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Preface

Optimized object packing (OOP) studies are aimed at finding the best possible
non-overlapping arrangement of a given set of objects in a container (or a set of
containers). This very general modeling paradigm can be specified in great many
ways, thereby leading to interesting—and, as a rule, challenging—optimization
models. OOPs can be important components, e.g., in cutting, covering, layout
design, loading, scheduling, and supply chain management studies. Arguably, OOP
is among the most significant application areas of operations research. Let us remark
additionally that the study of atomic or molecular conformations, spherical point
arrangements, the design of experiments and other related areas in computational
physics, chemistry, biology, and numerical analysis are closely related to the OOP
subject.

While the depth and quality of the decisions required to find high-quality
OOPs is increasing, we have also witnessed significant and continuing progress
regarding both theoretical advances and ready-to-use tools for actual OOP appli-
cations. Theoretical advances, scientific innovation, and algorithmic development
are supported and enhanced by today’s state-of-the-art computational modeling
and optimization environments. Until quite recently, the numerical optimization
approaches to tackle OOPs were essentially limited to handle convex (linear or
nonlinear, continuous) optimization problems and linearly structured combinatorial
and mixed integer-continuous optimization problems. The consideration of integer
decision variables in more flexible nonlinear modeling frameworks gives rise to even
harder combinatorial and mixed integer-continuous optimization problems. The
solution of such computational challenges is becoming increasingly more viable.

In addition to the long-time theoretical interest directed towards OOPs, there
is a strong practical motivation to solve various real-world packing problems.
Our aim has been to offer a selection of efficient exact and heuristic algorithmic
approaches and practical case studies related to the broadly interpreted subject of
OOP. The contributing authors are well-recognized researchers and practitioners
working (also) in the area of OOP-related modeling and optimization. Next we
provide an overview of the contributed chapters (ordered on the basis of the family
name of their first authors).

v



vi Preface

Chapter 1, titled “Using a Bin Packing Approach for Stowing Hazardous
Containers into Containerships,” has been authored by Daniela Ambrosino and
Anna Sciomachen. They address the problem of determining stowage plans for
containers loaded into a ship. This is the so-called master bay plan problem (MBPP).
The MBPP consists in determining how to stow a set of containers—split into
groups according to their size, type, class of weight, and destination—into a set
of available slots (locations either on the deck or in the hold area) of predetermined
bays of a container ship. Context-dependent structural and operational constraints,
related both to the containers and to the ship, have to be satisfied by the MBPP. As an
important variant of the MBPP, in this chapter the stowage of hazardous containers
is considered. The need for stowing dangerous goods implies additional constraints
concerning the safety of the entire cargo, since dangerous goods (categorized into
different types) have to be stowed away from certain other goods. This variant of the
MBPP is handled on the basis of its relationship with the bin packing problem, in
which the packed items are containers and the bins are sections of the ship available
for the stowage of hazardous (as well as other) containers. Following a step-by-step
procedure for properly loading all containers on board, Ambrosino and Sciomachen
show how the segregation rules derived from the International Maritime Dangerous
Goods Code affect the available slots of the bins. The chapter reports a real-life case
study solved by using the commercial software package CPLEX.

Chapter 2, titled “Dynamic Packing with Side Constraints for Datacenter
Resource Management,” has been written by Sophie Demassey, Fabien Hermenier,
and Vincent Kherbache. Datacenter Resource Management (DRM) requires the
assignment of virtual machines (VMs) with dynamically changing resource
demands to physical machines with dynamically changing available capacities. The
changes occurring at runtime invalidate the currently given assignments, thereby
necessitating their updates (adjustments). The assignments are also subject to
changing restrictions that express various datacenter user requirements. Within
this context, the chapter surveys the application of vector packing (called the
VM reassignment problem) providing insight into its dynamic and heterogeneous
nature. The study advocates flexibility to answer the issues highlighted above, and
presents BtrPlace, an open source resource manager based on the discipline of
Constraint Programming. BtrPlace offers a flexible and scalable solution procedure
as illustrated by sizeable numerical examples. The authors’ experiments show
that BtrPlace can effectively manage thousands of web applications running on
thousands of physical machines.

Chapter 3, titled “Packing Optimization of Free-Form Objects in Engineering
Design,” has been authored by Georges M. Fadel and Margaret M. Wiecek. OOPs
arising in the engineering design context—often referred to as layout optimization
problems—require the determination of the arrangement of given subsystems or
components within some enclosure (area or volume), to achieve a given set of
objectives in the presence of spatial and/or performance constraints. As a rule, such
optimization problems are challenging, due to their highly multimodal structure. In
addition, the problems are often described by models that may not have closed-form

http://dx.doi.org/10.1007/978-3-319-18899-7_1
http://dx.doi.org/10.1007/978-3-319-18899-7_2
http://dx.doi.org/10.1007/978-3-319-18899-7_3
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analytical representations, and/or may require the use of computationally expensive
evaluation procedures. The time needed to resolve object intersection calculations
can increase exponentially with the number of objects to be packed, while the space
available for the placement of these components becomes increasingly scarce. The
chapter reviews the results of a multi-year research effort, specifically targeting the
development of computational tools for automotive engineering design. The packing
problems discussed are represented by single- or multi-objective optimization
problems. The solution approaches reviewed rely on evolutionary algorithms, due to
the level of complexity that precludes the use of sufficiently effective exact methods.

Chapter 4, titled “A Modeling-Based Approach for Non-standard Packing
Problems,” has been written by Giorgio Fasano. The chapter is focused on packing
tetris-like items orthogonally, with the possibility of rotations into a convex
domain, in the optional presence of additional constraints. Mixed Integer Linear
Programming (MILP) and Mixed Integer Nonlinear Programming (MINLP) model
versions, previously studied by the author, are reviewed. An efficient formulation of
the objective function, aimed at maximizing the loaded cargo, is given as an MILP
model. The MINLP model has been developed to address the relevant feasibility
sub-problem: its purpose is to improve approximate solutions, as an intermediate
step of a heuristic process. A space-indexed model is also introduced and the
problem of approximating polygons by means of tetris-like items is studied. In
both cases an MILP formulation has been adopted. Finally, a heuristic approach
is proposed to provide effective solutions in practical applications.

Chapter 5, titled “CAST: A Successful Project in Support of the International
Space Station Logistics,” has been authored by Giorgio Fasano, Claudia Lavopa,
Davide Negri, and Maria Chiara Vola. The International Space Station (ISS) is one
of the most challenging currently active space programs: this program requires the
handling of demanding logistic issues, mainly in relation to on-orbit maintenance
and resource resupply. To serve the ISS, a fleet of launchers and vehicles is made
available by the space agencies involved. An overall traffic plan schedules the
recurrent upload and download interventions between the Earth and the ISS orbit.
The European Space Agency (ESA) contributed annually to the ISS logistics from
2008 to 2014, by accomplishing five Automated Transfer Vehicle (ATV) missions.
Within the related cargo accommodation context, in addition to tight balancing
conditions, difficult packing issues arose: these had to be solved under conditions
of strict deadlines and possible last minute changes. The Cargo Accommodation
Support Tool (CAST) is a dedicated optimization framework funded by ESA and
developed by Thales Alenia Space to create the ATV cargo accommodation plan.
The chapter first describes the ATV loading problem. The basic concept of CAST
is then reviewed, highlighting the advantages of the methodology adopted, both in
terms of solution quality and time savings. Current extensions and possible future
enhancements are also discussed.

Chapter 6, titled “Cutting and Packing Problems with Placement Constraints,”
has been written by Andreas Fischer and Guntram Scheithauer. In real-life cut-
ting and packing problems additional placement constraints are often present.

http://dx.doi.org/10.1007/978-3-319-18899-7_4
http://dx.doi.org/10.1007/978-3-319-18899-7_5
http://dx.doi.org/10.1007/978-3-319-18899-7_6
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For instance, defective regions of some raw material cannot become part of the
end products. More generally, due to varying quality requirements, certain products
may contain (material) parts of lower quality, while this is not allowed for some
other products. The chapter considers one- and two-dimensional rectangular cutting
and packing problems, in which items of given types have to be cut from (or placed
on) a given raw material in such a way that optimizes the value of a context-specific
objective function. In the one-dimensional (1D) case, it is assumed that for each
item type the allocation intervals (segments of the raw material) are given, so that
all items of the same type must be contained by one of these allocation intervals.
The authors also consider problems in which the length of the 1D items could vary
within known tolerances. In the two-dimensional (2D) case, rectangular items of
different types have to be cut from a large rectangle. Here the authors investigate
guillotine cutting plans under the condition that defective rectangular regions are not
allowed to be part of the manufactured products. For these scenarios they present
solution strategies which rely on the branch-and-bound principle or on dynamic
programming. Based on the properties of the corresponding objective functions,
they discuss possibilities to reduce computational complexity. This includes the
definition of appropriate sets of potential allocation (cut) points which have to be
inspected to obtain an optimal solution. Applying dominance considerations, the
set of such allocation points can be kept small. In particular, the computational
complexity becomes independent of the unit of measure of the input data. Possible
generalizations of the solution strategy are also discussed.

Chapter 7, titled “A Container Loading Problem MILP-Based Heuristics Solved
by CPLEX: An Experimental Analysis,” has been authored by Stefano Gliozzi,
Alessandro Castellazzo, and Giorgio Fasano. They consider a standard container
loading model form: placing smaller boxes orthogonally (generally with the pos-
sibility of rotations) into a larger box, to maximize the loaded volume. Although
this problem is NP-hard, a number of algorithms can handle it with high numerical
efficiency. The task becomes even more challenging when additional conditions
with an overall impact have to be taken into account. In such cases, a modeling-
based global scope approach is advocated, e.g., when considering load balancing
requirements. Mixed Integer Linear Programming (MILP) models relevant to
the container loading problem including possible extensions are available in the
literature. An MILP model, presented in Chap. 4 of this book, is taken as a
basis. The chapter discusses some important computational aspects of the container
loading problem in its classical form (i.e., without additional conditions). An
ad hoc heuristics, derived from the above-mentioned overall approach, is also
outlined. Next, the use of CPLEX as an MILP optimizer is considered. Case studies
concerning the solution of the MILP model tout court for smaller model instances
are reported first. Outcomes relevant to the ad hoc heuristics are shown next, in
relation to a number of more difficult instances. Examples of container loading
problems, involving additional balancing conditions, are also presented.

Chapter 8, titled “Automatic Design of Optimal LED Street Lights,” has been
written by Balázs L. Lévai and Balázs Bánhelyi. The authors discuss the issue of
light pollution—i.e., the unnecessary lighting of outdoor areas—which has negative

http://dx.doi.org/10.1007/978-3-319-18899-7_7
http://dx.doi.org/10.1007/978-3-319-18899-7_4
http://dx.doi.org/10.1007/978-3-319-18899-7_8
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consequences, e.g., by disturbing wild life, not to mention energy conservation
aspects. Based on its capabilities, light-emitting diode (LED) technology offers an
efficient solution to this problem. LEDs have many advantages over incandescent
light sources including lower energy consumption, longer lifetime, improved
physical robustness, smaller size, and faster switching. Many cities in developed
countries have LED street lights. Designing the orientation of LEDs in street lights
is a nontrivial problem, however, since the use of multiple LED packages is required
to replace a single incandescent light bulb. Specifically, the positional angles of
LEDs in lamps have to be determined to produce an even light distribution over the
target surface. Determining the set of best angles is a global optimization (GO)
problem, induced by the underlying task of target area covering problems. The
authors present an automatic design approach to find suitable LED configurations
for street lights, including an embedded light pattern computation technique to
evaluate these configurations. The resulting GO problems are solved (heuristically)
using a genetic algorithm. In order to speed up the design process, a possible way of
parallelization focused on the light pattern computation module is also discussed.

Chapter 9, titled “Approximate Packing: Integer Programming Models, Valid
Inequalities and Nesting,” has been authored by Igor Litvinchev, Luis Infante,
and Lucero Ozuna. They suggest the use of a regular grid to approximate the
container to be loaded. This way, the object packing problem is reduced to
assigning objects to nodes of the grid, subject to non-overlapping constraints. This
approximate packing problem is then formulated as a large-scale linear binary
optimization problem. Different model formulations to express the non-overlapping
constraints are presented and compared, and valid inequalities are proposed to
strengthen the formulations. This general approach is applied first to the packing
of circular and L-shaped objects into a rectangular container. Circular objects are
defined in the general sense, as a set of points that are located at the same (not
necessary Euclidean) distance from a given point. Different objects—including
ellipses, rhombuses, rectangles, and octagons—can be handled by simply changing
the definition of the norm used to define the distance concept. Nesting objects
inside one another is also considered when appropriate, in the context of certain
applications. Numerical results are presented to demonstrate the efficiency of the
proposed approach: the optimization problems are solved using CPLEX.

Chapter 10, titled “Exploiting Packing Components in General-Purpose Integer
Programming Solvers,” has been written by Jakub . The author discusses
the task of packing boxes into a large box; this task is often only a part of a
more complex problem. As an example, in furniture supply chain applications, one
needs to decide which trucks to use to transport furniture between production sites
and distribution centers or stores: obviously, one has to search for packings that
guarantee that all delivery items fit into the available trucks. Such problems are often
formulated and solved using general-purpose integer programming solvers. This
chapter studies the problem of identifying a compact formulation of the packing
component in a general instance of integer linear programming. The space-indexed
approach advocated is based on exploiting the problem structure and a reformulation
using the adaptive discretization proposed by Allen, Burke, and , and then

Mareček

Mareček
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solving the extended reformulation. The solvers tested were CPLEX, Gurobi, and
SCIP, with CLP as the linear programming solver. Results related to solving model
instances with up to 10,000,000 boxes are reported.

Chapter 11, titled “Robust Designs for Circle Coverings of a Square,” has been
authored by Mihály Csaba Markót. The chapter investigates coverings of a square by
a set of uniform size circles of optimized (minimal) radius, when uncertainties are
present regarding the actual locations of the circles. This model statement is related
to deploying sensors or other kinds of observation units with possible uncertainties
regarding their actual deployments. Application examples include scenarios when
the deployment has to be made remotely (e.g., from the air) into a potentially
dangerous environment, or into a location with unknown terrain, or it is influenced
by the weather conditions. The goal of the study is to produce coverings that are
optimal in terms of a minimal radius, and are also robust in the following sense:
wherever the circles are actually placed within a given uncertainty region, the
end result is still guaranteed to be a covering. Markót investigates three special
uncertainty regions: first he proves that for uniform circular uncertainty regions
the optimal robust covering can be created from the exact optimal covering without
uncertainties, provided that the exact covering configuration is feasible for the robust
scenario. For uncertainty regions given by line segments and by general convex
polygons, he proposes a bi-level optimization method combining a complete and
rigorous global search and a derivative free black-box search. Numerical examples
illustrate the efficiency of the suggested approach.

Chapter 12, titled “Batching-Based Approaches for Optimized Packing of Jobs
in the Spatial Scheduling Problem,” has been written by Sudharshana Srinivasan, J.
Paul Brooks, and Jill Hardin Wilson. Spatial scheduling problems (SSPs) involve the
non-overlapping arrangement of jobs within a limited physical workspace in such a
manner that some scheduling objective is optimized. In the context of shipbuilding
and other large-scale manufacturing industries, the jobs typically occupy large
areas, requiring that the same contiguous units of space be assigned throughout
the duration of their processing time. This adds an additional level of complexity to
the corresponding scheduling problem. Since solving large-scale problem instances
by using exact methods becomes computationally intractable, there is a need to
develop efficient alternative strategies to provide near-optimal solutions. Much of
the literature focuses on minimizing the makespan of the schedule. The authors
propose two heuristic methods to minimize the sum of completion times. The
approach is based on grouping jobs into batches and then applying a scheduling
heuristic to these batches. It is shown that grouping jobs earlier in the schedule can
result in poor performance when the jobs have large differences in processing times.
The authors provide bounds on the performance of the algorithms, and present
computational results comparing the solutions to the optimal objective obtained
from the integer programming formulation for SSP. For a smaller number of jobs,
both algorithms produce comparable solutions. For instances with a larger number
of jobs and a higher variability in spatial dimensions, the efficient area-based model
outperforms the iterative model, both in terms of solution quality and run time.

http://dx.doi.org/10.1007/978-3-319-18899-7_11
http://dx.doi.org/10.1007/978-3-319-18899-7_12
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Chapter 13, titled “Optimized Object Packings Using Quasi-Phi-Functions,”
has been authored by Yuriy Stoyan, Tatiana Romanova, Alexander Pankratov, and
Andrey Chugay. The authors here further develop the main conceptual tool—
called phi-functions—of their previous related studies. New quasi-phi-functions are
defined and used for the analytical description of relations of geometric objects
placed in a container taking into account their continuous rotations, translations, and
distance constraints. These new functions are substantially simpler to use than phi-
functions for certain types of objects. In particular, quasi-phi-functions are derived
for certain two- and three-dimensional (2D and 3D) objects. The authors formulate
a generic optimal packing problem and introduce its exact mathematical model as a
continuous nonlinear programming problem, using quasi-phi-functions. Next, they
propose a general solution strategy that includes the construction of feasible starting
points; the generation of nonlinear sub-problems of a smaller dimension and smaller
number of constraints; and the search for local extrema of the problem using sub-
problems. To show the advantages of quasi-phi-functions, two packing problems
are considered which have a broad spectrum of industrial applications. The first of
these is the packing of a given collection of ellipses into a rectangular container
of minimal area taking into account distance constraints. The second problem
is the packing of a given collection of 3D objects—including cuboids, spheres,
spherical cylinders, and spherical cones—into a cuboid container of minimal height.
The authors developed efficient optimization algorithms to obtain locally optimal
object packings. The algorithms are applied to solve several hard model instances,
including both known and new test cases.

Chapter 14, titled “Graph Coloring Models and Metaheuristics for Packing
Applications,” has been written by Nicolas Zufferey. He considers and discusses the
link between graph coloring and packings. In the classical graph coloring problem,
a color has to be assigned to each vertex of a given graph. If two vertices are
connected with an edge, then their colors have to be different. The goal is to
color the graph with the smallest number of colors. Next, he considers the packing
problem of loading items into containers: for each item, one has to decide the
container assigned. Since by assumption certain pairs of items are incompatible,
they cannot be loaded in the same container. The goal is then to load all the items
in a minimum number of containers. Although the correspondence between these
two problems is obvious (a vertex corresponds to an item, a color corresponds
to a container, and a connecting edge represents an incompatibility), there is no
apparent bridge between the packing and the graph coloring literatures. Several
packing problems are formulated and solved applying graph coloring models and
methods, and metaheuristics.

The broad range of OOP models, solution strategies, and applications discussed
and presented by the contributing authors to this volume clearly illustrate the
relevance of the subject. This book will be useful for researchers and practitioners in
the field of OOP and numerous related fields. It will be useful also for graduate and
post-graduate students to broaden their horizon, by studying real-world applications
and challenging problems that they will meet in their professional work. Researchers
and practitioners working in mathematical modeling, engineering design, operations

http://dx.doi.org/10.1007/978-3-319-18899-7_13
http://dx.doi.org/10.1007/978-3-319-18899-7_14
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research, mathematical programming, and optimization will benefit from the case
studies presented. This book also offers extensive literature links for further studies:
hence, it can be used as a reference source to assist researchers and practitioners in
developing new OOP and related applications.

Turin, Italy Giorgio Fasano
Halifax, NS, Canada János D. Pintér
March 2015
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Chapter 1
Using a Bin Packing Approach for Stowing
Hazardous Containers into Containerships

Daniela Ambrosino and Anna Sciomachen

Abstract This chapter addresses the problem of determining stowage plans for
containers into a ship, which is the so-called master bay plan problem (MBPP).
As a novel issue and variant of MBPP, in the present work we consider the stowage
of hazardous containers that follows the principles included in the segregation table
of the International Maritime Dangerous Goods (IMDG) Code. Formally, the MBPP
consists in determining how to stow a set of n containers, split into different groups,
according to their size, type, class of weight and destinations, into a set of m
available slots, that are locations either on the deck or in the stow, of predetermined
bays of a containership. Some structural and operational constraints, related to both
the containers and the ship, have to be satisfied. The need of stowing dangerous
goods implies to take into account additional constraints to be verified in each slot
concerning the safety of the whole cargo, for which dangerous goods are categorized
into different types and forced to be stowed away from incompatible ones. We face
such variant of MBPP on the basis of its relationship with the bin packing problem,
where items are containers and the bins are sections of the ship available for the
stowage of hazardous containers. In particular, following a step by step procedure
for properly loading all containers on board, we show how the segregation rules
derived from the IMDG Code impact on the available slots of the bins. A real life
case study is reported.

Keywords Hazardous containers • International Maritime Dangerous Goods
Code • Master bay plan problem • Bin packing • Combinatorial optimization

1.1 Introduction

Nowadays, mainly due to the increase in the shipping business and the phenomenon
of naval gigantism, the sea is more and more becoming the main commercial
channel. Following this trend, a still increasing number of works have been recently
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proposed in the literature focusing on the performances of maritime terminals,
whose activities are pivotal functions for operating supply chains efficiently.
A recent overview of relevant literature about maritime terminal operations is
provided in Stahlbock and Voss [1].

In this context, it is not surprising that container handling problems, and
particularly the container loading aspects, have been dealt with frequently in the
operations research literature (see, e.g., [2, 3], for surveys).

In this chapter, we focus our analysis on the quay and ships activities; more
precisely, we devote our attention to the problem of determining stowage plans for
containers into a ship, which is the so-called master bay plan problem (MBPP).
Readers can find a detailed description of MBPP together with its main constraints
in Ambrosino et al. [4]. MBPP is an NP-Hard problem [5], and a number of
heuristics have been developed for efficiently facing this problem, usually applied to
large size instances. Some heuristic methods for MBPP are compared in Ambrosino
et al. [6].

Formally, the MBPP consists in determining how to stow a set of n containers
of different size, type, class of weight and destinations, into a set of m available
slots, that are locations either on the deck or in the stow, of predetermined bays
of a containership. Some structural and operational constraints, related to both the
containers and the ship, have to be satisfied. The aim is the operational efficiency
of a port, depending on the loading and unloading containers’ operations, and
the minimization of the time that a ship is at the berth. It is also required to
prevent damages to the goods, the ship, its crew and its equipment and the marine
environment.

Regarding this, note that up to 8 % of the containers to be loaded into a ship
consists of hazardous containers, that is containers carrying dangerous goods, such
as solids, liquids, or gases, that can harm people, other living organisms, property,
or the environment.

As a novel issue and variant of MBPP, in the present chapter we consider
the stowage of hazardous containers that follows the principles included in the
segregation table of the International Maritime Dangerous Goods (IMDG) Code, as
it will be explained in the next section. In particular, the need of stowing dangerous
goods implies to take into account additional constraints to be verified in each slot
concerning the safety of the whole cargo, for which dangerous goods are categorized
into different types and forced to be stowed away from incompatible ones. Note that,
according to the ship certificate, hazardous containers can be stowed only in some
slots in the hold of the ship.

Usually the MBPP involves loading decisions at a port which should take into
account the possible loading operations at the next ports in the ship route; this
means that stowing plans are determined for each port considering the sequence
of ports that must be visited by the ship. Only few papers deal with the placement
of containers into a containership on a multi-port journey. For instance, Imai
et al. [7] present a unified approach for taking into account the route planning
problem from both the liner and the terminal manager point of view. Different
mathematical programming models are presented and evaluated throughout an
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extensive computational experimentation in Ambrosino et al. [8]. Delgado et al.
[9] present a constraint programming approach for dealing with multi-port routes,
focusing the attention on the loading problem at each departing port. Here, we are
involved with the loading process of both standard and hazardous containers at a
terminal: the stowage plan is defined for loading the containers that in a given port
must be loaded and shipped to the different ports visited by the ship; note that the
loading plan is not really affected by what happens in the next ports.

In particular, we present a methodological approach for facing the proposed
MBPP with hazardous containers based on its relation with the bin packing problem,
where items are containers and the bin is a slot of the ship. Relations between MBPP
and BBP have been previously presented in Sciomachen and Tanfani [10] and in
Zhang et al. [11], where the authors used the same similarity for packing containers
into single ship bays. Sciomachen and Tanfani [12] extended the connection
between MBPP and 3D-BPP proposed in the previous work by considering the
loading pattern for maximizing the productivity of the quay operations at a maritime
terminal thus balancing the crane work load. Recently, De Queiroz and Miyazawa
[13] focus on the load balancing problem. For a review and classification of cutting
and packing problems, the reader can refer to Wäscher et al. [14].

The way in which the international conventions about maritime transportation
of dangerous goods impacts on the available slots of the ship, that is the bin, is
explained in detail in Sect. 1.3. After the presentation of a real sized case study,
reported in Sect. 1.4, in the last section of the chapter we derive some conclusions
and outlines for future works.

1.2 International Regulations for Maritime Transport
of Dangerous Goods

Today, the international law related to the maritime transport of dangerous goods
issue includes many international treaties and codes. All of them have been written
under the supervision of the International Maritime Organization (IMO). Note that,
as agency of the United Nations, IMO sets internationally valid standards for safety,
security and environmental performance of international shipping. Its aim is to
create a high level playing-field so that ship operators can’t address their financial
interests by simply cutting costs and reducing safety, security and environmental
performances.

The first Convention to mention is the International Convention for Safe Contain-
ers (CSC), entered into force in 1972 after the rapid increase in the use of freight
containers for the consignment of goods by sea and the development of specialized
container ships, seen in the 1960s. So IMO, in co-operation with the Economic
Commission for Europe, developed the Convention which had two goals. The first
one is to assure a high level of safety of human life in the transport and handling
of containers by providing test procedures and related strength requirements.
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The second goal is to facilitate the international transport of containers by providing
uniform international safety regulations, equally applicable to all modes of surface
transport. In this way, proliferation of divergent national safety regulations can be
avoided.

Very important is also the International Convention for the Prevention of
Pollution from Ships (MARPOL), adopted on 1973 and entered into force on
1983. This is the main international regulation related to the prevention of marine
pollution caused by ships and due to accidental or operational causes; the first aim
of MARPOL is preventing and/or minimizing pollution of the marine environment.
Strictly related to the topic of the present chapter, the most important part is the
Annex III, which contains general requirements for packing, marking, labelling,
documentation, stowage, quantity limitations, exceptions and notifications, in case
of substances carried in packaged form.

The SOLAS Convention is the most important treaty concerning the safety of
merchant ships. The first version was written in 1914, after the Titanic disaster, but
the last and official version was adopted in 1974. The main aim of the SOLAS
Convention is to specify minimum standards for construction, equipment and
operation of ships. Flag States are responsible for ensuring that ships under their flag
comply with those requirements, and as a proof the Convention prescribes a number
of certificates which ships and operators have to provide. For the purpose of this
work, we have to focus on Chap. 7, which provides regulations about: (a) carriage
of dangerous goods in packaged form; (b) construction and equipment of ships
carrying dangerous liquid chemicals in bulk; (c) construction and equipment of ships
carrying liquefied gases in bulk and gas carriers; (d) special requirements for the
carriage of packaged irradiated nuclear fuel, plutonium and high-level radioactive
wastes on board ships. Note that this chapter makes mandatory the International
Maritime Dangerous Goods Code (IMDG Code), developed by IMO.

The IMDG Code has been edited as a uniform international reference for the
transport of dangerous goods by sea, covering such matters as packing, container
traffic and stowage, with particular reference to the segregation of incompatible
substances. Since its adoption by the fourth IMO Assembly in 1965, the IMDG
Code has been modified many times to be up-to-date with the ever-changing
needs of industry. Amendments which do not affect the principles upon which the
Code is based may be adopted by the MSC (Maritime Security Council), allowing
IMO to respond to transport developments in reasonable time. The Code classifies
dangerous goods into different classes, with the purpose of underlining, defining
and describing main characteristics and properties of the substances, material and
articles which would fall within each class or division. General provisions for each
class or division are given. Individual dangerous goods are listed in the Dangerous
Goods List, with the class and any specific requirements. In particular, all substances
and articles subject to the provisions of this Code are assigned to one of the classes
1–9 according to the hazard (or the most predominant of the hazards) they present.
These nine classes are reported in Fig. 1.1.

Above all the aspects faced by the IMDG Code, we have to underline the contents
of Chap. 7, that is the segregation principles. Those are the guidelines which have to

http://dx.doi.org/10.1007/978-3-319-18899-7_7
http://dx.doi.org/10.1007/978-3-319-18899-7_7
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Fig. 1.1 The nine classes of dangerous goods

be followed by operators and carriers, in order to assure safety and security in every
step of the transportation chain.

In fact, for their chemical properties, many substances are incompatible, con-
tinuously, because they could react mutually bringing to damages due even to
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CLASS
1.1 
1.2 
1.5

1.3 
1.6

1.4 2.1 2.2 2.3 3 4.1 4.2 4.3 5.1 5.2 6.1 6.2 7 8 9

Explosives 1.1, 1.2, 1.5 * * * 4 2 2 4 4 4 4 4 4 2 4 2 4 X
Explosives 1.3, 1.6 * * * 4 2 2 4 3 3 4 4 4 2 4 2 2 X
Explosives 1.4 * * * 2 1 1 2 2 2 2 2 2 X 4 2 2 X
Flammable Gases                        2.1 4 4 2 X X X 2 1 2 X 2 2 X 4 2 1 X
Non-toxic, Non-flammable Gases 2.2 2 2 1 X X X 1 X 1 X X 1 X 2 1 X X
Toxic Gases 2.3 2 2 1 X X X 2 X 2 X X 2 X 2 1 X X
Flammable Liquids 3 4 4 2 2 1 2 X X 2 1 2 2 X 3 2 X X
Flammable Solids 4.1 4 3 2 1 X X X X 1 X 1 2 X 3 2 1 X
Substances liable to sponateous 
combustion 4.2 4 3 2 2 1 2 2 1 X 1 2 2 1 3 2 1 X

Substances which, in contact with 
water, emit flammable gases 4.3 4 4 2 X X X 1 X 1 X 2 2 X 2 2 1 X

Oxidizing Substances (agents) 5.1 4 4 2 2 X X 2 1 2 2 X 2 1 3 1 2 X
Organic Peroxides 5.2 4 4 2 2 1 2 2 2 2 2 2 X 1 3 2 2 X
Toxic Substances 6.1 2 2 X X X X X X 1 X 1 1 X 1 X X X
Infectious Substances 6.2 4 4 4 4 2 2 3 3 3 2 3 3 1 X 3 3 X
Radioactive Materials 7 2 2 2 2 1 1 2 2 2 2 1 2 X 3 X 2 X
Corrisive Substances 8 4 2 2 1 X X X 1 1 1 2 2 X 3 2 X X
Miscellaneous Dangerous 
Substances and Articles 9

X X X X X X X X X X X X X X X X X

Fig. 1.2 The segregation table

explosions, production of noxious or mortal gases and so on. For these reasons,
a minimum distance has to be kept among these substances.

For this purpose, the Code provides a number of segregation rules, based on
the properties of substances grouped in Classes and Divisions and listed into the
Dangerous Goods List. Each relation between Classes is listed into the segregation
table, reported in Fig. 1.2. Into the segregation table it is possible to identify specific
segregation principles that must be followed for the stowage of every substance, if
the cargo includes other harmful substances which are incompatible with the first.
Furthermore, the IMDG Code provides different rules in relation to the type of cargo
containers used, which could be open-top containers or standard closed containers.

In particular, the following four segregation principles are the most meaningful
ones in terms of definition of stowage plans:

1. “Away from”;
2. “Separated from”;
3. “Separated by a complete compartment from”;
4. “Separated longitudinally by an intervening complete compartment or hold

from.”

These principles will be investigated in more detail in the next section devoted to
the definition of stowage planning problems and its related rules.
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1.3 The Stowage Planning Problem and the Rules
for Dangerous Goods

To give an idea of how a stowage plan is defined, let us consider the basic structure
of a containership and its sections, depicted in Fig. 1.3 [4]; it consists of a given
number of locations, which generally have a standard size of 8 feet (80) in height,
80 in largeness and 200 in depth, corresponding to one TEU (Twenty Equivalent
Unit). Each location is identified by three indices, namely bay, row and tier, each one
consisting of two numbers that give its position with respect to the three dimensions.

Note that the address number of the ship locations depends on the numerical
system adopted by each maritime company. Generally, each 200 bay is numbered
with an odd number, i.e. bay 01, 03, 05, etc., while two contiguous odd bays
conventionally originate one even bay, used for the stowage of 400 containers, i.e.
bay 02 D bay 01 C bay 03 (see Fig. 1.3). As far as the row index, the ship locations
have an even number if they are located on the left side, i.e. row 02, 04, 06, and an
odd number if they are located on the right side, i.e. row 01, 03, 05, etc. Finally, for
the tier index, the levels are numbered from the bottom of the hold to the top with
even number, i.e. tier 02, 04, 06, etc., while in the upper deck possible numbers are
82, 84, 86, etc. Note that the tier numbers allow to distinguish in the final stowage
plan the containers stowed in the hold from those in the upper deck.

In this chapter, we refer to the connection between MBPP and the 3D-BPP
presented in Sciomachen and Tanfani [10], in which the exact branch-and-bound
algorithm proposed by Martello et al. [15] is used for solving 3D-BPP instances.
More precisely, we consider the MBPP as a three-dimensional orthogonal bin
packing problem.

Formally, given a set of n rectangular-shaped items, each one characterized by
width wj, height hj, and depth dj, j D 1, : : : , n, and a set of three-dimensional bins,
having width W, height H, and depth D, 3D-BPP consists of orthogonally packing
all items into the bins. As in most cutting and packing problems [16] we assume
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Fig. 1.3 Sections of a standard containership
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that the considered bins are sufficient in number and size for containing all items,
and the objective is either to minimize the number of bins or maximize the values
of the loaded items or minimize the loading time.

The connection between 3D-BPP and MBPP implies that items are containers
and the ship is the bin; however, note that the shape of a ship is different from
a standard six-face solid that is utilized as the bin in 3D-BPP. Therefore, as in
Sciomachen and Tanfani [10], in this chapter we assume the ship to be the bin and
split it into different regular sections in order to be able to consider the above and
below deck spaces, the bow and the stern as separate components. In this way, each
section of the ship has a parallelepiped shape. In particular, for the purpose of the
present work let us assume that four sections, i.e. bins, are considered for stowing
dangerous containers; these bins, namely B1, B2, B3 and B4, are highlighted in
Fig. 1.3. Further, note that all containers to be loaded, representing the items, are
standard in size that is either 200 or 400 in length.

It is worth mentioning that we do not consider those slots in bays, rows and tiers
where it is not possible to stow hazardous containers for safety reason, which are
usually the most external bays and lowest tiers. Further, note that many maritime
companies inhibit for stowage the whole external bays and those closest to the
machineries and cabins of the crew; these are bays 43 and 45 in Fig. 1.3.

Each one of sections Bi, i D 1, : : : , 4, can be hence considered as a bin and
filled by following the main frame of the exact branch-and-bound algorithm for the
3D-BPP proposed by Martello et al. [15]; in that algorithm, it is assumed that items
cannot be rotated, and are packed with each edge parallel to the corresponding edge
of the bin. These assumptions are applicable to MBPP too. In particular, they are
required for the definition of stowage plans since containers have to be stowed only
in one orthogonal direction, one above the other in a stack.

In Sciomachen and Tanfani [10] the authors adapted the above-mentioned
enumerative algorithm for 3D-BPP for finding feasible solutions for MBPP.

Here our goal is to show how the segregation rules derived from the IMDG Code
impact on the available slots of the considered bins. In particular, we determine
stowage plans filling simultaneously each one of the four bins, in such a way to
satisfy the main structural constraints of the problem related to both the containers
and the ship and the IMDG Code rules described in Sect. 1.2. In particular, having
in mind the main segregation principles for dangerous goods presented in Sect. 1.2,
let us define them in terms of stowage rules to be satisfied for loading the items,
that is the containers, in the bin, that, for example referring to Fig. 1.3, could be the
portion of the ship consisting of bays from 43 to 17 in the hold and of bays from 43
to 13 in the deck, that is bins B2 and B1, respectively. Further, let us focus on the
segregation principles 2–4, concerning stowage rules for containerized items. Note
that we always refer to closed containers.

• Principle 2: Separated from.
This principle means that dangerous containers can never be put in the same
stack (vertical line), unless they are separated by a deck, while can be stowed
horizontally separated by one container space. Under deck this distances is not
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necessary if there is a bulkhead; for example, given two hazardous containers that
have to respect the separation principle 2, referring to Fig. 1.3, if one container
is stowed in bay 23, row 05 and tier 02, the other one can be stowed in the same
row, same tier and bay 25 thanks to bulkhead.

Figure 1.4 shows the implementation of this principle with respect to the
available slots for stowing hazardous containers in the considered bin, both in
the deck and in the hold, that is either B1 or B2, according to the longitudinal
and cross sections of the ship.

In Figs. 1.4, 1.5, and 1.6 the slot coloured light represents a location where
a hazardous container has been already stowed, while the slots coloured dark
are those locations that are consequently forbidden for stowing other hazardous
containers.

• Principle 3: Separated by a complete compartment from.
This principle means that dangerous containers can never be put in the same
stack (vertical line), same hold or above the same hold. Thus, containers in the
hold must be separated by a bulkhead (see Fig. 1.5); for example, given two
hazardous containers that have to respect the separation principle 3, referring to
Fig. 1.3, if one container is stowed in bay 41, row 05 and tier 02, the other one
cannot be stowed in any location (both of the deck and the hold) in the bays 41
and 43 (i.e., there is a bulkhead separating bay 41 and bay 39 in the hold).

Containers on the deck must be separated by one container space along the
bay direction (longitudinally: fore and aft) and two container space along the
row direction (athwartships: port and strawboard side).

Again, given two hazardous containers that have to respect the separation
principle 3, referring to Fig. 1.3, if one container is stowed in bay 41, row 05

Fig. 1.4 Implementation of the second segregation principle for dangerous goods

Fig. 1.5 Implementation of the third segregation principle in the deck (B1) and the hold (B2)
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→ Longitudinal section (B1)
→ Cross section (B1)

→ Cross section (B2)
→ Longitudinal section (B2)

Fig. 1.6 Implementation of the fourth segregation principle in the deck (B1) and the hold (B2)

and tier 72, the other one cannot be stowed in any hold locations of bays 41 and
43, and in deck locations of rows 03, 01, 07, 09 of bays 43 and 39.

The implementation of this segregation principle is depicted in Fig. 1.5 in
the cross sections; referring to Fig. 1.3, bin B1 and B2 for the deck and hold,
respectively, are considered.

• Principle 4: Separated longitudinally by an intervening complete compartment
or hold from.
This principle requires that a minimum distance of two bays (24 m), including a
complete compartment, must be maintained longitudinally between two contain-
ers that have to respect principle 4.

For example, given two hazardous containers that have to respect the separa-
tion principle 4, referring to Fig. 1.3, if one container is stowed in any location
belonging to bay 39, the other one cannot be stowed in any location (both of the
deck and of the hold) belonging to bays 43, 41, 37 and 35.

The implementation of this segregation principle, for the deck (B1) and the
hold (B2), is depicted in Fig. 1.6.

Note that the above requirements apply to the segregation of hazardous
containers carried on board of containerships, either on decks or in holds,
and compartments of other types of ship, provided that these cargo spaces are
properly fitted to give a permanent stowage of the containers during transport.

Let us now see how the above segregation rules can be included in the loading
pattern of the items in the bins. For the sake of simplicity, let us explain the proposed
procedure focusing on bin B1 in the deck and B2 in the hold (see Fig. 1.3).

Note that the referring 3D-BPP algorithm proposed by Martello et al. [15] starts
to position the biggest and the heavier items from the back left bottom corner of a
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bin and sequentially fills it in a vertical pattern, that is items are stacked one above
the other, until the maximum height of the bin is reached; successively, the bin
is filled width-wise and finally following a transversal pattern. Consequently, the
weight of all packed items is concentrated near the origin of the axes, where they
are positioned. Readers can easily understand that this loading pattern applied to
the stowage planning can seriously compromise the cross and horizontal stability of
the ship. In fact, during navigation and after any loading/unloading operation, it is
required that the weight on the right side of the ship must be equal, within a given
tolerance T1, to the weight on the left side of the ship (cross equilibrium constraint),
and that the weight on the stern must be equal, within a given tolerance T2, to the
weight on the bow (horizontal equilibrium constraint). The tolerance values T1 and
T2 vary depending on the TEU capacity of the ship. For a detailed description of the
ship stability constraints, readers is referred to Ambrosino et al. [4].

Further, destination constraints, which suggests loading first those containers
having as destination the final port in the ship route and consequently load last
those containers to be unloaded first, are violated by this loading pattern. Finally,
loading the largest items first violates the size constraint, forcing the 400 containers
to be stowed under the 200 ones. Note, in fact, that here items do not have the same
size; that is, we consider both 200 and 400 containers. Further, bins associated with
different sections of the ship can have different size too.

To remedy this situation, following the bay assignment procedure for a multiport
route proposed by Ambrosino et al. [17], we first split the set of b bays of the ship
according to the number p of ports to be visited by the ship and the number of
containers to be shipped in each port. More precisely, let Cd, d D 1, : : : , p, be the
set of containers having port d as destination and td be the number of TEUs of set
Cd. Note that value td allows us to define the minimum number of bays required to
load all containers having destination d; in fact, remind that we assume that bins
are large enough to load all items. Similarly, let Cd(h) � Cd and td(h) be, respectively,
the subset of hazardous containers destined to port d and the corresponding TEUs.
Once the number of bays necessary to stow containers of set Cd, d D 1, : : : , p is
defined, we start from the central bay b/2 of the ship and assign to it the first port to
be visited by the ship; then, alternatively, from the left and right side of the central
bay, we assign bay .b=2/C 1 and .b=2/� 1 to the next port, and so on, according to
the number of bays needed to stow all containers of the corresponding destination.
If there is no incompatibility, that is if Cd(h) D ¿, the proposed bay assignment
is accepted; otherwise, if Cd(h) ¤ ¿ we have to check possible incompatibilities
between classes of hazardous containers according to the segregation principles of
the IMDG Code described above, such that incompatible containers could not be
stowed in contiguous bays if they have to satisfy the segregation principles 3 and 4
(see Figs. 1.5 and 1.6). In particular, if a pair of containers, say c1, c2, belonging
Cd(h) are incompatible according to principles 3 or 4 we have to reassign one of the
two to another bay, provided that the minimum distance between the bays satisfies
the corresponding segregation rule. More precisely, suppose that c1 and c2 belong
to Cd(h) and more than one bay must be selected for stowing all containers of Cd; in
case of the segregation principle 3, only for the deck locations (see Fig. 1.5), that
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is bin B1, two bays must be chosen (i.e., .b=2/ C 1 for loading c1 and .b=2/ � 1

for c2), while two more spaced bays are required in case of the segregation principles
4 for the deck and 3 and 4 for the hold (see Figs. 1.4, 1.5 and 1.6). If there are no
bays available, we can either switch two contiguous full bays destined to different
destinations or put one of the hazardous containers in a different bay, thus respecting
the hazardous rule but violating the destination one.

As an example, suppose that two sets of containers Cd1 and Cd2 have to be stowed
in the hold of the ship, corresponding to bin B2 of Fig. 1.3, for destination d1 and
d2, respectively; following the bay assignment procedure described above, bays 30,
38 and 22 are assigned to Cd1 and bays 42, 34, 26 and 22 are assigned to Cd2. Let
two hazardous containers c1 and c2 of class 6.2 and 2.1 be loaded in bin B2 for
being shipped to d1. Note that the segregation rule for c1 and c2 requires satisfying
principle 4. We see that in this case it is necessary to reassign bay 38 to Cd2 and
bay 42 to Cd1, in such a way that there are more than two bays between c1 and c2,
loading the first in bay 30 and the last in bay 42.

Finally, if the pair of containers c1 and c2 belonging Cd(h) are incompatible
according to principle 2, we can assign them to the same bay but we have to provide
the minimum distance between them required by the segregation rule (see Fig. 1.4).

Note that in both cases, that is either Cd(h) D ¿ or Cd(h) ¤ ¿, the proposed
bay assignment procedure balances the weight of the containers throughout the
horizontal section of the ship, thus satisfying the given tolerance limit T2.

Knowing the set of containers to stow in each bay of the ship, we then start
the loading process of each bin independently, assigning containers belonging
to Cd , d, d D 1, : : : , p, to the corresponding bay; bins corresponding to hold
locations are loaded first. Note that considering loading pattern within each bin for
single bay guarantees the horizontal stability of the ship verified by the previous
bay assignment procedure. Further, note that executing in parallel the loading
operations, either in different bins, like B4 and B2, or in different sufficiently spaced
bays, like bays 41 and 30, allows us to minimize the total loading time of the ship,
as it is shown in Sciomachen and Tanfani [12].

Finally, since the weight and size of a container located in a tier cannot be
greater than those of a container located below it in the same row and bay, the
containers assigned to a given bay are sorted in an increasing order of their size and
in decreasing order of their weight, such that 200 and heavier containers are loaded
first, thus satisfying both the size and weight constraints, imposing that heavier
containers cannot be put on a lighter one.

As a last step, in order to satisfy the cross stability constraint, we have to modify
the origin of the axes of the 3D-BPP algorithm, as it starts to position the items from
the left bottom corner to the bin, which is the origin, following a vertical pattern.
Therefore, for each pair of even bays in the bin, we fix the origin considering first
as x axis the depth, that is the lowest tier, the smallest bay and the highest even row;
then, we consider the width as y axis, coming from the left side to the center of the
bin continuing to the end of the tier, and finally the height as z axis, that is moving
in a higher tier.
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Note that this loading pattern is used if in the bay assigned to destination d
Cd(h) D ¿; otherwise, since the less restrictive rule derived from the IMDG Code
requires that a minimum distance of one slot in all direction has to be considered
between a pair of dangerous containers, we split the corresponding bay in the bin
into two parts along the cross section of the ship. In this way, the odd rows of the bay
are included in one sub-bin, while the even rows form the other, thus separating the
incompatible containers. Both sub-bins are then loaded starting from the lowest tier,
the smallest bay and the highest odd row and the smallest even one, respectively,
thus balancing the total weight of the loaded containers between the left and right
side of the ship in the considered bay.

1.4 A Case Study

Let us detail the loading procedure for stowing containers into a containership
described above with a simple case study, related to a containership leaving the
port of Genoa, Italy, in which some hazardous containers have to be loaded. The
ship has to visit four ports: Singapore, Hong Kong, Shanghai, Kaohsiung, shipping,
respectively, 95, 175, 169 and 104 containers.

In each bay of the ship it is possible to stow up to 250 TEUs; therefore, to
each destination the bay assignment procedure assigns two even bays and the
corresponding odd bay. The bays of the ship go from 02 to 78; then, the central
odd bay, that is bay 38, and the related even bays 37 and 39, is assigned to the
first destination, that is Singapore. Successively, bay 42 is assigned to Hong Kong,
while bay 34, corresponding to bay .b=2/� 1, is assigned to Shanghai; finally, bay
.b=2/C 2 that is bays 46, with 45 and 47, is assigned to Kaohsiung. Let us focus on
the stowage planning of this bay, since this last destination is the only one having
hazardous containers to be shipped to. This bay, reported in Fig. 1.7, has 16 rows
and 15 tiers; two bins are identified in it: bin B1, corresponding to the 6 tiers on the
deck and without the external rows, and bin B2, corresponding to the regular shape
of the hold, consisting of the first 6 tiers and the inner 12 rows.

To Kaohsiung we have to send 70 200 containers and 34 400 ones. Without loss
of information from the loading procedure point of view, let us assume that the
200 containers are named from c1 to c70, while the 400 containers are named from
c71 to c104. Further, among the 200 containers, 30 are light, 38 are medium and
2 are heavy, with respect to their class of weight, while among those of 400 let us
assume that the first 29 containers are the heavy ones and the last 5 containers are
the medium ones.

In order to see how different a stowage plan is when hazardous containers have
to be loaded, first suppose that none of these containers contains dangerous goods.

The first step of the loading patterns is to sort the containers in an increasing
order of their size and in decreasing order of their weight. The resulting sorted list
is reported in Table 1.1, where each row corresponds to an ordered sequence of
equivalent containers to load.

Then, we start to fill the hold of the ship, corresponding to bin B2.
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Fig. 1.7 The bay to be loaded

Table 1.1 The loading order of the containers to be shipped form Genoa to Kaohsiung

Load first c69, c70

:

c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c46, c47,
c48, c49, c50, c51, c52, c53, c54, c55, c56, c57, c58, c59, c60, c61, c62, c63, c64,
c65, c66, c67, c68

:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19,
c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30

:
c71, c72, c73, c74, c75, c76, c77, c78, c79, c80, c81, c82, c83, c84, c85, c86, c87,
c88, c89, c90, c91, c92, c93, c94, c95, c96, c97, c98, c99

Load last c100, c101, c102, c103, c104

The resulting stowage configuration for bays 45 and 47 is reported in Fig. 1.8.
Note that rows 1–11 are filled with 400 containers, thus corresponding to bay 46.
As readers can easily note, this stowage plan allows the stowage of all containers in
one bin.

Let us now assume, as it is the real case, that containers c31 and c49, having
the same class of size and weight, are hazardous containers of the class 3 and 2.1,
respectively. According to the segregation table reported in Fig. 1.2, this implies that
they have to satisfy the second segregation principle (see Fig. 1.5), requiring, for the
hold, one container space or a bulkhead and not in the same row. Consequently, we
can see that the solution shown in Fig. 1.8 is not anymore feasible, since containers
c31 and c49 are put in the same row (10), tiers 08 and 14, respectively, of bay 45.
Thus, following the procedure presented in Sect. 1.3 for the loading pattern when
hazardous containers requiring to respect principle 2 are given, we have to split the
corresponding bin in the hold into two parts, separating the odd rows from the even
ones; then, we partition the containers in the bins distributing them homogeneously
with respect to the ordering sequence reported in Table 1.1, providing that one of the
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Fig. 1.8 The stowage plan obtained by the 3D-BPP loading pattern

Fig. 1.9 The stowage plan when dangerous containers are given

two dangerous container, for instance c31, is assigned to one sub-bin and container
c49 to the other. Finally, in each sub-bin the same loading pattern as before is used.
The resulting stowage plan is reported in Fig. 1.9, where, as before, 400 containers,
depicted in both bays 45 and 47, are located in bay 46.

Note that there is at least one space distance between containers c31 and c49,
and that the weight and size constraints are satisfied. Further, the cross stability
constraint, requiring for the considered ship a tolerance value of T1 D 100 tons, is
satisfied too. Finally, also in this case we are able to stow all containers in one bins,
thus optimize the space occupancy in the ship.

However, in case of hazardous containers it is not always possible to follow
the loading pattern suggested by an optimal 3D-BPP algorithm and find a feasible
solution. In particular, the entire bay assignment procedure can become much more
complex when hazardous containers need to respect the segregation principles 3
or 4. In fact, in such cases, it is not always possible to assign destination to
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bays, since often bays are not enough to respect segregation principles, requiring
a minimum separation of two bays. For instance, in the present example if container
c49 had been of class 6.2 instead of class 2.1, we would have to satisfy the third
segregation principle (see Fig. 1.2). As a consequence, since a pair of odd bays is
sufficient for stowing the containers of each destination, either container c31 or c49
should be placed in one of the bays destined to Singapore or Shanghai, that is in bay
33, 35, 37 or 39. Note that also stowing one of the two containers in the bin above
the hold, that is in the deck, is inhibited. The serious drawback of the resulting
stowage plan is that at the port, say Singapore, visited by the ship before Kaohsiung
it is necessary to perform additional loading/unloading operations, which are the
so-called unproductive moves, considered one of the most penalizing handling
operations in the analysis of the performance indices of a maritime terminals, since
impact on the overall berthing time of a ship.

For a better validation from a computational point of view of the procedure
described in Sect. 1.3, small instances of the MBPP, similar in size to the above case
study, have been generated, comparing the solutions with those obtained by solving
the problem with hazardous constraints for respecting the segregation principles. As
a main remark we can observe that the solutions are similar in terms of loading time
of the bins but differ in the CPU time. More precisely, on average all instances are
solved up to optimality by using a commercial software CPLEX 12.5 on a PC on
a pc Intel(R) Core i5 CPU M520, 2,40 GHz Ram 6 GB in about 129 s, while few
seconds are required by the proposed procedure.

The main negative impact of the presence of dangerous goods on the resulting
stowage plans is a greater number of stacks (and sometimes bays) devoted to
the stowage of containers having the same destination; this fact can impact also
on the workload balance among the quay cranes and on the total loading time.
Consequently, the performances of the maritime terminal can be affected too.

Finally, it is important to remark that hazardous containers cannot be unloaded
in a port not corresponding to their destination due to the necessity of authority
permissions. Thus, they cannot be unloaded for permitting other loading/unloading
operations: all unproductive movements regarding this kind of containers must be
executed on board.

1.5 Conclusions and Outlines for Future Works

In this chapter we have approached the problem of stowing containers into a
containership (MBPP), in which some hazardous ones need to be loaded on board.
We followed the relation between MBPP and 3D-BPP and have shown how the
segregation rules for dangerous goods force to change the loading pattern.

We will go further in the direction of the present research considering both
loading and unloading operations at each port visited by the ship.

Further, in order to manage efficiently all the requirements for stowing hazardous
containers due to the segregation rules, it will be necessary to develop a new
heuristic procedure. In fact, as remarked in the analysis of the above case study,
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it will be necessary another strategy for loading hazardous containers, particularly
when the third and the fourth segregations principles have to be satisfied. One idea
will be to investigate the possibility of relaxing the destination constraints for the
hazardous containers and assigning them to the most profitable bays with respect to
the minimization of the unproductive moves in each port visited by the ship.
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Chapter 2
Dynamic Packing with Side Constraints
for Datacenter Resource Management

Sophie Demassey, Fabien Hermenier, and Vincent Kherbache

Abstract Resource management in datacenters involves assigning virtual machines
with changing resource demands to physical machines with changing capacities.
Recurrently, the changes invalidate the assignment and the resource manager
recomputes it at runtime. The assignment is also subject to changing restrictions
expressing a variety of user requirements. The present chapter surveys this applica-
tion of vector packing—called the VM reassignment problem—with an insight into
its dynamic and heterogeneous nature. We advocate flexibility to answer these issues
and present BtrPlace, a flexible and scalable heuristic solution based on Constraint
Programming.

Keywords Datacenter resource management • Vector packing • Dynamic side
constraints • Constraint programming

2.1 Introduction

A datacenter is an infrastructure hosting computing machines. They supply different
resources (CPU, RAM, etc.) in limited amount to execute software applications
submitted by clients. Thanks to virtualization, a single physical machine (PM) can
simultaneously run multiple application components, each embedded in a virtual
machine (VM), if their total demand in each resource does not exceed the PM
capacity, i.e. the amount of resource supplied by the PM.
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A datacenter is a dynamic system since both demands and capacities vary
over time: continuously, VMs are submitted, stopped, or resized according to the
application needs; continuously, PMs are upgraded, powered on to support load
spikes, or halted for maintenance purpose or due to a failure; continuously, execution
rules are stipulated by the users of the datacenter—both the operators and the
clients—for performance or security purpose. A datacenter is also a market place
between the operators, who expect a maximal use of their resources at minimal
operation cost, and the clients, who negotiate quality of service (QoS) contracts.

The resource manager of a datacenter is responsible for provisioning the
submitted workload continuously. It assigns and reassigns VMs to PMs according
to the current resource and user requirements so as to optimize QoS, operation
costs and resource usage. The problem is a dynamic variant of vector packing with
heterogeneous side constraints [18]: dynamic since the manager reoptimizes the
problem at runtime, and heterogeneous since side constraints express a variety of
user requirements and preferences.

Datacenters are commonplace nowadays with the advent of cloud computing.
As their size keeps growing (to up to thousands of PMs in large IT companies)
they necessitate more automation in resource management. Resource managers with
advanced optimization abilities are, however, far from ubiquitous, as the dynamic
and heterogeneous nature of the problem remains one major issue.

In this chapter, our first aim is to review this application of vector packing—
which we call the VM REASSIGNMENT PROBLEM—with an insight into its two
characteristics: dynamicity and heterogeneity. About dynamicity, we further discuss
the induced problem of scheduling the reassignment actions. About heterogeneity,
we survey some user requirements and preferences met in practical and seminal
works. We provide generic formulations of these side constraints which may apply
to many other practical applications of packing.

Our second aim is to illustrate the need for flexibility in optimization tools
to address such characteristics. We present BtrPlace [7] our implementation of a
flexible resource manager for virtualized datacenters. BtrPlace relies on Constraint
Programming to provide dynamic reassignment and easy customization abilities
while yet ensuring performance and scalability.

The chapter is structured as follows: in Sect. 2.2, we discuss the concepts of
dynamicity, heterogeneity, and flexibility in the context of resource management.
Section 2.3 formalizes the core packing problem and variants of the literature,
then describes the induced scheduling problem. Section 2.4 catalogues typical user
requirements. Sections 2.5 and 2.6 are devoted to BtrPlace and show empirical
evaluations. Section 2.7 presents our conclusions and future research directions.
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2.2 Flexible Resource Management

Datacenter resource management exhibits two facets: dynamicity and heterogeneity.
This section describes how resource managers should accordingly offer configura-
bility and extensibility. Flexibility refers to the combination of these two attributes.

2.2.1 Configurable Managers for Dynamic Datacenters

The infrastructure and the workload of a datacenter are highly volatile. They change,
at variable pace and at variable intensity, as the user activities change and as failures
occur. For example, the operators renew PMs in batches every month, they upgrade
the PMs overnight, a hardware failure occurs about every day or week [11], the
clients submit new applications every hour, and the load of service applications
(such as websites) varies in minutes with spikes occurring at morning and off-peaks
during weekends. These changes give the VM reassignment problem its dynamic
nature and impact it in different ways:

Repair The problem is not to compute a new assignment but to repair a corrupted
one. When changes invalidate the current assignment (e.g., when the new resource
demand of a VM suddenly exceeds its current host capacity), the resource manager
must compute a new valid assignment, then plan the appropriate reconfiguration
actions: powering PMs on and off, launching and migrating VMs either live or off by
cloning. These actions affect the performance of the applications during a significant
time (e.g., about 10 s to halt or migrate live a VM of 1 GB RAM [17]). They
also incur extra operation costs due to energy consumption and hardware usage.
Hence, the resource manager should minimize the effects of the reconfiguration
when computing a new assignment.

Reactivity Since the changes cannot be predicted accurately (e.g., when and where
the next hardware failure will occur) and since the applications run in degraded
mode while their requirements are violated and during the reconfiguration, a
resource manager must (1) operate at runtime, (2) compute solutions quickly, and
(3) compute fast reconfiguration plans.

Elasticity In addition to computing an assignment, the resource manager may
command the VM and PM states (e.g., launch, halt, sleep) to accommodate
the requirements. For example, it may adjust the number of replicas of a service
according to the datacenter load and the required degree of fault tolerance. In
these settings, the numbers and sizes of the VMs and PMs become new variables of
the problem.

Structural Changes Finally, the changes affect not only the numeric values (the
resource requirements) but also the logical constraints (the user requirements) of
the problem. From one execution to another, the resource manager is then likely to
solve a new optimization problem, not just a new instance of the problem.
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Configurability is a required attribute of autonomic resource managers to address
structural changes. A configurable resource manager takes as input the current
assignment and the new user and resource requirements to merge them into
its internal optimization model. If the current assignment violates at least one
requirement, it then solves the model. For usability, the manager must offer a
high-level interface to specify the new requirements. For reactivity, the internal
reformulation of these requirements is expected to be fast. For robustness, the
structural changes of the model should not deteriorate the performance of the
solution algorithm.

2.2.2 Extensible Managers for Heterogeneous Datacenters

The infrastructure and the usage make each datacenter unique. The development
of an universal resource manager remains utopian. Furthermore, each resource
manager must deal with the heterogeneity inherent to its own datacenter.

Infrastructure and Workload The design of a datacenter depends on its function
(e.g., for private business, internet service, or cloud computing). The size is a major
characteristic as it varies from ten PMs gathered in a room to thousands of PMs
geographically distributed. Resource management in such distinct environments
refers to distinct problems and requires distinct solutions. Though, any resource
manager must be scalable at some extent to support the probable growth of its
infrastructure.

Within a datacenter, resources and machines come with a great diversity.
Different types of resources are either provided by the PMs (e.g., CPU, RAM, disk
storage, network interfaces) or shared by groups of PMs (e.g., licenses). Different
PMs supply different types of resources and have different capacities. Furthermore,
the PMs are connected through a hierarchical network offering different classes of
bandwidth and latency.

Similarly, the workload usually presents a great heterogeneity in sizes and shapes
from one application to another. This heterogeneity prevents to rely on symmetry
arguments to help solve the packing problem.

User Requirements and Preferences Operators—who own or manage the
infrastructure—and clients—who submit or use the applications—have multiple
needs in terms of resource allocation. Clients expect a reliable QoS to guarantee
the optimal execution of their applications by contracting service level agreements
(SLAs). SLAs describe low-level metrics (e.g., the resource demand) and logical
conditions on the relative assignment of VMs to express different concerns
(e.g., grouping communicating VMs on PMs close to each other for performance
purpose). Since the client pays for his SLAs and is refunded when violations
occur, the operator is willing to enforce QoS while reducing operation costs
(e.g., minimizing the number of powered PMs). Operators have strict requirements
too, either permanent (e.g., isolating management services on specific PMs for
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security purpose) or temporary (e.g., freeing PMs to prepare for a maintenance).
Hence, a great variety of user requirements and preferences exist. The resource
manager must handle a number of them simultaneously at each reassignment step.

Extensibility refers, for a software, to the ease to design and to implement new
functionalities. Resource managers release new features to clients on a regular basis.
For example, the widely used VMware vSphere and Amazon EC2 were updated
to support additional requirements, such as VM-to-PM affinity [13] or dedicated
PMs [2]. Extensible resource managers should enable operators to implement
desired features. One approach of extensibility is to rely on a modular framework
providing an extensible set of primitives to express each feature.

2.2.3 Related Works

Flexibility is a recent concern in datacenter resource management. Pioneer
approaches focused on scalability issues and proposed ad-hoc approximation algo-
rithms ignoring everything but CPU and memory requirements [6, 16, 17, 25, 27].
The increasing energy consumption and the rise of SLAs shifted the goal of resource
management to compromise between power saving and QoS guarantee. Ad-hoc
partially configurable algorithms have been proposed to support these models
(e.g., [13, 20]). The extensibility of these algorithms is, however, not discussed
and the experiments limited to datacenters with less than 50 PMs. In the context
of the Roadef/EURO Challenge 2012 [23], Google described a VM reassignment
problem with a fixed set of eight user constraints including five violation penalties
to minimize. The dataset consisted of synthetic instances up to 5,000 PMs and 20
resources to solve in 5 min. The competing algorithms were evaluated with regard
to their optimization performance, not their flexibility.

Approaches based on Constraint Programming address extensibility but their
experiments are often limited to datacenters of ten PMs (e.g., [5]). BtrPlace and
its former version Entropy [17, 19] use Constraint Programming with the aim to
address flexibility together with scalability. Currently, BtrPlace is bundled with 16
high-level user requirements but users already developed their own. It also provides
a simple configuration language to invoke these side constraints on the fly. BtrPlace
computes solutions for simulated instances of 5,000 PMs in less than 1 min.

2.3 Problem Statement

This section describes the core VM REASSIGNMENT PROBLEM—without user
requirements—as a multi-dimensional vector packing problem. It also presents
several objective variants and the induced reconfiguration scheduling problem.
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2.3.1 The VM Reassignment Problem

Definition 1. A datacenter consists of a set P of PMs (the bins) and a set R of
resources (the dimensions). A workload consists of a set V of VMs (the items). Each
PM p 2 P provides a given amount of each resource r 2 R, called its capacity and
denoted cpr. Each VM v 2 V requires to run a given amount of each resource
r 2 R, called its weight, and denoted wvr . A feasible configuration is an assignment
M of the VMs in V to the PMs in P that satisfies the resource requirements:

X

v2M�1.P/

wvr � cpr 8p 2 P; r 2 R:

Given a current source configuration M0 W V ! P , new capacities c 2 N
P�R

and new weights w 2 N
V �R, the VM REASSIGNMENT PROBLEM is to find a

target configuration M W V ! P satisfying the new resource requirements while
optimizing a given quantitative performance goal f .M/ 2 R.

2.3.2 Performance Goals

The performance goal estimates the quality of the target configuration M and of the
reconfiguration process to reach M from M0, in terms of service to the clients and of
financial and energy savings for the operators. Performance goals are context-bound
but, by contrast to the user requirements, they generally do not vary over time.

A single performance goal is typically integrated with the model as a function to
optimize. A weighted sum allows to merge multiple goals as one objective function.
However, intensive experiments and practical knowledge are needed to calibrate the
weights accurately. An alternative is to bound the function values of a given goal
by means of a hard constraint and to reoptimize the problem with progressively
tightened bounds. For goals expressing user preferences, the user requirements are
modeled as soft constraints that trigger penalty costs possibly proportional to the
degree of violation; the objective then is to minimize the sum of the penalties.

Because of the theoretic cost models, the large size of the instances, the
computational complexity of the problem, and the allowed solution time, resource
managers do not seek optimality when solving the VM reassignment problem in
practice.

2.3.2.1 Scoring the Target Configuration

Workload Consolidation aims at gathering the workload into the minimum
number of PMs to power off the unused PMs [6, 17, 25, 27]. With no user require-
ments, the model coincides with the actual Multi-Dimensional Vector Packing
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Problem [15]. A more elaborated model, matching the Capacitated Facility Location
Problem, estimates the energy consumption through a fixed cost for each active
PM and an execution cost for each pair of VM-PM [12]. Consolidation policies
enforce PMs to run at full load. This tends to multiply resource shortages, thus
reconfigurations, when the workload is subject to load spikes.

Load Balancing is a performance-oriented policy. It spreads the VMs across the
PMs to get a desired load rate on each PM. Such policy can be achieved by
minimizing the maximum load over all PMs [1], the sum of the deviations from
the desired load rate [24], or the sum of the penalty costs for exceeding a desired
safety capacity [23].

SLA Protection refers to policies expressing client satisfaction. An example
of global satisfaction is to maximize the number of running applications [24].
The problem maps then to the Multiple Knapsack Problem. Individual client
demands—such those described in Sect. 2.4—may also be turned into soft con-
straints then integrated with the objective when their satisfaction is more desired
than required [23].

2.3.2.2 Scoring the Reconfiguration Process

The actions to execute on VMs and PMs to reach the target configuration from the
source configuration impact the performance of the datacenter: they provoke down-
times and significant delays, and incur direct operation costs. The reconfiguration
score reflects this impact and often dominates the target configuration score in many
applications [4, 6, 17, 25, 27]. In fact, performance goals based on reconfiguration
scores limit the distance between a source and a target configuration, thus preserve
the stability of configuration scores.

Local Changes For instance, the workload consolidation policy yields no energy
savings if PMs are turned on and off too frequently. Therefore the performance
goal should limit the number of PM state transitions rather than the number of
powered PMs. Limiting the number of VM migrations is less trivial. To minimize
changes, most works on consolidation [4, 6, 19] and load balancing [14] solve the
violations locally—one at a time or altogether—by repairing only a minimal subset
of assignments. The decomposition obviously hinders optimality but drastically
reduces the problem size.

Migration Numbers An alternative is to focus on minimizing the reconfiguration
impact due, in particular, to the VM migrations. In the Load Rebalancing prob-
lem [14], the goal is to minimize the number of migrations. In [1], a hard constraint
enforces to move less than k VMs. In [23], the maximum number of migrations per
application is minimized as well as the weighted sum of migrations between each
pair of PMs to simulate network bandwidth conservation.



26 S. Demassey et al.

a b c

Fig. 2.1 Impacts of the resource (a, b) and user (c) requirements on the reconfiguration from M0

to M: (a) requires to halt v1 before migrating v2, (b) prevents to migrate live both v1 and v2,
(c) prevents to migrate live both v1 and v2 if they are in conflict

Action Durations In addition to the number of actions, [23] minimizes the sum of
the predefined impacts of the actions. The action duration—including preparation
and transfer times—is a relevant indicator of the impact. The duration can itself be
evaluated as a function of the type of the action and of the size of the object. Several
works consider this criterion in priority. They minimize either the duration of the
whole reconfiguration process [21] or the sum of the completion times [17].

2.3.3 Scheduling the Reconfiguration Actions

Due to the resource limitations, the reconfiguration actions may have to be
scheduled in a specific order. Figure 2.1a depicts such a situation: since PM p1
supplies not enough RAM to run VMs v1 and v2 together, the resource manager
must halt v1 before starting the migration of v2 to p1.

Enabling live migrations makes the resource constraints still harder since a VM
consumes resources on both the source and the target PMs during all the time of
its live migration. As a result, a cycle of live migrations may cause a deadlock
forbidding to reach the target configuration. Figure 2.1b illustrates this worst case: a
cycle occurs between the live migrations of v1 and v2 since none of the two available
PMs has enough RAM to colocate the two VMs at any time.

A common approach handles the reconfiguration scheduling problem separately
after computing the target configuration [17, 27]. It requires to recompute both
the reassignment and the scheduling if cycles occur. Furthermore, this two-phase
approach disallows to consider the actual impact of the reconfiguration process
within the reassignment problem.

As a workaround, [23] tightens up the resource constraints to ensure that all live
migrations may happen simultaneously: the total requirement of both the newly
assigned VMs and the previously hosted VMs must not exceed a PM capac-
ity. This workaround discards feasible configurations by making permanent the



2 Dynamic Packing in Datacenters 27

temporary tighter resource requirements induced by live migrations. In addition,
it permits to violate user requirements during the reconfiguration. Figure 2.1c
considers the conflict constraint forbidding to colocate the two VMs v1 and v2.
To enforce this constraint, one of the VMs must be stopped during the migration
of the other one, then relaunched on its target PM. The impacts of these service
interruptions and delays are not considered in the reassignment model of [23].

Bin et al. [5] consider the continuous satisfaction—including during the
reconfiguration—of one user requirement in a particular use case. BtrPlace [7]
generalizes this principle to any user requirements: by handling reassignment and
scheduling as one global problem, it enforces the continuous satisfaction of the
requirements [10] and controls the reconfiguration impact explicitly.

2.4 User-Defined Side Constraints

In this section, we present a catalog of packing side constraints issued from the
literature and from practical user requirements. For each constraint, we discuss its
main application contexts, cite some referring works, and introduce a mathematical
set formulation using notations of Table 2.1.

spread.V/ assigns all the VMs in V onto pairwise distinct PMs [7, 19].It is named
conflict in [23], VM-VM affinity in [13] and GroupAntiAffinity in [22]. Spread is
relevant to clients for fault-tolerance purpose by avoiding a single point of failure.

card.M.V// D card.V/:

gather.V/ assigns all the VMs in V onto the same PM [7, 19]. It is named VM-VM
anti-affinity in VMWare DRS[13]. Gather is relevant to clients for performance
purpose by improving the intercommunication of a group of VMs.

card.M.V// D 1:

Table 2.1 Notations

p 2P Physical machines (PMs)

v 2 V Virtual machines (VMs)

r 2 R Resources

cpr 2 N Capacity of PM p in resource r

wvr 2 N Requirement of VM v in resource r

M0 2PV Source configuration

M 2PV Target configuration

P �P A set of PMs

CP � 2P A set of sets of PMs

V � V A set of VMs

CV � 2V A set of sets of VMs
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ban.V;P/ assigns all the VMs in V onto PMs not in P [7, 19]. It is named VM-PM
anti-affinity in VMWare DRS[13]. Ban is relevant to operators for maintenance
purpose—by freeing PMs before an upgrade—or for security purpose—by
preventing client VMs to run on operator dedicated PMs.

M.V/ \ P D ;:

fence.V;P/ assigns all the VMs in V onto PMs in P [7, 19]. It is named VM-PM
affinity in VMWare DRS [13]. Fence is relevant to operators for security purpose
by partitioning VMs and PMs according to their compatibility.

M.V/ � P:

mostlySpread.V; n/ assigns all the VMs in V to at least n 2 N PMs [7]. It is
named soft VM-VM affinity in VMWare DRS [13]. mostlySpread is a soft version
of spread when only a minimum number of distinct PMs is required.

card.M.V// � n:

quarantine.P/ prevents the PMs in P to relocate their initial hosted VMs and
to host new VMs [7, 13, 19]. Quarantine is relevant to operators for security
purpose by isolating compromised PMs.

8p 2 P;M�1.p/ D M�10 .p/:

among.V;CP/ assigns all the VMs in V onto PMs belonging to a single group
of CP [7, 19, 28]. Among is relevant to clients and operators for performance
purpose by running strongly communicant VMs on PMs with low network
latency.

9P 2 CP ;M.v/ � P:

root.V/ prevents to reassign any VMs in V [7]. It is available as a property in [13].
Root is relevant to clients and operators for performance purpose by attaching
VMs to some peculiar device.

8v 2 V; M.v/ D M0.v/:

split.CV / prevents to collocate VMs belonging to two different groups in CV

(the groups are pairwise disjoint) [7]. It is available as the dedicated instances
feature in Amazon EC2 [2]. Split is relevant to clients for security purpose by
isolating groups of VMs from supposed malicious VMs.

8V1 2 CV ;8V2 2 CV n fV1g;M.V1/ \ M.V2/ D ;:
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splitAmong.CV ;CP/ assigns each group of VMs belonging to two different
groups in CV to distinct groups in CP (the groups are pairwise disjoint) [7, 19].
It is a generalization of the availability zones in Amazon EC2 [2]. SplitAmong
is relevant to clients for fault-tolerance purpose by isolating replicated VMs on
dedicated PMs.

