ˆBP�

.uB; uP/ is a phi-function for B(uB) and P� .uP/ D Rdn int P .uP/,
d D 2; 3.

Then a function defined by

ˆ0AB
.uA; uB; uP/ D min

n
ˆAP .uA; uP/ ; ˆ

BP�

.uB; uP/
o
; (13.1)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB).
Here u0 D uP.

Property 3 If ˚ 0AP(uA, uP, u’
1) is a quasi-phi-function for A(uA) and P(uP),

ˆ0BP�

.uB; uP; u
0

2/ is a quasi-phi-function for B(uB) and P*(uP), then function

ˆ0AB
�

uA; uB; u
0

�
D min

n
ˆ0AP

�
uA; uP; u

0

1

�
; ˆ0BP�

�
uB; uP; u

0

2

�o
; (13.2)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB). Here u0 D
.uP; u

0

1; u
0

2/.

We adapt the concept of quasi-phi-functions to model distance constraints. To
this end we define normalized and adjusted quasi-phi-functions [33], based on
similar terms for phi-functions [27].

Let dist .A;B/ D min
a2A;b2B

d .a; b/, where d(a, b) stands for the Euclidean distance

between points a; b 2 Rd, d D 2; 3, and let �� > 0 denote minimal allowable
distances between objects A(uA) and B(uB).
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We remind the reader that by definition (see for instance [27]) a phi-function
Q̂ AB .uA; uB/ for objects A(uA) and B(uB) is said to be a normalized phi-function if
Q̂ AB .uA; uB/ D dist .A .uA/ ;B .uB// whenever int A .uA/ \ int B .uB/ D ¿.

Definition 2 A quasi-phi-function Q̂ 0AB
.uA; uB; u0/ is called a normalized quasi-

phi-function for objects A(uA) and B(uB), if function max
u02U

Q̂ 0AB
.uA; uB; u0/ is a

normalized phi-function.

Thus, max
u02U

Q̂ 0 AB � �� () dist .A;B/ � ��.

Definition 3 Function
_

ˆ

0 AB

.uA; uB; u0/ is called an adjusted quasi-phi-function for

objects A(uA) and B(uB), if function max
u02U

_

ˆ

0 AB

.uA; uB; u0/ is an adjusted phi-function.

Thus, max
u02U

_

ˆ

0 AB

� 0 () dist .A;B/ � ��.

Let Q̂ AP .uA; uP/ ; Q̂ BP�

.uB; uP/ be normalized phi-functions. Assume

ˆ0AB
.uA; uB; uP/ D min

n Q̂ AP .uA; uP/ ; Q̂ BP�

.uB; uP/
o
:

Then a quasi-phi-function

Q̂ 0AB
.uA; uB; uP/ D 2ˆ0AB

.uA; uB; uP/ ; (13.3)

is a normalized quasi-phi-function, and a quasi-phi-function

_

ˆ0AB
.uA; uB; uP/ D ˆ0AB

.uA; uB; uP/ � 0:5��; (13.4)

is an adjusted quasi-phi-function.

13.3 Construction of Quasi-Phi-Functions

Here we derive quasi-phi-functions for certain 2D- and 3D-objects, based on our
general formulas (13.1)–(13.3).

A quasi-phi-function for convex polygons. Let K1(u1) and K2(u2) be convex poly-
gons, given by their vertices p1i ; i D 1; ::::;m1, and p2i ; i D 1; ::::;m2, respectively.
Then ˆK1P .u1; uP/ D min

1�i�m1
 P

�
p1i

�
and ˆK2P .u2; uP/ D min

1�i�m2

�� P
�
p2i

��
are

phi-functions for K1(K2) and P(P*), respectively.
Now the function

ˆ0K1K2 .u1; u2; uP/ D min
n
ˆK1P .u1; uP/ ; ˆ

K2P�

.u2; uP/
o
; (13.5)

is a quasi-phi-function for K1(u1) and K2(u2).
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Note that function 2ˆ0K1K2 .u1; u2; uP/ is a normalized quasi-phi-function.
An adjusted quasi-phi-function for K1(u1) and K2(u2) is defined by

_

ˆ

0K1K2

.u1; u2; uP/ D min
n
ˆK1P .u1; uP/ ; ˆ

K2P�

.u2; uP/
o

� 0:5��: (13.6)

A quasi-phi-function for a convex polygon K(u1) and a circle C(u2). Let K(u1) be a
convex polygon given by its vertices pi; i D 1; ::::;m. Let pC and rC be the center
and radius of circle C(u2). Then ˆKP .u1; uP/ D min

1�i�m
 P .pi/ and ˆCP�

.u2; uP/ D
� P .pC/ � rC are phi-functions.

Now a quasi-phi-function for K(u1) and C(u2) may be defined as:

ˆ0CK
.u1; u2; uP/ D min

n
ˆKP .u1; uP/ ; ˆ

CP�

.u2; uP/
o
: (13.7)

It should be noted that function 2˚ 0CK(u1, u2, uP) is a normalized quasi-phi-
function.

Quasi-phi-functions defined by (13.5)–(13.7) can be applied to convex polytopes
and spheres.

A quasi-phi-function for circular segments D1(u1) and D2(u2). Let D1 .u1/ D
T1 .u1/ \ C1 .u1/, D2 .u2/ D T2 .u2/ \ C2 .u2/ be two circular segments, where
T1(u1) (T2(u2)) denotes a triangle given by its vertices p1

i (p2
i ), i D 1; 2; 3 (we note

that two sides of T have to be tangents to C and one side is a chord of C) and
p1C D .x1; y1/ (p2C D .x2; y2/) and r1

C (r2
C) denote the center and radius of C1(u1)

(resp., C2(u2)). Then, following (13.1), a quasi-phi-function for D1(u1) and D2(u2)
may be defined by

ˆ0D1D2 .u1; u2; uP/ D min
n
ˆD1P .u1; uP/ ; ˆ

D2P�

.u2; uP/
o
; (13.8)

where ˆD1P .u1; uP/ D max
˚
ˆT1P; ˆC1P

�
; ˆD2P�

.u2; uP/ D max
n
ˆT2P�

; ˆC2P�

o
,

are phi-functions, andˆT1P .u1; uP/ D min
iD1;2;3 P

�
p1i

�
; ˆC1P .u1; uP/ D  P

�
p1C

��r1C,

ˆT2P�

.u2; uP/ D min
iD1;2;3

�� P
�
p2i

��
, ˆC2P�

.u2; uP/ D � P
�
p2C

� � r2C.

We can define a quasi-phi-function for D1(u1) and D2(u2) using formula (13.2)

ˆ0D1D2 �
u1; u2; u

0� D min
n
ˆ0D1P

�
u1; uP; u

0

1

�
; ˆ0D2P�

�
u2; uP; u

0

2

�o
;

where u0 D
�

uP; u
0

1; u
0

2

�
, u

0

1 2 Œ0; 1� � R1, u
0

2 2 Œ0; 1� � R1.

To this end, first, we construct quasi-phi-functions ˆ0D1P
�

u1; uP; u
0

1

�
and

ˆ0D2P�

�
u2; uP; u

0

2

�
. Let ˆC1P .u1; uP/ be a phi-function for C1(u1) and P(up).

