
Chapter 12
Batching-Based Approaches for Optimized
Packing of Jobs in the Spatial Scheduling
Problem

Sudharshana Srinivasan, J. Paul Brooks, and Jill Hardin Wilson

Abstract Spatial resources are often an important consideration in shipbuilding and
large-scale manufacturing industries. Spatial scheduling problems (SSP) involve the
non-overlapping arrangement of jobs within a limited physical workspace such that
some scheduling objective is optimized. The jobs are typically heavy and occupy
large areas, requiring that the same contiguous units of space be assigned throughout
the duration of their processing time. This adds an additional level of complexity to
the general scheduling problem. Since solving large instances using exact methods
becomes computationally intractable, there is a need to develop alternate solution
methodologies to provide near optimal solutions for these problems. Much of
the literature focuses on minimizing the makespan of the schedule. We propose
two heuristic methods for the minimum sum of completion times objective. Our
approach is to group jobs into a batch and then apply a scheduling heuristic to the
batches. We show that grouping jobs earlier in the schedule, although intuitive,
can result in poor performance when jobs have sufficiently large differences in
processing times. We provide bounds on the performance of the algorithms and
also present computational results comparing the solutions to the optimal objective
obtained from the integer programming formulation for SSP. With a smaller number
of jobs, both algorithms produce comparable solutions. For instances with a larger
number of jobs and a higher variability in spatial dimensions, we observe that the
efficient area model outperforms the iterative model both in terms of solution quality
and run time.
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12.1 Introduction

In large-scale production and manufacturing industries, assembly units are often
heavy and occupy large areas. Since physical processing space is limited at such
facilities, the assembly line scheduling needs to assign non-overlapping locations
(spatial characteristic) and starting times (temporal characteristic) for each job.
Further, the schedule should ensure that the locations assigned are the same
contiguous units of space for the entire duration of processing as jobs cannot be
moved once set up. Mathematically, the spatial scheduling problem (SSP) can be
described as follows: Given a set J of jobs with processing times pj, heights hj, and
widths wj, and a workspace of height H and width W, does there exist a schedule of
the jobs that effectively utilizes the workspace such that some scheduling objective
is minimized? Figure 12.1 shows the layout of jobs before and after applying
spatial scheduling solution procedures. We can see that initially the space is not
utilized effectively and some jobs are waiting to be processed. On applying some
spatial scheduling method, we get a better utilization of the space and no delays in
processing of jobs.

Fig. 12.1 Depicting the motivation for spatial scheduling with jobs each requiring two time units
scheduled over a 2-day horizon
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When the space required by all jobs are identical to the dimensions of the
workspace, the problem reduces to single machine scheduling (SMS) and is
polynomially solvable. However, when the dimensions of the jobs are allowed to
vary, the spatial constraints add an additional level of complexity to the traditional
scheduling problem [5]. Also spatial resources are not divisible and distributable like
normal renewable resources. Due to the computational intractability in solving large
instances of the problem, there is a need to develop alternate solution methodologies
that provide near optimal solutions. Previous work in spatial scheduling has mostly
been in the context of shipbuilding applications [4, 11, 15, 18]. Much of the
literature focusses on approaches with the objective of minimizing the makespan
or maxj2J Cj, where Cj denotes the completion time of job j in a given schedule
[2, 9, 16, 22, 23]. Garcia and Rabadi [7] provides a meta heuristic algorithm
to minimize the total tardiness for instances with release dates and multiple
processing areas. To the best of our knowledge, this is the first study to consider
the minimum sum of completion times (

P
j2J Cj) objective for this problem. When

jobs are independent and competing for the same resource, the cost associated with
individual completion times becomes more relevant and natural [12]. Evaluating
completion times for individual jobs also becomes important while measuring the
time in the system for each job. The motivation, here, is to examine the most
simple form of the problem by considering a workspace area of fixed dimensions.
We disallow precedence constraints, due-dates, rotation of jobs, and set-up times.
By doing so, we are able to focus on the relationship between the spatial and
temporal components in the problem and gain a better understanding of the problem
characteristics.

Our approach in developing solution procedures for the problem is to take ideas
from two-dimensional bin packing (2DBP) and group jobs similar in processing
times to form a batch. Once the batches are determined we can schedule them
using some heuristic rule. This approach lets us relax the temporal constraints in
the original problem. We identify scenarios where batching can be effective or
disadvantageous. For the minimum sum of completion times objective, it seems
intuitive to schedule as many jobs as we can ahead in the schedule to produce a
lower objective [19]. However, we show that grouping jobs with different processing
times earlier in the schedule actually results in an objective value larger than if each
job were to be assigned its own batch. We also determine that the sequence in which
the batches are scheduled is another factor affecting the objective.