8V1 2 CV ;8V2 2 CV n fV1g; 9P1;P2 2 CP ;M.V1/ � P1;M.V2/ � P2; and P1 ¤ P2:

maxOnline.P; n/ forces at most n 2 N PMs in P to run [7]. MaxOnline is relevant
to operators for performance purpose by restricting the number of running PMs
due to license restrictions or cooling and powering limited capacities [9].

card.P \ M.V // � n:

capacity.P; r; c/ forces the total amount of resource r consumed on the PMs in
P to be lower than c 2 N [7]. Capacity is relevant to operators for performance
purpose by restricting access to a shared resource, such as the number of Internet
Protocol addresses.

X

v2M�1.P/

wvr � c:

spreadAmong.V;CP/ assigns the VMs in V to at least n 2 N groups of PMs
among CP . It is named spread in [23]. SpreadAmong is relevant to clients for
fault-tolerance purpose.

cardfP 2 CP jM.V/\ P ¤ ;g � n:

dependency.V1;V2;C/ given a partition C of the set of the PMs, assigns the VMs
in V1 to elements of C that run at least one VM in V2 [23]. Dependency is relevant
to clients for performance purpose.

C.M.V1// � C.M.V2//:

2.5 BtrPlace: A Flexible Resource Manager

In this section, we present BtrPlace, an open source resource manager based on
Constraint Programming [7]. BtrPlace is the evolution of the former consolidation
manager Entropy [17] with a focus on flexibility [18, 19].
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2.5.1 Global Design

For regular users, BtrPlace is a configurable VM reassignment algorithm bundled
with 16 placement constraints addressing security, performance, reliability, and
fault-tolerant concerns. The algorithm takes as input (1) a description of the infras-
tructure extracted from a monitoring service and (2) a collection of resource and user
requirements declared through an API and configuration scripts [19]. The algorithm
first checks if the current infrastructure satisfies all the requirements. If not, it
computes a new valid VM-to-PM assignment and a schedule of the reconfiguration
actions. For advanced users, BtrPlace is an extensible VM reassignment algorithm
where third-party developers can implement and integrate new constraints and
extensions. BtrPlace is employed for different usages by companies and in research
projects such as the Fit4Green European project [12] which addresses energy
efficiency in datacenters.

2.5.2 Implementing Flexibility

The flexibility of BtrPlace results from the composability of its core Constraint
Programming model through the use of global constraints [3]. In Constraint
Programming, a combinatorial problem is modeled as variables taking their values
in discrete sets called domains and constraints that represent the required relations
between the variables. Each constraint provides a dedicated algorithm to identify
and filter values in a variable domain that are inconsistent with regard to the relation
and to the other variable domains. A propagation algorithm calls the filtering
algorithms in turn until no more inconsistencies are detected. If a domain becomes
empty, the problem is proved to be infeasible. If all domains are singletons, then
they figure a solution. Otherwise, a decision tree is built. Successively at each node,
a variable-value assignment to explore is selected—in a heuristic order called the
branching strategy—and the propagation algorithm is recalled.

Flexibility is a strength of Constraint Programming compared to other paradigms
like Mathematical Programming or SAT solving: A Constraint Programming model
decomposes a problem in global constraints which are altogether processed by a
generic algorithm. As a constraint may express any logical relation, a user can
embed a part of the complexity of his problem in one constraint as soon as he
can define a reasonably efficient filtering algorithm for it. Finally, any Constraint
Programming solver supplies a—usually extensible—set of fundamental constraints
which can be easily invoked through predicates to compose a model. BtrPlace relies
on the Java open-source solver Choco [8].

For each call to the reconfiguration algorithm, BtrPlace generates the Constraint
Programming model in two phases. The first phase generates the core model
including decision variables for the VM assignments, the PM states, the starting
times of the reconfiguration actions, and ad-hoc constraints of vector packing and
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scheduling. The second phase specializes the core model with the resource and
user requirements. Each component attaches variables of the core model with new
generated variables through some global constraints of the Choco API. The resulting
model is solved heuristically by a truncated branch-a-bound.

The extensibility of BtrPlace has yet some limitations. It cannot infer the next
VM states, or perform multiple actions on a same element during a reconfiguration.
It also historically focuses on hard constraints. Problems that are vastly organized
over soft constraints such as the one formulated for the Roadef challenge [23] could
be supported by the framework of BtrPlace but are not currently implemented.

2.5.3 The Optimization Algorithm

The optimization problem—assignment and scheduling—is obviously NP-hard and
is intractable for medium to large-size datacenters. The BtrPlace algorithm uses two
heuristic strategies to accelerate the resolution.

The filter optimization limits the set of VMs to reassign [19]. Each constraint uses
a dedicated algorithm—similar to the filtering algorithm—to check the viability of
the current assignment. On failure, it computes a set of candidate VMs to migrate
to resolve the conflict. For example, the spread constraint checks if the VMs to
spread are already on distinct PMs. If not, it selects all collocated VMs. All other
VMs are fixed to their initial PM in the model prior to its resolution.

Our second strategy relies on a truncated DFS branch-and-bound with a dedi-
cated branching heuristic. The heuristic first focuses on the assignment variables in
decreasing order of criticality: first the running VMs that are no longer hosted on
a suitable PM, then all other running VMs, and finally the new VMs to launch. To
minimize the number of migrations, the heuristic tries to assign a VM first to its
current PM, then to the other possible PMs in random order.

2.6 Evaluation of BtrPlace

Highly available (HA) web applications are typical applications running on data-
centers. Their architecture illustrates typical user requirements. They are usually
composed of three tiers: one deserves static HTTP content, a second one handles
the business logic and the last one manages data. To ensure performance and fault-
tolerance, each tier is composed of replicated VMs to run on distinct PMs. The
replicas of the last tier run databases that must synchronize themselves. To reduce
the synchronization latency, they have to run on PMs close together.

To evaluate BtrPlace empirically in a realistic context, we generated workloads
made of HA web applications. Each application uses between 6 and 30 VMs with at
least two VMs per tier. The resource requirements of the VMs are defined according
to one of 12 templates; all VMs in a same tier instantiate the same template.
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Each template defines a demand in RAM ranging from 1 to 3 GB and a maximum
CPU usage ranging from 30 to 60 uCPU. The CPU consumption varies at any time
randomly between 20 and 90 % of its maximum usage. User requirements may be
attached to a HA application by means of one spread constraint per tier (to model
fault-tolerance) and one among constraint over the VMs of the third tier (to model
synchronization latency).

To evaluate the scalability of BtrPlace, we considered a large datacenter of 5,000
PMs each providing 200 uCPU and 16 GB RAM. To evaluate the impact of the
resource usage, we varied the consolidation ratio from 3 to 6 VMs on each PM in
accordance with a common observation of real service-oriented datacenters [26].
This amounts to up to 1,700 applications running a total of 30,000 VMs and an
overall resource usage varying from 36 to 73 %. For each consolidation ratio, we
generated 50 instances for different source configurations.

We considered two scenarios of reconfiguration: LI simulates Load Increases
and NR simulates a maintenance for Network Rewiring. In LI, the CPU demand
of 10 % of the applications increases by 30 % (capped at 100 %): it increases the
overall demand by an average of 5 %. In NR, 5 % of the PMs are randomly selected
to be powered off for maintenance: it corresponds to the rate of rewiring observed
in Google’s datacenters at any moment [11].

BtrPlace ran on one core of an Intel Xeon X3440 at 2.53 GHz with 16 GB RAM
running Linux 2.6.32-5-amd64 and Sun’s JVM 1.8.0. We gave a time limit of 5 min
and stopped BtrPlace at the first solution.

Impact of the Number of VMs Figure 2.2 shows that the solution time grows
with the number of VMs, as expected by the complexity of the problem. However,
it never exceeds 30 s in the NR case—which is almost the time to halt or to migrate
one large VM. Instances of LI appear to be much harder as only one of the 50
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instances with 25,000 VMs was solved within the five allotted minutes and all
instances having 30,000 VMs hit the timeout. The difference comes from the filter
optimization that reduces the problem size more effectively in the NR case. In NR
the algorithm only reassigns VMs that have to be restarted after a failure, while in
LI all the VMs assigned to overloaded PMs are considered. It amounts to 1,500
VMs and 3,000 VMs, respectively, on average for the largest instances. The gap
of performance is also explained by the intrinsic difficulty of the LI case due to
the tighter resource constraints. The number of nodes explored grows exponentially
with the consolidation rate.

To address this scalability issue, we envisage three solutions. A first solution is to
provide a stronger filtering algorithm of the vector packing constraint since our cur-
rent implementation is limited on purpose to reduce the memory consumption and
to speed up the resolution for large and easy instances. To preserve genericity, we
could automatically adapt the filtering level according to the instance characteristics.
A second solution is to rely on stronger branching strategies. The strategies must
remain instance-independent or, at least, auto-adaptive. The last solution proposed
in [19] automatically splits instances into independent sub-problems.

Impact of the User Constraints In the previous experiments, no applications were
constrained by the HA requirements (i.e., with spread and among constraints). In
Fig. 2.3, we vary the percentage of applications with HA requirements and compute
the solution time overhead on the solving process for scenarios NR and LI.

We observe that the overhead is acceptable in both cases as it never exceeds one
third of the total solution time. In the worst case, the average overhead is 11 s (34 %)
in NR and only 4 s (11 %) in LI. This low overhead demonstrates that the resource
constraints are dominant. We also observe that with 25,000 VMs, the total solution
time decreases when there is up to 66 % of the constraints in the NR case and 100 %
in the LI case. This phase transition reveals that the reduction of the search space
due to the side constraints may compensate the extra computation time.
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2.7 Conclusion and Future Works

The resource manager has the critical task to efficiently deploy the client applica-
tions throughout a datacenter. This involves to assign VMs to PMs and to revise
the assignment recurrently as the environment changes. This optimization problem
matches the multi-dimensional vector packing problem with various objectives and
side constraints depending on the context. For the past years, many companies and
researchers have proposed meaningful solutions for their own context.

In this chapter we advocated an unifying approach that would be able to embrace
all these specificities. We emphasized the dynamic and heterogeneous nature of
resource management and proposed flexibility as a solution. We assessed this
approach through BtrPlace, a flexible and scalable solution based on Constraint
Programming. While fully generic optimization algorithms may not always be faster
than ad hoc solutions, our experiments showed that BtrPlace is effective to manage
thousands of highly available web applications running on thousands of PMs.

In future works, we plan to keep improving BtrPlace in terms of performance
and flexibility. Regarding performance, we will develop enhanced algorithmic
components (partitioning, filtering, branching) to address the scalability issue when
solving both large and difficult instances. Regarding configurability, our next step
is to make the algorithm auto-adaptive. Similarly to the model, the solver will
automatically invoke the right algorithmic components with respect to the instance
characteristics. Finally regarding extensibility, we plan to add support for soft
constraints—to manage user preferences in addition to user requirements—and
for network concerns—by modeling new elements like topology, bandwidth, and
latency. One main challenge will be to multiply the case studies to further assess the
gain of flexibility.
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Chapter 3
Packing Optimization of Free-Form Objects
in Engineering Design

Georges M. Fadel and Margaret M. Wiecek

Abstract Packing for engineering design involves the development and use of
methods to determine the arrangement of a set of subsystems or components
within some enclosure to achieve a set of objectives without violating spatial or
performance constraints. Packing problems, also known as layout optimization
problems are challenging because they are highly multimodal, are characterized by
models that lack closed-form representations, and require expensive computational
procedures. The time needed to resolve intersection calculations increases exponen-
tially with the number of objects to be packed while the space available for the
placement of these components becomes less and less available.

This paper presents a multiyear research effort targeting the development of
computational tools for packing optimization problems which are encountered at
different stages of engineering design with special interest in automotive design.
Due to increasingly realistic engineering applications, the problems feature a rising
level of complexity and therefore require optimization models and approaches
with growing sophistication. To be relevant to automotive design, the packing
problems account for the free shape of objects and consider either their compact
packing within an envelope or their noncompact packing in the presence of multiple
criteria used to evaluate system performance. The packing problems are represented
by single or multiobjective optimization problems (MOPs) while the solution
approaches rely on evolutionary algorithms due to the level of complexity that
precludes development of effective exact methods.
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3.1 Introduction

This paper focuses on free-form packing, i.e., the packing of objects in a container
where the objects, the container, or both, have a nonregular shape. Three basic
concerns have until recently precluded the study of free-form packing: First, the
complexity of the problem has been such that even the most performing algorithms
executed on the best computers could not give a satisfactory answer in a reasonable
amount of time. Second, the descriptions of free-form objects were not amenable
to efficient interference computation, and third, there was no theoretical interest
in these cases since results were not mathematically provable to be the best.
Nonetheless, engineering designers are most interested in this problem in that their
job requires providing solutions that are at least feasible, and preferably optimal to
some combination of criteria.

To the authors’ knowledge, the groups of Cagan and his students [3, 45, 46, 61]
and Teng and his students [47] are the only ones beside the authors’ team focusing
on layout optimization in 3D for realistic engineering problems. All three groups use
heuristic methods to progress towards a solution, Cagan favors simulated annealing
and pattern search whereas Teng and Fadel use genetic algorithms (GAs).

The problem of packing 3D free-form objects within a specific free-form
envelope is the most general of the configuration design problems involving con-
straints, multiple criteria, and mixed discrete/continuous variables. Furthermore, the
objectives and constraints are a mixture of linear, quadratic, nonlinear, multimodal,
continuous or discontinuous functions that are often analytically unavailable.

The handling of such problems requires differentiating between both object and
system. The object is an atomic solid that cannot be taken apart, whereas the system
is an aggregation of objects or components that can move with respect to each other.
The objective is to design the system, placing the objects inside the container or
enclosure, in order to satisfy a multiplicity of constraints and maximize one or a
set of criteria. Thus a description of the objects as an indivisible whole must be
provided, and a description for the system as a relative or global positioning of the
objects is sought. The criteria of interest are system level characteristics, such as
volume, inertia, heat transfer, and maintainability.

The packing problem can be dealt with from three different perspectives.
The first is motivated by geometric considerations and is based on the concept
of the envelope. An outer shell or envelope is constructed for each object to
be packed while its internal details are ignored. Additionally, an inner shell or
envelope is constructed for an enclosure within which the objects are packed. While
mathematical optimization is not used at this stage, the other two perspectives,
known as compact packing and noncompact packing, rely heavily on it. The generic
compact or noncompact packing problem may be formulated as a multiobjective
optimization problem (MOP) of the form [29]:
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Given:

• The design space Rn and a global Cartesian coordinate system.
• A set of N objects defined by their shape, material, and positioned in space by

six variables, i.e., three Cartesian coordinates (x, y, z) and three angles (’; “; ”)
defining the orientation of the object with respect to a local Cartesian coordinate
system.

• The vector x called the vector of design variables and composed of subvectors xi

where xi D .xi; yi; zi; ’i; “i; ”i/; i D 1; : : : ;N:
• A set of m equalities, usually called functional constraints,

h.x/ D 0 (3.1)

positioning the objects with respect to a reference coordinate system, where h is
a vector-valued function defined as h W R6N ! Rm.

• A set of n inequalities

g.x/ � 0 (3.2)

used to identify the interior and exterior of the objects, and enable intersection
and overlap calculations, where g is a vector-valued function defined as g W
R6N ! Rn.

• A set of lower and upper bounds

xL � x � xU (3.3)

restricting the position variables.
• A vector-valued objective function F W R6N ! Rp, evaluating the designs with

respect to p scalar-valued objective functions

F D Œf1.x/; : : : ; fp.x/� (3.4)

Find:

• A set of values for x optimizing the objective function F

Satisfying:

• The feasibility constraints in the set X of feasible designs

X D fx 2 R6N W g.x/ � 0;h.x/ D 0; xL � x � xUg (3.5)

Although the envelope generation makes use of the position variables x and the
constraints of the MOP, it is not driven by any objective function and so does
not assume the form of an optimization problem. In compact packing, the MOP
is reduced to a single-objective optimization problem (SOP) (p D 1) because
the optimization of a measure of compactness is the only criterion of interest to
designers. The task is then to find an optimal feasible solution x� representing the
optimal locations of all objects.
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In noncompact packing, designers are interested in optimizing several objective
functions evaluating the performance of packing, and the resulting optimization
problem assumes the MOP form. Solving the MOP is understood as calculating
its set of efficient or Pareto-optimal solutions [23]. Because MOPs typically
have infinitely many Pareto-optimal solutions, approximation approaches are of
importance in the selection of a solution method. Some noncompact packing
problems that assume a bilevel formulation make use of the MOP or SOP at each
level. Therefore, advanced methodologies are required for deriving their solutions.

The multiplicity and the type of the objective and constraint functions inherent
in packing optimization problems make them most difficult to solve. Further,
their level of complexity precludes development of traditional, exact optimiza-
tion methods such as gradient-based algorithms. Consequently, evolutionary algo-
rithms (EAs), and in particular GAs and simulated annealing, have been the only
approaches effective in resolving these difficulties.

EAs are nature-inspired adaptive search techniques that can efficiently deal with
problems having discreteness and multimodality in the search space. They do not
require that the optimization problem assume a functional form and do not rely
on the gradients of objective and constraint functions. GAs, one such class of EAs
with a working principle based upon Darwin’s theory of the survival of the fittest,
can work with almost any kind of variable representations (discrete, integer, real)
so long as suitable genetic variation operators are provided. GAs have therefore
emerged as an attractive optimization tool for a wide class of SOPs and MOPs.
Their effectiveness is also justified by the need to generate sets of Pareto-optimal
solutions for packing problems formulated as MOPs.

The Simple Genetic Algorithm [26, 32], Evolution Strategies [43], Genitor
(a steady-state GA) [56, 57], CHC (cross-elitist generation, heterogeneous recom-
bination, cataclysmic mutation) [24], and Covariance Matrix Adaptation [30] are
but a few of the notable single-objective optimization algorithms based on heuristic
evolutionary methods.

Multiobjective genetic algorithms (MOGAs), and in a broader sense multiob-
jective evolutionary algorithms (MOEAs), have been very attractive to engineers
because they operate on a set of solutions and not on a single one, and can
therefore effectively obtain in a single run a set of nondominated solutions that are
a good approximation of the (true) set of Pareto-optimal solutions. Various methods
have been investigated, typically based on evolving the solutions towards non-
domination using methods such as rank-based evaluation, and towards separating
solutions using niching or alternative methods. Again, notable efforts in designing
MOEAs include: Strength Pareto evolutionary algorithm (SPEA2) [63], Pareto-
envelope based selection algorithm (PESA-II) [8], non-dominated sorting genetic
algorithm (NSGA-II) [17], neighborhood cultivation genetic algorithm (NCGA)
[55], intelligent multi-objective evolutionary algorithm (IMOEA) [31], MOEA [18],
Omni-optimizer (OmniOpt) [16], fast Pareto genetic algorithm (FPGA) [25], and
archive-based micro genetic algorithm (AMGA, AMGAII) [49, 50, 52]. A compre-
hensive survey of MOEAs can be found in [4] and a more recent one is [62].
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This paper presents a multiyear research effort targeting the development of
computational tools for solving packing optimization problems which are encoun-
tered within the different stages of engineering design with a special interest
in automotive design. Due to increasingly realistic engineering applications, the
problems feature a rising level of complexity and therefore require optimization
models and approaches with growing sophistication. In the next three sections of this
paper, the authors describe methodologies that have been developed according to the
three packing perspectives discussed above. Modeling approaches and algorithms
are discussed in each section.

In Sect. 3.2, methods for geometric representation of objects are described with a
particular attention given to effective algorithms that convert computer-aided design
(CAD) representations to formats used in the fast calculation of intersections or
overlap between objects. These methods give a foundation for the development of
models and algorithms for compact and noncompact packing that are described
in Sects. 3.3 and 3.4, respectively. Applications in automotive design are also
presented. The paper is concluded in Sect. 3.5.

The presented work has been accomplished at Clemson University over the last
decade as an interdisciplinary research effort between Mechanical Engineering and
Mathematical Sciences Departments. Since the resulting research papers have been
published in engineering journals, the objective of this review paper is to highlight
those aspects and results of the accomplished work which might be of interest to the
operations research community.

3.2 Geometric Considerations

The representation of objects to pack is a critical first step in packing algorithms.
When the shape is regular, be it prismatic, spherical or cylindrical or derivatives of
such, identifying the volume occupied by the object is relatively straightforward
once an origin and direction are specified. Much of the literature on compact
packing is based on such shapes [22], with a plethora of algorithms and approaches
to deal with the packing of such objects. If their shape or the shape of the
enclosure in which they are to be placed is irregular, especially if nonconvex,
then a detailed representation of the object is needed. This is the case of most
mechanical components considered in the packing problems of interest to engineers
such as placing the components under the hood of the car, or placing components
inside a satellite. It is thus desired to compute a geometric representation of the
space available to package the object as well as a geometric representation of the
space occupied by it. For a single object, an envelope that could be nonconvex and
that hides (encapsulates) all the detailed internal geometry of that object is desired.
Once the geometry is available, an efficient evaluation of the overlap of two objects
is needed. These aspects are detailed next.
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3.2.1 Modeling

3.2.1.1 CAD

The complexity of engineering packing problems is due to the complex geometries
encountered, and to the multiplicity of objectives and functional constraints that
have to be met. Engineers represent objects using CAD software. The capabilities
of current commercial packages such as Dassault CATIA, Siemens NX, PTC Creo,
Solidworks, Autodesk Inventor, and many others provide the designer with very
powerful tools that can be used to represent components at the level of detail
needed to be able to manufacture them and virtually prototype the overall system.
Geometric modeling techniques are used in these CAD packages and produce
objects that are modeled exactly in the same geometries as the built artifact. In the
vehicle design application, every component is represented in the CAD software,
and the envelope in which they reside, be it the body of the vehicle, the trunk
space or any entity is also represented accurately. The underhood, for instance, is
represented with all the details required, including wheel wells, open bottom, and
structural members. These data files are typically very large, and are difficult to
manipulate with external software such as optimizers.

One major issue is to develop an application that is not dependent on a single or
specific software package. It is therefore currently common to extract from the CAD
data just the relevant information, and since geometric representations are often
nonplanar surfaces and complex curves, a simpler, approximate representation of the
needed shapes must be extracted to be able to solve the problem. The next sections
detail approximation approaches addressing this issue.

3.2.1.2 Tessellation

Most CAD software can output the surface geometry of an object as an “.STL”
file, a format originally developed for 3D Systems company, the first developer of
3D printers based on stereolithography. Known as the STereoLithography format
[2], this is currently the format generally accepted as a standard for communicating
with 3D printers. It describes the surface of an object as a collection of triangles in
3D space. This conversion from native CAD format to STL is called tessellation.
Since the free-form surface is converted to a set of triangles, there is some loss of
information in the approximation, and the user has to make a tradeoff between the
number of triangles and the approximation accuracy. The CAD software typically
uses some acceptable error tolerance in generating the tessellation, and this format
is therefore ideal to be used in packaging optimization. There are two STL formats,
one encodes the information in readable ASCII format, the other in binary format,
which is a much more compact representation.
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3.2.1.3 Voxelization

Voxels are the 3D equivalent of a pixel, which represents a unit of surface with a
property, typically color, and is used to represent images. The voxel is a unit of
volume, usually cuboidal with also some property. The choice of the size of the
voxel affects the degree of accuracy of the approximation. Smaller voxels represent
the object more accurately, but then increase the number of voxels needed to fill
the volume of the object. Larger voxels introduce more error in the approximation,
but would be more efficient in computing interferences. Note that various methods
such as octree [39] representation address both these issues, but the performance
of the interference checking algorithm would be affected by such a representation.
The generation of voxels is typically not available in CAD software and is discussed
next.

3.2.2 Algorithms

3.2.2.1 Surface Voxelization

The surface voxelization engine takes a binary STL file (CAD data in tessellated
format) and generates the corresponding voxel data. The schematic of the procedure
for surface voxelization is as follows [51, 53]:

• Compute the bounding box of the object by selecting three orthogonal directions
and identifying the minimum and maximum coordinates in each direction thus
forming a box.

• Select a discretization size and divide the box into cells or voxels of the specified
size.

• For every voxel of the bounding box, perform a triangle-voxel overlap computa-
tion. If the facet intersects the voxel, mark the voxel as nonempty. The approach
described in [40] is used to identify the intersections.

This approach identifies the voxels that are on the boundary of the object; the
next task is to fill the object with voxels.

3.2.2.2 Volume Voxelization

Volume voxelization converts the surface voxel data to volume voxels using ray
tracing [1, 53]. The rays are fired from the sides of a larger bounding box
encapsulating the object and are stopped as soon as they touch the surface voxels.
The surface voxels are not assumed to be illuminated by the rays. All the voxels
that are not outside the object are assumed to be either inside or on the surface of
the object thus constituting the volume of the object. The volume obtained from this
process is almost always a superset of the actual volume. Since volume voxelization
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is used for the objects to be packed, this approximation also gives a conservative
packing. The ray tracing algorithm also assumes that the objects are manifold
(which also implies a closed volume).

3.2.2.3 Interference Checking

Once a geometric representation is selected, collision detection or overlap calcu-
lation is needed to ensure that no two objects occupy the same location. This is
also known as interference checking. One can use a surface representation and
come up with ways to efficiently identify interferences, or convert the object into a
volumetric representation such as voxels and then use the regular voxels to identify
interferences, or use an implicit equation that describes the object and then use
mathematical techniques to identify interferences. There is again much work on
interference checking with surface representations [37]. Many of these algorithms
depend on a tessellated representation which was described earlier.

Some packing algorithms may require calculating the amount of interference
(volume overlap) in order to use some gradient technique to minimize the overlap.
These algorithms are described in the literature and work reasonably well when
identifying the collision between two objects [41]. The first implementation of
the configuration design optimization method (Sect. 3.4.1.1) and its extension
(Sect. 3.4.1.2) for the two cases of noncompact packing used the software I-
COLLIDE developed by Lin’s group [6]. Note that these methods become com-
putationally expensive when computing the collisions and amount of interference
between multiple objects two at a time.

Collision detection for the case of compact packing is computationally challeng-
ing using tessellated objects since the objects have to be placed in contact with
one another. With nonconvex objects having cavities and holes, it is extremely
computationally expensive (and often impossible) to compute penetration depth and
the direction of movement to reduce interference. The voxelization described earlier
overcomes this limitation and facilitates the computation of collision detection and
amount of interference. The voxel-based approach to collision detection is used
for the both compact (Sect. 3.3.3) and the noncompact (Sects. 3.4.1.3 and 3.4.1.4)
packing problems considered.

To detect whether two objects overlap, the physical coordinates (matrix indices)
for the bottom-left-back corner of an object are determined. Once that location is
known, the coordinates (indices) of all the voxels in the matrix are determined.
Thus, for the two objects, the physical location of all the voxels is known. Based
on the physical location, the relative index of all the voxels (as compared to the
entire voxel grid) is determined. The global matrix is parsed to determine if any
voxel is occupied by any two objects considered; if a voxel is occupied by the two
objects, they overlap with each other, and the amount of overlap can be computed
by counting the voxels that are occupied by both objects [51].
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Once these geometric operations have been set up and the objects and container
processed, the packing optimization can be carried out as presented in the next two
sections.

3.3 Compact Packing

The compact packing problem (CPP) of interest to engineers consists in placing
free-form objects with full rotational freedom inside an arbitrarily shaped enclosure
such that the volume of the objects inside the enclosure or their number is
maximized.

3.3.1 Modeling

The approach used to model and solve the CPP is inspired from the human packing
of objects inside a container. The objects to be packed are placed sequentially, in
an order to be determined, inside the container one after the other in a specified
orientation and position. The CPP is therefore modeled as a single-objective
combinatorial optimization problem. The feasible set contains permutations of
objects defining packing sequences and the objective is to maximize the packing
efficiency which is defined as a percent of the total volume of the container that is
occupied by the packed objects. The CPP is known to be NP-complete [28].

3.3.1.1 Optimization Variables

The choice and representation of optimization variables is implied by the type of
algorithm that is developed for the CPP. Since the first objective is to identify the
order and orientation of placement of the objects, a genetic algorithm is used to
identify possible sequences. The following description in Sect. 3.3.1 is extracted
from [51].

There are two types of optimization variables: packing sequences and orien-
tations. Let N denote the number of objects that are to be packed inside the
container. A packing sequence for N objects is a permutation of the form   D
. .1/;  .2/;  .3/; : : : ;  .N//, where  .i/ (i D 1I 2I : : :N) denotes the index of an
object. Also  .i/ ¤  .j/ for i ¤ j. The object with index  .1/ is packed first, the
object with index  .2/ is packed next, and so on. The orientation of the objects
is represented using a mixed representation comprising multi-parity bits and real
numbers.

For the sequential placement of N distinct objects, the number of permutations is
NŠ which also represents the dimension of the sequence search space. If there are ki
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objects of type i; 1 D 1; : : : ;M, where M is the number of distinct types of objects,
then the dimension s of the search space for the M distinct types is given by [51]:

s D .
PM

kD1 ki/ŠQM
iD1.kiŠ/

(3.6)

The orientation variables cannot be represented with real numbers since they are
circular entities (0ı and 360ı are the same). The genetic operators designed to work
with real numbers (noncircular) cannot reflect the circular property of rotation. Also,
for prismatic and free-form objects, the number of possible orientations differs, both
for the orthogonal case and for the continuous case. The desired characteristics of a
good representation are as follows [51]:

1. It should preserve the circular property of the rotation.
2. It should have minimal redundancy in the representation.
3. All orientations should be equally probable.
4. It should not impose any pseudo-ordering on the rotation variables.

The representation of the orientation variables depends upon the complexity of
the objects and the desired rotational freedom. The representation is decomposed
into multiple parts each of which captures some orientation aspect. The complexity
of the representation increases with the increase in the complexity of the objects to
be packed and the desired rotational freedom. For example, if only prismatic objects
with orthogonal orientation are to be packed, only six possible orientations exist;
whereas if a free-form object with full rotational freedom is to be packed, there
are infinitely many possibilities. The representation of the orientation variables is
designed to capture this variability and also adjust the dimension of the search space
accordingly. All possible scenarios that can occur when representing the orientation
variables are discussed next in the order of increasing dimension of the search space.

3.3.1.2 Scheme 1: Prismatic Objects with Orthogonal Orientations

This is the simplest of all the scenarios and is encountered in the orthogonal
rectangular packing problem. Let the three dimensions of an object to be packed
in 3D be .l � w � h/, then the six possible orientations (span along the x, y, and z
coordinate directions) are 1. l-w-h, 2. l-h-w, 3. w-l-h, 4. w-h-l, 5. h-l-w, and 6. h-w-l.
Any of the three edges (l, w, h) may be oriented along the x axis; either of the two
remaining edges may be oriented along the y axis, and the remaining edge must then
be oriented along the z axis.

A single bit with a parity of six is used for every prismatic object for which only
orthogonal orientations are desired. This representation satisfies all the desirable
characteristics mentioned above. Since there are six possible choices; for N objects,
there are 6N different combinations.
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3.3.1.3 Scheme 2: Free-Form Objects with Orthogonal Orientations

Consider a cuboid with all three dimensions different, and with the faces marked as
(1, 2, 3, 4, 5, 6). In this particular case, there are a total of 24 distinct orientations for
an object. The representation for Scheme 1 can be extended to accommodate this
case by adding one extra bit for every free-form object with orthogonal orientation
(the bit will have a parity of four). In this particular case, orientation is represented
using two bits. Mutating the first bit (parity six) changes the bounding box of the
object (large change), whereas mutating the second bit only changes the profile
visible on every face of the bounding box (small change). With this scheme, there is
no redundancy or pseudo-ordering and no explicit handling of the circular property
is required. For N free-form objects, there are 24N possible combinations.

3.3.1.4 Scheme 3: Free-Form Objects with Full Rotational Freedom

For free-form objects with full rotational freedom, a perturbation of ™, where
�45ı � ™ � 45ı, can be added to the rotation of the objects in each coordinate
direction. The perturbation does not represent the orientation but rather the differ-
ence in orientation. Three real variables are added for every object that has full
rotational freedom. The dimension of the search space in this case is infinite. Below
is an example of a complete chromosome for the case of three free-form objects
with full rotational freedom:

• permutation: (3, 2, 1),
• orientation: 6, 1, 5 (parity 6),
• facial orientation: 2, 4, 3 (parity 4),
• perturbation about x: 15ı, 23ı, �12ı;
• perturbation about y: 21ı, 13ı, �34ı;
• perturbation about z: 22ı, 35ı, �1ı:
In this variable representation scheme the packing sequence is specified by the
permutation (3, 2, 1) implying that object 3 is packed first, then object 2, and then
object 1. The next field, object orientation, is used if an object is prismatic, that
is, the object has six unique orientations (e.g., a cuboid). The object orientation is
represented by a number specifying which side of the object is placed in a specific
plane. The parity is 6 meaning that this number can have six possible values which
are all equally probable. In the example, all objects are prismatic and the numbers
6, 1, and 5 specify the orientations of the objects 3, 2, and 1, respectively. The
third field, object facial orientation, has parity of 4 and specifies the rotation of that
object by 90ı while the side that has already been identified by the object prismatic
orientation remains on the same plane. In the example, the objects 3, 2, and 1 have
facial orientations 2, 4, and 3, respectively. If only the orthogonal orientations are
allowed, then an arbitrary object can have 24 (D 6 � 4) possible orientations that
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are represented by two numbers, the prismatic orientation and the facial orientation.
If full rotational freedom of an object is desired, then three perturbations are added
(one each about x, y, and z axis). In such a case, these three numbers are sufficient for
capturing full rotational freedom and the two variables representing the orthogonal
orientation are not needed. In the example, the objects 3, 2, and 1 are rotated 15ı,
23ı, and �12ı; respectively about x.

While it is extremely difficult to get good packing with full rotational freedom,
an additional difficulty comes from the fact that voxelization has to be performed
whenever the orientation changes. A layout algorithm, that is presented in the next
section, checks voxel overlap to identify if two objects overlap or if an object
overlaps with the enclosure. The object is rotated as desired, and then placed in
an enclosure. If the object has been rotated by some arbitrary angles, its voxels
would not be aligned anymore with the enclosure voxels, and it would need to be
revoxelized in the new orientation to compute overlap.

In the problems considered, the search space is discretized and few predefined
orientations (e.g., 0ı; 30ı; 60ı) are used. The additional orientations are represented
as perturbations (and are therefore less than 90ı). Thus the overall orientation is
obtained by changing the prismatic and facial orientations and then introducing
perturbations. Furthermore, since some enclosure surfaces are not orthogonal, patch
aligned orientations are used because the alignment of some portion of the object
surface to an enclosure surface actually helps obtaining a better packing efficiency.

Having detailed the different variable encodings needed for compact packing, the
next topic is a description of the algorithms proposed.

3.3.2 Algorithms

The optimization task is to find an optimal packing sequence and optimal orien-
tations of all the objects (or of as many objects as possible) resulting in the most
compact packing. Given the packing sequence and orientations, an algorithm is
required to place the objects inside the container and compute the packing efficiency.
Thus, the overall solution approach needs two algorithms:

1. An optimization algorithm to generate an optimal packing sequence (or position
in 3D space) and an optimal orientation of every object.

2. A layout algorithm to pack the objects according to the provided sequence,
ensuring that objects neither collide or overlap with each other nor with the
enclosure, to determine which objects can be placed inside the enclosure in
the specified orientation in the remaining volume, and to compute the packing
efficiency.
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3.3.2.1 The Optimization Algorithm

The working principle of the proposed single-objective optimization algorithm is
based on the steady-state GA [54]. The proposed algorithm also borrows concepts
from several existing single-objective GAs.

Since the optimal solution to the CPP is a packing sequence of oriented objects,
the GA requires a suitable encoding of the packing sequence and orientations. The
algorithm needs crossover and mutation operators for each variable type in the
chromosome. For permutation variables, an order-based crossover [44] is used and
mutation is modeled using the swap operator [13]. For multiparity bits, one-point
crossover [26] is used and mutation is modeled by applying bit flipping [13]. For real
variables, simulated binary crossover [14] is employed and polynomial mutation
[15] for real variables is used to maintain diversity in the population. A detailed
description of all the genetic variation operators applied in the algorithm can be
found in [5]. A set of rules is used to decode the chromosome. The pseudo-code of
the modified GA is as follows.

The optimization algorithm
1 Begin
2 Generate the initial population randomly.
3 Evaluate the initial population.
3 Repeat
4 Choose two random parents.
5 Create one offspring from the two parents using the genetic

variation operators.
6 Evaluate the offspring solution.
7 Choose a solution randomly from the population.
8 Compare the offspring against the chosen solution;

if the offspring has better packing efficiency, then replace
the chosen solution with the offspring.

9 Compute the diversity in the population.
10 If the diversity in the population is lost, then store the

best solution and regenerate the remaining population.
11 Until(100 % packing efficiency is reached or number of

function evaluations is exhausted).

11 End

Thus, the proposed optimization algorithm is an elite preserving steady-state
GA, which, contrary to typical GAs, incorporates an explicit diversity preserving
mechanism. The algorithm does not have a very high selection pressure (it does
not follow the best solution at every iteration) which increases the resiliency to
premature convergence. The genetic variation operators used to create the offspring
solution depend upon the solution representation. Since the proposed algorithm
solves a SOP, the phenomenon of genetic drift drives the entire population towards
a single point which often results in a loss of diversity. The algorithm therefore
incorporates a diversity preservation operator which is computed in the variable
space.
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3.3.2.2 The Layout Algorithm

The layout algorithm receives the packing sequence and orientation for every
object from the optimization algorithm and communicates with CAD algorithms
to generate a packed configuration. In particular, the CAD algorithms process the
3D CAD data, perform geometric transformations, collision detection, interference
evaluation, etc. The CAD algorithms are coupled with layout heuristics that consist
of a set of rules specifying the movement of an object until a suitable location for
it has been found. The placement of the objects is according to the bottom-left-
back-fill (BLBF) heuristic inspired by the bottom-left (BL) strategy, that has been
implemented in [22] and [38] for two-dimensional packing of rectangular objects,
and the bottom-left-fill (BLF) strategy, that places the objects from the bottom left
but also attempts to fill voids as proposed by Hopper and Turton [33]. In the BLBF
heuristic, the placement of an object is started from the bottom-left-back position of
the container. The object is moved until a suitable position has been found which
does not overlap with either the container or the already placed objects. Such a
strategy ensures that every object is placed at the bottom-left-back-most position
available. The computational complexity of the BLBF heuristic varies as a cubic
function of the grid resolution used for packing.

Following are the sequence of steps performed by the layout algorithm.

The layout algorithm
1 Receive the packing sequence and the orientation of every

object from the optimization algorithm.
2 Construct the rotation matrix for every object.
3 Use geometric algorithms to rotate every object (in trian-

gulated form).
4 Voxelize all the objects whose bounding box could fit inside

the bounding box of the container.
5 Pick the objects in the order of the packing sequence and pack

them using the BLBF heuristic.
6 Compute the packing efficiency based on the volume of the

objects inside the container.

7 Report the packing efficiency to the optimization algorithm.

3.3.3 Applications

The models and algorithms presented in this section have been applied to the auto-
motive design problems such as the packing of engine components and the packing
of luggage in the trunk [48, 51]. Figures 3.1, 3.2, and 3.3 below show the
implementation of the compact packing algorithm on three packing problems of
increasing level of difficulty. In the first problem a set of 34 rectangular boxes that
fit exactly inside of a rectangular container are packed into that container (Fig. 3.1).
The objective of this exercise was to ensure that the algorithms can pack regular-
shaped objects. The performance speed of the algorithm has not been compared
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Fig. 3.1 34-box packing problem [51]

Fig. 3.2 SAE packing problem with a nonconvex trunk geometry [51]

Fig. 3.3 Free-form packing with full rotational freedom in nonconvex trunk [51]
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Table 3.1 Simulation results: 34-box
packing problem

Iterations Success rate Time (s)

5,000 19 4

10,000 33 8

15,000 42 12

20,000 52 15

Table 3.2 Simulation results: SAE and free-form packing problems

Results SAE Free-form

Number of function evaluations 10,000 10,000

Grid resolution 10 � 10� 10 .mm3/ 10� 10� 10 .mm3/

Number of voxels 124 � 133 � 55 D 907;060 124 � 133 � 55 D 907;060

Best packing efficiency (BPE) 72.95 % 30.85 %

Number of objects 21 30
corresponding to BPE

Median packing efficiency 69.74 % 28.9 %

Execution time (for single 1 h 8 min approx 4 h approx
simulation)

with the algorithms existing in the literature since the main objective was to pack
nonconvex shapes inside a nonconvex enclosure. The packing of rectangular boxes
representing a set of suitcases of prescribed dimensions (SAE standard J1100 [42])
inside a nonconvex trunk space is shown in Fig. 3.2. The packing of any nonconvex
shape inside the nonconvex trunk enclosure, as shown in Fig. 3.3, is also within the
capabilities of this algorithm.

For the 34 box packing problem, the success rate is defined as the number
of instances 100 % efficiency is obtained from 99 simulation runs starting with
different random seeds for the GA. In this problem, 17 out of 34 boxes fit perfectly
in the bin, making 100 % efficiency possible. The population size is equal to the
number of objects to be packed. Crossover probability is set to 1.0 and mutation to
1/N where N is the number of objects to pack. The results obtained when running the
algorithm on a 2 GB DDR2 667 MHz RAM and 2 GHz Intel Core 2 Duo Processor
are provided in Table 3.1.

The results obtained for the SAE and free-form packing problems are presented
in Table 3.2. Ninety nine simulation runs were performed for each problem starting
with different random seeds for the GA. The total number of possible objects in
the SAE problem is 38 while in the free-form packing problem it is 40. In the SAE
problem, the objects represent suitcases and golf bags, not all of which fit in the
trunk.
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3.4 Noncompact Packing

Compact packing is driven by the single objective of compactness that is to be maxi-
mized by the tight placement of system components in an enclosure. In noncompact
packing or configuration layout, the tightness of packing is not the only criterion of
interest to designers and other criteria evaluating the system performance become of
significance. Since the compactness criterion is accompanied by other criteria, the
mathematical formulation of the overall problem assumes the form of an MOP to
account for multiple objective functions. Occasionally the compactness criterion is
replaced with another criterion that indirectly measures the tightness of packing by
directly gauging another metric, namely the moment of inertia of the system. This
results in components coming close to each other, but not necessarily maximizing
the filling of the container’s volume.

3.4.1 Modeling and Applications

In the four subsequent subsections MOP packing models of increasing levels of
complexity are presented. They address packing problems in automotive design with
a growing degree of realistic engineering applications. The models are improved
in two directions: by integrating other physics-based processes that occur in the
vehicle and interact with its configuration layout, or by advancing the optimization
approaches to allow designers to exert distributed control during the design process.

3.4.1.1 Basic Packing of Vehicle Underhood

At the initial stage of the study the MOP is meant to model the packing of the vehicle
underhood [28, 29]. The design variables represent the position and orientation
of the components with respect to the Cartesian coordinate system. As described
earlier, the information about the shape of a component is carried in the tessellated
description of its surface.

The objective functions include compactness, balance, and maintainability.
Compactness of a system is often measured by the volume of a box bounding the
system or by the volume of the convex hull of the system. Both these approaches
while mathematically reasonable may lead to misleading designs in that various
configurations of the same volume are of different utility to the designer [29].
Instead, in this study, the inertia matrix norm is calculated for every component
and the system inertia matrix norm, which is the sum of all component matrix
norms, is used as the measure of compactness. The static system balance is achieved
by bringing the system center of gravity to a target while the dynamic balance is
measured by the system moment of inertia which is evaluated, as mentioned above,
as a compactness measure. The maintainability of a component is understood as its
accessibility or the amount of mechanical work to be done to access the component
and remove from the system. This work is proportional to the component weight and
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Fig. 3.4 Simplified underhood packing with the highest importance assigned to compactness (left)
and with the highest importance assigned to maintainability from the front (right) [28, 29]

the number of other components that have to be removed to access the component
of interest. The system maintainability is then the sum of the maintainability of all
components.

The MOP model has two types of constraints: functional and interference (or
overlap). The functional constraints (such as distance between components, mutual
location) assume the form of geometric conditions that reduce the feasible set
since the location of certain components is known a priori (e.g., the radiator is
typically located in front of the engine). These constraints are embedded in the
definition of the optimization variables and as such do not yield any equality or
inequality constraints. The interference constraints prevent any overlap between any
two components and between components and the enclosure. The interference is
measured by the volume of the intersection of the overlapping components, which
is supposed to be zero and therefore yields equality constraints. The functional and
interference constraints are used in each model presented in Sect. 3.4.

In Fig. 3.4 the results obtained with this approach are displayed, specifically the
tessellated representations of several components that fit under the hood. On the
right side, the compactness metric is low, but the maintainability is best. In the one
on the left, the compactness is best, and the maintainability is low. In both cases, the
center of gravity is roughly at the same location.

3.4.1.2 Packing Considering Vehicle Dynamics or Heat Transfer

At the next stage the basic packing model of the underhood is upgraded by
including an overall vehicle dynamic model which allows evaluation of the dynamic
performance of the vehicle when the weight of the components in the various
packing designs affects the vehicle’s behavior [58, 59]. This specific problem
identifies the placement of hybrid hydraulic components and an auxiliary power
unit in a large truck.

Two types of design variables are used, the position and orientation variables as
before and new dynamic input variables.
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Fig. 3.5 Three vehicle configurations and their location in the nondominated set produced by the
packing GA [58, 60]

The maintainability and the dynamic balance remain as the objective functions
and are accompanied by a new criterion of vehicle survivability. The balance
is measured with vehicle rollover propensity which is quantified by the vehicle
lateral acceleration, a quantity provided by the dynamic model. The survivability
characterizes the vehicle ability to survive attacks from explosives and bullets and
is defined similarly to the maintainability. The overall survivability is the sum of the
survivability of all components while each component survivability is quantified by
the level of protection provided by the overlap with the other components.

The vehicle ground clearance inequality constraint reflected in the maximum
angle of the slope the vehicle can climb is a new constraint added to the MOP
model.

Because the complete dynamic analysis provided by the vehicle dynamic model
requires expensive computations, the model is called only if the design being
evaluated does not violate the interference and ground clearance constraints.

Figure 3.5 displays a set of nondominated points available to the designer in the
three-dimensional objective space. Every point corresponds to a vehicle packing
configuration and shows the performance of this configuration with respect to the
maintainability, survivability, and rollover acceleration. Three specific configura-
tions are depicted for demonstration. From among the computed configurations
designers can select a preferred configuration that satisfies additional criteria not
considered in the optimization.



56 G.M. Fadel and M.M. Wiecek

Another upgrade of the basic packing problem, which is of interest to automotive
manufacturers, is to take heat transfer issues into consideration when deciding on
the packing configuration of the underhood. Because of the heat generated by the
engine, some components have to be placed at some distance from the heat sources.

For this problem, the design variables are the locations of the components
similarly to the previous case, but in addition, a temperature variable is applied
to each component, and heat sources are imposed. The temperature distribution
in the underhood is computed using computational fluid dynamics (CFD). The
objective functions include the location of the center of gravity, maintainability,
survivability, and additionally an objective related to the heat transfer under the
hood. The additional objective is to minimize the root mean square value of the
average temperatures under the hood while maintaining the temperature of critical
components such as the battery below some critical threshold. The functional and
interference constraints complete the model [27, 34, 35].

3.4.1.3 Packing with Morphing Components

In the traditional configuration design the shapes of components are fixed prior to
the packing process during which only their position and orientation are optimized.
At a subsequent stage of research, it is assumed that the shape of some objects
changes, meaning that they morph while their shape and functional requirements
are respected [20, 21]. The need to account for morphable components in a packing
algorithm results from the lack of or limited communication between the layout
designer and the component designer and the fact that the designs of the latter may
not be optimal for the former. The ability of changing the shapes of components
during packing may clearly lead to far better packing solutions than those resulting
from the traditional approach. Even though integrating the component shape design
into packing is challenging, it is essential for advancing the art of packing.

In the MOP model of this packing problem the position and orientation variables
are accompanied by the shape variables of morphable components. A mass-
spring physics system represented by a differential equation is used to model the
movements of a morphing component whose expansions or contractions are similar
to inflation and deflation of a balloon filled with air and are controlled by air pressure
variations. The system consists of masses that are placed at the vertices of the
tessellation triangles and of springs that connect the masses along the triangle edges.

The objective functions include again the dynamic balance measured by the
vehicle moment of inertia and the maintainability. In that morphing components
cannot be placed too low in the vehicle, the vehicle ground clearance, that acted as a
constraint in the dynamic packing model, is now treated as a third objective function
and therefore more significantly affects the optimization. The constraint functions
include the functionality and interference constraints of the basic packing model
(Sect. 3.4.1) and new constraints on the shape of morphable components in the form
of inequality constraints bounding from below the volume of the components. The
upper and lower bounds on the position and orientation of all components are also
imposed.
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The packing problem with one morphing component is already challenging due
to the large number of design variables and expensive evaluation of objective and
constraint functions. The attempts to solve this MOP in its original all-in-one (AiO)
formulation encounter computational issues since the shape variables affect the size
of a morphing object and its position, and the position of the surrounding objects
results in a maximum volume attainable. If an increase of volume is desirable, all the
components may have to be displaced to generate new nondominated solutions. In
effect, the AiO formulation is not solvable and requires decomposition into solvable
subproblems whose optimal solutions are coordinated to obtain an AiO optimal
solution. The MOP is decomposed into a bilevel problem with a smaller MOP at
the system (upper) level and a SOP at the component (lower) level.

At the system level, the position and orientation of components serve as the
design variables, while the shape of the morphable component remains fixed.
Though the objectives are identical to that in the AiO formulation, they are only
considered as a function of the position and orientation of components. The
optimization is performed subject to the functionality and interference constraints,
which are functions of the position and orientation of components while the shape of
the morphable component is kept constant, and subject to the bounds on the position
and orientation of components.

At the component level, the design variables are the shape variables of the
morphing component and the scalar-valued objective is to maximize its volume or
reach a target volume. The optimization is performed subject to the functionality
and interference constraints, which are functions of the morphing component shape
while the position and orientation of all components are kept constant, and subject
to the new inequality constraints bounding the morphing component volume from
below [19–21].

The objective of the bilevel optimization problem is to find a design that is Pareto-
optimal for the upper-level MOP and optimal for the lower-level SOP, and at the
same time, Pareto-optimal for the AiO MOP.

Figure 3.6 depicts a CAD representation of a vehicle underhood to reflect the
realism of the underhood packing problem. The effect of a morphing component
on the packing is illustrated in Fig. 3.7. In the image on the left, the water
container starts expanding to attempt to reach a specified volume and occupy the
available space. The image on the right shows a bigger morphed water container
which slightly affects the location of the other components.

3.4.1.4 Packing for Distributed Design

Engineering design of a complex system, that is composed of subsystems and
components, requires interaction among several engineering disciplines (such as
fluid dynamics, thermodynamics, structures, controls, and others) that are involved
in the design process of the system. Because system and component designs
are typically assigned to independent engineering teams with complementary
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Fig. 3.6 CAD representation of the underhood [19, 20]

Fig. 3.7 Realistic underhood packing with morphing water container in initial position (left) and
while expanding to a target volume and filling the available space (right) [19, 20]

background and expertise, packing for a distributed or decentralized design process
needs to be studied. The distinction among designing teams is reflected in the corre-
sponding MOPs which have different feasible sets and objective functions, belong
to different disciplines, and require different solution algorithms. Multidisciplinary
multiobjective design optimization provides models and methods to address this
level of complexity in engineering design.

The multidisciplinary MOP (MDMOP) packing problem involves the optimiza-
tion of the layout of components in a container and the simultaneous optimization
of the design of one (or more) of these components. Each optimization is performed
with respect to different objective functions while the design solutions of the
component affect the optimal placement of all components in the enclosure. While
each design problem is carried out by a different team because it requires highly



3 Packing Optimization of Free-Form Objects in Engineering Design 59

specialized knowledge, the two problems display interactions due to the placement
of the component within the container. Even that the MDMOP problem is still an
MOP and its Pareto-optimal solutions could be computed once all of the problem
data are known, in practice it is never directly solved due to the distributed character
of the design process.

In this study, the MDMOP packing problem involves optimally placing six
components (battery, engine, radiator, coolant reservoir, air filter, and brake booster)
within the underhood of a hybrid electric vehicle, while one of the components,
the battery, is being designed under demanding thermal criteria. The battery design
depends on its functionality but also affects the optimal placement of all other
components under the hood. Two design teams are involved in this packing problem:
the vehicle level team responsible for packing the underhood and the component
level team who designs the battery. The MDMOP is decomposed into a bilevel
problem with the optimization of the layout of components within the underhood
at the upper level and the optimization of the Lithium-ion (Li-ion) battery at the
lower level [11, 12].

The upper-level MOP uses the design variables being the positions of all com-
ponents and the shape variables of the battery while the objective functions include
the compactness, maintainability, and survivability of the vehicle. The embedded
functionality constraints, the interference equality constraints, and bounds on the
position variables of all the components complete the formulation of this MOP.

The lower-level MOP models the battery design focusing on its optimal thermal
behavior. The formulation uses the design variables particular to the battery thermal
behavior and the battery shape variables. The multiple objective functions also
model the thermal behavior and, due to their specific characteristics, allow the
concept of Pareto-optimality to be strengthened to equitability. In effect, the set
of Pareto-optimal solutions is reduced to the set of equitable solutions [36].
A coordinating equality constraint is added to the MOP at each level which gives
each-level designers the possibility to modify the component shape to improve the
design at their level while enforcing consistency with the other level.

The objective of the bilevel problem is to find a design that is Pareto-optimal for
the upper-level MOP and equitable for the lower-level MOP, and at the same time
Pareto-optimal for the AiO MDMOP.

In Figs. 3.8 and 3.9 the underhood configurations for different arrangements
of the battery cells and different importance of optimization levels are illustrated.
When the maximum importance is assigned to the vehicle level, the battery (the
rectangular box) is placed on the left (Fig. 3.8). In contrast, when the maximum
importance is assigned to the battery level, the battery is placed to the right in both
cell arrangements (Fig. 3.9). Note that the other components also change places due
to the different location of the battery.
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Fig. 3.8 Vehicle layout for the battery cells arranged to nine columns and eight rows, and the
maximum importance given to the vehicle level [12]

Fig. 3.9 Vehicle layout for the maximum importance given to the battery level: the battery cells
arranged to nine columns and eight rows (left) and to 18 columns and four rows (right) [12]

3.4.2 Algorithms

As the noncompact packing problem evolved over the years to become a more
effective methodology, the accompanying solution algorithms have been developed
and adapted and better interference computation methods have been proposed and
used.

Because of the nature of the packing problems which consist of placing objects
inside an enclosure subject to multiple objectives, GAs have been an appealing tool
to identify a set of nondominated solutions and eventually a set of Pareto-optimal
solutions. Furthermore, nonexact algorithms have another important capability
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that deterministic algorithms lack. A deterministic or gradient-based optimization
approach would start at a certain initial arrangement of objects and attempt to
move them in a direction that optimizes some aggregate metric of the various
objective functions. An object moving in the identified direction would encounter
other objects, and the positions of some of those objects might need to be swapped.
A deterministic method that enables such a swap has not been readily available. In
contrast to exact algorithms, a GA can be programmed to operate on a chromosome
representing an object identifier and its location. By having the GA operators
change the identifier, objects are easily swapped and or moved to other locations
in the design space. Typically, a higher mutation rate is imposed to ensure a more
global exploration of the design space.

The following paragraphs describe the evolution of the algorithms developed to
deal with the noncompact packing problem.

The Configuration Design Optimization Method is built using the library LibGA
available on the web [7]. The algorithm is modified to work interactively and with
clouds of solutions to ensure convergence to different areas of the nondominated or
Pareto set. The interactivity is introduced to allow the designer to restart the process
as the algorithm performs best in its first generations, and to intervene and modify
the variable bounds to steer the optimizer towards some solution space [28, 29].

As the demands on efficiency increase with the use of simulations to study
dynamic aspects of the problem, and then thermal aspects, the packing GA is
rewritten to use NSGA-II [17], the most performing MOGA available at the time.
A customized encoding method and novel GA operators are developed to help the
GA explore and exploit the packing design space more efficiently [58, 60].

The next improvement considers the heat transfer calculations which are even
more computationally costly than the dynamic simulation mentioned earlier. To
address this problem, the packing optimization is carried out without the heat
transfer objective initially, just considering the other objectives. One hundred
nondominated solutions are obtained using the same packing algorithm as for the
dynamic packing but with the in-house developed AMGA2, the Archive-based
Micro GA originally tailored for the CPP [52]. The configurations obtained are then
used to perform CFD in parallel on a supercomputer and to obtain temperature maps
in the underhood. These temperature profiles are used to train a neural network to
relate the position of the objects to their temperature, and to validate the neural
network training. Once the neural network is obtained, it is then used with the
packing optimization algorithm as an approximation for the heat transfer objective.
The newly computed solutions are then validated by running the CFD again on them
[27, 34, 35].

The attempts to solve the packing problem with morphing components as the
AiO problem with the packing genetic algorithm described earlier were unsuccess-
ful; the GA was unable to simultaneously place the components and modify the
shape variable of the morphing object to occupy the available space. The bilevel
formulation was then implemented with the packing algorithm based on NSGA-II at
the system level, and the Matlab sequential quadratic programming (SQP) algorithm
at the component level [20, 21].
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The bilevel formulation for distributed design requires a solution strategy
that deals with the distributed character of the design process. A multiobjective
decomposition algorithm (MODA) [9, 12] is used for computing the Pareto-optimal
solutions to the AiO MDMOP while only having access to the Pareto-optimal
solutions to the MOP at each level. MODA performs distributed multiobjective
optimization that is conducted by two entities working independently with distinct
mathematical models. The limited information exchange between the entities is
sufficient for the computation of the Pareto-optimal solutions to the AiO MDMOP.
MODA is an exact algorithm making use of block coordinate descent, a Gauss–
Seidel decomposition technique, and the method of multipliers. The convergence
results are available in [9, 10]. In the distributed vehicle layout study, MODA
employs the AMGA to solve the vehicle-level MOP and the Matlab SQP algorithm
to solve the battery-level MOP. The SQP algorithm is tied to the battery model
implemented in Matlab/Simulink [9].

Running the Packing GA without a morphing object takes about 1 min on a
personal computer similar to the one used for compact packing (Sect. 3.3.3) using
an archive of 10–50 individuals (nondominated solutions) and a population equal
to the number of objects to pack (of an order of 8–10). Adding the morphing and
optimization of the battery and the bilevel approach increases the computational
time, which is approximately 5 min per nondominated solution. Typically, multiple
runs are performed with different seeds for the AMGA, with the time multiplied by
the number of runs that are performed in parallel to obtain multiple solution sets.

All five noncompact packing models presented in Sect. 3.4 are summarized in
Table 3.3.

3.5 Conclusion

This paper reviews a multiyear interdisciplinary research program on the packing
optimization of free-form objects. The engineering and science disciplines that
have contributed to this research include structural design, automotive design, heat
transfer, mathematical analysis and optimization, and computer science.

As mechanical designs such as automobiles, satellites, consumer products,
airplanes increase in functionalities and complexity, issues of packaging become
increasingly critical. Designers of hybrid vehicles, in particular, have been dealing
with packaging issues, and the approaches and methodologies presented provide
them with a tool to handle this type of problems.

The authors contend that the presented optimization models, algorithms, and
results determine the state-of-the art in free-form packing. The models make direct
use of single or multiobjective mathematical optimization problems. Because the
algorithms are (meta)heuristic, they are neither backed up with mathematical proofs
of correctness, nor are the results supported with proofs of optimality. As argued in
the paper, exact algorithms do not seem to have the capability to work as solvers in
the challenging engineering packing optimization. While development of new exact
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Table 3.3 Summary of noncompact packing models presented

Basic C Dynamic C Thermal CMorphing Distributed

Dec. variables

Position X X X X X
Orientation X X X X
Temperature X
Shape X X
Obj. functions

Compactness X MoI MoI MoI

Balance

Static (CoG) X
Dynamic MoI Acceleration MoI MoI MoI

Heat Temperature Temperature

Maintainability X X X X X
Survivability X X X
Ground clearance X X
Constraints

Functional Imbed Imbed Imbed Imbed Imbed

Interference X X X X X
Ground clearance X
Shape X X

Note: Moment of inertia (denoted MoI) can be used as a compactness measure as well as a
dynamic behavior measure

algorithms is highly desirable, the progress in effective (meta)heuristic algorithms
for packing has made it possible to solve very difficult optimization problems once
thought intractable.

Future research is likely to be directed toward more advanced packing prob-
lems such as packing with multiple morphable components, packing taking into
consideration wiring, hoses, pipes, and handling the multiple objectives related to
their placement. Those problems may be approached with hierarchical optimization
to reflect the inherent hierarchy in the system (e.g., vehicle at the upper level
and components at the lower level) or with distributed optimization to model
multiple design teams responsible for designing the components of the system. The
resulting optimization problems may become a collection of interacting MOPs or
SOPs making up a multilevel or network structure and may require sophisticated
decomposition and coordination strategies to compute optimal or Pareto-optimal
solutions. It will then be of interest to conduct mathematical studies on those classes
of optimization problems.

The authors believe that maintaining the interdisciplinary character of work
by integrating engineering and science perspectives will continue leading to new
significant accomplishments in future studies on packing optimization.
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Chapter 4
A Modeling-Based Approach for Non-standard
Packing Problems

Giorgio Fasano

Abstract This chapter examines the problem of packing tetris-like items,
orthogonally, with the possibility of rotations, into a convex domain, in the presence
of additional conditions. An MILP (Mixed Integer Linear Programming) and an
MINLP (Mixed Integer Nonlinear Programming) models, previously studied by the
author (Fasano, Solving Non-standard Packing Problems by Global Optimization
and Heuristics. SpringerBriefs in Optimization, Springer Science C Business
Media, New York, 2014), are surveyed. An efficient formulation of the objective
function, aimed at maximizing the loaded cargo, is pointed out for the MILP
model. The MINLP one, addressed to the relevant feasibility sub-problem, has
been conceived to improve approximate solutions, as an intermediate step of a
heuristic process. A space-indexed model is further introduced and the problem of
approximating polygons by means of tetris-like items investigated. In both cases
an MILP formulation has been adopted. An overall heuristic approach is proposed
to provide effective solutions in practice. One chapter of this book focuses on the
relevant computational aspects (Gliozzi et al., Container loading problem MIP-
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4.1 Introduction

This chapter summarizes and extends results descending from a long-lasting
research effort aimed at solving complex three-dimensional packing problems
arising in the space industry [1]. In this challenging context, the relevant issues
could hardly be considered applying a standard typology. Quite often, indeed,
the operational scenarios to deal with are characterized by the presence of tricky
geometries and complex additional conditions that can even be of global impact,
such as in the case of balancing.

Often irregularly shaped and of non-negligible dimensions, the objects involved
cannot be realistically approximated in terms of single cuboids (i.e. rectangular
parallelepipeds). Significant effort has therefore been addressed to allow for tetris-
like items, i.e. objects consisting of clusters of mutually orthogonal (rectangular)
parallelepipeds. Similarly, the domains (containers) to take account of are generally
not box-shaped and often several internal volumes are not exploitable, since
these correspond either to clearance/forbidden zones or actual holes. Additionally,
separation planes (with no fixed position specified a priori) can partition the domain
into sub-domains. Some items may be requested to assume pre-defined posi-
tions/orientations or are subject to placement restrictions, such as the requirement
of having a given side parallel or orthogonal to a specified direction.

In order to cope with overall conditions such as balancing, when necessary in
addition to those mentioned above, a Global Optimization (GO) based view is highly
desirable. This is essentially based on a modeling philosophy, as opposed to a pure
algorithmic one, consisting of sequential procedures limited to local search.

A number of modeling-based works are present in the literature, although these
are usually restricted to the case of box-shaped items (e.g. [2–5]). On the other hand,
very interesting studies consider strongly irregularly shaped objects, even though the
adopted philosophy is mainly focused on local optimization [6–8].

This chapter emphasizes the solution of non-standard packing issues, in the
context outlined above, by a GO approach. Mixed Integer Linear/Non-linear
(MILP/MINLP) formulations have been conceived and a library of mathematical
models set up. This supports ad hoc heuristics, implemented to obtain satisfactory,
albeit probably sub-optimal (or at least non-optimal proven), solutions to a wide
collection of real-world instances [1].

The general problem of placing tetris-like items orthogonally into a convex
domain, without pair-wise intersection, so that the total volume loaded is maxi-
mized, is the main topic of this chapter.

Section 4.2 investigates a dedicated MILP model [1], specifically constructed
to overcome the challenging computational difficulties that are typically associated
with the problem in question, when formulated in terms of Mathematical Program-
ming. It is, indeed, well known that, even when single parallelepipeds are involved
(i.e., tetris-like items consisting of one component only), the relevant MILP models
available in the specialist literature (e.g., [3, 4]) are very hard to solve. This holds
also if a number of valid inequalities are purposely added. The model discussed in
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this section can be used to solve small-size instances, tout court. In addition, it can
advantageously be adopted as a basic element of the above-mentioned heuristics
that act recursively, following an overall greedy approach.

MINLP models (e.g., [2]) have been built up for the feasibility sub-problem,
derived from the general one, when a set of items need to be loaded (without
any possibility of rejection, provided that the instance is feasible) and no objective
function is assigned. Moreover, they can be adopted [1] to improve approximate
solutions where intersections between items are admitted, “minimizing” the overall
overlap (actually this optimization target is attained only partially, through surrogate
functions). An MINLP version, implemented for this specific case is summarized in
Sect. 4.3.

An alternative formulation of the model reported in Sect. 4.2 (currently being
looked into) is presented in Sect. 4.4. The relevant MILP model extends, in the
case of tetris-like items and convex domains, previous formulations available in the
literature, based on the discretization of the domain and often referred to as space-
indexed or grid-based-position paradigms (e.g., [9, 10]). All models presented in
Sects. 4.2, 4.3, and 4.4 are suitable for considering additional conditions, such
as specific loading requirements or balancing. Nevertheless, these aspects, albeit
frequent in a number of real-world applications, are not considered in this chapter
and the reader is referred to [1] for an extensive discussion (except the space-
indexed formulation). Section 4.5 introduces the generation of (two-dimensional)
covering tetris-like items, providing outer approximation of polygons. The issue of
simplifying the representation of complex objects in such a way is a very interesting
optimization problem per se, especially considering its potential applications. The
three-dimensional extension is not surveyed in this chapter (since it is quite
straightforward). Section 4.6 proposes a novel heuristic approach, mainly based on
the MILP model presented in Sect. 4.2.

An extensive experimental analysis has recently been carried out, concerning
the MILP model presented in Sect. 4.2. One chapter of this book [11] reports and
examines the computational results available to date, in depth, highlighting the
advantages of the overall methodology suggested. Since this chapter is restricted
to the computational aspects (assuming the relevant model as known) the present
work serves also the scope of providing a topical framework. Fasano [1] offers
an extensive bibliography, both on packing problems in general and on the more
specific subjects considered here.

In order to state the general problem discussed in this chapter, the following
definition is introduced.

A tetris-like item is a set of rectangular parallelepipeds positioned orthogonally,
with respect to an (orthogonal) reference frame. This frame is called “local” and
each parallelepiped is a “ component”.

Hereinafter, “tetris-like item” will usually be simply referred to as “item,” if
no ambiguity occurs; similarly, “rectangular parallelepipeds” are referred to as
“parallelepipeds.”
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Fig. 4.1 Tetris-like item packing into a convex domain

A set I of N items, together with a domain D, consisting of a (bounded) convex
polyhedron, is considered (see Fig. 4.1). This is associated with a given orthogonal
reference frame, indicated in the following as the main frame. The general problem
is to place items into D, maximizing the loaded volume, considering the following
positioning rules:

• each local reference frame has to be positioned orthogonally, with respect to the
main one (orthogonality conditions);

• for each item, each component has to be contained within D (domain conditions);
• the components of different items cannot overlap (non-intersection conditions).

4.2 Direct MILP Formulation

An MILP model for the general problem stated in Sect. 4.1 is described next,
expanding on some aspects not pointed out in its previous discussion [1]. Recalling
the basic concepts introduced there, the main orthogonal reference frame has origin
O and axes wˇ , ˇ 2 f1; 2; 3g D B. It is assumed, without loss of generality, that
the whole domain D is entirely contained inside its first octant. Similarly, each local
reference frame, associated with every item, is chosen so that all item components
lie within its first octant. Its origin coordinates, with respect to the main reference
frame, are denoted by oˇi. The set ˝ of all (24 possible) orthogonal rotations,
admissible for any local reference frame, with respect to the main one, is introduced.

The set of components of a generic item i is denoted by Ci. For each item i,
the set Ehi of all (8) vertices associated with each of its components h is defined.
An extension of this set is obtained by adding to Ehi the geometrical center of
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component h. This extended set is denoted by
>
Ehi. For each item i and each possible

orthogonal orientation ! 2 �, the following binary (0–1) variables are introduced:

�i 2 f0; 1g, with �i D 1 if item i is chosen; �i D 0 otherwise;
#!i 2 f0; 1g, with #!i D 1 if item i is chosen and it has the orthogonal orientation
! 2 ˝; #!i D 0 otherwise.

The orthogonality conditions can be expressed as follows:

8i 2 I
X

!2�
#!i D �i; (4.1)

8ˇ 2 B;8i 2 I;8h 2 Ci;8� 2 _

Ehi (4.2)

wˇ�hi D oˇi C
X

!2˝
W!ˇ�hi#!i:

Here wˇ�hi (8� 2 _

Ehi) are the vertex coordinates of component h, with respect to the
main reference frame, or its geometrical center (� D 0), relative to item i; W!ˇ�hi are

the projections on the axes wˇ of the coordinate differences between points � 2 _

Ehi

and the origin of the local reference frame, corresponding to orientation ! of item i.
The domain conditions are expressed as follows.

8ˇ 2 B;8i 2 I;8h 2 Ci;8� 2 Ehi (4.3)

wˇ�hi D
X

�2V

Vˇ����hi;

8i 2 I;8h 2 Ci;8� 2 Ehi

X

�2V

���hi D �i (4.4)

Here V is the set of vertices delimiting D, Vˇ� are their coordinates (with respect to
the main reference frame) and ���hi are non-negative variables. These conditions
correspond to the well-known necessary and sufficient conditions for a point to
belong to a convex domain.

The non-intersection conditions are represented by the constraints shown below,
see [1] for more details:

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.5-1)

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1� 	Cˇhkij

�
;

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.5-2)
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wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1� 	 �̌hkij

�
;

8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.6)

X

ˇ2B

�
	Cˇhkij C 	 �̌hkij

�
� �i C �j � 1;

8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.7-1)

X

ˇ2B

�
	Cˇhkij C 	 �̌hkij

�
� �i;

8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.7-2)

X

ˇ2B

�
	Cˇhkij C 	 �̌hkij

�
� �j:

Here the constants Dˇ are the sides (respectively parallel to the main reference frame
axes) of the parallelepiped, of minimum dimensions, containing D; wˇ0hi and wˇ0kj

are the center coordinates, with respect to the main reference frame, of components
h and k of items i and j, respectively; L!ˇhi and L!ˇkj are their side projections on
the wˇ axes, corresponding to the orientation !; 	Cˇhkij and 	 �̌hkij 2 f0; 1g.

The constraints (4.7-1) and (4.7-2) have been introduced with the purpose of
tightening the model (they are not taken account of in the following). It is worth
noticing that, in some particular situations, the above non-intersection constraints
((4.5-1), (4.5-2) and (4.6)) should be properly complemented, in order to avoid
solutions that could hardly be considered as appropriate in practice (see [1]).
Nonetheless, these aspects will be omitted here.

The most straightforward formulation relevant to the objective function, to
maximize the volume loaded, is the following:

max
X

i2I

Vi�i; (4.8)

where Vi represents the volume of item i.
The formulation represented by expressions (4.1)–(4.8) (with possible variants

regarding the constraints) is notoriously inefficient, even when restricted to single
parallelepipeds only, and the situation tends to become even worse when tetris-like
items are involved.
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The following expression has thus been suggested [1] as a promising alternative
to (4.8):

max
X

i2I; h2Ci

VhiP
˛2A

L˛hi

X

ˇ2B;
!2�

L!ˇhi#!i; (4.9)

where L˛hi, ˛ 2 f1; 2; 3g D A, are the sides of the generic component h of item i. It
is assumed, without loss of generality, that L1hi � L2hi � L3hi.

As easily seen, the functions (4.8) and (4.9) are equivalent for any integer-
feasible solution. Indeed, the following implications hold:

8i 2 I;8h 2 Ci �i D 0 ()

X

ˇ2B;
!2˝

L!ˇhi#!i

X

˛2A

L˛hi

D 0; (4.10-1)

8i 2 I;8h 2 Ci �i D 1 ()

X

ˇ2B;
!2˝

L!ˇhi#!i

X

˛2A

L˛hi

D 1: (4.10-2)

Both derive from (4.1), the second, in particular, is true in virtue of the fact that, in
any integer-feasible solution: 8i 2 I=�i D 1, 9Š! 2 ˝=#!i D 1.

Since objective functions (4.8) and (4.9) are equivalent, they give rise to the same
optimal (or sub-optimal) integer solutions. Nonetheless, quite different behaviors
occur when dealing with (partial or total) LP-relaxations of the MILP model (as
usually utilized by the solvers), making the choice for the second one highly
preferable. Some considerations follow, in support of this point.