We introduce function
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ˆ0D1P
�

u1; uP; u
0

1

�
D min

n
 P

�
p11

�
;  P

�
p12

�
; �1

�
u1; uP; u

0

1

�o
;

�1

�
u1; uP; u

0

1

�
D  P

�
p13

� � u
0

1 P
�
p13

� C u
0

1ˆ
C1P .u1; uP/ ;

where u
0

1 2 Œ0; 1� � R1, p1
i , i D 1; 2, are the endpoints of the chord of D1(u1).

By analogy we have

ˆ0D2P
�

u2; uP; u
0

2

�
D min

n
� P

�
p21

�
;� P

�
p22

�
; �2

�
u2; uP; u

0

2

�o
;

�2

�
u2; uP; u

0

2

�
D � P

�
p23

� � u
0

2

�� P
�
p23

�� C u
0

2ˆ
C2P�

.u2; uP/ ;

where u
0

2 2 Œ0; 1� � R1, p2
i , i D 1; 2, are the endpoints of the chord of D2(u2).

The a quasi-phi-function defined by (13.8) may be adapted to a pair of spherical
segments defined as intersections of right circular cones with solid spheres.

A quasi-phi-function for ellipses. Let E1(u1) and E2(u2) be two ellipses with semi-
axes ai and bi, ai > bi i D 1; 2.

Then, a quasi-phi-function for E1(u1) and E2(u2) may be defined as follows:

ˆ0E1E2 �
u1; u2; u

0� D min
˚
�

�
�1; �2; u

0� ; �C �
u1; u2; u

0� ; �� �
u1; u2; u

0�� ; (13.9)

where �1 and �2 are rotation angles and u
0 D .t1; t2/ is a vector of auxiliary

parameters, 0 � ti � 2� , i D 1; 2; functions �; �C; �� are defined below.
The parameter ti specifies a point on ellipse Ei. In the local coordinate system of

ellipse Ei that point is
�
xt

i; y
t
i

� D .ai cos ti; bi sin ti/, and after rotation and translation

its coordinates are
�

x
0

i ; y
0

i

�
D vi C M .�i/ � �xt

i; y
t
i

�
, where M(� ) denotes the standard

rotation matrix, vi D .xi; yi/ is a translation vector of Ei.

Now we define the three functions mentioned in (13.9): � D �
D
N

0

1;N
0

2

E
,

where N
0

i D
�
˛

0

i ; ˇ
0

i

�
D M .�i/ .˛i; ˇi/, ˛i D cos ti

ai
; ˇi D sin ti

bi
; �˙ D

 1
�
x2̇ � x1; y2̇ � y1

� D ˛
0

1

�
x2̇ � x1

� C ˇ
0

1

�
y2̇ � y1

� � 1, where
�
x2̇ ; y2̇

�
are

coordinates of two points q2̇ on the second tangent line,
�
x2̇ ; y2̇

� D
�

x
0

2; y
0

2

�
˙

	
�
�ˇ0

2; ˛
0

2

�
, 	 D .a2/

2, hN 0

1, N
0

2i is a scalar product of vectors N
0

1 and N
0

2.

Alternatively, a quasi-phi-function for E1(u1) and E2(u2) may be defined accord-
ing to (13.2):

ˆ0E1E2 �
u1; u2; u

0� D min
n
ˆ0E1P

�
u1; uP; u

0

1

�
; ˆ0E2P�

�
u2; uP; u

0

2

�o
:
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It remains to define a quasi-phi-function for an ellipse E(uE) and a half-plane
P(uP). This can be done as follows:

ˆ0EP
.uE; uP; t/ D min

˚
� .�E; �P; t/ ;  

C
P .uE; uP; t/ ;  

�
P .uE; uP; t/

�
; (13.10)

where uP D .�P; �P/, 0 � t � 2� is auxiliary parameter.
Here the half-plane is defined by  P .x; y/ D ˛Px C ˇPy C �P � 0, where

˛ D cos�P, ˇ D sin�P.
Note that NP D .˛P; ˇP/ is the corresponding outer normal vector for the half-

plane. For ellipse E(uE) we adopt our previous formulas introduced for E2(u2),

i.e. N
0

2 D
�
˛

0

2; ˇ
0

2

�
and

�
x2̇ ; y2̇

�
, we just replace the subscript 2 with E in those

formulas. Thus  Ṗ

�
xĖ ; yĖ

� D ˛PxĖ C ˇPyĖ C �P � 0: Lastly we define

� D �
D
NP;N

0

E

E
, which completes our construction of (13.10), here hNP, N’

Ei is a

scalar product of vectors NP and N’
E.

Now let a minimal allowable distance between two ellipses E1 and E2 be given,

we denote it by ��. Assume that
_

ˆ0E1P
.u1; uP/ ;

_

ˆ0E2P�

.u2; uP/ are adjusted quasi-

phi-functions provided that max
uP2U

_

ˆ0E1P
.u1; uP/ � 0 if dist .E1;P/ � 0:5�� and

max
uP2U

_

ˆ0E2P�

.u2; uP/ � 0 if dist .E2;P�/ � 0:5��. Then

_

ˆ0E1E2 .u1; u2; uP/ D min

�
_

ˆ0E1P
.u1; uP/ ;

_

ˆ0E2P�

.u2; uP/

�
; (13.11)

is an adjusted quasi-phi-function for distance constraint dist .E1;E2/ � ��.
A quasi-phi-function for ellipse E(u1) and the complement of the interior of ˝
Let E(u1) be an ellipse with variable parameters u1 D .x1; y1; �1/, and let ˝ be a

rectangular container with vertices p1 D .0; 0/, p2 D .l; 0/, p3 D .l;w/, p4 D .0;w/.
We denote 
� D R2n int
.

Then a quasi-phi-function for E and ˝* may be defined as

ˆ
0 E
�

�
u1; t

0

1; t
0

2

�
D min

n
'11 .p1/ ; '11 .p2/ ; '12 .p3/ ; '12 .p4/ ; '21 .p2/ ;

'21 .p3/ ; '22 .p1/ ; '22 .p4/
o
; (13.12)

where t
0

2
¤ t

0

1
2 Œ0; 2��, '11 D A1x C B1y C C1 � 1, '12 D �A1x � B1y � C1 � 1,

A1 D ˛1 � cos �1 Cˇ1 � sin �1, B1 D �˛1 � sin �1 Cˇ1 � cos �1, ˛1 D cos t
0

1

a ; ˇ1 D sin t
0

1

b ,
C1 D �A1x1 � B1y1, '21 D A2x C B2y C C2 � 1, '22 D �A2x � B2y � C2 � 1,
A2 D ˛2 � cos �2 C ˇ2 � sin �2, B2 D �˛2 � sin �2 C ˇ2 � cos �2, C2 D �A2x2 � B2y2,

˛2 D cos t
0

2

a ; ˇ2 D sin t
0

2

b .
Let a minimal allowable distance �� between an ellipse E(u1) and the frontier of

the rectangle ˝ be given. Then function
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_

ˆ
E
�

.u1; t
0

1; t
0

2/ D min
n
'11

�
p�
1

�
; '11

�
p�
2

�
; '12

�
p�
3

�
; '12

�
p�
4

�
;

'21
�
p�
2

�
; '21

�
p�
3

�
; '22

�
p�
1

�
; '22

�
p�
4

� o
;

(13.13)

is an adjusted quasi-phi-function enforcing the distance constraint dist .E1;
�/ �
��, where p�

i
; i D 1; 2; 3; 4 are vertices of region 
� ˚ C .��/, C .��/ is circle

of radius ��, i.e. p�
1

D .��; ��/, p�
2

D .l � ��; ��/, p�
3

D .l � ��;w � ��/,
p�
4

D .��;w � ��/, ˚ is a symbol of Minkovski sum [35].