After introducing the problem in Sect. 12.2, we propose two methods (iterative
and efficient area) to determine the batches in Sect. 12.3. Section 12.4 analyzes
the performance of the batching methods. Computational results comparing the
two methods to the optimal objective obtained from the integer programming
formulation for SSP are presented in Sect. 12.5.
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12.2 The Spatial Scheduling Problem

In this section, we formally introduce the SSP, which involves determining spatial
layouts and starting times for a set J of N jobs to be scheduled on a single W � H
work space. Each job j 2 J requires a processing time (pj), width (wj), and height
(hj). Throughout the reminder of this chapter we consider minimizing the sum of
completion times (denoted by Z) as the objective for SSP. We assume that the jobs
cannot be rotated or preempted. Also we do not consider due dates, release dates, or
precedence relationships for the jobs. Further, without loss of generality, we assume
all problem data to be integer. The problem can then be denoted using the following
mixed-integer programming (MIP) formulation adapted from [8].

min
X

j2J

zj (12.1)

subject to:

� xi C xj � W˛ij � �W C wi 8i; j 2 J; i ¤ j (12.2)

�yi C yj � Hˇij � �H C hi 8i; j 2 J; i ¤ j (12.3)

�zi C zj � T�ij � �T C pi 8i; j 2 J; i ¤ j (12.4)

˛ij C ˛ji C ˇij C ˇji C �ij C �ji � 1 8i; j 2 J; i ¤ j (12.5)

�xi � wi � �W 8i 2 J (12.6)

�yi � hi � �H 8i 2 J (12.7)

xi; yi; zi � 0 8i 2 J (12.8)

˛ij; ˇij; �ij 2 f0; 1g 8i; j 2 J (12.9)

where
J is the set of all jobs
xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
zj is the z-coordinate (start time) for job j 2 J

˛ij =

�
1 if no overlap occurs between jobs i and j in the x direction
0 otherwise

ˇij =

�
1 if no overlap occurs between jobs i and j in y direction
0 otherwise

�ij =

�
1 if no overlap occurs between jobs i and j in z direction
0 otherwise

For i; j 2 J
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Here Z is obtained by adding
P

j2J pj to the objective in (12.1). Constraints
(12.2)–(12.5) prevent overlap from occurring in the x (width), y (height), and z
(time) dimensions. We use constraints (12.6) and (12.7) to ensure that the jobs are
confined to the physical dimensions of the workspace. Duin and Sluis [5] shows
that scheduling problems with varying spatial resource requirements are NP Hard.
Hence obtaining optimal solutions to large problem instances is computationally
intractable. Therefore, the motivation here is to develop methods that provide
provably good solutions to minimize Z for large instances of SSP, quickly and
efficiently. Approximation algorithms deliver solutions with provable quality that
are bounded in runtime. The following definition of an approximation algorithm can
be found in [20, 21]. Suppose we wish to solve an NP-hard minimization problem
consisting of instances in I . Let z.I/=minfcIx W x 2 SIg 8I 2 I . Let A be
an algorithm that operates on instances in I , and let A .I/ be the objective value
resulting from the application of A to I. Let � � 1.

Definition 1. A is a �-approximation algorithm for I if for each I 2 I , A runs
in time polynomial in the size of I, and A .I/ � �z.I/. A is said to have a factor �,
also referred to as the performance guarantee of A .

Observe that we compare the objective value obtained by the application of the
algorithm to instance I with the optimal objective value z.I/ for that instance. In
practice, however, this is not possible, because if z.I/ is known then there would
be no need to approximate it. To overcome this issue and calculate �, we compare
A .I/ with a lower bound for z.I/, say L.I/. Lower bounds can be obtained using LP
or combinatorial relaxations. Since L.I/ � z.I/ we have

A .I/ � �L.I/ H) A .I/ � �z.I/.
In the following sections, we describe the development of an approximation

algorithm (with two variants) based on existing packing algorithms and discuss its
performance.

12.3 Batch-Scheduling

12.3.1 Introduction

SSP requires that jobs be arranged without overlap in a two-dimensional space
while minimizing some scheduling objective. The spatial component of SSP can
be attributed to optimized multi-dimensional packing problems. Lodi et al. [13]
provides a survey of the models and algorithms used to solve the 2DBP prob-
lem. Castillo et al. [3] presents applications and approaches to solve circle packing
problems encountered in container loading. Batch-scheduling ideas originated from
the problem of scheduling “burn-in” operations at large-scale integrated circuit
manufacturing [1, 10]. Mathirajan and Sivakumar [14] surveys the literature for
scheduling of batching processors in the semi-conductor industry. The central idea
in batch-scheduling is grouping similar jobs together to form a “batch.” All jobs in a
batch start at the same time and the next batch starts upon completion of the longest
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job in the previous batch. The processing time of a batch is equal to the largest
processing time of any job in the batch. Our goal is to utilize ideas from 2DBP
to design batch-scheduling strategies that identify the batches consisting of jobs
that can simultaneously fit the space to minimize the sum of completion times.This
approach lets us to relax the temporal constraints in the original problem.

Assume we have a set J of N jobs such that p1 � p2 � � � � � pN . When all the
jobs fit in the space simultaneously, irrespective of the difference in their processing
times pj they are placed in the same batch. So Z =

P
j2J pj. If no pair of jobs

simultaneously fits the space, SSP reduces to SMS. Then each job is its own batch
and Z =

PN
jD1

Pj
iD1 pi. Smith [19] proved that ordering jobs in the nondecreasing

sequence of their processing times is optimal for SMS. In general, while minimizing
the sum of completion times, the more jobs we can fit earlier in our schedule the
lower the objective. Therefore, it seems intuitive to always group jobs together rather
than assign them to individual batches. Consider an instance of SSP with W=H=3
and job data as given in Table 12.1. Jobs 1 and 3 are the only jobs that fit the space
simultaneously.