First of all, it is worth recalling that non-trivial intrinsic difficulties make the
MILP approach very intricate, per se [1]. This is the case, for instance, of the implicit
transitivity conditions. Considering, indeed, the generic triplet of components
h, h0, h00 of items i, i0, i00, respectively, these can be expressed as follows: if,
along the axis wˇ, h precedes h0 and h0 precedes h00 then h precedes h00, along
the same axis. A major concern, moreover, is certainly represented by the non-
intersection constraints (4.5-1) and (4.5-2), since they are of the big-M typology
(well known for being, in general, very tough to cope with). Consequently, it is
not surprising at all that a strong tendency to item overlapping prevails in the
LP-relaxed solutions, making the task of finding an integer-feasible solution (albeit
sub-optimal) demanding. As an immediate consideration, it should be noticed that
the MILP model, related to (4.8), is characterized by a very weak correlation of the
non-intersection constraints (4.5-1) and (4.5-2) with the �i variables appearing in
the objective function (the association is attained only indirectly through (4.1) to
(4.4) and (4.6)). On the contrary, (4.9) acts directly on the terms L!ˇhiª!i, appearing
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in (4.5-1) and (4.5-2), “minimizing” (in terms of a surrogate objective function),
the overall overlapping between items. In order to see this point better, it is useful
to introduce the variables lˇhi D

X

!2˝
L!ˇhi#!i. For each component h of the generic

item i, they represent indeed the lengths of the sides parallel to each wˇ axis,
respectively (and consequently lˇhi 2 Œ0;L3hi�, when an LP-relaxation is applied).

In order to go deeper into this matter, it is worth pointing out that a necessary
condition for integer-feasibility is provided by the following (cf. 4.10-2):

8i 2 I;8h 2 Ci �i D 1 )
X

ˇ2B;
!2˝

L!ˇhi#!i D
X

˛2A

L˛hi: (4.11)

When an LP-relaxation is applied to the model associated with objective function
(4.9), the inequalities below hold:

8i 2 I;8h 2 Ci

X

ˇ2B;
!2˝

L!ˇhi#!i �
X

˛2A

L˛hi; (4.12)

with #!i 2 Œ0; 1�.
In order to show this, a single component h of item i is selected. As easily

gathered, depending on the specific orientation ª!i taken by item i, each variable lˇhi

can assume only one value out of the following: L1hi, L2hi and L3hi. More precisely,
the following logical conditions hold:

8˛ 2 A .l1hi D L˛hi/ _N .l2hi D L˛hi/ _N .l3hi D L˛hi/ ; (4.13-1)

8ˇ 2 B
�
lˇhi D L1hi

� _N
�
lˇhi D L2hi

� _N
�
lˇhi D L3hi

�
; (4.13-2)

where “_N ” represents the “exclusive or.” As a straightforward consequence of what

is specified above, for each ˛ and ˇ, there are eight cases in which lˇhi D L˛hi,
implying that the component side of length L˛hi is parallel to the reference axis wˇ .
The subsets ˝˛ˇhi � ˝ , with ˛ 2 A and ˇ 2 B, are hereafter introduced: they
represent, for each ˛ and ˇ all the orientations ! 2 ˝ such that lˇhi D L˛hi.
Evidently, the following conditions hold (with h and i fixed):

8˛ 2 A [̌2B
˝˛ˇhi D ˝; (4.14-1)

8˛ 2 A;8ˇ; ˇ0 2 B ˝˛ˇhi \˝˛ˇ0hi D Ø: (4.14-2)



4 A Modeling-Based Approach for Non-standard Packing Problems 75

The equalities below are thus respected, in virtue of (4.1):

X

ˇ2B

lˇhi D
X

˛2A

X

!2˝˛ˇhi;
ˇ2B

L˛hi#!i D
X

˛2A

L˛hi �i; (4.15)

with #!i; �i 2 Œ0; 1�. This proves the validity of inequalities (4.12).
The key point associated with objective function (4.9) may be summarized

as follows. It induces, indeed, in any LP-relaxation, to attain the upper bounds
corresponding to (4.12), and thus to satisfy the (necessary) integer-feasibility
conditions (4.11). On the other hand, the overall item overlapping, controlled by
(4.5-1) and (4.5-2) is (indirectly) “minimized.” The adoption of objective function
(4.9) has proved very efficient in practice [11].

4.3 An MINLP Model for the Feasibility Sub-problem

Non-linear formulations addressing the orthogonal placement of rectangles inside
convex domains are available in the literature (e.g., [2, 12, 13]). The following
section recalls an MINLP approach put forward in [1, 14], to which the reader is
referred for a more in-depth discussion. The general packing problem, as stated in
Sect. 4.1, is considered here in terms of feasibility only, i.e. it is expected that a
number of preselected items can be loaded (otherwise the problem is infeasible).

For this purpose, all the variables �i, corresponding to the given set of items,
are set to one, keeping the orthogonality and domain constraints (4.1), (4.2), (4.3)
and (4.4) unaltered. Since no objective function is provided a priori, an ad hoc
one is introduced. It consists of penalty functions, representing the non-intersection
constraints (4.5-1), (4.5-2) and (4.6) that are eliminated from the model. The
corresponding expression is shown below:

min

8
ˆ̂̂
<̂

ˆ̂̂
:̂

X

ˇ2B;
i;j2I=i<j;

h2Ci;k2Cj

max

8
<

:��wˇ0hi � wˇ0kj
�2 C

"
1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
#2

�rˇhkij; 0

9
=

;C KP

X

i; j2I=i<j;
h2Ci; k2Cj;

Y

ˇ2B

rˇhkij

9
>>>>=

>>>>;

:

(4.16)
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Here rˇhkij 2
h
0;D2

ˇ

i
, whilst KP is a positive coefficient (that represents an

appropriate “weight”); the other terms have been defined in Sect. 4.2. The general
problem, as stated in Sect. 4.1, has thus been reformulated in terms of an MINLP.

It is immediately seen that the objective function (4.16) is non-negative and that
a zero-global-optimal solution of the above defined model exists if and only if the
constraints (4.1), (4.2), (4.3), (4.4), (4.5-1), (4.5-2) and (4.6) (with all variables �i

set to one) define a feasible region. This objective function, indeed, “minimizes” the
intersection between items (indirectly) and any global optimum provides a solution
to the feasibility sub-problem under discussion.

The MINLP model outlined in this section, even if theoretically suitable for
solving the general problem stated in Sect. 4.1, when a given set of items is requested
to be loaded, is, per se, very hard to solve. Search for sub-optimal solutions can
however be profitably adopted to improve the initial or intermediate ones, obtained
by heuristic procedures [1], where intersection between items is admitted. In such a
case, the MINLP model is utilized to reduce the overall overlapping.

4.4 Grid-Based Position MILP Model

The space-indexed approach (e.g., [9, 10]) can be advantageously reconsidered to
include operational scenarios that are quite frequent in practice. Relevant extensions,
albeit still addressed to box-shaped items and domains, are aimed at allowing for
additional conditions, such as stability and load bearing (cf. [15]). This section
focuses instead on a grid-based-position MILP model, conceived as an alternative
to the one discussed in Sect. 4.2, focusing on the orthogonal packing of tetris-like
items, inside a convex region.

The given domain (of Sect. 4.1) is discretized, so that it is associated with a set
of internal points whose coordinates are supposed to be integer. The main reference
frame, still defined as in Sect. 4.1, thus becomes a unit-cube grid, whose node
coordinates are indicated as .n1; n2; n3/ 2 D. Tetris-like items are grouped on a
typology basis. The set of all types 
 is denoted by T.

The following assumptions relevant to each tetris-like item are made:

• the local reference frame has a pre-fixed orientation (orthogonal with respect to
the main one);

• the local reference frame origin can only be positioned on grid points; all
component vertices have integer coordinates.

Remark 4.1 It should be observed that the prefixed orientation assumption does
not represent an actual limitation. Orthogonal rotations of the same object can,
indeed, simply be considered by introducing a set of pre-oriented items (one for
each possible orthogonal orientation).
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For each type 
 , the sub-set of grid points in which the local frame origin can
be positioned (so that the corresponding item is entirely inside the domain D) is
introduced. It is denoted hereinafter by D
 .

The binary variables �
n1n2n3 2 f0; 1g are then defined, with the following
meaning:

�
n1n2n3 D 1 if one item of type 
 is positioned with its local reference origin in
the grid node of coordinates (n1, n2, n3);

�
n1n2n3 D 0 otherwise.

A possible modeling of the general problem (of Sect. 4.1) is shown next,
considering the orthogonality, domain, and non-intersection conditions. The first are
implicitly respected by the orientation of each item type that is imposed a priori. The
second ones are stated by introducing, for each type 
 , the grid point sub-sets D
 .
The non-intersection conditions, instead, need to be expressed through dedicated
constraints.

The following inequalities prevent the positioning of more than one local
reference frame in the same grid points:

8n1; n2; n3 2 D
X


2T=
n1;n2;n32D


�
n1n2n3 � 1: (4.17)

Furthermore, for each pair (
 , 
 0) of item types (including the case when 
 0 D 
)
and each grid node .n1; n2; n3/ 2 D
 , the set F
 0
n1n2n3 is introduced. Except for
point (n1, n2, n3), it contains all the forbidden positions, for all item types, when a 

one is assumed to be placed in (n1, n2, n3). Each set F
 0
n1n2n3 is built as follows:

• position virtually any item i of type 
 (indicated as i
 ) in node .n1; n2; n3/ 2 D
 ;
• identify for any item i
 0 all the surrounding nodes .n01; n02; n03/ 2 D
 0 where

overlapping between i
 0 and i
 would occur (at least partially), should i
 0 be
positioned in (n 01, n 02, n 03).

The inequalities below prevent the overlapping of items, on the basis of the
forbidden positions:

8
; 
 0 2 T;8n1; n2; n3 2 D
 (4.18)

X

n01;n02;n032F
 0
n1n2 n3

�
 0n01n02n03 � .1 � �
n1n2n3 / jF
 0
n1n2n3 j ;

where jF
 0
n1n2n3 j indicate the cardinalities of the corresponding sets.
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For each typology 
 , a maximum number N
 of items are available. These
conditions are represented as follows:

8
 2 T
X

n1;n2;n32D


�
n1n2n3 � N
 : (4.19)

The objective function has the following form:

max
X


2T;
n1;n2;n32D


V
�
n1n2n3 ; (4.20)

denoting by V
 the volume associated with each item type 
 .
It should be noticed that, whilst the discretized model discussed in this section is

very simple, since it consists of three groups of constraints only, the generation of
both sets D
 and F
 0
n1n2n3 is, instead, non-trivial. An ad hoc preprocessing phase
has to be envisaged, in order to generate the model instances in practice. These quite
tricky aspects are not discussed here.

As for the model discussed in Sect. 4.2, also in this case additional conditions,
such as balancing, could quite easily be introduced. They are, however, not
taken into account here. It should, moreover, be observed, that the grid-based
position model, as formulated in this section is (at least) theoretically susceptible
to extensions contemplating any irregularly shaped item type. In such cases, the
above-mentioned pre-processing phase should be carried out appropriately.

4.5 An MILP Approach for the Tetris-Like Approximation
of Irregular Items

The problem of approximating irregular objects, in terms of covering, by means of
tetris-like items, can be regarded per se as an optimization problem. This section
provides some topical insights, restricting the discussion to the two-dimensional
case of convex polygons (the three-dimensional generalization is quite straightfor-
ward). More precisely, the issue under consideration can be stated as follows:

Given a convex polygon, cover it with a minimum-surface tetris-like item, consisting
of NR components (rectangles).

Evidently, the larger NR is, the better approximation of the polygon is possible.
Moreover, in the problem general statement formulated above, it could be implicit
that the dimensions of each rectangle may vary with continuity within given ranges.
The formulation provided hereinafter, however, is based on quite a simplified
approach. It restricts the selection of the rectangles to a finite number of possibilities,
resulting from a proper discretization carried out a priori.
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Fig. 4.2 Polygon covering by a (2D-)tetris-like item

Given a pre-oriented polygon, we shall consider it with respect to an orthogonal
frame with origin O and axes wˇ , ˇ 2 f1; 2g D B (the same symbolism already
utilized in the three-dimensional case is maintained, as no ambiguity occurs). The
axis w1 will represent the “horizontal,” while w2 the “vertical” one. The edges of
the polygon are subsequently discretized, by drawing “horizontal” straight lines that
identify a set of border points including all polygon vertices, see Fig. 4.2.

The sets of all such lines and points are indicated as H and � respectively,
corresponding to generic indexes r and � . For each pair of lines .r; r0/ 2 H, all the
enclosed border points determine the set � rr 0 . The relevant coordinates are referred
to as Wrr 0 ˇ� , with ˇ 2 B and � 2 �rr0.

For each � rr 0 , the following lower and upper bounds are defined:

8ˇ 2 B Wrr0ˇ D min
�2�rr0

˚
Wrr0ˇ�

�
; Wrr0ˇ D max

�2�rr0

˚
Wrr0ˇ�

�
: (4.21)

The rectangle Rrr 0 , corresponding to the straight lines r and r0, delimited by the
vertices listed here, is introduced:

Vrr0LL
�
Wrr01;Wrr02

�
; Vrr0LU

�
Wrr01;Wrr02

�
; (4.22)

Vrr0UL
�
Wrr01;Wrr02

�
; Vrr0UU

�
Wrr01;Wrr02

�
:

Next, the binary variables �rr0 2 f0; 1g are defined as:

�rr0 D 1 if rectangle Rrr 0 is selected as a component of the covering tetris-like
item;

�rr0 D 0 otherwise.
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The (continuous) variables below are also introduced:

8� 2 �;8r; r0 2 H ��rr0 2 Œ0; 1� :

They are assigned as per the following condition:

��rr0 D 1 if the border point � 2 � is covered by the selected rectangle Rrr 0 ;
��rr0 D 0 otherwise.

The following inequalities correlate the variables ��rr 0 and �rr 0 :

8r; r0 2 H=r < r0
X

�2�rr0

��rr0 D j�rr0j�rr0; (4.23)

where j�rr0j indicates the cardinality of � rr 0 . These expressions highlight the
obvious implication that if a rectangle Rrr 0 is selected, then all the associated border
points are covered by it (and vice versa). With this in mind, the inequalities below
are introduced to guarantee that each border point is actually covered:

8� 2 �
X

r;r02H=r<r0

��rr0 � 1 : (4.24)

Since the number of selected rectangles has to be equal to NR, the following
equations hold:

X

r;r02H=r<r0

�rr0 D NR: (4.25)

The objective function is stated below:

min
X

r;r0

2H=
r<r0

Srr0�rr0; (4.26)

where the terms Srr 0 represent the surfaces associated with each rectangle,
respectively.

Remark 4.2 Ingenuity is needed to extend the approach proposed to non-convex
polygons. As a first consideration, the rectangles Rrr 0 should be split in the
corresponding sub-rectangles actually covering parts of the polygon. This way, each
term Srr 0 would be calculated (more precisely) as the sum of the sub-rectangles’
surfaces. The situation is even more complicated when the non-convexities are
related to the presence of internal “holes.” All these aspects may well become the
subject of a dedicated research.
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4.6 Heuristics

An overall modeling-based heuristic methodology has been developed to tackle
real-world scenarios, generally consisting of large-scale instances, characterized
by tricky geometries dealt with by tetris-like approximations, in the presence of
additional conditions such as balancing. In [1] a range of models and procedures
were discussed in a general framework, providing the basis to build alternative
solution strategies. A novel and promising approach, representing the objective of
ongoing research, is, instead, discussed here (see [11] for experimental results).
Prior to proceeding with the topical discussion, the basic concept of abstract
configuration [1] is recalled, providing the following two definitions.

Constraints of the types

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
;

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

�
;

corresponding to either 	Cˇhkij D 1 or 	 �̌hkij D 1 in (4.5-1) and (4.5-2), respectively,
are called relative position constraints.

Given a set of N items and the corresponding NC pairs of components belong-
ing to different items, an abstract configuration consists of NC relative position
constraints, exactly one for each pair, giving rise to a feasible solution in any
unbounded domain.

A method to extract an abstract configuration from any approximate solution,
with intersections between items, has been shown [1]: this subject is not discussed
here, referring to the cited work. As previously, the whole process discussed in this
section is essentially based on the following modules: Initialization, Packing, Item-
exchange, and Hole-filling. In the versions investigated here, they are based on the
MILP model presented in Sect. 4.2. In the following, the heuristic overall logic is
outlined first and then the basic modules are considered.

4.6.1 Overall Logic

As in the heuristics looked into in the previous work, the search algorithm consists
of a recursive procedure that, at each step, activates one of the above-mentioned
modules. An abstract configuration is generated at each step tentatively improving
the previous one; the best-so-far solution is retrieved when the current step does not
meet its objective. The search process is terminated when a satisfactory, albeit non-
optimal proven solution (in terms of loaded volume) is found. Since for real-world



82 G. Fasano

instances the computational task is quite demanding, at each step, only sub-optimal
solutions are sought, interrupting the optimization on the basis of suitable stopping
rules.

The Initialization phase is aimed at solving a feasibility sub-problem, with the
scope of providing a good starting abstract configuration. An LP-relaxation of
the general MILP model of Sect. 4.2 is adopted. All the N items available are
considered, although some of them may be rejected subsequently, during the search
process. This module seeks for a first approximate solution, enclosing all the items
inside the domain and “minimizing” their total overlapping indirectly. An abstract
configuration is directly provided by the solution obtained. The MINLP model
of Sect. 4.3 may be adopted, if opportune, to further reduce (although without a
guarantee for eliminating) the intersection between items. In this case, a procedure
able to extract abstract configurations from approximate solutions with overlapping
has to be available.

The abstract configuration derived from the Initialization step is imposed to the
Packing module that offers, by means of the general MILP model of Sect. 4.2, a
non-approximate (albeit usually still sub-optimal) solution, maximizing the loaded
volume and rejecting items if necessary. Both Item-exchange and Hole-Filling
phases are devoted to the improvement, if possible, of the Packing solution,
providing (if successful) upgraded abstract configurations. Also for these steps the
general MILP model of Sect. 4.2 is utilized, and non-approximate solutions are
found.

The Item-exchange module is aimed at carrying out advantageous exchanges
between non-loaded and loaded items. Two subsets of non-loaded and loaded
items, respectively, are selected. The relative positions (corresponding to the current
abstract configuration) relevant to both subsets are set free. A further optimization
step, aimed at maximizing the loaded volume, is subsequently performed. If, in the
thus obtained solution, the loaded volume has been increased, the current abstract
configuration is upgraded correspondingly. Otherwise, the best-so-far solution is
retrieved. Alternatively, relative position exchanges can be activated among a subset
of non-loaded items only, in order to perturb the current abstract configuration.

The Hole-filling module has the scope of incrementing the loaded volume, by
exploiting the empty spaces still available. For this purpose, a subset of unloaded
items is selected. All relative positions (corresponding to the current abstract config-
uration), relevant to them are set free and a further optimization step performed (to
maximize the loaded volume). Again, the current abstract configuration is upgraded
only if an improvement has been obtained with the new solution.

The four modules discussed above can be activated repeatedly, following dif-
ferent strategies (e.g., the Initialization itself could, time after time, be executed
also during the process, with the imposition of “partial” abstract configurations,
restricted to subsets of items already loaded). In the following, the use of the general
MILP model of Sect. 4.2, corresponding to each phase, is illustrated.
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4.6.2 Use of the General MILP Model

The Initialization module, in the version considered here, focuses on the use of a
specific LP-relaxation of the general MILP model of Sect. 4.2. As the relevant sub-
problem is expressed in terms of feasibility, all variables �i (8i 2 I) are set to 1. The
lˇhi variables, introduced in Sect. 4.2, are reconsidered instead. These are not defined

any longer as lˇhi D
X

!2˝
L!ˇhi#!i, but simply as continuous variables subject to the

following bounds:

8ˇ 2 B;8i 2 I;8h 2 Ci L1hi � lˇhi � L3hi: (4.27)

Here, as previously specified, L1hi and L3hi represent the sides associated with h,
of minimum and maximum length, respectively. The non-intersection conditions
(4.5-1) and (4.5-2) and the objective function (4.9) are rewritten as follows:

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.28-1)

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
lˇhi C lˇkj

� � Dˇ

�
1 � 	Cˇhkij

�
;

8ˇ 2 B;8i; j 2 I=i < j;8h 2 Ci;8k 2 Cj (4.28-2)

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
lˇhi C lˇkj

� � Dˇ

�
1 � 	 �̌hkij

�
;

max
X

i2I;h2Ci

VhiX

˛2A

L˛hi

X

ˇ2B

lˇhi: (4.29)

If the sub-problem related to the model above is infeasible, then all lower bounds
L1hi (in 4.27) are subsequently reduced until a feasible solution is obtained. The
variables 	C=�ˇhkij , for which in the obtained solution 	C=�ˇhkij D 1, directly provide an
abstract configuration for the subsequent steps of the heuristic procedure. They are
referred to as Q	C=�ˇhkij .

The Packing, Item-exchange, and Hole-filling modules exploit, totally or par-
tially, the currently available abstract configuration. The non-intersection inequali-
ties (4.5-1) and (4.5-2) corresponding to the above-mentioned Q	C=�ˇhkij variables are
maintained in the model (in addition to (4.6)), whilst the others are eliminated
together with all the redundant 	C=�ˇhkij variables (i.e., those that are not correlated
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to any Q	C=�ˇhkij ). The non-intersection constraints, relative to the (thus “imposed”)
abstract configuration, are hence rewritten, for the relevant indexes, in the following
form:

wˇ0hi � wˇ0kj � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � 	Cˇhkij

�
; (4.30-1)

_N

wˇ0kj � wˇ0hi � 1

2

X

!2˝

�
L!ˇhi#!i C L!ˇkj#!j

� � Dˇ

�
1 � 	 �̌hkij

�
(4.30-2)

	
C=�
ˇhkij � �i C �j � 1; (4.31)

with 	C=�ˇhkij 2 Œ0; 1� (i.e. they are no longer considered as binary variables).

4.7 Conclusion

Non-standard packing problems that involve non-box-shaped items and domains, in
the presence of additional constraints, are usually very tough to solve. This chapter,
extending the author’s previous work, discusses the issue of placing tetris-like items
orthogonally into a convex domain. A Global Optimization point of view, focused
on MILP/MINLP formulations, is looked into for the purpose of providing models
that are suitable for treating additional loading restriction rules and global conditions
such as balancing.

An efficient heuristic procedure, aimed at finding satisfactory solutions to
real-world instances, is proposed. This approach will be the objective of future
investigation, focused on the MILP/MINLP search strategies.

The issue of covering irregularly shaped objects with tetris-like items consisting
of a given number of components of minimum total volume, itself, leads to a non-
trivial optimization problem. Insights on its two-dimensional version, relevant to
the optimal outer approximation of polygons, are provided. A further contribution
appearing in this book is dedicated to the computational aspects relevant to the
MILP model discussed in this chapter.
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Chapter 5
CAST: A Successful Project in Support
of the International Space Station Logistics

Giorgio Fasano, Claudia Lavopa, Davide Negri, and Maria Chiara Vola

Abstract The International Space Station (ISS) is one of the most challenging
currently ongoing space programs. It has led to a number of very demanding logistic
issues, in particular in relation to the on-orbit maintenance and resource resupply.

A fleet of launchers and vehicles is periodically made available by the most
prominent space agencies in order to serve this scope. An overall traffic plan
schedules the recurrent upload and download interventions. The relevant Cargo
Manifest (delivered by NASA) establishes, for each carrier launch and re-entry, the
shipment that is supposed to be transported from Earth to orbit and vice versa.

The European Space Agency (ESA) contributed annually to the ISS logistics
from 2008 to 2014, by accomplishing five Automated Transfer Vehicle (ATV)
missions. The ATV transportation system was conceived to support the recurrent
upload phases from Earth to the ISS.

Within the relevant cargo accommodation context, in addition to tight balancing
conditions, intricate three-dimensional packing issues arose. Furthermore, besides
the remarkable complexity related, per se, to the loading aspects, very strict
deadlines were usually imposed to accomplish the task. Last minute upgrades or
even significant changes, moreover, often were expected to take place.

CAST (Cargo Accommodation Support Tool) is a dedicated optimization frame-
work, funded by ESA and developed by Thales Alenia Space to carry out the whole
analytical ATV cargo accommodation. This chapter describes the ATV loading
problem first. The basic concept of CAST is further outlined, highlighting the
advantages of the methodology adopted, both in terms of solution quality and time
saving. Current extensions and possible future enhancements are investigated.
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Keywords Space engineering • Space vehicle/module • Cargo accommodation •
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bus Laboratory • Packing optimization • Static and dynamic balancing • Addi-
tional conditions • Mixed integer programming (MIP) • Heuristics

5.1 Introduction

This chapter focuses on the very challenging issue relevant to the (analytical)
cargo accommodation of vehicles and modules, arising in space engineering. The
operating context refers to that of the International Space Station (ISS) (see [1]) and,
more precisely, of the Automated Transfer Vehicle (ATV) (see [2]), provided by the
European Space Agency (ESA) [3] to support the ISS logistics. The CAST (Cargo
Accommodation Support Tool) project, funded by ESA and achieved by Thales
Alenia Space [4], was conceived with the specific objective of optimizing the ATV
cargo accommodation, for each planned mission. The overall reference framework
is described hereinafter, in order to introduce the operational scenario that motivated
the dedicated effort. Section 5.2 describes the ATV cargo accommodation problem;
Sect. 5.3 discusses the CAST tool in depth; Sect. 5.4 reports a real-world instance
and the relevant results; Sect. 5.5 outlines current and prospective extensions.

The ISS (see Fig. 5.1) represents a paramount worldwide initiative involving the
Brazil, Canada, Europe, Japan, Russia, and United States, through the respective

Fig. 5.1 The International Space Station (ISS, a pictorial view). Photo: NASA
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participating space agencies: CSA, ESA, ASI, JAXA, Roscosmos, and NASA
(see [3, 5–9]). At present, it is the largest spacecraft in orbit, consisting of a
modular structure, whose first component was launched in 1998. The station
encompasses pressurized/unpressurized modules, external trusses, solar arrays, and
further components. The ISS is a manned platform that serves as a microgravity and
space environment research laboratory in which experiments in astronomy, geology,
meteorology, physics, material sciences, general/human biology, space medicine,
and other disciplines are performed by the crew present on board (see [1]). It is
further expected to provide essential testing of spacecraft systems and equipment
required for the extremely challenging missions to the Moon and Mars in the near
future.

The permanent human presence on board, as well as the demanding targets
deriving from the requested experimentation, has led to the necessity of a continuous
upload/download activity, implying recurrent transportation between the Earth and
the ISS. A fleet of launchers and vehicles (i.e., Soyuz, Progress, ATV, H-II Transfer
Vehicle, Dragon and Cygnus, see [1]) is made available to provide the ISS with the
necessary logistic support. An overall traffic plan schedules the recurrent upload and
download interventions. The Cargo Manifest (delivered by NASA), relevant to the
current mission, establishes, in particular, for each carrier launch and re-entry, the
shipment that is supposed to be transported from Earth to orbit and vice versa.

The ATV (see Fig. 5.2) concept placed itself in this very demanding operative
context (see [2]). Developed by ESA, the ATV systems were designed to supply the
ISS with propellant (to re-boost the station to the required orbit altitude), payloads
(i.e., equipment devoted to the on-board experimentation), as well as material both
for the crew and the ISS activity and maintenance. Five ATVs were successfully
launched since March 2008: Jules Verne, Johannes Kepler, Edoardo Amaldi, Albert
Einstein, and Georges Lemaître. In April 2012, the ESA announced that the ATV
program would end after the fifth mission, in July 2014.

Fig. 5.2 The Automated Transfer Vehicle (ATV, a pictorial view). Photo: NASA
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Each ATV weighed about 20.7 tons at launch and had an overall load capacity of
8 tons. The overall cargo was partitioned into the following categories:

• pressurized cargo, consisting of objects of different typologies (frequently also
referred to as dry cargo, e.g. scientific equipment or resupply goods);

• unpressurized cargo, consisting of fluids;
• propellant for the re-boost maneuvers and station refueling.

With the ATV docked, the station crew used to enter the cargo section and
remove the payloads. The ATV’s liquid tanks were connected to the station and
discharged. The station crew manually released air components directly into the
ISS’s atmosphere. For up to 6 months, the ATV remained attached to the ISS. The
crew then steadily filled the cargo section with the station’s waste. At intervals from
10 to 45 days, the ATV’s thrusters were utilized for re-boosting. This vehicle was
of an expendable type, i.e. at the end of each attachment period, the spacecraft was
moved out of orbit to perform a controlled destructive re-entry high above the Pacific
Ocean.

5.2 The ATV Cargo Accommodation Problem

The ATV transportation system was essentially aimed at supporting the ISS upload-
ing phases, since it performed a destructive re-entry (the only download activity
consisted of the trash destruction). Both fluids and cargo items were delivered
on board the ISS, based on the current Cargo Manifest list. The amount of each
fluid type could (generally) vary within an admissible range. Some items could,
moreover, be rejected, on the basis of a given priority. The ultimate task was hence
that of maximizing the overall load, in compliance with the accommodation rules
(that could change, even quite significantly, from mission to mission). In addition
to tight balancing conditions, deriving from the system control specifications, intri-
cate three-dimensional packing issues arose, encompassing tricky accommodation
scenarios, at item, bag, rack and system level. Furthermore, besides the remarkable
complexity related per se to the loading aspects, very strict deadlines were usually
imposed to accomplish each analytical cargo accommodation task relative to the
whole mission preparation. These consisted, essentially, of three analysis-cycle
periods (typically of 1–2 weeks each), per year, carried out on the basis of the current
information available. Last minute upgrades or even significant changes, moreover,
often occurred.

This section focuses on the ATV cargo accommodation problem (see [10]) that
consisted of the loading of both the unpressurized (fluid) and pressurized (solid)
material. The re-boost propellant amount simply represented an analysis input, since
it was established a priori for each mission. The cargo accommodation task could,
therefore, be summarized as follows:
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Given the spacecraft overall mass distribution, including the re-boost propellant
contribution, the unpressurized and pressurized cargo had to be accommodated,
in order to fulfill the Cargo Manifest request as much as possible, in compliance
with the balancing and operational requirements.

This section is aimed at describing the above outlined ATV cargo accommoda-
tion issue, at quite a detailed level, restricting the discussion to the upload phases
only, since the loading aspects relevant to the destructive re-entry (limited to the
waste load) were significantly less demanding. A description of the ATV cargo
carrier features, concerning the cargo accommodation problem is provided first. The
cargo typologies are considered afterwards and subsequently the accommodation
rules to cope with.

5.2.1 The ATV Cargo Carrier

From the cargo accommodation standpoint, as defined above, the spacecraft con-
sisted essentially of two components, see Fig. 5.3: the unpressurized module,

Fig. 5.3 ATV’s external and pressurized modules
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Fig. 5.4 Tanks inside the external module. Photo: ESA/CNES/Arianespace/Optique

Table 5.1 Fluid load capability

Fluid Water Gas Fuel Oxidizer
Tank
availability

3 tanks (285 kg
capacity each)

3 tanks (33.34 kg
capacity each)

2 tanks (150 kg
capacity each)

2 tanks (280 kg
capacity each)

denoted as external (EM) and the pressurized one (PM). These were designed to
accommodate the two kinds of cargo, respectively. In the following, the merging of
these two modules is referred to, in the following, as the system.

Tanks (see Fig. 5.4), situated with predefined positions inside the external
module, were predisposed to contain fluids. Table 5.1 reports the number of tanks
available per fluid typology.

Up to eight racks could be put to use for the pressurized cargo, inside the
corresponding module (depending on the specific mission, the utilized racks could
be fewer than the available locations). They were inserted (when employed) into
proper structural facilities, called rack locations, see Fig. 5.5. There were eight of
these in all and they had prefixed (axially symmetrical) positions inside the module.

Each rack provided a plane anterior side, named rack front that was oriented
towards the inside of the module, see Figs. 5.5 and 5.6. It could be equipped
with four structural elements called adapter plates (of two possible different types,
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Fig. 5.5 Racks and rack locations

Fig. 5.6 Rack overall configuration

i.e. A and B), aimed at holding items externally. The posterior surface of the rack
was curved, to match the cylindrical shape of the spacecraft. The internal rack
volume was partitioned into sectors (of different kinds).

There were two types of racks, i.e. A and B, characterized by quite significant
structural differences, implying, respectively, diverse cargo capacity and capability.
In particular, the type B rack planes fitted the posterior surface in order to exploit
the available volume as much as possible, see Fig. 5.7.
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Fig. 5.7 Rack A and B volume exploitation

5.2.2 Cargo Typologies

Each Cargo Manifest could include the following fluids:

• water;
• air;
• oxygen;
• nitrogen;
• fuel;
• oxidizer

(the fuel was different from the re-boost one and was utilized for payloads only).
The two main classes of pressurized cargo were:

• cargo items;
• bags.

The cargo items were partitioned into the following typologies:

• small items;
• large items;
• external large items;
• mid-deck lockers (special items, named MDLs);
• drawers.
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Table 5.2 Tank mass capacities

Fluids Tank capacity (kg)

Water 285
Air 33.34
Oxygen 33.34
Nitrogen 33.34
Fuel 150
Oxidizer 280

Small items were, initially, only box-shaped (and assumed to be of homogeneous
density), as well as MDLs and drawers. In the last missions, however, non-box-
shaped cases had to be taken into account. Large items, instead, were ordinarily
characterized by complex shapes and non-homogeneous internal mass distribution.

5.2.3 Loading Rules

The unpressurized cargo was subject, for each fluid type, to given capacity
limitations. Table 5.2 reports the relevant tank characteristics.

In addition, the following specific loading rules were imposed:

• if the same fluid was loaded in more than one tank, the difference of mass
between each pair could not exceed a given amount (scattering rule);

• oxidizer/fuel amounts had to respect a given ratio (this requirement had been
stated for stoichiometric reasons).

As far as the pressurized cargo was concerned, different classes of (soft) bags
were available to contain small items, namely:

• standard;
• non-standard;
• internal;
• external.

As is understood, internal bags were supposed to be accommodated inside the
racks, whilst the external ones on the rack fronts. For the first missions, only box-
shaped internal bags were considered. Curved types were, however, introduced later,
in order to exploit the rack internal volume as much as possible. External bags,
instead, were only box-shaped.

The following types of internal standard/non-standard bags, classified on the
basis of their shapes and dimensions, were available.

Box-shaped standard bags:

• half;
• single;
• double;
• internal triple.
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Box-shaped non-standard bags:

• (CTB, Cargo Transfer Bag) type C;

Curve-shaped non-standard bags:

• (CTB) type A;
• (CTB) type B.

Box-shaped internal standard bags were modular. Consequently, two halves
could be joined to replace a single, two singles a double, a single plus a double
a triple, and so on (see Fig. 5.8).

The following types of external standard/non-standard bags were envisaged:

• external triple.

Box-shaped non-standard bags:

• M01;
• M02.

Internal/external bag mass capacities are reported in Table 5.3 and some typolo-
gies of bags are illustrated in Fig. 5.8.

Fig. 5.8 Bag typologies
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Fig. 5.8 (continued)

Table 5.3 Bag mass capacities

Types Mass capacity (kg)

Internal bags CTB_type_A 16:27

CTB type B 17:27

CTB type C 24:15

Half 13:62

Single 27:24

Double 54:48

Triple 81:72

External bags Triple 80

M01 120

M02 90:8
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The major overall accommodation rules adopted are summarized as follows, in
terms of item typology and possible locations:

• small items had to be accommodated into standard bags (of different types);
• large items either into racks or on the rack fronts;
• internal bags and drawers into rack sectors;
• external bags, external large items, and MDLs on the rack fronts.

Type A rack (utilized only for the first ATV missions) was able to accommodate
all kinds of cargo items, while type B could only house bags. Compatibil-
ity/incompatibility conditions could be imposed, for each specific mission, dealing
with the accommodation of the bags, due to operational needs. Frequently, for
instance, some of them had to be grouped within the same sector or, at least,
allocated together inside the same rack. On the contrary, others were not allowed
to be accommodated in the same sector/rack. Some internal bags were requested to
be positioned in proximity of the rack front, with no obstructing external bags or
adapter plates. This was usually due to accessibility reasons.

Small items had to be positioned, orthogonally (see Fig. 5.9), taking into account
the mass capacity of the bags utilized. Quite often, additional conditions, such as
the following, were posed:

• item prefixed position/orientation;
• presence of separation planes;
• minimum gap between items;
• minimum gap between items and bag sides;
• static balancing.

Conditions on prefixed position/orientation could, for instance, be motivated by
manageability reasons. The presence of separation planes (inside the bags), usually
with non-prefixed positions, forced the item accommodation in different internal
sectors. Using separation planes made their handling by astronauts easier (Fig. 5.9
provides an example of a bag with two separation planes).

Fig. 5.9 Small items placed orthogonally in a bag (with two separation planes)
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The static balancing restriction, at bag level, had two different statements,
depending either on the internal or external connotation. In the case of internal
bags, their center of mass was requested to stay within a box-shaped domain (of
given dimensions), positioned in the center of the box. The center of mass of the
external bags, on the other hand, had to stay within a box-shaped domain (of given
dimensions), adjacent to the box side in contact with the adapter plate. This rule
was posed in order to reduce, as much as possible, the bag unbalancing towards the
rack-front outside. Depending on the incumbent Cargo Manifest to satisfy, a number
of internal/external bags could already be pre-integrated.

A number of additional conditions, at system level, had to be taken into account:

• overall mass capacity;
• overall static balancing;
• overall dynamic balancing.

The total cargo (both unpressurized and pressurized), indeed, was not allowed
to exceed a given threshold. The static balancing condition meant that the system
center of mass coordinates had to stay within given ranges that depended on the total
mass loaded. More precisely, the following constraints were introduced:

8ˇ 2 f1; 2; 3g cNˇ.m/ �

X



mwˇ

m
� cˇ.m/: (5.1)

Here, the indexes ˇ indicate the system reference frame axes; m are the involved
(unpressurized and pressurized cargo) masses, assumed as points, associated with
the locations wˇ (with respect to the system reference frame); m D

X



m is the

total mass loaded; c
Nˇ
.m/ and cˇ.m/ are given lower and upper (piecewise linear)

functions, delimiting, for each mass m, the center of mass ranges, see Fig. 5.10.

In expressions (5.1), the terms

X



mwˇ

m represent the coordinates of the overall
center of mass with respect to the system reference frame.

Fig. 5.10 Overall center of mass domain
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The dynamic balancing conditions essentially compelled the system inertia
matrix, defined with respect to the barycentric reference frame, to assume a quasi-
diagonal form (providing the system with a mechanical behavior approximately
equivalent to that of a homogeneous cylinder). To this purpose, lower and upper
bounds, expressed as piecewise linear functions of the loaded mass, were posed
(neglecting a priori, for the sake of simplicity, the inertia property relative to
each mass m that was considered as concentrated in a single point). Figure 5.11
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Fig. 5.11 Dynamic balancing bounds
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provides illustrative examples (concerning the moment of inertia, with respect to
the longitudinal axis X, and the XZ product). They are reported below (neglecting
all secondary details of the actual situation):

8ˇ; ˇ0 2 B=ˇ < ˇ0
ˇ̌
ˇ̌
ˇ
X



mw
�̌
w
�̌0

ˇ̌
ˇ̌
ˇ � Iˇˇ0.m/; (5.2)

8ˇ; ˇ0; ˇ00 2 B=ˇ < ˇ0; ˇ; ˇ0 ¤ ˇ00
X
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8ˇ; ˇ0; ˇ00 2 B=ˇ < ˇ0; ˇ; ˇ0 ¤ ˇ00
X



m

�
w�2ˇ C w�2ˇ0

�
� Iˇ00.m/: (5.3-2)

Here, in addition to the symbols defined hitherto, w*
ˇ represent the mass location

coordinates with respect to the barycentric reference frame, whilst NIˇˇ0.m/, IN ˇ
00.m/

and NIˇ00.m/ are (non-negative piecewise linear) functions of the total loaded mass m.
The following overall conditions had moreover to be considered at rack level (for

each rack type):

• overall mass capacity;
• sector mass capacity (depending on the specific rack configuration adopted, e.g.

with/without adapter plates);
• rack-front mass capacity;
• adapter-plate mass capacity (for each type);
• heavy-light bag adjacency incompatibility (heavy bags were not allowed to be

adjacent to lightweight ones);
• static balancing.

The static balancing restriction, in this case, required that the rack center of mass
was contained inside a given convex domain, see Fig. 5.12.

The loading of cargo items and bags, either inside the racks or on the rack fronts,
was regulated by specific conditions (not reported here). The internal bags had to
be accommodated into sectors, on the basis of predefined patterns (i.e., admissible
sector configurations). Accessibility conditions could be posed, requiring specific
placement ordering (with respect to the rack front) or fixed position/orientation
for some bags. The rules for the external accommodation, posed for structural
reasons, were very complicated. Figure 5.13 shows the maximum mass (expressed
in kilograms) loadable externally, depending on the number/typology of bags and
adapter plates utilized.
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Fig. 5.12 Rack center of mass (convex) domain

A number of grouping conditions could moreover be present, mission by mission,
for particular cargo items. For example, some could have been requested to be
accommodated into the same rack sector. On the contrary, others had to be placed
in different ones (these additional accommodation rules are not detailed here).

5.3 A Dedicated Cargo Accommodation Tool

The cargo accommodation issue described in Sect. 5.2 represented a very chal-
lenging non-standard three-dimensional packing problem, with difficult additional
conditions to be compliant with. Complex geometries had to be considered, both
in terms of objects and containers/locations, fluid masses were present, specific
accommodation rules had to be taken account of, in addition to tight balancing
requirements at different levels.

Attention has been paid quite recently, in the vast literature of packing (e.g.,
[11–13]), to non-standard problems, in addition to the usual issue of loading
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Fig. 5.13 Accommodation rules for external bags

(orthogonally) “small boxes” into “big boxes,” with no extra conditions (e.g.,
[14]). Topical works tackle very complex issues involving intricate geometries and
balancing conditions (e.g., [15–17]). Studies on cargo accommodation in space
engineering, based on artificial intelligence [18] and multi-agent methods [19] are
also available.

Dealing with the ATV issue, an overall heuristic approach, based on
mathematical-programming (e.g., [20]), nonetheless, definitely seemed more
suitable than merely non-deterministic methodologies, including meta-heuristics in
general (e.g., [21, 22]). The ATV specific case, indeed, presented a very significant
number of “strong” constraints (for which no relaxation was admitted) to cope
with, in particular those derived from the tight balancing restrictions. As the given
problem could unquestionably not be figured out tout court, taking into account
all the relevant accommodation levels (i.e., bag, rack, system) contemporarily, a
decomposition of the whole problem into sub-problems, was devised (see [23]).

This concept, in addition to a strong modeling-based approach, was therefore
embraced by our specialist team (Giorgio Fasano, Claudia Lavopa, Davide Negri,
and Maria Chiara Vola) that since 2000 has been developing the CAST system,
supporting its ongoing upgrading and utilization from the first ATV mission (Jules
Verne 2008) until the last (Georges Lemaître 2014, see [2]). This section is devoted
to provide the reader with quite detailed insights on CAST’s basic concept and
major features.

CAST is characterized by an overall architecture, see Fig. 5.14, based on a
mathematical library that represents the core of the entire optimization framework.
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Fig. 5.14 CAST’s overall architecture

Sub-problems are solved iteratively by adopting, step by step, the relevant math-
ematical library module, consisting of specific MIP (Mixed Integer Program-
ming, e.g. [24]) models and heuristic algorithms. These are handled by an over-
all System Management module (CAST-SM) and a (3D) Graphical User Inter-
face (CAST 3D-GUI).

Backward iterations are admitted, when the desired solution is not attained,
performing a recursive process. In its latest version, CAST’s mathematical library
consists of the following modules:

• Item Accommodation (IA);
• Preprocessing Assessment (PPA);
• Item-Rack Correlation (IRC);
• Rack Configuration (RC);
• (Overall) Cargo Accommodation (CA).
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The above-mentioned modules are outlined hereinafter, in a simplified manner, to
provide the reader with a wide-ranging description of the basic concepts. Most of the
aspects relevant to the mathematical model formulation are not taken into account
in this chapter (the reader is referred to [23, 25] for a more in-depth discussion).

The IA module is employed to accommodate the small items inside bags, on
the basis of the general packing rules and possible additional ones, such as static
balancing, if any (see Sect. 5.2.3). When particular cases, involving items that can
hardly be modeled as single boxes, arise an ad hoc tetris-like representation is
adopted. More precisely, items that are not simply box-shaped (and cannot reason-
ably be assumed of homogeneous density) are substituted with clusters of (mutually
orthogonal rectangular) parallelepipeds. The available volume is moreover assumed
to consist of a convex domain, in general non box-shaped. The underlying packing
problem may, therefore, be referred to as a non-standard container loading one,
where items to accommodate are tetris-like shaped and the container of a convex
type, in the presence of possible additional conditions. An MIP-based formulation
of this problem has been provided (see [25] for a detailed discussion). The relevant
general MILP (Mixed Integer Linear Programming, see [20, 24]) model consists of
three blocks of linear constraints, respectively devoted to guarantee that items:

• are placed orthogonally (orthogonality conditions);
• are inside the given domain (domain conditions);
• do not overlap (non-intersection conditions).

The orthogonality constraints require that each item, if loaded, has to assume
one of the possible orthogonal positions, with respect to the main reference frame,
associated with the domain (being in general asymmetric, a tetris-like item is
expected to have up to 24 admissible orientations). The domain constraints require
that each vertex of each tetris-like item must stay within the convex container
volume. The non-intersection constraints exclude the intersection of any two
components, belonging to different items.

The following sets of binary variables are introduced:

• �i 2 f0; 1g controlling the presence of item i, inside the container;
• #!i 2 f0; 1g (in association with the orthogonality and domain constraints)

providing item i with an orthogonal orientation !, within the domain;
• 	Cˇhkij; 	

�̌
hkij 2 f0; 1g (in association with the non-intersection constraints, with

respect to each axis ˇ of the main reference frame) preventing components
(h and k) of different items (i and j) from overlapping.

The positions of items’ local reference frames are represented by continuous
variables. A number of additional conditions, such as static balancing, may be
modeled, by means of linear constraints (see [25]).

The resulting MILP model is, in general, very difficult to solve. Therefore,
heuristic procedures have been designed, in order to obtain efficient (albeit not
proven to be optimal) solutions, in an acceptable time (see [25]).

The PPA module is aimed at providing a fast approximate solution to the whole
problem, in order to attain a preliminary feasibility check. This module serves also
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the scope of identifying an upper bound, relevant to the overall loadable mass. An
MILP model solves a multiply constrained, multiple continuous knapsack problem
with additional conditions. The set of knapsacks is represented by both tanks and
racks with given mass capacities. Additional conditions include:

• the specific rules for fluids;
• the compatibility between rack and rack location;
• the compatibility (both for unpressurized and pressurized cargo) between mass

and container type;
• the compatibility between mass and rack-front type;
• the static and dynamic balancing requirements at system level.

The static balancing constraints (being nonlinear) are controlled by appropriate
binary variables (utilized for linearization purposes). In those relevant to the
dynamic balancing, the barycentric reference frame, as a further approximation, is
supposed to be fixed in a “central” position. This corresponds to the center of mass
domain (as delimited by the static balancing constraints). The compliance with the
actual barycentric reference frame is verified “a posteriori” and the terms Īˇˇ 0 (m),
INˇ

00.m/ and Īˇ 00(m) re-adjusted appropriately, if necessary, executing an opportune

number of iterations.
The MILP model considers, as quite a rough approximation, both the unpres-

surized and pressurized cargo in the same way as fluid mass. Continuous variables
represent the amount of both pressurized and unpressurized mass, associated with
the destination containers and locations (tanks, racks, and rack fronts). Binary
variables control:

• the correlation of racks to rack-locations;
• the utilization of the rack fronts;
• the compliance with the specific rules for fluids.

The IRC module has the scope of obtaining an initial correlation between
integrated bags (by means of the IA module) or pre-integrated bags and the
rack locations. A number of tasks not discussed here are associated with this
module. These are executed by means of an MILP model (whose utilization mode
depends, time after time, on the specific task). Multiple constrained, multiple (non-
continuous) knapsack problems with additional conditions are solved. The model
is based on a more sophisticated formulation with respect to the PPA. Items
(i.e., the pressurized cargo) are considered in terms of distinct (flexible) objects,
characterized by their mass and volumes (their actual dimensions are, however, still
neglected).

All conditions contemplated by the PPA model, in particular the static and
dynamic balancing, are taken into account. In this case, nonetheless, in order to
overcome the difficulties associated with the nonlinearity of the static balancing
constraints, the overall mass loaded is considered as a constant (a first approximation
of its value is derived by the PPA step itself). The error, expressing the difference
between the constant mass estimation and the actual amount loaded by the IRC
model is, time after time, minimized. A number of iterations, aimed at tuning
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the constant mass estimation are performed as necessary. The total mass loaded
is, as a matter of fact, maximized only indirectly. Additionally, the presence of
sectors inside the racks is considered, together with the relevant accommodation
rules. Pressurized cargo items may be rejected, if necessary, on the basis of their
priority. The overall logic utilized by the IRC module is quite complicated and is
not discussed here.

The RC module has the task of determining the internal/external rack loading,
in compliance with the given accommodation rules. Integrated/pre-integrated bags,
drawers, large items, and MDLs are accommodated into the racks or on the rack
fronts, on the basis of the designations provided by the previous IRC stage. All cargo
items and bags involved have, in this phase, their actual shapes and dimensions. The
static balancing restriction (at rack level) is respected. In the original version of
CAST, the RC module consisted, essentially, of two major components, directed to
solve the internal/external accommodation of types A and B racks, respectively. The
rack A type accommodation task was carried out by means of an ad hoc heuristic
procedure, aimed at solving the related non-standard container loading problem with
additional conditions (the procedure, being now obsolete, shall not be discussed
in this chapter). The component relevant to the internal/external accommodation
rack of type B has been based on an MILP model that solves the related multiply
constrained, multiple knapsack problems with additional conditions. The knapsacks,
here, represent the rack (internal) sectors and the (external) adapter plates. The
additional conditions (see Sect. 5.2.3), at this stage, consist of:

• the rules for the internal accommodation (e.g., bags into sectors);
• the mass capacity both at sector and adapter-plate levels;
• the rules for the external accommodation;
• the static balancing of the whole rack.

Since during the accommodation process several approximations are - step by
step, directly or indirectly - introduced, the CA module has the objective of re-
arranging all the partial so-far obtained solutions, in order to attain an ultimate
result. The assignment of the already accommodated racks to rack locations is
reconsidered, looking into a final accommodation, compliant with the given static
and dynamic balancing conditions (at system level). At this step, errors, with respect
to the mass loaded in each rack are admitted. They are minimized by the CA model
objective function. If the outcome obtained is acceptable (in terms of error tolerance)
the final solution is attained. Otherwise, backward/forward iterations are executed
throughout the entire accommodation process, until a satisfactory result is obtained.

The major functions associated with the CAST-SM module are (see Fig. 5.15):

• importing and handling the ATV and Cargo Manifest data, relative to the current
mission;

• executing, step by step, the predisposed mathematical models and algorithms;
• showing the ongoing and final accommodation analysis state;
• exporting the final accommodation solution to the database.
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Fig. 5.15 Example of CAST-SM control panel

The CAST 3D-GUI provides the cargo engineer with graphical representations
of the current and final outcomes, at bag and rack level, with the possibility of
interacting during the entire process or making desirable changes in the final solu-
tions. The main reason for this interactive option is that some human-perception-
based evaluative criteria can hardly be contemplated by mathematical models.

5.4 Real-World Instances and Solutions

This section focuses on the real-world framework that characterized the whole
history of the ATV missions, with respect to the cargo accommodation task. The
cost-effectiveness of the approach followed, as well as its promptness to compare,
when necessary, different operational scenarios and work out last-minute requests,
resulted first and foremost in a relatively limited human commitment. Each cargo
accommodation cycle was carried out, for all missions, by the CAST team in
not more than a fortnight. This included all interactions with the current ATV
program activity, necessary design re-adjustments, trade-offs between alternative
solutions and Cargo Manifest changes. The high-quality outcomes attained for
all the missions accomplished, moreover, were made possible by the advanced
optimization methodology put into action.
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Fig. 5.16 Unpressurized cargo mass distribution

CAST was originally designed to cope with extremely complex large-scale
instances, involving up to 1,000 items, 8 racks and 80 rack sectors. Real-world
scenarios were usually less demanding, albeit never trivial at all.

The case regarding the ATV5 mission that occurred in 2014 is reviewed in
this section, in order to provide insights on a typical operative scenario. The final
solution, corresponding to the third analysis cycle, is considered hereinafter.

All the static/dynamic balancing conditions were fully satisfied, both at system
and rack level (the relative graphical representations are, however, not included
here). Figures 5.16 and 5.17 report the overall mass/volume distribution, both for
the unpressurized and pressurized cargo, respectively. It should be noticed that the
mass capacity, at rack level was in general not fully exploited, since the volume
capacity, represented the more restrictive condition.

Figure 5.18 illustrates a (type B) rack loaded both internally and externally, whilst
the one shown in Fig. 5.19 (also of type B) contains internal cargo only.
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Fig. 5.17 Pressurized cargo mass and volume distribution

5.5 Extensions

A number of further potential ATV-derived developments have recently been put
forward. For instance, an appropriate adaptation of the spacecraft concept to serve
as the service module of the NASA Orion spacecraft has been proposed (see [1]).
Other suggestions have included the CArgo Return Version (CARV), conceived
to provide ESA with the capability to transport payloads and cargo from the ISS
to Earth, as well the realization of a Crew Transport Vehicle (CTV), in addition to
ATV-like systems, in the context of the commercial orbital transportation services.
Proper extensions/adaptations of the present version of CAST are hence foreseen.
A specific application of the tool (see [26]) is, indeed, already in use, in support of
the Columbus Laboratory logistic utilization (see [27]). Insights on this subject are
given hereinafter.

The Columbus module, initially intended as an attached laboratory, with the
exclusive scope of supporting the ISS experimental activity (fluid physics, new
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Fig. 5.18 Rack with internal and external cargo

Fig. 5.19 Rack with internal cargo only
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Fig. 5.20 The Columbus Laboratory. Photo: ESA

materials, life science and earth observation), is currently also utilized as a stowage
facility. The related accommodation issue is deemed as very demanding, as is, the
more general one, concerning the whole ISS.

As is well known, this overall task creates a very strong impact on habitability
and crew productivity on board. As a consequence, when exploiting the volume left
available by the downloaded cargo, safety, ergonomic needs and operational feasi-
bility must be considered. A number of mandatory stowage constraints, applicable
to the whole space station’s framework have therefore been stated. It is clear that the
stored material is not allowed, for instance, to inhibit emergency interventions, to
interfere with the equipment designated for critical safety operations nor to reduce
the usability of devices. All these kinds of stumbling blocks, directly or indirectly,
give rise to non-trivial packing issues.

As in the ATV case, Columbus has racks available (see Fig. 5.20) that are
partially exploitable for the above-mentioned stowage purposes. They are likewise
provided with internal sectors of different types and corresponding mass capacities.
There are two accommodation levels, i.e.: items into bags/sectors and bags into
sectors. Items/bags are placed into bags/sectors, on the basis of their partial or
total availability. In order to exploit the empty volumes inside the module as much
as possible, also non-rack-based accommodations are considered. An interesting
instance deals with the Columbus starboard end cone, see Fig. 5.21. Items may be
placed inside, taking advantage of the volumes left empty. The presence of structural
elements and the resulting clearance zones have to be taken into account. Figure 5.21
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Fig. 5.21 Columbus’s starboard end cone utilization

depicts the exploitable room on the left. On the right, items are placed in compliance
with the forbidden spaces (represented in the figure by transparent boxes).

In the general Columbus stowage problem, a first optimization objective is
evidently that of fulfilling, as much as possible, the current Cargo Manifest request,
minimizing, also in this case, the number of the rejected items (on the basis of their
priority).

Mandatory requirements, usually deriving from ergonomic and operational
needs, quite often impose the grouping of some items inside the same sector/rack, or,
on the contrary, define incompatibility conditions. A number of forbidden positions,
moreover, can sometimes make the accommodation task quite problematic.

The concern of sparing the crew workload, as much as possible, induces, as a
first attempt, to keep the items already uploaded in their acquired positions, within
their assigned racks. If strictly necessary, solely in order to prevent the rejection of
some items, they can, nonetheless, be re-allocated differently.

Once an optimal solution has been attained (minimizing the amount of cargo
unloaded), a post-analysis is performed in order to facilitate the subsequent
accommodation task (relevant to the forthcoming Cargo Manifest). Some items are
re-allocated, when opportune, to reduce the number of sectors only partially utilized,
as much as possible. Afterwards, if residual volumes are still available inside some
of these, then the cargo engineer is asked to advise the Cargo Manifest team how
these empty spaces could be suitably exploited in the next resupply steps. In such a
case, a further optimization process is carried out to identify a number of hole-filling
virtual items (see [25]).

A case study, aimed at re-allocating items inside the same rack, following the
rationale outlined above, is shown by Fig. 5.22 that compares a handmade solution
(left) with the optimized one (right). Figure 5.23 displays the concept of virtual
items (shown externally).
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Fig. 5.22 A case study

Fig. 5.23 Identification of virtual items

On the basis of the expertise gained so far, satisfactory accommodations are
expected in less than 1 h in all, opposed to the 2/3 day elapse time needed by
following a manual approach. This dramatically reduces the cargo engineer effort,
while also significantly increasing the average filling coefficient of the utilized
sectors (with a typical increment of more than 20 %).
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The overall methodology referred to in this chapter is quite clearly subject to
possible extensions to closely related issues of interest, in addition to the already
mentioned ATV-like context. Relevant insights are briefly mentioned here, in order
to suggest prospective development directions.

Inflatable systems will present an innovative line of development, posing specific
cargo accommodation issues. Additionally, a leading role, also for the subject in
question, will certainly be taken by the future manned space missions, such as the
ones concerning the lunar bases, for which the optimization of the inhabited volumes
will represent a major objective.

Further interesting applications could deal with the so-called payload accommo-
dation issue, inside space modules, usually implying both scheduling and packing
aspects. A payload consists of a set of facilities, with specific resource requirements
(generally related to crew time, electrical power and water/air cooling). Payloads
usually have to be accommodated into predefined positions, provided with different
resource availability. This has to be done as efficiently as possible, in order to
accomplish the experimental tasks requested. As a consequence, the payload assign-
ment to the available locations gives rise to a non-trivial optimization problem.
A major objective, in this context, consists of finding satisfactory time-dependent
solutions, i.e. feasible accommodations, in compliance with the payload operational
constraints and the overall availability of resources.

An important topic, seemingly barely correlated to the cargo accommodation
one, concerns the on-orbit unloading of modules/vehicles. This problem, for
instance, arose in the ATV mission scenario, during its attachment phase, before
the destructive re-entry. Since (for emergency reasons) the vehicle had to be able
to depart from the station at any moment, it was permanently requested to be
compliant with all the given balancing requirements. Whilst the cargo accommo-
dation analysis certainly represents a demanding task, the issues related to the
on-orbit unloading are, altogether, not any easier. In this context, indeed, accurate
operational paradigms are mandatory. These can be achieved by proper cargo-
removal procedures, implying, if necessary, temporary exchanges/repositioning of
items, so that, at each step, no constraint/bound violations can occur.

In addition to what has been briefly mentioned hitherto, some considerations
can be made, focusing on aspects still related to the cargo accommodation overall
task, albeit addressing different points of view. Indeed, when dealing with the
early phases of the entire cargo accommodation process, or even during the design
of the spacecraft itself (where sizing investigations of the system are needed), a
significant level of uncertainty, concerning the prospective load characteristics, has
to be expected. On the basis of the information, available time after time, a dedicated
worst-case analysis could be carried out by readapting the overall optimization
methodology presented here. To this purpose, proper (opposite-oriented) objective
functions, aimed at looking for the worst solutions, e.g. accommodations attaining
the maximum overall center of mass distance from the desired position, should be
introduced.
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5.6 Conclusions

This chapter has illustrated a recurrent packing task taking place in space engi-
neering and logistics. It concerns the so-called cargo accommodation issue, well
known for being, in general, very challenging. A significant number of operational
conditions, in addition to static and dynamic balancing, are usually posed, in the
presence of complex geometries relating both to the items that are to be loaded and
the exploitable volumes.

The thought-provoking ATV case that occurred in support of the ISS logistics,
encompassing all its five successful missions, has been considered thoroughly here,
in order to show the complexity of this arduous real-world application. An ad hoc
methodology has been thought up with the scope of looking into the relevant cargo
accommodation problem satisfactorily, bearing in mind both solution quality and
cost-effectiveness.

CAST is the in-house cargo accommodation support environment, designed and
developed by the company to serve the scope adequately. Its overall features have
been outlined in a dedicated section, enucleating the underlying modeling-based
heuristic approach adopted. Although no longer employed for the ATV programs,
this tool, as per a tailored version, at present addresses the non-less-demanding issue
of the stowage on board the Columbus Laboratory (permanently attached to the
ISS). Insights on this application have been provided as well, pointing out possible
extensions to a number of forthcoming challenges in space.

The overall cargo accommodation approach followed to date has proved to be up
to tackling the intricate scenarios arising in the related contexts appropriately. CAST
is paving the way for a number of intriguing applications in space engineering and
not only.
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Chapter 6
Cutting and Packing Problems with Placement
Constraints

Andreas Fischer and Guntram Scheithauer

Abstract In real-life problems of cutting and packing very often placement
constraints are present. For instance, defective regions of the raw material (wooden
boards, steel plates, etc.) shall not become part of the desired products. More
generally, due to different quality demands, some products may contain parts of
lower quality which are not allowed for other goods. Within this work we consider
one- and two-dimensional rectangular cutting and packing problems where items of
given types have to be cut from (or packed on) raw material such that an objective
function attains its maximum. In the one-dimensional (1D) case, we assume for
each item type that allocation intervals (regions of the raw material) are given
so that any item of the same type must be completely contained in one of the
corresponding allocation intervals. In addition, we deal with problems where the
lengths of the 1D items of a given type may vary within known tolerances. In
the two-dimensional (2D) case, where rectangular items of different types have to
be cut from a large rectangle, we investigate guillotine cutting under the condition
that defective rectangular regions are not allowed to be part of the manufactured
products (even not partially). For these scenarios we present solution strategies
which rely on the branch and bound principle or on dynamic programming. Based
on properties of the corresponding objective functions we discuss possibilities to
reduce the computational complexity. This includes the definition of appropriate
sets of potential allocation (cut) points which have to be inspected to obtain an
optimal solution. By dominance considerations the set of allocation points is kept
small. In particular, the computational complexity becomes independent of the unit
of measure of the input data. Possible generalizations will be discussed as well.
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6.1 Introduction

In real-life problems of cutting and packing placement constraints are present very
often. For instance, defective regions of the raw material (wooden boards, steel
plates, etc.) shall not become part of desired products. More generally, due to
different quality demands, some products may contain parts of lower quality which
are not allowed for other goods. For packing problems forbidden regions may exist
where no objects must be placed. Due to the strong relationship between cutting and
packing problems this paper mostly concentrates on cutting problems.

6.1.1 Aims and Scope

We consider one- and two-dimensional rectangular cutting problems where items
of given types have to be cut from raw material such that an objective function
attains its maximum. Such problems are also called 1D or 2D rectangular knapsack
problems. Two scenarios will be discussed in detail. In the first, some rectangular
parts of the raw material are not allowed to be used at all. In the second more general
scenario, different quality demands are considered.

In the 1D case, we assume for each item type that allocation intervals (regions
of the raw material) are given so that any item of the same type must be completely
contained in one of the corresponding allocation intervals. In the 2D case, where
rectangular items of different types have to be cut from a large rectangle, we
investigate guillotine cutting under the condition that defective rectangular regions
are not allowed to be part of the manufactured products (even not partially).
Different qualities of the raw material are described by allocation areas.

Furthermore, we also deal with problems where the lengths (or width) of the
(one- or two-dimensional) items of a given type may vary within known tolerances.

For these scenarios we present solution strategies which rely on the branch and
bound (B&B) principle or on dynamic programming (DP). Based on properties
of the corresponding objective functions we discuss possibilities to reduce the
computational complexity. This includes the definition of appropriate sets of
potential allocation (cut) points which have to be inspected to obtain an optimal
solution. By dominance considerations the set of allocation points is kept small.
In particular, the computational complexity becomes independent of the unit of
measure of the input data.

Some generalizations will be discussed as well. Finally, we hope that techniques
from this area can be used and extended to new fields, for example for the placement
of chips and other electronic parts on boards.
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6.1.2 Related Work

Cutting and packing (C&P) problems with defective or forbidden regions were
studied in the past. In the earlier survey paper by Sweeney and Paternoster [15]
some work related to this topic is referenced, whereas in the recent typology of
C&P [17] the topic is only briefly addressed. Therefore, we give a short overview
on articles that are relevant for our work.

Hahn [6] presented a recursive DP-based procedure to solve a 2D cutting problem
with defects. She suggested a three-stage guillotine cutting scenario with vertical
cuts in the first stage.

Herz [7] presented a recursive B&B-based procedure for the 2D rectangular
knapsack problem (without defects) to obtain canonical patterns by introducing
discretization points, see the definition of allocation points in Sect. 6.2. Dowsland
[4] used certain discretization points to analyze the structure of optimal (and nearly
optimal) solutions and the objective function for the manufacturer’s pallet loading
problem, a special 2D knapsack problem where only one type of pieces (rotatable
by 90ı) has to be packed.

Beasley [2] presented a 0/1 model and a tree-search procedure for 2D non-
guillotine rectangle packing including the occurrence of forbidden regions. Upper
bounds are computed from a Lagrangian relaxation problem which are improved by
the help of a subgradient ascent method. We will not use the approach in [2] since
it requires a very large number of 0/1-variables.

In Terno et al. [16] a principle used by Nicholson [8] was applied to 2D rectangle
cutting and packing problems leading to the concept of reduced sets of allocation
(or cut) points (cf. Sect. 6.2). The book (Scheithauer [12]) presents a renewed
description of this concept.

For the three-stage guillotine cutting of defective boards a recursive procedure
was developed by Scheithauer and Terno [13]. In particular, appropriately reduced
sets of allocation points were applied.

Algorithmic approaches for 1D cutting problems with different quality demands
were addressed by Sweeney and Haessler [14]. Such problems which are modeled
by allocation intervals and pieces of variable length were also investigated in
Scheithauer [11]. The latter paper generalizes real-world problems in hardwood
cutting. Similar problems are considered in Rönnqvist [9] and Rönnqvist and
Åstrand [10], where a discretization of the board is used.

6.1.3 General Notation and Assumptions

We assume throughout the paper that all input data are positive integers. The set of
positive integers is denoted by Z>. In the 1D case, the length of the raw material is
given by L. The pieces i 2 I WD f1; : : : ;mg which shall be cut have the lengths `i.
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Moreover, profit coefficients �i for i 2 I are known. Additionally, in the 2D case,
the raw material has width W, whereas the rectangular pieces are of widths wi. It is
always assumed that

maxf`i j i 2 Ig � L and maxfwi j i 2 Ig � W

holds. For later use we define

`min WD minf`i j i 2 Ig; wmin WD minfwi j i 2 Ig:

and

` WD .`1; : : : ; `m/
>; w WD .w1; : : : ;wm/

>; � WD .�1; : : : ; �m/
>:

Moreover, in case that a maximum of indexed numbers is taken over an empty index
set the maximum is set to 0. In order to describe (parts of) objects we use

Œa; b� � Œc; d� WD f.x; y/ 2 R
2 j a � x � b; c � y � dg

and, for short, b � d WD Œ0; b� � Œ0; d�, where a; b; c; d 2 ZC with a � b and c � d.
By ZC the set of all non-negative integers is denoted. If not stated otherwise, we
allow that several copies of a piece can be obtained from the raw material. For the
sake of simplicity, we do not consider a (positive) kerf nor least distances between
two allocation points within a pattern. Furthermore, in the 2D case we do not allow
rotation of pieces for the same reason.

6.2 Reduced Set of Potential Allocation Points

The (standard) Knapsack Problem (KP) is a basic problem also within the field of
cutting and packing. This problem consists of finding a vector x� 2 Z

mC such that x�
satisfies the capacity constraint a>x � b and the objective c>x attains its maximum
for x D x�. For short, we write

KP(c; a; b) W
X

i2I

cixi ! max subject to
X

i2I

aixi � b; xi 2 ZC for i 2 I;

(6.1)

where a D .a1; : : : ; am/
> 2 Z

m
>, c D .c1; : : : ; cm/

> 2 Z
m
>, and b 2 Z> are given.

If we consider a>x � y with a parameter y 2 R, then we obtain the following
optimal value function f W R ! ZC [ f�1g related to KP(c; a; b):

f .y/ WD max

�P
i2I

cixi j P
i2I

aixi � y; xi 2 ZC for i 2 I

�
for all y 2 R; (6.2)
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where f .y/ WD �1 for any y < 0. It is well known that f is piecewise constant
and non-decreasing. Its jump discontinuities are non-negative integers. The set of
all these jump discontinuities of f depends on c and a and is a subset of

S.a/ WD
(

r D
X

i2I

aixi j xi 2 ZC; i 2 I

)
: (6.3)

The fact that the optimal value function of KP(c; a; b) changes (increases) only at
discrete points can be used in B&B or DP approaches to reduce the computational
complexity of solving the knapsack problem.

If the knapsack problem (6.1) is used to model a cutting problem we call S.a/
set of potential allocation points. Replacing c by � , a by `, and b by L we see
that KP(�; `;L) models a 1D cutting problem. In this case, xi denotes the number
how often piece i is cut. The set S.`/ contains infinitely many elements whereas the
points (coordinates) for cutting the raw material are bounded by L. Therefore, we
introduce the finite set

S.`;L/ WD fr 2 S.`/ j r � Lg ; (6.4)

Of course, S.`;L/ contains all those jump discontinuities of the optimal value
function arising from KP(�; `;L) which are not larger than L. Depending on � ,
additional points may belong to S.`;L/ as well. Thus, the question arises whether
one can describe the set of jump discontinuities exactly. This is possible in the
important case when � D `. Then, the knapsack problem KP(`; `;L) has the optimal
value function f given by

f .y/ D max

(
X

i2I

`ixi j
X

i2I

`ixi � y; xi 2 ZC; i 2 I

)
for all y 2 R

and S.`;L/ is exactly the set of those jump discontinuities of f which are not larger
than L.

Let x� denote a solution of KP(�; `;L) with `>x� < L, i.e., there is some waste
of raw material. Then, to cut the items according to x�, infinitely many possibilities
exist to choose a pattern, i.e. the coordinates of the items of the solution. If the
items are placed as left as possible on the raw material, the number of such patterns
is finite, all the waste lies right of the items, and all coordinates of the cut positions
belong to S.`/. Such patterns are often called normalized or left-justified. Herz [7]
used the terms discretization point for r 2 S.`/ and canonical for left-justified
patterns.

For a set T � ZC and y 2 RC let pT.y/ and sT.y/ denote the predecessor of y
with respect to T and the successor of y with respect to T, respectively, i.e.,

pT.y/ WD maxfr 2 T j r � yg and sT.y/ WD minfr 2 T j r � yg
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for all y 2 Œminfr 2 Tg;maxfr 2 Tg�. In terms of the 1D cutting problem, pS.`/.y/
denotes the largest allocation point less than or equal to y, and sS.`/.y/ denotes the
least length of raw material needed to obtain a length of y. With other words, pS.`/.y/
is the maximum usable length when the raw material has length y. Obviously, we
have

y � `min < pS.`/.y/ � y for all y � `min

and

pS.`/.y/C pS.`/.L � y/ � pS.`/.L/ for all y 2 Œ0;L�:

The knapsack problem KP(c; a; b) can be solved by means of the following
backward dynamic programming (BDP) algorithm. If set T used in this algorithm
contains at least all jump discontinuities of the optimal value function of KP(c; a; b),
then Algorithm BDP provides a function g W T ! ZC by which a solution
of KP(c; a; b) can be easily determined. For example, T WD S.a; b/ would do
the job. Later on, it will turn out that Algorithm BDP can even successfully be
used for solving knapsack problems if T contains only a certain subset of jump
discontinuities.

Algorithm BDP
Input: c, a, b, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y < pT.b/ do
(3) y WD sT.y C 1/,
(4) g.y/ WD max

i2I
fci C g.pT.y � ai// j y � aig.

Theorem 1. Let T contain at least all jump discontinuities of the optimal value
function f of KP(c; a; b). Then, if Algorithm BDP is used for determining g W T !
ZC, it holds

f .y/ D g.pT.y// for all y 2 Œ0; b�:

This well-known result can be also obtained for the following forward dynamic
programming (FDP) algorithm.

Algorithm FDP
Input: c, a, b, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y � pT.b � minfai j i 2 Ig/ do
(3) For all i 2 I with y C ai � pT.b/ do
(4) g.sT.y C ai// WD maxfg.sT.y C ai//; ci C g.y/g,
(5) y WD y,
(6) Repeat y WD sT.y C 1/ until g.y/ < g.y/.
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Note that T D S.a; b/ implies sT.y C ai/ D y C ai 2 T for all i 2 I and all y 2 T
with y C ai � b. Thus, sT.y C ai/ can be replaced by y C ai in Step (4) of Algorithm
FDP. Moreover, because of the repeat-loop in Step (6), some updates in Steps (3)
and (4) can probably be saved compared to Step (4) of Algorithm BDP.

The worst-case complexity of both algorithms, BDP and FDP, is O.b C mjTj/
since y is increased at most b times, and at most m comparisons are done in the
max-terms for each element of T. Thus, both are pseudo-polynomial algorithms.