A quasi-phi-function for two spherocones
_

T1 and
_

T2. Further a convex object
_

T we call a spherocone, if
_

T D D1 [ T [ D2, where: T is a truncated cone of
height 2e, with radius r1 of the upper base and radius r2 of the lower base, r1 � r2;

Dk is a spherical segment of sphere Sk of radius Rk D r2k C$2
k

2$k
; k D 1; 2, D1 is an

upper spherical segment of height«1 and the base radius r1; D2 is a lower spherical
segment of height «2 and the base radius r2.

A quasi-phi-function for spherocones
_

T1 .u1/ and
_

T2 .u2/ can be derived as

ˆ
0

_
T1

_
T2

�
u1; u2; up

� D min

�
ˆ
_
T1P

�
u1; up

�
; ˆ

_
T2P� �

u2; up
��
; (13.14)

where ˆ
_
T1P and ˆ

_
T2P� are phi-functions for objects

_

T1 and P, and objects
_

T2 and
P* respectively. Now we define

ˆ
_
T1P

�
u1; up

� D min
˚
ˆD11P

�
u1; up

�
; ˆD12P

�
u1; up

��
; (13.15)

ˆ
_
T2P� �

u2; up
� D min

˚
ˆD21P� �

u2; up
�
; ˆD22P� �

u2; up
��
; (13.16)

where ˆD11P
�
u1; up

�
; ˆD12P

�
u1; up

�
, ˆD21P� �

u2; up
�
; ˆD22P� �

u2; up
�

are phi-
functions for D11 (or D12) and P, and for D21 (or D22) and P*, respectively.

It remains to define a phi-function for a spherical segment D .u1/ and a half-space
P(uP). This can be done as follows:

ˆDP
�
u1; up

� D max
˚
min

˚
�1

�
u1; up

�
; �3

�
u1; up

��
; �2

�
u1; up

��
; (13.17)

where �1
�
u1; up

� D  pCe�p�r
q
1 � �2p ; �2

�
u1; up

� D  p�RCq�p; �p D ˛sin�yp �
ˇsin�xp cos�yp C �cos�xp cos �yp , q D e C$ � R, �3

�
u1; up

� D  p C
�

e C r2

e�q

�
�p:

By analogy, replacing  p by � p, we can derive a phi-function for a spherical
segment D .u2/ and a half-space P*(uP).

Remark By altering the values of the sizes of
_

T we can obtain the following shapes

of 3D-objects: spherocylinder
_

C if r1 D r2; truncated cone T if $1 D $2 D 0;
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circular cylinder C if r1 D r2 and $0
1i D $0

2i D 0; cone bT if r1 D $1 D $2 D 0;
spherical segment D if r2 D $2 D e D 0 or r1 D $1 D e D 0; spherical disk E if
e D 0 and r1 D r2.

Based on the quasi-phi-function for spherocones defined by relations (13.14)–
(13.17) we can derive the following quasi-phi-functions:
for spherical segments D1 and D2

ˆ
0
D1D2

�
u1; u2; up

� D min
˚
ˆD1P

�
u1; up

�
; ˆD2P� �

u2; up
�� I (13.18)

for truncated cones T1 and T2

ˆ
0
T1T2

�
u1; u2; up

� D min
�
�111

�
u1; up

�
; �121

�
u1; up

�
;

�211
�
u2; up

�
; �221

�
u2; up

��
; (13.19)

where �i
1j and �i

2j, i; j D 1; 2, are defined as �1 and �2 in (13.17);
for cones T1 and T2

ˆ0T1T2 �
u1; u2; up

� D min
˚
�111

�
u1; up

�
;  p .bp1/ ; �

2
11

�
u2; up

�
;  p .bp2/

�
; (13.20)

wherebpi D ��ei cos �xisin�yi; ei sin �xi; eicos�xi cos �yi
�
, i D 1; 2:

A quasi phi-function ˆ
0
C1C2 for cylinders C1 and C2 may be defined by formula

(13.19).
Using (13.5) and (13.16), we define a quasi phi-function for cuboid K1 and

spherocone
_

T2 in the form

ˆ
0
K1T2

�
u1; u2; up

� D min
˚
ˆK1P

�
u1; up

�
; ˆT2P� �

u2; up
��
:

We refer the reader to papers [33] and [34] for details of construction of the quasi-
phi-functions mentioned above.

13.4 A Mathematical Model and a General Solution Strategy

We consider here a packing problem in the following setting. Let a collection of
objects Oi � Rd, i 2 f1; 2; : : : ; ng D In; d D 2; 3, be given. And let ˝ denote a
rectangle of length l and width w in two-dimensional case, and a cuboid of length
l, width w and height 	 in three-dimensional case. Each of the sizes of ˝ may be
variable. We denote an objective function by F.
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We assemble a complete set of variables for our optimization problem. We
denote: the vector of variable sizes of container ˝ by u˝ ; the vector of placement
parameters of object Oi by ui, i 2 In; the vector of all additional variables, taken
from quasi-phi-functions (13.5)–(13.20), by � .

Thus, a vector of all our variables can be described as follows: u D
.u
; u1; u2; : : : ; un; �/ 2 R
 , where R
 denotes the ¢-dimensional Euclidean space.

Optimal packing problem. Pack the set of objects Oi, i 2 In, into a given container
˝ taking into account distance constraints, such that objective function F will reach
its minimal value.

A mathematical model of the optimal packing problem may now be stated in the
form:

min F.u/; s:t: u 2 W � R
 (13.21)

W D
�

u 2 R
 W _ˆ
0

ij � 0; i < j 2 In;
_

ˆ

0

i � 0; i 2 In

�
; (13.22)

where
_

ˆ

0

ij is an adjusted quasi-phi-function derived for the pair of objects Oi

and Oj, taking into account minimal allowable distance ��
ij ,

_

ˆ

0

i is an adjusted (or
normalized) phi-function derived for objects Oi and 
� D Rdn int
 (to hold the
containment constraint), also taking into account minimal allowable distance ��

i . If

��
ij D 0; then we replace an adjusted quasi-phi-function

_

ˆ

0

ij by a quasi-phi-function

˚ ’
ij for objects Oi and Oj; as well as an adjusted quasi-phi-function

_

ˆ

0

i – by a quasi-
phi-function ˚ ’

i (or a phi-function ˚ i) for objects Oi and ˝�.
Our problem (13.21)–(13.22) is NP-hard, in general, nonlinear programming

problem with nonsmooth functions. The feasible region W defined by (13.22)
has a complicated structure: it is, in general, a disconnected set, each connected
component of W is multiconnected, the frontier of W is usually made of nonlinear
surfaces containing valleys, ravines. A matrix of the inequality system which
specifies W is strongly sparse and has a block structure. The feasible region W is
specified by a system of nonlinear inequalities with piecewise continuously differen-
tiable functions (quasi-phi-functions or phi-functions), which involve operations of
maximum and minimum of smooth functions. This means that the feasible region W
can be represented as a finite union of subregions Ws, s D 1; : : : ; 	. Each subregion
Ws is described by a system of inequalities with smooth functions. Now we may
reduce the problem (13.21)–(13.22) to the following optimization problem:

F
�
u�� D min

˚
F

�
us��

; s D 1; : : : ; 	
�
;

where F .us�/ D min
u2Ws

F.u/ is a nonlinear programming problem with smooth

functions.
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To solve the problem (13.21)–(13.22) we use the strategy, which employs the
following optimization procedures:

1. Generation of a starting point from the feasible region of the problem (13.21)–
(13.22). To this aim we use the starting point algorithm (SPA), based on
homothetic transformations of geometric objects.