Let the processing times [p1; p2; p3] = [2, 3, 7] and let us assume we schedule
the batch with the lowest processing time first. We define batch processing time as
the maximum processing time of jobs in a batch. Therefore, the batch sequence is
f2g and f1; 3g as seen in Fig. 12.2a. Then the objective value for batched jobs is
calculated as Z = p1 C 3p2 C p3 =2 + 9 + 7 = 18. Alternately, if we schedule the
batches in their own batch, the sequence is f1g; f2g; f3g as seen in Fig. 12.2b and Z
= 3p1 C 2p2 C p3 = 6 + 6 + 7 = 19. This shows that grouping jobs can result in a
lower sum of completion times objective.

Now suppose, [p1; p2; p3] = [2, 24, 25]. When jobs 1 and 3 are batched, Z =
p1 C 3p2 C p3 = 2 + 72 + 25 = 99. Without batching, Z = 3p1 C 2p2 C p3 = 6 + 49 +
25 = 79. Thus in scenarios where jobs with large differences in processing times are
grouped together, the batching approach does not necessarily lead to improvement
in the objective.

Table 12.1 Example
instance with three jobs
such that only jobs 1
and 3 simultaneously fit
the space

Job Width Height

1 3 2

2 2 3

3 3 1

Fig. 12.2 Batching sequence for example with three jobs. (a) Batching. (b) No batching
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Proposition 1. For N jobs, assume that p1 < p2 < � � � < pN�1 < pN. When jobs
with both the largest and smallest processing times are assigned to the same batch,
that is f1; Ng form a batch, and .N � 1/p1 � p2 � � � � � pN�1 < 0, the sum of
completion times obtained by batching is greater than the objective value obtained
without batching.

Proof. Let
P

j2J
Cb

j be the sum of completion times obtained when batching and
P

j2J
Cn

j

be the sum of completion times obtained without batching. Jobs f1; Ng form a batch,
while the other jobs are each assigned individual batches. Since p1 < p2 < � � � <

pN�1 < pN , batch f1; Ng is processed at the end of the schedule (see Fig. 12.3). SoP

j2J
Cb

j = p1 C Np2 C � � � C 3pN�1 C pN . If each job is assigned its own batch, then
P

j2J
Cn

j = Np1 C .N � 1/p2 C � � � C 2pN�1 C pN . Therefore,
P

j2J
Cb

j -
P

j2J
Cn

j

DŒp1 C Np2 C � � � C 3pN�1 C pN � � ŒNp1 C .N � 1/p2 C � � � C 2pN�1 C pN �

D.N � 1/p1 � p2 � � � � � pN�1

Hence, when .N � 1/p1 � p2 � � � � � pN�1 < 0, the result follows.

This contradicts the notion of scheduling as many jobs earlier in the schedule
to minimize our objective. So, our intuitions about general scheduling problems do
not always apply directly to problems with spatial resources. Batching seems to be
beneficial only when processing times are similar.

When looking at the instance with [p1; p2; p3] = [2, 24, 25], we observed that
scheduling batches in the sequence f2g then f1; 3g as seen in Fig. 12.4a results in an
objective Z = p1 C 3p2 C p3 = 2 + 72 + 25 = 99. Instead, if we were to schedule the
batches in the sequence f1; 3g then f2g, as seen in Fig. 12.4b, the objective value is
calculated as Z D p1 Cp2 C2p3 D 2C24C50 D 76. This suggests that scheduling
the jobs in the increasing order of batch processing times is not always effective.

Fig. 12.3 Sequence in which batches are scheduled for Proposition 1

Fig. 12.4 Comparing strategies for sequencing batches. (a) Batch sequence. (b) Alt. sequence
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Proposition 2. Consider a set J of N jobs such that p1 < p2 < � � � < pN�1 < pN.
If m of those jobs are in a batch B, including Job 1 and Job N, and pN > mpi; 8i 2
J n B, then placing batch B at the end of a schedule provides a better objective than
placing it at the beginning of the schedule.

Proof. Let
P

j2J
Cb

j be the sum of completion times obtained when processing batch B

at the end of the schedule and
P

j2J
Ca

j be the sum of completion times obtained using

an alternate sequencing of batches (batch B is the first batch to be scheduled). Jobs
f1; Ng along with (m � 2) other jobs form a batch B, while the remaining jobs are
each assigned individual batches. Let f1; u1; u2; � � � ; um�2; Ng be the m jobs in batch
B such that

p1 < p2 < � � � < pu1�1 < pu1 < � � � < pum�2 < pum�1 < � � � < pN .
The sequence of batches scheduled in increasing order of batch processing times

is f2g; f3g; � � � ; fu1 � 1g; � � � ; fum�1g; � � � ; fN � 1g; fBg.
So

P

j2J
Cb

j = .p1 C pu1 C � � � C pum�2 C pN/ C .Np2 C � � � C .m C 1/pN�1/.