In order to determine a reduced set of allocation points that is sufficient to
obtain an optimal solution of KP(c; a; b) by Algorithm BDP or FDP we will apply
some dominance condition (cf. [12, 16]). For that purpose we let b > maxi2I ai be
satisfied. In view of the separability of the optimal value function f we have

f .b/ D max
0<y�b=2

ff .y/C f .b � y/g:

Since f is piecewise constant with jump discontinuities in S.a/ it further follows that

f .b/ D max
0<y�b=2

ff .pS.a/.y//C f .pS.a/.b � y//g
D max

r2S.a/; 0<r�b=2
ff .r/C f .pS.a/.b � r//g: (6.5)

By pS.a/.r/ � pS.a/.b � pS.a/.b � r//, we obtain

f .b/ D max
r2S.a/; 0<r�b=2

ff .pS.a/.b � pS.a/.b � r///C f .pS.a/.b � r//g:

This formula motivates the definition of the reduced set of potential allocation
points by

Sred.a; b/ WD fpS.a/.b � r/ j r 2 S.a; b/g:

Consequently, we have

f .b/ D max
r2T; 0<r�b=2

ff .r/C f .pT.b � r//g with T WD Sred.a; b/: (6.6)

Theorem 2. Let f denote the optimal value function of KP(c; a; b/. If Algorithm
BDP (or Algorithm FDP) with T D Sred.a; b/ is used to determine g W T ! ZC,
then

f .r/ D g.r/ for all r 2 T and f .y/ � g.pT.y// for all y 2 Œ0; b�

holds.

Due to Sred.a; b/ � S.a; b/, the recursion (6.6) might be less expensive than
the one in (6.5). Moreover, dependent on the instance, significant savings are
possible if Algorithms BDP or FDP are applied for the solution of KP(c; a; b) with
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Table 6.1 Potential allocation points for Example 1

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S.a; b/ ? ? ? ? ? ? ? ? ? ?

Sred.a; b/ ? ? ? ? ? ?

f .y/ 0 5 10 12 15 17 20

T D Sred.a; b/. Note that using Sred.a; b/ instead of S.a; b/ is an application of the
Nicholson-principle [8]. Since pS.a/.y/ � pSred.a;b/.y/ and sS.a/.y/ � sSred.a;b/.y/ for
all y 2 Œ0; b�, the application of Algorithm FDP with T D Sred.a; b/ does, in general,
not any longer provide left-justified patterns.

Example 1. Let us consider the instance of the knapsack problem KP(c; a; b) with
c WD .12; 10; 5/>, a WD .9; 7; 4/>, and b WD 15. In Table 6.1, the elements of the
sets S.a; b/ and Sred.a; b/ are marked by ?. Additionally, the optimal value function
f is tabulated at their jump discontinuities. ut

In Example 1, we have jSred.a; b/j < jS.a; b/j < b. Moreover, we see that in this
example the set of jump discontinuities is not a subset of Sred.a; b/. In general, the
cardinality of S.a; b/ and Sred.a; b/ strongly depends on the input data. Nevertheless,
there is a high potential to save memory and computation time by using Sred.a; b/
instead of S.a; b/. Moreover, the cardinality does not change if the unit of measure
is changed, for instance from cm to mm.

Investigations how to compute S.a; b/ efficiently can be found in [3]. The
computational amount for determining S.a; b/ and Sred.a; b/ is bounded from above
by O.mb/. More precisely, it is bounded by O.b C mjS.a; b/j/ due to the application
of Algorithm FDP for KP.a; a; b/.

6.3 The 1D Cutting Problem with Fix-Lengths

In the 1D case the presence of defective parts which are not allowed for any piece
leads to independent smaller problem instances. Therefore, we consider only the
scenario with different quality demands.

6.3.1 Problem Description

The following 1D cutting problem is considered: Pieces of various lengths `i, i 2 I,
and different quality demands q 2 Q have to be cut from a non-homogeneous
raw material of length L in such a way that all allocation conditions (i.e., quality
demands) are met and the total value of obtained pieces is maximal.
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Such problems arise, for instance, in timber cutting. In that case, the length of the
pieces is, in general, assumed to be variable within a given range but in this section
we restrict the pieces to have fix-lengths, which is also of high interest. The more
general case of pieces with variable lengths will be considered in the next section.

In order to formulate the cutting problem precisely, we consider several quality
types q 2 Q. To each quality type q 2 Q there is at least one piece i 2 I which is
of this type. Conversely, each piece i 2 I is assigned to a quality type q.i/ 2 Q. Let
Iq � I denote the set of all pieces of quality type q, i.e., Iq D fi 2 I j q.i/ D qg.
Hence, we have [q2QIq D I and Iq \ Ip D ; for p; q 2 Q with q ¤ p.

Intervals of the raw material where exactly one quality demand is fulfilled will be
called allocation intervals Ak � Œ0;L� with k 2 K WD f1; : : : ; jKjg. These intervals
are considered as given. The quality demand satisfied in Ak is denoted byeq.k/ 2 Q.
Any allocation interval Ak can be described by

Ak WD Œbk; ek� � Œ0;L� with ek � bk � minf`i j i 2 Ieq.k/g:

It is possible that different allocation intervals are of the same quality type. Two
intervals Aj and Ak (j ¤ k) may overlap, even if they fulfill the same quality demand.
In the latter case, we assume Aj 6� Ak. Without loss of generality it can be assumed
that

b1 � b2 � � � � � bjKj and ek � ekC1 if bk D bkC1:

For any piece i 2 I we require without loss of generality that there is a

k 2 Kq.i/ WD fk 2 K jeq.k/ D q.i/g

so that `i � ek�bk. This means, any piece i 2 I with allocation point yi 2 Œbk; ek�`i�

will be completely contained in an allocation interval with quality type q.i/.
For example, in hardwood cutting a quality demand could be that no more

than one sound knot per reference length is allowed. Then, the occurrence of two
sound knots within the reference length causes two partially overlapping allocation
intervals.

The value of a piece i 2 I is again denoted by �i. In general, pieces of the
same quality type may be obtained several times from the raw material, either from
the same allocation interval (if it is sufficiently large) or from different allocation
intervals of this quality type.

The cutting problems we consider consist of determining a (cutting) pattern that
has a maximal total value of the obtained pieces.

A pattern � can be described by a (finite) sequence of triples .it; yt; kt/, t D
1; : : : ; t� with yt C `it � ytC1 for t D 1; : : : ; t� � 1 where it denotes the index of the
t-th placed piece, yt is the allocation point of piece it, and kt gives the corresponding
allocation interval. Hence,
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0 � y1; y1 C `i1 � y2; � � � ; yt� C `it� � L;

bkt � yt; yt C `it � ekt ; q.it/ Deq.kt/ for t D 1; : : : ; t� :

Obviously, all allocation points can be considered to be integral.

6.3.2 Modeling

In order to formulate an integer optimization model it is assumed in this subsection
that each piece is packed at most once. This can be done without loss of generality
defining piece i several times with different indexes. We describe the allocation of a
piece i 2 I by means of a 0/1-variable zi as follows:

zi WD
(
1 if piece i 2 I is allocated (should be cut);

0 otherwise.

If the allocation point of piece i is at yi, the piece covers the interval Ti.yi/ WD
Œyi; yi C `i� but only if it has been packed, i.e., if zi D 1. Hence, the allocation
problem can be modeled as follows where int A denotes the interior of set A:

X

i2I

�i � zi ! max (6.7)

subject to

zi 2 f0; 1g; yi 2 ZC; for all i 2 I; (6.8)

int Ti.yi/ \ int Tj.yj/ D ; for all i; j 2 I with i < j and zi C zj D 2; (6.9)

for each i 2 I with zi D 1 there are q 2 Q and k 2 Kq

with i 2 Iq and Ti.yi/ � Ak:
(6.10)

Condition (6.9) ensures that the packed pieces do not overlap each other. Condi-
tion (6.10) guarantees that the allocation is done within an appropriate allocation
interval.

To transform the previous model into an integer linear program (ILP) we define
0/1-variables uij, i; j 2 I, i < j, and vik, i 2 I, k 2 Kq.i/ as follows:

uij WD
(
0 if piece i is packed left to piece j; i.e., yi C `i � yj;

1 if piece i is packed right to piece j; i.e., yj C `j � yi;

and

vik WD
(
1 if piece i 2 I is packed within Ak;

0 otherwise.
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Conditions (6.9) and (6.10) can now be replaced by

yi C `i � yj C L.2 � zi � zj C uij/ for all i; j 2 I with i < j;
yj C `j � yi C L.3 � zi � zj � uij/ for all i; j 2 I with i < j;

(6.11)

yi � bk C L.zi C vik � 2/ for all i 2 I; k 2 Kq.i/;

yi C `i � ek C L.2 � zi � vik/ for all i 2 I; k 2 Kq.i/;
(6.12)

yi � Lzi for all i 2 I; (6.13)

X

k2Kq.i/

vik D zi for all i 2 I; (6.14)

uij 2 f0; 1g for all i; j 2 I with i < j;
vik 2 f0; 1g for all i 2 I; k 2 Kq.i/:

(6.15)

Conditions (6.11) are redundant if piece i or j is not allocated. Otherwise, if
zi C zj D 2, because of uij 2 f0; 1g one of the two conditions in (6.11) is non-trivial.
If item i is not packed, or if i is not packed within Ak, then restrictions (6.12) are
redundant. If an item is not used, then condition (6.13) ensures that the allocation
point of this item is set 0. By (6.14) it is required that a corresponding allocation
interval exists if item i is packed.

The number of binary and integer variables can become very large in general.
To solve the ILP (6.7), (6.8), (6.11)–(6.15) within a real time application scenario,
we will describe B&B or DP approaches. B&B with depth first search (LIFO)
has the advantage that good feasible solutions are found quickly so that time
termination criteria can be applied. For a DP algorithm the computational amount
(run time needed to solve an instance) can be well estimated because of its pseudo-
polynomiality.

6.3.3 Sets of Potential Allocation Points

For the allocation problem (6.7)–(6.10) the optimal value function v W Œ0;L� ! ZC
is defined by

v.y/ WD max
y;z

(
X

i2I

�izi j (6.8)–(6.10) hold and yi C `i � y for all i 2 I with zi D 1

)

for all y 2 Œ0;L�. The function v is non-decreasing since the feasible region enlarges
if y increases. The optimal value function is piecewise constant since only a finite
number of different sequences of packed pieces exists. Moreover, v is continuous
from the right.



130 A. Fischer and G. Scheithauer

In case that

.0;L/ n
[

k2K

int Ak ¤ ;

the packing problem can be separated into some smaller problems which can be
solved independently from each other. The optimal value of the original problem is
the sum of the optimal values of the smaller problems. In the following it is always
assumed that the packing problem is not separable, i.e.,

[

k2K

int Ak D .0;L/: (6.16)

Hence, b1 D 0 and maxfek W k 2 Kg D L.
Let S�.�; `/ denote the set of jump discontinuities of v for an instance with input

data L 2 Z>, ` 2 Z
m
>, � 2 Z

m
>, and Ak D Œbk; ek� for k 2 K. Our aim is to find a

superset of S�.�; `/ which is independent of � and as small as possible.

Theorem 3. For any ` 2 Z
m
> and any � 2 Z

m
>, the inclusion

S�.�; `/ � Sap.`/ WD
[

k2K

.bk ˚ S.`//\ Œ0;L�:

is fulfilled where bk ˚ S.`/ WD fy j y D bk C r; r 2 S.`/g.

Note that set Sap.`/ does not only depend on ` but also on the given allocation
intervals. For simplicity we do not show this dependence in the notation of Sap.`/

and of other sets that will be defined later.

Proof. To each jump discontinuity of the optimal value function belongs a left-
justified pattern. Any left-justified pattern has allocation points only at the beginning
of an allocation interval, i.e. at bk for some k 2 K, or at points bk C r with r 2 S.`/.
All these points define set Sap.`/. ut
Corollary 1. For all r 2 Œ0;L � 1� \ Z and all y 2 .r; sSap.`/.r C 1// we have
v.y/ D v.r/ D v.pSap.`/.y//.

In general, we can even obtain a set bSap.`/ that is smaller than Sap.`/ but still
allows to obtain an optimal solution of problem (6.7)–(6.10). To this end, a
more sophisticated procedure is used. Its basic principle is the construction of all
possible combinations (patterns) in dependence of the quality demands and the
corresponding items. For example, if we have an allocation interval Ak with bk D 0

and an item i 2 Ieq.k/ with `i > ek, then item i cannot be placed with allocation
point 0. Therefore, it might happen that `i 2 S.`/ is not a jump discontinuity of v.
A similar situation arises if, for item i, no allocation interval Ak with q.i/ D eq.k/
and bk D 0 exists. Then, item i cannot be placed with allocation point 0. Therefore,
in general, the use of S.`/ in the definition of Sap.`/ leads to a proper superset of the
jump discontinuities.
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The description of the procedure to obtain a reduced setbSap.`/ which still con-
tains all jump discontinuities of v requires some notation. For y 2 fbk W k 2 Kg, let

Kb.y/ WD fk 2 K j bk D yg; Qb.y/ WD fq 2 Q j q Deq.k/; k 2 Kb.y/g;

and, for y 2 Œ0;L/, let

Q.y/ WD fq 2 Q j 9k 2 Kq with bk � y; y C minf`i j i 2 Iqg � ekg;
k.y; q/ WD maxfk 2 Kq j bk � yg for all q 2 Q.y/;
K.y/ WD fk 2 K j k D k.y; q/; q 2 Q.y/g

be defined. The set Q.y/ represents all quality types q 2 Q for which a sufficiently
large allocation interval Ak with eq.k/ D q exists such that a piece i 2 Iq with
allocation point y can be obtained. If for q 2 Q.y/ several allocation intervals contain
points y and y C minf`i j i 2 Iqg, then we take that with largest bk and collect them
in K.y/.

Then the procedure to construct the setbSap.`/ starts atby WD 0. Then, we begin
to constructby ˚ S.`/ by successively adding the lengths of those items which can
be placed because of an existing allocation interval. At each point bk, k 2 K, where
an allocation interval begins, the construction of bk ˚ S.`/ restricted to feasible
placements has to be started.

Initialization The first jump discontinuities can arise when a leftmost piece is
allocated at pointby WD 0:

bS WD f`i j i 2 Iq; `i � ek.0;q/; q 2 Qb.0/g [ f0g:

Since Qb.0/ represents all qualities having an allocation interval beginning at 0,
all pieces of Iq, q 2 Qb.0/, can be placed at 0 which fit within the corresponding
allocation interval, i.e., which are not longer than ek.0;q/.

General Step Let

byb WD minfLI bk j bk >by; k 2 Kg; bys WD minfy 2bS j y >byg:

Here, byb denotes the coordinate of the next allocation interval which allows the
placement of further items, whereas forbys there is already a feasible pattern which
can possibly be extended.

If byb < bys, then by WD byb and, because of the new allocation interval, all
corresponding pieces are placed:

bS WDbS [ fbyg [ fby C `i j i 2 Iq;by C `i � e
k.by;q/; q 2 Qb.by/g:
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Otherwise, ifbyb �bys, thenby WDbys and all pieces belonging to Q.by/ and of suitable
length are placed:

bS WDbS [ fby C `i j i 2 Iq;by C `i � e
k.by;q/; q 2 Q.by/g:

The algorithm terminates if no further piece can be placed, i.e., if

by > L � minf`i j i 2 ILg; where IL WD
[

k2KWekDL

Ieq.k/:

Then, the setbSap.`/ is given by the lastly obtainedbS.
The time for determiningbSap.`/ is bounded by O..jKj C m/jbSap.`/j/ sinceby is

increased at most jbSap.`/j times and, for each suchby, the identification of Qb.by/ or
Q.by/ costs at most O.jKj/ and not more than m pieces are considered.

According to the previous procedure the next result follows.

Theorem 4. For any ` 2 Z
m
> and any � 2 Z

m
>, the inclusions

S�.�; `/ �bSap.`/ � Sap.`/:

hold.

Thus, in analogy to Theorem 1, it is sufficient to usebSap.`/ for a recursion based on
DP for solving the 1D cutting problem with fix-lengths. To this end, let T WDbSap.`/

be defined.

Algorithm FDP-FL
Input: � , `, L, T; Output: g
(1) Set g.0/ WD 0, y WD 0.
(2) While y � pT.L � minf`i W i 2 ILg/ do
(3) For all k 2 K.y/ and all i 2 Ieq.k/ with y C `i � ek do
(4) g.sT.y C `i// WD maxfg.sT.y C `i//; �i C g.y/g,
(5) y WD y,
(6) Repeat y WD sT.y C 1/ until g.y/ < g.y/ or y 2 fbk j k 2 Kg.

The worst-case complexity of Algorithm FDP-FL is O..jKj C m/jTj/ since y is
increased at most jTj times and, for each such y, the identification of K.y/ needs
O.jKj/ time and at most m pieces are considered.

Theorem 5. If Algorithm FDP-FL is used with T WD bSap.`/ to determine
g W T ! ZC, then it holds

v.y/ D g.pT.y// for all y 2 Œ0;L�;

where v is the optimal value function of problem (6.7)–(6.10).
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Moreover, the setbSap.`/ can be advantageously applied within B&B approaches for
solving the 1D cutting problem with fix-lengths (6.7)–(6.10).

6.3.4 Applying the Nicholson Principle

In the following we apply the Nicholson principle [8, 16] to obtain a further
reduction of the sets Sap.`/ andbSap.`/ of potential allocation points. Let

S ap .`/ WD
[

k2K

.ek 	 S.`//\ Œ0;L� where ek 	 S.`/ WD fy j y D ek � r; r 2 S.`/g:

denote the set of potential allocation points maximal in the following sense: for any
y 2 S ap .`/ there is a combination of piece lengths whose first (leftmost) piece, say
i, has allocation point y and which is not feasible for allocation points for i larger
than y. Then, a first reduced set of allocation points is obtained by the Nicholson
principle as follows:

Sred
ap .`/ WD fpT.y/ j y 2 S ap .`/g with T WD Sap.`/:

Theorem 6. If Algorithm FDP-FL is used with T WD Sred
ap .`/ to determine

g W T ! ZC, then it holds

v.y/ D g.y/ for all y 2 T;

where v is the optimal value function of problem (6.7)–(6.10).

Proof. Similar to the optimal value function v defined in Sect. 6.3.3 for the
allocation problem (6.7)–(6.10), but now looking from L to 0, we can define another
optimal value function Qv W Œ0;L� ! ZC by

Qv.y/ WD max
y;z

(
X

i2I

�izi j (6.8)–(6.10) hold and yi � y for all i 2 I with zi D 1

)
:

The function Qv is non-increasing since the feasible region shrinks if l increases.
Since v.L/ and Qv.0/ are the optimal values of the same problem, obviously we have
v.L/ D Qv.0/. Let the sequence of triples .it; yt; kt/, t D 1; : : : ; t� with yt C`it � ytC1
for all t represent any normalized optimal pattern � of problem (6.7)–(6.10). If �
does not consist of a single piece with length L, then there exists y� 2 .0;L/\Sap.`/

with

v.L/ D Qv.0/ D v.y�/C Qv.y�/ D maxfv.y/C Qv.y/ j y 2 Œ0;L�g:
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As y� any element in fyt; yt C `it j t D 1; : : : ; t�g \ .0;L/ can be taken. Therefore,
we have

maxfv.y/C Qv.y/ j y 2 Œ0;L�g D maxfv.y/C Qv.y/ j y 2 Sap.`/g

but we have to prove

maxfv.y/C Qv.y/ j y 2 Sap.`/g D maxfv.y/C Qv.y/ j y 2 Sred
ap .`/g:

To see this, we assume there exist r 2 Sred
ap .`/ and y 2 Sap.`/ n Sred

ap .`/ with r < y <
sT.r C 1/ DW r0 and v.y/C Qv.y/ > maxfv.y/C Qv.y/ j y 2 Sred

ap .`/g.
Assuming v.y/ D v.r/ then v.r/C Qv.r/ � v.y/C Qv.y/ since Qv is non-increasing.

Hence, we have v.r/ < v.y/.
Assuming Qv.y/ D Qv.r0/ then v.r0/ C Qv.r0/ � v.y/ C Qv.y/ since v is non-

decreasing.
It remains the case that Qv.y/ > Qv.r0/. Then there is y0 2 S ap .`/ with y0 � y and

Qv.y/ D Qv.y0/. Since y 2 Sap.`/ and y0 2 S ap .`/ with y0 � y we have a contradiction
to y … Sred

ap .`/. ut
Corollary 2. Among all optimal solutions of problem (6.7)–(6.10) there is a cutting
pattern whose allocation points are all in Sred

ap .`/.

In order to further reduce the set Sred
ap .`/ we will apply the Nicholson principle again

by using bSap.`/ instead of Sap.`/. In analogy to the construction of bSap.`/ in the
previous subsection, a setbS ap .`/ of rightmost allocation points can be constructed.
Only those items are regarded which can be placed because of the existence of a
corresponding allocation interval. For any y 2bS ap .`/, there is a feasible pattern � ,
i.e., a sequence of triples .it; yt; kt/, k D 1; : : : ; t� with yt C `it � ytC1 for all t,
whose first (leftmost) piece i1 has allocation point y1 D y. This pattern becomes
infeasible for all y0 with y0 > y if y1 WD y0 and any choice of the allocation points
y2; : : : ; yt� with yt C `it � ytC1 for all t. The construction requires some notation.
For y 2 fek j k 2 Kg, let

Ke.y/ WD fk 2 K j ek D yg; Qe.y/ WD fq 2 Q j q Deq.k/; k 2 Ke.y/g;
and, for y 2 .0;L�, let

Q.y/ WD fq 2 Q W 9k 2 Kq with ek � y; y � minf`i j i 2 Iqg � bkg;
k.y; q/ WD minfk 2 Kq j ek � yg for all q 2 Q.y/;
K.y/ WD fk 2 K j k D k.y; q/; q 2 Q.y/g:

be defined.

Initialization Rightmost allocation points are obtained if a piece is allocated at a
point in

bS WD fL � `i j i 2 Iq; `i � L � bk.L;q/; q 2 Qe.L/g [ fLg:
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Since Qe.L/ represents all qualities having an allocation interval ending at L, all
pieces of Iq, q 2 Qe.L/, can be placed at L � `i which fit within the corresponding
allocation interval, i.e. which are not longer than L � bk.L;q/. Letby WD L.

General Step Let

bye WD maxf0; ek j ek <by; k 2 Kg; bys WD maxfy 2bS j y <byg:
Here, bye denotes the coordinate of the next allocation interval which allows the
placement of further items, whereas for bys there is already a feasible pattern in
the interval Œbys;L� which can possibly be extended. Ifbye > bys, thenby WD bye and,
because of the new allocation interval, all corresponding pieces are placed:

bS WDbS [ fby � `i j i 2 Iq;by � `i � b
k.by;q/; q 2 Qe.by/g:

Otherwise, ifbye � bys, thenby WD bys and all pieces belonging to Q.bys/ and suitable
length are placed:

bS WDbS [ fby � `i j i 2 Iq;by � `i � b
k.by;q/; q 2 Q.by/g:

The algorithm terminates if no further piece can be placed, i.e., if

by < minf`i j i 2 I0g; where I0 WD
[

k2KWbkD0
Ieq.k/:

Then, the setbS ap .`/ is given by the lastly obtainedbS .

The time to determinebS ap .`/ is similar to that needed forbSap.`/ and is bounded
from above by O.mL/.

Now, we are able to define the announced reduced set of allocation points by

bSred
ap .`/ WD fpT.y/ j y 2bS ap .`/g with T WDbSap.`/ (cf. Sect. 6.3.3):

Now, because of construction, we havebSred
ap .`/ �bSap.`/ and moreover

Theorem 7. If Algorithm FDP-FL with T WD bSred
ap .`/ is used to determine

g W T ! ZC, then it holds

v.y/ D g.y/ for all y 2 T;

where v is the optimal value function of problem (6.7)–(6.10).

The theorem can be proved in analogy to Theorem 6. The time needed for computing
all g-values according to Theorem 7 is bounded by O.mjbSred

ap .`/j/.
Corollary 3. Among all optimal solutions of problem (6.7)–(6.10) there is a cutting
pattern whose allocation points are all inbSred

ap .`/.
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Similar to Theorem 2, the use of Sred
ap .`/ orbSred

ap .`/ does not guarantee to obtain
all values v.y/ of the optimal value function v for y 2 .0;L/, nevertheless v.L/ and
a corresponding optimal pattern can be determined.

Example 2. Let the unit of measurement be millimeter. An arbitrarily long wooden
board of width W D 300 has to be cut into strips with widths of 40, 50, or 60. The
cutting kerf is 2.5. Due to different quality demands, strips of width 50 can only be
obtained within the interval Œ50; 200�, and strips of width 60 only within Œ150; 225�.
Multiplying all data by 2, adding 5 to the item widths and to the overall width to
regard the kerf, and dividing all widths by 5 leads to a 1D cutting problem with
the following input data: L D 121, item lengths `1 D 17, `2 D 21, `3 D 25, and
allocation intervals A1 D Œ0; 121�, A2 D Œ20; 80�, A3 D Œ60; 90�. Then, we obtain
jS.`;L/j D 41, jSred.`;L/j D 23,

jSap.`/j D 67; jS ap .`/j D 73; jSred
ap .`/j D 35;

jbSap.`/j D 29; jbS ap .`/j D 36; jbSred
ap .`/j D 12;

and

bSred
ap .`/ D f0; 17; 20; 34; 41; 51; 58; 62; 68; 87; 104; 121g:

ut
The computation of any of the introduced sets of potential allocation points takes a
pseudo-polynomial amount of time. Due to its smaller cardinality, the application of
bSred

ap .`/ can save computational effort in DP and B&B approaches if compared to the
use of other sets of allocation points. If instances have to be solved which only differ
in the profit coefficients � , the construction ofbSred

ap .`/ has to be done only once.

6.4 The 1D Cutting Problem with Variable Lengths

In some cutting tasks the lengths of desired items should not be fixed in advance.
Instead, they can vary within known tolerances. For example, this is useful for
producing finger joined lumber. There, items of various lengths (but with the same
profile) are put together to obtain stripes of desired lengths.

6.4.1 Problem Formulation

Now, in contrast to the previous section, the lengths of the items to be cut are not
fixed. Rather, it can take any value within a given range. More precisely, the length
of piece i (i 2 I) is again denoted by `i. However, `i is now a variable with
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`i 2 Œli; li� .i 2 I/;

where li and li are given positive integers with 0 < li � li; i 2 I. Items with fix-
lengths can also be considered by simply setting li D li.

The value of item i with length l is denoted by Q�i.l/. The function Q� is required to
be affine, non-decreasing, and non-negative. For the sake of simplicity, we assume
Q�i.l/ D �i � l with some given �i > 0 for all i 2 I.

Problems of this kind occur, for instance, related to hard wood cutting. There,
pieces of various lengths (but with the same cross section) are put together using the
finger-joining technology to get profiles of arbitrary length (see, e.g., [1]).

6.4.2 Modeling

In order to formulate a mixed-integer optimization model with 0/1-variables it
is assumed in this subsection that each piece is allocated at most once (as in
Sect. 6.3.2). The allocation of piece i is described by a 0/1-variable zi defined as
follows:

zi D
(
1 if piece i 2 I is allocated (should be cut);

0 otherwise.

The allocation point of piece i is again denoted by yi. Then piece i with length `i

covers the interval Ti.yi; `i/ WD Œyi; yi C `i� if it has been placed, i.e., if zi D 1.
Hence, the cutting (allocation) problem can be modeled as follows:

X

i2I

�i � `i � zi ! max (6.17)

subject to

zi 2 f0; 1g; `i; yi 2 RC i 2 I; (6.18)

lizi � `i � lizi i 2 I; (6.19)

int Ti.yi; `i/\ int Tj.yj; `j/ D ; for all i; j 2 I with i ¤ j; (6.20)

for each i 2 I with zi D 1 there are q 2 Q and k 2 Kq

with i 2 Iq and Ti.yi; `i/ � Ak:
(6.21)

Condition (6.20) ensures that the packed pieces do not overlap each other and
condition (6.21) guarantees that the packing of a piece is done within an allocation
interval of related quality.
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Note that the optimization model (6.17)–(6.21) has a nonlinear objective func-
tion. Similar to Sect. 6.3.2, the restrictions (6.20) and (6.21) can be linearized using
the same 0/1-variables uij, i; j 2 I, i < j, and vik, i 2 I, k 2 Kq.i/.

6.4.3 Optimal Value Function

For the optimization problem (6.17)–(6.21) the optimal value function v W Œ0;L� !
RC is defined by

v.y/ WD max
z;y;`

(
X

i2I

�i`izi j (6.18)–(6.21) hold and yi C `i � y for all i with zi D 1

)
:

The function v is continuous from the right and non-decreasing since the feasible
region enlarges if y increases. Moreover, v is piecewise affine since only a finite
number of different sequences of allocated pieces exists and the functions Q�i

providing the profit of pieces i 2 I were assumed to be linear. By the same reason,
the domain of v can be partitioned into intervals where v is either constant or linearly
increasing with slope in f�1; : : : ; �mg.

Example 3. Let the following instance of a cutting problem be given:

I WD f1; 2; 3g; Q WD f1; 2g;
l1 WD l2 WD 30; l1 WD l2 WD 50; l3 WD 20; l3 WD 100;

�1 WD �2 WD 8; �3 WD 5;

A1 WD Œ0; 60�; A2 WD Œ70; 100�; A3 WD Œ0; 100�;

I1 WD f1; 2g; I2 WD f3g;
K1 WD f1; 2g; K2 WD f3g:

Figure 6.1 shows the optimal value function v for Example 3. The leftmost gap of v

v(y)

y20 30 50 57.5 70 100

740

500
400

240

100

650

Fig. 6.1 Optimal value function v for Example 3
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at y D 20 arises since item 3 with length `3 D l3 D 20 and allocation point y3 D 0

is placed. This leads to v.20/ D �3`3 D 100. For y 2 Œ20; 30/, placing item 3 with
length `3 D y and y3 D 0 provides v.y/ D �3`3 D 5y. If y D 30, then item 1
(instead of item 3) is placed with `1 D 30 and y1 D 0. For y 2 Œ30; 50/, placing
item 1 with length `1 D y and y1 D 0 yields v.y/ D �1`1 D 8y. If y 2 Œ50; 57; 5/

then placing item 1 with y1 2 Œ0; y � 50� is optimal so that v remains constant
in this interval. For y 2 Œ57:5; 70/, both item 1 and item 3 are placed with y1 D 0,
`1 D y�20, y3 D y�20, `3 D 20. This yields v.y/ D �1`1C�3`3 D 8.y�20/C100.
For y 2 Œ70; 100/, the length of item 1 becomes maximal, namely `1 D l1 D 50

with y1 D 0 and the length of item 3 is `3 D y � 50 with y3 D 50. Therefore,
v.y/ D 400 C 5.y � 50/. Finally, the rightmost gap occurs at y D 100 because of
the optimal pattern with y1 D 0, y2 D 70, y3 D 50, `1 D 50, `2 D 30, `3 D 20 and
v.100/ D 740. ut

Note that the allocation pattern with the optimal value v.L/ might be not unique.
For example, the optimal lengths of two items of the same quality need not be unique
but their sum is the same for all optimal patterns with the same sequence of items.

Since yi and `i are non-negative real numbers, infinitely many points become
potential allocation points. However, the subsequent theorem shows that a finite
subset of allocation points suffices to define an optimal (allocation) pattern.

In case of variable lengths, a pattern � is a finite sequence of quadruples
.it; yt; `t; kt/

t�
tD1, where it denotes the index of the t-th placed piece, yt is the

allocation point of piece it, `t is its length, and kt gives the corresponding allocation
interval.

Theorem 8. Among all optimal patterns for problem (6.17)–(6.21) there is a
pattern � with

yt 2 Sap.l; l/ for all t D 1; : : : ; t�

where A WD fbk; ek j k 2 Kg and

Sap.l; l/ WD ��
A ˚ S.l/˚ S.l/

�[ �
A 	 S.l/	 S.l/

�� \ Œ0;L�:

Note that the time required for determining Sap.l; l/ is bounded by O.mL/.

Proof. We consider the allocation of two items of not necessarily different qualities,
say items 1 and 2, with corresponding allocation intervals A1 D Œb1; e1� and A2 D
Œb2; e2�, respectively. We show that optimal patterns exist having allocation points y1
and y2 belonging to Sap.l; l/. More general cases can be proved inductively. Without
loss of generality we can assume that the allocation intervals overlap as in Fig. 6.2.
Otherwise, the allocation problem can be separated into two smaller problems which
can be dealt with independently. Moreover, to keep the case by case analysis short
we only consider cases where additionally

l1 C l2 � e2 � b1 � l1 C l2 and 2li > li; ei � bi < li C li for i D 1; 2
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b1 b2 e1 e2

Fig. 6.2 Overlapping allocation intervals

holds. These conditions ensure that both items can be placed but not more than 2.
Cases which do no fulfill these conditions can be handled analogously. Since an
optimal pattern depends on the profit coefficients �1 and �2 several cases have to be
considered:

Case 1: Let �1 D �2. As much as possible of the available length should be used,
i.e., one of the two solutions

y1 D b1; `1 D minfl1; e1 � b1g; y2 D b1 C `1; `2 D minfl2; e2 � y2g;
or

`2 D minfl2; e2 � b2g; y2 D e2 � `2; y1 D b1; `1 D minfl1; y2 � b1g
is optimal.

Case 2: Let �1 > �2. Then `1 should be as large as possible.

Subcase 2a: Let e1 � b1 � l1. If e2 � b1 C l1 C l2, then

y1 D b1; `1 D l1; y2 D maxfb2; b1 C l1g; `2 D e2 � y2:

describes an optimal pattern.
If e2 < b1 C l1 C l2, an optimal pattern is given by

y1 D b1; `1 D e2 � l2 � b1; y2 D e2 � l2; `2 D l2 if l2�2 � .l1 � `1/�1;

y1 D b1; `1 D l1; item 2 is not allocated if l2�2 < .l1 � `1/�1:

In any case we have y1; y2 2 Sap.l; l/.
Subcase 2b: Let e1 � b1 < l1. If e2 � e1 � l2 then

y1 D b1; `1 D e1 � b1; y2 D e1; `2 D minfl2; e2 � e1g

provides an optimal pattern.
If e2 � e1 < l2 , the pattern given by

y1 D b1; `1 D e2�l2 � b1; y2 D e2�l2; `2 D l2 if l2�2 � .e1�b1�`1/�1;
y1 D b1; `1 D e1�b1; item 2 is not allocated if l2�2 < .e1�b1�`1/�1;

is optimal as well. Again, we always have y1; y2 2 Sap.l; l/.

Case 3: Let �1 < �2. Then `2 should be as large as possible. The corresponding
subcases can be dealt with like in Case 2. ut
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Similar to the case of only fix-lengths, the packing problem can be separated
into some smaller problems if condition (6.16) is violated which can be solved
independently from each other. So we assume again that (6.16) is fulfilled.

6.4.4 Packing a Single Piece

In order to compute the optimal value v.L/, the allocation of a single piece is
considered in the following and will become a basic element in the DP and B&B
solution approaches presented below.

Any feasible pattern within an interval Œ0; l� yields a lower bound for v.l/. The
current best lower bound for v.l/, obtained in a solution process, is denoted as h.l/.

The function h has analogous properties as v. Hence, there is a description of h
by a finite sequence .y

j
/ of coordinates that at least contains all jump discontinuities

and all kinks of h. Any two neighboring points y
j
; y

jC1 define a so-called basic (or

reference) interval Bj WD Œy
j
; y

jC1/. The end point y
jC1 belongs to the basic interval

BjC1 since h is continuous from the right.
For any interval Bj, the function h can be described by

h.y/ D ˛j C ˇj.y � y
j
/ for all y 2 Bj:

To solve the cutting problem (6.17)–(6.21), a procedure is used which consists of
successively placing single pieces. In principle, if piece i with length `i 2 Œli; li� and
allocation point y 2 Bj is added to the current pattern (which determines h in Bj)
then, depending on �i and ˇj, an improved pattern might be obtained for the interval
Œy

j
C li; yjC1C li/. Note that in general, due to the variability of `i 2 Œli; li� and y 2 Bj,

infinitely many patterns exist. In contrast to this, the number of different sequences
of items is finite and can be reduced by means of upper bounds and dominance tests.
Details can be found in [11].

Because of the variability just mentioned it is not possible to consider single
allocation points, rather it is necessary to handle intervals of allocation points. To
this end, the basic intervals Bj, defined by the current h-function, can be used.

In the following we provide a construction procedure in which a current solution
(pattern) for Œ0; y

jC1/ is extended by placing a single piece i with allocation point in

Bj, if possible. The placing of piece i is considered simultaneously for all allocation
points y 2 Bj and all suitable lengths `i 2 Œli; li�. For that, two cases have to be
distinguished (see Sects. 6.4.4.1 and 6.4.4.2).
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6.4.4.1 Packing a Piece i with ”i � “j

Let i 2 Iq for some q 2 Q, and let �i � ˇj. In order to find a pattern with value as
large as possible, piece i has to be placed with an allocation point in Bj D Œy

j
; y

jC1/
as small as possible because of �i � ˇj. Hence, allocation points are both y

j
(if there

is k 2 Kq with y
j

2 Ak and ek � y
j

� li) and the points bk for all k 2 Kq with

y
j
< bk < y

jC1. Without loss of generality, let �1; : : : ; �� denote those allocation

points with y
j

� �1 < � � � < �� < y
jC1 DW ��C1. Let k.�p/ 2 Kq denote the

corresponding allocation interval, i.e., bk.�p/ D �p, for all p D 1; : : : ; �. The length
`i of piece i which should be placed with allocation point �p, is bounded by the
remaining length of the corresponding allocation interval and its maximal length,
i.e., by

minfek.�p/ � �p; lig; for p D 1; : : : ; �:

For p D 1; : : : ; �, the following formula has to be applied to update the function h
to possibly get an improved pattern with rightmost piece i:

h.y/ WD
�

maxfh.y/; h.�p/C �i.y � �p/g; if y 2 Œ�p C li;minfek.�p/; �p C lig�;
h.y/ otherwise:

(6.22)

Moreover, the placing of piece i with maximum length and variable allocation point
has to be considered as well and leads to a further update of h for p D 1; : : : ; �:

h.y/ WD
�

maxfh.y/; h.y � li/C �ilig; if y 2 Œ�p C li;minfek; �pC1 C lig�;
h.y/ otherwise:

(6.23)

Formulas (6.22) and (6.23) are based on the following proposition.

Proposition 1. Let i 2 Iq with �i � ˇj. For any pattern Ti.y; l/ WD Œy; y C l� � Ak

with q D eq.k/, which is caused by the allocation of piece i with allocation point
y 2 Bj and length l 2 Œli; li�, there is a pattern Ti.y�; l�/ with y� D �p for some
p 2 f1; : : : ; �g or l� D li so that Ti.y�; l�/ dominates Ti.y; l/ in respect to �il.

The proposition is a consequence of Theorem 8.

6.4.4.2 Packing a Piece i with ”i < “j

Let i 2 Iq with �i < ˇj. In difference to above, the placement of piece i has to be
done with an allocation point as large as possible and length as short as possible.
For p D 1; : : : ; �, the following formula for updating h.y/ has to be applied.

h.y/ WD
�

maxfh.y/; h.y � li/C �ilg; if y 2 Œ�p C l;minfek.�p/; �pC1 C lig�;
h.y/ otherwise:

(6.24)
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Here, y � li is the related (varying) allocation point. Because of �i < ˇj, the packing
of piece i with a length `i > li is only necessary for the allocation point ��C1 WD y

jC1
if there exists k 2 Kq with ek � y

jC1 > li. But y
jC1 belongs to the next basic interval,

BjC1, and will be considered there since h.y
jC1/ � limy"y

jC1
h.y/.

Proposition 2. Let i 2 Iq with �i < ˇj. For any pattern Ti.y; l/ � Ak with q Deq.k/,
which is caused by the allocation of piece i with allocation point y 2 Bj and length
l 2 Œli; li�, there is a pattern Ti.y�; l�/ with y� D y

jC1 or l� D li which dominates

Ti.y; l/ in respect to �il.

Formulas (6.22)–(6.24) cause, in general, a change of the basic intervals Bj0 for
j0 � j. If the update of h by these formulas led to a new function h with (partially)
increased function values, then the new h need not be monotonously increasing.
Therefore, we have to further update this new h by

h.y/ WD maxfh.y0/ j y
j
� y0 � yg for all y 2 Œy

j
;L� (6.25)

so that it becomes monotone again.

6.4.5 Solution Approaches

In the subsection we provide two solution approaches for the problem with pieces
of variable length where we apply the update rules discussed in Sects. 6.4.4.1 and
6.4.4.2.

6.4.5.1 Branch and Bound Algorithm

The B&B algorithm presented below is based on the LIFO strategy. Appropriate
upper bounds, denoted as Qu.�/, are given in [11] where Qu.y/ � v.L/ � v.y/ for all
y 2 Œ0;L�. Without loss of generality, we assume �1 � �2 � � � � � �m. Branching
will be made with respect to

• the basic intervals and
• the pieces which can be allocated next according to a basic interval.

The index � denotes the branching depth in the algorithm. For any basic interval Bj,
the label �j denotes whether the basic interval Bj is already investigated for further
branching (then �j D 0), or if it has still to be considered (then �j D 1). Furthermore,
QB� D ŒQy�;by�/ denotes the current basic interval. Note, the initial basic interval
QB0 D Œ0;L� is reduced in Step (4) when the first pieces are placed, and the same
can happen for other basic intervals during the algorithm. The branching strategy
presented here uses the LIFO principle (depth first search), but modifications are
obviously possible.
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6.4.5.2 FDP Algorithm

For the solution of the considered cutting problem also a FDP method can be used.
The general principle of the FDP is similar to the FDP algorithm for the knapsack
problem in Sect. 6.2. It computes optimal values v.y/ and corresponding patterns
for each y � L, where y is successively increased. Thereby, the values v.y/ are
obtained by updating the function h in such a way that, starting from a known
optimal solution, feasible pieces are placed with all suitable lengths l to possibly
get a better solution.

As in the B&B algorithm, intervals of allocation points are considered. In the
B&B algorithm, after investigating the basic interval Bj other intervals Bj0 with
y

j0C1 � y
j

have to be considered in general (due to backtracking), and therefore

it can happen that Bj (or a subset of it) has to be considered anew if hj has been
(partially) increased. Using the FDP approach, the basic interval Bj is considered
exactly once, namely if h.y/ D v.y/ for all y 2 Bj holds. This can also be guaranteed
in a B&B algorithm when an appropriate branching strategy (based on breadth first
search) is used.

Note that during the allocation of a piece with allocation points in Bj further tests
with upper bounds can be used as in the B&B algorithm. If piece i is feasible and
y

j
C li < y

jC1 holds, then Bj can be split (i.e., y
jC1 can be reduced) in a suitable

way. Moreover, during the update process only partitions of Œ0;L � minfli j i 2 ILg�
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have to be considered since there is no feasible allocation point within the interval
.L � minfli j i 2 ILg;L/.

In the worst case, O.mjSap.l; l/j/ updates according to (6.22)–(6.25) have to be
done in Step (3) of the algorithm. A single update requires at most O.li/ time.

An advantage of the FDP approach can be the relatively constant and well
assessable expense to solve an instance (pseudo-polynomiality of the algorithm).
In general, this is not the case for the B&B method, where some examples can
require much more computation time as in average. However, in general, good (near
optimal) solutions are found quickly by a B&B algorithm with LIFO strategy so that
a termination after a predefined time span is reasonable for on-line scenarios.

6.5 The 2D Cutting Problem with Quality Demands

In this section we consider 2D cutting problems. Rectangular pieces have to be
cut from a larger rectangle of non-homogeneous raw material such that the yield
is maximal. Thereby some rectangular parts of the raw material are not allowed to
be used for some pieces because of bad quality. We investigate two cases: firstly,
so-called defective regions, or simply defects, cannot be used to obtain desired
pieces, and secondly, different quality demands are considered. We analyze the case
of fixed dimensions of the pieces and give appropriate sets of allocation points,
usable in DP and B&B approaches. We also discuss the case when one of the size
parameters can vary.
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6.5.1 Forbidden Regions

In this subsection we consider the case that some parts of the raw material cannot be
used at all to obtain a desired piece. The next subsection is devoted to the discussion
of different quality demands.

6.5.1.1 Problem Formulation

Let a rectangle of raw material (wood, metal, glass, etc.) of length L and width W
be given. Moreover, the pieces i 2 I WD f1; : : : ;mg to be cut are of length `i, width
wi and have profit coefficient �i. Only guillotine cuts are allowed to obtain desired
pieces. The part of the raw material used for each piece has to be defect-free. The
aim is to maximize to total yield of the cutting pattern. We denote by .xi; yi/ the
allocation point of piece i, i.e., if piece i is placed with allocation point .xi; yi/ then
it covers the rectangular region Œxi; xi C `i� � Œyi; yi C wi�. Hence, a 2D pattern can
be described by a set of triples .it; xit ; yit /, t D 1; : : : ; �, where it 2 I denotes the t-th
placed piece and .xit ; yit / the corresponding allocation point.

Since only guillotine cuts can be applied we can assume, without loss of
generality, that all defective parts of the raw material are described by rectangles
or a finite union of rectangles. Let Dk, k 2 K WD f1; : : : ; jKjg, denote the defective
parts with

Dk WD Dk.ak; bk; ck; dk/ WD f.x; y/ j ak � x � ck; bk � y � dkg � Œ0;L� � Œ0;W�;

and define

D WD
[

k2K

Dk:

6.5.1.2 Sets of Allocation Points: No Defects

If K D ;, the well-known recurrence formula of Gilmore and Gomory [5] can be
applied to obtain an optimal pattern with no restriction on the number of stages. Let
u.L0;W 0/, with L0 2 Œ0;L� and W 0 2 Œ0;W�, denote the optimal value for rectangle
L0 � W 0 D Œ0;L0� � Œ0;W 0�. Then, as a consequence of Theorem 1 we have

Theorem 9. Let T` WD S.`;L/ and Tw WD S.w;W/. Then,

u.L0;W 0/ D u.pS.`/.L
0/; pS.w/.W

0// for all L0 2 Œ0;L�; W 0 2 Œ0;W�; (6.26)

where u.L0;W 0/ is obtained by the following recursion:
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u.L0;W 0/ WD maxf�.L0;W 0/; g.L0;W 0/; h.L0;W 0/g for all L0 2 T`; W 0 2 Tw

(6.27)

with

�.L0;W 0/ WD maxf�i j i 2 I; `i � L0; wi � W 0g;
g.L0;W 0/ WD maxfu.r;W 0/C u.pT`.L

0 � r/;W 0/ j 0 < r � L0=2; r 2 T`g;
h.L0;W 0/ WD maxfu.L0; s/C u.L0; pTw.W

0 � s// j 0 < s � W 0=2; s 2 Twg:

Note that u.L;W/ can also be computed using the reduced sets of allocation points
T` WD Sred.`;L/ and Tw WD Sred.w;W/. In this case, the “=” in (6.26) has to be
replaced by “�” but “=” holds in particular for all .L0;W 0/ 2 Sred.`;L/�Sred.w;W/.

The time needed for computing u.L0;W 0/ for all .L0;W 0/ 2 T` � Tw according
to formula (6.27) is bounded by O.jT`j jTwj.m C jT`j C jTwj//. A reduction to
O.jT`j jTwj.jT`j C jTw/j/ can be achieved by an appropriate initialization which
avoids the consideration of �.L0;W 0/ for each .L0;W 0/, see [12].

6.5.1.3 Sets of Allocation Points: With Defects

If K ¤ ;, the sets of potential allocation points increase since every defective part
Dk causes new potential allocation points, e.g., the right end ck of Dk probably allows
the allocation of pieces with x-coordinate ck, and the left border ak of Dk can cause
that a piece i has x-allocation coordinate ak � `i. This is in difference to Theorem 9
since now regions are not allowed for allocation.

To simplify the description we define an artificial defect with coordinates a0 D L,
b0 D W, c0 D d0 D 0 and set K0 WD K [ f0g. Let S�L.�; `/ and S�W.�;w/ denote
the sets of jump discontinuities in L- and W-direction of the optimal value function
v W Œ0;L� � Œ0;W� ! ZC for the problem with defects.

Theorem 10. For any ` 2 Z
m
>, w 2 Z

m
> and � 2 Z

m
>, we have

S�L.�; `/ � Sap
L .`/ WD

[

k2K0

.ck ˚ S.`//\ Œ0;L�;

S�W.�;w/ � Sap
W .w/ WD

[

k2K0

.dk ˚ S.w//\ Œ0;W�:

Moreover, with T` WD Sap
L .`/ and Tw WD Sap

W .w/,

v.L0;W 0/ D v.pT` .L
0/; pTw.W

0// for all .L0;W 0/ 2 Œ0;L� � Œ0;W�:

holds.
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The proof is similar to that of Theorem 3 but now, two dimensions have to be
considered. The result of Theorem 10 can be strengthened with respect to the
computational complexity by applying the Nicholson principle similar to Sect. 6.3.4.
Let

S L .`/ WD
[

k2K0

.ak 	 S.`//\ Œ0;L�; S W .w/ WD
[

k2K0

.bk 	 S.w//\ Œ0;W�

denote the sets of potential allocation points maximal in the sense that, e.g., for any
x 2 S L .`/ there is a combination of piece lengths whose first (left-most) piece, say i,
has allocation point x and which is not feasible for allocation points for i larger than
x (and similar in W-direction). We define the reduced sets of allocation points by

Sred
L .`/ WD fpS

ap
L .`/

.x/ j x 2 S L .`/g � Sap
L .`/;

Sred
W .w/ WD fpS

ap
W .w/

.y/ j y 2 S W .w/g � Sap
W .w/:

Similar to the 1D case, in general Sred
L .`/ and Sred

W .w/ are not supersets of S�L .�; `/
and S�W.�;w/, respectively, but contain sufficiently many points to compute the
optimal value v.L;W/.

In order to obtain v.L;W/ some modifications in comparison with the recur-
sion (6.27) have to be done. The essential difference to the case K D ; is that now
the yield of a rectangular region R WD ŒL0;L00� � ŒW 0;W 00� of raw material depends
on its position because of the varying quality. That means, the yield function used
in a DP recursion is now defined by

�.R/ WD
�

u.L00 � L0;W 00 � W 0/; if R \ int D D ;;
0; otherwise:

Thus, a DP recursion to compute v which uses the sets of allocation points Sred
L .`/

and Sred
W .w/ is given by the following procedure.

For all R WD ŒL0;L00� � ŒW 0;W 00� with L0;L00 2 Sred
L .`/ and W 0;W 00 2 Sred

W .w/ set

v.R/ WD
�
0; if L00 � L0 < `min or W 00 � W 0 < wmin;

maxf�.R/; g.R/; h.R/g otherwise
(6.28)

with

g.R/ WD maxfv.L0; r;W 0;W 00/C v.r;L00;W 0;W 00/ j r 2 Sred
L .`/; L0 < r < L00g;

h.R/ WD maxfv.L0;L00;W 0; s/C v.L0;L00; s;W 00// j s 2 Sred
W .w/; W 0 < s < W 00g:
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Theorem 11. Let T` WD Sred
L .`/ and Tw WD Sred

W .w/. Then,

v.L0;W 0/ D v.0; pS
ap
L
.L0/; 0; pS

ap
W
/ for all .L0;W 0/ 2 T` � Tw

holds, where v is defined by the recursion (6.28).

The proof is similar to that of Theorem 6 where the L- and W-directions have to be
taken into account.

The computation of v.0;L0; 0;W 0/ for all .L0;W 0/ 2 T` � Tw according to (6.28)
requires at most O.jT`j2jTwj2.jKj C jT`j C jTwj// time, since, due to the dependence
on the defective regions, O.jT`j2jTwj2/ optimal values v.R/ have to be computed
with a DP approach. Obviously, this estimation is rather rough. For instance, if R is
defect-free and u.R/ is known, v.R/ can be determined in constant time.

Since, in general, a large number of v.R/-values is needed, the application of a
B&B approach becomes more favorable. As upper bound for v.R/ we can simply
use u.L00 � L0;W 00 � W 0/ as defined in (6.26) but tighter bounds which regard the
existence of defects should be preferred.

The number of small rectangles R D ŒL0;L00� � ŒW 0;W 00� used to define
subproblems in a B&B algorithm can be further reduced since, e.g., ŒL0;L00�\Sred

L .`/

can contain allocation points which are not meaningful for dissecting ŒL0;L00�. In
principle, appropriate reduced sets of allocation points can be defined for each R
similar to those for L � W. Therefore, in order to keep the number of subproblems
in a B&B approach small, for each R the reduced set of allocation points should be
computed as follows. Let Ka.R/; : : : ;Kd.R/ denote those defects which are relevant
for allocating pieces into the rectangle R:

Ka.R/ WD fk 2 K j L0 C `min � ak < L00; .W 0;W 00/\ Œbk; dk� ¤ ;g;
Kb.R/ WD fk 2 K j W 0 C wmin � bk < W 00; .L0;L00/\ Œbk; ck� ¤ ;g;
Kc.R/ WD fk 2 K j L0 < ck � L00 � `min; .W 0;W 00/\ Œbk; dk� ¤ ;g;
Kd.R/ WD fk 2 K j W 0 < dk � W 00 � wmin; .L0;L00/ \ Œbk; ck� ¤ ;g:

The corresponding sets of allocation points are

QSL.R/ WD ..L0 ˚ S.`//[ fS.ck ˚ S.`// j k 2 Kc.R/g/\ ŒL0;L00�;
QSW.R/ WD ..W 0 ˚ S.w//[ fS.dk ˚ S.w/ j k 2 Kd.R/g/\ ŒW 0;W 00�;
QS L .R/ WD ..L00 	 S.`//[ fS.ak 	 S.`// j k 2 Ka.R/g/\ ŒL0;L00�;
QS W .R/ WD ..W 00 	 S.w//[ fS.bk 	 S.w// j k 2 Kb.R/g/\ ŒW 0;W 00�:

Applying the Nicholson principle, we define reduced sets of allocation points for a
single rectangular region R by

QSred
L .R/ WD fpQSL.R/

.x/ j x 2 S L .R/g; QSred
W .R/ WD fpQSW .R/

.x/ j x 2 S W .R/g;
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and we have

QSred
L .R/ � Sred

L .`/\ ŒL0;L00�; QSred
W .R/ � Sred

W .w/ \ ŒW 0;W 00�:

By the above construction we obtain

Theorem 12. Let us consider the 2D cutting problem for the rectangle R D
ŒL0;L00� � ŒW 0;W 00� with defective parts. Then, among all optimal patterns of this
problem, there is an optimal pattern having only allocation points with coordinates
in QSred

L .R/ and QSred
W .R/.

6.5.2 Allocation Areas

Here we investigate the more general case that the raw material consists of areas of
different qualities. Obviously, the case with forbidden regions, as discussed in the
previous subsection, can be seen as a special case, in which for all items the same
parts of the raw material can be used.

6.5.2.1 Problem Formulation

The following 2D cutting problem is considered. Rectangular pieces i of various
dimensions `i � wi, i 2 I, and different quality demands q.i/ 2 Q have to be cut
from a non-homogeneous raw material of size L�W in such a way that all allocation
conditions (i.e., quality demands) are met and the total value of obtained pieces is
maximal. It is allowed that pieces can be cut several times.

As in Sect. 6.4, the set Q denotes the set of all different quality demands.
Moreover, let Iq � I denote the set of all pieces with quality demand q, i.e.,
Iq WD fi 2 I j q.i/ D qg. We assume [q2QIq D I and Iq \ Ip D ; for q ¤ p,
q; p 2 Q.

Parts of the raw material, where a quality demand is fulfilled, are represented by
an allocation area Ak, k 2 K WD f1; : : : ; jKjg. We assume that exactly one quality
q D eq.k/ 2 Q is assigned to each k 2 K, that the allocation areas are given in the
form

Ak D f.x; y/ j ak � x � ck; bk � y � dkg � Œ0;L� � Œ0;W�;
and that, for any k 2 K, there is i 2 Ieq.k/ with

`i � ck � ak; wi � dk � bk:

We allow that allocation areas can occur several times but then for different qualities,
and that they can overlap although if they belong to the same quality demand. But
we assume Ak 6� Aj for all k; j 2 Kq, k ¤ j and all q 2 Q, where Kq WD fk 2 K j
q Deq.k/g.
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For example, if in hardwood cutting a quality demand requires that no black
knot is allowed, then the occurrence of a black knot causes up to four partially
overlapping allocation areas.

6.5.2.2 Sets of Potential Allocation Points

For the 2D allocation (cutting or packing) problem let v W Œ0;L� � Œ0;W� ! ZC,
denote the optimal value function. This function is non-decreasing. Moreover, it is
piecewise constant since only a finite number of different sequences of allocated
pieces exists.

Clearly, if [k2K.ak; ck/ ¤ .0;L/ or [k2K.bk; dk/ ¤ .0;W/, then the problem can
be split into subproblems or the size of the raw material can be reduced.

Let S�L.�; `/ and S�W.�;w/ denote the coordinates of the jump discontinuities in
L- and W-direction of the optimal value function v. Our aim is to find supersets of
S�L.�; `/ and S�W.�;w/ which are independent on �i, i 2 I.

Theorem 13. For any ` 2 Z
m
>, w 2 Z

m
> and � 2 Z

m
>, we have

S�L.�; `/ � Sap
L .`/ WD

[

k2K

.ak ˚ S.`// \ Œ0;L�;

S�W.�;w/ � Sap
W .w/ WD

[

k2K

.bk ˚ S.w//\ Œ0;W�:

Moreover, with T` WD Sap
L .`/ and Tw WD Sap

W .w/, for all .L0;W 0/ 2 Œ0;L� � Œ0;W�,
v.L0;W 0/ D v.pT`.L

0/; pTw.W
0//

holds.

The proof is similar to that of Theorem 3. The result of Theorem 13 can be
strengthened with respect to the computational complexity by applying the Nichol-
son principle similar to Sect. 6.3.4. Let

S L .`/ WD
[

k2K0

.ck 	 S.`//\ Œ0;L�; S W .w/ WD
[

k2K0

.dk 	 S.`// \ Œ0;L�:

denote the set of potential allocation points maximal in the sense that, for any x 2
S L .`/, there is a combination of piece lengths whose first (left-most) piece, say i,
has allocation point x and which is not feasible for allocation points for i larger than
x (and similar in W-direction). Applying the Nicholson principle, we define reduced
sets of allocation points

Sred
L .`/ WD fpS

ap
L .`/

.x/ j x 2 S L .`/g; Sred
W .w/ WD fpS

ap
W .w/

.x/ j x 2 S W .w/g:
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Theorem 14. Let us consider the 2D cutting problem for the rectangle R D
ŒL0;L00� � ŒW 0;W 00� with quality demands. Then, among all optimal patterns of this
problem, there is an optimal pattern having only allocation points in Sred

L .`/ and
Sred

W .w/.

The proof is similar to that of Theorem 6.
The essential difference to the case without quality demands is again the fact that

the yield of a rectangular region R WD ŒL0;L00� � ŒW 0;W 00� of raw material depends
on its position because of the varying quality. That means, the yield function used
in a DP recursion is defined as follows:

�.R/ WD
(
0; if I.R/ D ;;
maxf�i j i 2 I.R/g otherwise;

where I.R/ WD fi 2 I j 9k 2 Kq.i/ W R � Ak; L00 � L0 � `i; W 00 � W 0 � wig.
Thus, a DP recursion to compute v which uses the sets of allocation points Sred

L .`/

and Sred
W .w/ is then as follows:

For all R WD ŒL0;L00� � ŒW 0;W 00� with L0;L00 2 Sred
L .`/ and W 0;W 00 2 Sred

W .w/ set

v.R/ WD
(
0; if L00 � L0 < `min or W 00 � W 0 < wmin;

maxf�.R/; g.R/; h.R/g otherwise

with

g.R/ WD maxfv.L0; r;W 0;W 00/C v.r;L00;W 0;W 00/ j r 2 Sred
L .`/; L0 < r < L00g;

h.R/ WD maxfv.L0;L00;W 0; s/C v.L0;L00; s;W 00// j s 2 Sred
W .w/; W 0 < s < W 00g:

The amount of time required to determine all v.R/-values can be estimated as in
Sect. 6.5.1.

Because of the dependence on the allocation areas, now O.jSred
L .`/j2 � jSred

W .w/j2/
optimal values v.R/ have to be computed with a DP approach. Due to this possibly
large number, the usage of a B&B approach becomes more favorable. As upper
bound for v.R/ one could simply use u.L00 � L0;W 00 � W 0/ but bounds which regard
the allocation areas should be preferred.

Similar to the previous subsection, the number of small rectangles R D ŒL0;L00��
ŒW 0;W 00� used to define subproblems in a B&B algorithm can be further reduced.
Therefore, for each R, the relevant allocation points should be computed as follows.
Let Ka.R/; : : : ;Kd.R/ denote those allocation areas which are relevant for allocating
pieces into a rectangle R:
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Ka.R/ WD fk 2 K j L0 < ak � L00 � `min; .W 0;W 00/\ Œbk; dk� ¤ ;g;
Kb.R/ WD fk 2 K j W 0 < bk � W 00 � wmin; .L0;L00/\ Œbk; ck� ¤ ;g;
Kc.R/ WD fk 2 K j L0 C `min � ck < L00; .W 0;W 00/\ Œak; dk� ¤ ;g;
Kd.R/ WD fk 2 K j W 0 C wmin � dk < W 00; .L0;L00/\ Œak; ck� ¤ ;g:

The corresponding sets of allocation points are given by

QSL.R/ WD ..L0 ˚ S.`//[ fS.ak ˚ S.`// j k 2 Ka.R/g/\ ŒL0;L00�;
QSW.R/ WD ..W 0 ˚ S.w//[ fS.bk ˚ S.w/ j k 2 Kb.R/g/\ ŒW 0;W 00�:
QS L .R/ WD ..L00 	 S.`//[ fS.ck 	 S.`// j k 2 Kc.R/g/\ ŒL0;L00�;
QS W .R/ WD ..W 00 	 S.w//[ fS.dk 	 S.w// j k 2 Kd.R/g/\ ŒW 0;W 00�:

Applying the Nicholson principle, we obtain the reduced sets of allocation points

QSred
L .R/ WD fpQSL.R/

.x/ j x 2 S L .R/g; QSred
W .R/ WD fpQSW .R/

.y/ j y 2 S W .R/g;

and we have

QSred
L .R/ � Sred

L .`/; QSred
W .R/ � Sred

W .w/:

Finally, we get

Theorem 15. We consider the 2D cutting problem for the rectangle R D ŒL0;L00� �
ŒW 0;W 00� with quality demands. Then, among all optimal patterns of this problem,
there is an optimal pattern which has only allocation points with coordinates in
QSred

L .R/ and QSred
W .R/.

Another option to reduce the number of subproblems in a B&B approach consists in
replacing S.`/ and S.w/ by those sets which contain only combinations of lengths
of items which can be feasibly placed within R.

6.5.3 Generalizations

As a generalization of the problem considered in the previous subsection, one may
allow that the pieces have a variable size in one dimension and a fixed size for the
other. Here we consider pieces with fixed widths and allow that the length `i of
piece i can take any value in Œli; li�. A related application occurs in hardwood cutting
where, in general, the variable lengths are much larger than the fixed widths.

Although, from the theoretical point of view, it would be favorable to use a non-
staged guillotine cutting technology, in practical application two-stage guillotine
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cutting (and probably, three-stage) is mostly used. We consider here an exact two-
stage guillotine cutting (cf. [5]) with horizontal cuts, (i.e., in L-direction) in the first
stage. No trimming is allowed. Different quality demands are represented again by
allocation areas.

As a naive (basic) solution approach one can compute for each different width Qwj

and each potential allocation point y the optimal value v.y; Qwj/ for the part of raw
material Œ0;L� � Œy; y C Qwj�. In order to limit the computational amount the set of
potential allocation points has to be defined appropriately, for instance as Sred

W .w/.
The computation of v.y; Qwj/ is in fact a 1D cutting problem whose input data are
obtained as follows. For a piece i 2 I with wi D Qwj and an allocation area Ak D
Ak.ak; bk; ck; dk/ with k 2 Kq.i/, the restriction of Ak to the strip Œ0;L�x � Œy; y C Qwj�

determines the allocation interval Œak; ck� for item i if Œy; y C Qwi� � Œbk; dk� and
li � ck � ak.

Having computed all values v.y; Qwj/ an optimal combination of the strips can be
obtained by solving a 1D cutting problem in W-direction.

Depending on the real cutting technology, the positions of cross (vertical) and rip
(horizontal) cuts can be restricted by reduced sets of allocation points in a similar
way.

Moreover, practical requirements, such as a least distance between two cut
(allocation) positions or a positive kerf, can be regarded within the proposed solution
approaches or in the definition of sets of allocation points. If there are restrictions
on how often a piece shall be placed, then an appropriate definition of the set S.`/
should be used, namely

bS.`; u/ WD
(
X

i2I

`ixi j xi � ui; xi 2 ZC; i 2 I

)
:

6.6 Conclusions

Within this paper we considered one- and two-dimensional cutting and packing
problems with additional placement constraints. Such constraints can be caused
by defective parts of the raw material or by parts which satisfy different quality
demands. We identified appropriate (reduced) sets of potential allocation points
that do not depend on the profit coefficients. These sets either cover the set of
jump discontinuities of the optimal value function of the allocation problem, or at
least contain appropriate allocation points which still allow to compute an optimal
pattern.

The proposed sets of potential allocation points strongly depend on the real data.
If there are very small-sized pieces or many defects or different quality regions, the
cardinality of these sets can be large but not greater than the corresponding size
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parameter of the raw material. In case of rather large pieces a high potential to
save computational costs arises if the proposed sets of allocation points are used.
Moreover, the cardinality of these sets does not change if the unit of measure is
changed.

In the one-dimensional case, the explicit computation of a (reduced) set of
potential allocation points may look as a meaningless expense, but the basic
principle of its definition can be regarded directly within the solution approach as
shown in the algorithms for 1D cutting problems with allocation intervals.

In the two-dimensional case, the construction of the (reduced) sets remains, in
fact, a one-dimensional task since both dimensions can be handled independently.
The use of the proposed sets of potential allocation points can lead to a significant
reduction of the number of states, which have to be considered in a DP based
approach, and, in a similar way, to a reduction of the number of subproblems which
arise during a B&B based solution process. In particular, these reductions are of
high importance in cases with complex quality demands.

An appropriate use of the profit coefficients of a problem might be helpful to
further reduce the number of allocation points so that the computational effort for
obtaining an optimal pattern can be reduced. This topic is left for future research.
Moreover, we would like to mention that the definition of good allocation areas
might become a non-trivial task if difficult quality demands have to be met, for
example one may think of conditions on the number of knots within a certain area
of a wooden board.
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Chapter 7
A Container Loading Problem MILP-Based
Heuristics Solved by CPLEX: An Experimental
Analysis

Stefano Gliozzi, Alessandro Castellazzo, and Giorgio Fasano

Abstract The issue of placing small boxes orthogonally, generally with the
possibility of rotations, into a big box, maximizing the loaded volume, is usually
referred to as the container loading problem. Despite its being notoriously of an NP-
hard typology, a number of algorithms work out this problem very efficiently. The
task becomes, nonetheless, even more challenging when additional conditions have
to be taken account of. In such cases, a modeling-based approach is supposedly the
most suitable and this definitely holds, in particular, when balancing requirements
are posed. These, indeed, entail constraints of strong global impact that can hardly
be coped with by sequential procedures, based on a step by step incremental loading
of items.

MIP (Mixed Integer Programming) models relevant to the container loading
problem or possible extensions of it are available in specialized literature. A ded-
icated MILP (Mixed Integer Linear Programming) formulation, supporting an
overall heuristic approach, addressed to non-standard packing issues, is discussed
in another chapter of this book. Hereinafter, some relevant computational aspects
are looked into, restricting the consideration to the container loading problem, as
per its classical statement. An ad hoc heuristics, derived from the above-mentioned
overall approach, is outlined. The use of IBM ILOG CPLEX as an MILP optimizer
is considered. Case studies concerning the solution of the MILP model tout court,
when the instances involved are not of a large-scale nature, are reported first.
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Outcomes relevant to the ad hoc heuristics are further shown through a number of
difficult instances. Examples of container loading issues, involving also balancing
conditions, are additionally provided.

Keywords Container loading • Orthogonal packing with rotations • Mixed
integer linear programming • MILP model • Heuristics • CPLEX • Computa-
tional results

7.1 Introduction

Container loading is a typical packing problem, concerning the orthogonal place-
ment of small boxes (i.e., rectangular parallelepipeds) into a big box, maximizing
the loaded volume. A very large number of specialist works are devoted to this
subject and the reader is referred to the available literature for a wide-ranging
overview (e.g., [1]). Hereinafter, we shall recall the modeling-based methodology
discussed in depth in a dedicated chapter of this book [2].

This approach has been conceived to solve complex non-standard packing
problems, allowing for tetris-like items inside convex domains, with additional
conditions, such as balancing. The container loading problem, as per its classical for-
mulation, represents a specific case addressed by the general MILP (Mixed Integer
Linear Programming) mathematical model discussed in Fasano [2], Section 2. This
can be utilized, directly, when a limited number of items are involved. Otherwise,
when large-scale instances have to be coped with, the above-mentioned MILP
model represents the basic “engine” of the overall heuristic approach outlined in
Fasano [2], Section 6. Specific versions of this model are, in such cases, adopted to
support all the relevant phases of the whole heuristic process, i.e.: Initialization,
Packing, Item-exchange, Hole-filling. The present chapter focuses on what we
currently consider the most promising solution strategies relevant to the modeling-
based approach in question. These act at two different levels.

Firstly, an ad hoc strategy, delineated in Sect. 7.2.1, has been looked into for
the above-mentioned overall heuristic procedure. As pointed out in Fasano [2],
Section 6, indeed, the way the various modules (i.e., Initialization, Packing,
Item-exchange, Hole-filling) are activated/executed actually determines a specific
heuristics.

Secondly, dedicated MILP strategies have been studied to work out the general
MILP model, as utilized in its different versions, i.e. either when the container
loading problem is tackled tout court, or the various phases of the heuristic process
have to be performed. As is well known, when managing an MILP model, the
solution search effectiveness is strongly affected by the general features of the
optimizer adopted, but even more by the way it is “driven.” For instance, different
branch and bound (B&B) strategies may yield very different outcomes, both in terms
of solution quality and computational effort. In our research, IBM ILOG CPLEX
[3] has been selected as the MILP solver and appropriate drivers set up to solve the
MILP model, in its various versions, efficiently. This is the subject of Sect. 7.2.2.
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A dedicated experimental analysis, covering non-trivial instances, has been
carried out. Although the strategies proposed here are suitable for a number of
non-standard packing issues, not limited to the classical container loading problem,
our attention has been concentrated on it. In this case, the procedure put forward
in the present chapter (as well as the modeling-based approach in general), being
aimed at non-standard applications, is typically outperformed by most of the off-
the-shelf algorithms, specific for the classical container loading problem (e.g., [4]).
The choice of focusing on this problem in particular, however, aims to offer a
useful reference in a standard test framework. Section 7.3.1 reports computational
results relevant to the direct solution of the MILP model, with small-scale instances.
Section 7.3.2 shows outcomes regarding demanding test cases, solved by the
heuristics of Sect. 7.2.1. Insights concerning the presence of balancing conditions
are additionally provided in Sect. 7.3.3, to draw the reader’s attention to an
application quite frequent in practice.

7.2 Solution Search Strategies

7.2.1 Heuristic Approach

A specific procedure deriving from the overall heuristic approach proposed in
Fasano [2] is outlined in this section (in a streamlined form). Major interrelated
concepts are those of relative position and abstract configuration. A relative position
between two items expresses that one, with respect to the other, is located in
compliance with one of the following conditions: on the left, on the right, in front,
behind, above or below. An abstract configuration, relative to N items, is a set of
N.N�1/

2
relative positions, one for each pair of items, that are feasible (i.e., all of them

can be respected) in any unbounded domain. With a given abstract configuration
items may be rotated and translated, keeping their relative positions unaltered.

The underlying idea of the overall heuristic approach is to generate a sequence of
abstract configurations that allow the feasible placement (i.e., with no overlapping)
of an increasing number of items in the given domain (i.e., the container),
maximizing the loaded volume.

In the specific heuristics proposed in this chapter, the whole process is split
into two macro-phases, i.e. the main and the incremental one, respectively, see
Fig. 7.1. Both of them activate the modules of the overall heuristic approach (i.e.,
Initialization, Packing, Item-exchange, Hole-filling) sequentially. The macro-phases
are executed recursively, performing a number of cycles. Items are added, time after
time, following an overall greedy approach. At each module execution, the selection
of items as candidates for loading (in addition to those previously accepted) is
made on a larger-first priority criterion. This way, the procedure attempts to load
items with the largest volumes whilst the domain is still quite unexploited. On the
contrary, the smaller ones are tentatively introduced to fill the empty spaces, when
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Fig. 7.1 Heuristics overall logic
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high loading percentages have already been attained. At each module execution, the
current abstract configuration is taken as input and an upgraded one is provided by
it (if executed successfully).

7.2.1.1 Main Phase

A single cycle of the main phase consists of the prefixed sequence: Initialization,
Packing, Item-exchange, and Hole-filling.

Their specific functionalities are summarized here below:

• the Initialization module generates a preliminary abstract configuration, for a
subset of the items available, by means of a relaxation of the general MILP model
(allowing item overlapping);

• the Packing module places items into the domain, in compliance with the current
abstract configuration and maximizing the total volume loaded;

• the Item-exchange module attempts advantageous exchanges between (subsets
of) non-loaded and loaded items (both are set free, with respect to the current
abstract configuration, and a new one is correspondently generated, if the module
execution has been successful);

• the Hole-filling module tries to add some of the unloaded items (that are set
free, with respect to the current abstract configuration, and an upgraded one
is correspondently generated, if the module execution has been successful).
The Hole-filling module is first executed by fixing the orientation of all items
involved. Afterwards, it is re-executed, if opportune, setting the item orientations
free.