2. Search for a local minimum of the objective function F(u) of problem (13.21)–
(13.22) by means of the Local Optimization with Feasible Region Transfor-
mation (LOFRT) procedure. The LOFRT procedure considerably reduces the
dimension of the optimal packing problem, the number of inequalities in (13.22),
as well as, the computational time.

3. Non-exhaustive search of local minima to get “good” local optimal solution of
the problem (13.21)–(13.22).

Now we consider two practical problems: (1) packing of a set of ellipses into a
rectangular container of minimal area; (2) packing of a set of certain 3D-objects
into a cuboid container of minimal height. We use quasi-phi-functions defined
in Sect. 13.3 for appropriate pairs of rotating objects in model (13.21)–(13.22)
and, following the general solution strategy given above, we describe efficient
optimization algorithms based on characteristics of our problems.

13.5 Application of Quasi-Phi-Functions for Optimal
Packing of Ellipses

In the subsection we follow work [33]. Suppose a set of ellipses Ei, i 2 In, is given
to be placed in a rectangular container 
 D ˚

.x; y/ 2 R2 W 0 � x � l; 0 � y � w
�
.

Each ellipse Ei is defined by its semi-axes ai and bi, whose values are fixed. With
each ellipse Ei we associate its eigen coordinate system whose origin coincides with
the center of the ellipse and the coordinate axes are aligned with the ellipse’s axes.
In that system the ellipse is described by parametric equations x D a cos t, y D b sin
t, 0 � t � 2 . Continuous ellipse rotations and translation are allowed. In addition,
minimal allowable distance ��

ij between two ellipses Ei and Ej, as well as between
ellipse Ei and the frontier of container 
 may be given.

Optimal ellipse packing problem. Pack the set of ellipses Ei, i 2 In, into a
rectangular container 
 of minimal area taking into account distance constraints.

It should be noted that one of the dimensions (l or w) may be fixed.
Our approach, which is based on quasi-phi-functions, is capable of handling

precise ellipses (without approximations) and thus finding an exact local optimal
solution. The only other method of that sort was developed in [23]. The paper
is entirely devoted to the problem of cutting ellipses from a rectangular plate of
minimal area. It offers a good overview of related publications. The key idea of [23],
just like ours, is to use separating lines to ensure that the ellipses do not overlap with
each other. But their implementation of this idea is technically different. For a small
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number of ellipses they are able to compute a globally optimal solution subject to the
finite arithmetic of global solvers at hand. However, for more than 14 ellipses none
of the nonlinear programming (NLP) solvers available in GAMS can even compute a
locally optimal solution. The authors of [23] develop a heuristic approach, in which
the ellipses are added sequentially in a strip of a given width and variable length.
The algorithm allows the authors to compute good solutions for up to 100 ellipses.

In order to compare the performance of the two methods, we applied our
algorithm to some instances of the ellipse packing problem as used in [23] (see
Sect. 13.7.1).

The vector u D .u
; u1; u2; : : : ; un; �/ of all variables in the ellipse packing
problem is defined as follows: u
 D .l;w/ contains the variable length and width
of rectangular container ˝; ui D .xi; yi; �i/ contains placement parameters of
ellipse Ei, i 2 In; vector of additional variables � now is defined as follows:
� D .t; uP/, if minimal allowable distances are specified and � D .t/, if there are no

distance constraints. Here t D
�

t1
1
; t1
2
; : : : ; tm

1
; tm
2
; t

01
1
; t

01
2
; : : : ; t

0n
1
; t

0n
2

�
, where tk

1
; tk
2

are

additional variables for the kth pair of ellipses, according to (13.9), k D 1; : : : ;m,
m D .n�1/n

2
, and t

0i
1

, t
0i
2

are additional variables for each ellipse Ei, i 2 In, according
to (13.12). If minimal allowable distances are specified, we have to use adjusted
quasi-phi-functions (13.11) and (13.13), instead of quasi-phi-functions (13.9) and
(13.12). In that case uP D �

u1
P
; : : : ; um

P

�
; uk

P
D �

� k
P
; �k

P

�
.

We define the number of the problem variables 
 D 2C 3n C n .n � 1/C 2n D
n2C4nC2 if there are no distance constraints, and 
 D 2C3nC2n .n � 1/C2n D
2n2 C 3n C 2 if minimal allowable distances are given.

In mathematical model (13.21)–(13.22) for ellipse packing problem we set:

F.u/ D l � w,
_

ˆ

0

ij is an adjusted quasi-phi-function (13.11) defined for the pair of

ellipses Ei and Ej, taking into account minimal allowable distance ��
ij ,

_

ˆ

0

i is an
adjusted quasi-phi-function (13.13) defined for the ellipse Ei and the object ˝� (to
hold the containment constraint), taking into account minimal allowable distance

��
i . If ��

ij D 0 and ��
i D 0; we replace an adjusted quasi-phi-function

_

ˆ

0

ij by a
quasi-phi-function ˚ ’

ij defined by (13.9) for each pair of ellipses to enforce the non-

overlapping constraint and
_

ˆ

0

i with quasi-function ˚ ’
i defined by (13.12) for each

ellipse and the domain ˝� to enforce the containment constraint.
Due to the forms of quasi-phi-functions in (13.9)–(13.13), the solution space W is

now described by a system of inequalities with smooth functions, therefore problem
(13.21)–(13.22) becomes a multiextremal nonlinear programming problem.

We follow here the solution strategy introduced in Sect. 13.4.
It is due to the LOFRT procedure our strategy can process large sets of non-

identical ellipses (100 and more, see examples below). The reduction scheme used
by our LOFRT algorithm is described below.
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13.5.1 Starting Point Algorithm for Optimal Ellipse
Packing Problem

In order to find a starting point u0 that belongs to the feasible region W we
apply the following algorithm based on homothetic transformation of ellipses. We
assume here that homothetic coefficients hi are variable provided that hi D h, for
i D 1; 2; : : : ; n, and 0 � h � 1.

The algorithm consists of the following steps:

1. First we choose starting length and width for the container ˝0. They must
be sufficiently large to allow for a placement of all our ellipses with required
distance constraints within ˝0. For example, we can choose l0 D w0 D
2

nX

iD1
ai C .n � 1/ ��, �� D max

i;j2In

��
ij .

2. Then we set h D h0 D ı=max ai
i

, where ı D 0:01

	
min

i
bi



.

3. Then we generate randomly, within ˝0, a set of n non-overlapping equal circles
of radius ı with randomly chosen centers

�
x0i ; y

0
i

�
; i 2 In.