Alternately, if we place batch B at the beginning of the schedule,
P

j2J
Ca

j is given by

p1 C pu1 C � � � C pum�2 C .N � m C 1/pN C � � � C pN�1.
Therefore,

P

j2J
Ca

j � P

j2J
Cb

j

D
Œ.p1 C pu1 C � � � C pum�2 C .N � m C 1/pN C .N � m/p2 C � � � C pN�1/� �

Œ.p1 C pu1 C � � � C pum�2 C pN/ C .Np2 C � � � C .m C 1/pN�1/�

D � mp2 � mp3 � � � � � mpN�1 C .N � m/pN

Hence, when pN > mp2, pN > mp3, � � � , pN > mpN�1, the result follows.

In summary, placing jobs with the smallest and largest processing times in the
same batch or scheduling jobs in the increasing order of batch processing times
does not necessarily result in a good batching scheme.

12.3.2 Forming the Batches

Using the insights gained from our previous analysis, we group jobs similar in
processing time that also efficiently utilize the space to form a batch. We present
two MIP models, iterative and efficient area, that identify the assignment of jobs
to batches. The objective for the iterative model is to minimize the maximum
difference in processing times among jobs for each batch. The efficient area model
extends this idea by also minimizing the total unused area in each batch. Both MIP
formulations have been adapted from the 2DBP model found in [17]. Let J denote
the set of jobs and B the set of batches. Since at most each job can be its own batch,
the number of batches equals the number of jobs (N).
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12.3.2.1 Iterative Model

In the iterative model (M1), we add a constraint to limit the number of batches
(S) being used by the model. We do not chose S as part of the model, because
the objective here is not to reduce the number of batches used, but to find the
best assignment of jobs (to batches) that minimizes the sum of completion times.
Therefore, the strategy is to iterate through possible values for S, starting at S D
N � 1 and decreasing by 1 in each iteration. From the set of all solutions, we can
then chose the batching that results in the lowest sum of completion times objective
value. The formulation for the iterative model is given by

min
X

b2B

.Zmaxb � Zminb/ (12.10)

X

b2B

rjb D 1 8j 2 J (12.11)

xj C wj � W 8j 2 J (12.12)

yj C hj � H 8j 2 J (12.13)

xi C wi � xj � W.1 � lij/ 8i; j 2 J; i < j; b 2 B (12.14)

yi C hi � yj � H.1 � bij/ 8i; j 2 J; i < j; b 2 B (12.15)

lij C lji C bij C bji C .1 � rib/ C .1 � rjb/ � 1 8i; j 2 J; b 2 B (12.16)

Zminb � .pj � M/rjb C Mqb 8j 2 J; b 2 B (12.17)

Zmaxb � pjrjb 8j 2 J; b 2 B (12.18)

rjb � qb 8j 2 J; b 2 B (12.19)
X

j2J

rjb � �qb � 0 8b 2 B (12.20)

X

b2B

qb D S (12.21)

xj; yj � 0 8j 2 J (12.22)

Zminb; Zmaxb � 0 8b 2 B (12.23)

lij; bij 2 f0; 1g 8i; j 2 J (12.24)

rjb 2 f0; 1g 8j 2 J; b 2 B (12.25)

qb 2 f0; 1g 8b 2 B (12.26)

where
J is the set of all jobs
B is the set of all batches



252 S. Srinivasan et al.

xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
Zmaxb is the maximum processing time of jobs in batch b 2 B
Zminb is the minimum processing time of jobs in batch b 2 B

rjb =

�
1 if job j is in batch b
0 otherwise

lij =

�
1 if job i is to the left of job j
0 otherwise

bij =

�
1 if job i is below job j
0 otherwise

qb =

�
1 if batch b is nonempty
0 otherwise

For i; j 2 J and b 2 B.
Here, constraint (12.11) ensures that each job is assigned to only one batch.

Constraints (12.12) and (12.13) ensure that jobs do not exceed the width and height
of the space. We use constraints (12.14)–(12.16) to prevent overlap of jobs within
the space. Constraint (12.17) determines the minimum processing time within a
batch, while (12.18) identifies the maximum processing time for each batch. If job
j is in batch b (rjb D 1), then constraint (12.19) makes sure batch b is non-empty
(qb D 1). When no jobs are present in a batch, constraint (12.20) ensures that the
batch is empty or qb D 0. Constraint (12.21) sets the number of batches to be used
by the model to some value S. We set � D 0:5 and define M D 1 C maxj2J pj.

12.3.2.2 Efficient Area Model

While solving N � 1 instances of M1 for different values of S finds the best possible
batch assignment, the second approach or efficient area model (M2) proposes
to solve just one MIP to decide when and where to place jobs. The efficient
area model includes an area utilization component to the existing objective. So,
model 2 minimizes the maximum difference in processing times and the amount of
workspace area that remains unused for each batch. The formulation for the efficient
area model is given by

min
X

b2B

.Zmaxb � Zminb C UAb/ (12.27)

X

b2B

rjb D 1 8j 2 J (12.28)

xj C wj � W 8j 2 J (12.29)

yj C hj � H 8j 2 J (12.30)
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xi C wi � xj � W.1 � lij/ 8i; j 2 J; i < j; b 2 B (12.31)

yi C hi � yj � H.1 � bij/ 8i; j 2 J; i < j; b 2 B (12.32)

lij C lji C bij C bji C .1 � rib/ C .1 � rjb/ � 1 8i; j 2 J; b 2 B (12.33)