The main phase is carried on, by repeating single cycles, until either the loaded
volume has attained 75 % of the domain’s or a maximum time limit has been
reached. The abstract configuration obtained at the end of this phase is handed over
to the next.

7.2.1.2 Incremental Phase

A single cycle of the incremental phase consists of the prefixed sequence: Hole-
filling and Item-exchange (at this level of volume exploitation, indeed, the first
two modules are no longer effective, in particular Initialization, being based on a
relaxation of the MILP model). Also in this case, the Hole-filling module is firstly
executed by fixing the orientation of all items involved. Afterwards, if re-executed,
these are set free. Here, the Item-exchange module has the role of performing
backward iterations (to make up for possible previous inappropriate moves). The
relevant functionalities of both modules employed are the same as described above.
A number of single cycles are executed, until either all items have been processed
or a maximum time limit has been reached.
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7.2.2 Model Solving by CPLEX

The heuristics introduced in Sect. 7.2.1, and all of the tests reported in this chapter,
were performed utilizing IBM ILOG CPLEX (see [3]) as the MILP optimizer.
CPLEX carries out the optimization process by a branch & cut (B&C) algorithm,
including several general purpose heuristics. It is also able to perform parallel
optimization. Like most of the optimizers available to date, CPLEX has a default
strategy for the MILP solution, which is flexible and adaptable to the model
characteristics. Its level of sophistication is so advanced that a number of ad hoc
optimizer parameters, able to outperform the default mode, can hardly be found.
Moreover, the risk of “over engineering” the setting of the parameters, tuning them
to a particular class of instances, rather than to the model intrinsic characteristics,
cannot be neglected. Sometimes however, it can be useful to define a specific
CPLEX optimization strategy. This holds, in particular, when the solution search
is somehow time-boxed, and the proof of optimality is not necessary. This is the
case of the two situations dealt with in Sect. 7.3, concerning either the solution of
the MILP model directly or the execution of the heuristics of Sect. 7.2.1.

7.2.2.1 Direct Solution

When some difficult instances, albeit with a limited number of items, are tackled
by solving the MILP model directly, i.e. in the first situation, the number of nodes
generated by the B&C procedure really tends to “explode.” In this circumstance,
a specific strategy is needed, in order to reduce the node generation as much
as possible and make the process spend more time at each B&B step, yielding
(supposedly) better search choices. Another characteristic associated with the MILP
model in question is that the LP-relaxation upper bound is usually coincident with
the value of the optimal (integer) MILP solution. As a consequence, any strategy,
aimed at generating cuts and improving the upper bound, results in being ineffective.

To cope with these difficult instances, an ad hoc approach was therefore devised.
It is based on an intense employment of (CPLEX) heuristics, probing techniques
(see [3]), a very limited use of cutting planes, and the “solution polishing” heuristics
(see [3, 5]) that are activated when several solutions and at least 200 nodes have
already been explored.

The priority order of the branching variables represents a further important
feature of the approach studied. Since, from the model formulation and from
the solution logic, some binary variables are supposedly able to induce a better
separation in the search tree, they are provided with a higher priority in the process.
Figure 7.2 illustrates the multiple CPLEX parameters (see [3]) that have been
selected (the parameters not shown in the figure correspond to the default setting).
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CPLEX Parameter File Version 12.6.0.1
#CPLEX Tuning for Direct Solution
CPX_PARAM_PRELINEAR 0
CPX_PARAM_MIPCBREDLP 0
CPX_PARAM_NODEFILEIND 3
CPX_PARAM_TILIM 3600
CPX_PARAM_POLISHAFTEREPAGAP 0.02
CPX_PARAM_POLISHAFTERNODE 200
CPX_PARAM_POLISHAFTERTIME 2400
CPX_PARAM_MIPEMPHASIS 1
CPX_PARAM_FLOWCOVERS 1
CPX_PARAM_MIRCUTS 1
CPX_PARAM_PRESLVND 3
CPX_PARAM_PROBE 3
CPX_PARAM_REPEATPRESOLVE 1
CPX_PARAM_RINSHEUR 5
CPX_PARAM_LBHEUR 1
CPX_PARAM_FRACCUTS -1
CPX_PARAM_LANDPCUTS 1
CPX_PARAM_SYMMETRY -1

Fig. 7.2 CPLEX parameter selection for the direct solution

CPLEX Parameter File Version 12.6.0.1

#CPLEX Tuning for Initialization

CPX_PARAM_TILIM            40

CPX_PARAM_PRELINEAR   0

CPX_PARAM_BRDIR             1

CPX_PARAM_POLISHAFTEREPGAP 0.1

CPLEX Parameter File Version 12.6.0.1

#CPLEX Tuning for

#Packing, Item-exchange and Hole-filling 

CPX_PARAM_PRELINEAR 0

CPX_PARAM_MIPCBREDLP 0

CPX_PARAM_BRDIR 1

CPX_PARAM_OBJDIF 0.0001

Fig. 7.3 CPLEX parameter selection for the heuristic solution

7.2.2.2 Heuristic Solution

When the heuristics of Sect. 7.2.1 is utilized, i.e. in the second situation, it is of
paramount importance to obtain quick, albeit sub-optimal, solutions for each module
execution. Proof of optimality is not needed at all, although sometimes the heuristics
performances can be biased by too many run interruptions (based on predefined-
maximum-time limits). The priority order of the branching variable declaration is
the same as in the direct solution situation. Figure 7.3 reports the CPLEX parameters
adopted for Initialization, Packing, Item-exchange, and Hole-filling, respectively.
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7.3 Experimental Analysis

The experimental analysis of this section is an extension of the previous, reported in
Fasano [6]. The test campaign referred to hereinafter was performed using IBM
CPLEX 12.6.0.1 (see [3]) as the optimizing engine, and IBM EasyModeler as
the model generator. More precisely, the MILP solver available within CPLEX,
statically linked to the CCC code generated by EasyModeler, was adopted, using
the open source Coin-OR OSI 0.105.3 library as the interface between EasyModeler
and the optimizer. The following computational supports were moreover utilized:

• platform: Lenovo Thinkpad W520 Laptop. with an Intel(R) Core (TM) i7-2620M
at 2.7 GHz clock frequency (2 real core seen as 4 with Intel Hyperthreading) and
8 GB Ram available;

• operating system: Windows(R) 7 Professional OS.

All the tests were run using a parallel version of CPLEX. CPLEX 12.6 can
execute the B&C in two different parallel flavors: Parallel Optimization on threads
on the same (multi core) CPU, and Distributed Parallel with a messaging protocol
among distinct CPUs. During the tests, the Parallel Optimization on Threads was
employed; the number of Threads is defaulted to the number of cores seen by the
OS, i.e. 4.

This section reports first a group of tests concerning the solution of the
MILP model directly. Experimental results relevant to the use of the heuristics
outlined in Sect. 7.2.1 are presented next. Additionally, instances with the balancing
requirement are provided. All the case studies considered hereinafter involve box-
shaped items and domains.

7.3.1 Direct Solution of Standard Instances

In order to test the MILP model for solving the container loading problem directly,
we selected 5 fabricated instances (see [7]), whose optimal solutions were known a
priori. Among them, 4 have a cube as a domain of 8, 9, 10, and 11 units, respectively.
They are denoted in the following as: Cube-8, Cube-9, Cube-10, and Cube-11 tests.
The domain of the further instance is a rectangular parallelepiped, obtained by
merging two Cube-8 domains. The relevant test is referred to as: Double-cube-
8. For all the tests considered in this section, no additional condition was posed.
The instance data concerning the items available are reported, test by test, in the
following Tables 7.1, 7.2, 7.3, 7.4, and 7.5.

A maximum time limit of 1 h was set for each test case. Two out of five (i.e.,
Cube-8 and Cube-9) were solved to optimality; in two cases (i.e., Cube-10 and
Cube-11) only one item was rejected; in one (i.e., Double-cube-8) those not loaded
were three. The relevant results are shown in Table 7.6 while Figs. 7.4 and 7.5
provide graphical views of the solutions obtained for Cube-8 and Double-cube-8.
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Table 7.1 Cube-8 items

Item type L1 side (units) L2 side (units) L3 side (units) No. of items per type

A 4 4 4 1
B 2 3 5 6
C 1 3 6 6
D 1 2 6 6
E 1 3 3 6
F 1 2 2 6

Table 7.2 Cube-9 items

Item type L1 side (units) L2 side (units) L3 side (units) No. of items per type

A 5 5 5 1
B 2 4 6 6
C 1 3 7 6
D 1 2 7 6
E 1 3 4 6
F 1 2 2 6

Table 7.3 Cube-10 items

Item type L1 side (units) L2 side (units) L3 side (units) No. of items per type

A 6 6 6 1
B 2 5 7 6
C 1 3 8 6
D 1 2 8 6
E 1 3 5 6
F 1 2 2 6

Table 7.4 Cube-11 items

Item type L1 side (units) L2 side (units) L3 side (units) No. of items per type

A 7 7 7 1
B 2 6 8 6
C 1 3 9 6
D 1 2 9 6
E 1 3 6 6
F 1 2 2 6

Instances of the above tests, with all items pre-oriented (correspondently to the
fabricated optimal solutions) were considered. Surprisingly enough, none of them
was solved to optimality within 1 h. Further pre-oriented instances for Cube-8
and Cube-9 were hence taken into account, additionally. In such cases, the item
pre-orientation was derived from the solutions reported in Table 7.6. The optimal
solutions (or some equivalent) were re-obtained in almost half the time of the
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Table 7.5 Double-cube-8 items

Item type L1 side (units) L2 side (units) L3 side (units) No. of items per type

A 4 4 4 2
B 2 3 5 12
C 1 3 6 12
D 1 2 6 12
E 1 3 3 12
F 1 2 2 12

Table 7.6 Direct solution tests

Test case
Max no.
of items

No. of
loaded
items

Load
factor (%)

Elapsed
time (s)

Loaded
items (%)

No. of
nodes

Optimality
proved

Cube-8 31 31 98.05 312 100.00 231 Yes
Cube-9 31 31 98.63 2,001 100.00 315 Yes
Cube-10 31 30 96.60 3,600 96.77 403 No
Cube-11 31 30 96.54 3,600 96.77 463 No
Double-cube-8 62 59 89.26 3,600 95.16 270 No

Fig. 7.4 Cube-8 graphical results

Fig. 7.5 Double-cube-8 graphical results
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non-pre-oriented instances. Our interpretation in regard is that, since several non-
symmetric solutions exist, the more “degrees of freedom” there are, the more
effective the CPLEX heuristics (including the “solution polishing”) results.

7.3.2 Heuristic Solution of Standard Instances

This section refers to 27 non-trivial test cases for the classical container loading
problem, with no additional conditions. They are extracted from the reference:
“Three Dimensional Cutting and Packing Data Sets - THPACK 1-7 BR” [8]: http://
www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-
and-packing. As is known, this test-bed consists of 7 sets of 100 test cases each.
Among these, all those with an available number of items between 200 and 400
were selected. They are listed in Table 7.7 and, hereinafter, numbered sequentially,
from 1 to 27.

The 27 selected test cases were solved using the heuristics of Sect. 7.2.1, with a
maximum time limit of 1 h. The relevant results are summarized in Table 7.8 (the
reported time elapses are often longer than 1 h, since the heuristics always finalized
the last optimization steps, prior to performing the final housekeeping) (Fig. 7.6).

Load factors range from 57.45 to 87.07 %, with an average of 77.92 % and a
standard deviation of 7.52 (graphical results relative to Test case 17 are illustrated
in Fig. 7.7). It is interesting to note that the time spent in optimization is inversely
correlated, as pointed out in Fig. 7.6. This appears as an indication that the
heuristics’ logic itself is more relevant than the optimizer speed. The instances
are solved to a greater extent when the heuristics is able to generate easier sub-
instances to solve. The heuristics’ overall logic and its specific module features
(including possible function extensions) are expected to represent the objective of
further research.

Table 7.7 Selected test cases (THPACK 1-7 BR)

Set number Test case

1 13,17,33,39,67,68,76,85,91,100
2 4,13,39,59,77,79,85,96
3 39,56,59,77
4 39,56,79
5 56
6 13

http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing
http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing
http://www.euro-online.org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing
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Table 7.8 Results for the selected test cases (THPACK 1-7 BR)

Test
case

Max
no. of
items

No.
of loaded
items

Load
factor
(%)

Elapsed
time

Loaded
items
(%)

Time
spent
in opti-
mization

Time
spent
in opti-
mization
(%)

No.
of sub-
models
solved

1 284 186 84.60 01:01:28 65.5 00:19:05 31.0 86
2 213 155 84.96 01:01:59 72.8 00:35:31 57.3 71
3 282 159 76.57 01:01:08 56.4 00:38:08 62.4 52
4 243 163 85.57 01:00:49 67.1 00:27:32 45.3 78
5 221 140 72.44 01:04:49 63.3 00:47:48 73.7 50
6 238 119 57.45 01:00:20 50.0 00:52:24 86.9 37
7 269 149 59.30 01:02:21 55.4 00:49:28 79.3 42
8 319 165 67.39 01:01:25 51.7 00:46:29 75.7 40
9 238 149 86.82 00:54:08 62.6 00:28:41 53.0 93
10 214 151 79.18 00:55:35 70.6 00:35:49 64.4 64
11 201 143 87.07 00:53:25 71.1 00:31:57 59.8 83
12 228 174 84.87 01:01:29 76.3 00:27:27 44.6 84
13 266 168 78.34 01:01:13 63.2 00:36:58 60.4 64
14 201 129 69.62 00:52:51 64.2 00:43:21 82.0 39
15 202 144 77.08 00:58:37 71.3 00:43:38 74.4 52
16 206 145 79.46 01:00:37 70.4 00:40:17 66.5 74
17 209 163 85.32 01:01:20 78.0 00:36:30 59.5 74
18 202 139 82.01 01:03:20 68.8 00:31:56 50.4 72
19 232 200 77.11 01:01:35 86.2 00:31:07 50.5 69
20 212 157 82.89 01:00:58 74.1 00:33:58 55.7 84
21 216 145 74.05 01:00:38 67.1 00:45:52 75.6 50
22 201 135 76.88 01:01:22 67.2 00:44:10 72.0 57
23 225 138 77.60 01:01:02 61.3 00:40:57 67.1 66
24 233 151 80.47 01:01:46 64.8 00:39:40 64.2 56
25 217 138 80.42 01:01:32 63.6 00:39:41 64.5 72
26 218 131 78.11 01:00:37 60.1 00:42:30 70.1 63
27 203 119 78.15 01:00:40 58.6 00:44:54 74.0 64

7.3.3 Heuristic Solution of Test Cases with Balancing
Conditions

An extension of the classical loading problem is briefly discussed here. The (quite
frequent in practice) balancing requirement, for which the overall center of mass (of
the loaded container) must stay inside a convex domain is considered (see [6]). Each
item (supposed to be of homogeneous density) is therefore represented by its side
lengths and mass. In the following sections (for the sake of simplicity) no mass is
associated with the container itself and the overall center of mass domain is assumed
to be a (rectangular) parallelepiped.
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Fig. 7.6 Correlation between load factor and time spent in optimization

Fig. 7.7 Test case 17 graphical results

7.3.3.1 Items Having the Same Density

The 27 test cases of Sect. 7.3.2 were reconsidered assuming that all items had the
same density. These test cases were run with a very tight restriction on the center
of mass domain, which consisted of a cube of 2 units, centered with respect to
the container. Since the container was a box of 587 � 233 � 220 units, this meant a
deviation from its center well below 0.5 % its side lengths. The relevant results are
reported in Table 7.9.

Both from the load factor and computational performance viewpoints, the results
are quite similar to the test cases reported in Sect. 7.3.2. A slight deviation from
them can be noticed, consisting, essentially, of an average load factor decrement of
a mere 1.14 %.



170 S. Gliozzi et al.

Table 7.9 Results for the
selected test cases with items
of constant density

Test
case

Max no.
of items

No. of
loaded
items

Load
factor
(%)

Elapsed
time

Loaded
items
(%)

1 284 173 82.57 01:00:40 60.9
2 213 151 83.80 00:46:07 70.9
3 282 168 75.21 01:01:15 59.6
4 243 152 83.84 00:58:54 62.6
5 221 144 74.16 00:40:51 65.2
6 238 120 57.87 01:00:58 50.4
7 269 155 61.18 01:00:56 57.6
8 319 141 57.60 01:03:08 44.2
9 238 151 86.31 00:59:23 63.4
10 214 147 76.67 01:00:42 68.7
11 201 142 85.04 00:50:41 70.6
12 228 175 84.69 01:00:56 76.8
13 266 167 78.66 01:01:10 62.8
14 201 126 68.29 01:00:07 62.7
15 202 148 78.99 00:58:47 73.3
16 206 139 75.96 01:00:37 67.5
17 209 159 84.22 00:45:55 76.1
18 202 131 79.41 00:56:22 64.9
19 232 196 76.49 01:01:57 84.5
20 212 162 83.29 01:01:14 76.4
21 216 141 73.42 01:05:13 65.3
22 201 137 77.02 01:02:57 68.2
23 225 142 78.83 01:00:53 63.1
24 233 155 80.94 01:04:15 66.5
25 217 109 72.35 01:00:54 50.2
26 218 128 77.27 01:00:41 58.7
27 203 121 78.92 01:02:15 59.6

7.3.3.2 Items Having Different Densities

Three test cases, i.e. 4, 19 and 25, extracted from the set of 27 of Sect. 7.3.2 were
considered, by providing the items with different densities (generated randomly).
These are reported in Table 7.10 (referring to mass and volume units). For these
three test cases the overall center of mass was requested to stay inside a slightly
larger domain (roughly representing 5 % of tolerance over the length of each axis),
centered with respect to the container. Table 7.11 shows the relevant results and
Fig. 7.8 provides graphical views of the solution obtained for Test case 4.

Finally Test cases 4, 19 and 25 were considered, maintaining the same masses
reported in Table 7.10, but with different conditions concerning the position of the
center of mass domain (that continued to have the same dimension as before). This
was placed in an off-centered position, inside the container. This request can occur
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Table 7.10 Items with different densities

Test case Average density Standard deviation

4 1.5276 0.2373
19 1.5211 0.2269
25 1.5134 0.2317

Table 7.11 Results for Test cases 4, 19, and 25 with central balancing

Test case
Max no.
of items No. of loaded items Load factor (%) Elapsed time Loaded items (%)

4 243 158 84.53 01:02:15 65.0
19 232 137 77.32 01:01:51 59.1
25 217 123 77.03 01:00:31 56.7

Fig. 7.8 Test case 4 (with balancing conditions) graphical results

Table 7.12 Center of mass domain off-centered
locations

Domain dimensions Center of mass coordinates
x y z x y z

587 233 220 293.5 116.5 55

Table 7.13 Results for Test cases 4, 19, and 25 with off-centered balancing

Test case
Max no.
of items No. of loaded items Load factor (%) Elapsed time Loaded items (%)

4 243 87 51.31 01:06:35 34.4
19 232 73 47.36 01:03:10 31.5
25 217 46 36.77 01:01:54 21.2

in practice, for instance, for structural reasons (see [9]). Table 7.12 reports, for
Test cases 4, 19, and 25 respectively, the positions of the relevant domain centers.
The results obtained are shown in Table 7.13. Test case 4 solution is represented
graphically in Fig. 7.9.
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Fig. 7.9 Test case 4 (with off-centered balancing conditions) graphical results

7.4 Conclusive Remarks

This work focuses on experimental aspects relevant to the container loading
problem, solved by a modeling-based heuristic approach. The relevant MILP model
is discussed in depth in another chapter of this book and represents the reference
framework for the underlying mathematical formulation. This approach is aimed at
coping with complex non-standard packing problems, involving tetris-like items,
non-box-shaped domains and additional conditions, such as balancing.

A standard context has, nonetheless, been targeted in this chapter, addressing
the container loading problem, as per its classical statement. This concerns the
placement of box-shaped items (with the possibility of rotation) into a box-shaped
domain, with no additional conditions, maximizing the loaded volume.

The general MILP model has been tested to solve directly non-large-scale
fabricated instances, whose optimal solutions were known a priori. Afterwards, a
set of complex case studies have been studied and further examples involving the
additional condition of balancing provided.

Although for the specific experimental context considered, the proposed
approach is usually outperformed by most of the off-the-shelf container loading
optimization methods, the authors deem that the results shown here provide a
useful reference in a standard-based framework. Further research relevant both to
the heuristics overall logics and its specific features, referred to a more general
non-standard context, is in the pipeline for the near future.
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Chapter 8
Automatic Design of Optimal LED Street Lights

Balázs L. Lévai and Balázs Bánhelyi

Abstract The issue of light pollution, unnecessary lighting of outdoor areas, came
into focus in the last 10 years. This is the reason why observatories should not be
built in highly populated areas, it also disturbs the wild life, and it raises questions
about energy conservation too. Based on its capabilities, LED technology offers
a solution to this problem. Nowadays, travellers can visit many cities in developed
countries and encounter LED street lights in streets as application of this technology
spreading in public lighting. Designing orientation of LEDs in such street lights
is a difficult problem as we need to use multiple LED packages to light an as
large area as an incandescent light bulb can. Determining correct angles is a global
optimization problem, a complex mathematical task related to the field of covering
problems. In this chapter, we present an automatic designing method to construct
LED configurations for street lights and a light pattern computation technique to
evaluate these configurations. To speed up the whole designing process, a possible
way of parallelization is also discussed.

Keywords Global optimization • Genetic algorithm • Covering problem •
LED • Public lighting

8.1 Designing LED Street Lights

When we are looking at the view of a city at night, the first thought usually coming
into our mind is how beautifully everything is lighted, admiring the luminous streets,
buildings, and bridges. The last thing we realize is the price of shinning, the light
pollution by name.

Nowadays, we reached a harmful level of light emission. It affects the wild life,
especially the insects. Such a species as the fireflies, whose mating ritual essentially
involves light signals, suffered a heavy drop in their numbers. Confused by artificial
light, males and females cannot find each other. On a much global scale, light is
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also an important factor in animals’ navigation and migration. Not just the timing of
human created light is the problem, but its polarization too, because many animals
use the natural polarization of sun light as information. The list of malicious effects
on plants and animals could be continued, see [9].

Energy consumption is another relevant aspect. A rough estimation of 25 % of
our total energy needs is required for lighting purposes. The introduction of daylight
saving periods from April to October happened for a reason benefiting a large
amount of energy saving every year. You can read more about this topic among
other harmful effects of light pollution in the papers [2, 4, 12].

LED technology offers a possible solution to light pollution [5, 8, 10]. The light
of LEDs is much more focusable [3] and can also be dimmed, even adaptively
to traffic density [15]. LEDs have longer lifetime and consume less energy [14]
than incandescent light bulbs, but there are drawbacks of this technology too. LEDs
illuminate a relatively small area, therefore application of multiple LED packages
in LED street lights is necessary to replace the currently operating public lighting.
This fact leads us to the question of how LEDs should be directed in the housing
of lamps.

Angles of LEDs in lamps have to be set carefully to distribute light emission
equally on the target surface. Configuring LED directions is a complex task, and it
depends on a lot of factors, dimensions of the street and the lamppost, the minimal
and maximal allowed intensity of light, and so forth. The regulation of public
lighting, the future surroundings of street lights, and the cost-effectiveness should
be considered simultaneously. One may focus on only one aspect, while neglecting
the others, to be able to manually create designs, but it is most likely that resulted
configurations will not be competitive due to high cost, or large energy consumption,
or something else. We have to consider everything at the same time and that is why
automatic designing solutions are required.

The quality of lighting in public areas like roads, parks, etc. is regulated by law
in protection of motorists. This means that the intensity and uniformity of light have
to be in specified ranges. Considering the conical lighting characteristics of LEDs,
the intersection of the target surface and the light cone cast by a single LED is
an ellipse. Because intensities of different light sources simply add up, providing
the required visibility can be interpreted as covering rectangle-shaped areas with
ellipses while overlapping is allowed. Light intensity within the same ellipse varies
depending on the lighting characteristic and the direction of the source LED, thus
altering LED directions also changes their extent of contribution to the coverage.
Even to the lay mind, LED configuration design for public lighting purposes is
obviously not an ordinary covering problem. The complexity implies that there
is no hope to handle successfully this type of task with direct and deterministic
optimizer methods in reasonable time, therefore we decided to create a suitable
genetic algorithm to search for acceptable LED configurations as the application of
such heuristic methods proved to be a good strategy in similar situations [13].

To measure the goodness of configurations, we need to evaluate them based
on their properties. Beside information already provided by manufacturers such as
energy consumption or price, properties related to light quality are only available
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if we compute the light pattern generated by the studied configuration. This is the
most important component of configuration evaluation as street lights violating the
regulations cannot be deployed.

In a nutshell, the two cornerstones of automatic designing of LED street lights
are the way how we construct new candidate configurations and how we determine
their generated light pattern.

8.2 Light Pattern Computation

Light pattern computation means the determination of light intensity in given points
on the surface we light. Regulation prescribes that these points must be the vertices
of a grid with 1m length of side. The height of lamppost and the overhanging
of lamp are also necessary to proceed. Without loss of generality, we consider
the housing of LEDs as a dimensionless point for simplicity because engineers
can house LED sockets in a way that inserted LEDs will be directed through the
same point. Lastly, LEDs are described by their lighting characteristic provided as
intensities measured in different horizontal and vertical angles in fix distance from
the light source following the format of EULUMDAT [1].

Algorithm 1 Compute Light Pattern
1: generate evaluation points
2: for all evaluation point p do
3: for all LED l do
4: calculate the direction vector LP pointing to p from l
5: calculate the angles of the direction pointing to p and the own direction of l
6: interpolate the base intensity towards p
7: determine the light intensity in p based on distance
8: increase the total intensity in p
9: end for

10: end for

The intensity of emitted light decreases quadratically by the distance measured
from its source, and the effects of different LEDs simply add up, therefore the whole
computation can be considered as repetition of an elementary subtask, calculating
the intensity of light cast by a single LED in a single evaluation point.

Light intensities are only available in certain directions, therefore we have to
determine which known values are the closest to the value we need. The first step
is to calculate the direction from the light source to the evaluation point. Having
the angles between this direction and the own direction of the LED, we are able
to determine a base intensity towards the evaluation point. We applied bilinear
interpolation for this purpose using four known intensity values. The final intensity
can be obtained easily based on distance.
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Algorithm 1 is a brief step-by-step pseudo code of the computation, but it will
not give the correct pattern as it only takes into account the lamp which belongs to
the target area, hence further adjustments are needed. Despite the high level control
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Fig. 8.1 Light patterns of street lights illuminating a rectangle shaped street section. Brighter
colours denote higher intensities measured in LUX. (a) Regular incandescent street light. (b)
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over the light of LEDs, we have to include the effects of neighbouring lamps to
obtain a valid pattern because intensities do not drop to zero when we leave the
borders of the target area as Fig. 8.1 shows. Light patterns also have at least one
axis of symmetry, but 2 or 4 are also possible, depending on how the lamp will
be deployed compared to the others. Therefore, we do not have to determine the
intensity in every evaluation point. Exploiting symmetry, only half of points or even
less need to be managed—significantly reducing the runtime.

All considered, 11 different light pattern settings are possible depending on
lamppost deployment and pattern symmetries, summarized in Table 8.1, which
cover most public lighting cases ranging from simple streets to parking lots.

8.3 Global Optimization by Genetic Algorithm

Constrained by complexity, we can only approximate the globally optimal LED
configuration in acceptable time. Any designer tool has to be capable of combining
different parts of configurations, which are already optimal at some level, to move
towards better solutions while it also involves randomness to be able to leave local
extremal points. Genetic algorithms seem to offer a suitable approach to handle our
problem-type.

Researchers apply genetic algorithms in many areas ranging from optimization
to machine learning to solve problems which cannot be handled by other means.
The idea of genetic algorithms comes from natural evolution. The basic concept is
to model the objects of a problem space as entities, or candidates in other words,
of a population and let the rule of “the strong flourish, the weak perish” work out.

Table 8.1 The 11 different light pattern scenarios based on the number
of axes of symmetry and the deployment of lampposts
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Elaborating more, we repeat the following steps in subsequent iterations until some
common stopping criteria are met:

1. Give a fitness value to every candidate based on its properties.
2. Take out some candidates from the population selecting more probably the ones

whose fitness is low.
3. Mutate some candidates by slightly altering their properties.
4. Crossover entities mixing their properties somehow in the offspring to replace

the ones you took out earlier.

This description may seem very intuitive and it also well shows how we let the
principles of evolution help us to find whatever we are looking for represented as
the best survivor in the population. The most important concepts are the genetic
operators, the way we calculate fitness, the selecting strategy of survivors, and how
the objects are distilled into candidates. For an in-depth study of genetic algorithms
and applications, see the books [6, 7].

In our case, population naturally consists of different LED configurations. In
more detail, each candidate solution contains vertical and horizontal angles, lighting
characteristics, and power consumption data for every LED in the configuration.
Determining and storing precise positions of LEDs in a lamp is omitted which the
engineers designing the final physical product are responsible for.

Choosing the right operators was a more delicate decision. Three mutation
operators are used to alter angles, or LED types, or to take out, and put back LEDs
into configurations. Angle modification has the least impact on fitness function
while the others concern not just the light pattern but every criterion too. Crossover,
in contrast of mutation, has a much larger effect on configurations as it is tasked
to introduce new approaches of lighting. As above mentioned, our intention was to
combine configurations which light considerably well different parts of the target
region, see Fig. 8.2. The following steps implement this idea:

1. Choose two parent configurations.
2. Generate a rectangle randomly in the target region with uniform distribution.
3. Select the LEDs pointing in the rectangle from one configuration and the LEDs

pointing out of the rectangle from the other configuration. Switch the roles of
parent configurations and repeat the process.

4. The two resulted sets of LEDs will compose the child configurations.

The above steps are simple and intuitive. We tested the operator with different
parameters of rectangle generation to make it fit best to its intended goal. Finding the
maximal and minimal allowed area of rectangles was the key. Too small rectangles
result in an insignificant change of configurations while too large ones are likely
to include poorly lighted areas as well, again not bringing improvement into the
population.

This set of genetic operators provide a fine-grained tool set to create and modify
candidate solutions in various levels.

The final element we have not discussed yet is the fitness function, the compass
of designing for which we reasoned on behalf of automatic configuration design
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Fig. 8.2 Illustration of recombining two configurations based on light patterns

in the first place. The fitness value unites the goodness of configuration from the
economic, energetic, and functional point of view simultaneously. We define fitness
as the sum of several penalty terms derived by observing the following properties:

1. difference between the expected average intensity and the current values in
evaluation points,

2. difference between the expected and current average of intensity,
3. total energy consumption,
4. the number of LEDs, and
5. difference between the expected and the current variance of intensity.

The first two expressions measure how far configurations are from regulations. If
the intensities and the average are not in the allowed range, an additional penalty
constant is also applied. Soundly, this forces the genetic algorithm to consider
regulations first and everything else second. The user inputs are the strict bounds
for term 1 and 2, and the weights expressing the relative importance compared to
each other in case of the last three.

8.4 Results

The designing application has two components, a JAVA graphical user interface
(GUI) and an optimizer written in c++. The GUI handles typical features as creating,
opening, saving, etc. designing projects. When a new project is started, a step-
by-step wizard guides the user to set optimization parameters, usable LED types,
lamppost settings, and other user defined values. After everything is prepared, the
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Table 8.2 Five test cases and their running time of automatic design

No. Width (m) Length (m) LEDs Intensity (lux) Total CPU runtime (s)
Optimization
runtime (s)

1. 30 10 27 6 299 269

2. 30 10 48 10 431 391

3. 35 20 38 6 705 651

4. 40 20 68 8 1,505 1,410

5. 50 25 100 8 2,849 2,673

GUI starts the optimizer. During optimization, the genetic algorithm frequently
sends back the best solutions, whose light pattern and other describing numerical
information are visualized in the GUI. The user can stop the optimization whenever
he or she decides that the currently shown configuration fulfils the requirements.
Otherwise, the process stops when all the characteristics of the best configuration
found are within the allowed ranges and it does not change significantly over several
iterations.

We implemented the genetic algorithm and the light pattern computation from
scratch. Only the GUI relies on third party libraries to read and write XML files
and to export LED configurations in PDF format. The program runs on Windows
operating systems as this was the platform our industrial partner requested.

Assessing capabilities of the developed methodology was a difficult issue.
First, LED street light manufacturers tend to keep their designing processes as
well guarded secrets. Academic research groups and companies release improved
designs from time to time but never designing tools. Programs available on the
market are mainly concerned about visualizing light plans as realistic and fast as
possible, but the burden of creating plans is left to the user. Unfortunately, this
means that we were unable to compare our software to competitors as they have
not presented their results yet.

Our only option was to compete with our industrial partner’s engineers. Manual
creation of even a single LED configuration takes long hours, therefore we could
only ask for a few test cases from which several are shown on Table 8.2. We ran
the tests on a simple laptop having an Intel Core I3-370M processor and 3 GB
memory. On average, configurations our program found were at least twice better
than manually created ones regarding the objective function. The largest difference
appeared in the uniformity of light patterns as the automatically designed ones
turned out to be much more smoother.

A practical feature that the industrial partner specially asked for is the possibility
to add already configured LEDs to configurations in advance whose properties
cannot be modified during design. This might seem a little bit odd at first glance.
Why would anyone want to force such constraints to the algorithm by adding
manually set elements to a lamp? Obviously no one would, but if we create a
configuration for a certain lighting scenario, by this feature, we are able to adjust it
with also automatically designed LEDs to fit another one. This allows us to produce
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Table 8.3 Running time comparison of CPU and GPU based implemen-
tations in seconds

Total CPU Total GPU CPU optimization GPU optimization
# time time time time

1. 299 269 144 111

2. 431 391 151 116

3. 705 651 184 134

4. 1,505 1,410 251 156

5. 2,849 2,673 334 181

Fig. 8.3 The effect of parallelization

the same housing for different streets or roads. We only need to plug the right
LEDs into the right sockets before deployment. This results in less product types
to manage saving even more for the companies.

The stopping conditions of optimization were met after 3–4 h for typical design
settings, and configurations fulfilling every hard condition already emerged after
20–30 min as Table 8.2 shows. After the first test runs, the industrial partner became
interested in the reduction of optimization time assigning a new objective to us.

Profiling the software revealed that 80 % of executed operations are related
to light pattern computation. As indicated before, most of these calculations can
be executed independently, hence we decided to execute the intensity calculation
of different evaluation points in parallel. We based the new implementation on
NVIDIA’s CUDA technology [11]. We repeated the optimization using the same
seeds for random number generation, see Table 8.3. This happened on the same
laptop we used earlier with an NVIDIA GeForce GT 335M video card.
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As illustrated in Fig. 8.3, we analysed the runtime as a function of problem size,
which is the product of the number of applied LEDs and the width and length of the
target rectangle. Linear regression resulted in the following coefficients:

CPUruntime D 0:020;94problemsize C 127;

GPUruntime D 0:001;58problemsize C 134:
(8.1)

Dividing the steepness’ of (8.1) by each other, we obtain a 13 times speedup limit
in runtime. Although this growth in performance can truly be harnessed when
larger problems are encountered, parallelization significantly reduces runtime in
every case.

8.5 Conclusion

Designing optimal LED configurations for public lighting purposes is far more
complex, even for expert engineers, than to be handled manually. This global opti-
mization problem belongs to the classic field of covering problems; however, it can
only be approached by stochastic optimization methods due to high dimensionality
and special constraints.

We developed a software solution which is capable of designing LED config-
urations automatically while it considers every relevant factor during the process.
Our approach is to handle configuration construction by a genetic algorithm which
combines configurations based on partially good light patterns using crossover
to obtain better candidate solutions whom mutation refines further. The objective
function is the weighted sum of different penalty terms measuring the goodness of
energy consumption, quality of lighting, and total cost of applied light sources.

As light pattern related operations put out the bulk of required computation
during design, we took advantage of any axial symmetry present in the problems
to reduce light intensity evaluation to the most necessary level. After finishing the
first prototype, we reimplemented light pattern computation using NVIDIA’s CUDA
technology to make the optimization even faster by handling effects of different
LEDs simultaneously. The result of this effort is a 13 times speedup in limit.

In our experience, automatic design can lead to at least twice better config-
urations than manual design. The most outstanding difference comes out in the
uniformity of light intensities revealing the main strength of our algorithm. The
presented test cases prove that the developed optimization technique can truly help
the work of engineers reducing designing time and other costs.
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Chapter 9
Approximate Packing: Integer Programming
Models, Valid Inequalities and Nesting

Igor Litvinchev, Luis Infante, and Lucero Ozuna

Abstract Using a regular grid to approximate a container, packing objects is
reduced to assigning objects to the nodes of the grid subject to non-overlapping
constraints. The packing problem is then stated as a large scale linear 0-1 optimiza-
tion problem. Different formulations for non-overlapping constraints are presented
and compared. Valid inequalities are proposed to strengthening formulations. This
approach is applied for packing circular and L-shaped objects. Circular object is
considered in a general sense as a set of points that are all the same distance
(not necessary Euclidean) from a given point. Different shapes, such as ellipses,
rhombuses, rectangles, octagons, etc., are treated similarly by simply changing the
definition of the norm used to define the distance. Nesting objects inside one another
is also considered. Numerical results are presented to demonstrate the efficiency of
the proposed approach.

Keywords Packing problems • Integer programming • Large-scale optimization

9.1 Introduction

Packing problems generally consist of packing a set of items of known dimensions
into one or more large objects or containers to minimize a certain objective (e.g. the
unused part of the container or waste). Packing problems constitute a family of
natural combinatorial optimization problems applied in computer science, industrial
engineering, logistics, manufacturing and production processes (see, e.g., [1–4] and
the references therein).
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Along with industrial applications one may find packing problems in healthcare
issues (e.g., [5, 6]). Wang [6] considered automated radiosurgical treatment planning
for treating brain and sinus tumours. Radiosurgery uses the gamma knife to deliver
a set of extremely high dose ionizing radiation, called “shots” to the target tumour
area. For large target regions multiple shots of different intensity are used to cover
different parts of the tumour. However, this procedure may result in large doses due
to overlap of the different shots. Optimizing the number, positions and individual
sizes of the shots can reduce the dose to normal tissue and achieve the required
coverage.

Packing problems for regular shapes (circles and rectangles) of objects and/or
containers are well studied (see, e.g., a review by [7] for circle packing). In circle
packing problem the aim is to place a certain number of circles, each one with a fixed
known radius inside a container. The circles must be totally placed in the container
without overlapping. The shape of the container may vary from a circle, a square, a
rectangular, etc. For the rectangular container there are two principal types of objec-
tives [8, 9]: (a) regarding the circles (not necessary equal) as being of fixed size and
the container as being of variable size and (b) regarding the circles and the container
as being of fixed size and minimize “waste”. Examples of the first approach include:
minimize the perimeter or the area of the rectangle; considering one dimension
of the rectangle as fixed, minimize the other dimension (strip packing or open
dimension problem). For the second approach various definitions of the waste can
be used. The waste can be defined in relation to circles not packed or introducing a
value associated with each circle that is packed (e.g., area of the circles packed).

Many variants of packing circular objects have been formulated as nonconvex
(continuous) optimization problems with decision variables being coordinates of
the centres [7]. Non-overlapping typically is assured by nonconvex constraints
representing that the Euclidean distance separating the centres of the circles is
greater than a sum of their radii. The nonconvex problems can be tackled by
available nonlinear programming (NLP) solvers, however most NLP solvers fail to
identify global optima and global optimization techniques have to be used [2, 10].
The nonconvex formulations of circular packing problem give rise to a large variety
of algorithms which mix local searches with heuristic procedures in order to widely
explore the search space. We will refer the reader to review papers presenting the
scope of techniques and applications for regular packing problem (see, e.g., [8, 9,
11–13] and the references therein).

Irregular packing problems involve non-standard shapes of objects and/or con-
tainers. Irregular shapes are those that require non-trivial handling of the geometry
[14, 31]. One of the most common representations for irregular shape is a polyhedral
domain which may by nonconvex or multi-connected. Heuristic and metaheuristic
algorithms are the basis for the solution approaches (see [3, 15] and the references
therein).

Discrete approximations of objects by tetris-like items [3] and containers by grids
[15–20] were recently used to simplify packing problems. This approach allows
handling irregular shapes and reduces (approximately) packing problems to discrete
optimization problems. To the best of our knowledge, the proposal to use a grid was
first applied by Beasley [21] in the context of cutting problems.
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This work is a continuation of Litvinchev and Ozuna [17]. Using a regular grid
to approximate the container, packing is reduced to assigning the objects to the
nodes of the grid subject to non-overlapping constraints. Different formulations
for non-overlapping are considered and compared. Valid inequalities are proposed
to strengthening formulations. This approach is applied for packing circular and
L-shaped objects. Circular object is considered as a set of points that are all the
same distance (not necessary Euclidean) from a given point. This way different
shapes, such as ellipses, rhombuses, rectangles, octagons, etc. can be treated by
simply changing the norm used to define the distance. Nesting objects inside one
another is also considered. Numerical results are presented to demonstrate efficiency
of the proposed approach.

The rest of the work is organized as follows. In Sect. 9.2 integer program-
ming approximation of the packing problem is presented along with different
formulations for non-overlapping. In Sect. 9.3 the proposed approach is applied to
packing circular objects. Experimental results for packing different circular shapes
are provided to demonstrate usefulness of valid inequalities proposed in Sect. 9.2.
L-shaped objects and containers are considered in Sect. 9.4, while Sect. 9.5 presents
concluding remarks and directions for the future research.

9.2 Basic Constructions

Suppose we have non-identical objects Gk, k 2 K D f1; 2; : : :Kg which have to
be packed in a container G. In what follows we will use the same notation Gk, G
for the domain in R

n and for its boundary assuming that it is easy to understand
from the context what do we mean. It is assumed that no two objects overlap with
each other and each packed object lies entirely in the container. Denote by Sk the
area of Gk. Let at most Mk objects Gk are available for packing and at least mk of
them have to be packed. Denote by pi, i 2 I D f1; 2 : : : ; ng the nodes of a grid
covering the container, pi 2 G. It is assumed that the position of the object in the
container is completely characterized by the position of its reference point. Define
binary variables xk

i D 1 if the reference point of the object Gk is assigned to the node
i; xk

i D 0 otherwise. In what follows we will say that the object is assigned to the
node i if the corresponding reference point is assigned to that node and will denote
this as Gi

k. For fixed i, k let

Nik D
n

j; l W i ¤ j such that Gi
k overlaps with Gj

l

o
:

Let nik be the cardinality of Nik W nik D jNikj. Then the problem of maximizing the
area covered by the objects can be stated as follows:

max
X

i2I

X

k2K

Skxk
i (9.1)
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subject to

mk �
X

i2I

xk
i � Mk; k 2 K; (9.2)

X

k2K

xk
i � 1; i 2 I; (9.3)

xk
i D 0 for Gi

kn
�
G \ Gi

k

� ¤ ¿ for i 2 I; k 2 K; (9.4)

xk
i C xl

j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik; (9.5)

xk
i 2 f0; 1g ; i 2 I; k 2 K: (9.6)

Constraints (9.6) ensure that the number of objects packed is between mk and Mk;
constraints (9.3) that at most one object is assigned to any node; constraints (9.4)
that Gk cannot be assigned to the node i if Gi

k is not totally placed inside G; pair-
wise constraints (9.5) guarantee that there is no overlapping between the objects;
constraints (9.6) represent the binary nature of variables.

Remark 2.1 Linear non-overlapping constraints (9.5) are equivalent to a single
quadratic constraint

Q.x/ 

X

i;k
xk

i

X
j;l2Nik

xl
j D 0 .� 0/ : (9.7)

If (9.7) holds, then for xk
i D 1 we have

X
j;l2Nik

xl
j D 0 yielding xl

j D 0; .j; l/ 2 Nik,

and if xl
j D 1 at least for one pair .j; l/ 2 Nik, then xk

i D 0. Thus (9.5) can be
considered as a specific linearization of (9.7). Other linearizations and relaxations
of (9.7), e.g. used for the quadratic assignment problem [22] can also be considered.

Below we present different formulations for the non-overlapping constraints
(9.5) which remain valid for the general definition of Nik.

By the definition of Nik if .j; l/ 2 Nik, then .i; k/ 2 Njl. Thus a half of the
constraints in (9.5) are redundant since we have:

xk
i C xl

j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik;

xl
j C xk

i � 1; for j 2 I; l 2 K; .i; k/ 2 Njl:

We may eliminate any (none) of these two constraints to get the reduced
equivalent formulation. This can be represented by multiplying constraints (9.5) by
a fixed �l

j 2 f0; 1g:

xk
i �

l
j C xl

j�
l
j � �l

j; for i 2 I; k 2 K; .j; l/ 2 Nik; (9.8)
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subject to �l
jC�k

i � 1. This way either one of the redundant constraints is eliminated
(�l

j C �k
i D 1) or no-one (�l

j C �k
i D 2). Since eliminating redundant constraints

does not affect the feasible set, the problem (9.1)–(9.6) is equivalent to (9.1)–(9.4),
(9.6), (9.8) for any � fulfilling the normalized condition

� 2 ƒ D ˚
�l

j 2 f0; 1g W �l
j C �k

i � 1; .j; l/ 2 Nik
�
:

Similar to plant location problems [23] we can state non-overlapping conditions
in a more compact form. Summing up constraints (9.7) over .j; l/ 2 Nik we get

xk
i

X

.j;l/2Nik

�l
j C

X

.j;l/2Nik

�l
jx

l
j �

X

.j;l/2Nik

�l
j; for i 2 I; k 2 K: (9.9)

Proposition 2.1 For any � 2 ƒ constraints (9.5), (9.6) are equivalent to constraints
(9.6), (9.9).

Proof If constraints (9.5) are fulfilled, then obviously constraints (9.9) hold by
construction. Now let constraints (9.9) are fulfilled. Define

N1
ik D

n
.j; l/ 2 Nik W �l

j D 1
o
; N0

ik D
n
.j; l/ 2 Nik W �l

j D 0
o
; N1

ik [ N0
ik D Nik;ˇ̌

N1
ik

ˇ̌ D n1ik;
ˇ̌
N0

ik

ˇ̌ D n0ik:

By (9.9) we have

xk
i n1ik C

X

.j;l/2N1ik

xl
j � n1ik

and hence,

if xk
i D 1; then xl

j D 0 for .j; l/ 2 N1
ik: (9.10)

By the definition, if .j; l/ 2 Nik, then .i; k/ 2 Njl. Thus by (9.9) we have

xl
j

X

.i;k/2Njl

�k
i C

X

.i;k/2Njl

�k
i xk

i �
X

.i;k/2Njl

�k
i for j 2 I; l 2 K: (9.11)

In particular, (9.11) is fulfilled for .j; l/ 2 N0
ik. Since �l

j C �k
i � 1, then for

.j; l/ 2 N0
ik all �k

i in (9.11) are positive (�k
i D 1). Then by (9.11) we have:

if xl
j D 1 for at least one .j; l/ 2 N0

ik; then xk
i D 0: (9.12)

Note that constraints (9.5) can be interpreted in two ways. First if xk
i D 1, then

xl
j D 0 for all .j; l/ 2 Nik. Second, if xl

j D 1 for at least one .j; l/ 2 Nik, then xk
i D 0.

Combining (9.10) and (9.12) we may conclude that if constraints (9.9) are fulfilled,
then (9.5) hold. �
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Remark 2.2 In Galiev and Lisafina [16] the compact formulation

xini C
X

j2Ni

xj � ni for i 2 I (9.13)

was used to represent non-overlapping constraints for the case of packing identical
circles. This corresponds to a singleton set K and all multipliers � equal to 1 in (9.9).

Remark 2.3 Proposition 2.1 remains true for nonnegative (not necessary binary)
multipliers � subject to �l

j C �k
i ¤ 0. The proof is similar.

As follows from Proposition 2.1, the non-overlapping constraints can be stated
in different forms (see [20] for an illustrative example). We have a family of
formulations equivalent to (9.5) and obtained for different multipliers � in (9.9).
To compare equivalent formulations, let

P1 D ˚
x � 0 W xk

i C xl
j � 1; for i 2 I; k 2 K; .j; l/ 2 Nik

�
;

P2 D
8
<

:x � 0 W xk
i

X

.j;l/2Nik

�l
j C

X

.j;l/2Nik

�l
jx

l
j �

X

.j;l/2Nik

�l
j; i 2 I; k 2 K

9
=

; ;

where multipliers � in P2 fulfil the normalizing condition stated in Proposition 2.1.

Proposition 2.2 P1 � P2.

Proof Since constraints of P2 are a linear combination of those in P1 with
nonnegative multipliers �, then P1 � P2. To show that P1 � P2 we need to find
a point in P2 that is not in P1.

This point can be constructed as follows. Choose .i; k/ 2 Njl and .j; l/ 2 Nik such

that
X

.j;l/2Nik

�l
j;

X

.i;k/2Njl

�k
i � 2. Set to zero all the variables except xk

i , xl
j. Obviously

all constraints in P2 corresponding to zero variables are fulfilled. Define xk
i , xl

j to
fulfil the two remaining constraints as equalities:

xk
i

X

.j;l/2Nik

�l
j C xl

j D
X

.j;l/2Nik

�l
j; xl

j

X

.i;k/2Njl

�k
i C xk

i D
X

.i;k/2Njl

�k
i :

Denote nik D
X

.j;l/2Nik

�l
j; njl D

X

.i;k/2Njl

�k
i with nik; njl � 2. The corresponding

solution of the two equations above is

xk
i D njl .nik � 1/

njlnik � 1
< 1; xl

j D nik
�
njl � 1�

njlnik � 1
< 1
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with

xk
i C xl

j D 1C 1C njlnik � njl � nik

njlnik � 1
> 1:

This point violates corresponding constraint in P1 and hence P1 � P2 as
desired. �

As follows from Proposition 2.2, the pairwise formulation (9.1)–(9.6) is stronger
than the compact one (9.1)–(9.4), (9.6), (9.9) in the sense of Wolsey [23].

In general, checking if the object is not totally placed inside the container is
tricky. However, for a convex container and a polygonal object this problem can be
simplified as stated below.

Proposition 2.3 Let G be a convex set and Gk be a (not necessary convex) polygon.
Let vt

ki; t D 1; : : : ;Tk be all vertices of Gi
k. Then Gi

k � G iff vt
ki 2 G; t D

1; : : : ;Tk.

Proof If Gi
k � G; then obviously all vertices of Gi

k are in G. Let now
vt

ki 2 G; t D 1; : : : ;Tk. Consider the convex hull of Gi
k, conv

�
Gi

k

� Dn
y W y D

X
t
˛tv

t
ki;

X
t
˛t D 1; ˛t � 0

o
. Since all vertices of Gi

k are in G, then

by convexity of G any convex linear combination of vertices also belongs to G and
hence conv

�
Gi

k

� � G. By the definition of convex hull, Gi
k � conv

�
Gi

k

�
and hence

Gi
k � G as desired. �

Good upper (dual) bounds are very important to solve integer programming
problems. We may expect that the upper bound obtained by the linear programming
relaxation of the problem (9.1)–(9.6) provides a poor upper bound for the optimal
objective. For example, for packing equal circles in a rectangular container the
objective value of the LP-relaxation grows linearly with respect to the number of
grid nodes (see [20] for details).

To tightening the LP-relaxation we consider valid inequalities ensuring that no
grid node is covered by two objects. To present this family, define matrix [˛k

ij] as
follows. Let ˛k

ij D 1 if Gi
k covers a node j, ˛k

ij D 0 otherwise. The following
constraints ensure that no nodes of the grid can be covered by two objects:

X

k2K

X

j2I

˛k
ijx

k
j � 1; i 2 I: (9.14)

Note that (9.14) is not equivalent to the non-overlapping constraints (9.5).
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9.3 Circular Objects

Define a circular object Ck as a set of points that all are at most the distance Rk from
a given point called centre, Ck D fy W ky � y0kk � Rkg. Here the norm used to define
the object is not necessary the Euclidean [32]. Let dij be the distance between node
points i, j in the sense of the norm used to define the circular object.

The set Nik in (9.5) is now defined as follows: Nik D ˚
j; l W i ¤ j; dij < Rk C Rl

�
.

For matrix [˛k
ij] in (9.14) we have ˛k

ij D 1 for dij < Rk, ˛k
ij D 0 otherwise.

Using different norms we can use constructions of the previous section for
packing different geometrical objects of the same shape. For example, a circular
object in the maximum norm kyk1 WD maxr fjyrjg is represented geometrically by

a square, taxicab norm kyk1 WD
X

r
jyrj yields a rhombus. In a similar way we may

handle rectangles, ellipses, etc. Using a superposition of norms, we can consider
more complex circular objects. For

kyk WD maxr

n
jyrj ; �

X
r
jyrj
o

and a suitable 0:5 < � < 1 we get an octagon, an intersection of a square and a
rhombus.

A numerical experiment was designed to evaluate the performance of different
non-overlapping formulations and to see the impact of the valid inequalities for
packing circular objects in a rectangular container.

In the first part of the experiment the test bed set of 9 instances from ([16],
Table 3) was used for packing maximal number of circles into a rectangle of
width 3 and height 6. A rectangular uniform grid of size � along both sides of the
container was used. It was assumed that the supply of the objects is unlimited and
constraints (9.2) were relaxed. Similar to [16] the nodes located too close (close than
a radius) to the boundary were eliminated from consideration and thus constraints
(9.4) were omitted. In all experiments optimization problems were solved by the
system CPLEX 12.6 [24]. The runs were executed on a desktop computer with CPU
AMD FX 8350 8-core processor 4 GHz and 32 GB RAM.

The following four formulations were compared: pairwise formulation (9.1)–
(9.6) (Cmpl), reduced formulation (9.1)–(9.6) without redundant constraints
(CmplH), compact formulation (9.13) as in Galiev and Lisafina [16] (Cmpct),
and compact formulation obtained by summing up constraints in the reduced
formulation (9.1)–(9.6) (CmpctH). All these four formulations were combined
with valid inequalities (cuts) (9.14), the corresponding formulations are denoted
by CmplC, CmplHC, CmpctC, CmpctHC. The results of the numerical experiment
are given in Table 9.1. Here the first three columns present instance number,
circle radius, and grid size �. The last columns give CPU time (in seconds) for
different formulations. For all problem instances mipgap D 0 was set for running
CPLEX. In this table asterisk indicates that the computation was interrupted after
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Table 9.1 CPU-time for circles (gap 0 %)

# R � Cmpl CmplC CmplH CmplHC Cmpct CmpctC CmpctH CmpctHC

1 0.5 0.125 2 2 1 1 276 4 5 4

2 0.625 0.078125 71 15 41 11 1,040 35 50 12

3 0.5625 0.0625 337 82 186 75 11,666 87 831 72

4 0.375 0.09375 6 9 4 4 2,698 29 169 92

5 0.3125 0.078125 96 163 114 189 * 819 * 1,027

6 0.4375 0.546875 17,437 1,392 17,654 1,379 * 39,347 * *

7 0.25 0.0625 * 3,531 * 3,178 * * * *

8 0.275 0.06875 132 87 177 87 * 2,523 * 2,860

9 0.1875 0.046875 * 17,437 * * * * * *

Table 9.2 LP-relaxations

# n� LP O LPC R LPC C LPC E LPC

1 697 348:5 18 19 28 33:43 18 19 34 36

2 1,403 701:5 9 10 15 16:87 10 10 21 25

3 2,449 1; 224:5 12 14:0743 20 22:25 13 14:07 27 29:91

4 1,425 712:5 26 30:9485 39 41:37 32 36:33 59 68:86

5 2,139 1; 069:5 41 53:4043 76 94:76 45 53:4 99 110

6 3,666 1; 833:5 20 22:5537 35 39:72 21 23:86 43 49:787

7 3,649 1; 824:5 72 90:9767 127 157:96 74 90:98 137 182

8 2,880 1; 440 50 59:014 75 79:53 61 72 108 134:56

9 6,897 3; 448:5 106 134:342 167 182:28 140 162 261 273:61

the computation time exceeded 12-h CPU. Number of binary variables and optimal
packings are presented in Table 9.2 in columns (n�) and (C), correspondingly.

As we can see from Table 9.1, CPU time for complete formulations is lower than
for the compact, especially for large instances. Eliminating redundant constraints
typically (but not always) reduces CPU time. Although eliminating redundancy does
not change corresponding LP-relaxation, it may affect the path selected by branch
and bound technique and thus result in increase/decrease of CPU time.

Introducing valid inequalities decreases CPU time for all problem instances
and for all problem formulations. Although introducing valid inequalities slightly
increases time to solve the LP-relaxation, the effect of improving quality of the LP-
bound becomes more important for the convergence of the overall branch and bound
scheme. That is why CPU time decreases significantly for hard instances 6, 7, 9,
while for “easy” instances the decrease may be relatively modest. Moreover, with
valid inequalities CPU time necessary to get provably optimal solution (mipgap D 0)
is comparable with that reported in Galiev and Lisafina [16] for their heuristic
approach.

Table 9.2 presents values of the LP-relaxations with/without valid inequalities
for packing equal circles (C), ellipses (E), rhombuses (R) and octagons (O) into the
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Fig. 9.1 Packing equal circular objects for instance 7

same 3 � 6 rectangle using the same values � for the grid. The standard Euclidean
and taxicab norms were used to define circles and rhombuses, while norms

kyk WD �
2y21 C y22

�1=2
and kyk WD max

n
jy1j ; jy2j ;

�
1=

p
2
�
.jy1j C jy2j/

o

were used for ellipses and octagons. The same values of radii as in Table 9.1 were
used to define circular objects. In Table 9.2 the first three columns present instance
number, number of binary variables (n�) and value of the LP-relaxation without
valid inequalities (LP). For all circular objects the optimal value of the LP-relaxation
was 0.5n� (all variables equal to 0.5). The last eight columns give the value of the
optimal integer solution (in bold) and the value LPC of the LP-relaxation improved
by the valid inequalities (next to bold). We see that introducing valid inequalities
improves significantly the quality of the LP bound for all shapes of the objects. The
detailed study of this subject for the case of circles one can find in Litvinchev et al.
[20] for the same test bed instances. Packings for the instance 7 are presented in
Fig. 9.1.

In many applied problems packing smaller objects inside a larger one is
permitted. For example, in tube industry the tubes are produced in a continuous
extract machine and cut to the length of the container used for shipping. Before
being placed in the container they may be inserted inside other, thicker tubes, so
that usage of container space is maximized. Since all the tubes have the same length,
maximizing container load is equivalent to maximizing the area filled with circles
(rings) in a section of the container. Similar problems arise, e.g. in stacking up
different containers to form a tower [25] and in visualization of large hierarchical
data by 3D nested cylinders [26]. In tube industry the process is usually named
telescoping [27], in optimized packing context the terms nesting [2] or recursive
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packing [28] are used. Although the term nesting is also used for packing irregular
objects [15], we will use nesting for packing smaller objects inside larger ones
assuming that it is easy to understand from the context what do we mean.

To consider nesting circular objects inside one another, we only need to modify
the non-overlapping constraints. In order to Ci

k be non-overlapping with other
objects being packed (including objects placed inside Ci

k), it is necessary that xl
j D 0

for j 2 I; l 2 K, such the Rk � Rl < dij < Rk C Rl for Rk > Rl. Let

�ik D ˚
j; l W i ¤ j; Rk � Rl < dij < Rk C Rl; Rk > Rl

�
:

Then the non-overlapping constraints for packing circular objects with nesting can
be stated as

xk
i C xl

j � 1; for i 2 II k 2 KI .j; l/ 2 �ik: (9.15)

Constraints (9.3) have to be omitted in case of nesting.
If nesting is permitted it may be necessary to take into account the difference

between external and internal sizes of the object, i.e. consider the object as a
circular ring (a region bounded by two concentric circular objects) having a positive
thickness. To consider nesting-subject-to-thickness we need only to redefine the set
�ik. Let gk be the thickness of the circle Ck. For �ik defined as

�ik D ˚
j; l W i ¤ j; Rk � gk � Rl < dij < Rk C Rl; Rk � gk > Rl

�

we get non-overlapping constraints similar to (9.15).
The results for packing two different octagons in a square 30 � 30 container

maximizing the total area of the packed objects are presented in Table 9.3. Here the
first three columns give instance number, radii, and a number of grid nodes (integer
variables). The last columns give the total area without nesting (N�), with nesting
(NC) and with nesting and thickness (NCT), number of small (O1) and large (O2)
objects packed, as well as corresponding CPU time in sec. The thickness gk was
defined as 0.1Rk. The packings obtained for the instance 1 are presented in Fig. 9.2.

Table 9.3 Packing 2 different octagons

# R1, R2 n� N- O1, O2 CPU NC O1, O2 CPU NCT O1, O2 CPU

1 0.6, 6.3 441 627.48 85, 4 1 842.21 265, 4 1 804.37 233, 4 1
2 0.6, 6.3 961 699.06 145, 4 6 971.05 373, 4 3 910.209 322, 4 5
3 1, 5.3 441 699.35 41, 6 1 952.82 119, 6 1 922.99 110, 6 1
4 1, 5.3 961 750.09 114, 4 57 1,158.27 181, 6 129 1,019.1 139, 6 49
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Fig. 9.2 Packing two octagons for instance 1

Fig. 9.3 L-object

9.4 L-shaped Objects and Containers

In this section we consider packing L-shaped objects. These shapes appear, e.g. in
packing interpretations of scheduling with non-constant operational cycles [3]. Let
L-object (see Fig. 9.3) be a superposition of rectangles (A � b) and (a � B) with
edges parallel to the principal axes, A > a > 0, B > b > 0 and the principal corner
considered as a reference point.

To state the problem (9.1)–(9.6) we need to specify constraints (9.4), (9.5),
i.e. present a constructive way to check if the object is totally placed inside the
container and if the objects overlap. Suppose we have two L-objects, Li and Lj, with
the reference points located at (y1i, y2i) and (y1j, y2j). Introducing binary variables
zi; zj 2 f0; 1g these objects can be represented as follows:

Li D
n
.y1; y2; zi/ W zi 2 f0; 1g ; 0 � y1 � y1i � Ai C zi .ai � Ai/ ;

0 � y2 � y2i � bi C zi .Bi � bi/
o
;
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Lj D
n �

y1; y2; zj
� W zj 2 f0; 1g ; 0 � y1 � y1j � Aj C zj

�
aj � Aj

�
;

0 � y2 � y2j � bj C zj
�
Bj � bj

� o
:

We wonder if Li \ Lj ¤ ¿. This holds if the system of inequalities

max
˚
y1i; y1j

� � y1 � min
˚
y1i C Ai C zi .ai � Ai/ ; y1j C Aj C zj

�
aj � Aj

��
;

max
˚
y2i; y2j

� � y2 � min
˚
y2i C bi C zi .Bi � bi/ ; y2j C bj C zj

�
Bj � bj

��

is consistent at least for one combination of binary zi, zj. This can be verified by
inspection.

Substituting zi D zj D 0 yields

max
˚
y1i; y1j

� � min
˚
y1i C Ai; y1j C Aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C bi; y2j C bj

�
:

For zi D zj D 1 we have

max
˚
y1i; y1j

� � min
˚
y1i C ai; y1j C aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C Bi; y2j C Bj

�
:

Substituting zi D 1; zj D 0 yields

max
˚
y1i; y1j

� � min
˚
y1i C ai; y1j C Aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C Bi; y2j C bj

�
:

And finally for zi D 0; zj D 1 we get

max
˚
y1i; y1j

� � min
˚
y1i C Ai; y1j C aj

�
; max

˚
y2i; y2j

� � min
˚
y2i C bi; y2j C Bj

�
:

Thus if at least one pair of inequalities above hold, then Li \ Lj ¤ ¿. In a similar
way we can check overlapping for the other composite objects, e.g., for star-shapes
represented as a superposition of a square and a rhombus.

To check if L-object is totally placed inside a convex container we can use
Proposition 2.3 since all vertices of the object are easily identified. However, for
rectangular and L-shaped containers with all edges parallel to the principal axes we
can state constraints (9.4) based on simple geometrical considerations.

Below we present results of a numerical experiment for packing L-objects in
rectangular and L-shaped containers. The normalized objective was defined as the
total area of the objects divided over the area of the smallest object. For the case of
equal objects the normalized objective coincides with the number of objects.

In the first part of the experiment the test bed set of 6 instances was used
for packing maximal number of equal L-objects into a rectangular container of
width 3 and height 6. Two types of the objects were considered with the shapes
corresponding to A D B D 2R and B D 0:5A D 2R. The thickness of
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Table 9.4 Equal L-objects

# R n� z LP LPCC T TCC Z LP LPCC T TCC

1 0.5 3,321 37 1,163 135.5 16 11 22 1,029 117:2 25 14

2 0.625 2,145 20 680.7 107.7 4 3 10 580.1 79:08 4 4

3 0.5625 2,556 25 851.7 127.5 8 5 14 739.8 92:45 8 8

4 0.375 5,778 75 2,223 271.6 150 150 42 2,036 195:6 610 330

5 0.3125 8,385 116 3,379 384.9 1; 867 620 71 3,144 275:4 3; 581 1; 930

6 0.4375 4,186 48 1,537 201.5 76 76 29 1,383 146:5 73 55

Table 9.5 Packing 2 different L-objects

# R1, R2 n� z L1 L2 T LR LRCC L1C L2C TC
1 0.6, 6.3 3,969 750 309 4 * (12 %) 78; 384 5,980 681 4 * (7.8 %)
2 0.6, 6.3 3,969 447.5 227 2 530 51; 404 4,931 400 2 * (6.0 %)
3 1, 5.3 1,369 271.2 215 2 17 8; 458 1,352 197 6 * (5.7 %)
4 1, 5.3 1,369 147.2 91 2 16 6; 221 1,107 114 3 440

L-object was defined as a D b D 0:3R in both cases. A rectangular uniform grid
of size � D 0:15R (a half of the thickness) was used. The results of the numerical
experiment are given in Table 9.4. The first three columns present instance number,
value of R and a number of binary variables n�. The next five columns present
indicators for the case A D B: the optimal value of integer solution z; value of
the LP-relaxation without and with valid cuts, LP and LPCC; CPU time in sec.
to get integer solution without and with valid cuts, T and TCC. The last five
columns present similar indicators for the case B D 0:5A. For all problem instances
mipgap D 0 was set for running CPLEX.

As we can see from Table 9.4 introducing valid inequalities improves signifi-
cantly the LP-bound and reduces CPU-time, especially for hard instances.

In the second part of the experiment two different L-objects were packed in
a square 30 � 30 container maximizing the total normalized area of the packed
objects. Four instances were considered according to the shape of the objects. For
instances 1 and 3 A D B D 2R and for instances 2 and 3, B D 0:5A D 2R. In all
cases a D b D R. Two values of R were considered and for R D R2 (large object)
the minimal number of the objects to be packed was set to two, m2 D 2 in (9.2).

The results are presented in Table 9.5. Here the first four columns give instance
number, radii R1, R2, number n� of grid nodes (integer variables) and the value z
of the optimal solution. Columns 5 and 6 give the number of small (L1) and large
(L2) objects in the optimal solution, while column 7 indicates corresponding CPU
time in sec. for the case of using the valid inequalities (9.14). Asterisk indicates
that the computation was interrupted after the computation time exceeded 1,800 s.
CPU time and the value in parenthesis gives the corresponding mipgap. Columns 8
and 9 present the value of the LP-relaxation without (LR) and with (LRCC) valid
inequalities. The last three columns give the number of objects packed (L1C, L2C)
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Fig. 9.4 Instances 1, 2

Fig. 9.5 Instances 3, 4

and CPU time (TC) for the case of nesting allowed. Optimal packings for instances
1–4 are presented in Figs. 9.4 and 9.5 for the case without nesting and in Figs. 9.6
and 9.7 for nesting allowed.

In the final part of experimentation L-shaped container was considered for A D
B D 30, a D b D 12. Two instances were considered according to the shape of
the two different L-objects. For the first instance A D B D 2R for both objects and
for the second B D 0:5A D 2R. In all cases a D b D R. Two values of R were
used, R1 D 1, R2 D 5:3 and for R D R2 we set m2 D 2 in (9.2). A rectangular
uniform grid of size � D min fR1;R2g D 1 was used giving n� D 637 grid nodes
in the L-container. The optimal solution was obtained in less than 1 s. CPU time.
For the first instance (A D B D 2R) the optimal solution gives 108 small and 2 large
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Fig. 9.6 Instances 1, 2 with nesting

Fig. 9.7 Instances 3, 4 with nesting

L-objects without nesting and (120, 4) for nesting allowed. For the second instance
(B D 0:5A D 2R) we get (33, 2) and (71, 2) objects, respectively. The optimal
packings are presented in Figs. 9.8 and 9.9.

9.5 Conclusions

Integer programming formulations were considered for approximated packing
objects in a container. Using a grid approximation of the container packing problems
can be transformed into optimal assignment of the objects (reference points) to
nodes of the grid subject to non-overlapping constraints. In this work we used
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Fig. 9.8 Instance 1

Fig. 9.9 Instance 2

linear non-overlapping constraints. However, as noted in Remark 2.1, the problem
(9.1)–(9.6) is closely related to the quadratic assignment problem and corresponding
approaches can be also used for packing problems. Some results in this direction are
in course.

Valid inequalities (9.14) were proposed to strengthening the formulation and
our numerical experiments demonstrate that the value of the LP-relaxation can be
tightened significantly by (9.14). Moreover, aggregating valid cuts not only improve
the value of the relaxation, but also change the structure of the optimal LP-solution.
A simple LP-based heuristic is proposed in Litvinchev et al. [29] for packing circular
objects.

Grid approximation of the container results in a large-scale integer optimization
problem. Using decomposition and/or aggregation techniques [30] to split the nodes
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of the grid into smaller subsets (container decomposition) and/or creating “macro
nodes” (nodes aggregation) may be helpful to cope with high dimension. Some
results in this direction are in course.

A critical question in grid approximation is how to choose parameters of the grid,
e.g. shape and number of nodes, to get a reasonable trade-off between computational
burden and proximity to the true optimal packing. The use of non-uniform and/or
adaptive grids seems to be interesting direction for the future research.

Acknowledgements This work was partially supported by Grants from RFBR, Russia (12 01
00893 a), and CONACYT, Mexico (167019).
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Chapter 10
Exploiting Packing Components
in General-Purpose Integer
Programming Solvers

Jakub Mareček

Abstract The problem of packing boxes into a large box is often only a part of
a complex problem. For example in furniture supply chain applications, one needs
to decide what trucks to use to transport furniture between production sites and
distribution centres and stores, such that the furniture fits inside. Such problems are
often formulated and sometimes solved using general-purpose integer programming
solvers.

This chapter studies the problem of identifying a compact formulation of
the multi-dimensional packing component in a general instance of integer linear
programming, reformulating it using the discretisation of Allen–Burke–Mareček,
and solving the extended reformulation. Results on instances of up to 10,000,000
boxes are reported.

Keywords Packing • Multi-dimensional packing • Integer programming •
Structure exploitation

10.1 Introduction

It is well known that one problem may have many integer linear programming
formulations, in various dimensions, whose computational behaviour differs widely.
The problem of packing three-dimensional boxes into a larger box is a particularly
striking example. The trivial question of how many unit cubes can be packed
into a .k � 1 � 1/ box is impossible to answer for k D 12 within an hour
using the widely known formulation of Chen/Padberg/Fasano and state-of-the-art
solvers (IBM ILOG CPLEX, FICO XPress MP, Gurobi Solver), despite the fact
that after pre-solve, there are only 616 rows and 253 columns and 4,268 non-zeros.
In contrast, a discretised (“space-indexed”) formulation of [3] makes it possible
to solve the instance with k D 10;000;000 within an hour, where the instance
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of linear programming had 10,000,002 rows, 10,000,000 columns, and 30,000,000
non-zeros. This is due to the fact that the discretised linear programming relaxation
provides a particularly strong bound. On a large-scale benchmark of randomly
generated instances, the values of the linear programming relaxations at the root
node are 10.49 % and 0.37 % away from the respective integer optima for the
Chen/Padberg/Fasano and the formulation of [3], respectively.

The Allen–Burke–Marecek formulation with adaptive discretisations is, how-
ever, often rather hard to formulate in an algebraic modelling language. First, the
choice of the discretisation of the larger box is hard in any case; in terms of com-
putational complexity, finding the best possible discretisation is �p

2-Hard. Second,
algebraic modelling languages such as AMPL, GAMS, MOSEL, and OPL are ill-
suited to the dynamic programming required by efficient discretisation algorithms.
Finally, non-uniform grids pose a major challenge in debugging the formulation and
analysis of the solutions. Within a modelling language, the discretisation is hence
often chosen in an ad hoc manner, without considerations of optimality.

Instead, this chapter studies the related problems of identifying a packing com-
ponent in the Chen/Padberg/Fasano formulation in a larger instance of integer linear
programming, automating the reformulation of Chen/Padberg/Fasano formulation
into the Allen–Burke–Marecek formulation, obtaining a reasonable discretisation
in the process, and translating the solutions obtained by solving the Allen–Burke–
Marecek formulation back to the original one. The main contributions are:

1. An overview of integer linear programming formulations of packing boxes into
a larger box, covering both the formulation of Chen/Padberg/Fasano and the
discretisation of [3].

2. A formal statement of the problems of extracting the component and row-block,
respectively, which correspond to the formulation of Chen/Padberg/Fasano for
packing boxes into a larger box, from a general integer linear programming
instance. Surprisingly, we show that the extraction of the row-block is solvable
by polynomial-time algorithms.