4. Next we generate, randomly, a set of rotation parameters �0i 2 Œ0; 2�/, i 2 In.
5. Then we find starting values for the additional variables �0 by a special

optimization procedure that solves auxiliary problems of finding max
u

0

i 2R2
ˆi

0
�

u0i ; u
0

i

�

(or max
u

0

i 2R2

_

ˆ0
i

�
u0i ; u

0

i

�
) and max

u
0

ij2R2
ˆij

0
�

u0i ; u
0
j ; u

0

ij

�
(or max

u
0

ij2R4

_

ˆ0
ij

�
u0i ; u

0
j ; u

0

ij

�
) for each

quasi-phi-function (or, respectively, an adjusted phi-function) that is involved in
(13.22), under fixed parameters ui D �

x0i ; y
0
i ; �

0
i ; �

0
�

for each ellipse.
To solve the above auxiliary problems we use the following model:

max �; s:t: u0 2 W
0

�;

where W
0

� D
n
.u0; �/ W ˆ0

�
u0; u

0

�
� �

o
, � 2 R1 is a new auxiliary variable, func-

tion ˚ 0(u0, u
0

) may take form of ˚
0

i(u
0
i , u

0

i) (or
_

ˆ0
i

�
u0i ; u

0

i

�
) and ˚

0

ij(u
0
i , u0

j , u’
ij)

(or
_

ˆ0
ij

�
u0i ; u

0
j ; u

0

ij

�
), u’ is the vector of auxiliary variables and u0 is the vector

of fixed parameters for our quasi-phi-functions (respectively, adjusted phi-
functions).

Thus all our quasi-phi-functions (or normalized quasi-phi-functions) at the
point u0 D �

l0;w0; u01; u
0
2; : : : ; u

0
n; �

0
�

take non-negative values, where �0 D �
t0

�

(or, respectively, �0 D �
t0; u0P

�
).

6. Now we take the starting point u0 under fixed l D l0 and w D w0, and solve the
following optimization problem:

max h; s:t: u0 2 W
0

; (13.23)
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W
0D

�
u02R
C1 W _ˆ

0

ij � 0; i<j2In;
_

ˆ

0

i � 0; i2In;

lDl0;wDw0; 0 � h � 1

�
; (13.24)

where u
0 D .u; h/ denotes an extended vector of variables and u denotes the

original vector of variables for the problem (13.21)–(13.22).
We note that if an optimal global solution is found, then h D 1. The solution

automatically respects all the non-overlapping and containment constraints.

Thus, the point u
00 D

�
l0;w0; u

00
1 ; u

00
2 ; : : : ; u

00
n ; �

00; 1
�

of global maximum of

the problem (13.23)–(13.24) guarantees that point u0 D .l0;w0; u
00
1 ; u

00
2 ; : : : ; u

00
n ;

�
00/ belongs to feasible region W of problem (13.21)–(13.22).

It should be noted that our algorithm by construction always finds the global
solution of the problem (13.21)–(13.22). It is clear that the optimal solution of
the above problem will automatically comply with all the non-overlapping and
containment constraints.

7. Lastly, our algorithm returns the vector u0 D
�

l0;w0; u
00
1 ; u

00
2 ; : : : ; u

00
n ; �

00
�

as

a starting point for a subsequent search for a local minimum of the problem
(13.21)–(13.22).

13.5.2 Algorithm of Local Optimization with Feasible Region
Transformation in the Optimal Ellipse Packing Problem

Let u.0/ 2 W be one of the starting points found by the previous method. The main
idea of the LOFRT algorithm consists in the following.

First we circumscribe a circle Ci of radius ai around each ellipse Ei, i D
1; 2; : : : ; n. Then for each circle Ci we construct an “individual” rectangular
container 
i � Ci � Ei with equal half-sides of length ai C ", i 2 In, so that
Ci, Ei and ˝ i have the same center (x0

i , y0
i ) subject to the sides of ˝ i being parallel

to those of ˝. Here " is a predefined fixed constant.
Further we fix the position of each individual container ˝ i and let the local

optimization algorithm move the corresponding ellipse Ei only within the container
˝ i. It is clear that if distance between two individual containers ˝ i and ˝ j exceeds

��
ij (i.e.

_

ˆ

i
j � 0), then we do not need to check the distance constraint for the

corresponding pair of ellipses Ei and Ej.
The above key idea allows us to extract subregions of our feasible region W of

the problem (13.21)–(13.22) at each step of our optimization procedure as follows.
We create an inequality system of additional constraints on the translation

vector vi of each ellipse Ei in the form: ˆCi

�

i � 0, i 2 In, where ˆCi

�

i D
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min
˚�xi C x0i C ";�yi C y0i C "; xi � x0i C "; yi � y0i C "

�
is the phi-function for

the circle Ci and 
�
i D R2n int
i.

The inequality ˆCi

�

i � 0 is equivalent to the system of four linear inequalities
�xi C x0i C " � 0, �yi C y0i C " � 0, xi � x0i C " � 0, yi � y0i C " � 0.

Then we form a new region defined by

W1 D
�

u 2 R
�
1 W _ˆ
0

ij � 0; .i; j/ 2 „1;
_

ˆ

0

i � 0;ˆCi

�

i � 0; i 2 In

�
;

where „1 D ˚
.i; j/ W ˆ
i
j < 0; i < j 2 In

�
.

In other words, we delete from the system, which describes W, such quasi-
phi-function inequalities for all pairs of ellipses whose individual containers do
not overlap and we add additional inequalities ˆCi


�

i � 0, which describe the
containment of the circles Ci in their individual containers ˝ i, i 2 In. Thus, we
reduce the number of additional variables by 
1. Then our algorithm searches for a
point of local minimum u�

w1 of the subproblem

min F .uw1 / s:t: uw1 2 W � R
�
1 :

When the point u�
w1 is found, it is used to construct a starting point u(1) for the

second iteration of our optimization procedure (note that the 
1 previously deleted
additional variables �1 have to be redefined by a special procedure used in SPA; see
step 5, assuming h0 D 1).

At that iteration we again identify all the pairs of ellipses with non-overlapping
individual containers, form the corresponding subregion W2 (analogously to W1)
and let our algorithm search for a local minimum u�

w2 2 W2. The resulting local
minimum u�

w2 is used to construct a starting point u(2) for the third iteration, etc.

We stop our iterative procedure when F
�
u�

wk

� D F
�

u�
wkC1

�
, where u�

wk
is a point

of local minimum of the problem

min F .uwk/ s:t: uwk 2 W � R
�
k ;

where Wk D
�

u 2 R
�
k W _ˆ
0

ij � 0; .i; j/ 2 „k;
_

ˆ

0

i � 0;ˆCi

�

ki � 0; i 2 In

�
, and

„k D ˚
.i; j/ W ˆ
ki
kj < 0; i < j 2 In

�
.