Zminb � .pj � M/rjb C Mqb 8j 2 J; b 2 B (12.34)

Zmaxb � pjrjb 8j 2 J; b 2 B (12.35)

rjb � qb 8j 2 J; b 2 B (12.36)
X

j2J

rjb � �qb � 0 8b 2 B (12.37)

WHqb �
X

j2J

wjhjrjb D UAb 8b 2 B (12.38)

xj; yj � 0 8j 2 J (12.39)

Zminb; Zmaxb; UAb � 0 8b 2 B (12.40)

lij; bij 2 f0; 1g 8i; j 2 J (12.41)

rjb 2 f0; 1g 8j 2 J; b 2 B (12.42)

qb 2 f0; 1g 8b 2 B (12.43)

where
J is the set of all jobs
B is the set of all batches
xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
Zmaxb is the maximum processing time of jobs in batch b 2 B
Zminb is the minimum processing time of jobs in batch b 2 B
UAb is the unused area in batch b 2 B

rjb =

�
1 if job j is in batch b
0 otherwise

lij =

�
1 if job i is to the left of job j
0 otherwise

bij =

�
1 if job i is below job j
0 otherwise

qb =

�
1 if batch b is nonempty
0 otherwise

For i; j 2 J and b 2 B.
Here, constraint (12.28) ensures that each job is assigned to only one batch.

Constraints (12.29) and (12.30) ensure that jobs do not exceed the width and height
of the space. We use constraints (12.31)–(12.33) to prevent overlap of jobs within
the space. Constraint (12.34) determines the minimum processing time within a
batch, while (12.35) identifies the maximum processing time for each batch. If job
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j is in batch b (rjb D 1), then constraint (12.36) makes sure batch b is non-empty
(qb D 1). When no jobs are present in a batch, constraint (12.37) ensures that the
batch is empty or qb D 0. Constraint (12.38) calculates the unused area for each
batch b. We set � D 0:5 and define M D 1 C maxj2J pj.

12.3.3 Scheduling the Batches

Once the batches are identified using either M1 or M2, it is also important to decide
the sequence in which to schedule the batches. Smith [19] proved that the shortest
processing time (SPT) rule, ordering jobs in the nondecreasing sequence of their job
processing times, is optimal for the SMS problem. The idea is that by scheduling
shorter jobs earlier in the schedule, more jobs can finish early resulting in a smaller
sum. For SSP, the rule translates to scheduling the batches in the nondecreasing
sequence of their batch processing times. For example, if P1 is the maximum
processing time of all jobs in batch 1 and P2 is the maximum processing time of
all jobs in batch 2, then batch 1 is scheduled before batch 2 if and only if P1 � P2.
However, as noted before, there are instances for which this rule does not necessarily
provide a better objective value. Therefore, we also consider scheduling jobs in
the non-decreasing order of the average batch processing times, or the average
processing time of all the jobs in a batch. We indicate the two scheduling rules
as MAX and AVG, respectively.

12.3.4 Post Processing Algorithm

By solving each instance of SSP using the iterative and efficient area models, we
determine the assignments of jobs to batches that minimize the maximum difference
in processing times while efficiently utilizing the workspace. With this information,
we then schedule the batches by applying either the MAX or AVG rules. Once
a schedule is created, we calculate the sum of completion times for the jobs as
ZH =

P
j2J CH

j , where CH
j is the completion time for job j. With this batching

algorithm, each job must wait until the previous batch has completed before it
can start processing. In reality there may be jobs in the current batch that finish
processing before the final job in the batch. This means that jobs in later batches
may be able to start earlier in the schedule. Since neither MIP model takes into
account the temporal dimension, we use a post-processing algorithm to incorporate
this observation and improve ZH . For each batch the algorithm determines if jobs
can start processing earlier in the schedule. If job j can be moved ahead in time by
say tj units, then the completion time is updated as, OCj = CH

j � tj and OZ =
P

j2J
OCj is

the new objective value.
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Proposition 3. For instances defined by N=nk jobs, n; k 2 Z
�C, where wj D W

k ,
hj D H 8 j 2 J, and p1 � p2 � � � � � pN, the solution obtained after the post-
processing routine is optimal.

Proof. Consider the instances with N D nk jobs, such that k jobs can simultaneously
fit the space. Let CH

j , OCj, and COPT
j denote the completion time for job j and ZH , OZ,

and ZOPT denote the objective value for the batch-scheduling algorithm, the post-
processing routine, and the optimal solution, respectively. First we observe that if k
jobs can simultaneously fit within the workspace that there are n batches. So for all
jobs j � k, OCj = COPT

j .
Let U = fu1; u2; � � � ; ukg denote the k jobs in the next batch waiting to be

scheduled, such that pu1 � pu2 � � � � � puk . Then by definition, if job j can be
moved ahead in time by say tj units, the new completion time is given by, OCj =
CH

j � tj. Since job ui can be processed as soon as ui�k completes and space becomes
available, we get the following recursive improvement on job completion times:

OCui = CH
ui

� Œ.pui�1 � pui�k/ C � � � C .pk � p1/� 8i 2 f1; � � � ; k � 1g and
OCuk = CH

uk

So, OZ = ZH � Pn
jD1

Pj
iD1.pik � p.ik�kC1/ = ZOPT

12.4 Performance Analysis

In this section, we present solution guarantees on the objective values ZH generated
by both the batch-scheduling algorithms. We refer to ZOPT as the optimal objective
for the SSP formulation. We begin by analyzing special instances of SSP with a
set J of N jobs such that at any given time k jobs can simultaneously fit the space
(W � H) and p1 � p2 � � � � � pN .