3. A formal statement of the problem of finding the best possible discretisation, i.e.,
the best possible reformulation of Chen/Padberg/Fasano to the formulation of [3].
We show that the problem is �p

2-Hard, but that there are very good heuristics.
4. A novel computational study of the algorithms for the problems above. There, we

take the integer linear programming instance, extract the row-block correspond-
ing to the Chen/Padberg/Fasano formulation, perform the discretisation, write
out the integer linear programming instance using the Allen–Burke–Marecek
formulation, and solve it.

A general-purpose integer linear programming solver using the above results could
solve much larger instances of problems involving packing components, compared
with the state-of-the-art solvers using the Chen/Padberg/Fasano formulation.
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10.2 Background and Definitions

In order to motivate the study of packing components, let us consider:

Problem 1.1. The Precedence-Constrained Scheduling (PCS): Given integers
r; n � 1, amounts ai > 1 of resources i D 1; 2; : : : ; r available, resource
requirements of n jobs represented by D 2 Rn�r, and p pairs of numbers
P � f.i; j/ j 1 � i < j � ng; jPj D p expressing job i should be executed
prior to executing j, find the largest integer k so that k jobs can be executed using
the resources available.

This problem on its own has numerous important applications, notably in
extraction of natural resources [7, 28], where it is known as the open-pit mine
production scheduling problem, problems in supply chain applications, where both
weight and volume of the load is considered (e.g., [18, 21]) and each order can
consist of multiple boxes, and further problems in aerospace engineering [5, 17],
where one needs to pack the load of an aircraft, satellite, or similar, and there are
similar constraints.

Clearly, there is a packing component to Precedence-Constrained Scheduling
(Problem 1.1). Let us fix the order of six allowable rotations in dimension three
arbitrarily and define:

Problem 1.2. The Container Loading Problem (CLP): Given dimensions of a large
box (“container”) x; y; z > 0 and dimensions of n small boxes D 2 Rn�3 with
associated values w 2 Rn, and specification of the allowed rotations r D f0; 1gn�6,
find the greatest k 2 R such that there is a packing of small boxes I � f1; 2; : : : ; ng
into the container with value k D P

i2I wi. The packed small boxes I may be rotated
in any of the allowed ways, must not overlap, and no vertex can be outside of the
container.

Similarly:

Problem 1.3. The Van Loading Problem (VLP): Given dimensions of a large box
(“van”) x; y; z > 0, maximum mass p � 0 it can hold (“payload”), dimensions
of n small boxes D 2 Rn�3 with associated values w 2 Rn, mass m 2 Rn, and
specification of the allowed rotations r D f0; 1gn�6, find the greatest k 2 R such
that there is a packing of small boxes I � f1; 2; : : : ; ng into the container with value
k D P

i2I wi and mass
P

i2I mi � p. The packed small boxes I may be rotated in any
of the allowed ways, must not overlap, and no vertex can be outside of the container.

Such problems are particularly challenging. Ever since the work of [19], there
has been much research on extended formulations of 2D packing problems using the
notion of patterns, e.g. [25]. See [4] for an excellent survey. Only in the past decade
or two has the attention focused to exact solvers for 3D packing problems [27],
where even the special case with rotations around combinations of axes in multiples
of 90ı is NP-Hard to approximate [9]. Although there are a number of excellent
heuristic solvers, the progress in exact solvers for the CLP has been limited, so far.



210 J. Mareček

Table 10.1 Notation used in this chapter, which
matches [3]

Symbol Meaning

n The number of boxes

H A fixed axis, in the set fX; Y; Zg
˛ An axis of a box, in the set f1; 2; 3g
L˛i The length of axis ˛ of box i

l˛i The length of axis ˛ of box i halved

DH The length of axis H of the container

wi The volume of box i in the CLP

The Formulation of Chen/Padberg/Fasano Chen et al. [8] introduced an integer
linear programming formulation using the relative placement indicator:

�H
ij D

(
1 if box i precedes box j along axis H

0 otherwise
;

ıH
˛i D

(
1 if box i is rotated so that axis ˛ is parallel to fixed H

0 otherwise
;

xH
i D absolute position of box i along axis H:

Using the notation of Table 10.1 and implicit quantification, it reads:

max
nX

iD1

X

H

wiı
H
1i (10.1)

s:t:
X

H

ıH
2i D

X

H

ıH
1i (10.2)

X

H

ıH
1i D

X

˛

ıH
˛i (10.3)

L1j.i/�
H
j.i/i C

X

˛

l˛iı
H
˛i � xH

i (10.4)

xH
i �

X

˛

.DH � l˛i/ı
H
˛i � L1j.i/�

H
ij.i/ (10.5)

DH�
H
ji C

X

˛

l˛iı
H
˛i �

X

˛

.DH � l˛j/ı
H
˛j � xH

i � xH
j (10.6)

xH
i � xH

j �
X

˛

.DH � l˛i/ı
H
˛i �

X

˛

l˛jı
H
˛j � DH�

H
ij (10.7)

X

H

.�H
ij C �H

ji / �
X

H

ıH
1i (10.8)
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Fig. 10.1 The A matrix corresponding to the previously unsolved instance Pigeon-02 in the
Chen/Padberg/Fasano formulation, with colour highlighting the absolute value of the coefficients

X

H

.�H
ij C �H

ji / �
X

H

ıH
1j (10.9)

X

H

ıH
1i C

X

H

ıH
1j � 1C

X

H

.�H
ij C �H

ji / (10.10)

nX

iD1

X

H

 
Y

˛

L˛i

!
ıH
1i �

Y

H

DH (10.11)

ıH
˛i 2 f0; 1g; �H

ij 2 f0; 1g
L1i � L2i � L3i; j.i/ such that L1j.i/ D maxfL1jg for 1 � i ¤ j � n:

See Fig. 10.1 for the sparsity pattern of a small instance, known as Pigeon-02,
where at most a single unit cube out of two can be packed into a single unit cube.
The constraint matrix of Pigeon-02 is 43 � 32. In the figure, the column ordering is
given by placing D first, ı second, � third, and x at the end, with the highest-order-
first indexing therein. D has dimension 2, ı has dimension 18, � has dimension
6 and x has dimension 6. In the figure, the row ordering is given by the order of
constraints (10.2)–(10.11) above. Notice that a similar ordering of columns and
rows is naturally produced by a parser of an algebraic modelling language, such
as AMPL, GAMS, MOSEL or OPL.
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Table 10.2 The performance of various solvers on 3D Pigeon
Hole Problem instances encoded in the Chen/Padberg/Fasano
formulation

Time (s)

Gurobi 4.0 CPLEX 12.4 SCIP 2.0.1 + CLP

Pigeon-01 < 1 < 1 < 1

Pigeon-02 < 1 < 1 < 1

Pigeon-03 < 1 < 1 < 1

Pigeon-04 < 1 < 1 < 1

Pigeon-05 < 1 < 1 3.3

Pigeon-06 < 1 < 1 37.9

Pigeon-07 1.5 < 1 779.3

Pigeon-08 7.4 < 1 –

Pigeon-09 88.6 66.4 –

Pigeon-10 1,381.4 686.3 –

Pigeon-11 – – –

Pigeon-12 – – –

“–” denotes that optimality of the incumbent solution has not
been proven within an hour

This formulation has been studied a number of times. Notably, Fasano [11–13]
suggested numerous improvements to the formulation. Padberg [29] has studied
properties of the formulation and, in particular, identified the subsets of constraints
with the integer property. Allen et al. [3] proposed further improvements, including
symmetry-breaking constraints and means of exploitation of properties of the rota-
tions. See [14–16] for further extensions to Tetris-like items and further references.

Nevertheless, whilst the addition of these constraints improves the performance
somewhat, the formulation remains far from satisfactory. The formulations provide
only weak lower bounds. As has been pointed out in Sect. 10.1 and can be confirmed
in Table 10.2, Pigeon-k becomes very challenging as the number k of unit cubes to
pack into .k � 1 � 1/ box grows. See Fig. 10.2 for the sparsity patten of Pigeon-12,
which is already a substantial challenge for any modern solver to date, although
the constraint matrix is only 1333 � 552 and can be reduced to 738 rows and 288
columns in the presolve. Modern integer programming solvers fail to solve instances
larger than this, even considering all the additional constraints described above.

Discretisations Discretised relaxations proved to be very strong in scheduling
problems corresponding to one-dimensional packing [30, 33, 34] and can be shown
to be asymptotically optimal for various geometric problems both in two dimensions
[31] and in higher [35] dimensions. Beasley [6] has extended the formulation to
2D cutting applications, in the process of deriving a non-linear formulation, for
which he proposed solvers. Allen et al. [3] have extended the formulation to the 3D
problem of packing boxes into a larger box, with a considerable amount of work
being done independently and subsequently [10, 22, 23]. In this formulation, the
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Fig. 10.2 The A matrix corresponding to instance Pigeon-12 in the Chen/Padberg/Fasano formu-
lation, with colour highlighting the absolute value of the coefficients

small boxes are partitioned into types t 2 f1; 2; : : : ; ng, where boxes of one type
share the same triple of dimensions. At is the number of boxes of type t available.
The large box is discretised into units of space, possibly non-uniformly, with the
indices .x; y; z/ 2 D � R3 used to index the space-indexed binary variable:

�t
x;y;z D

8
ˆ̂<

ˆ̂:

1 if a box of type t is placed such that its lower-back-left

vertex is at coordinates x; y; z

0 otherwise

(10.12)

Without allowing for rotations, the formulation reads:

max
X

x;y;z;t

�t
xyzwt (10.13)

s:t:
X

t

�t
xyz � 1 8x; y; z (10.14)

�t
xyz D 0 8x; y; z; t where x C L1t > DX or

or y C L2t > DY or z C L3t > DZ (10.15)
X

x;y;z

�t
xyz � At 8t (10.16)
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Algorithm 1 f .D; n;L; x; y; z; t/
1: Input: Discretisation as indices D � R3 of� variables (10.12), number of boxes n, dimensions

L˛i 2 R 8˛ D x; y; z; i D 1; : : : ; n, indices .x; y; z/ 2 D, t 2 f1; 2; : : : ; ng of one scalar
within � (10.12)

2: Output: Set of indices of � variables (10.12) to include in a set-packing inequality (10.17)

3: Set S f.x; y; z; t/g
4: for each other unit .x0; y0; z0/ 2 D; .x; y; z/ 6D .x0; y0; z0/ do
5: for each box type t0 2 f1; 2; : : : ; ng do
6: if box of type t at .x; y; z/ overlaps box of type t0 at .x0; y0; z0/, i.e., .x � x0 C Lx0 t0 �

xC Lxt/^ .y � y0 C Ly0 t0 � yC Lyt/

^.z � z0 C Lz0 t0 � zC Lzt/ then
7: S S[ f.x0; y0; z0; t0/g
8: end if
9: end for

10: end for
11: return S

X

x0;y0;z0 ;t02f .D;n;L;x;y;z;t/

�t0
x0y0z0

� 1 8x; y; z; t (10.17)

�t
xyz 2 f0; 1g 8x; y; z; t (10.18)

where one may use Algorithm 1 or similar to generate the index set f in Con-
straint (10.17). See Fig. 10.3 for an example.

The constraints are very natural: No region in space may be occupied by more
than one box type (10.14), boxes must be fully contained within the container
(10.15), there may not be more than At boxes of type t (10.16), and boxes cannot
overlap (10.17). There is one non-overlapping constraint (10.17) for each discretised
unit of space and type of box.

In order to support rotations, new box types need to be generated for each
allowed rotation and linked via set packing constraints, which are similar to
Constraint (10.16). In order to extend the formulation to the VLP, it suffices to add
the payload capacity constraint

P
x;y;z;t �

t
xyzmt � p.

10.3 Finding the Precedence-Constrained Component

In the rest of the chapter, our goal is to extract the precedence-constrained compo-
nent in Chen/Padberg/Fasano formulation from a general integer linear program,
and reformulate it into the discretised formulation. Throughout, we distinguish
between a submatrix of a larger matrix, whose columns and rows are selected
arbitrarily, and a row-block, where the columns are selected arbitrarily, but the
rows form a contiguous block in the larger matrix. First, let us state the problem
of extracting the Chen/Padberg/Fasano relaxation formally:
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Fig. 10.3 The workings of Algorithm 1 illustrated on instance Pigeon-02 in the Chen/
Padberg/Fasano formulation, as introduced in Fig. 10.1

Problem 1.4. Precedence-Constrained Component/Row-Block Extraction: Given
positive integers d;m1;m2, an m1 � d integer matrix A1, an m2 � d integer matrix
A2, an m1-vector b1 of integers, and an m2-vector b2 of integers, corresponding to a
mixed integer linear program with constraints A1y D b1, A2y � b2, find the largest
integer n (“the maximum number of boxes”), such that:
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• there exists a 4n �9n submatrix/row-block E of A1, corresponding only to binary
variables, which we denote ı, with zero coefficients elsewhere in the rows

• there exists a 9n.n � 1/=2C 6n C 1 � 3n.n � 1/=2C 12n submatrix/row-block
F of A2, corresponding to 9n binary variables ı as before, 3n.n � 1/=2 binary
variables denoted�, and 3n continuous variables denoted x, with zero coefficients
elsewhere in the rows

• E contains n rows with exactly two non-zero coefficients ˙1, corresponding to
(10.2), and 0 in the right-hand side b1

• E contains 3n rows with exactly four non-zero coefficients ˙1, corresponding to
(10.3), and 0 in the right-hand side b1

• F contains 6n rows with exactly five non-zero coefficients, some not necessarily
˙1, corresponding to (10.4)–(10.5), and 0 in the right-hand side b2

• F contains 6n.n � 1/ rows with exactly nine non-zero coefficients, some not
necessarily ˙1, corresponding to (10.6)–(10.7), and 0 in the right-hand side b2

• F contains 2n.n � 1/ rows with exactly nine non-zero coefficients ˙1, corre-
sponding to (10.8)–(10.9), and 0 in the right-hand side b2

• F contains n.n�1/ rows with exactly 12 non-zero coefficients ˙1, corresponding
to (10.10), and 1 in the right-hand side b2

• F contains 1 rows with exactly 3n non-zero coefficients, not necessarily ˙1,
corresponding to (10.11), and a positive number in the right-hand side b2.

Notice that by maximising the number of rows involved, we also maximise the
number of boxes, as number r D 9n.n � 1/=2C 6n C 1 of rows is determined by
number n of boxes. The following can be seen easily:

Theorem. Precedence-Constrained Row-Block Extraction is in P .

Proof sketch. A polynomial-time algorithm for extracting the precedence-con-
strained block can clearly rely on there being a polynomial number of blocks of
the required size. See Algorithm 2. ut

Algorithm 2 displays a very general algorithm schema for Precedence-
Constrained Row-Block Extraction. Notably, the test of Line 10 requires
elaboration. First, one needs to partition the block into the five families of rows
(10.4)–(10.11). Some rows (10.8), (10.9), (10.4), (10.5) and (10.11) are clearly
determined by the numbers of non-zeros (9, 5 and 3). One can distinguish between
others (10.6), (10.7) and (10.10) by their right-hand sides. The test as to whether the
rows represent the constraints (10.4)–(10.11) is based on identifying the variables.
Continuous variables x are, however, identified easily and binary variables ı are
determined in Line 6. What remains are variables �. In certain situations, it may
be possible to simplify the extraction by relying on further details provided by the
parsers of algebraic modelling languages.
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Algorithm 2 PrecedenceConstrainedBlock(A1; b1;A2; b2)
1: Input: A1x D 1;A2x � 1, that is m1 � d matrix A1 and m2 � d matrix A2, m1-vector b1,

m2-vector b2
2: Output: Integer k and blocks E;F of A1;A2

3: Set kmax to the largest integer k such that there are k subsequent rows in A1 with exactly 6
non-zero elements, all˙1

4: for integer k D 4n from kmax down to 4 do
5: for 4n � 9n block E in A1 such that all rows have 6 non-zeros ˙1 do
6: if there are no 6n other rows A1 in corresponding to (10.3) then
7: Continue
8: end if
9: for 7nC 9n.n� 1/=2 � 3n2 C 9n block F in A2 do

10: if F cannot be partitioned into (10.4)–(10.11) then
11: Continue
12: end if
13: return n;E;F
14: end for
15: end for
16: end for

10.4 Exploiting the Packing Component

In order to reduce the number of regions of space, and thus the number of variables
in the formulation, a sensible space-discretisation method should be employed. In
many transport applications, for instance, there are only a small number of package
types, with the ISO 269 standard giving the dimensions of the package. Using
the discretisation of 1 mm, one could indeed introduce 162 � 229 � h variables
to represent a package with an ISO 269 C5 base and the height of h millimeters, but
if there are only packages with base-sizes specified by ISO 216 standard and larger
than C5 to be packed in the batch, it would make sense to discretise to units of space
representing 162 � 229 mm in two dimensions. The question is how to derive such
a discretisation in a general-purpose system.

The greatest common divisor (GCD) reduction can be applied on a per-axis basis,
finding the GCD between the length of the container for an axis and all the valid
lengths of boxes that can be aligned along that axis and scaling by the inverse of
the GCD. This is trivial to do and is useful when all lengths are multiples of a large
number, which may be common in certain situations.

In other situations, this may not reduce the number of variables at all, and it may
be worth tackling the optimisation variant of:

Problem 1.5. The DISCRETISATION DECISION: Given integers k � n > 0,
dimensions of a large box (“container”) x; y; z > 0, dimensions of n small boxes
D 2 Rn�3 with associated values w 2 Rn and specification r D f0; 1gn�6 of what
rotations are allowed, and k positions S 2 Rk�3, decide whether in any optimum
solution of CONTAINER LOADING PROBLEM with x; y; z;D;w; r, the lower-bottom-
left vertices of the n boxes can be positioned in n of the k positions in S.
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Algorithm 3 DiscretisationDP(M; n;D; r)
1: Input: Dimensions M 2 R3 of the container, dimensions of n small boxes D 2 Rn�3, and

allowed rotations r D f0; 1gn�6

2: Output: Integer k and k possible positions

3: P D ;
4: for axis with limit m 2 M do
5: L D fd j d 2 D may appear along this axis, given allowed rotations rg
6: P D closure of P[ fpC l j p 2 P; l 2 L; pC l � mg,

optionally pruning p 2 P that cannot occur due to the dependence of the axes and the fact
each box can be packed at most once

7: end for
8: return jPj;P

Consider the following:

Theorem ([32]). The decision whether the optimum of an instance of Knapsack
is unique is �p

2-Complete, where �p
2 is the class of problems that can be solved in

polynomial time using oracles from NP .

Theorem. Discretisation Decision is �p
2-Hard.

Proof sketch. One could check for the uniqueness of the optimum of an instance
of KNAPSACK using any algorithm for DISCRETISATION DECISION (Problem 1.5)
Consider n D k. ut

We can, however, use non-trivial non-linear space-discretisation heuristics. Early
examples include [20]. We use the same values as before on a per-axis basis, i.e. the
lengths of any box sides that can be aligned along the axis. We then use dynamic
programming to generate all valid locations for a box to be placed. See Algorithm 3.
For example, given an axis of length 10 and box lengths of 3, 4 and 6, we can
place boxes at positions 0, 3, 4, 6, and 7. 8, 9 and 10 are also possible, but no
length is small enough to still lie within the container if placed at these points. This
has reduced the number of regions along that axis from 10 to 5. An improvement
on this scale may not be particularly common in practice, but it is obvious that
this approach can be no worse than the GCD method at discretising the container
and that the approach can help when the GCD turns out to be 1. This also adds
some implicit symmetry breaking into the model. Notice that the algorithm runs in
time polynomial in the size of the output it produces, which may be exponential in
the size of the input and considerably larger than the size of the best possible output.

10.5 Computational Experience

The approach was tested on two sets of instances, introduced in [3]:

• 3D Pigeon Hole Problem instances, Pigeon-n, where n C 1 unit cubes are to be
packed into a container of dimensions .1C �/ � .1C �/ � n.
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Table 10.3 The performance of Gurobi 4.0 on 3D
Pigeon Hole Problem instances encoded in the
Chen/Padberg/Fasano and the discretised formulations
as reported in [3]

Time (s)

Chen/Padberg/Fasano Discretised

Pigeon-01 < 1 < 1

Pigeon-02 < 1 < 1

Pigeon-03 < 1 < 1

Pigeon-04 < 1 < 1

Pigeon-05 < 1 < 1

Pigeon-06 < 1 < 1

Pigeon-07 1.5 < 1

Pigeon-08 7.4 < 1

Pigeon-09 88.6 < 1

Pigeon-10 1,381.4 < 1

Pigeon-100 – < 1

Pigeon-1000 – 1.0

Pigeon-10000 – 1.8

Pigeon-100000 – 4.2

Pigeon-1000000 – 45.1

Pigeon-10000000 – 664.0

Pigeon-100000000 – –

“–” denotes that no integer solution has been found

• SA and SAX datasets, which are used to test the dependence of solvers’
performance on parameters of the instances, notably the number of boxes,
heterogeneity of the boxes, and physical dimensions of the container. There is
1 pseudo-randomly generated instance for every combination of container sizes
ranging from 5–100 in steps of 5 units cubed and the number of boxes to pack
ranging from 5–100 in steps of 5. The SA datasets are perfectly packable, i.e.
are guaranteed to be possible to load the container with 100 % utilisation with all
boxes packed. The SAX are similar but have no such guarantees; the total volume
of the boxes is greater than the volume of the container.

All of the instances are available at http://discretisation.sf.net. Some of these
instances have been included in MIPLIB 2010 by Koch [24] and have been widely
utilised in benchmarking of integer programming solvers ever since.

For the 3D Pigeon Hole Problem, results obtained within 1 h using three leading
solvers and the Chen/Padberg/Fasano formulation without any reformulation are
shown in Table 10.2, while Table 10.3 compares the results on both formulations.
These tests and further tests reported below were performed on a 64-bit computer
running Linux, which was equipped with 2 quad-core processors (Intel Xeon
E5472) and 16 GB memory. The solvers tested were IBM ILOG CPLEX 12.4,
Gurobi Solver 4.0, and SCIP 2.0.1 of [1] with CLP as the linear programming

http://discretisation.sf.net
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Fig. 10.4 The best solutions obtained within an hour per solver per instance from the SA dataset
for varying number of boxes (vertical axis) and the length of the side of the container (horizontal
axis). The colours highlight the volume utilisation in percent

solver. Pigeon-02 is easy to solve for any modern solver. IBM ILOG CPLEX 12.4
eliminates 17 rows and 26 columns in presolve and performs a number of further
changes. The reduced instance has 23 rows and 22 columns and the reported run-
time is 0.00 s. Pigeon-10 is the largest instance reliably solvable within an hour,
but that should not be surprising, considering it has 525 rows, 220 columns, and
3,600 non-zeros in the constraint matrix after pre-solve of CPLEX 12.4. None of the
solvers managed to prove optimality of the incumbent solution for Pigeon-12 within
an hour using the Chen/Padberg/Fasano formulation, although the instance of linear
programming had only 627 rows, 253 columns and 4,268 non-zeros after pre-solve.
As of September 2014, instances up to pigeon-13 using the Chen/Padberg/Fasano
have been solved in the process of testing integer programming solvers without the
automatic reformulation, albeit at a great expense of computing time. In contrast, the
reformulation and discretisation makes it possible to solve Pigeon-10000000 within
an hour, where the instance of linear programming had 10,000,002 rows, 10,000,000
columns and 30,000,000 non-zeros. The time for the extraction and reformulation
of the instance was under 1 s across of the instances.

For the SA and SAX datasets, Figs. 10.4 and 10.5 summarise solutions obtained
within an hour using either the Chen/Padberg/Fasano formulation or the refor-
mulation, whichever was faster. This shows that although it may be possible to
solve certain instances with 10,000,000 boxes within an hour to optimality, real-
life instances with hundreds of boxes may still be challenging, even considering
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Fig. 10.5 As above for the SAX dataset. The colours highlight the quality in terms of 100.1�s=b/
for solution with value s and upper bound b after 1 h

the reformulation. Nevertheless, as has been pointed out by Allen et al. [3], the
space-indexed relaxation provides a particularly strong upper bound. The mean
integrality gap, or the ratio of the difference between root linear programming
relaxation value and optimum to optimum has been 10.49 % and 0.37 % for the
Chen/Padberg/Fasano and the space-indexed formulation, respectively, on the SA
and SAX instances solved to optimality within the time limit of 1 h.

10.6 Conclusions

Overall, the discretisation formulation provides a particularly strong relaxation. It
is easy to automate a more natural formulation to the discretisation formulation,
programmatically, provided the constraints are a contiguous block of rows. This is
the case, e.g., whenever one uses an algebraic modelling language.

Going forwards, it would be good to develop tests whether the reformulation is
worthwhile, as the discretised relaxation may become prohibitively large and dense
for instances with many distinct box-types, and box-types or containers of large
sizes in terms of the units of discretisation. Alternatively, one may consider multi-
level discretisations. Plausibly, one may also apply similar structure-exploiting
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approaches to “components” other than packing. Mareček [26] studied the graph
colouring component, for instance. This may be open up new areas for research in
computational integer programming.
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Chapter 11
Robust Designs for Circle Coverings of a Square

Mihály Csaba Markót

Abstract In this chapter we investigate coverings of a square with uniform circles
of minimal radius, with uncertainties in the actual locations of the circles. This
setting is an example model of deploying sensors or other kind of observation
units so that there are uncertainties in their deployments. Possible examples include
scenarios when the deployment has to be made remotely (e.g., from the air) into a
potentially dangerous place, deployments into a location with unknown terrain, or
deployments influenced by the weather. Our goal is to produce coverings that are
optimal in terms of a minimal radius, and are also robust in the following sense:
wherever the circles are actually placed within a given uncertainty region, the result
is still guaranteed to be a covering. We investigate three special uncertainty regions:
first we prove that for uniform circular uncertainty regions the optimal robust
covering can be created from the exact optimal covering without uncertainties,
provided that the exact covering configuration is feasible for the robust scenario.
For uncertainty regions given by line segments and by general convex polygons we
design a bi-level optimization method combining a complete and rigorous global
search and a derivative free black-box search, and show the efficiency of the method
on some examples.

Keywords Circle covering • Uncertainty • Sensor network deployment • Robust
design • Global optimization • Interval arithmetic • Complete search • Black box
search

11.1 Introduction

In this study we are dealing with the problem of optimal coverings of a square
with uniform circles, minimizing the required radius. In contrast to the classical
and well-studied exact case, where the placement of the circles can be precisely
carried out, we consider a case that is much more useful from the practical point of
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view: optimal coverings with uncertainties in the locations (i.e., the centers) of the
circles. Throughout the work we often refer to a motivating example: the modeling
of deployment scenarios, such as the placements of sensor networks or other kind
of observation units in a real-life environment. Examples of these scenarios include
remote deployment (e.g., from the air) into a potentially dangerous place, such as the
location of a nuclear accident, deployments into a location with unknown terrain, or
deployments influenced by the weather.

There are numerous earlier studies dealing with uncertainty modeling for various
design and optimization problems: to name a few of the application areas, we
mention facility location problems (see, e.g., [19] for a survey and [18] on the
maximal covering location problem), scheduling and vehicle routing [12], structural
optimization [6], space system design [2], etc. In any case, to the best of our
knowledge the present work is the first one that employs interval numerical methods
and complete global search for covering problems, in order to prove the covering
property of the obtained designs with mathematical correctness.

11.2 Circle Coverings of a Square

The classical (exact) circle covering problem of a square is the following: given
the unit square and the number N of uniform circles used for the covering, find
those of the locations of the circle centers for which a covering of the square can
be produced with minimal circle radius. In order to formalize the problem, we
introduce the following notation: points in the plane are denoted by boldface, with
their coordinates marked with x and y lower indices. That is, we write a 2 R

2;

a D .ax; ay/.
Let A D faig; ai 2 Œ0; 1�2; i D 1; : : : ;N be a set of N points in the unit square,

called a covering configuration. The set of all covering configurations of N points is
denoted by AN .

Proposition 1. Let A D faig 2 AN be a covering configuration. The smallest
possible radius for which N circles with centers A and with this uniform radius
cover the square is given by

r.A/ D max
p2Œ0;1�2

min
1�i�N

jjp � aijj2:

Proof. First we prove that the circles with centers A and uniform radius r.A/ cover
the square. Let r.A/ be attained at Np 2 Œ0; 1�2, and let p 2 Œ0; 1�2 be arbitrary. Then
r.A/ D mini jj Np � aijj2 � mini jjp � aijj2. That is, for j D arg mini jjp � aijj2, the
distance of p and aj is at most r.A/, which means that p is covered by the circle
centered at aj.

Next, assume that t < r.A/ is a radius that results in a covering with centers A.
Then Np is also covered, so there is an index j such that jj Np � ajjj2 � t. This implies
r.A/ D mini jj Np � aijj2 � jj Np � ajjj2 � t, a contradiction. ut
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The value r.A/ of the above proposition will be called the optimal covering
radius with respect to the configuration A. That is, r.A/ is attained at that point
p for which the smallest distance from the points ai is maximal. For a fixed A, any
r > r.A/ naturally also results in a covering; such an r radius will be called simply as
a covering radius with respect to A. Then the problem of optimal circle covering is
to find the covering configuration with the smallest optimal covering radius, that is,

min
A2AN

r.A/:

The minimum of this problem will be called the optimal covering radius of
the problem. (It is important to note the difference between an optimal covering
radius w.r.t. a configuration A, i.e., r.A/, and the overall optimal covering radius,
minA2AN r.A/.)

Note that finding the covering radius for a given covering configuration is itself
a nontrivial problem, and thus, the problem with such a formulation can be attacked
with some kind of bi-level programming methods only. Also note that there are
other types of formalizations of the covering problem. For example, the current best
known numerical approach [16]—that also employs bi-level optimization—uses the
uncovered area as the inner level objective function to determine whether a radius
is eligible to be a covering radius.

Similarly to other types of covering and packing problems, this problem is
also treated in two typical ways: with purely mathematical tools (for finding good
solutions, and proving their optimality when possible), or with computer methods.
In particular, for N � 10 (the instances we investigate in the present study) the
cases N � 5; N D 7 are proven to be optimal by mathematical methods [5], while
the current best known, conjectured optimal solutions for N D 6; 8 [11], and for
N D 9; 10 [20] are results of numerical methods.

In overall, the most extensive numerical study for the problem class (up to 30
circles) is [16]. This study found all optimal and previously best known solutions
for the previously detailed cases. Table 11.1 contains the optimal radii up to N D 10,
taken directly from [16]. The optimal structures are, however, only depicted there,
showing the touching points between two circles and a circle and the square. In
addition, the symmetry groups of the found configurations are also given in [16].
From this structural information we computed the approximate coordinates of the
centers (by solving a set of polynomial system of equations). These will serve

Table 11.1 Optimal covering radii for N D 1; : : : ; 10 [16]

N r N r

1 0.70710678118654752440 6 0.29872706223691915876

2 0.55901699437494742410 7 0.27429188517743176508

3 0.50389110926865935327 8 0.26030010588652494367

4 0.35355339059327376220 9 0.23063692781954790734

5 0.32616058400398728086 10 0.21823351279308384300
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in the present study as reference values, and also, good starting points for our
numerical procedures. Table 11.2 contains the computed coordinates. Assuming that
the optimal radii are correct in all digits, the computed coordinates are correct up
to 12–15 digits after the decimal dot. The optimal configurations are also depicted
in the present work for comparison reasons, on the left sides of Figs. 11.1, 11.2,
and 11.3 (in some cases rotated and/or reflected as compared to the coordinates of
Table 11.1).

11.3 Circle Coverings with Uncertainties

The traditional way of designing robust methods that handle uncertainties (that
is, methods which always lead to feasible, or even better, optimal solutions with
a prescribed success probability) is based on establishing a joint probability
distribution of the design variables. This is, however, often impossible in practice,
since in many cases even the individual probability distributions are unknown: often
there is not enough experimental data to create such functions, or the uncertainties
are influenced by so many factors that it is not possible to build a model for it.

An alternative to such methods, introduced recently by Neumaier [15], and tried
successfully for space system design [1, 2] is based on the concept of clouds. In this
approach, one asks the experts to establish confidence regions of the design variables
w.r.t. the desired success probability, instead of probability distributions. In practice
this means that from the expert knowledge we can infer that with the given success
probability the realization (outcome) of all design variables will be in the specified
regions. Apart from that no further probability information on the design variables
is needed. Given such specified regions we can then make a worst case analysis
of the design outcome. In practice this needs numerical methods the are able to
analyze the whole search space (given by the Cartesian product of the confidence
regions) and return results with mathematical rigor. Such tools are available in the
forms of numerical methods based on interval analysis and complete and rigorous
global search [4, 7, 13, 14]. The appropriate solution methods can naturally be bi-
level programming techniques: in the inner level a worst case analysis is done (with
interval global search), to determine feasible design solutions, while in the outer
level another (not necessarily complete) method, e.g., black-box optimization is
used to select the optimal or satisfactory designs among the feasible ones.

For our covering problem, the uncertainty modeling can be carried out in the
following way: the design variables are naturally the centers of the circles, and a
confidence region (w.r.t. a given success probability) of each center needs to be
specified by experts. For example, in our motivating example, when sensors are
dropped into a dangerous environment, experts of the carrier vehicle and the payload
experts will determine that all payload items will fall into a given neighborhood of
the desired target positions with a prescribed probability. Our job then, knowing the
confidence regions, is to determine the target positions (the centers) and the required
sensor range (the common radius) in such a way that the outcome configuration will
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Table 11.2 Coordinates of the optimal coverings, N D 1; : : : ; 10

X Y X Y

N D 1 N D 8

0.5000000000000000 0.5000000000000000 0.1556943961115090 0.2086034518985931

N D 2 0.5000000000000000 0.1793933037363553

0.2500000000000000 0.5000000000000000 0.8443056038884910 0.2086034518985931

0.7500000000000000 0.5000000000000000 0.2467821880640653 0.5000000000000000

N D 3 0.7532178119359346 0.5000000000000000

0.2500000000000000 0.4374999999999999 0.1556943961115090 0.7913965481014069

0.7500000000000000 0.4374999999999999 0.5000000000000000 0.8206066962636447

0.5000000000000000 0.9375000000000000 0.8443056038884910 0.7913965481014069

N D 4 N D 9

0.2500000000000000 0.2500000000000000 0.1387697944017800 0.1842181767245759

0.7500000000000000 0.2500000000000000 0.4581546916026700 0.1434279509541508

0.2500000000000000 0.7500000000000000 0.8193848972008900 0.1434279509541508

0.7500000000000000 0.7500000000000000 0.1894317802806140 0.5000000000000000

N D 5 0.5506619858788360 0.5000000000000000

0.2500000000000000 0.7905227302120298 0.9118921914770558 0.5000000000000000

0.7500000000000000 0.7905227302120298 0.1387697944017800 0.8157818232754241

0.1482473264108672 0.2905227302120298 0.4581546916026700 0.8565720490458493

0.5000000000000000 0.2548848764200725 0.8193848972008900 0.8565720490458493

0.8517526735891328 0.2905227302120298 N D 10

N D 6 0.1666666666666667 0.1408832436034581

0.1416449464353010 0.2630105831749758 0.5000000000000000 0.1408832436034581

0.4597827072935948 0.2410148214731849 0.8333333333333334 0.1408832436034581

0.8181377608582938 0.2369894168250242 0.0000000000000000 0.5000000000000000

0.1818622391417062 0.7630105831749758 0.3333333333333333 0.5000000000000000

0.5402172927064052 0.7589851785268151 0.6666666666666666 0.5000000000000000

0.8583550535646990 0.7369894168250242 0.1666666666666667 0.8591167563965419

N D 7 0.5000000000000000 0.8591167563965419

0.2500000000000000 0.1128540574112841 0.8333333333333334 0.8591167563965419

0.7500000000000000 0.1128540574112841

0.0000000000000000 0.5000000000000000

0.5000000000000000 0.5000000000000000

1.0000000000000000 0.5000000000000000

0.2500000000000000 0.8871459425887159

0.7500000000000000 0.8871459425887159

result in a covering regardless of the actual locations within the confidence regions,
and the radius is the smallest possible. The respective model is the following:

Given a configuration A D faig in the unit square and given a fixed success
probability, we model the uncertainty by a function U that maps each ai into a
confidence (or uncertainty) region around ai, denoted by U.ai/ � R

2. In the present
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N = 2

N = 3

N = 4

Fig. 11.1 Exact (left) and uncertain (right) optimal covering with line segment shaped uncertainty
regions; N D 2; 3; 4



11 Robust Designs for Circle Coverings of a Square 231

N = 5

N = 6

N = 7

Fig. 11.2 Exact (left) and uncertain (right) optimal covering with line segment shaped uncertainty
regions; N D 5; 6; 7
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N = 8

N = 9

N = 10

Fig. 11.3 Exact (left) and uncertain (right) optimal covering with line segment shaped uncertainty
regions; N D 8; 9; 10

study we assume that U.ai/ � Œ0; 1�2 for all i, that is, with the given probability,
a point will never be placed outside the square. (In practice this corresponds to the
natural assumption that with the given probability the payload will always be placed
inside the target region, avoiding, e.g., its loss or destruction.) This implies that for
each given U, we need to restrict our search to the configurations

AN.U/ WD fA � AN W U.ai/ � Œ0; 1�2; i D 1; : : : ;Ng:
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The elements of AN.U/ will be called feasible configurations w.r.t. U. Further-
more, we assume that U.ai/ is closed for all ai. The set fU.ai/; i D 1; : : : ;Ng will
be denoted by U.A/. For a set of points B D fbi j bi 2 U.ai/; i D 1; : : : ;Ng we use
the shorthand containment notation B 2 U.A/. That is, A denotes the target position
of the centers, and B 2 U.A/ denotes the realization of the placement.

Proposition 2. Let A D faig 2 AN.U/ be a covering configuration with uncer-
tainty regions U.A/. The smallest possible radius that results in a covering for all
possible sets of circle centers B D fbig 2 U.A/ is given by

r.U.A// D max
B2U.A/

max
p2Œ0;1�2

min
1�i�N

jjp � bijj2 D max
B2U.A/

r.B/: (11.1)

Proof. For all realizations B 2 U.A/, r.B/ is a respective covering radius, so any
radius larger than or equal to this also results in a covering for B. Thus, the maximum
of these radii over U.A/ results in coverings for all B, and this will obviously be the
smallest appropriate radius. ut

The value r.U.A// above will be called the uncertain optimal covering radius
with respect to A and U.A/, and an r > r.U.A// will be called simply as an
uncertain covering radius with respect to A and U.A/. Then our problem of optimal
circle covering with uncertainties is to find the covering target configuration with
the smallest possible uncertain optimal covering radius, that is,

min
A2AN .U/

r.U.A//:

Similarly to the exact case, this minimum will be called the uncertain optimal
covering radius of the given problem.

Note that the two outer maximization levels in (11.1) can be merged or even
swapped, so that

r.U.A// D max
p2Œ0;1�2 ;B2U.A/

min
1�i�N

jjp � bijj2 D (11.2)

D max
p2Œ0;1�2

max
B2U.A/

min
1�i�N

jjp � bijj2: (11.3)

Furthermore, as the next lemma shows, in the last expression the inner maxi-
mization and the minimization levels can also be swapped, resulting in a convenient
formula for calculating with given uncertainty regions:

Lemma 1. Let A D faig 2 AN.U/ be a covering configuration with uncertainty
regions U.A/, and let p 2 Œ0; 1�2. Then

max
B2U.A/

min
1�i�N

jjp � bijj2 D min
1�i�N

max
bi2U.ai/

jjp � bijj2: (11.4)

Proof. Construct a configuration NB D fNbig 2 U.A/ such that for each i index jjp �
Nbijj2 is maximal. (The maximum is attained since all U.ai/ are closed.) This means
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that for each i and for all bi 2 U.ai/

jjp � Nbijj2 � jjp � bijj2: (11.5)

Setting j D arg mini jjp � Nbijj2, we conclude that d WD jjp � Nbjjj2 is equal to the
right-hand side of (11.4).

Now we claim that d � mini jjp � bijj2 for all B 2 U.A/, that is, that d is also
equal to the left-hand side of (11.4). (Obviously, d is attained in the left-hand side
maximization, namely, at the configuration NB.) Assume the contrary of the claim,
i.e., the existence of a configuration C D fcig 2 U.A/, such that mini jjp � cijj2 >
jjp � Nbjjj2. But then jjp � cjjj2 > jjp � Nbjjj2, and since cj 2 U.aj/, this contradicts
(11.5). That completes the proof. ut

The essence of the above lemma is that the uncertainty regions are independent
of each other, thus, the maximal distances between them and a given point (i.e., the
values maxbi2U.ai/ jjp � bijj2) can be calculated one by one during the computation
of r.U.A//. This calculation can be easily done for the most common shapes used
for modeling uncertainty regions (circles, ellipses, convex polygons, etc.)

In the next sections we analyze three covering problem classes defined for
various simple shapes of uncertainty regions. From now on we will assume that
within each problem class the uncertainty regions will be uniformly shaped, i.e.,
their size and orientation does not depend on the target location.

11.4 Circular Uncertainty Regions

The simplest model of an uncertainty region for covering problems is a circular
region. This corresponds, for instance, to the situation when the probability of
the actual placement follows a bivariate symmetric normal distribution; then the
uncertainty regions corresponding to the various success probabilities will be
concentric circles centered at the desired target positions.

Somewhat surprisingly, it turns out that the centers of the optimal uncertain
coverings will be identical to the centers of the exact coverings (provided that the
exact covering is a feasible configuration w.r.t. the uncertainty modeling function),
as the next theorem shows:

Theorem 1. Let N be given and let the uncertainty regions U be uniform circles of
radius s around each target point. Let us denote r� and Qr� the optimal covering
radius of the exact and the uncertain covering problems, respectively. Then, if
the exact covering configuration is a feasible configuration w.r.t. U, then Qr� D
r� C s, and the optimal uncertain covering configuration is identical to that of
the exact problem. Otherwise, if the exact covering configuration is not a feasible
configuration w.r.t. U, then Qr� � r� C s.
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Proof. Consider a target point a 2 Œ0; 1�2, a circle of radius s around a as its
uncertainty region U.a/, and a point p 2 Œ0; 1�2. A simple geometrical observation
shows that maxb2U.a/ jjp� bjj2 D jjp � ajj2C s. (The maximal distance is obtained
by drawing a ray from p passing through a, when p ¤ a, and taking any point on
the boundary of U.a/ when p D a.) Then, using (11.3) and Lemma 1, we obtain
that for all A 2 AN.U/

r.U.A// D max
p2Œ0;1�2

max
B2U.A/

min
1�i�N

jjp � bijj2 D

D max
p2Œ0;1�2

min
1�i�N

max
bi2U.ai/

jjp � bijj2 D

D max
p2Œ0;1�2

min
1�i�N

.jjp � aijj2 C s/ D

D . max
p2Œ0;1�2

min
1�i�N

jjp � aijj2/C s D

D r.A/C s:

Now assume that the exact covering configuration is feasible w.r.t. U, i.e., it is in
AN.U/. This means that minA2AN .U/ r.A/ D minA2AN r.A/. Then

Qr� D min
A2AN .U/

r.U.A// D min
A2AN .U/

r.A/C s D min
A2AN

r.A/C s D r� C s;

and the two optima Qr� and r� are obviously attained at the same A.
On the other hand, if the exact covering configuration is not feasible w.r.t. U, then

we have minA2AN .U/ r.A/ � minA2AN r.A/, thus, from the above chain of equations
we obtain Qr� � r� C s. ut

11.5 Line Segment Shaped Uncertainty Regions

Another possible type of uncertainty regions is a line segment that contains the
target points and has uniform lengths and directions. Different success probabilities
would then correspond to line segments of different lengths. This setting can be
appropriate to model the real-life sensor placement scenario of, e.g., a target terrain
with a certain slope, or the effect of wind during payload drops.

A mathematical formalization of such uncertainty regions is as follows. For
simplicity, we assume that the uncertainty regions are parallel to the line y D �x,
that is, they are in the NW–SE direction, and the target point is the midpoint of the
line segment. Furthermore, we assume that the common length of the line segments
is 2

p
2t for a fixed t > 0 value. The respective uncertainty region for a point a is

then
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U.a/ D f.axC l; ay� l/ j l 2 Œ�t; t�g:

Remark 1. In practice, the effect of a slope or a wind direction would be naturally
modeled by a line segment with one of its endpoint as the target point. Nevertheless,
it is easy to see that once the shape of the uncertainty region is fixed, it actually
does not matter which point of it is chosen as a target point. For our numerical
computation the model with the target point as the midpoint is more convenient to
formulate and the results will be comparable to those approximated from the circular
case, see Sect. 11.5.3.

In contrast to the circular uncertainty regions, maxb2U.a/ jjp � bjj2 � jjp � ajj2
will not be a constant for all p, like in the proof of Theorem 1, so the method
there for finding the optimal solution in a theoretical way will fail. Instead, for such
uncertainty regions we opt for a numerical solution.

The numerical optimization for this case could go as follows: the inner optimiza-
tion problem is to maximize the expression

min
1�i�N

max
bi2U.ai/

jjp � bijj2 (11.6)

over p 2 Œ0; 1�2, for a fixed A D faig. It is easy to see that given a line segment uv
and a point p in the plane, the maximal distance from p to a point of uv is always

attained at either u or v. (To prove this, let us denote �!v ;�!v , and
�!
b the vectors from

p to u, v, and to an arbitrary point b 2 uv, respectively. Then for some 0 � � � 1,�!
b D �

�!u C .1 � �/
�!v , thus, jj�!b jj D jj��!u C .1 � �/

�!v jj � �jj�!u jj C .1 �
�/jj�!v jj � maxfjj�!u jj; jj�!v jjg.) This implies that the objective function value (11.6)
can be easily computed for all p 2 Œ0; 1�2. The maximum of the inner problem is the
optimal covering radius r.U.A// for A. The outer optimization problem is then to
minimize r.U.A// over A 2 AN.U/.

It is essential to note that the inner optimization problem must be solved to global
optimality with a rigorous search method (considering all p 2 Œ0; 1�2), so that the
obtained maximum is guaranteed to be a covering radius for the configuration A.
More precisely, it must be a guaranteed upper bound of the exact maximum. Without
this it may happen that the design fails, i.e., it will not result in a covering (with the
given radius) for some realizations.

As a demonstrative case study of such uncertain regions, we solve the uncertain
covering problems for N D 2; : : : ; 10 and t D 0:05. In the next subsections the
details of the proposed optimization method are discussed.

11.5.1 Solving the Inner Problem

Since this level needs a complete search method, we applied the coco_gop_ex inter-
val branch-and-bound solver [10] of the COCONUT Environment [21]. Note that
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the objective function (11.6) is nonsmooth, but it is always only two-dimensional,
regardless of N. For this particular problem we enabled only those tools in
coco_gop_ex that require no derivative information. The only addition to the
standard tools was a kind of special constraint propagation method that targeted
the elimination of those points of a rectangular region of the unit square that are in
distance closer to both endpoints of the current line segments than a given distance
value. (This tool is very similar to one introduced in [9] for circle packing problems
with interval methods.) The outputs of coco_gop_ex are the mathematically rigorous
interval enclosures of all global maximizers and the global maximum value,
respectively. According to the previous notes, the upper bound of the latter enclosure
can be used as a guaranteed uncertain covering radius w.r.t. the input configuration.
We used 10�6 as the output precision of the algorithm (the width of the enclosure of
the maximum is approximately equal to this value).

As we found, coco_gop_ex was extremely efficient in solving the inner problem:
most of the total of 800,000 problem instances were completed within a few
hundreds of a second only (on a PC with an Intel Mobile CPU of 1.73 GHz), and
even the hardest cases—some instances for N D 9; 10—required less than 0.4 s.

11.5.2 Solving the Outer Problem

The problem of minimizing (the upper estimates of) r.U.A// over A 2 AN.U/
was solved by the sequential version of the HOPSPACK derivative-free solver [17].
HOPSPACK employs a generating set search (GSS) method based on pattern search
ideas [3, 8]. For each N D 2; : : : ; 10, HOPSPACK was started from 15N randomly
generated starting points, which were obtained the following way. 5N points were
generated in the neighborhood of the exact optimal covering configuration such that
for each coordinate c of the exact covering the respective component of the starting
point was taken from the interval .c C Œ�0:1; 0:1�/ \ Œ0; 1�. The other 10N starting
points were generated from the whole search space Œ0; 1�2N so that the points were
‘spread out’ in the square in order to result in a reasonable starting configuration. To
achieve this, for all N the square was split into either k � k or k � .k C 1/ uniform
pieces with the smallest k for which k2 � N or k.k C 1/ � N holds. Each starting
configuration was then generated in such a way that each piece contained at most
one point of the configuration.

HOPSPACK converged from each starting points and stopped in around 500–
2,000 iterations, however, it is important to note that it ended up in different
(presumably locally optimal) solutions in many cases. It was already observed in
[16] for the exact case that the covering problem possesses many local optimizers
with often only very small differences in the optimal values. According to the
present experiences, for uncertain covering problems this phenomenon also appears,
but in a much pronounced form. This makes the present problem class very hard for
global optimization methods, even for smaller dimensions and simple uncertainty
regions.
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Table 11.3 Best found (rL) and easy-to-
obtain covering radii (rC ) for the line
segment shaped problem class, and the
respective improvement ratios (rL=rC)

N rL rC rL=rC (%)

2 0:606646 0:629728 96:3

3 0:556570 0:574602 96:9

4 0:399951 0:424265 94:3

5 0:376100 0:396872 94:8

6 0:343817 0:369438 93:1

7 0:328612 – –

8 0:313715 0:331011 94:8

9 0:279036 0:301348 92:6

10 0:273233 – –

11.5.3 The Results

The best found optimal uncertain covering configurations are shown in the right
columns of Figs. 11.1, 11.2, and 11.3. For reference, on the left side the exact
covering configurations are also depicted, so that the differences in the pairs of
configurations can be observed. It is worth to mention that due to the shape of the
uncertainty regions, the uncertain coverings show less symmetries than the exact
ones (and thus the ones with circular uncertainty regions). One can observe that
for most N values the found uncertain configurations somewhat resemble the exact
ones, but as N grows, there are less and less similarities. For N D 10, the uncertain
configuration shows no relation at all to the exact one.

The found covering radii (named rL) are presented in column 1 of Table 11.3,
upward rounded to six decimal digits after the decimal dot.

To show the usefulness and efficiency of the numerical method above, we can
compare the obtained covering radii with some (not necessarily optimal) covering
radii obtained without numerical optimization: we enclose the line segments into
circles of radius v D p

2t D p
2=20, i.e., we transform the problem to the circular

uncertain covering. Obviously, the covering radius of each circular uncertain
configuration will naturally be a covering radius for the respective line segment
shaped uncertain configuration as well. The exact configurations are feasible for
circular uncertain problems if and only if all circles of radius v drawn around the
points of the exact configuration are fully within the square (i.e., all of its coordinates
are in Œv; 1 � v�). In the present case this holds for all problem instances except
N D 7; 10. Thus, for N D 2; : : : ; 6; 8; 9, the exact configuration is a feasible one for
the line segment shaped problems, and so, from Theorem 1, an uncertain covering
radius for the latter problem is rC D r� C v, where r� is the optimal exact covering
radius (column 2 of Table 11.3).
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Column 3 of Table 11.3 shows the improvement ratios rL=rC. The results show
that the numerical procedure improved the approximate solutions by 3–7 % (with
larger improvements for larger N values), which is fairly significant for covering
problems.

11.6 Convex Polygon Shaped Uncertainty Regions

A natural generalization of the line segment shaped case is to consider convex
polygons as the uncertainty regions. Using the fact that all points of a convex
polygon can be written as a convex linear combination of its vertices, one can see
that the maximal distance from a given point to the polygon is always attained at one
of the vertices. Thus the respective bi-level optimization model and the suggested
optimization procedure are essentially the same as described in Sect. 11.5. As a
demonstrative example, we solved an uncertain covering problem with N D 5

for uncertainty regions given as identical quadrilaterals, defined by the following
formula. Assuming that the target point is a D .ax; ay/, the quadrilateral is the
convex hull of the points .axCd1j; ayCd2j/; j D 1; : : : ; 4, where the matrix D D .dij/

is specified as
	
0:04 �0:11 �0:01 0:07
0:05 �0:01 �0:08 0:00



:

The optimization was carried out with exactly the same methodology as in
Sect. 11.5. HOPSPACK was started from 100 starting points generated in the whole
search space and from 50 starting points generated in the neighborhood of the exact
configuration. The obtained best solution is depicted in Fig. 11.4; in particular, in
part (a) the covering circles are centered at the target points, while parts (b)–(d)
show three possible realizations of the placements, to demonstrate the covering in
extremal placement situations. In Fig. 11.4b the upper left and middle and the lower
left target points were moved to the extremes, which shows a tight covering of the
upper side and the lower left corner. (Observe that the latter point has the tightest
covering when the lower left target point is placed on a side, but not on a vertex,
of the uncertainty region.) Figure 11.4c shows another situation when all but the
lower right target points are changed, which result in a tight covering on the upper
and left sides of the square. Finally, Fig. 11.4d shows what happens when the upper
middle and the two lower target points are moved to the extremes: the inner part of
the square still remains covered.

The best found optimal uncertain covering radius was 0.397945 (rounded
upward). As before, a theoretical uncertain covering radius can also be created
from the circular case: the smallest circle that encloses the polygon is of radius
� 0.090139; and if we take the exact optimal configuration as the midpoint of
these circles, the resulting configuration will be feasible for the circular uncertainty
regions. Thus the approximated covering radius (upward rounded) is 0:326161 C
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a b

c d

Fig. 11.4 Optimal uncertain covering with convex polygon shaped uncertainty regions; the found
optimal solution (a), and some possible extremal realizations (b)–(d)

0:090139 D 0:416300. The numerical optimization thus produced a 4.4 % smaller
optimum, i.e., again significantly improved the approximate solution obtained from
theoretical considerations.

11.7 Summary

We investigated the problem of finding the optimal covering of a square with
congruent circles, with uncertainties in the placement of the circles—as a simple
model to, e.g., robust deployment designs in unknown environments. We treated
the uncertainties by confidence regions around the planned placement and created
the respective optimization problems. We studied three types of (uniform) uncer-
tainty regions: for circular regions we showed that the uncertain optimal covering
problem has the same optimal configurations as the exact ones without uncertainties
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(provided that the exact configurations are feasible for the uncertain case). For other
types of regions with less internal symmetry we proposed a bi-level numerical
optimization technique: a complete global search in the inner level with interval
based global optimization, and an extensive black-box search in the outer level.
We showed the efficiency and usefulness of the proposed technique on example
covering problems with line segment and convex polygon shaped uncertainty
regions. The study shows the applicability of the presented approaches in modeling
relatively simple uncertainty scenarios, so that they can serve as a basis for designing
more complex methods for real-life applications.
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Chapter 12
Batching-Based Approaches for Optimized
Packing of Jobs in the Spatial Scheduling
Problem

Sudharshana Srinivasan, J. Paul Brooks, and Jill Hardin Wilson

Abstract Spatial resources are often an important consideration in shipbuilding and
large-scale manufacturing industries. Spatial scheduling problems (SSP) involve the
non-overlapping arrangement of jobs within a limited physical workspace such that
some scheduling objective is optimized. The jobs are typically heavy and occupy
large areas, requiring that the same contiguous units of space be assigned throughout
the duration of their processing time. This adds an additional level of complexity to
the general scheduling problem. Since solving large instances using exact methods
becomes computationally intractable, there is a need to develop alternate solution
methodologies to provide near optimal solutions for these problems. Much of
the literature focuses on minimizing the makespan of the schedule. We propose
two heuristic methods for the minimum sum of completion times objective. Our
approach is to group jobs into a batch and then apply a scheduling heuristic to the
batches. We show that grouping jobs earlier in the schedule, although intuitive,
can result in poor performance when jobs have sufficiently large differences in
processing times. We provide bounds on the performance of the algorithms and
also present computational results comparing the solutions to the optimal objective
obtained from the integer programming formulation for SSP. With a smaller number
of jobs, both algorithms produce comparable solutions. For instances with a larger
number of jobs and a higher variability in spatial dimensions, we observe that the
efficient area model outperforms the iterative model both in terms of solution quality
and run time.
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12.1 Introduction

In large-scale production and manufacturing industries, assembly units are often
heavy and occupy large areas. Since physical processing space is limited at such
facilities, the assembly line scheduling needs to assign non-overlapping locations
(spatial characteristic) and starting times (temporal characteristic) for each job.
Further, the schedule should ensure that the locations assigned are the same
contiguous units of space for the entire duration of processing as jobs cannot be
moved once set up. Mathematically, the spatial scheduling problem (SSP) can be
described as follows: Given a set J of jobs with processing times pj, heights hj, and
widths wj, and a workspace of height H and width W, does there exist a schedule of
the jobs that effectively utilizes the workspace such that some scheduling objective
is minimized? Figure 12.1 shows the layout of jobs before and after applying
spatial scheduling solution procedures. We can see that initially the space is not
utilized effectively and some jobs are waiting to be processed. On applying some
spatial scheduling method, we get a better utilization of the space and no delays in
processing of jobs.

Fig. 12.1 Depicting the motivation for spatial scheduling with jobs each requiring two time units
scheduled over a 2-day horizon
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When the space required by all jobs are identical to the dimensions of the
workspace, the problem reduces to single machine scheduling (SMS) and is
polynomially solvable. However, when the dimensions of the jobs are allowed to
vary, the spatial constraints add an additional level of complexity to the traditional
scheduling problem [5]. Also spatial resources are not divisible and distributable like
normal renewable resources. Due to the computational intractability in solving large
instances of the problem, there is a need to develop alternate solution methodologies
that provide near optimal solutions. Previous work in spatial scheduling has mostly
been in the context of shipbuilding applications [4, 11, 15, 18]. Much of the
literature focusses on approaches with the objective of minimizing the makespan
or maxj2J Cj, where Cj denotes the completion time of job j in a given schedule
[2, 9, 16, 22, 23]. Garcia and Rabadi [7] provides a meta heuristic algorithm
to minimize the total tardiness for instances with release dates and multiple
processing areas. To the best of our knowledge, this is the first study to consider
the minimum sum of completion times (

P
j2J Cj) objective for this problem. When

jobs are independent and competing for the same resource, the cost associated with
individual completion times becomes more relevant and natural [12]. Evaluating
completion times for individual jobs also becomes important while measuring the
time in the system for each job. The motivation, here, is to examine the most
simple form of the problem by considering a workspace area of fixed dimensions.
We disallow precedence constraints, due-dates, rotation of jobs, and set-up times.
By doing so, we are able to focus on the relationship between the spatial and
temporal components in the problem and gain a better understanding of the problem
characteristics.

Our approach in developing solution procedures for the problem is to take ideas
from two-dimensional bin packing (2DBP) and group jobs similar in processing
times to form a batch. Once the batches are determined we can schedule them
using some heuristic rule. This approach lets us relax the temporal constraints in
the original problem. We identify scenarios where batching can be effective or
disadvantageous. For the minimum sum of completion times objective, it seems
intuitive to schedule as many jobs as we can ahead in the schedule to produce a
lower objective [19]. However, we show that grouping jobs with different processing
times earlier in the schedule actually results in an objective value larger than if each
job were to be assigned its own batch. We also determine that the sequence in which
the batches are scheduled is another factor affecting the objective.

After introducing the problem in Sect. 12.2, we propose two methods (iterative
and efficient area) to determine the batches in Sect. 12.3. Section 12.4 analyzes
the performance of the batching methods. Computational results comparing the
two methods to the optimal objective obtained from the integer programming
formulation for SSP are presented in Sect. 12.5.
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12.2 The Spatial Scheduling Problem

In this section, we formally introduce the SSP, which involves determining spatial
layouts and starting times for a set J of N jobs to be scheduled on a single W � H
work space. Each job j 2 J requires a processing time (pj), width (wj), and height
(hj). Throughout the reminder of this chapter we consider minimizing the sum of
completion times (denoted by Z) as the objective for SSP. We assume that the jobs
cannot be rotated or preempted. Also we do not consider due dates, release dates, or
precedence relationships for the jobs. Further, without loss of generality, we assume
all problem data to be integer. The problem can then be denoted using the following
mixed-integer programming (MIP) formulation adapted from [8].

min
X

j2J

zj (12.1)

subject to:

� xi C xj � W˛ij � �W C wi 8i; j 2 J; i ¤ j (12.2)

�yi C yj � Hˇij � �H C hi 8i; j 2 J; i ¤ j (12.3)

�zi C zj � T�ij � �T C pi 8i; j 2 J; i ¤ j (12.4)

˛ij C ˛ji C ˇij C ˇji C �ij C �ji � 1 8i; j 2 J; i ¤ j (12.5)

�xi � wi � �W 8i 2 J (12.6)

�yi � hi � �H 8i 2 J (12.7)

xi; yi; zi � 0 8i 2 J (12.8)

˛ij; ˇij; �ij 2 f0; 1g 8i; j 2 J (12.9)

where
J is the set of all jobs
xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
zj is the z-coordinate (start time) for job j 2 J

˛ij =

�
1 if no overlap occurs between jobs i and j in the x direction
0 otherwise

ˇij =

�
1 if no overlap occurs between jobs i and j in y direction
0 otherwise

�ij =

�
1 if no overlap occurs between jobs i and j in z direction
0 otherwise

For i; j 2 J
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Here Z is obtained by adding
P

j2J pj to the objective in (12.1). Constraints
(12.2)–(12.5) prevent overlap from occurring in the x (width), y (height), and z
(time) dimensions. We use constraints (12.6) and (12.7) to ensure that the jobs are
confined to the physical dimensions of the workspace. Duin and Sluis [5] shows
that scheduling problems with varying spatial resource requirements are NP Hard.
Hence obtaining optimal solutions to large problem instances is computationally
intractable. Therefore, the motivation here is to develop methods that provide
provably good solutions to minimize Z for large instances of SSP, quickly and
efficiently. Approximation algorithms deliver solutions with provable quality that
are bounded in runtime. The following definition of an approximation algorithm can
be found in [20, 21]. Suppose we wish to solve an NP-hard minimization problem
consisting of instances in I . Let z.I/=minfcIx W x 2 SIg 8I 2 I . Let A be
an algorithm that operates on instances in I , and let A .I/ be the objective value
resulting from the application of A to I. Let � � 1.

Definition 1. A is a �-approximation algorithm for I if for each I 2 I , A runs
in time polynomial in the size of I, and A .I/ � �z.I/. A is said to have a factor �,
also referred to as the performance guarantee of A .

Observe that we compare the objective value obtained by the application of the
algorithm to instance I with the optimal objective value z.I/ for that instance. In
practice, however, this is not possible, because if z.I/ is known then there would
be no need to approximate it. To overcome this issue and calculate �, we compare
A .I/ with a lower bound for z.I/, say L.I/. Lower bounds can be obtained using LP
or combinatorial relaxations. Since L.I/ � z.I/ we have

A .I/ � �L.I/ H) A .I/ � �z.I/.
In the following sections, we describe the development of an approximation

algorithm (with two variants) based on existing packing algorithms and discuss its
performance.

12.3 Batch-Scheduling

12.3.1 Introduction

SSP requires that jobs be arranged without overlap in a two-dimensional space
while minimizing some scheduling objective. The spatial component of SSP can
be attributed to optimized multi-dimensional packing problems. Lodi et al. [13]
provides a survey of the models and algorithms used to solve the 2DBP prob-
lem. Castillo et al. [3] presents applications and approaches to solve circle packing
problems encountered in container loading. Batch-scheduling ideas originated from
the problem of scheduling “burn-in” operations at large-scale integrated circuit
manufacturing [1, 10]. Mathirajan and Sivakumar [14] surveys the literature for
scheduling of batching processors in the semi-conductor industry. The central idea
in batch-scheduling is grouping similar jobs together to form a “batch.” All jobs in a
batch start at the same time and the next batch starts upon completion of the longest
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job in the previous batch. The processing time of a batch is equal to the largest
processing time of any job in the batch. Our goal is to utilize ideas from 2DBP
to design batch-scheduling strategies that identify the batches consisting of jobs
that can simultaneously fit the space to minimize the sum of completion times.This
approach lets us to relax the temporal constraints in the original problem.

Assume we have a set J of N jobs such that p1 � p2 � � � � � pN . When all the
jobs fit in the space simultaneously, irrespective of the difference in their processing
times pj they are placed in the same batch. So Z =

P
j2J pj. If no pair of jobs

simultaneously fits the space, SSP reduces to SMS. Then each job is its own batch
and Z =

PN
jD1

Pj
iD1 pi. Smith [19] proved that ordering jobs in the nondecreasing

sequence of their processing times is optimal for SMS. In general, while minimizing
the sum of completion times, the more jobs we can fit earlier in our schedule the
lower the objective. Therefore, it seems intuitive to always group jobs together rather
than assign them to individual batches. Consider an instance of SSP with W=H=3
and job data as given in Table 12.1. Jobs 1 and 3 are the only jobs that fit the space
simultaneously.

Let the processing times [p1; p2; p3] = [2, 3, 7] and let us assume we schedule
the batch with the lowest processing time first. We define batch processing time as
the maximum processing time of jobs in a batch. Therefore, the batch sequence is
f2g and f1; 3g as seen in Fig. 12.2a. Then the objective value for batched jobs is
calculated as Z = p1 C 3p2 C p3 =2 + 9 + 7 = 18. Alternately, if we schedule the
batches in their own batch, the sequence is f1g; f2g; f3g as seen in Fig. 12.2b and Z
= 3p1 C 2p2 C p3 = 6 + 6 + 7 = 19. This shows that grouping jobs can result in a
lower sum of completion times objective.

Now suppose, [p1; p2; p3] = [2, 24, 25]. When jobs 1 and 3 are batched, Z =
p1 C 3p2 C p3 = 2 + 72 + 25 = 99. Without batching, Z = 3p1 C 2p2 C p3 = 6 + 49 +
25 = 79. Thus in scenarios where jobs with large differences in processing times are
grouped together, the batching approach does not necessarily lead to improvement
in the objective.

Table 12.1 Example
instance with three jobs
such that only jobs 1
and 3 simultaneously fit
the space

Job Width Height

1 3 2

2 2 3

3 3 1

Fig. 12.2 Batching sequence for example with three jobs. (a) Batching. (b) No batching
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Proposition 1. For N jobs, assume that p1 < p2 < � � � < pN�1 < pN. When jobs
with both the largest and smallest processing times are assigned to the same batch,
that is f1;Ng form a batch, and .N � 1/p1 � p2 � � � � � pN�1 < 0, the sum of
completion times obtained by batching is greater than the objective value obtained
without batching.

Proof. Let
P
j2J

Cb
j be the sum of completion times obtained when batching and

P
j2J

Cn
j

be the sum of completion times obtained without batching. Jobs f1;Ng form a batch,
while the other jobs are each assigned individual batches. Since p1 < p2 < � � � <
pN�1 < pN , batch f1;Ng is processed at the end of the schedule (see Fig. 12.3). SoP
j2J

Cb
j = p1 C Np2 C � � � C 3pN�1 C pN . If each job is assigned its own batch, then

P
j2J

Cn
j = Np1 C .N � 1/p2 C � � � C 2pN�1 C pN . Therefore,
P
j2J

Cb
j -
P
j2J

Cn
j

DŒp1 C Np2 C � � � C 3pN�1 C pN � � ŒNp1 C .N � 1/p2 C � � � C 2pN�1 C pN �

D.N � 1/p1 � p2 � � � � � pN�1

Hence, when .N � 1/p1 � p2 � � � � � pN�1 < 0, the result follows.

This contradicts the notion of scheduling as many jobs earlier in the schedule
to minimize our objective. So, our intuitions about general scheduling problems do
not always apply directly to problems with spatial resources. Batching seems to be
beneficial only when processing times are similar.

When looking at the instance with [p1; p2; p3] = [2, 24, 25], we observed that
scheduling batches in the sequence f2g then f1; 3g as seen in Fig. 12.4a results in an
objective Z = p1 C 3p2 C p3 = 2 + 72 + 25 = 99. Instead, if we were to schedule the
batches in the sequence f1; 3g then f2g, as seen in Fig. 12.4b, the objective value is
calculated as Z D p1Cp2C2p3 D 2C24C50 D 76. This suggests that scheduling
the jobs in the increasing order of batch processing times is not always effective.

Fig. 12.3 Sequence in which batches are scheduled for Proposition 1

Fig. 12.4 Comparing strategies for sequencing batches. (a) Batch sequence. (b) Alt. sequence
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Proposition 2. Consider a set J of N jobs such that p1 < p2 < � � � < pN�1 < pN.
If m of those jobs are in a batch B, including Job 1 and Job N, and pN > mpi;8i 2
J n B, then placing batch B at the end of a schedule provides a better objective than
placing it at the beginning of the schedule.

Proof. Let
P
j2J

Cb
j be the sum of completion times obtained when processing batch B

at the end of the schedule and
P
j2J

Ca
j be the sum of completion times obtained using

an alternate sequencing of batches (batch B is the first batch to be scheduled). Jobs
f1;Ng along with (m � 2) other jobs form a batch B, while the remaining jobs are
each assigned individual batches. Let f1; u1; u2; � � � ; um�2;Ng be the m jobs in batch
B such that

p1 < p2 < � � � < pu1�1 < pu1 < � � � < pum�2 < pum�1 < � � � < pN .
The sequence of batches scheduled in increasing order of batch processing times

is f2g; f3g; � � � ; fu1 � 1g; � � � ; fum�1g; � � � ; fN � 1g; fBg.
So
P
j2J

Cb
j = .p1 C pu1 C � � � C pum�2 C pN/C .Np2 C � � � C .m C 1/pN�1/.

Alternately, if we place batch B at the beginning of the schedule,
P
j2J

Ca
j is given by

p1 C pu1 C � � � C pum�2 C .N � m C 1/pN C � � � C pN�1.
Therefore,

P
j2J

Ca
j �P

j2J
Cb

j

D Œ.p1 C pu1 C � � � C pum�2 C .N � m C 1/pN C .N � m/p2 C � � � C pN�1/��
Œ.p1 C pu1 C � � � C pum�2 C pN/C .Np2 C � � � C .m C 1/pN�1/�

D � mp2 � mp3 � � � � � mpN�1 C .N � m/pN

Hence, when pN > mp2, pN > mp3, � � � , pN > mpN�1, the result follows.

In summary, placing jobs with the smallest and largest processing times in the
same batch or scheduling jobs in the increasing order of batch processing times
does not necessarily result in a good batching scheme.

12.3.2 Forming the Batches

Using the insights gained from our previous analysis, we group jobs similar in
processing time that also efficiently utilize the space to form a batch. We present
two MIP models, iterative and efficient area, that identify the assignment of jobs
to batches. The objective for the iterative model is to minimize the maximum
difference in processing times among jobs for each batch. The efficient area model
extends this idea by also minimizing the total unused area in each batch. Both MIP
formulations have been adapted from the 2DBP model found in [17]. Let J denote
the set of jobs and B the set of batches. Since at most each job can be its own batch,
the number of batches equals the number of jobs (N).
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12.3.2.1 Iterative Model

In the iterative model (M1), we add a constraint to limit the number of batches
(S) being used by the model. We do not chose S as part of the model, because
the objective here is not to reduce the number of batches used, but to find the
best assignment of jobs (to batches) that minimizes the sum of completion times.
Therefore, the strategy is to iterate through possible values for S, starting at S D
N � 1 and decreasing by 1 in each iteration. From the set of all solutions, we can
then chose the batching that results in the lowest sum of completion times objective
value. The formulation for the iterative model is given by

min
X

b2B

.Zmaxb � Zminb/ (12.10)

X

b2B

rjb D 1 8j 2 J (12.11)

xj C wj � W 8j 2 J (12.12)

yj C hj � H 8j 2 J (12.13)

xi C wi � xj � W.1 � lij/ 8i; j 2 J; i < j; b 2 B (12.14)

yi C hi � yj � H.1� bij/ 8i; j 2 J; i < j; b 2 B (12.15)

lij C lji C bij C bji C .1 � rib/C .1 � rjb/ � 1 8i; j 2 J; b 2 B (12.16)

Zminb � .pj � M/rjb C Mqb 8j 2 J; b 2 B (12.17)

Zmaxb � pjrjb 8j 2 J; b 2 B (12.18)

rjb � qb 8j 2 J; b 2 B (12.19)
X

j2J

rjb � �qb � 0 8b 2 B (12.20)

X

b2B

qb D S (12.21)

xj; yj � 0 8j 2 J (12.22)

Zminb;Zmaxb � 0 8b 2 B (12.23)

lij; bij 2 f0; 1g 8i; j 2 J (12.24)

rjb 2 f0; 1g 8j 2 J; b 2 B (12.25)

qb 2 f0; 1g 8b 2 B (12.26)

where
J is the set of all jobs
B is the set of all batches
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xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
Zmaxb is the maximum processing time of jobs in batch b 2 B
Zminb is the minimum processing time of jobs in batch b 2 B

rjb =

�
1 if job j is in batch b
0 otherwise

lij =

�
1 if job i is to the left of job j
0 otherwise

bij =

�
1 if job i is below job j
0 otherwise

qb =

�
1 if batch b is nonempty
0 otherwise

For i; j 2 J and b 2 B.
Here, constraint (12.11) ensures that each job is assigned to only one batch.

Constraints (12.12) and (12.13) ensure that jobs do not exceed the width and height
of the space. We use constraints (12.14)–(12.16) to prevent overlap of jobs within
the space. Constraint (12.17) determines the minimum processing time within a
batch, while (12.18) identifies the maximum processing time for each batch. If job
j is in batch b (rjb D 1), then constraint (12.19) makes sure batch b is non-empty
(qb D 1). When no jobs are present in a batch, constraint (12.20) ensures that the
batch is empty or qb D 0. Constraint (12.21) sets the number of batches to be used
by the model to some value S. We set � D 0:5 and define M D 1C maxj2J pj.