We claim that the point u� D u.k/� D �
u�

wk
; �k

� 2 R
 is a point of local minimum
of the problem (13.21)–(13.22), where u�

wk
2 R
�
k is the last point of our iterative

procedure and �k 2 R
k is a vector of the previously deleted additional variables
(the variables can be redefined by the special procedure used in SPA; see step 5).
The assertion comes from the fact that any arrangement of each pair of ellipses
Ei and Ej subject to .i; j/ 2 „n„k guarantees that there always exists a vector � k

of additional variables such that
_

ˆ

0

ij � 0; .i; j/ 2 „n„k at the point u(k) *. Here
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„ D f.i; j/ ; i < j 2 Ing. Therefore the values of additional variables of the vector � k

have no effect on the value of our objective function, i.e. F
�
u�

wk

� D F
�
u.k/�

�
. That

is why, indeed, we do not need to redefine the deleted additional variables of the
vector � k at the last step of our algorithm.

So, while there are O(n2) pairs of ellipses in the container, our algorithm may in
most cases only actively controls O(n) pairs of ellipses (this depends on the sizes
of ellipses and the value of "), because for each ellipse only its nearest neighbors
have to be monitored. Thus our LOFRT algorithm allows us to reduce the problem
(13.21)–(13.22) with O(n2) inequalities and a O(n2)-dimensional solution space W
to a sequence of subproblems, each with O(n) inequalities and a O(n)-dimensional
solution subspace Wk. This reduction is of a paramount importance, since we deal
with nonlinear optimization problems.

13.6 An Application of Quasi-Phi-Function for the Optimal
Packing of 3D-Objects

In the subsection we follow work [34]. Let Oi 2
n
P;S;bT;T;C;D;

_

C;
_

T;E
o
, i 2

I D f1; 2; : : : ; ng be a collection of 3D-objects, where I D 9[
jD1Ij, Pi is a cuboid,

i 2 I1 D f1; 2; : : : ; k1 D n1g; Si is a sphere, i 2 I2I bT is a cone, i 2 I3I Ti is a
truncated cone, i 2 I4I Ci is a straight circular cylinder, i 2 I5I Di is a spherical

segment, i 2 I6I
_

Ci is a spherocylinder i 2 I7I
_

Ti is a spherocone, i 2 I8; Ei is
a spherical disk, i 2 I9, where Ij D ˚

kj�1 C 1; kj�1 C 2; : : : ; n D kj�1 C nj
�

for
j D 2; : : : ; 9.

And let 
 D ˚
.x; y; z/ 2 R3 W 0 � x � w; 0 � y � l; 	1 � z � 	2

�
be a container

of height 	 D 	2 � 	1. We denote container ˝ of variable height 	 by ˝(	).
Optimal 3D-object packing problem. Pack the given set of 3D-objects into

container ˝ of the minimal height.
We use mathematical model (13.21)–(13.22). Now the components of vector

u D .u
; q; �/ 2 R
 for the optimal 3D-object packing problem take the form:

u
 D 	 D .	1; 	2/ 2 R2; q D .u1; : : : ; un/ 2 Rm, m D 6n1 C 3n2 C 5

9X

jD3nj;

� D up D �
up12 ; up13 ; : : : ; up1n ; : : : ; up.n�1/n

�
, where upij 2 R3, up 2 R

3n.n�1/
2 . The

number of the problem variables is defined as 
 D 2 C m C 3n.n�1/
2

. We set the
objective function: F .	/ D 	2 � 	1 in problem (13.21)–(13.22). To define the
feasible region W we use: quasi-phi-functions derived in Sect. 13.3 (see formulas
(13.5), (13.7), (13.14)–(13.20)) for non-overlapping constraints and phi-functions
derived in [34] for containment constraints. To solve the problem we follow the
general solution strategy introduced in Sect. 13.4.
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13.6.1 Starting Point Algorithm for the Optimal 3D-Object
Packing Problem

In order to find a starting point u0 that belongs to the feasible region W we apply the
following algorithm based on homothetic transformations of 3D-objects.

The algorithm consists of the following steps:

1. We cover each object Oi by sphere Si of minimal radius <0
i , assuming that local

coordinate systems of Oi and Si coincide, i 2 I. Then we assume that <i, i 2 I,
are variable and form a vector < D .<1;<2; : : : ;<n/.

2. Values of components of vector 	0 D �
	01; 	

0
2

�
are chosen such that Oi � 


�
	0

�

for i 2 I. We suppose that 	0
1, 	0

2 are constants.
3. We take <i D 0; i 2 I; and generate randomly a vector v D .v1; : : : ; vn/, so that
vi 2 
 �

	0
�
, i 2 I. As a result we form a point X˘ D .v;</ D .v; 0/.

4. Taken a starting point X˘ we solve the problem

�1

�
b<

�
D max�1 .</ ; s:t: X D .v;</ 2 W1 � R4n; (13.25)

W1 D
n
X 2 R4n W ˆij

�
vi; vj;<i;<j

� � 0; i < j 2 I; ˆi .vi;<i/ � 0;

'i .<i/ D <0
i � <i � 0;<i � 0; i 2 I

o
;

(13.26)

where �1 .</ D
nX

iD1
<i, ˚ ij(vi, vj, <i, <j) is a phi-function of Si and Sj, ˚ i(vi, <i)

is a phi-function of Si and ˝�. We denote a local minimum point of problem

(13.25)–(13.26) by bX D
�
bv;b<

�
.

5. To construct starting point u� 2 W for problem (13.21)–(13.22): we assume
v� D bv; generate ��

xi
; ��

yi
; ��

zi
2 Œ0; 2��, i 2 I, randomly; define vector u•

p. In order
to derive components u�

pij
of vector u•

p we construct separating planes for each
pair of spheres Si(v•

i ) and Sj(v•
j ), i < j 2 I.

6. If �1
�
b<

�
D

nX

iD1<
0
i ; then point u� D �

	0; q�; u�
p

� 2 W is taken as a starting

point. If �1
�

b<
�
<

nX

iD1<
0
i ; then we use the following optimization procedure

to define a starting point u� 2 W.
Assuming that each object Oi undergo the homothetic transformations with

variable homothetic coefficient hi, i 2 I, we solve the problem

�2
�
h�� D max�2.h/; s:t: u

0 D .u; h/ 2 W2 � R
Cn�2; (13.27)
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W2 D ˚
u0 2 R
Cn�2 W ˆij

0 �
ui; uj; upij ; hi; hj

� � 0; i < j 2 I; ˆi .ui; hi/ � 0;

'i .hi/ D 1 � hi � 0; hi � 0; i 2 Ig ; (13.28)

where �2.h/ D
nX

iD1�ihi; �i is a sum of metric characteristics (sizes) of Oi,

i 2 I, h D .h1; h2; : : : ; hn/ 2 Rn. We denote a local maximum point of problem
(13.27)–(13.28) by u0� D .u�; h�/ and take point u� D �

	0; q�; u�
p

� 2 W as a
starting point for problem (13.21)–(13.22).

13.6.2 Algorithm of Local Optimization with Feasible
Region Transformation in the Optimal 3D-Object
Packing Problem

Local optimization. Taking a starting point u� 2 W, we can extract from the
system of phi-inequalities in (13.22) a system of inequalities, describing a nonempty
subregion of feasible region W of problem (13.21)–(13.22) and search for a local
minimum of the problem. However in this case we deal with a huge number
of inequalities in the system. We propose here the algorithm, which reduces the
problem (13.21)–(13.22) to a sequence of nonlinear programming subproblems of
smaller dimensions. The solution space of each subproblem is specified by the
incomparably smaller number of inequalities. This allows us to decrease essentially
the computational time. Our algorithm is based on two related ideas: constructing
of subregions of feasible region W and decreasing of the number of inequalities,
specifying the subregions. The first idea is described in, e.g., [31] and the second
idea is introduced in Sect. 13.5 for the optimal ellipse packing problem.