Theorem 1. Suppose there are N=nk jobs for any n; k 2 Z
�C, wj � W and hj � H

8 j 2 J, and p1 � p2 � � � � � pN, where k jobs can simultaneously fit the space,
then batch-scheduling is a k-approximation algorithm.

Proof. Let J denote the set of nk jobs and B the set of batches. If the first k jobs
are scheduled in a batch at the beginning of the schedule, job k C 1 does not start
until any of the jobs finish processing. The first job to finish processing would be
job 1. So completion time, CkC1 D pkC1 C p1. Applying this reasoning we note
that a lower bound on the optimal objective for these instances is given by, ZOPT �Pn

jD1.n � j C 1/.pjk C pjk�1 C � � � C pjk�kC1/, since p1 � p2 � � � � � pN and we
are trying to minimize the sum of completion times. In the following discussion pjk

is defined as the processing time of the job in the j times k position in the sequence
p1 � p2 � � � � � pN .

Since only k jobs can occupy the space at any given time, the number of batches
is nk

k D n. If we use the MAX rule, Zb = maxj2bpj for each batch b 2 B and Z1 �
Z2 � � � � � Zn. Let us order the jobs in the sequence of the batches they are assigned
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and in the increasing order of their processing times within each batch, so that pjjkj
refers to the processing time of the jkth job in the scheduling sequence and not pjk.
The completion time of job j, CH

j , based on this new ordering is then calculated as
the sum of its processing time and the completion times of the batches scheduled
ahead of it. For example, if jobs j is in batch b, the completion time is calculated as:
CH

j D pj C Zb�1 C � � � C Z1.

ZH D
X

j2J

CH
j (12.44)

D
X

j2J

pj C kZ1 C k.Z1 C Z2/ C k.Z1 C Z2 C Z3/ C � � � C

Ck.Z1 C Z2 C : : : C Zn�1/ (12.45)

D
X

j2J

pj C kŒ.n � 1/Z1 C .n � 2/Z2 C � � � C 2Zn�2 C Zn�1� (12.46)

D
X

j2J

pj C kŒ.n � 1/pjkj C .n � 2/pj2kj C � � � C

C2pj.n�2/kj C pj.n�1/kj� (12.47)

D
nX

jD1

.pjjk�1j C � � � C pjjk�kC1j/ C
nX

jD1

..nk � jk C 1/pjjkj/ (12.48)

D
nX

jD1

.pjjk�1j C � � � C pjjk�kC1j/ C k
nX

jD1

..n � j C 1

k
/pjjkj/ (12.49)

D
nX

jD1

.pjjk�1j C � � � C pjjk�kC1j/ C
nX

jD1

..n � j C 1

k
/pjjkj/

C.k � 1/

nX

jD1

..n � j C 1

k
/pjjkj/ (12.50)

�
nX

jD1

.pjjk�1j C � � � C pjjk�kC1j/ C
nX

jD1

..n � j C 1

k
/pjjkj/

C.k � 1/

nX

jD1

..n � j C 1/pjjkj/ (12.51)

�
nX

jD1

.pjjk�1j C � � � C pjjk�kC1j/ C
nX

jD1

..n � j C 1

k
/pjjkj/

C.k � 1/ZOPT (12.52)
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� ZOPT C .k � 1/ZOPT (12.53)

D kZOPT (12.54)

Equation (12.45) is obtained from the definition of completion times, CH
j and

we get Eq. (12.46) per the definition of Zb. In each batch b of k jobs, the batch
processing time is the processing time of the kth job in the batch, pjbkj. This is the
only processing time included in the calculation of completion times for the batches
scheduled later. The processing times of the remaining (k � 1) jobs are not repeated
in this objective as seen in Eq. (12.47). Equations (12.52) and (12.53) follow from
the lower bound on the optimal objective, ZOPT � Pn

jD1.n � j C 1/.pjk C pjk�1 C
� � � C pjk�kC1/.

The bound shown helps us understand what makes instances of SSP hard. The
real difficulty in solving instances of SSP lies in the spatial constraints as reflected
by the bound, which is dependent on k, the number of jobs that can simultaneously
fit within the given workspace. Also, recall that when minimizing the sum of
completion times, we want to schedule more jobs earlier in the schedule. This is
because the completion time of a job includes the completion times of the jobs
earlier in the schedule. When k D 1, SSP reduces to SMS and our batching heuristic
becomes SPT, which we know is optimal [19]. Our bound depicts that as k increases,
the spatial component plays a larger role in the objective obtained from the batch-
scheduling algorithm.