12.3.2.2 Efficient Area Model

While solving N � 1 instances of M1 for different values of S finds the best possible
batch assignment, the second approach or efficient area model (M2) proposes
to solve just one MIP to decide when and where to place jobs. The efficient
area model includes an area utilization component to the existing objective. So,
model 2 minimizes the maximum difference in processing times and the amount of
workspace area that remains unused for each batch. The formulation for the efficient
area model is given by

min
X

b2B

.Zmaxb � Zminb C UAb/ (12.27)

X

b2B

rjb D 1 8j 2 J (12.28)

xj C wj � W 8j 2 J (12.29)

yj C hj � H 8j 2 J (12.30)
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xi C wi � xj � W.1 � lij/ 8i; j 2 J; i < j; b 2 B (12.31)

yi C hi � yj � H.1� bij/ 8i; j 2 J; i < j; b 2 B (12.32)

lij C lji C bij C bji C .1 � rib/C .1 � rjb/ � 1 8i; j 2 J; b 2 B (12.33)

Zminb � .pj � M/rjb C Mqb 8j 2 J; b 2 B (12.34)

Zmaxb � pjrjb 8j 2 J; b 2 B (12.35)

rjb � qb 8j 2 J; b 2 B (12.36)
X

j2J

rjb � �qb � 0 8b 2 B (12.37)

WHqb �
X

j2J

wjhjrjb D UAb 8b 2 B (12.38)

xj; yj � 0 8j 2 J (12.39)

Zminb;Zmaxb;UAb � 0 8b 2 B (12.40)

lij; bij 2 f0; 1g 8i; j 2 J (12.41)

rjb 2 f0; 1g 8j 2 J; b 2 B (12.42)

qb 2 f0; 1g 8b 2 B (12.43)

where
J is the set of all jobs
B is the set of all batches
xj is the x-coordinate of job j 2 J
yj is the y-coordinate of job j 2 J
Zmaxb is the maximum processing time of jobs in batch b 2 B
Zminb is the minimum processing time of jobs in batch b 2 B
UAb is the unused area in batch b 2 B

rjb =

�
1 if job j is in batch b
0 otherwise

lij =

�
1 if job i is to the left of job j
0 otherwise

bij =

�
1 if job i is below job j
0 otherwise

qb =

�
1 if batch b is nonempty
0 otherwise

For i; j 2 J and b 2 B.
Here, constraint (12.28) ensures that each job is assigned to only one batch.

Constraints (12.29) and (12.30) ensure that jobs do not exceed the width and height
of the space. We use constraints (12.31)–(12.33) to prevent overlap of jobs within
the space. Constraint (12.34) determines the minimum processing time within a
batch, while (12.35) identifies the maximum processing time for each batch. If job
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j is in batch b (rjb D 1), then constraint (12.36) makes sure batch b is non-empty
(qb D 1). When no jobs are present in a batch, constraint (12.37) ensures that the
batch is empty or qb D 0. Constraint (12.38) calculates the unused area for each
batch b. We set � D 0:5 and define M D 1C maxj2J pj.

12.3.3 Scheduling the Batches

Once the batches are identified using either M1 or M2, it is also important to decide
the sequence in which to schedule the batches. Smith [19] proved that the shortest
processing time (SPT) rule, ordering jobs in the nondecreasing sequence of their job
processing times, is optimal for the SMS problem. The idea is that by scheduling
shorter jobs earlier in the schedule, more jobs can finish early resulting in a smaller
sum. For SSP, the rule translates to scheduling the batches in the nondecreasing
sequence of their batch processing times. For example, if P1 is the maximum
processing time of all jobs in batch 1 and P2 is the maximum processing time of
all jobs in batch 2, then batch 1 is scheduled before batch 2 if and only if P1 � P2.
However, as noted before, there are instances for which this rule does not necessarily
provide a better objective value. Therefore, we also consider scheduling jobs in
the non-decreasing order of the average batch processing times, or the average
processing time of all the jobs in a batch. We indicate the two scheduling rules
as MAX and AVG, respectively.

12.3.4 Post Processing Algorithm

By solving each instance of SSP using the iterative and efficient area models, we
determine the assignments of jobs to batches that minimize the maximum difference
in processing times while efficiently utilizing the workspace. With this information,
we then schedule the batches by applying either the MAX or AVG rules. Once
a schedule is created, we calculate the sum of completion times for the jobs as
ZH =

P
j2J CH

j , where CH
j is the completion time for job j. With this batching

algorithm, each job must wait until the previous batch has completed before it
can start processing. In reality there may be jobs in the current batch that finish
processing before the final job in the batch. This means that jobs in later batches
may be able to start earlier in the schedule. Since neither MIP model takes into
account the temporal dimension, we use a post-processing algorithm to incorporate
this observation and improve ZH. For each batch the algorithm determines if jobs
can start processing earlier in the schedule. If job j can be moved ahead in time by
say tj units, then the completion time is updated as, OCj = CH

j � tj and OZ =
P

j2J
OCj is

the new objective value.
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Proposition 3. For instances defined by N=nk jobs, n; k 2 Z
�C, where wj D W

k ,
hj D H 8 j 2 J, and p1 � p2 � � � � � pN, the solution obtained after the post-
processing routine is optimal.

Proof. Consider the instances with N D nk jobs, such that k jobs can simultaneously
fit the space. Let CH

j , OCj, and COPT
j denote the completion time for job j and ZH , OZ,

and ZOPT denote the objective value for the batch-scheduling algorithm, the post-
processing routine, and the optimal solution, respectively. First we observe that if k
jobs can simultaneously fit within the workspace that there are n batches. So for all
jobs j � k, OCj = COPT

j .
Let U = fu1; u2; � � � ; ukg denote the k jobs in the next batch waiting to be

scheduled, such that pu1 � pu2 � � � � � puk . Then by definition, if job j can be
moved ahead in time by say tj units, the new completion time is given by, OCj =
CH

j � tj. Since job ui can be processed as soon as ui�k completes and space becomes
available, we get the following recursive improvement on job completion times:

OCui = CH
ui

� Œ.pui�1 � pui�k/C � � � C .pk � p1/� 8i 2 f1; � � � ; k � 1g and
OCuk = CH

uk

So, OZ = ZH �Pn
jD1

Pj
iD1.pik � p.ik�kC1/ = ZOPT

12.4 Performance Analysis

In this section, we present solution guarantees on the objective values ZH generated
by both the batch-scheduling algorithms. We refer to ZOPT as the optimal objective
for the SSP formulation. We begin by analyzing special instances of SSP with a
set J of N jobs such that at any given time k jobs can simultaneously fit the space
(W � H) and p1 � p2 � � � � � pN .

Theorem 1. Suppose there are N=nk jobs for any n; k 2 Z
�C, wj � W and hj � H

8 j 2 J, and p1 � p2 � � � � � pN, where k jobs can simultaneously fit the space,
then batch-scheduling is a k-approximation algorithm.

Proof. Let J denote the set of nk jobs and B the set of batches. If the first k jobs
are scheduled in a batch at the beginning of the schedule, job k C 1 does not start
until any of the jobs finish processing. The first job to finish processing would be
job 1. So completion time, CkC1 D pkC1 C p1. Applying this reasoning we note
that a lower bound on the optimal objective for these instances is given by, ZOPT �Pn

jD1.n � j C 1/.pjk C pjk�1 C � � � C pjk�kC1/, since p1 � p2 � � � � � pN and we
are trying to minimize the sum of completion times. In the following discussion pjk

is defined as the processing time of the job in the j times k position in the sequence
p1 � p2 � � � � � pN .

Since only k jobs can occupy the space at any given time, the number of batches
is nk

k D n. If we use the MAX rule, Zb = maxj2bpj for each batch b 2 B and Z1 �
Z2 � � � � � Zn. Let us order the jobs in the sequence of the batches they are assigned
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and in the increasing order of their processing times within each batch, so that pjjkj
refers to the processing time of the jkth job in the scheduling sequence and not pjk.
The completion time of job j, CH

j , based on this new ordering is then calculated as
the sum of its processing time and the completion times of the batches scheduled
ahead of it. For example, if jobs j is in batch b, the completion time is calculated as:
CH

j D pj C Zb�1 C � � � C Z1.

ZH D
X

j2J

CH
j (12.44)

D
X

j2J

pj C kZ1 C k.Z1 C Z2/C k.Z1 C Z2 C Z3/C � � � C

Ck.Z1 C Z2 C : : :C Zn�1/ (12.45)

D
X

j2J

pj C kŒ.n � 1/Z1 C .n � 2/Z2 C � � � C 2Zn�2 C Zn�1� (12.46)

D
X

j2J

pj C kŒ.n � 1/pjkj C .n � 2/pj2kj C � � � C

C2pj.n�2/kj C pj.n�1/kj� (12.47)

D
nX

jD1
.pjjk�1j C � � � C pjjk�kC1j/C

nX

jD1
..nk � jk C 1/pjjkj/ (12.48)

D
nX

jD1
.pjjk�1j C � � � C pjjk�kC1j/C k

nX

jD1
..n � j C 1

k
/pjjkj/ (12.49)

D
nX

jD1
.pjjk�1j C � � � C pjjk�kC1j/C

nX

jD1
..n � j C 1

k
/pjjkj/

C.k � 1/

nX

jD1
..n � j C 1

k
/pjjkj/ (12.50)

�
nX

jD1
.pjjk�1j C � � � C pjjk�kC1j/C

nX

jD1
..n � j C 1

k
/pjjkj/

C.k � 1/

nX

jD1
..n � j C 1/pjjkj/ (12.51)

�
nX

jD1
.pjjk�1j C � � � C pjjk�kC1j/C

nX

jD1
..n � j C 1

k
/pjjkj/

C.k � 1/ZOPT (12.52)
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� ZOPT C .k � 1/ZOPT (12.53)

D kZOPT (12.54)

Equation (12.45) is obtained from the definition of completion times, CH
j and

we get Eq. (12.46) per the definition of Zb. In each batch b of k jobs, the batch
processing time is the processing time of the kth job in the batch, pjbkj. This is the
only processing time included in the calculation of completion times for the batches
scheduled later. The processing times of the remaining (k � 1) jobs are not repeated
in this objective as seen in Eq. (12.47). Equations (12.52) and (12.53) follow from
the lower bound on the optimal objective, ZOPT � Pn

jD1.n � j C 1/.pjk C pjk�1 C
� � � C pjk�kC1/.

The bound shown helps us understand what makes instances of SSP hard. The
real difficulty in solving instances of SSP lies in the spatial constraints as reflected
by the bound, which is dependent on k, the number of jobs that can simultaneously
fit within the given workspace. Also, recall that when minimizing the sum of
completion times, we want to schedule more jobs earlier in the schedule. This is
because the completion time of a job includes the completion times of the jobs
earlier in the schedule. When k D 1, SSP reduces to SMS and our batching heuristic
becomes SPT, which we know is optimal [19]. Our bound depicts that as k increases,
the spatial component plays a larger role in the objective obtained from the batch-
scheduling algorithm.

Consider the instance data with six jobs shown in Table 12.2 and a 10 � 10

workspace. We can fit three (k) jobs within the space, so the batches formed are
f1; 2; 3g and f4; 5; 6g as shown in Fig. 12.5a. The sum of completion times before
post-processing, ZH=p1 C p2 C 4p3 C p4 C p5 C p6 = 192. Using the lower bound
we know that ZOPT � 2.p1 C p2 C p3/C .p4 C p5 C p6/ = 153. So, ZH � 3ZOPT .

Now, if we were to schedule the batches as seen in Fig. 12.5b in the sequence
f1; 2g, f3; 4g, and f5; 6g such that k=2, then ZH=p1C5p2Cp3C3p4Cp5Cp6 = 181.
Therefore, packing more jobs (larger k) that are sufficiently different in processing
times because they efficiently utilize the space does not result in a lower sum of
completion times objective.

Table 12.2 SSP instance with N = 6 jobs
to depict that grouping more jobs in a batch
does not guarantee lower objective value

Job Processing time Width Height

1 1 2 H

2 2 4 H

3 21 2 H

4 22 4 H

5 41 2 H

6 42 4 H
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Fig. 12.5 Example schedule with two and three jobs in a batch. (a) three job batch (b) two job
batch

12.5 Computational Analysis

In this section we provide the computational results obtained by evaluating the two
proposed procedures for solving the SSP and comparing it to the optimal solution
or the best solution obtained after a certain time limit for the integer programming
formulation of SSP.

12.5.1 Instance Generation

We tested both the iterative model (M1) and the efficient area model (M2) on
generated instances of SSP. The instance class denoted as NnPpRr < ABC > i
has n= 5 or 10 jobs, processing times generated in the discrete uniform interval of
.1; p/ with workspace area dimension W D H D r. The value for r is 10 or 20 units
and i is an instance indicator. A, B, C classifiers are used to indicate the distributions
from which the width and height of jobs are sampled.

Class A wj 2 Uniform Discrete [1, W
2

] and hj 2 Uniform Discrete [1, H
2

]
Class B wj 2 Uniform Discrete [1, W

2
] and hj 2 Uniform Discrete [ H

2
,H]

Class C wj 2 Uniform Discrete [ W
2

,W] and hj 2 Uniform Discrete [ H
2

,H]

Five instances of each class-type were generated, resulting in a total of 60
instances. All of the instances had jobs sorted in the increasing order of processing
times. Instances in Class C have jobs that occupy more than half the area. This
results in each job getting its individual batch and SSP reduces to SMS which can
be solved to optimality. So for the computational analysis we only consider instances
in classes A and B. By design, instances in Class B should be relatively harder to
solve than instances in class A. This is because all of the jobs in class A are small
compared to the dimensions of the workspace, so we can fit more jobs together.
Difficult instances of the problem occur, when some jobs are small and some are
large (Class B).
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Larger instances were modified from [6]. The instances have 100, 500, and 1,000
jobs with a 10 � 7 workspace. For each job:

wj 2 UniformDiscreteŒ1; 10�
hj 2 UniformDiscreteŒ1; 7�
pj 2 UniformDiscreteŒ5; 25�

Since we did not permit rotation of jobs, we had to interchange the widths and
heights in certain cases to ensure that the jobs would fit within the space.

12.5.2 Initial Feasible Solution Heuristic

The motivation behind creating the batching models (M1 and M2) was to reduce
the complexity of the original SSP by looking only at the packing component of the
problem. Nevertheless, we need to understand that M1 and M2 are still MIPs and
as the instances grow larger, these models could take longer to solve to optimality.
Further, an optimal solution to the batching model does not necessarily guarantee
an optimal solution to SSP. In order to improve the solution time for these MIP
formulations, we provide the solver with an initial feasible solution obtained from
a greedy packing heuristic. Basically, we start with an instance of SSP sorted in the
increasing order of job processing times, i.e. p1 � p2 � � � � � pN . We sequentially
begin grouping jobs into a batch until they fit the space. Once the job can no longer
fit the space, we create a new batch. This process is repeated until all jobs are
assigned a batch.

12.5.3 Computational Results

In this section, we compare the solutions generated by the batch-scheduling
approaches (iterative and efficient area models) to the optimal solution (OPT)
obtained by solving the mixed-integer program for SSP. The batching MIPs, M1 and
M2, and the SSP MIP formulation were all implemented using the C programming
language and solved using Gurobi 5.0 with a thread count of 1 and cuts parameter set
to default on a RedHat Enterprise 6.5 x86_64 server. The following tables compare
the objective values and runtimes for the small instances with 5 jobs or 10 jobs and
the large instances with 25 jobs or 100 jobs (defined at the beginning of Sect. 12.5).

Table 12.3 lists the objective values obtained from solving instances with five and
ten jobs for M1 and M2 using the MAX rule and the optimal solution (OPT) for the
original MIP formulation of SSP. Note that the objective reported for M1 is the best
possible value among the N � 1 potential solutions it obtains and the run time is the
total time taken to iteratively solve all of the models. We observe that M2 seems to
perform at least as well as M1, and both models return values close to the optimal
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Table 12.3 Comparison of objectives obtained from M1, M2, and
OPT for small instances of batch-scheduling

Factors

Instance M1 (Best) M2 OPT M1/OPT M2/OPT

N5P10R10A 27 27 27 1:00 1:00

N5P19R10B 33 33 29 1:14 1:14

N5P10R20A 26 26 26 1:00 1:00

N5P10R20B 26 25 23 1:13 1:12

N10P10R10A 49 49 49 1:00 1:00

N10P10R10B 80 72 66 1:22 1:10

N10P10R20A 54 54 51 1:05 1:05

N10P10R20B 101 88 77 1:31 1:14

Table 12.4 Comparison of M1, M2, and OPT
runtimes for small instances of batch-scheduling

Runtime (s)

Instance M1 (Total) M2 OPT

N5P10R10A 0:19 0:01 0:01

N5P19R10B 0:14 0:04 0:02

N5P10R20A 0:17 0:01 0:01

N5P10R20B 0:13 0:07 0:01

N10P10R10A 43:98 0:11 0:03

N10P10R10B 110:21 82:79 287:69

N10P10R20A 300:81 0:23 0:30

N10P10R20B 223:26 114:17 244:33

solution. For these set of instances, the objective values returned by both models for
the MAX and AVG rules were identical for instances with five jobs and ten jobs.

Table 12.4 presents the runtimes for solving the instances with five and ten jobs
using M1, M2, and the original MIP formulation. We observe that with smaller
number of jobs, all three methods produce results quickly. The runtimes for M1 are
larger because it iteratively solves N � 1 models for each instance with N jobs.

Table 12.5 lists the objective values obtained from solving larger instances (25
and 100 jobs) for M1 and M2 using the MAX rule and the objective ZIP for the
original MIP formulation of SSP. Note that the objective reported for M1 is the best
possible value among the N � 1 potential solutions it obtains, with each iteration of
M1 allowed 2 min of execution time. M2 and ZIP report the best objective obtained
after 20 min of execution. To improve upon the solution, M2 is given an initial
feasible solution. The resulting solution is then updated using the post-processing
algorithm. Although both models produce objectives close to optimal, it is observed
that with a larger number of jobs, M2 outperforms M1, and on some occasions, after
20 min, M2 is able to produce better solutions than the original SSP formulation.
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Table 12.5 Comparison of objectives obtained from M1, M2, and ZIP for
large instances of batch-scheduling

Objective Factor

Instance M1 (Best) M2 (Updated) ZIP M1/ZIP M2/ZIP

N25P25E11 1;697 1;421 1;215 1.40 1.17

N25P25E12 1;518 1;409 1;022 1.49 1.38

N25P25E13 2;204 2;046 1;540 1.43 1.33

N25P25E14 1;555 1;292 995 1.56 1.30

N25P25H11 1;819 1;762 1;353 1.34 1.30

N25P25H12 1;587 1;332 965 1.64 1.38

N25P25H13 1;929 1;712 1;169 1.65 1.46

N25P25H14 1;625 1;525 1;066 1.52 1.43

N100P25E1 34;372 24;495 28;205 1.22 0.87

N100P25H1 45;571 24;919 27;672 1.65 0.90

In conclusion, the efficient area model seems to be more effective for larger
instances both in terms of runtime and solution quality. Further investigations on
the weights in the multi-objective function in the efficient area model (M2) could
result in potential improvements in objective value.

12.6 Conclusions

The study aims to develop solution methods for SSP with good approximations for
the minimum sum of completion times objective. We conclude by summarizing the
main contributions and key results presented and by suggesting possible directions
for future research. We explored the relationship between the spatial and temporal
components of the problem. We considered just the spatial restrictions and utilized
bin-packing strategies to identify batches of jobs that will efficiently utilize the
space. We then scheduled the jobs using rules to minimize the sum of completion
times objective.

When minimizing the sum of completion times objective sometimes counterin-
tuitive policies are better. Here we proved an approximation factor under certain
conditions and also identified scenarios when grouping jobs did not necessarily
result in a better objective. We also gave a post-processing algorithm to improve
the objective value of the batching models, which resulted in optimal solutions
for certain instances. Based on the instances we tested for both the iterative
and efficient-area approaches, our assessment is that scheduling jobs similar in
processing times within the same space yields good solutions. If processing times
are sufficiently different, then grouping jobs together because they effectively utilize
the space does not necessarily result in a lower sum of completion times. The
efficient area model outperforms the iterative model both in terms of solution quality
and run time.
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Directions for future research are plentiful. We provide two MIP formulations
to decide the assignment of jobs to batches, the iterative and efficient area model.
Currently, we solve at most N � 1 instances for the iterative procedure and weigh
the two objectives in the efficient area model equally. Possible enhancements could
be to implement a binary search procedure that improves runtimes for the iterative
model or tweak the weights in the multi-objective efficient area model. This study
assumes that a single spatial resource of fixed dimension is available. An interesting
extension would be to look at multiple workspace problems with varying area. We
may be able to use ideas from variable size bin packing to design algorithms for
this problem. Another area that merits investigation is to consider weights on the
completion times of the jobs. If lj is the weight on completion time for job j 2 J,
and we assign the number of jobs in the batch containing job j as a weight on its
completion time, can we get similar results for our procedures? Lastly, although
the results and analyses presented in this study pertain to the sum of completion
times objective, the solution methods developed here can easily be applied to other
objective functions of the problem.
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Chapter 13
Optimized Object Packings Using
Quasi-Phi-Functions

Yuriy Stoyan, Tatiana Romanova, Alexander Pankratov, and Andrey Chugay

Abstract In this chapter we further develop the main tool of our stud-
ies, phi-functions. We define new functions, called quasi-phi-functions, that we use
for analytic description of relations of geometric objects placed in a container taking
into account their continuous rotations, translations, and distance constraints. The
new functions are substantially simpler than phi-functions for some types of objects.
They also are simple enough for some types of objects for which phi-functions could
not be constructed. In particular, we derive quasi-phi-functions for certain 2D&3D-
objects. We formulate a basic optimal packing problem and introduce its exact
mathematical model in the form of a nonlinear continuous programming problem,
using our quasi-phi-functions. We propose a general solution strategy, involving:
a construction of feasible starting points, a generation of nonlinear subproblems
of a smaller dimension and decreased number of inequalities; a search for local
extrema of our problem using subproblems. To show the advantages of our quasi-
phi-functions we apply them to two packing problems, which have a wide spectrum
of industrial applications: packing of a given collection of ellipses into a rectangular
container of minimal area taking into account distance constraints; packing of a
given collection of 3D-objects, including cuboids, spheres, spherocylinders and
spherocones, into a cuboid container of minimal height. Our efficient optimization
algorithms allow us to get local optimal object packings and reduce considerably
computational cost. We applied our algorithms to several inspiring instances: our
new benchmark instances and known test cases.
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13.1 Introduction

Optimal packing problem is a part of operational research and computational
geometry. It has multiple applications in modern biology, mineralogy, medicine,
materials science, nanotechnology, robotics, coding, pattern recognition systems,
control systems, space apparatus control systems, as well as in the chemical indus-
try, power engineering, mechanical engineering, shipbuilding, aircraft construction,
civil engineering, logistics, etc. At present, the interest in finding effective solutions
for packing problems is growing rapidly. This is due to a large and growing number
of applications and an extreme complexity of methods used to handle many of them.
We refer the reader to [1] for typology of the class of problems.

These problems are NP-hard [2], and, as a result, solution methodologies
generally employ heuristics, e.g. [3–16]. Some researchers develop approaches
based on mathematical modeling and general optimization procedures; e.g. [17–25].

Our approach is based on mathematical modeling of relations between geometric
objects and thus reducing the Optimal Packing Problem to a nonlinear programming
problem. We use the phi-function technique [26, 27] for an analytic description of
relations of objects to be packed in a container taking into account their continuous
rotations, translations, and distance constraints. In [28] we review our phi-functions.
One may also find there a clear definition of a phi-function. There we construct a
mathematical model of a basic placement (cutting and packing) problem using phi-
functions as a constrained optimization problem. We propose a solution strategy
for placement problems. The paper also considers a layout problem encountered in
space engineering and provides a number of computational results for 2D- and 3D-
applications. The complete class of phi-functions for basic 2D-objects are derived
in [29]. The functions allow us to cover a wide spectrum of irregular packing
problems involving arbitrary shaped 2D-objects, bounded by circular arcs and line
segments; see, e.g., [30]. Phi-functions for the simplest 3D-objects under continuous
rotations, such as parallelepipeds, convex polytopes, and spheres, are considered
in [31, 32]. But some of these phi-functions (especially for 3D-objects) happen
to be rather complicated, analytically, and difficult in practical use. Our attempts
to construct convenient phi-functions for more general types of objects have been
futile.

In this chapter we further develop the concept of phi-functions, introducing a new
class of functions, called quasi-phi-functions. The functions can be described by
analytical formulas that are substantially simpler than those used for phi-functions,
for pairs of some types of 2D- and 3D-objects (convex polygons, circles, circular
segments, cuboids, spheres, cylinders, disks, and convex polytopes). They also are
simple enough for some types of rotating objects for which phi-functions could not
be constructed. In particular, we find convenient quasi-phi-functions for ellipses,
and for certain 3D-objects including, so-called, spherocylinders, spherocones. The
use of quasi-phi-functions allows us to handle new types of objects, but there is
a price to pay: now the optimization has to be performed over a larger set of
parameters, including the extra variables used by our new functions. To demonstrate
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high efficiency of our quasi-phi-functions we consider two practical problems of
packing a collection of ellipses into a rectangular container of minimal area as
well as packing a collection of given 3D-objects (cuboids, spheres, spherocylinders,
spherocones) into a cuboid container of minimal height. We derive here quasi-phi-
functions to describe non-overlapping and containment constraints for appropriate
pairs of rotating objects and develop efficient optimization algorithms. In this
chapter the reader will find theoretical results presented in our works [33, 34].

The chapter is organized as follows: in Sect. 13.2 we define our new quasi-
phi-functions for an analytical description of non-overlapping, containment, and
distance constraints; we also discuss their general properties. In Sect. 13.3 we
define quasi-phi-functions for certain types of convex 2D- and 3D-objects needed in
applications. In Sect. 13.4 we formulate a basic optimal packing problem, construct
its mathematical model, using our quasi-phi-functions, in the form of a nonlinear
programming problem with nonsmooth functions, and develop a general solution
strategy. In Sect. 13.5 we formulate the optimal packing problem of ellipses taking
into account continuous ellipse rotations and distance constraints as a continuous
nonlinear programming problem with smooth functions; describe the algorithm
to search for “good” local optimal solutions for the problem which involves a
fast starting point and efficient local optimization procedures. In Sect. 13.6 we
formulate the optimal packing problem of 3D-objects, including spherocylinders
and spherocones, and based on characteristics of its mathematical model, describe
an efficient solution algorithm, using local and global optimization methods. We
provide some computational results of several instances for 2D- and 3D-optimal
packing problems, illustrated with pictures, in Sect. 13.7, and finish with some
concluding remarks in Sect. 13.8.

13.2 Quasi-Phi-Functions and Their Properties

Let A � Rd and B � Rd be closed phi-objects, d D 2; 3; one can find a precise
definition of phi-objects, e.g., in [26, 27]. We assume that at least one of these
objects is bounded. Position of the object A is defined by a vector of placement
parameters (vA, �A), where vA is a translation vector and �A is a vector of rotation
parameters: for 2D object vA D .xA; yA/ and �A is a rotation angle; for 3D-object
vA D .xA; yA; zA/ and �A D �

�z; �x; �y
�
, where � z, � x, � y are rotation angles,

respectively: from axis OX to OY, from axis OY to OZ and from axis OX to OZ.
We denote the vector of variables for the object A by uA D .vA; �A/ and the vector
of variables for the object B by uB D .vB; �B/. The object A, rotated by angles
� z, � x, � y (in this order), translated by vector vA, will be denoted by A(uA).

Definition 1 A continuous and everywhere defined function ˚ 0AB(uA, uB, u 0)
is called a quasi-phi-function for two phi-objects A(uA) and B(uB) if max

u02U

ˆ0AB
.uA; uB; u0/ is a phi-function ˚AB(uA, uB) for the objects. Here u0 is a vector of
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auxiliary variables, that takes values in some domain U � Rn (which may depend
on the shapes of objects A and B).

The concept of quasi-phi-functions and basic characteristics of quasi-phi-
functions formulated in the form of theorems are introduced in [33].

We emphasize that according to the definition, a quasi-phi-function ˚ 0AB for a
pair of objects A and B can be constructed by many different formulas, and we can
choose the most convenient ones for our optimization algorithms.

Next we discuss general properties of quasi-phi-functions. Let ˚ 0AB(uA, uB, u 0)
be a quasi-phi-function for two phi-objects A(uA) and B(uB).

Property 1 If ˆ0AB
.uA; uB; u0/ � 0 for some u0, then int A .uA/ \ int B .uB/ D ¿.

Here int A denotes the topological interior of object A.

Property 2 Let P .uP/ D f.x; y; z/ W  P D ˛ � x C ˇ � y C � � z C �P � 0g be a half-
space (for d D 2 it will be a half-plane; see below); here, uP D �

�xP; �yP; �P
�
, ˛ D

sin �yP; ˇ D sin �xP � cos �yP; � D cos �xP � cos �yP (note ˛2 C ˇ2 C �2 D 1).
If A;B � R2, then P .uP/ D f.x; y/ W  P D ˛ � x C ˇ � y C �P � 0g, where uP D
.�P; �P/ ˛ D cos�P, ˇ D sin�P. Suppose˚AP(uA, uP) is a phi-function for A(uA) and
P(uP) and ˆBP�

.uB; uP/ is a phi-function for B(uB) and P� .uP/ D Rdn int P .uP/,
d D 2; 3.

Then a function defined by

ˆ0AB
.uA; uB; uP/ D min

n
ˆAP .uA; uP/ ; ˆ

BP�

.uB; uP/
o
; (13.1)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB).
Here u0 D uP.

Property 3 If ˚ 0AP(uA, uP, u’
1) is a quasi-phi-function for A(uA) and P(uP),

ˆ0BP�

.uB; uP; u
0

2/ is a quasi-phi-function for B(uB) and P*(uP), then function

ˆ0AB
�

uA; uB; u
0

�
D min

n
ˆ0AP

�
uA; uP; u

0

1

�
; ˆ0BP�

�
uB; uP; u

0

2

�o
; (13.2)

is a quasi-phi-function for the pair of bounded objects A(uA) and B(uB). Here u0 D
.uP; u

0

1; u
0

2/.

We adapt the concept of quasi-phi-functions to model distance constraints. To
this end we define normalized and adjusted quasi-phi-functions [33], based on
similar terms for phi-functions [27].

Let dist .A;B/ D min
a2A;b2B

d .a; b/, where d(a, b) stands for the Euclidean distance

between points a; b 2 Rd, d D 2; 3, and let �� > 0 denote minimal allowable
distances between objects A(uA) and B(uB).
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We remind the reader that by definition (see for instance [27]) a phi-function
Q̂ AB .uA; uB/ for objects A(uA) and B(uB) is said to be a normalized phi-function if
Q̂ AB .uA; uB/ D dist .A .uA/ ;B .uB// whenever int A .uA/\ int B .uB/ D ¿.

Definition 2 A quasi-phi-function Q̂ 0AB
.uA; uB; u0/ is called a normalized quasi-

phi-function for objects A(uA) and B(uB), if function max
u02U

Q̂ 0AB
.uA; uB; u0/ is a

normalized phi-function.

Thus, max
u02U

Q̂ 0 AB � �� () dist .A;B/ � ��.

Definition 3 Function
_

ˆ

0
AB

.uA; uB; u0/ is called an adjusted quasi-phi-function for

objects A(uA) and B(uB), if function max
u02U

_

ˆ

0
AB

.uA; uB; u0/ is an adjusted phi-function.

Thus, max
u02U

_

ˆ

0

AB

� 0 () dist .A;B/ � ��.

Let Q̂ AP .uA; uP/ ; Q̂ BP�

.uB; uP/ be normalized phi-functions. Assume

ˆ0AB
.uA; uB; uP/ D min

n Q̂ AP .uA; uP/ ; Q̂ BP�

.uB; uP/
o
:

Then a quasi-phi-function

Q̂ 0AB
.uA; uB; uP/ D 2ˆ0AB

.uA; uB; uP/ ; (13.3)

is a normalized quasi-phi-function, and a quasi-phi-function

_

ˆ0AB
.uA; uB; uP/ D ˆ0AB

.uA; uB; uP/ � 0:5��; (13.4)

is an adjusted quasi-phi-function.

13.3 Construction of Quasi-Phi-Functions

Here we derive quasi-phi-functions for certain 2D- and 3D-objects, based on our
general formulas (13.1)–(13.3).

A quasi-phi-function for convex polygons. Let K1(u1) and K2(u2) be convex poly-
gons, given by their vertices p1i ; i D 1; ::::;m1, and p2i ; i D 1; ::::;m2, respectively.
Then ˆK1P .u1; uP/ D min

1�i�m1
 P
�
p1i
�

and ˆK2P .u2; uP/ D min
1�i�m2

�� P
�
p2i
��

are

phi-functions for K1(K2) and P(P*), respectively.
Now the function

ˆ0K1K2 .u1; u2; uP/ D min
n
ˆK1P .u1; uP/ ; ˆ

K2P�

.u2; uP/
o
; (13.5)

is a quasi-phi-function for K1(u1) and K2(u2).
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Note that function 2ˆ0K1K2 .u1; u2; uP/ is a normalized quasi-phi-function.
An adjusted quasi-phi-function for K1(u1) and K2(u2) is defined by

_

ˆ

0

K1K2

.u1; u2; uP/ D min
n
ˆK1P .u1; uP/ ; ˆ

K2P�

.u2; uP/
o

� 0:5��: (13.6)

A quasi-phi-function for a convex polygon K(u1) and a circle C(u2). Let K(u1) be a
convex polygon given by its vertices pi; i D 1; ::::;m. Let pC and rC be the center
and radius of circle C(u2). Then ˆKP .u1; uP/ D min

1�i�m
 P .pi/ and ˆCP�

.u2; uP/ D
� P .pC/� rC are phi-functions.

Now a quasi-phi-function for K(u1) and C(u2) may be defined as:

ˆ0CK
.u1; u2; uP/ D min

n
ˆKP .u1; uP/ ; ˆ

CP�

.u2; uP/
o
: (13.7)

It should be noted that function 2˚ 0CK(u1, u2, uP) is a normalized quasi-phi-
function.

Quasi-phi-functions defined by (13.5)–(13.7) can be applied to convex polytopes
and spheres.

A quasi-phi-function for circular segments D1(u1) and D2(u2). Let D1 .u1/ D
T1 .u1/ \ C1 .u1/, D2 .u2/ D T2 .u2/ \ C2 .u2/ be two circular segments, where
T1(u1) (T2(u2)) denotes a triangle given by its vertices p1

i (p2
i ), i D 1; 2; 3 (we note

that two sides of T have to be tangents to C and one side is a chord of C) and
p1C D .x1; y1/ (p2C D .x2; y2/) and r1

C (r2
C) denote the center and radius of C1(u1)

(resp., C2(u2)). Then, following (13.1), a quasi-phi-function for D1(u1) and D2(u2)
may be defined by

ˆ0D1D2 .u1; u2; uP/ D min
n
ˆD1P .u1; uP/ ; ˆ

D2P�

.u2; uP/
o
; (13.8)

where ˆD1P .u1; uP/ D max
˚
ˆT1P; ˆC1P

�
; ˆD2P�

.u2; uP/ D max
n
ˆT2P�

; ˆC2P�

o
,

are phi-functions, andˆT1P .u1; uP/ D min
iD1;2;3 P

�
p1i
�
; ˆC1P .u1; uP/ D  P

�
p1C
��r1C,

ˆT2P�

.u2; uP/ D min
iD1;2;3

�� P
�
p2i
��

, ˆC2P�

.u2; uP/ D � P
�
p2C
� � r2C .

We can define a quasi-phi-function for D1(u1) and D2(u2) using formula (13.2)

ˆ0D1D2
�
u1; u2; u

0� D min
n
ˆ0D1P

�
u1; uP; u

0

1

�
; ˆ0D2P�

�
u2; uP; u

0

2

�o
;

where u0 D
�

uP; u
0

1; u
0

2

�
, u

0

1 2 Œ0; 1� � R1, u
0

2 2 Œ0; 1� � R1.

To this end, first, we construct quasi-phi-functions ˆ0D1P
�

u1; uP; u
0

1

�
and

ˆ0D2P�

�
u2; uP; u

0

2

�
. Let ˆC1P .u1; uP/ be a phi-function for C1(u1) and P(up).

We introduce function
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ˆ0D1P
�

u1; uP; u
0

1

�
D min

n
 P
�
p11
�
;  P

�
p12
�
; �1

�
u1; uP; u

0

1

�o
;

�1

�
u1; uP; u

0

1

�
D  P

�
p13
� � u

0

1 P
�
p13
�C u

0

1ˆ
C1P .u1; uP/ ;

where u
0

1 2 Œ0; 1� � R1, p1
i , i D 1; 2, are the endpoints of the chord of D1(u1).

By analogy we have

ˆ0D2P
�

u2; uP; u
0

2

�
D min

n
� P

�
p21
�
;� P

�
p22
�
; �2

�
u2; uP; u

0

2

�o
;

�2

�
u2; uP; u

0

2

�
D � P

�
p23
� � u

0

2

�� P
�
p23
��C u

0

2ˆ
C2P�

.u2; uP/ ;

where u
0

2 2 Œ0; 1� � R1, p2
i , i D 1; 2, are the endpoints of the chord of D2(u2).

The a quasi-phi-function defined by (13.8) may be adapted to a pair of spherical
segments defined as intersections of right circular cones with solid spheres.

A quasi-phi-function for ellipses. Let E1(u1) and E2(u2) be two ellipses with semi-
axes ai and bi, ai > bi i D 1; 2.

Then, a quasi-phi-function for E1(u1) and E2(u2) may be defined as follows:

ˆ0E1E2
�
u1; u2; u

0� D min
˚
�
�
�1; �2; u

0� ; �C
�
u1; u2; u

0� ; ��
�
u1; u2; u

0�� ; (13.9)

where �1 and �2 are rotation angles and u
0 D .t1; t2/ is a vector of auxiliary

parameters, 0 � ti � 2� , i D 1; 2; functions �; �C; �� are defined below.
The parameter ti specifies a point on ellipse Ei. In the local coordinate system of

ellipse Ei that point is
�
xt

i; y
t
i

� D .ai cos ti; bi sin ti/, and after rotation and translation

its coordinates are
�

x
0

i ; y
0

i

�
D vi C M .�i/ � �xt

i; y
t
i

�
, where M(�) denotes the standard

rotation matrix, vi D .xi; yi/ is a translation vector of Ei.

Now we define the three functions mentioned in (13.9): � D �
D
N

0

1;N
0

2

E
,

where N
0

i D
�
˛

0

i ; ˇ
0

i

�
D M .�i/ .˛i; ˇi/, ˛i D cos ti

ai
; ˇi D sin ti

bi
; �˙ D

 1
�
x2̇ � x1; y2̇ � y1

� D ˛
0

1

�
x2̇ � x1

� C ˇ
0

1

�
y2̇ � y1

� � 1, where
�
x2̇ ; y2̇

�
are

coordinates of two points q2̇ on the second tangent line,
�
x2̇ ; y2̇

� D
�

x
0

2; y
0

2

�
˙

�
�
�ˇ0

2; ˛
0

2

�
, � D .a2/

2, hN
0

1, N
0

2i is a scalar product of vectors N
0

1 and N
0

2.

Alternatively, a quasi-phi-function for E1(u1) and E2(u2) may be defined accord-
ing to (13.2):

ˆ0E1E2
�
u1; u2; u

0� D min
n
ˆ0E1P

�
u1; uP; u

0

1

�
; ˆ0E2P�

�
u2; uP; u

0

2

�o
:
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It remains to define a quasi-phi-function for an ellipse E(uE) and a half-plane
P(uP). This can be done as follows:

ˆ0EP
.uE; uP; t/ D min

˚
� .�E; �P; t/ ;  

C
P .uE; uP; t/ ;  

�
P .uE; uP; t/

�
; (13.10)

where uP D .�P; �P/, 0 � t � 2� is auxiliary parameter.
Here the half-plane is defined by  P .x; y/ D ˛Px C ˇPy C �P � 0, where

˛ D cos�P, ˇ D sin�P.
Note that NP D .˛P; ˇP/ is the corresponding outer normal vector for the half-

plane. For ellipse E(uE) we adopt our previous formulas introduced for E2(u2),

i.e. N
0

2 D
�
˛

0

2; ˇ
0

2

�
and

�
x2̇ ; y2̇

�
, we just replace the subscript 2 with E in those

formulas. Thus  Ṗ

�
xĖ ; yĖ

� D ˛PxĖ C ˇPyĖ C �P � 0: Lastly we define

� D �
D
NP;N

0

E

E
, which completes our construction of (13.10), here hNP, N’

Ei is a

scalar product of vectors NP and N’
E .

Now let a minimal allowable distance between two ellipses E1 and E2 be given,

we denote it by ��. Assume that
_

ˆ0E1P
.u1; uP/ ;

_

ˆ0E2P
�

.u2; uP/ are adjusted quasi-

phi-functions provided that max
uP2U

_

ˆ0E1P .u1; uP/ � 0 if dist .E1;P/ � 0:5�� and

max
uP2U

_

ˆ0E2P
�

.u2; uP/ � 0 if dist .E2;P�/ � 0:5��. Then

_

ˆ0E1E2 .u1; u2; uP/ D min

�
_

ˆ0E1P .u1; uP/ ;
_

ˆ0E2P�

.u2; uP/

�
; (13.11)

is an adjusted quasi-phi-function for distance constraint dist .E1;E2/ � ��.
A quasi-phi-function for ellipse E(u1) and the complement of the interior of ˝
Let E(u1) be an ellipse with variable parameters u1 D .x1; y1; �1/, and let ˝ be a

rectangular container with vertices p1 D .0; 0/, p2 D .l; 0/, p3 D .l;w/, p4 D .0;w/.
We denote�� D R2n int�.

Then a quasi-phi-function for E and˝* may be defined as

ˆ
0
E��

�
u1; t

0

1; t
0

2

�
D min

n
'11 .p1/ ; '11 .p2/ ; '12 .p3/ ; '12 .p4/ ; '21 .p2/ ;

'21 .p3/ ; '22 .p1/ ; '22 .p4/
o
; (13.12)

where t
0

2
¤ t

0

1
2 Œ0; 2��, '11 D A1x C B1y C C1 � 1, '12 D �A1x � B1y � C1 � 1,

A1 D ˛1 � cos �1 Cˇ1 � sin �1, B1 D �˛1 � sin �1 Cˇ1 � cos �1, ˛1 D cos t
0

1

a ; ˇ1 D sin t
0

1

b ,
C1 D �A1x1 � B1y1, '21 D A2x C B2y C C2 � 1, '22 D �A2x � B2y � C2 � 1,
A2 D ˛2 � cos �2 C ˇ2 � sin �2, B2 D �˛2 � sin �2 C ˇ2 � cos �2, C2 D �A2x2 � B2y2,

˛2 D cos t
0

2

a ; ˇ2 D sin t
0

2

b .
Let a minimal allowable distance �� between an ellipse E(u1) and the frontier of

the rectangle˝ be given. Then function
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_

ˆ
E��

.u1; t
0

1; t
0

2/ D min
n
'11

�
p�
1

�
; '11

�
p�
2

�
; '12

�
p�
3

�
; '12

�
p�
4

�
;

'21
�
p�
2

�
; '21

�
p�
3

�
; '22

�
p�
1

�
; '22

�
p�
4

� o
;

(13.13)

is an adjusted quasi-phi-function enforcing the distance constraint dist .E1;��/ �
��, where p�

i
; i D 1; 2; 3; 4 are vertices of region �� ˚ C .��/, C .��/ is circle

of radius ��, i.e. p�
1

D .��; ��/, p�
2

D .l � ��; ��/, p�
3

D .l � ��;w � ��/,
p�
4

D .��;w � ��/, ˚ is a symbol of Minkovski sum [35].

A quasi-phi-function for two spherocones
_

T1 and
_

T2. Further a convex object
_

T we call a spherocone, if
_

T D D1 [ T [ D2, where: T is a truncated cone of
height 2e, with radius r1 of the upper base and radius r2 of the lower base, r1 � r2;

Dk is a spherical segment of sphere Sk of radius Rk D r2kC$2
k

2$k
; k D 1; 2, D1 is an

upper spherical segment of height«1 and the base radius r1; D2 is a lower spherical
segment of height«2 and the base radius r2.

A quasi-phi-function for spherocones
_

T1 .u1/ and
_

T2 .u2/ can be derived as

ˆ
0

_
T1

_
T2
�
u1; u2; up

� D min

�
ˆ
_
T1P

�
u1; up

�
; ˆ

_
T2P� �u2; up

��
; (13.14)

where ˆ
_
T1P and ˆ

_
T2P� are phi-functions for objects

_

T1 and P, and objects
_

T2 and
P* respectively. Now we define

ˆ
_
T1P

�
u1; up

� D min
˚
ˆD11P

�
u1; up

�
; ˆD12P

�
u1; up

��
; (13.15)

ˆ
_
T2P� �u2; up

� D min
˚
ˆD21P� �u2; up

�
; ˆD22P� �u2; up

��
; (13.16)

where ˆD11P
�
u1; up

�
; ˆD12P

�
u1; up

�
, ˆD21P� �u2; up

�
; ˆD22P� �u2; up

�
are phi-

functions for D11 (or D12) and P, and for D21 (or D22) and P*, respectively.
It remains to define a phi-function for a spherical segmentD .u1/ and a half-space

P(uP). This can be done as follows:

ˆDP
�
u1; up

� D max
˚
min

˚
�1
�
u1; up

�
; �3

�
u1; up

��
; �2

�
u1; up

��
; (13.17)

where �1
�
u1; up

� D  pCe�p�r
q
1 � �2p ; �2

�
u1; up

� D  p�RCq�p; �p D ˛sin�yp �
ˇsin�xp cos�yp C �cos�xp cos �yp , q D e C$ � R, �3

�
u1; up

� D  p C
�

e C r2

e�q

�
�p:

By analogy, replacing  p by � p, we can derive a phi-function for a spherical
segment D .u2/ and a half-space P*(uP).

Remark By altering the values of the sizes of
_

T we can obtain the following shapes

of 3D-objects: spherocylinder
_

C if r1 D r2; truncated cone T if $1 D $2 D 0;
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circular cylinder C if r1 D r2 and $0
1i D $0

2i D 0; conebT if r1 D $1 D $2 D 0;
spherical segment D if r2 D $2 D e D 0 or r1 D $1 D e D 0; spherical disk E if
e D 0 and r1 D r2.

Based on the quasi-phi-function for spherocones defined by relations (13.14)–
(13.17) we can derive the following quasi-phi-functions:
for spherical segments D1 and D2

ˆ
0

D1D2
�
u1; u2; up

� D min
˚
ˆD1P

�
u1; up

�
; ˆD2P� �u2; up

�� I (13.18)

for truncated cones T1 and T2

ˆ
0

T1T2
�
u1; u2; up

� D min
�
�111

�
u1; up

�
; �121

�
u1; up

�
;

�211
�
u2; up

�
; �221

�
u2; up

��
; (13.19)

where �i
1j and �i

2j, i; j D 1; 2, are defined as �1 and �2 in (13.17);
for cones T1 and T2

ˆ0T1T2
�
u1; u2; up

� D min
˚
�111

�
u1; up

�
;  p .bp1/ ; �211

�
u2; up

�
;  p .bp2/

�
; (13.20)

wherebpi D ��ei cos �xisin�yi; ei sin �xi; eicos�xi cos �yi
�
, i D 1; 2:

A quasi phi-functionˆ
0

C1C2 for cylinders C1 and C2 may be defined by formula
(13.19).

Using (13.5) and (13.16), we define a quasi phi-function for cuboid K1 and

spherocone
_

T2 in the form

ˆ
0

K1T2
�
u1; u2; up

� D min
˚
ˆK1P

�
u1; up

�
; ˆT2P� �u2; up

��
:

We refer the reader to papers [33] and [34] for details of construction of the quasi-
phi-functions mentioned above.

13.4 A Mathematical Model and a General Solution Strategy

We consider here a packing problem in the following setting. Let a collection of
objects Oi � Rd, i 2 f1; 2; : : : ; ng D In; d D 2; 3, be given. And let ˝ denote a
rectangle of length l and width w in two-dimensional case, and a cuboid of length
l, width w and height � in three-dimensional case. Each of the sizes of ˝ may be
variable. We denote an objective function by F.
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We assemble a complete set of variables for our optimization problem. We
denote: the vector of variable sizes of container ˝ by u˝ ; the vector of placement
parameters of object Oi by ui, i 2 In; the vector of all additional variables, taken
from quasi-phi-functions (13.5)–(13.20), by 
 .

Thus, a vector of all our variables can be described as follows: u D
.u�; u1; u2; : : : ; un; 
/ 2 R	 , where R	 denotes the ¢-dimensional Euclidean space.

Optimal packing problem. Pack the set of objects Oi, i 2 In, into a given container
˝ taking into account distance constraints, such that objective function F will reach
its minimal value.

A mathematical model of the optimal packing problem may now be stated in the
form:

min F.u/; s:t: u 2 W � R	 (13.21)

W D
�

u 2 R	 W _ˆ
0

ij � 0; i < j 2 In;
_

ˆ

0

i � 0; i 2 In

�
; (13.22)

where
_

ˆ

0

ij is an adjusted quasi-phi-function derived for the pair of objects Oi

and Oj, taking into account minimal allowable distance ��ij ,
_

ˆ

0

i is an adjusted (or
normalized) phi-function derived for objects Oi and �� D Rdn int� (to hold the
containment constraint), also taking into account minimal allowable distance ��i . If

��ij D 0; then we replace an adjusted quasi-phi-function
_

ˆ

0

ij by a quasi-phi-function

˚ ’
ij for objects Oi and Oj; as well as an adjusted quasi-phi-function

_

ˆ

0

i – by a quasi-
phi-function˚ ’

i (or a phi-function˚ i) for objects Oi and˝�.
Our problem (13.21)–(13.22) is NP-hard, in general, nonlinear programming

problem with nonsmooth functions. The feasible region W defined by (13.22)
has a complicated structure: it is, in general, a disconnected set, each connected
component of W is multiconnected, the frontier of W is usually made of nonlinear
surfaces containing valleys, ravines. A matrix of the inequality system which
specifies W is strongly sparse and has a block structure. The feasible region W is
specified by a system of nonlinear inequalities with piecewise continuously differen-
tiable functions (quasi-phi-functions or phi-functions), which involve operations of
maximum and minimum of smooth functions. This means that the feasible region W
can be represented as a finite union of subregions Ws, s D 1; : : : ; �. Each subregion
Ws is described by a system of inequalities with smooth functions. Now we may
reduce the problem (13.21)–(13.22) to the following optimization problem:

F
�
u�
� D min

˚
F
�
us�� ; s D 1; : : : ; �

�
;

where F .us�/ D min
u2Ws

F.u/ is a nonlinear programming problem with smooth

functions.
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To solve the problem (13.21)–(13.22) we use the strategy, which employs the
following optimization procedures:

1. Generation of a starting point from the feasible region of the problem (13.21)–
(13.22). To this aim we use the starting point algorithm (SPA), based on
homothetic transformations of geometric objects.

2. Search for a local minimum of the objective function F(u) of problem (13.21)–
(13.22) by means of the Local Optimization with Feasible Region Transfor-
mation (LOFRT) procedure. The LOFRT procedure considerably reduces the
dimension of the optimal packing problem, the number of inequalities in (13.22),
as well as, the computational time.

3. Non-exhaustive search of local minima to get “good” local optimal solution of
the problem (13.21)–(13.22).

Now we consider two practical problems: (1) packing of a set of ellipses into a
rectangular container of minimal area; (2) packing of a set of certain 3D-objects
into a cuboid container of minimal height. We use quasi-phi-functions defined
in Sect. 13.3 for appropriate pairs of rotating objects in model (13.21)–(13.22)
and, following the general solution strategy given above, we describe efficient
optimization algorithms based on characteristics of our problems.

13.5 Application of Quasi-Phi-Functions for Optimal
Packing of Ellipses

In the subsection we follow work [33]. Suppose a set of ellipses Ei, i 2 In, is given
to be placed in a rectangular container � D ˚

.x; y/ 2 R2 W 0 � x � l; 0 � y � w
�
.

Each ellipse Ei is defined by its semi-axes ai and bi, whose values are fixed. With
each ellipse Ei we associate its eigen coordinate system whose origin coincides with
the center of the ellipse and the coordinate axes are aligned with the ellipse’s axes.
In that system the ellipse is described by parametric equations x D a cos t, y D b sin
t, 0 � t � 2 . Continuous ellipse rotations and translation are allowed. In addition,
minimal allowable distance ��ij between two ellipses Ei and Ej, as well as between
ellipse Ei and the frontier of container� may be given.

Optimal ellipse packing problem. Pack the set of ellipses Ei, i 2 In, into a
rectangular container� of minimal area taking into account distance constraints.

It should be noted that one of the dimensions (l or w) may be fixed.
Our approach, which is based on quasi-phi-functions, is capable of handling

precise ellipses (without approximations) and thus finding an exact local optimal
solution. The only other method of that sort was developed in [23]. The paper
is entirely devoted to the problem of cutting ellipses from a rectangular plate of
minimal area. It offers a good overview of related publications. The key idea of [23],
just like ours, is to use separating lines to ensure that the ellipses do not overlap with
each other. But their implementation of this idea is technically different. For a small
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number of ellipses they are able to compute a globally optimal solution subject to the
finite arithmetic of global solvers at hand. However, for more than 14 ellipses none
of the nonlinear programming (NLP) solvers available in GAMS can even compute a
locally optimal solution. The authors of [23] develop a heuristic approach, in which
the ellipses are added sequentially in a strip of a given width and variable length.
The algorithm allows the authors to compute good solutions for up to 100 ellipses.

In order to compare the performance of the two methods, we applied our
algorithm to some instances of the ellipse packing problem as used in [23] (see
Sect. 13.7.1).

The vector u D .u�; u1; u2; : : : ; un; 
/ of all variables in the ellipse packing
problem is defined as follows: u� D .l;w/ contains the variable length and width
of rectangular container ˝; ui D .xi; yi; �i/ contains placement parameters of
ellipse Ei, i 2 In; vector of additional variables 
 now is defined as follows:

 D .t; uP/, if minimal allowable distances are specified and 
 D .t/, if there are no

distance constraints. Here t D
�

t1
1
; t1
2
; : : : ; tm

1
; tm
2
; t

01
1
; t

01
2
; : : : ; t

0n
1
; t

0n
2

�
, where tk

1
; tk
2

are

additional variables for the kth pair of ellipses, according to (13.9), k D 1; : : : ;m,
m D .n�1/n

2
, and t

0i
1

, t
0 i
2

are additional variables for each ellipse Ei, i 2 In, according
to (13.12). If minimal allowable distances are specified, we have to use adjusted
quasi-phi-functions (13.11) and (13.13), instead of quasi-phi-functions (13.9) and
(13.12). In that case uP D �

u1
P
; : : : ; um

P

�
; uk

P
D �

� k
P
; �k

P

�
.

We define the number of the problem variables 	 D 2C 3n C n .n � 1/C 2n D
n2C4nC2 if there are no distance constraints, and 	 D 2C3nC2n .n � 1/C2n D
2n2 C 3n C 2 if minimal allowable distances are given.

In mathematical model (13.21)–(13.22) for ellipse packing problem we set:

F.u/ D l � w,
_

ˆ

0

ij is an adjusted quasi-phi-function (13.11) defined for the pair of

ellipses Ei and Ej, taking into account minimal allowable distance ��ij ,
_

ˆ

0

i is an
adjusted quasi-phi-function (13.13) defined for the ellipse Ei and the object ˝� (to
hold the containment constraint), taking into account minimal allowable distance

��i . If ��ij D 0 and ��i D 0; we replace an adjusted quasi-phi-function
_

ˆ

0

ij by a
quasi-phi-function˚ ’

ij defined by (13.9) for each pair of ellipses to enforce the non-

overlapping constraint and
_

ˆ

0

i with quasi-function ˚ ’
i defined by (13.12) for each

ellipse and the domain˝� to enforce the containment constraint.
Due to the forms of quasi-phi-functions in (13.9)–(13.13), the solution space W is

now described by a system of inequalities with smooth functions, therefore problem
(13.21)–(13.22) becomes a multiextremal nonlinear programming problem.

We follow here the solution strategy introduced in Sect. 13.4.
It is due to the LOFRT procedure our strategy can process large sets of non-

identical ellipses (100 and more, see examples below). The reduction scheme used
by our LOFRT algorithm is described below.
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13.5.1 Starting Point Algorithm for Optimal Ellipse
Packing Problem

In order to find a starting point u0 that belongs to the feasible region W we
apply the following algorithm based on homothetic transformation of ellipses. We
assume here that homothetic coefficients hi are variable provided that hi D h, for
i D 1; 2; : : : ; n, and 0 � h � 1.

The algorithm consists of the following steps:

1. First we choose starting length and width for the container ˝0. They must
be sufficiently large to allow for a placement of all our ellipses with required
distance constraints within ˝0. For example, we can choose l0 D w0 D
2

nX

iD1
ai C .n � 1/ ��, �� D max

i;j2In

��ij .

2. Then we set h D h0 D ı=max ai
i

, where ı D 0:01

	
min

i
bi



.

3. Then we generate randomly, within ˝0, a set of n non-overlapping equal circles
of radius ı with randomly chosen centers

�
x0i ; y

0
i

�
; i 2 In.

4. Next we generate, randomly, a set of rotation parameters �0i 2 Œ0; 2�/, i 2 In.
5. Then we find starting values for the additional variables 
0 by a special

optimization procedure that solves auxiliary problems of finding max
u

0

i2R2
ˆi
0
�

u0i ; u
0

i

�

(or max
u

0

i2R2

_

ˆ0i
�

u0i ; u
0

i

�
) and max

u
0

ij2R2
ˆij
0
�

u0i ; u
0
j ; u

0

ij

�
(or max

u
0

ij2R4

_

ˆ0ij
�

u0i ; u
0
j ; u

0

ij

�
) for each

quasi-phi-function (or, respectively, an adjusted phi-function) that is involved in
(13.22), under fixed parameters ui D �

x0i ; y
0
i ; �

0
i ; �

0
�

for each ellipse.
To solve the above auxiliary problems we use the following model:

max �; s:t: u0 2 W
0

�;

where W
0

� D
n
.u0; �/ W ˆ0

�
u0; u

0

�
� �

o
, � 2 R1 is a new auxiliary variable, func-

tion ˚ 0(u0, u
0

) may take form of ˚
0

i(u
0
i , u

0

i) (or
_

ˆ0i
�

u0i ; u
0

i

�
) and ˚

0

ij(u
0
i , u0

j , u’
ij)

(or
_

ˆ0ij
�

u0i ; u
0
j ; u

0

ij

�
), u’ is the vector of auxiliary variables and u0 is the vector

of fixed parameters for our quasi-phi-functions (respectively, adjusted phi-
functions).

Thus all our quasi-phi-functions (or normalized quasi-phi-functions) at the
point u0 D �

l0;w0; u01; u
0
2; : : : ; u

0
n; 


0
�

take non-negative values, where 
0 D �
t0
�

(or, respectively, 
0 D �
t0; u0P

�
).

6. Now we take the starting point u0 under fixed l D l0 and w D w0, and solve the
following optimization problem:

max h; s:t: u0 2 W
0

; (13.23)
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W
0D
�

u02R	C1 W _ˆ
0

ij � 0; i<j2In;
_

ˆ

0

i � 0; i2In;

lDl0;wDw0; 0 � h � 1

�
; (13.24)

where u
0 D .u; h/ denotes an extended vector of variables and u denotes the

original vector of variables for the problem (13.21)–(13.22).
We note that if an optimal global solution is found, then h D 1. The solution

automatically respects all the non-overlapping and containment constraints.

Thus, the point u
00 D

�
l0;w0; u

00
1 ; u

00
2 ; : : : ; u

00
n ; 


00; 1
�

of global maximum of

the problem (13.23)–(13.24) guarantees that point u0 D .l0;w0; u
00
1 ; u

00
2 ; : : : ; u

00
n ;



00/ belongs to feasible region W of problem (13.21)–(13.22).

It should be noted that our algorithm by construction always finds the global
solution of the problem (13.21)–(13.22). It is clear that the optimal solution of
the above problem will automatically comply with all the non-overlapping and
containment constraints.

7. Lastly, our algorithm returns the vector u0 D
�

l0;w0; u
00
1 ; u

00
2 ; : : : ; u

00
n ; 


00
�

as

a starting point for a subsequent search for a local minimum of the problem
(13.21)–(13.22).

13.5.2 Algorithm of Local Optimization with Feasible Region
Transformation in the Optimal Ellipse Packing Problem

Let u.0/ 2 W be one of the starting points found by the previous method. The main
idea of the LOFRT algorithm consists in the following.

First we circumscribe a circle Ci of radius ai around each ellipse Ei, i D
1; 2; : : : ; n. Then for each circle Ci we construct an “individual” rectangular
container �i � Ci � Ei with equal half-sides of length ai C ", i 2 In, so that
Ci, Ei and ˝ i have the same center (x0

i , y0
i ) subject to the sides of ˝ i being parallel

to those of ˝ . Here " is a predefined fixed constant.
Further we fix the position of each individual container ˝ i and let the local

optimization algorithm move the corresponding ellipse Ei only within the container
˝ i. It is clear that if distance between two individual containers˝ i and˝ j exceeds

��ij (i.e.
_

ˆ
�i�j � 0), then we do not need to check the distance constraint for the

corresponding pair of ellipses Ei and Ej.
The above key idea allows us to extract subregions of our feasible region W of

the problem (13.21)–(13.22) at each step of our optimization procedure as follows.
We create an inequality system of additional constraints on the translation

vector vi of each ellipse Ei in the form: ˆCi�
�

i � 0, i 2 In, where ˆCi�
�

i D
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min
˚�xi C x0i C ";�yi C y0i C "; xi � x0i C "; yi � y0i C "

�
is the phi-function for

the circle Ci and��i D R2n int�i.
The inequality ˆCi�

�

i � 0 is equivalent to the system of four linear inequalities
�xi C x0i C " � 0, �yi C y0i C " � 0, xi � x0i C " � 0, yi � y0i C " � 0.

Then we form a new region defined by

W1 D
�

u 2 R	�	1 W _ˆ
0

ij � 0; .i; j/ 2 „1;
_

ˆ

0

i � 0;ˆCi�
�

i � 0; i 2 In

�
;

where„1 D ˚
.i; j/ W ˆ�i�j < 0; i < j 2 In

�
.

In other words, we delete from the system, which describes W, such quasi-
phi-function inequalities for all pairs of ellipses whose individual containers do
not overlap and we add additional inequalities ˆCi�

�

i � 0, which describe the
containment of the circles Ci in their individual containers ˝ i, i 2 In. Thus, we
reduce the number of additional variables by 	1. Then our algorithm searches for a
point of local minimum u�w1 of the subproblem

min F .uw1 / s:t: uw1 2 W � R	�	1 :

When the point u�w1 is found, it is used to construct a starting point u(1) for the
second iteration of our optimization procedure (note that the 	1 previously deleted
additional variables 
1 have to be redefined by a special procedure used in SPA; see
step 5, assuming h0 D 1).

At that iteration we again identify all the pairs of ellipses with non-overlapping
individual containers, form the corresponding subregion W2 (analogously to W1)
and let our algorithm search for a local minimum u�w2 2 W2. The resulting local
minimum u�w2 is used to construct a starting point u(2) for the third iteration, etc.

We stop our iterative procedure when F
�
u�wk

� D F
�

u�wkC1

�
, where u�wk

is a point

of local minimum of the problem

min F .uwk/ s:t: uwk 2 W � R	�	k ;

where Wk D
�

u 2 R	�	k W _ˆ
0

ij � 0; .i; j/ 2 „k;
_

ˆ

0

i � 0;ˆCi�
�

ki � 0; i 2 In

�
, and

„k D ˚
.i; j/ W ˆ�ki�kj < 0; i < j 2 In

�
.

We claim that the point u� D u.k/� D �
u�wk
; 
k
� 2 R	 is a point of local minimum

of the problem (13.21)–(13.22), where u�wk
2 R	�	k is the last point of our iterative

procedure and 
k 2 R	k is a vector of the previously deleted additional variables
(the variables can be redefined by the special procedure used in SPA; see step 5).
The assertion comes from the fact that any arrangement of each pair of ellipses
Ei and Ej subject to .i; j/ 2 „n„k guarantees that there always exists a vector 
 k

of additional variables such that
_

ˆ

0

ij � 0; .i; j/ 2 „n„k at the point u(k) *. Here
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„ D f.i; j/ ; i < j 2 Ing. Therefore the values of additional variables of the vector 
 k

have no effect on the value of our objective function, i.e. F
�
u�wk

� D F
�
u.k/�

�
. That

is why, indeed, we do not need to redefine the deleted additional variables of the
vector 
 k at the last step of our algorithm.

So, while there are O(n2) pairs of ellipses in the container, our algorithm may in
most cases only actively controls O(n) pairs of ellipses (this depends on the sizes
of ellipses and the value of "), because for each ellipse only its nearest neighbors
have to be monitored. Thus our LOFRT algorithm allows us to reduce the problem
(13.21)–(13.22) with O(n2) inequalities and a O(n2)-dimensional solution space W
to a sequence of subproblems, each with O(n) inequalities and a O(n)-dimensional
solution subspace Wk. This reduction is of a paramount importance, since we deal
with nonlinear optimization problems.

13.6 An Application of Quasi-Phi-Function for the Optimal
Packing of 3D-Objects

In the subsection we follow work [34]. Let Oi 2
n
P;S;bT;T;C;D;

_

C;
_

T;E
o

, i 2
I D f1; 2; : : : ; ng be a collection of 3D-objects, where I D 9[

jD1Ij, Pi is a cuboid,

i 2 I1 D f1; 2; : : : ; k1 D n1g; Si is a sphere, i 2 I2I bT is a cone, i 2 I3I Ti is a
truncated cone, i 2 I4I Ci is a straight circular cylinder, i 2 I5I Di is a spherical

segment, i 2 I6I
_

Ci is a spherocylinder i 2 I7I
_

Ti is a spherocone, i 2 I8; Ei is
a spherical disk, i 2 I9, where Ij D ˚

kj�1 C 1; kj�1 C 2; : : : ; n D kj�1 C nj
�

for
j D 2; : : : ; 9.

And let � D ˚
.x; y; z/ 2 R3 W 0 � x � w; 0 � y � l; �1 � z � �2

�
be a container

of height � D �2 � �1. We denote container˝ of variable height � by˝(�).
Optimal 3D-object packing problem. Pack the given set of 3D-objects into

container˝ of the minimal height.
We use mathematical model (13.21)–(13.22). Now the components of vector

u D .u�; q; 
/ 2 R	 for the optimal 3D-object packing problem take the form:

u� D � D .�1; �2/ 2 R2; q D .u1; : : : ; un/ 2 Rm, m D 6n1 C 3n2 C 5

9X
jD3nj;


 D up D �
up12 ; up13 ; : : : ; up1n ; : : : ; up.n�1/n

�
, where upij 2 R3, up 2 R

3n.n�1/
2 . The

number of the problem variables is defined as 	 D 2 C m C 3n.n�1/
2

. We set the
objective function: F .�/ D �2 � �1 in problem (13.21)–(13.22). To define the
feasible region W we use: quasi-phi-functions derived in Sect. 13.3 (see formulas
(13.5), (13.7), (13.14)–(13.20)) for non-overlapping constraints and phi-functions
derived in [34] for containment constraints. To solve the problem we follow the
general solution strategy introduced in Sect. 13.4.
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13.6.1 Starting Point Algorithm for the Optimal 3D-Object
Packing Problem

In order to find a starting point u0 that belongs to the feasible region W we apply the
following algorithm based on homothetic transformations of 3D-objects.

The algorithm consists of the following steps:

1. We cover each object Oi by sphere Si of minimal radius <0
i , assuming that local

coordinate systems of Oi and Si coincide, i 2 I. Then we assume that <i, i 2 I,
are variable and form a vector < D .<1;<2; : : : ;<n/.

2. Values of components of vector �0 D �
�01; �

0
2

�
are chosen such that Oi � �

�
�0
�

for i 2 I. We suppose that �0
1, �0

2 are constants.
3. We take <i D 0; i 2 I; and generate randomly a vector v D .v1; : : : ; vn/, so that
vi 2 � ��0�, i 2 I. As a result we form a point X˘ D .v;</ D .v; 0/.

4. Taken a starting point X˘ we solve the problem

�1

�
b<
�

D max�1 .</ ; s:t: X D .v;</ 2 W1 � R4n; (13.25)

W1 D
n
X 2 R4n W ˆij

�
vi; vj;<i;<j

� � 0; i < j 2 I; ˆi .vi;<i/ � 0;

'i .<i/ D <0
i � <i � 0;<i � 0; i 2 I

o
;

(13.26)

where �1 .</ D
nX

iD1
<i, ˚ ij(vi, vj, <i, <j) is a phi-function of Si and Sj, ˚ i(vi, <i)

is a phi-function of Si and ˝�. We denote a local minimum point of problem

(13.25)–(13.26) bybX D
�
bv;b<

�
.

5. To construct starting point u� 2 W for problem (13.21)–(13.22): we assume
v� Dbv; generate ��xi

; ��yi
; ��zi

2 Œ0; 2��, i 2 I, randomly; define vector u•
p. In order

to derive components u�pij
of vector u•

p we construct separating planes for each
pair of spheres Si(v•

i) and Sj(v•
j), i < j 2 I.

6. If �1
�
b<
�

D
nX
iD1<

0
i ; then point u� D �

�0; q�; u�p
� 2 W is taken as a starting

point. If �1
�
b<
�
<

nX
iD1<

0
i ; then we use the following optimization procedure

to define a starting point u� 2 W.
Assuming that each object Oi undergo the homothetic transformations with

variable homothetic coefficient hi, i 2 I, we solve the problem

�2
�
h�
� D max�2.h/; s:t: u

0 D .u; h/ 2 W2 � R	Cn�2; (13.27)
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W2 D ˚
u0 2 R	Cn�2 W ˆij

0 �ui; uj; upij ; hi; hj
� � 0; i < j 2 I; ˆi .ui; hi/ � 0;

'i .hi/ D 1 � hi � 0; hi � 0; i 2 Ig ; (13.28)

where �2.h/ D
nX
iD1�ihi; �i is a sum of metric characteristics (sizes) of Oi,

i 2 I, h D .h1; h2; : : : ; hn/ 2 Rn. We denote a local maximum point of problem
(13.27)–(13.28) by u0� D .u�; h�/ and take point u� D �

�0; q�; u�p
� 2 W as a

starting point for problem (13.21)–(13.22).

13.6.2 Algorithm of Local Optimization with Feasible
Region Transformation in the Optimal 3D-Object
Packing Problem

Local optimization. Taking a starting point u� 2 W, we can extract from the
system of phi-inequalities in (13.22) a system of inequalities, describing a nonempty
subregion of feasible region W of problem (13.21)–(13.22) and search for a local
minimum of the problem. However in this case we deal with a huge number
of inequalities in the system. We propose here the algorithm, which reduces the
problem (13.21)–(13.22) to a sequence of nonlinear programming subproblems of
smaller dimensions. The solution space of each subproblem is specified by the
incomparably smaller number of inequalities. This allows us to decrease essentially
the computational time. Our algorithm is based on two related ideas: constructing
of subregions of feasible region W and decreasing of the number of inequalities,
specifying the subregions. The first idea is described in, e.g., [31] and the second
idea is introduced in Sect. 13.5 for the optimal ellipse packing problem.

Transition from a local minimum point to another one. Let u0� be a local
minimum point of problem (13.21)–(13.22). In order to obtain next local minimum
point u1� ¤ u0� of problem (13.21)–(13.22) we may generate a new starting point
u� 2 W for problem (13.21)–(13.22) (see Sect. 13.6.1) and solve the problem using
the local optimization algorithm mentioned above.

The other way is to apply a special algorithm to transit from the local minimum
point u0� to a local minimum point u1� so that F

�
�1�
�
< F

�
�0�
�
: Let us consider

the algorithm.
We solve the following problem:

F
�
��
� D min F .�/ ; s:t: u

00 2 W3 � R	Cn; (13.29)
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W3 D
n
u

00 2 R	Cn W ˆ0

ij

�
ui; uj; upij ; hi; hj

� � 0; i < j 2 I;

ˆi .ui; �; hi/ � 0; hi � 0; i 2 I;
nX
iD1Vih3i �

nX
iD1Vi � 0

o
;

(13.30)

where Vi is a volume of Oi; i 2 I: Here components of vector � are variable.
Then we assume that h0i D 1; i 2 I: Let u0� be a local minimum point of problem

(13.21)–(13.22). We form a point u
00
0� D �

u0�; 1
�

and compute the steepest descent

vector Z0 at the point u
00
0�

for problem (13.29)–(13.30),using the iterative procedure

u
00

k D u
00
0� C 0:5k�1Z0; k 2 M D f1; 2; : : : g :

If hk
i > 1; i 2 J1 � I, then the appropriate object is expanded and, therefore, a

free space around the true object occurs; if hk
i < 1; i 2 J2, the appropriate object is

shrunk.
It is evident that F

�
�k
�
< F

�
�0�
�

for any k 2 M and, in the general case,

u
00

k … W3: This allows us to define m such that: if k � m, then u
00

k 2 W3:

Assuming k D m, we take point u00m and define point u0m D �
um; h0m

�
, where

h0m D �
h0m
1 ; h

0m
2 ; : : : ; h

0m
n

�
and h0m

i D 1; if i 2 InJ2; h0m
i D hm

i ; if i 2 J2: Whence,
nX
iD1Vi

�
h0m

i

�3 �
nX
iD1Vi < 0 if J2 ¤ f¿g : Let � D �m; i.e. F .�m/ < F

�
�0�
�
:

Then we try to “change over” objects of collections
n
Oi
�
um

i ; h
0m
i

�
; i 2 J1

o
, and

n
Oi
�
um

i ; h
0m
i

�
, i 2 J2

o
, so that the value of �2(h) in (13.27)–(13.28) increases with

respect to point u0m.
For the sake of simplicity, we assume that each object Oi is covered by a circular

cylinder Ci  Oi; i 2 I: Taking point u0m, we generate a point Qu0

as follows.
First we form index subsets J11 � J1 and J22 � J2 for which

r0j hm
j < r0i hm

i ; e
0
j hm

j < e0i hm
i ; r

0
i � r0j hm

j ; e
0
i � e0j hm

j ; i 2 J1; j 2 J2: (13.31)

Then we set Qhi D 1; Qui D um
j ; Quj D um

i ;
Qhj D min

n
hm

j C "j; 1
o
; "j D min

˚
"1j; "2j

�
;

"1j D r0i hm
i

r0j
� hm

j ; "2j D e0i hm
i

e0j
� hm

j .