Transition from a local minimum point to another one. Let u0� be a local
minimum point of problem (13.21)–(13.22). In order to obtain next local minimum
point u1� ¤ u0� of problem (13.21)–(13.22) we may generate a new starting point
u� 2 W for problem (13.21)–(13.22) (see Sect. 13.6.1) and solve the problem using
the local optimization algorithm mentioned above.

The other way is to apply a special algorithm to transit from the local minimum
point u0� to a local minimum point u1� so that F

�
	1�

�
< F

�
	0�

�
: Let us consider

the algorithm.
We solve the following problem:

F
�
	�� D min F .	/ ; s:t: u

00 2 W3 � R
Cn; (13.29)
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W3 D
n
u

00 2 R
Cn W ˆ0

ij

�
ui; uj; upij ; hi; hj

� � 0; i < j 2 I;

ˆi .ui; 	; hi/ � 0; hi � 0; i 2 I;
nX

iD1Vih3i �
nX

iD1Vi � 0
o
;

(13.30)

where Vi is a volume of Oi; i 2 I: Here components of vector 	 are variable.
Then we assume that h0i D 1; i 2 I: Let u0� be a local minimum point of problem

(13.21)–(13.22). We form a point u
000� D �

u0�; 1
�

and compute the steepest descent

vector Z0 at the point u
000�

for problem (13.29)–(13.30), using the iterative procedure

u
00 k D u

000� C 0:5k�1Z0; k 2 M D f1; 2; : : : g :

If hk
i > 1; i 2 J1 � I, then the appropriate object is expanded and, therefore, a

free space around the true object occurs; if hk
i < 1; i 2 J2, the appropriate object is

shrunk.
It is evident that F

�
	k

�
< F

�
	0�

�
for any k 2 M and, in the general case,

u
00 k … W3: This allows us to define m such that: if k � m, then u

00 k 2 W3:

Assuming k D m, we take point u00m and define point u0m D �
um; h0m

�
, where

h0m D �
h0m
1 ; h

0m
2 ; : : : ; h

0m
n

�
and h0m

i D 1; if i 2 InJ2; h0m
i D hm

i ; if i 2 J2: Whence,
nX

iD1Vi
�
h0m

i

�3 �
nX

iD1Vi < 0 if J2 ¤ f¿g : Let 	 D 	m; i.e. F .	m/ < F
�
	0�

�
:

Then we try to “change over” objects of collections
n
Oi

�
um

i ; h
0m
i

�
; i 2 J1

o
, and

n
Oi

�
um

i ; h
0m
i

�
, i 2 J2

o
, so that the value of �2(h) in (13.27)–(13.28) increases with

respect to point u0m.
For the sake of simplicity, we assume that each object Oi is covered by a circular

cylinder Ci � Oi; i 2 I: Taking point u0m, we generate a point Qu0

as follows.
First we form index subsets J11 � J1 and J22 � J2 for which

r0j hm
j < r0i hm

i ; e
0
j hm

j < e0i hm
i ; r

0
i � r0j hm

j ; e
0
i � e0j hm

j ; i 2 J1; j 2 J2: (13.31)

Then we set Qhi D 1; Qui D um
j ; Quj D um

i ;
Qhj D min

n
hm

j C "j; 1
o
; "j D min

˚
"1j; "2j

�
;

"1j D r0i hm
i

r0j
� hm

j ; "2j D e0i hm
i

e0j
� hm

j .

In order to find the values of components of vector Qup D �Qup12 ; Qup13 ; : : : ; Qup1n ; : : : ;

Qupit ; : : : ; Qupjk ; : : : ; Qupn.n�1/

�
we solve the following problems:

maxˆ
0

il

�
ui; ul; Qupit ; hi; hl

�
; s:t: Qupit 2 R3 for i 2 J11; l 2 I;

maxˆ
0

jk

�
uj; uk; Qupjk ; hj; hk

�
; s:t: Qupjk 2 R3 for i 2 J22; k 2 I:
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If at least one of inequalities (13.31) is not fulfilled for i 2 J1 or j 2 J2; then we set
Qhi D h0m

i ; Qui D u0m
i ;

Qhj D h0m
j ; Quj D u0m

j ; Qupij D u0m
pij
: Note that if Qu0 ¤ u0m then points

Qu0

and u0m are in attraction zones of different local maximum points. We prove in
[31] that: if Qu0 ¤ u0m then �2

�Qh�
> �2

�
h0m

�
:

Starting from point Qu0 2 W2 we can obtain a new local maximum point Qu0�
of problem (13.27)–(13.28) such that �2

�Qh��
> �2

�Qh�
: If �2

�Qh�� D n; then Qu� D�
	m; Qq�; Qu�

p

� 2 W and F .	m/ < F
�
	0�

�
: Since point ũ� may not be a local minimum

point of problem (13.21)–(13.22), we take the point as a starting point to solve
problem (13.21)–(13.22). Then we obtain a local minimum point u1�. Evidently,
F

�
	1�

� � F .	m/ < F
�
	0�

�
: The approach is described in detail in [31] for optimal

packing problem of non-oriented parallelepipeds and spheres.

13.7 Computational Results

Here we present a number of examples to demonstrate the high efficiency of our
methodology. We have run our experiments on an AMD Athlon 64 X2 5200C
computer. For local optimization we used the IPOPT code (https://projects.coin-
or.org/Ipopt) developed by [36].

13.7.1 Examples for the Optimal Ellipse Packing Problem

First we give a new benchmark instances. We set the computational time limit
for each example to search for at least 10 local minima. For our computational

experiments we take " D
nX

iD1
bi=n.

Example 1 n D 28, f.ai; bi/ D .2:2; 1:80/, i D 1; : : : ; 7g, f.ai; bi/ D .2:60; 1:70/,
i D 8; : : : ; 14g, f.ai; bi/ D .3:5; 0:7/, i D 15; : : : ; 21g, f.ai; bi/ D .3:6; 2:7/, i D
22; : : : ; 28g. Figure 13.1a shows the packing of ellipses into a rectangular container,
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.22:273763; 24:126932/ and area F .u�/ D 537.397581.

Figure 13.1b shows the packing of ellipses into a rectangular container taking
into account minimal allowable distance (�� D 0:5 between each pair of ellipses),
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.25:984532; 25:024524/ and area F .u�/ D 650.250548. The computational time
limit is 1 h.

Example 2 n D 36, f.ai; bi/ D .2:2; 1:80/, i D 1; : : : ; 9g, f.ai; bi/ D .2:60; 1:70/,
i D 10; : : : ; 18g, f.ai; bi/ D .3:5; 0:7/, i D 19; : : : ; 27g, f.ai; bi/ D .3:6; 2:7/, i D
28; : : : ; 36g. Figure 13.2a shows the placing of ellipses into a rectangular container,

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
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Fig. 13.1 Local optimal packing of ellipses in Example 1: (a) no distance constraints, (b) with
distance constraints

Fig. 13.2 Local optimal placement of ellipses in Example 2: (a) no distance constraints, (b) with
distance constraints

which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.25:176786; 27:380105/ and area F .u�/ D 689.343044.