Consider the instance data with six jobs shown in Table 12.2 and a 10 � 10

workspace. We can fit three (k) jobs within the space, so the batches formed are
f1; 2; 3g and f4; 5; 6g as shown in Fig. 12.5a. The sum of completion times before
post-processing, ZH=p1 C p2 C 4p3 C p4 C p5 C p6 = 192. Using the lower bound
we know that ZOPT � 2.p1 C p2 C p3/ C .p4 C p5 C p6/ = 153. So, ZH � 3ZOPT .

Now, if we were to schedule the batches as seen in Fig. 12.5b in the sequence
f1; 2g, f3; 4g, and f5; 6g such that k=2, then ZH=p1 C5p2 Cp3 C3p4 Cp5 Cp6 = 181.
Therefore, packing more jobs (larger k) that are sufficiently different in processing
times because they efficiently utilize the space does not result in a lower sum of
completion times objective.

Table 12.2 SSP instance with N = 6 jobs
to depict that grouping more jobs in a batch
does not guarantee lower objective value

Job Processing time Width Height

1 1 2 H

2 2 4 H

3 21 2 H

4 22 4 H

5 41 2 H

6 42 4 H
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Fig. 12.5 Example schedule with two and three jobs in a batch. (a) three job batch (b) two job
batch

12.5 Computational Analysis

In this section we provide the computational results obtained by evaluating the two
proposed procedures for solving the SSP and comparing it to the optimal solution
or the best solution obtained after a certain time limit for the integer programming
formulation of SSP.

12.5.1 Instance Generation

We tested both the iterative model (M1) and the efficient area model (M2) on
generated instances of SSP. The instance class denoted as NnPpRr < ABC > i
has n= 5 or 10 jobs, processing times generated in the discrete uniform interval of
.1; p/ with workspace area dimension W D H D r. The value for r is 10 or 20 units
and i is an instance indicator. A, B, C classifiers are used to indicate the distributions
from which the width and height of jobs are sampled.

Class A wj 2 Uniform Discrete [1, W
2

] and hj 2 Uniform Discrete [1, H
2

]
Class B wj 2 Uniform Discrete [1, W

2
] and hj 2 Uniform Discrete [ H

2
,H]

Class C wj 2 Uniform Discrete [ W
2

,W] and hj 2 Uniform Discrete [ H
2

,H]

Five instances of each class-type were generated, resulting in a total of 60
instances. All of the instances had jobs sorted in the increasing order of processing
times. Instances in Class C have jobs that occupy more than half the area. This
results in each job getting its individual batch and SSP reduces to SMS which can
be solved to optimality. So for the computational analysis we only consider instances
in classes A and B. By design, instances in Class B should be relatively harder to
solve than instances in class A. This is because all of the jobs in class A are small
compared to the dimensions of the workspace, so we can fit more jobs together.
Difficult instances of the problem occur, when some jobs are small and some are
large (Class B).
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Larger instances were modified from [6]. The instances have 100, 500, and 1,000
jobs with a 10 � 7 workspace. For each job:

wj 2 UniformDiscreteŒ1; 10�

hj 2 UniformDiscreteŒ1; 7�

pj 2 UniformDiscreteŒ5; 25�

Since we did not permit rotation of jobs, we had to interchange the widths and
heights in certain cases to ensure that the jobs would fit within the space.

12.5.2 Initial Feasible Solution Heuristic

The motivation behind creating the batching models (M1 and M2) was to reduce
the complexity of the original SSP by looking only at the packing component of the
problem. Nevertheless, we need to understand that M1 and M2 are still MIPs and
as the instances grow larger, these models could take longer to solve to optimality.
Further, an optimal solution to the batching model does not necessarily guarantee
an optimal solution to SSP. In order to improve the solution time for these MIP
formulations, we provide the solver with an initial feasible solution obtained from
a greedy packing heuristic. Basically, we start with an instance of SSP sorted in the
increasing order of job processing times, i.e. p1 � p2 � � � � � pN . We sequentially
begin grouping jobs into a batch until they fit the space. Once the job can no longer
fit the space, we create a new batch. This process is repeated until all jobs are
assigned a batch.

12.5.3 Computational Results

In this section, we compare the solutions generated by the batch-scheduling
approaches (iterative and efficient area models) to the optimal solution (OPT)
obtained by solving the mixed-integer program for SSP. The batching MIPs, M1 and
M2, and the SSP MIP formulation were all implemented using the C programming
language and solved using Gurobi 5.0 with a thread count of 1 and cuts parameter set
to default on a RedHat Enterprise 6.5 x86_64 server. The following tables compare
the objective values and runtimes for the small instances with 5 jobs or 10 jobs and
the large instances with 25 jobs or 100 jobs (defined at the beginning of Sect. 12.5).