In order to find the values of components of vector Qup D �Qup12 ; Qup13 ; : : : ; Qup1n ; : : : ;

Qupit ; : : : ; Qupjk ; : : : ; Qupn.n�1/

�
we solve the following problems:

maxˆ
0

il

�
ui; ul; Qupit ; hi; hl

�
; s:t: Qupit 2 R3 for i 2 J11; l 2 I;

maxˆ
0

jk

�
uj; uk; Qupjk ; hj; hk

�
; s:t: Qupjk 2 R3 for i 2 J22; k 2 I:
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If at least one of inequalities (13.31) is not fulfilled for i 2 J1 or j 2 J2; then we set
Qhi D h0m

i ; Qui D u0m
i ;

Qhj D h0m
j ; Quj D u0m

j ; Qupij D u0m
pij
: Note that if Qu0 ¤ u0m then points

Qu0

and u0m are in attraction zones of different local maximum points. We prove in
[31] that: if Qu0 ¤ u0m then �2

�Qh� > �2
�
h0m

�
:

Starting from point Qu0 2 W2 we can obtain a new local maximum point Qu0�
of problem (13.27)–(13.28) such that �2

�Qh�� > �2
�Qh� : If �2

�Qh�� D n; then Qu� D�
�m; Qq�; Qu�p

� 2 W and F .�m/ < F
�
�0�
�
: Since point ũ� may not be a local minimum

point of problem (13.21)–(13.22), we take the point as a starting point to solve
problem (13.21)–(13.22). Then we obtain a local minimum point u1�. Evidently,
F
�
�1�
� � F .�m/ < F

�
�0�
�
: The approach is described in detail in [31] for optimal

packing problem of non-oriented parallelepipeds and spheres.

13.7 Computational Results

Here we present a number of examples to demonstrate the high efficiency of our
methodology. We have run our experiments on an AMD Athlon 64 X2 5200C
computer. For local optimization we used the IPOPT code (https://projects.coin-
or.org/Ipopt) developed by [36].

13.7.1 Examples for the Optimal Ellipse Packing Problem

First we give a new benchmark instances. We set the computational time limit
for each example to search for at least 10 local minima. For our computational

experiments we take " D
nX

iD1
bi=n.

Example 1 n D 28, f.ai; bi/ D .2:2; 1:80/, i D 1; : : : ; 7g, f.ai; bi/ D .2:60; 1:70/,
i D 8; : : : ; 14g, f.ai; bi/ D .3:5; 0:7/, i D 15; : : : ; 21g, f.ai; bi/ D .3:6; 2:7/, i D
22; : : : ; 28g. Figure 13.1a shows the packing of ellipses into a rectangular container,
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.22:273763; 24:126932/ and area F .u�/ D 537.397581.

Figure 13.1b shows the packing of ellipses into a rectangular container taking
into account minimal allowable distance (�� D 0:5 between each pair of ellipses),
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.25:984532; 25:024524/ and area F .u�/ D 650.250548. The computational time
limit is 1 h.

Example 2 n D 36, f.ai; bi/ D .2:2; 1:80/, i D 1; : : : ; 9g, f.ai; bi/ D .2:60; 1:70/,
i D 10; : : : ; 18g, f.ai; bi/ D .3:5; 0:7/, i D 19; : : : ; 27g, f.ai; bi/ D .3:6; 2:7/, i D
28; : : : ; 36g. Figure 13.2a shows the placing of ellipses into a rectangular container,

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
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Fig. 13.1 Local optimal packing of ellipses in Example 1: (a) no distance constraints, (b) with
distance constraints

Fig. 13.2 Local optimal placement of ellipses in Example 2: (a) no distance constraints, (b) with
distance constraints

which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.25:176786; 27:380105/ and area F .u�/ D 689.343044.

Figure 13.2b shows the placing of ellipses into a rectangular container taking
into account minimal allowable distance (�� D 0:5 between each pair of ellipses),
which corresponds to the local minimum point u�. Container has sizes .l�;w�/ D
.27:498755; 30:282542/ and area F .u�/ D 832.732196.

Further we give a couple of examples with our records to place a large number
of ellipses. Time limit for these large example was set to 48 h.

Example 3 n D 140,
n
.ai; bi/ D .222; 180/, i D 1; : : : ; 50g,

n
.ai; bi/ D

.260; 170/, i D 51; : : : ; 90
o
,
n
.ai; bi/ D .350; 70/, i D 91; : : : ; 120

o
,

n
.ai; bi/ D .360; 270/, i D 121; : : : ; 140

o
.
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Fig. 13.3 Local optimal packing of ellipses in Example 3

The local optimal ellipse packing is shown in Fig. 13.3, the container has sizes
.l�;w�/ D .4854:0329; 4970:3722/ and area F .u�/ D 24126350.3955.

Example 4 n D 150, f(ai, bi), i D 1; : : : ; 6 D .2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; 0:8; g,
0:6; 0:7; 0:3/ f.ai; bi/ D .1; 0:8/, i D 7; : : : ; 50g, f(ai, bi), i D 51; : : : ; 56 D
.2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; 0:8; 0:6; 0:7; 0:3/g, f.ai; bi/ D .1; 0:8/, i D
57; : : : ; 100g, f(ai, bi), i D 101; : : : ; 106 D .2; 1:5; 1:5; 1; 1; 0:8; 0:9; 0:75; g,
0:8; 0:6; 0:7; 0:3/ f.ai; bi/ D .1; 0:8/, i D 107; : : : ; 150g.

The local optimal packing is shown in Fig. 13.4, the container has sizes
.l�;w�/ D .19:865110; 22:839405/ and area F .u�/ D 453:70729. Time limit is
48 h.

We applied our method to some instances used in paper [23] and compare our
local optimal solutions to theirs. Table 13.1 lists the examples. For each example
the minimal area of the container found by our method happens to be smaller than
the best solution reported in [23]. The improvement is not so big (1–2 %) for smaller
sets of ellipses, but it becomes significant (8–9 %) for larger sets of ellipses. It should
be noted that for examples TC02, TC03, and TC04 presented in [23] our method
found the same optimal results.

We set the computational time for the group of instances: up to 20 objects—time
limit 2 h, up to 50—time limit 5 h, 100 objects—time limit 12 h.

Our ellipse packing instances are available at https://app.box.com/s/mo7xjvjve7v
52p9movfi.

https://app.box.com/s/mo7xjvjve7v
52p9movfi
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Fig. 13.4 Local optimal packing of ellipses in Example 4

Table 13.1 Comparison of our results to those in [23]

Number of ellipses Name of instance Our result The best result from [23] Improvement (%)

5 TC05a 25:0206 25:29557 1.0990
5 TC05b 30:84870 31:28873 1.4264
6 TC06 25:47173 25:51043 0.1520
11 TC11 57:1783 57:24034 0.1085
14 TC14 24:25099 24:84634 2.4550
20 TC20 66:13647 67:83459 2.5676
30 TC30 95:36535 103:45212 8.4798
50 TC50 154:47048 166:91505 8.0563
100 TC100 297:73798 322:64663 8.3660

13.7.2 Examples for the Optimal 3D-Object Packing Problem

Example 5 n D 10;w D 70 and l D 70. Types and sizes of 3D-objects are
presented in Table 13.2.

Figure 13.5 shows a local optimal packing of 3D-objects.
Placement parameters of objects are given in Table 13.3. Container has height

F .��/ D 26; 192.
Below we give new nine benchmark instances: packings of 3D-objects (from 10

to 200). The input and output data for the instances are available at http://www.
datafilehost.com/d/55384293.

http://www.datafilehost.com/d/55384293
http://www.datafilehost.com/d/55384293
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Table 13.2 Types and sizes of 3D-objects

i Type ei r1i r2i !1i !2i li wi gi

1 Cuboid – – – – – 11.45 5.547 4.133
2 Sphere – 8.387 – – – – – –
3 Cone 8.691 8.823 – – – – – –
4 Truncated cone 8.608 9.008 4.124 – – – – –
5 Cylinder 5.175 8.102 8.102 – – – – –
6 Segment – 9.452 – 3.193 – – – –
7 Spherocylinder 8.344 5.376 5.376 5.322 3.295 – – –
8 Spherocylinder 7.644 7.822 7.822 7.014 2.281 – – –
9 Spherocone 6.6 7.037 6.899 4.513 4.19 – – –
10 Disk – 8.597 8.597 2.696 4.202 – – –

Fig. 13.5 Packing of 3D-objects in Example 5

Table 13.3 Placement parameters of 3D-objects in Example 5

i Type xi yi zi �xi �yi �zi

1 Cuboid 8.744 7.487 �8.96 �3.14 0 5.347
2 Sphere 11.61 �11.6 �4.71 � � �
3 Cone �6.2 �11.1 �4.4 1.556 0.005 �
4 Truncated cone 9.524 5.837 6.085 �0.46 1.807 �
5 Cylinder 1.454 �6.3 3.571 �3.32 0.853 �
6 Segment 11.18 �11.5 7.016 0.544 0.428 �
7 Spherocylinder �14.6 �1.37 �7.72 1.571 3.142 �
8 Spherocylinder �5.84 12.18 0.657 0 5.451 �
9 Spherocone �13 �6.64 5.648 4.625 0.01 �
10 Disk 11.41 15.72 4.593 1.719 �0.05 �

Figure 13.6 illustrates local optimal packings of 3D-objects into a cuboid
container of minimal height.

The number and types of the objects are given in Table 13.4.
Figure 13.7 demonstrates a diagram of the dependence of the computational time

on the number of objects to be packed.
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Fig. 13.6 Local optimal 3D-packings: new nine instances (a–i)

13.8 Conclusions

In this chapter we introduce new functions, quasi-phi-functions, which we use for
analytical description of non-overlapping, containment, and distance constraints.
We employ the function for extended class of 2D- and 3D-objects, involving
new shapes of objects, such as ellipses, spherocones, and spherocylinders for
which phi-functions could not be constructed. In addition, these functions (in
common with phi-functions) take into account continuous translations and rotations
of objects as well as variable sizes of objects. Our quasi-phi-functions are defined by
simple enough formulas, which allow us to use nonlinear programming. We propose
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Table 13.4 The number and types of 3D-objects

a b c d e f g h i

Cuboid – – – 11 – – – – –
Sphere – – – 11 – – – – –
Cone – – 60 11 – – – – –
Truncated cone – – – 11 – – – – –
Cylinder 60 – – 11 – – – – –
Segment – 60 – 11 – – – – –
Spherocylinder – – – 12 – – 25 100 80
Spherocone – – – 11 – 200 – – –
Disk – – – 11 200 – – – –

Fig. 13.7 Dependence of the computational time on the number of objects

also fast algorithms to construct feasible starting points based on object homothetic
transformations, as well as efficient optimization procedures to search for local
extrema in optimal packing problems. We apply our quasi-phi-functions and the
algorithms to 2D- and 3D-packing problems and demonstrate the high efficiency of
our methodology.
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Chapter 14
Graph Coloring Models and Metaheuristics
for Packing Applications

Nicolas Zufferey

Abstract On the one hand, in the famous graph coloring problem, each vertex
of the considered graph has to get a single color. If two vertices are connected
with an edge, then their colors have to be different. The goal consists in coloring
the graph with the smallest number of colors. On the other hand, consider the
packing problem where items have to be loaded in a container. For each item,
we have to decide in which container it will be assigned. As some pairs of items
are incompatible, they cannot be loaded in the same container. The goal is to load all
the items in a minimum number of containers. Even if the correspondence between
these two problems is obvious (a vertex is an item, a color is a container, and an
edge represents an incompatibility), there is no obvious bridge between the packing
and the graph coloring literatures. In this chapter, some packing problems will be
modeled and solved with graph coloring models and methods.

Keywords Graph coloring • Packing with incompatibilities • Metaheuristics

14.1 Introduction

On the one hand, consider the problem PACK where n items have to be packed. For
each item, we have to decide in which container (of a boat) it will be assigned. The
m � n containers are assumed to be identical. However, for some reasons (security,
volume, weight, etc.), some pairs of items are incompatible, as they cannot be loaded
in the same container. The goal is to load all the items in a minimum number of
containers.

On the other hand, consider the classical graph coloring problem denoted COL.
G D .V;E/ is a graph where V D f1; : : : ; ng is the set of n vertices and E is the
set of edges. COL consists in assigning a color (i.e., an integer between 1 and n)
to each vertex in V such that two adjacent vertices have different colors, while
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Fig. 14.1 Incompatibility graph representing n = 4 items

minimizing the number of different colors used. COL can be used to model PACK as
follows: a vertex x represents an item x, an edge Œx; y� indicates that items x and y are
incompatible, and a color t corresponds to a container t. The incompatibility graph
in Fig. 14.1 represents the loading of n D 4 items a; b; c and d, where items a and d
are incompatible with all the other items. The optimal solution shown (where vertex
a gets color 1) indicates the loading of item a in container 1, item d in container 2,
and items b and c in container 3.

There are numerous metaheuristics for COL [23], and some of them will be
described in Sects. 14.3 (whose main references include [8, 9, 18]) and 14.4.
Three variations of PACK will be tackled in this chapter from the graph coloring
perspective.

• When the number of containers is limited (i.e., m < n), the objective is to
minimize the number of unloaded items. This problem is studied in Sect. 14.4,
relying on references [2, 30].

• If precedence constraints between specific pairs of items have to be satisfied, the
resulting problem can be represented using the mixed graph coloring model. This
problem is tackled in Sect. 14.5, relying on reference [25].

• Another problem authorizes that incompatible items can be loaded in the same
container, but incompatibility costs are encountered. This problem is considered
in Sect. 14.6, relying on reference [37].

The objective of this chapter is to study the above packing problems using
metaheuristics and graph coloring models and methods. Note that a similar study
was conducted in [35] for production scheduling problems. For practical reasons, the
packing terminology (e.g., item, container, etc.) and the graph coloring terminology
(e.g., vertex, color, etc.) will be indifferently used in this work, which will start by
an introduction to metaheuristics in Sect. 14.2.

Even if the focus of this chapter is on what graph coloring models and
metaheuristics can bring to packing and container loading problems, the reader
interested in metaheuristics for container loading problems could refer to [4, 11,
13, 22, 27, 29, 33].
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14.2 Introduction to Metaheuristics

As presented in [34], an exact method guarantees the optimality of the provided
solution. Among the exact methods are branch-and-bound, dynamic programming,
Lagrangian relaxation based methods, and linear and integer programming based
methods (e.g., branch-and-cut, branch-and-price, branch-and-cut-and-price). How-
ever, for a large number of applications and most real-life optimization problems,
such methods need a prohibitive amount of time to find an optimal solution, because
such problems are NP-hard [10]. For these difficult problems, one should prefer to
quickly find a satisfying solution, which is the goal of heuristic solution methods.
A heuristic can be defined as an optimization method which produces a satisfying
but non-necessarily optimal solution in a reasonable amount of time. The word
heuristic is from the Greek and means “to find.” The term metaheuristic was first
introduced in [14], where “meta” is also from the Greek and means “beyond, in an
upper level.” Many definitions of metaheuristics can be found in the literature [3]. In
[28], it is presented as follows: “a metaheuristic is formally defined as an iterative
generation process which guides a subordinate heuristic by combining intelligently
different concepts for exploring and exploiting the search space, learning strategies
are used to structure information in order to find efficiently near-optimal solutions.”

There exist several ways of classifying the metaheuristics (e.g., [3, 5, 31, 32]),
but the focus will be made on the classification of the heuristics in two classes,
namely local search methods and population based methods. A local search method
starts with an initial solution and tries to improve it iteratively. At each iteration,
a modification, called move, of the current solution is performed in order to
generate a neighbor solution. The definition of a move, i.e. the definition of the
neighborhood structure, depends on the considered problem. In contrast, population
based methods, also called evolutionary algorithms, can be defined as iterative
procedures that use a central memory where information is collected during the
search process. Each iteration, called generation, involves of two complementary
ingredients: cooperation and self-adaptation. In the cooperation effort, the central
memory is used to build new offspring solutions, whereas self-adaptation consists
of individually modifying the offspring solutions. The output solutions of the self-
adaptation phase are used for updating the content of the central memory. The most
popular local search methods are simulated annealing, tabu search, variable neigh-
borhood search, guided local search, and threshold algorithms, whereas the most
used population based methods are genetic algorithms, ant colonies, adaptive
memory algorithms, and memetic search which can be seen as a generalization of
genetic algorithms, and scatter search. The reader interested in more information on
metaheuristics is referred to [12].

Theoretically, there exist some convergence theorems associated with the use of
metaheuristics (e.g., [1, 7, 15, 17]). Basically, the theorems state that the search
has a high probability to find an optimal solution, but in a very large amount of
time, which is likely to be larger than the time needed for a complete enumeration.
Therefore, such theoretical results do not have any impact in practice, and,
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moreover, do not help to efficiently design a metaheuristic. The performance of
a metaheuristic can be evaluated according to several criteria. The most relevant
criteria are: (1) quality: value of the obtained results, according to a given objective
function f ; (2) quickness: time needed to get good results; (3) robustness: sensitivity
to variations in problem characteristics and data quality; (4) facility of adaptation of
the method to a problem; (5) possibility to incorporate properties of the problem
(it is widely admitted that an efficient metaheuristic should incorporate knowledge
from the considered problem [16]).

14.3 Minimizing the Number of Containers

COL (the classical graph coloring problem) is one of the most studied combinatorial
optimization problem, and it has been the focus of many studies. Let yc D 1 if color
c is used, and yc D 0 otherwise (for c 2 f1; : : : ; ng). In addition, let xic D 1 if color
c is given to vertex i, and 0 otherwise. Thus, the yc’s and the xic’s are in f0; 1g. The
resulting integer linear program is described below. Constraint (14.1) gives a color
to each vertex. Constraint (14.2) is the linking constraint (vertex i gets color c only
if c is used). Constraint (14.3) forbids two adjacent vertices to get the same color.
Constraints (14.4) and (14.5) are domain constraints.

min
nX

cD1
yc s.t.

nX

cD1
xic D 1 8 i 2 f1; : : : ; ng (14.1)

xic � yc � 0 8 i; c 2 f1; : : : ; ng (14.2)

xic C xjc � 1 8 edge Œi; j� 2 E;8 c 2 f1; : : : ; ng
(14.3)

0 � xic; yc � 1 8 i; c 2 f1; : : : ; ng (14.4)

xic; yc 2 Z 8 i; c 2 f1; : : : ; ng (14.5)

Given that COL is an NP-hard problem [10], exact methods are not appropriate to
tackle large instances (above one hundred vertices). It is therefore not surprising that
the most efficient algorithms are metaheuristics. The reader is referred to [23] for an
accurate literature review.

The most efficient metaheuristics for PACK generally work with a fixed number k
of containers. This therefore raises the k-PACK problem, which consists in assigning
a container between 1 and k to each item, so as not to generate conflicts (a conflict
occurs if two incompatible items belong to the same container). If a feasible solution
is found (also known as a k-packing without conflict), we restart the process with
k � 1 containers, and so on until the used metaheuristic can no longer find a feasible
solution (i.e., without conflict). PACK is therefore tackled by solving a series of k-

PACK problems, beginning, for example, with k D n, where there is definitely a
feasible solution (which consists in assigning a different container to each item).
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We first present two metaheuristics for k-PACK, namely a tabu search and a hybrid
genetic algorithm. Subsequent methods will then be discussed.

14.3.1 Tabu Algorithm

A popular metaheuristic for k-PACK is tabu search. It is a local search method where
a neighbor solution s0 is generated at each iteration from a current solution s by
slightly modifying the latter, with respect to a predefined rule. We can therefore
say that we generate s0 from s by performing a move. In order to avoid cycling
(i.e., returning to a previously visited solution in the recent past), when a move
is performed, its reverse is tabu (forbidden) during tab (parameter) iterations. At
each iteration, tabu search performs the best possible non tabu move (a tabu move
is however allowed if it reaches a solution which is strictly better than all the
previously visited ones). The method is stopped, for example, when a predefined
time limit is reached, or when an optimal solution is encountered (assuming the
value of an optimal solution is known). For further details on tabu search and more
generally on metaheuristics, please refer to [12].

The most well-known tabu algorithm for k-PACK is TabuCol, which was firstly
proposed in [18] and then improved in [8]. The best version of TabuCol works as
follows. A solution is modeled by s D .C1;C2; : : : ;Ck/, where each Ct contains the
set of items loaded in container t. Given that a solution s is a simple partition of all
the items into k sets (also known as classes), it may contain conflicts. The objective
function f to minimize is therefore the number of conflicts, and the algorithm can
thus stop if a solution s such as f .s/ D 0 is found. A move consists in changing the
container of a conflicting item. Let us suppose that to move from the current solution
s to the neighbor solution s0, the move .j;Ct;Ct0/ is performed, where container t0
is assigned to item j instead of container t. It is then tabu (forbidden) to reallocate
container t to item j during tab iterations, where tab depends on the number of
conflicts nc.s/ in s. More precisely, tab D U.0; 9/C0; 6�nc.s/, where U.a; b/ returns
a randomly selected integer between a and b (bounds included). It is clearly easy to
evaluate the quality of a move .j;Ct;Ct0/: it is the number of items in Ct0 which
are incompatible with j minus the number of items in Ct which were incompatible
with j. This powerful incremental computation is part of the effectiveness of TabuCol.
Another fundamental aspect is the fact that the focus is only put on conflicting items
(which thus directly contributes to the objective function) during each iteration: the
size of the explored neighborhood is therefore drastically reduced.

14.3.2 Hybrid Genetic Algorithm

At the time of publication in 1987, TabuCol was the best algorithm for k-PACK

(and thus for PACK). Today, TabuCol is still used as an intensification procedure in
some evolutionary methods, which are among the best algorithms for this problem
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Algorithm 1 Hybrid genetic algorithm

While a stopping criterion is not satisfied, do

1. recombine: construct an offspring solution s.off / from two parent solutions of P;
2. intensify: improve s.off / using a local search, and let s be the resulting solution;
3. update P: s replaces a solution of P.

[8, 9, 20, 21]. Such methods are often based on a population P of solutions, which
cooperate (information exchange phase) and adapt individually. Some of the best
known evolutionary methods include genetic algorithms, ant colonies, scatter search
and the adaptive memory algorithm. For further information on such metaheuristics,
please refer to [12].

In 1999, a metaheuristic outperformed all the others for k-PACK, which is
the hybrid genetic algorithm proposed in [8]. Its generic version is presented in
Algorithm 1. Steps (1) to (3) constitute a generation. The cooperation phase occurs
in step (1) with the recombination operator. The individual adaptation phase appears
in step (2). Finally, the solution removed from P at the end of a generation is, for
example, the worst solution of P (as it is the case in [8]).

The adaptation of the above method to k-PACK will be further examined below.
Firstly, the search space is the same as the one used by TabuCol. The intensification
operator is TabuCol, and the population P contains ten solutions.

The recombination operator, denoted X-GH, constructs an offspring solution s.off /

class by class from two parent solutions s1 and s2 randomly selected from P. At step
t of this operator (with 1 � t � k), the offspring solution under construction contains
classes C1;C2; : : : ;Ct�1, and the set Ct of items loaded in container t is determined.
This set corresponds to the class C in si (where i D 1 if t is odd and i D 2 if t is
even, allowing s1 and s2 to be used alternately) maximizing the number of additional
items which could be added to the solution s.off /. In other words, C 2 si maximizes
g.C0/ D jC1 [ C2 [ : : : [ Ct�1 [ C0j. When k such steps have been performed, a
random container is assigned to each unloaded item. X-GH is now illustrated with
the set of items fa; b; c; : : : ; i; jg, and k D 3. We therefore want to build s.off / D
.C1;C2;C3/. We assume that s1 D .C.1/

1 ;C
.1/
2 ;C

.1/
3 / D .fa; b; cg; fd; e; f ; gg; fh; i; jg/

and s2 D .C.2/
1 ;C

.2/
2 ;C

.2/
3 / D .fc; d; e; gg; fa; f ; ig; fb; h; jg/. Since C.1/

2 is the largest

class of s1, we have C1 D C.1/
2 D fd; e; f ; gg. We can then remove items d; e; f

and g from s1 and s2, and we are left with s1 D .fa; b; cg; fg; fh; i; jg/ and s2 D
.fcg; fa; ig; fb; h; jg/. The class C.2/

3 is thus the largest in s2, and we therefore have

C2 D C.2/
3 D fb; h; jg. We then obtain s1 D .fa; cg; fg; fig/ and s2 D .fcg; fa; ig; fg/,

and finally we have C3 D C.1/
1 D fa; cg. At the end of this class by class construction

phase, the item i has not received any container. We can then randomly insert i in
C3, which leads to s.off / D .fd; e; f ; gg; fb; h; jg; fa; c; ig/.

The superiority of algorithm GH strongly relies on its recombination operator,
which is obviously not a simple crossover of two parent solutions s1 and s2 (taking
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half of each parent). The transmitted information is therefore not a couple (item,
container), as it was the case in genetic algorithms prior to GH, but rather the
belonging of some items to a common container.

14.3.3 Methods Developed After GH

In [9] is proposed an adaptive memory algorithm whose pseudo-code is described in
Algorithm 1. A major difference lies in the recombination operator, where all (and
therefore not only two) the solutions of the population P can contribute to construct
the offspring solution s.off /. The adaptive memory algorithm for k-PACK is denoted
by AmaCol, and its recombination operator is an extension of X-GH. All the parent
solutions can be used to provide classes to s.off /, although it is forbidden for the same
solution from P to consecutively provide two classes, so that s.off / does not resemble
too much to a solution of P. A numerical comparison between TabuCol and AmaCol

can be found in [9]. It is showed that AmaCol and GH have a comparable performance,
and significantly outperform TabuCol. However, AmaCol has an advantage over GH

due to its relative simplicity.
More recently, a method from the same family as GH and AmaCol has been

proposed in [21]. It can also be considered as an adaptive memory algorithm, and it
is currently the most efficient approach for k-PACK, because its average performance
is averagely the best among eleven other well-known algorithms (including TabuCol,
GH, and AmaCol). Its recombination operator is also a generalization of X-GH. A force
of this method is the population update mechanism, which is based on a distance
function between solutions. The distance d.s; s0/ between two solutions s and s0
measures the structural difference between s and s0. In other words, the larger is
d.s; s0/, the less s and s0 are similar. The idea is then to remove from P the solutions
which do not provide very much diversity to P, and to replace them with offspring
solutions (which are improved using a procedure similar to TabuCol).

14.4 Maximizing the Number of Loaded Items

Let us consider the k-PACK problem where the objective is to maximize the number
of loaded items if the number of containers is limited to k < n. In practical
situations, the unloaded items could be loaded later in a different boat, which might
result in late deliveries to the final clients.

It Sect. 14.3, we mentioned that the most efficient strategy for tackling PACK is
to solve a decreasing series of k-PACK problems, beginning for example with k D n.
If k is fixed, a solution can be modeled with s D .C1;C2; : : : ;Ck/ (it is thus a
partition of the items into k classes), and the goal consists in minimizing the number
of conflicts (a conflict occurs if two adjacent vertices have the same color). If this
number reaches zero, the problem is solved. Another powerful approach to tackle
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k-PACK consists in working with solutions modeled with s D .C1;C2; : : : ;CkI O/,
which is a partition of the n items into k C 1 classes. Each class Ct is conflict-
free and contains items loaded in container t. In addition, the set O contains the set
of unloaded items and can contain conflicts. The objective function to minimize is
simply jOj. If this number reaches zero, the problem is solved. As a result, there are
mainly two efficient solution spaces for k-PACK:

• E .C/ of k-complete loadings, where the number of conflicts has to be minimized;
• E .P/ of k-partial loadings without conflict, where the number of unloaded items

has to be minimized.

An algorithm A1 associated with E .C/ can therefore be compared to an algorithm
A2 associated with E .P/: we only need to compare the smallest k where A1 finds a
k-packing without conflict, with the smallest k where A2 finds a k-packing without
unloaded items. The literature on E .P/ related algorithms is more recent and has very
convincing results [2, 24, 30].

Even if the search spaces E .C/ and E .P/ are associated with the same k-PACK

(and therefore PACK) problem, an important distinction is made in this chapter.
Indeed, from a packing perspective, loading n items while minimizing the number
of containers is very different from minimizing the number of unloaded items for a
given upper bound on the number of containers. The latter problem is particularly
relevant when incompatibilities between items are too numerous, so that it is
not possible to load all the n items in the set of available containers. In such
an environment, the adequate selection of items to load is an important issue,
particularly in a situation where each container delivery only occurs after an order
from a client.

Two metaheuristics will be discussed below for this problem, namely a tabu
search and an ant colony algorithm.

14.4.1 Tabu Search

A powerful tabu search for this problem is PartialCol, which works in E .P/ [2]. A move
.j;Ct/ is completed in two steps: (1) assign a container t (with t � k) to an item
j 2 O (i.e., put item j in class Ct); (2) put in O all the items of Ct which are
incompatible with j. It is thus very quick to evaluate the value of a move .j;Ct/: it is
the number of items in Ct which are incompatible with j (as with TabuCol, an efficient
incremental computation is therefore used). When a move .j;Ct/ is performed, it is
tabu (forbidden) for tab iterations to reinsert in Ct an item which was just removed
in the above step (2) (in order to avoid removing from Ct the item j which has
just entered it). The value of tab is adjusted in an original and efficient way. It
depends on the variability �f of the objective function f D jOj in the last cycle
of iterations (a cycle contains several hundred iterations). More specifically, �f is
defined as the gap between the largest and smallest value of f during the last cycle
of iterations. The larger �f is (which indicates that the visited solutions are likely



14 Graph Coloring Models and Metaheuristics for Packing Applications 303

to be different), the smaller tab is (which enables a more in-depth exploration of
the search space zone under examination). In contrast, the smaller �f is (which
indicates that the algorithm is blocked in a specific zone of the solution space),
the larger tab is (a large number of forbidden moves favors the exploration of new
search space zones). The intensification and diversification phases of PartialCol are
therefore regulated by the dynamic management of �f during the search.

A detailed comparison between TabuCol and PartialCol is presented in [2] for
k-PACK, when the objective is to find the smallest k such that all the items can be
loaded without conflict. It is showed that PartialCol is on average slightly better than
TabuCol. At the time of publication (in 2008), PartialCol beat a record on an instance
with n D 300 items (labeled flat300280), using 28 containers (which is optimal),
whereas no other algorithm was able to use less 31 containers. As it was the case
for TabuCol, PartialCol has then often been used as an intensification procedure for
k-PACK in the best evolutionary methods (e.g., an adaptive memory algorithm [24],
a variable space search [20], an ant colony algorithm [30]). An unconventional but
successful ant algorithm is presented below.

14.4.2 The Ant Colony Algorithm

An ant colony algorithm is generally based on a population of N ants. At each
generation, each of the N ants provides a solution. At the end of each generation, a
central memory (the trail system) is updated. Starting from an “empty” solution, the
role of each ant is to build, step by step, a complete solution for the considered
problem. At each step, an ant adds an element to the partial solution under
construction. Each move (or decision) u is based on two ingredients: (1) the greedy
force GF.u/ (short-term profit of the considered ant) which represents the individual
adaptation of each ant, (2) the trail Tr.u/ (information obtained from other ants)
which represents the collaborative phase of the algorithm. U represents all the
possible moves at the step being considered. The probability pi.u/ that ant i performs
move u is given by Eq. (14.6), where ˛ and ˇ are parameters and Ui.adm/ is the set
of allowed moves that ant i can perform.

pi.u/ D GF.u/˛ � Tr.u/ˇP
u02Ui.adm/

GF.u0/˛ � Tr.u0/ˇ
(14.6)

When each ant of the population has built its solution (i.e., at the end of a
generation), the trails are generally updated as follows: Tr.u/ D � � Tr.u/ C
�Tr.u/;8u 2 U, where � 2 �0; 1Œ is a parameter (often close to 0.9) representing the
evaporation of trails, and �Tr.u/ is a term which reinforces the trails left on move
u by ants from the very last generation. This quantity is generally proportional to
the number of times that the ants have performed move u, as well as the quality
of the solutions which have been obtained thanks to move u. More precisely,
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Algorithm 2 ALS algorithm

While a stopping criterion is not satisfied, do

1. for i D 1 to N: apply the local search associated with the ant i, and let si be the resulting
solution;

2. update the trails using a subset of fs1; : : : ; sNg.

�Tr.u/ D PN
iD1 �Tri.u/, where �Tri.u/ is proportional to the quality of the

solution provided by the ant i which performed move u. The reader is referred to
[6] for more information on ant algorithms.

However, in order to obtain competitive results, it is often necessary to apply
a local search method to the solutions provided by the ants [6]. An alternative
proposed in [30] gives a more significant role to each ant. An ant is no longer
considered as a constructive algorithm, but rather as a local search procedure. The
resulting method is known as ALS (for Ant Local Search) and is summarized in
Algorithm 2, where each generation requires steps (1) and (2).

In most of the ant algorithms, selecting a move based on Eq. (14.6) is very
costly in terms of computational effort. For this reason, a quicker and more efficient
technique, also based on the greedy forces and the trails, will be briefly presented
below. At each iteration of the local search associated with the ant being considered,
A is the set of jAj moves which have the largest greedy forces. The selected
move is the one of A which has the largest trail value (ties are broken randomly).
One can easily remark that the size of A is an important and sensitive parameter.
The advantages of this technique are accurately explained in [30]. Globally, it is
obvious that ALS is quicker, more efficient, and easier to calibrate and manage than
a classical ant colony algorithm.

There are around a dozen ant colony algorithms for PACK [19]. The best is ALS by
far, whose characteristics are summarized below. Firstly, each ant is a tabu search
very close to PartialCol (see Sect. 14.3). The greedy force GF.j;Ct/ of a move .j;Ct/

is defined as the opposite of the number of items which are incompatible with j
in Ct (if this number is zero, GF is fixed to an arbitrarily large number). The trail
Tr.j;Ct/ associated with .j;Ct/ is defined as follows. Let j and j0 be two items, and
let si D .C1; : : : ;CkI O/ be a solution provided by the ant i from the population in
a specific generation. If the ant i gives the same container t to items j and j0 in the
solution si (i.e., j; j0 2 Ct), this information must be transmitted to the ants of the
next generations, and the intensity of the information must be even more important
if j and j0 are in a container with a lot of items. During the search, an unloaded item
j 2 O will tend to be inserted into a container Ct containing the items with which the
item j is used to share the same container. More formally, this can be expressed as:

�Tri.j; j
0/ D

� jCtj2 if j and j0 have the same container t in si;
0 if j and j0 do not share the same container in si.
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Subsequently, as in many ant colony algorithms, at the end of each generation, the
trail is reinforced with �Tr.j; j0/ D PN

iD1 �Tri.j; j0/, and the trails are globally
updated as follows: Tr.j; j0/ D 0:9 � Tr.j; j0/ C �Tr.j; j0/. During the tabu search
associated with each ant, the trail of a move .j;Ct/ is therefore Tr.j;Ct/ DP

j02Ct
Tr.j; j0/.

14.5 Precedence Constraints

Let us now consider the PACK problem, but including precedence constraints, which
has been tackled in [25]. For each item j in the set V of n items to be loaded, we
know the set R.j/ � V of its immediate predecessors. In other words, if j0 2 R.j/,
it indicates that item j0 (reps. j) must be loaded in a container i0 (resp. i) such that
i0 < i. This kind of precedence constraint is expressed as .j0; j/. Let us suppose, for
example, that V D fa; b; cg. If we have constraints .a; b/ and .b; c/, then we have
R.a/ D ;;R.b/ D fag and R.c/ D fbg, and not R.c/ D fa; bg. In other words, a is a
non immediate predecessor of c. The objective is to assign a container t to each item
j while minimizing the number of containers and satisfying the incompatibility and
precedence constraints. Let PACK-PREC denote this problem, whose version with a
number of containers fixed to k is expressed as k-PACK-PREC. As it was the case for
PACK, PACK-PREC can be approached by solving a series of k-PACK-PREC problems,
beginning, for example, with k D n.

From a practical perspective, the label i of each container is associated with its
unloading time at the corresponding destination point. If i0 < i for containers i and i0,
it means, for example, that i and i0 have to be sequentially unloaded in two different
delivery points. In other words, the unloading time of container i0 is larger than the
one of i.

PACK-PREC can be represented by the mixed graph coloring model, denoted
MCOL. A mixed graph G D .V;E;A/ is a graph with a set of vertices V , a set
of edges E, and a set of arcs A. By definition, an edge is undirected, and an arc is a
directed edge. An edge linking vertices x and y is denoted Œx; y�, whereas an arc from
x to y is expressed as .x; y/. MCOL consists in giving a color to each vertex in order
to minimize the number of different colors used, while satisfying incompatibility
(if the edge Œx; y� exists in E, the vertices x and y must receive two different colors)
and precedence constraints (if the arc .x; y/ exists in A, the color of the vertex x must
be strictly smaller than the color of the vertex y).

For further information on this problem, please refer to [25]. We can easily see
the equivalence between MCOL and PACK-PREC: a vertex represents an item j, an
edge Œj; j0� indicates that items j and j0 are incompatible, an arc .j00; j/ corresponds to
a precedence constraint, and a color t represents a container t. The incompatibility
and precedence constraints in Fig. 14.2 represent the items in the set fa; b; c; d; p; sg,
with the precedence constraints .s; a/; .s; c/; .a; d/; .b; p/ and .d; p/, as well as the
incompatibility constraints Œa; b�; Œa; c�; Œc; d� and Œb; d�. The non-optimal solution
shown is: C1 D fsg;C2 D fag;C3 D fb; cg;C4 D fdg;C5 D fpg.
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Fig. 14.2 Graph of incompatibilities and precedences representing n = 6 items

As proposed in [25], the integer linear model associated with MCOL is the
following. Let G D .V;E;A/ be a mixed graph with V D fv1; : : : ; vng, E being the
edge set and A being the arc set. Let C D f1; : : : ; kg be the set of available colors.
For all i 2 f1; : : : ; ng and j 2 f1; : : : ; kg, xij D 1 if vertex vi gets color j (xij D 0

otherwise). For all j 2 f1; : : : ; kg, zj D 1 if at least one vertex gets color j (zj D 0

otherwise). The objective function to minimize is
Pk

iD1 zi, and the constraints to
satisfy are:

xi1j C xi2j � 1 8 Œvi1 ; vi2 � 2 E;8 j 2 f1; : : : ; kg (14.7)

kX

jD1
xij D 1 8 vi 2 V (14.8)

xij � zj 8 vi 2 V;8 j 2 f1; : : : ; kg (14.9)

xi1j1 C xi2j2 � 1 8 .vi1 ; vi2 / 2 A;8 j1 � j2; j1; j2 2 f1; : : : ; kg (14.10)

xij; zj 2 f0; 1g 8 vi 2 V;8 j 2 f1; : : : ; kg (14.11)

Constraints (14.7) impose that two vertices linked with an edge must get different
colors. Constraints (14.8) impose that each vertex must get exactly one color.
Constraints (14.9) are linking constraints. Constraints (14.10) forbid to give a larger
color to the start vertex of an arc than to the end vertex of an arc. Constraints (14.11)
impose integer values for variables xij and zj.

As it was the case for PACK, PACK-PREC is an NP-hard problem and metaheuris-
tics are well suited to tackle it. The two existing metaheuristics for PACK-PREC

are proposed in [25], namely a tabu search and a variable neighborhood search.
These methods have comparable performances and can tackle instances with several
hundred of vertices. Note that the above integer linear model based on CPLEX 10.2
is limited to fifty vertices only (and requires several hours of computation). On
such small instances, the two above-mentioned metaheuristics can generally find
the optimal solution much quicker (only a few minutes are usually necessary).
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Before proposing solution methods for k-PACK-PREC, it is useful to use a
technique which reduces the number of possible colors for each vertex j. A path is a
series of adjacent arcs .j1; j2/; .j2; j3/; : : : ; .jp�2; jp�1/; .jp�1; jp/ such that ji1 ¤ ji2 if
i1 ¤ i2. For example, .a; b/; .b; c/ is a path but not .a; b/; .c; b/. Let us suppose that
we want to color the mixed graph composed of the path .a; b/; .b; c/. Using k D 4

colors and beginning with an empty solution (no vertex is colored), if we first assign
color 4 to vertex a, it is then impossible to find a color in f1; 2; 3; 4g for vertices
b and c in order to reach a 4-coloring without conflict. As a result, color 4 must
never be considered for vertex a. More generally, in [25], it is proposed to reduce
the search space as follows. The length of the path from the vertex x to y is the
number of arcs belonging to it. InRank.j/ (respectively OutRank.j/) is the number
of vertices belonging to a longest path leading to (respectively starting from) vertex
j. It is obvious that k must be larger than the length of the longest path in the graph
being considered. Let FC.x/ be the set of feasible colors for vertex x. According
to the above example (i.e., considering path .a; b/; .b; c/, with k D 4), we have
FC.a/ D f1; 2g;FC.b/D f2; 3g and FC.c/ D f3; 4g.

14.5.1 Tabu Search

Tabu search for k-PACK-PREC is an extension of PartialCol proposed for k-PACK.
The following elements must be defined: the way to represent a solution, the
neighborhood structure (i.e., the nature of a move), the objective function to be
minimized, and the tabu status updating mechanism.

Let tj denote the container assigned to item j. In this context, there is a conflict
between items j and j0 if one of the two following conditions is verified: (1) Œj; j0� 2 E
and tj D tj0 (violation of an incompatibility constraint); (2) .j; j0/ 2 A and tj � tj0
(violation of a precedence constraint). A solution s can also be modeled by s D
fC1; : : : ;CkI Og, where Ct is the set of items loaded in container t (without any
conflict). The function f D jOj has to be minimized (all the items which have
not received a container are in O). Note, however, that it is not always possible
to complete a solution s. Assuming k D 4 for example, let us suppose that the
considered graph contains a path .a; b/; .b; c/, as well as a set fa; d; e; f g of mutually
adjacent vertices, as illustrated in Fig. 14.3. It results that FC.a/ D f1; 2g;FC.b/ D
f2; 3g;FC.c/ D f3; 4g;FC.d/ D FC.e/ D FC.f / D f1; 2; 3; 4g. In this case, the
partial solution s D fC1 D feg;C2 D fag;C3 D fc; dg;C4 D ff gg does not contain
conflicting vertices, but it cannot be completed because it is impossible to find a
feasible solution where colors 2 and 3 are, respectively, assigned to vertices a and c.

The neighborhood structure is the same as the one used in PartialCol: we assign a
color t to an uncolored vertex j, and we then remove the color of the vertices in Ct

in conflict with j. When such a move is performed to move from a current solution
to a neighbor solution, it is then tabu to remove j from Ct during tab iterations,
which is a number depending on the number of conflicts in the current solution. It is
obvious that f D jOj can assign the same value to several neighbor solutions, which
indicates that there are many equivalent options at each iteration of tabu search.
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Fig. 14.3 Partial solution without conflict which cannot be completed as a feasible 4-coloring

To break ties, an auxiliary objective function g is used instead of f . Note that a
conflict may appear either on an edge (violation of an incompatibility) or on an arc
(violation of a precedence). It has been noted that it is better to give different weights
to these types of conflict. Consider the solution s D fC1; : : : ;CkI Og, a vertex j 2 O
and a color t 2 f1; : : : ; kg. We define:

A.j; t/ D fj0 2 V j 9 edge Œj; j0� 2 E j tj0 D tg
B.j; t/ D fj0 2 V j f9 arc .j; j0/ 2 A j tj0 � tg or f9 arc .j0; j/ 2 A j tj0 � tgg

In other words, A.j; t/ (resp. B.j; t/) is the set of incompatible items (resp. the set of
items involved in some precedence constraints) with j which will become in conflict
if the decision tj D t is taken. At each iteration of tabu search, the function g used
to choose among the equivalent options according to f is g.j; t/ D ˛ � jA.j; t/j C
ˇ � jB.j; t/j. It has been observed that ˛ D 4 and ˇ D 1 are reasonable values for
these parameters. The function g can quickly evaluate a move. Let us for example
suppose that, in order to generate s0 (neighbor solution) from s (current solution),
the vertex j is first moved from O to Ct, then the vertex j1 is moved from Ct to O
due to the violation of an incompatibility constraint, and finally j2 and j3 are moved
from Ct0 to O due to the violation of precedence constraints. It is easy to evaluate
the resulting neighbor solution s0 with g.j; t/ D ˛ � 1C ˇ � 2.

The pseudo-code of such a tabu search is presented in Algorithm 3, which returns
the best solution s? encountered during the search (its value is f ?).

14.5.2 Variable Neighborhood Search

Usually, a local search methods only use a single type of neighborhood N : a local
optimum is therefore defined according to N . To escape from a local optimum,
tabu search, for example, relies on the notion of forbidden moves. In contrast,
a variable neighborhood search attempts to avoid being trapped in a local optimum
by the use of several types of neighborhood: a local optimum for a neighborhood
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Algorithm 3 Tabu search for k-PACK-PREC

Input: set of n items, incompatibility and precedence constraints.

Initialization

1. generate an initial solution s (at random or by putting all the items in O);
2. set s? D s and f ? D f .s/;
3. set Iter D 0 (iteration counter).

While a stopping criterion is not satisfied, do

1. update the iteration counter: set Iter D IterC 1;
2. generate the set D of all the non tabu candidate neighbor solutions by assigning a container to

an item j 2 O; 8j (exception: D can contain tabu solutions if their values are smaller than f ?);
3. let s0 be the solution of D minimizing g (break ties randomly); suppose that s0 is obtained from

s by assigning a container to the item j;
4. update the record: if f .s0/ < f ?, set f ? D f .s0/ and s? D s0;
5. update the tabu status: it is forbidden to reinsert j into O until iteration IterC tab;
6. update the current solution: set s D s0.

Output: solution s? with value f ?.

Algorithm 4 Variable neighborhood search

Input: neighborhood structures N .i/ .i D imin; : : : ; imax/.

Initialization: generate an initial solution s and set i D imin.

While a stopping criterion is not satisfied, do

1. generate a solution s0 in the ith neighborhood of s: s0 2 N .i/.s/;
2. apply a local search procedure during I iterations, with s0 as an initial solution, and let s00 be the

resulting solution;
3. if s00 is better than the current solution s, set s D s00 and continue the search with the first

neighborhood N .imin/ (i.e. set i D imin); otherwise, move to the next neighborhood (i.e. set
i D maxfiminI .i mod imax/C 1g).

Output: best solution found during the search.

is not necessarily a local optimum for another neighborhood. Let N .i/ (with
i 2 f1; : : : ; imaxg) be a series of neighborhood structures, where N .i/.s/ is the set
of solutions in the ith neighborhood of solution s. The variable neighborhood search
method, initially proposed in [26], is summarized in Algorithm 4.

For k-PACK-PREC, the parameters imin; imax and I are, respectively, fixed to 2, 5 and
100,000 in [25]. The local search used at step (2) is the tabu search described above.
The different neighborhood structures are now presented, requiring the following
additional definitions. Let tj be the color assigned to the vertex j, and let x and y
be two vertices in conflict (which are therefore connected by a conflicting edge or
arc). For i � 2, we say that there is an i-conflict between vertices x and y if at least
one of the two following conditions is verified: (1) there is a path with length i from
x to y such that tx C i > ty; (2) there is a path with length i from y to x such that
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Fig. 14.4 (a) A partial and legal solution s. (b) A neighbor solution s0 2 N .3/.s/ obtained by
assigning the color 1 to the vertex a

ty C i > tx. In these two cases, it is impossible to feasibly color the vertices of the
involved path. In the neighborhood N .1/, a move consists in assigning a color to
an uncolored vertex x, and then to remove the color of the conflicting vertices with
x. Such conflicting vertices are necessarily adjacent to x. For i � 2, we define the
neighborhoodN .i/.s/ of a current solution s as all the solutions obtained from s by
assigning a color to x 2 O, and then removing the color of all the conflicting vertices
and in r-conflict with x (with 2 � r � i). The neighborhood N .3/.s/ is illustrated
in Fig. 14.4.

14.6 Incompatibility Costs

Let us define a new problem k-PACK-INC from k-PACK by relaxing the conflict
constraints as follows: if two incompatible items j and j0 belong to the same
container t, an incompatibility cost c.j; j0/ D c.j0; j/ is incurred; (2) if an item j is
belongs to container t, an assignment cost a.j; t/must be paid. The objective consists
in assigning a container to each item in order to minimize the incompatibility and
assignment costs. A solution s can thus be denoted s D .C1; : : : ;Ck/, and an
incompatibility graph can model this problem: an edge Œj; j0� between two vertices
j and j0 indicates that if the same color is given to vertices j and j0, then the cost
c.j; j0/ > 0 is encountered.

From a practical perspective, the incompatibility cost c.j; j0/ could be propor-
tional to the risk encountered if two conflicting items belong to the same container.
In such a case, a goal would be to minimize the risk. The assignment cost a.j; t/
represents, for example, the cost of the resources involved in the loading/unloading
of item j in container t. A solution s using k containers can be generated using a
function per W V �! f1; : : : ; kg which attributes a container per.j/ to each item
j 2 V . The value of a solution s D .C1; : : : ;Ck/ is
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f .s/ D
kX

tD1

X

j2Ct

a.j; t/C
n�1X

jD1

X

j02fjC1;:::;ng\ Cper.j/

c.j; j0/ (14.12)

As proposed in [37], let xjt D 1 if container t is assigned to item j (xjt D 0 otherwise).
Then, we can formulate k-PACK-INC as follows.

Objective function: min
kX

tD1

nX

jD1
a.j; t/ �xjt C

kX

tD1

n�1X

jD1

nX

j0DjC1
c.j; j0/ �xjt �xj0t (14.13)

Constraints:
kX

tD1
xjt D 1; 8 j 2 f1; : : : ; ng (14.14)

xjt 2 f0; 1g; 8 j 2 f1; : : : ; ng;8 t 2 f1; : : : ; kg
(14.15)

Equation (14.14) imposes to assign exactly one container to each item. The above
formulation can be linearized by using yjj0 D Pk

tD1 xjtxj0t (see the details in [37]).
Note that CPLEX 10.0 (used during several hours and the linearized formulation) is
not able to optimally solve instances with more than fifty items. For such instances,
it has been noted that tabu search performs similarly, but only requires a few
minutes.

There are only two metaheuristics for this NP-hard problem: a tabu search
and an adaptive memory algorithm [37]. These two methods have comparable
performances and can be used for instances with several hundred items. Such
algorithms are presented below.

14.6.1 Tabu Search

A move .j;Ct;Ct0/ simply consists in giving container t0 instead of container t to
item j. However, to avoid evaluating all the possible moves at each iteration, only
the most promising moves are examined, which are the ones which contribute the
most to the objective function f . To do so, for each item j, its contribution cost.j/
to f is computed as follows, where I.j/ is the set of items which are incompatible
with j:

cost.j/ D a.j; per.j//C 1

2

X

j02I.j/\Cper.j/

c.j; j0/ (14.16)

Note that the fraction 1
2

is used to consider the fact that items j and j0 contribute
equally to c.j; j0/. As a result, the other half of c.j; j0/ is taken into account in cost.j0/.
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At each iteration, all the moves involving the modification of a container of an item
j are considered, but only for the j’s belonging to the q % (parameter fixed to 40%)
most expensive items according to the cost function.

In order to save time at each iteration, an incremental computation is used to
evaluate a move .j;Ct;Ct0/ associated with the generation of a neighbor solution s0
from the current solution s. Rather than computing f .s0/ from Eq. (14.12), only the
variation�f .s; s0/ D f .s0/� f .s/ of f is computed as proposed in Eq. (14.17):

�f .s; s0/ D a.j; t0/C
X

j02I.j/\Ct0

c.j; j0/� a.j; t/�
X

j02I.j/\Ct

c.j; j0/ (14.17)

When a move .j;Ct;Ct0/ is performed, it is tabu to assign container t to item j during
tab iterations. As a result, at each iteration, the best non-tabu move is performed
(a tabu move is, however, allowed if it reaches a solution which is strictly better
than all the previously visited ones). The value of tab is determined as indicated
in Eq. (14.18). The maximum is used to enforce tab to be positive. The last term
of Eq. (14.18) represents the improvement of the objective function f during the
generation of the neighbor solution s0 from the current solution s. If s0 is better than
s, the improvement is positive and the reverse move will be forbidden for a larger
number of iterations (when compared to a move with a negative improvement),
which is straightforward.

tab D max

�
1I U.10; 20/C 15 � f .s/ � f .s0/

f .s/

�
(14.18)

A more refined management of the tabu status is also used, based on the following
idea: if the diversity of the visited solutions is below a specific threshold ı, the value
of tab must be increased for a couple of iterations in order to favor the exploration of
new zones of the solution space (diversification phase). In contrast, if the diversity
is larger than ı, the value of tab must be reduced for a couple of iterations in order
to favor a deeper exploration of the search space in which the current solution lies
(intensification phase). Two important points must therefore be considered: (1) how
to determine the diversity of the visited solutions, and (2) how to determine the
threshold ı. To tackle these two issues, additional definitions are required.

The similarity sim.s; s0/ between two solutions s D .C1;C2; : : : ;Ck/ and
s0 D .C01;C02; : : : ;C0k/ is defined in Eq. (14.19) (with the following convention: if
jCi\C0

i j
jCi[C0

i j D 0
0
, we have jCi\C0

i j
jCi[C0

i j D 1, because in this case Ci D C0i D ;):

sim.s; s0/ D
kX

iD1

j Ci \ C0i j
j Ci [ C0i j (14.19)

The distance d.s; s0/ between two solutions s and s0 can therefore be defined by
d.s; s0/ D k � sim.s; s0/. In addition, the distance d.s;Z/ between a solution s and a
set Z of solutions can be defined by:

d.s;Z/ D
P

s02Z
d.s; s0/

j Z j (14.20)
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Algorithm 5 Tabu search for k-PACK-INC

Input: set of n items, assignment and incompatibility costs.

Initialization

1. generate at random an initial solution s;
2. set s? D s and f ? D f .s/;
3. set Iter D 0 (iteration counter).

While a stopping criterion is not satisfied, do

1. update the iteration counter: set Iter D IterC 1;
2. determine the set C containing the q % most costly items [according to Eq. (14.16)];
3. generate the set B of non tabu candidate neighbor solutions obtained from s by modifying the

container of an item j 2 C (exception: B can contain tabu solutions if their values are lower
than f ?);

4. set s0 D arg min
s00

2B
f .s00/; suppose that s0 is generated from s by performing the move.j;Ct;Ct0/;

5. update the record: iff .s0 < f ?, set f ? D f .s0/ and s? D s0;
6. update the tabu status: do not reinsert j in Ct until iteration IterC tab;
7. update the current solution: set s D s0.

Output: solution s? with value f ?.

Finally, the diversity d.Z/ of set Z of solutions is defined as the average distance
between two solutions in Z:

d.Z/ D
P
s2Z

d.s;Z � fsg/
j Z j (14.21)

The value of ı is determined empirically at the start of the search, and thus at a
moment where the diversity of the visited solutions is potentially high. Starting with
Z D ;, from the first time h (parameter fixed to 50) iterations without improvements
of s? (best solution visited during the search) have elapsed, at each cycle of h
iterations, insert the best solution encountered during the last completed cycle into
Z. Then, when jZj D z (parameter fixed to 10), set ı D d.Z/. Then, at each z � h
iterations, a new set Z of solutions is generated in the same way, and its diversity
d.Z/ is computed. If d.Z/ < ı (resp. d.Z/ � ı), the tabu duration tab [previously
computed with Eq. (14.18)] of each new move is multiplied (resp. divided) by 5. All
the ingredients are now available to formulate Algorithm 5.

14.6.2 Adaptive Memory Method

Using the same notation as in Sect. 14.3.3, a population P of ten solutions is used
in [37]. To initialize P, ten solutions are generated and improved by tabu search
during 1,000 iterations. The intensification operator is also the above tabu search,
but used during 10,000 iterations.
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The recombination operator is similar to the one proposed in [36], which
is a generalization of X-GH. At each generation, an offspring solution s.off / D
fC.off /

1 ; : : : ;C.off /
k g is constructed class by class from P. Suppose that the classes

C.off /
1 ; : : : ;C.off /

t�1 have already been constructed from the set P of parent solutions,
and that the parent solution sr0 (with r0 2 f1; : : : ; 10g) has provided the items of
the class C.off /

t�1 . In addition, S denotes the set of previously assigned items (which

are in C.off /
1 [ : : : [ C.off /

t�1 ). At that moment, it is required to build C.off /
t . The

items composing C.off /
t are provided by the solution sr D fC.r/

1 ; : : : ;C
.r/
k g from P

(with r ¤ r0, so that the same parent solution cannot consecutively provide two
classes) such that jC.r/

t � Sj is maximal (break ties randomly). We therefore set
C.off /

t D C.r/
t � S. At the end of this process, the non-already assigned items are

successively inserted in s.off / in a greedy fashion.
The population update mechanism is based on the technique proposed in [36].

Let s be the solution provided by tabu search at the end of a generation. Let s.worst/

be the worst solution of P and let s.old/ be the oldest solution of P. If s is not worse
than s.worst/, then s replaces s.worst/ in P, otherwise s replaces s.old/. In the latter case,
given that s cannot improve the quality of P, it is at least able to give it fresh blood
(i.e., a bit of diversity) by replacing an old solution.

14.6.3 Variations of the Problem

The above model has the advantage of being able to reasonably account for two
types of specific situations: (1) forbidding specific containers for certain items; (2)
dealing with precedence constraints.

On the one hand, if one does not want to load item j in container t, it is relevant to
set a.j; t/ D L (where L is an arbitrarily large number). As a result, the used solution
method is likely to avoid assigning container t to item j (otherwise, the large cost L
will be incurred in the objective function).

On the other hand, the model also allows to account for a precedence constraint
of type .j; j0/. To do it, we set c.j; j0/ D L, and we create k artificial items j1; j2; : : : ; jk
associated with item j, as well as k artificial items j01; j02; : : : ; j0k associated with item
j0. An artificial container k0 is also introduced. All the associated assignment and
incompatibility costs for these artificial items are zero, except the following ones:

(A) a.ji; t/ D a.j0i; t/ D L for i ¤ t;
(B) c.jpI jq/ D c.j0pI j0q/ D L if p ¤ q;
(C) a.l; k0/ D L for each non artificial item l;
(D) c.jI ji/ D c.j0I j0i/ D L for i 2 f1; : : : ; kg;
(E) c.jpI j0q/ D L if p > q.

As a result, a solution in which the precedence constraint .j; j0/ is not satisfied
is strongly penalized by the objective function. To better understand this, let us
consider one by one the above constraints. For every i 2 f1; : : : ; kg, the (A)
constraints favor solutions where ji and j0i are in container i. The impact of the (B)
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constraints is as follows: at most one of the items of type ji (say jc) and at most
one of the items of type j0i (say jd) must be assigned to container k0 (otherwise
the penalty incurred in the objective function will be high). Adding the (C) and
(D) constraints means that items j and j0 will be assigned to containers different
from k0 (say c and d, respectively) and the corresponding items jc and j0d are both
assigned to container k0. Finally the (E) constraints avoid c being larger than d, and
this prevents the violation of precedence constraint .j; j0/. The above technique can
obviously be generalized if several precedence constraints have to be considered:
even if each precedence constraint involves the creation of 2 � k artificial items, the
two metaheuristics proposed in [37] remain competitive because they can be used
for instances with up to 10,000 vertices within a reasonable amount of computing
time.

14.7 Conclusion

In this chapter, various NP-hard packing problems on identical containers have
been investigated. The models and methods presented in this chapter build bridges
between graph theory and packing/loading problems. It was showed, on the one
hand that graphs are powerful modeling tools, and, on the other hand, that graph
coloring metaheuristics can be very efficiently adapted to specific packing problems.
The success of the best performing metaheuristics relies mainly on four factors:

• an efficient representation of a solution of the considered problem (e.g., fixing
one of the problem’s dimensions in advance, in order to minimize the number of
conflicts or constraint violations);

• using an auxiliary objective functions different from the given objective function
associated with the problem (e.g., minimizing the number of decision variables
which have not received a value);

• using an aggressive local search as an intensification procedure (e.g., a tabu
algorithm focusing on conflicts and using a type of move which eliminates at least
one conflict at each iteration, even if it creates other conflicts in other components
of the solution);

• using an information exchange system which accounts for the structural proper-
ties of the problem (e.g., given that two colorings are equivalent if the colors are
renamed, the attachment of a vertex to a specific color is therefore not a relevant
information to handle and transmit).
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PCS and VLP, 209
precedence-constrained component,

214–217
SA and SAX datasets, 219–221
3D Pigeon hole problem, 218–219

Generating set search (GSS), 237
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Genetic algorithms, 40, 179–182, 297,
299–301

Global optimization (GO), 68, 84, 179–181,
267

Graph coloring models
incompatibilities, 296, 305, 306
k-PACK-PREC problem, 305, 307
precedences, 305, 306
tabu search, 307–309
variable neighborhood search, 308–310

Graphical user interface (GUI), 108, 181–182
Greatest common divisor (GCD), 217–218
GSS. See Generating set search (GSS)
GUI. See Graphical user interface (GUI)
Guillotine cutting technology, 120, 121,

153–154

H
Hazardous containers

bay assignment procedure, 10–11
containership layout, 6–7
cross stability constraint, 12
destination constraints, 10
IMDG Code, 4–5, 8, 12
segregation principles, 5, 8–10
segregation table, 5, 6
stability constraints, 10
3D-BPP algorithm, 7, 8, 10

Heterogeneous datacenters. See Extensible
resource managers

Heuristic algorithm
abstract configuration, 159, 161
BLBF, 50
CPLEX (see CPLEX optimization strategy)
flowchart, 159–160
incremental phase, 159–161
main phase, 159–161
non-standard packing, 81–84
relative position, 159
SSP, 245

HOPSPACK, 237, 239
Hybrid genetic algorithm, 299–301

I
ILP. See Integer linear program (ILP)
IMDG Code. See International Maritime

Dangerous Goods (IMDG) Code
IMO. See International Maritime Organization

(IMO)
Integer-feasibility condition, 73–75
Integer linear program (ILP), 128–129
Integer programming models

compact formulation, 192

LP-relaxation, 193
non-identical objects, 189
nonnegative multipliers, 192–193
non-overlapping constraints, 190–191

Interference checking algorithm, 44–45
International Convention for the Prevention of

Pollution from Ships (MARPOL), 4
International Maritime Dangerous Goods

(IMDG) Code
classification/classes, 4–5
segregation principles, 5, 6
segregation table, 5, 6

International Maritime Organization (IMO)
CSC, 3–4
IMDG Code, 4–5
MARPOL, 4
SOLAS, 4

International Space Station (ISS), 88–90,
110–111, 116

Item accommodation (IA), 104–105
Item-rack correlation (IRC), 106–107
Iterative model, 250–252

K
Knapsack problem (KP), 106, 120–126, 144

L
LED street lights

cornerstones, 177
covering problems, 176, 184
energy consumption, 176
global optimization, 179–181
GUI, 181–182
light pattern computation, 177–179
linear regression, 184
parallelization effect, 183, 184
public lighting, 176
running time comparison, 183
test case analysis, 182

Light pattern computation
algorithm, 177, 178
deployment and symmetries, 179
illumination, 178, 179

Line segment uncertainty regions, 235–236
Load balancing, 3, 25
Local Optimization with Feasible Region

Transformation (LOFRT), 276, 277
Local search method, 297, 299, 304, 308, 309
LOFRT. See Local Optimization with Feasible

Region Transformation (LOFRT)
LP-relaxation model, 73–75, 82, 83, 162, 193,

195, 196, 200
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Master bay plan problem (MBPP)

hazardous containers (see Stowage
planning problem)

loading decisions, 2
NP-hard, 2
operational efficiency, 2
vs. 3D-BPP algorithm, 3, 6–7

MDMOP packing problem. See
Multidisciplinary MOP (MDMOP)
packing problem

Metaheuristics
definition, 297
factors, 315
incompatibility costs

adaptive memory method, 313–314
problem variations, 314–315
tabu search, 311–313

local search method, 297
number of containers

COL, 298
GH and AmaCol, 301
hybrid genetic algorithm, 299–301
k-PACK problem, 298
tabu algorithm, 299

number of loaded items
ant colony algorithm, 303–305
k-PACK problem, 301–302
tabu search, 302–303

population based methods, 297
MILP. See Mixed integer linear programming

(MILP)
MINLP. See Mixed integer nonlinear

programming (MINLP)
MIP. See Mixed-integer programming (MIP)
Mixed integer linear programming (MILP)

CAST, 105–106
CLP (see CPLEX optimization strategy)
noncompact packing

domain conditions, 71
grid-based-position, 76–78
heuristic approach, 83
integer-feasibility condition, 73–75
LP-relaxation model, 73–75
non-intersection conditions, 71–72
objective function, 72–75
orthogonality conditions, 71
tetris-like items, 78–80

Mixed integer nonlinear programming
(MINLP), 69, 75–76, 84

Mixed-integer programming (MIP), 246, 250,
259–260, 262

MOP. See Multiobjective optimization problem
(MOP)

Multi-dimensional packing. See General-
purpose integer linear programming
solvers

Multidisciplinary MOP (MDMOP) packing
problem, 58–59, 62

Multiobjective decomposition algorithm
(MODA), 62

Multiobjective optimization problem (MOP)
functional constraints, 54
interference constraints, 54
Pareto-optimal solutions, 40
SOP, 39, 45

N
Nicholson principle, 126, 133–136, 148, 149,

151
NLP. See Nonlinear programming (NLP)
Noncompact packing problem

configuration design optimization, 61
distributed design process, 58–60
MODA analysis, 62
morphing components, 56–58
Pareto-optimal solutions, 40
SQP algorithm, 61–62
underhood packing model, 53–54
vehicle dynamic model, 54–56

Nonlinear programming (NLP), 188, 277
Non-standard packing problem

heuristic method
hole-filling module, 82–83
initialization phase, 82–83
item-exchange module, 81–83
packing module, 82–83

MILP
domain conditions, 71
grid-based-position, 76–78
integer-feasibility condition, 73–75
LP-relaxation model, 73–75
non-intersection conditions, 71–72
objective function, 72–75
orthogonality conditions, 71
tetris-like items, 78–80

MINLP, 75–76

O
Off-centered balancing, 170–172
1D cutting problem

definite length
allocation condition, 126–128
integer linear program, 128–129
Nicholson principle, 133–136
set of allocation points, 129–133
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Off-centered balancing (cont.)
variable length

B&B algorithm, 143–144
FDP Algorithm, 144–145
formulation, 136–137
mixed-integer optimization, 137–138
optimal value function, 138–141
single piece packing, 141–143

Optical 3D-object packing problem
computational time dependence, 289, 291
local optimization, 283–285, 288–290
number and types, 289, 291
placement parameters, 288, 289
starting point algorithm, 282–283
types and sizes, 288, 289

Optimal ellipse packing problem, 276–277
computational analysis, 285–288
local optimization algorithm, 279–281
starting point algorithm, 278–279

Orthogonal orientation
bags, 98
compact packing problem, 46–47
conditions, 70, 77, 105
constraints, 75, 105
free-form objects, 47
prismatic objects, 46
small items, 98
tetris-like items, 68–69, 76

P
Packing problems

automotive design (see Free-form packing)
circular object, 189

CPU time, 194–196
formulations, 194
LP-relaxations, 195–196
non-overlapping constraints, 197
octagons, 197, 198
tube industry, 196–197

integer programming models
compact formulation, 192
linear non-overlapping constraints,

190–191
LP-relaxation, 193
non-identical objects, 189
nonnegative multipliers, 192–193

irregular shapes, 188
large-scale integer optimization, 203
L-shaped objects

binary variables, 198–199
block diagram, 198
nesting, 201, 202

optimal packings, 202, 203
outcomes, 200
valid inequalities, 200
without nesting, 201

NLP solvers, 188
non-overlapping, 188
regular shapes, 188
shots, 188

Pareto solutions, 40, 57, 59, 62
Population based methods, 297
Post processing algorithm, 254–255, 260, 261
Precedence constraints

components, 214–217
incompatibilities, 305, 306
k-PACK-PREC problem, 305, 307
precedences, 305, 306
scheduling, 209
tabu search, 307–309
variable neighborhood search,

308–310
Preprocessing assessment, 105–106
Pressurized cargo accommodation

bags (see Bag-based accommodation)
cargo items, 94
layout, 91
mass distribution, 109–110
rack (see Rack-based accommodation)

Q
Quasi-phi-functions

circular segments, 270–271
continuous rotations, 266
convex polygons, 269–270
ellipses, 271–273
mathematical model, 266, 274–276
optical 3D-object packing problem

computational time dependence, 289,
291

local optimal packing, 288–290
local optimization algorithm, 283–285
number and types, 289, 291
placement parameters, 288, 289
starting point algorithm, 282–283
types and sizes, 288, 289

optimal ellipse packing problem, 276–277
computational analysis, 285–288
local optimization algorithm, 279–281
starting point algorithm, 278–279

properties, 267–269
spherocone, 273–274
2D- and 3D-objects, 266, 267
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cargo loading, 109, 111
classification, 93–94
Columbus module, 112
configuration, 92–93, 107
locations, 92–93
static balancing, 101–102

Reconfiguration scheduling problem, 26–27
Reduced set of potential allocation points, 121,

125, 148, 149, 151, 154
Relative position, 82, 159
Resource managers

configurable
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elasticity, 21
reactivity, 21
repair, 21
structural changes, 21

extensible
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infrastructure, 22
user requirements, 22–23
workload, 22

Robust design, circle covering. See Circle
covering

S
Segregation principle, 5, 8–10
Sequential quadratic programming (SQP),

61–62
Service level agreement (SLA), 22, 25
Set of potential allocation points

BDP and FDP algorithm, 124, 125
normalized pattern, 123
1D cutting problem, 129–133
optimal value function, 123–126
reduced allocation points, 125–126
2D cutting problem, 146–153

Shortest processing time (SPT), 254, 257
Single machine scheduling (SMS), 245, 248,

254
Single-objective optimization (SOP). See

Compact packing problem (CPP)
SLA. See Service level agreement (SLA)
SMS. See Single machine scheduling (SMS)
SOLAS Convention, 4
Space-indexed model, 76, 207, 221
Spatial scheduling problem (SSP)

batch-scheduling
applications and approaches, 247
batch sequence, 248
efficient area model, 252–254

iterative model, 251–252
post processing algorithm, 254–255
processing time, 248–250
SMS, 248
SPT rule, 254

computational analysis, 259–261
job layout, 244
meta heuristic algorithm, 245
MIP formulation, 246
NP Hard, 247
performance analysis, 255–258

SPT. See Shortest processing time (SPT)
SQP. See Sequential quadratic programming

(SQP)
SSP. See Spatial scheduling problem (SSP)
Starboard end cone, 112–113
Static balancing, 99, 101–102
Steady-state genetic algorithms, 49
Stowage planning problem

bay assignment procedure, 10–11
containership layout, 6–7
cross stability constraint, 12
destination constraints, 10
segregation principles, 5, 8–10
segregation table, 5, 6
stability constraints, 10
3D-BPP algorithm, 7, 8, 10

Surface voxelization, 43

T
Tabu search

incompatibility costs, 311–313
number of containers, 299
number of loaded items, 302–303
precedence constraints, 307–309

Target configuration
load balancing, 25
SLA protection, 25
workload consolidation, 24–25

Tessellation, 42
Three-dimensional bin packing problem

(3D-BPP), 3, 6–8, 10, 12, 14–15
Three Dimensional Cutting and Packing Data

Sets - THPACK 1-7 BR, 167–168
3D Pigeon hole problem, 212, 218–219
2D cutting problems

description and formulation, 146, 150–151
sets of allocation points

allocation areas, 151–153
defective parts, 147–151
null defects, 146–147

two-stage guillotine cutting, 153–154
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U
Underhood packing problem, 53–54, 57–58
Unpressurized cargo accommodation

fluid load capability, 92
layout, 91
mass distribution, 109
tank characteristics, 95
tank position, 92

V
Van Loading Problem (VLP), 209
Variable neighborhood search, 306, 308–310
Virtual machine (VM) reassignment problem

reconfiguration scheduling, 26–27

reconfiguration scores
action durations, 26
local changes, 25
migration numbers, 25

scenario description, 24
target configuration (see Target

configuration)
Voxelization

methodology, 43
surface, 43
volume, 43–44

W
Workload consolidation policy, 24–25
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