Figure 13.2b shows the placing of ellipses into a rectangular container taking
into account minimal allowable distance (�� D 0:5 between each pair of ellipses),
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.27:498755; 30:282542/ and area F .u�/ D 832.732196.

Further we give a couple of examples with our records to place a large number
of ellipses. Time limit for these large example was set to 48 h.

Example 3 n D 140,
n
.ai; bi/ D .222; 180/, i D 1; : : : ; 50g,

n
.ai; bi/ D

.260; 170/, i D 51; : : : ; 90
o
,

n
.ai; bi/ D .350; 70/, i D 91; : : : ; 120

o
,

n
.ai; bi/ D .360; 270/, i D 121; : : : ; 140

o
.
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Fig. 13.3 Local optimal packing of ellipses in Example 3

The local optimal ellipse packing is shown in Fig. 13.3, the container has sizes
.l�;w�/ D .4854:0329; 4970:3722/ and area F .u�/ D 24126350.3955.

Example 4 n D 150, f(ai, bi), i D 1; : : : ; 6 D .2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; 0:8; g,
0:6; 0:7; 0:3/ f.ai; bi/ D .1; 0:8/, i D 7; : : : ; 50g, f(ai, bi), i D 51; : : : ; 56 D
.2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; 0:8; 0:6; 0:7; 0:3/g, f.ai; bi/ D .1; 0:8/, i D
57; : : : ; 100g, f(ai, bi), i D 101; : : : ; 106 D .2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; g,
0:8; 0:6; 0:7; 0:3/ f.ai; bi/ D .1; 0:8/, i D 107; : : : ; 150g.

The local optimal packing is shown in Fig. 13.4, the container has sizes
.l�;w�/ D .19:865110; 22:839405/ and area F .u�/ D 453:70729. Time limit is
48 h.

We applied our method to some instances used in paper [23] and compare our
local optimal solutions to theirs. Table 13.1 lists the examples. For each example
the minimal area of the container found by our method happens to be smaller than
the best solution reported in [23]. The improvement is not so big (1–2 %) for smaller
sets of ellipses, but it becomes significant (8–9 %) for larger sets of ellipses. It should
be noted that for examples TC02, TC03, and TC04 presented in [23] our method
found the same optimal results.

We set the computational time for the group of instances: up to 20 objects—time
limit 2 h, up to 50—time limit 5 h, 100 objects—time limit 12 h.

Our ellipse packing instances are available at https://app.box.com/s/mo7xjvjve7v
52p9movfi.

https://app.box.com/s/mo7xjvjve7v
52p9movfi


288 Y. Stoyan et al.

Fig. 13.4 Local optimal packing of ellipses in Example 4

Table 13.1 Comparison of our results to those in [23]

Number of ellipses Name of instance Our result The best result from [23] Improvement (%)

5 TC05a 25:0206 25:29557 1.0990
5 TC05b 30:84870 31:28873 1.4264
6 TC06 25:47173 25:51043 0.1520
11 TC11 57:1783 57:24034 0.1085
14 TC14 24:25099 24:84634 2.4550
20 TC20 66:13647 67:83459 2.5676
30 TC30 95:36535 103:45212 8.4798
50 TC50 154:47048 166:91505 8.0563
100 TC100 297:73798 322:64663 8.3660

13.7.2 Examples for the Optimal 3D-Object Packing Problem

Example 5 n D 10;w D 70 and l D 70. Types and sizes of 3D-objects are
presented in Table 13.2.

Figure 13.5 shows a local optimal packing of 3D-objects.
Placement parameters of objects are given in Table 13.3. Container has height

F .	�/ D 26; 192.
Below we give new nine benchmark instances: packings of 3D-objects (from 10

to 200). The input and output data for the instances are available at http://www.
datafilehost.com/d/55384293.

http://www.datafilehost.com/d/55384293
http://www.datafilehost.com/d/55384293
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Table 13.2 Types and sizes of 3D-objects

i Type ei r1i r2i !1i !2i li wi gi

1 Cuboid – – – – – 11.45 5.547 4.133
2 Sphere – 8.387 – – – – – –
3 Cone 8.691 8.823 – – – – – –
4 Truncated cone 8.608 9.008 4.124 – – – – –
5 Cylinder 5.175 8.102 8.102 – – – – –
6 Segment – 9.452 – 3.193 – – – –
7 Spherocylinder 8.344 5.376 5.376 5.322 3.295 – – –
8 Spherocylinder 7.644 7.822 7.822 7.014 2.281 – – –
9 Spherocone 6.6 7.037 6.899 4.513 4.19 – – –
10 Disk – 8.597 8.597 2.696 4.202 – – –

Fig. 13.5 Packing of 3D-objects in Example 5

Table 13.3 Placement parameters of 3D-objects in Example 5

i Type xi yi zi �xi �yi �zi

1 Cuboid 8.744 7.487 �8.96 �3.14 0 5.347
2 Sphere 11.61 �11.6 �4.71 � � �
3 Cone �6.2 �11.1 �4.4 1.556 0.005 �
4 Truncated cone 9.524 5.837 6.085 �0.46 1.807 �
5 Cylinder 1.454 �6.3 3.571 �3.32 0.853 �
6 Segment 11.18 �11.5 7.016 0.544 0.428 �
7 Spherocylinder �14.6 �1.37 �7.72 1.571 3.142 �
8 Spherocylinder �5.84 12.18 0.657 0 5.451 �
9 Spherocone �13 �6.64 5.648 4.625 0.01 �
10 Disk 11.41 15.72 4.593 1.719 �0.05 �

Figure 13.6 illustrates local optimal packings of 3D-objects into a cuboid
container of minimal height.

The number and types of the objects are given in Table 13.4.
Figure 13.7 demonstrates a diagram of the dependence of the computational time

on the number of objects to be packed.
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Fig. 13.6 Local optimal 3D-packings: new nine instances (a–i)

13.8 Conclusions

In this chapter we introduce new functions, quasi-phi-functions, which we use for
analytical description of non-overlapping, containment, and distance constraints.
We employ the function for extended class of 2D- and 3D-objects, involving
new shapes of objects, such as ellipses, spherocones, and spherocylinders for
which phi-functions could not be constructed. In addition, these functions (in
common with phi-functions) take into account continuous translations and rotations
of objects as well as variable sizes of objects. Our quasi-phi-functions are defined by
simple enough formulas, which allow us to use nonlinear programming. We propose
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Table 13.4 The number and types of 3D-objects

a b c d e f g h i

Cuboid – – – 11 – – – – –
Sphere – – – 11 – – – – –
Cone – – 60 11 – – – – –
Truncated cone – – – 11 – – – – –
Cylinder 60 – – 11 – – – – –
Segment – 60 – 11 – – – – –
Spherocylinder – – – 12 – – 25 100 80
Spherocone – – – 11 – 200 – – –
Disk – – – 11 200 – – – –

Fig. 13.7 Dependence of the computational time on the number of objects

also fast algorithms to construct feasible starting points based on object homothetic
transformations, as well as efficient optimization procedures to search for local
extrema in optimal packing problems. We apply our quasi-phi-functions and the
algorithms to 2D- and 3D-packing problems and demonstrate the high efficiency of
our methodology.
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