Table 12.3 lists the objective values obtained from solving instances with five and
ten jobs for M1 and M2 using the MAX rule and the optimal solution (OPT) for the
original MIP formulation of SSP. Note that the objective reported for M1 is the best
possible value among the N � 1 potential solutions it obtains and the run time is the
total time taken to iteratively solve all of the models. We observe that M2 seems to
perform at least as well as M1, and both models return values close to the optimal



260 S. Srinivasan et al.

Table 12.3 Comparison of objectives obtained from M1, M2, and
OPT for small instances of batch-scheduling

Factors

Instance M1 (Best) M2 OPT M1/OPT M2/OPT

N5P10R10A 27 27 27 1:00 1:00

N5P19R10B 33 33 29 1:14 1:14

N5P10R20A 26 26 26 1:00 1:00

N5P10R20B 26 25 23 1:13 1:12

N10P10R10A 49 49 49 1:00 1:00

N10P10R10B 80 72 66 1:22 1:10

N10P10R20A 54 54 51 1:05 1:05

N10P10R20B 101 88 77 1:31 1:14

Table 12.4 Comparison of M1, M2, and OPT
runtimes for small instances of batch-scheduling

Runtime (s)

Instance M1 (Total) M2 OPT

N5P10R10A 0:19 0:01 0:01

N5P19R10B 0:14 0:04 0:02

N5P10R20A 0:17 0:01 0:01

N5P10R20B 0:13 0:07 0:01

N10P10R10A 43:98 0:11 0:03

N10P10R10B 110:21 82:79 287:69

N10P10R20A 300:81 0:23 0:30

N10P10R20B 223:26 114:17 244:33

solution. For these set of instances, the objective values returned by both models for
the MAX and AVG rules were identical for instances with five jobs and ten jobs.

Table 12.4 presents the runtimes for solving the instances with five and ten jobs
using M1, M2, and the original MIP formulation. We observe that with smaller
number of jobs, all three methods produce results quickly. The runtimes for M1 are
larger because it iteratively solves N � 1 models for each instance with N jobs.

Table 12.5 lists the objective values obtained from solving larger instances (25
and 100 jobs) for M1 and M2 using the MAX rule and the objective ZIP for the
original MIP formulation of SSP. Note that the objective reported for M1 is the best
possible value among the N � 1 potential solutions it obtains, with each iteration of
M1 allowed 2 min of execution time. M2 and ZIP report the best objective obtained
after 20 min of execution. To improve upon the solution, M2 is given an initial
feasible solution. The resulting solution is then updated using the post-processing
algorithm. Although both models produce objectives close to optimal, it is observed
that with a larger number of jobs, M2 outperforms M1, and on some occasions, after
20 min, M2 is able to produce better solutions than the original SSP formulation.
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Table 12.5 Comparison of objectives obtained from M1, M2, and ZIP for
large instances of batch-scheduling

Objective Factor

Instance M1 (Best) M2 (Updated) ZIP M1/ZIP M2/ZIP

N25P25E11 1;697 1;421 1;215 1.40 1.17

N25P25E12 1;518 1;409 1;022 1.49 1.38

N25P25E13 2;204 2;046 1;540 1.43 1.33

N25P25E14 1;555 1;292 995 1.56 1.30

N25P25H11 1;819 1;762 1;353 1.34 1.30

N25P25H12 1;587 1;332 965 1.64 1.38

N25P25H13 1;929 1;712 1;169 1.65 1.46

N25P25H14 1;625 1;525 1;066 1.52 1.43

N100P25E1 34;372 24;495 28;205 1.22 0.87

N100P25H1 45;571 24;919 27;672 1.65 0.90

In conclusion, the efficient area model seems to be more effective for larger
instances both in terms of runtime and solution quality. Further investigations on
the weights in the multi-objective function in the efficient area model (M2) could
result in potential improvements in objective value.

12.6 Conclusions

The study aims to develop solution methods for SSP with good approximations for
the minimum sum of completion times objective. We conclude by summarizing the
main contributions and key results presented and by suggesting possible directions
for future research. We explored the relationship between the spatial and temporal
components of the problem. We considered just the spatial restrictions and utilized
bin-packing strategies to identify batches of jobs that will efficiently utilize the
space. We then scheduled the jobs using rules to minimize the sum of completion
times objective.

When minimizing the sum of completion times objective sometimes counterin-
tuitive policies are better. Here we proved an approximation factor under certain
conditions and also identified scenarios when grouping jobs did not necessarily
result in a better objective. We also gave a post-processing algorithm to improve
the objective value of the batching models, which resulted in optimal solutions
for certain instances. Based on the instances we tested for both the iterative
and efficient-area approaches, our assessment is that scheduling jobs similar in
processing times within the same space yields good solutions. If processing times
are sufficiently different, then grouping jobs together because they effectively utilize
the space does not necessarily result in a lower sum of completion times. The
efficient area model outperforms the iterative model both in terms of solution quality
and run time.
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Directions for future research are plentiful. We provide two MIP formulations
to decide the assignment of jobs to batches, the iterative and efficient area model.
Currently, we solve at most N � 1 instances for the iterative procedure and weigh
the two objectives in the efficient area model equally. Possible enhancements could
be to implement a binary search procedure that improves runtimes for the iterative
model or tweak the weights in the multi-objective efficient area model. This study
assumes that a single spatial resource of fixed dimension is available. An interesting
extension would be to look at multiple workspace problems with varying area. We
may be able to use ideas from variable size bin packing to design algorithms for
this problem. Another area that merits investigation is to consider weights on the
completion times of the jobs. If lj is the weight on completion time for job j 2 J,
and we assign the number of jobs in the batch containing job j as a weight on its
completion time, can we get similar results for our procedures? Lastly, although
the results and analyses presented in this study pertain to the sum of completion
times objective, the solution methods developed here can easily be applied to other
objective functions of the problem.
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