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    Chapter 4   
 The Sperm Epigenome, Male Aging, 
and Potential Effects on the Embryo 

             Timothy     G.     Jenkins     ,     Kenneth     I.     Aston     ,     Tyson     Meyer    , and     Douglas     T.     Carrell     

    Abstract     The effect of paternal aging on fertility, embryo quality, and offspring 
health is an important area of study that has received far less attention than the age 
effect in women. This is, in part, due to the fact that in females there are dramatic 
alterations to fertility and pregnancy outcomes that abruptly occur as a female ages. 
Such abrupt alterations to pregnancy success and/or embryonic and offspring health 
are not seen in males. Instead, there are subtle alterations to pregnancy success and 
offspring phenotypes that occur as a man ages. It is believed that, at least in part, 
these alterations can be explained by perturbations to the sperm epigenome that 
occur over time. This chapter will explore the effect of aging on the sperm epig-
enome and the potential impacts these perturbations may have on embryonic devel-
opment and ultimately offspring health.  
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4.1         Introduction 

 The human sperm is a highly specialized cell, elegantly equipped with the minimum 
necessary to deliver a haploid genome through the female reproductive tract to the 
oocyte. Upon fusion with the oolemma, the sperm deposits not only half of the 
genetic material into the oocyte but also initiates signal transduction cascades 
responsible for completion of meiosis in the egg and the initiation of embryogene-
sis. The role of the sperm in delivering DNA and activating the oocyte has long been 
appreciated. In addition, a growing body of data indicates that the epigenetic, as 
well as the genetic, landscape of the sperm has direct effects on embryogenesis and 
offspring phenotypes and that paternal epigenetic contributions can, in some cases, 
confer transgenerational effects (Milekic et al.  2014 ; Govorko et al.  2012 ; Carone 
et al.  2010 ; Hammoud et al.  2009 ). 

 A variety of natural and extraneous infl uences can impact the sperm epigenome 
with potential downstream consequences (Guerrero-Bosagna et al.  2012 ; Hare and 
Moran  1979 ; Hemminki et al.  1999 ; Marczylo et al.  2012 ). This chapter will focus 
on the effects of male age on sperm epigenetics. Age has been shown to consistently 
and predictably affect the epigenetic profi les of numerous cell types (Richardson 
 2003 ; Christensen et al.  2009 ; Day et al.  2013 ). Remarkably, the age-induced epi-
genetic changes observed in sperm appear to be greater in magnitude and often 
more consistent than changes reported in other cell types (Jenkins et al.  2013 ). 
While much remains to be learned about the epigenetic contributions of the sperm 
to the early embryo, a growing body of evidence suggests that some alterations in 
the sperm epigenome escape the early waves of epigenetic reprogramming. These 
changes may explain some of the increased risks of certain diseases that are observed 
more frequently in the offspring of older fathers (Hemminki et al.  1999 ; Frans et al. 
 2008 ,  2013 ).  

4.2     The Sperm Epigenome 

 The sperm is morphologically and functionally distinct from any other cell type. 
Perhaps the greatest distinction between the sperm cell and other cell types is the 
nuclear structure. While the DNA of somatic cells is packaged around histones, 
the majority of sperm histones are displaced in a two-step process during sper-
miogenesis, fi rst by transition proteins, which are subsequently replaced by 
protamines 1 and 2 (P1 and P2) to form a tight toroidal structure that compresses 
the nucleus 6–20 times tighter than the somatic cell nucleus (Fig.  4.1 ) (Balhorn 
 2007 ; Ward and Coffey  1991 ). In normal fertile men, the ratio of P1:P2 is 
approximately 1:1. Importantly, infertile men often display an altered P1:P2 
ratio, and deviations from the normal ratio are associated with abnormal semen 
parameters, increased DNA damage, and reduced fertilization and implantation 
rates (Aoki et al.  2005 ,  2006 ).  
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 These observations were the fi rst to suggest that the epigenetic status of sperm 
might be important for early development. While the mature sperm nucleus is com-
prised primarily of protamine-bound DNA, about 5 % of the DNA remains bound to 
histones (Hammoud et al.  2009 ). Until recently, it was unclear whether the persistent 
histones were the result of incomplete histone replacement or whether they served a 
functional purpose. Several years ago, our lab demonstrated that histones are consis-
tently retained at specifi c loci including developmental gene promoters, genes encod-
ing microRNAs, and imprinted loci. In addition, it was found that the retained histones 
often display bivalency, the presence of both activating and silencing modifi cations 
within the same region, which is reminiscent of stem cell signatures (Hammoud et al. 
 2009 ). These fi ndings suggest that the epigenetic status of sperm is tightly regulated 
and likely mechanistically important for embryogenesis and early development. 
Following fertilization, the sperm nucleus undergoes decondensation and pronuclear 
development, and the protamines are replaced by oocyte- derived histones. During 
this process, the majority of DNA methylation marks are removed to restore totipo-
tency to the sperm and oocyte genomes (Fig.  4.1 ), which clearly raises questions 
regarding the importance of pre-fertilization epigenetic marks; however, two impor-

  Fig. 4.1    Illustration of epigenetic structure in the mature sperm and the dramatic organization that 
occurs in the early embryo immediately following fertilization. The  top panel  shows the protamine- 
bound mature sperm, undergoing chromatin decondensation marked by the removal of protamine 
proteins. The  bottom panel  shows the active demethylation that occurs in the paternal pronucleus, 
as well as the passive, replication-dependent demethylation that occurs in the maternal pronucleus       
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tant considerations are warranted. First, the identity of unmodifi ed loci remains uncer-
tain, raising the possibility that key sperm loci remain unchanged and functionally 
important during embryogenesis. Second, data suggest that epigenetic abnormalities 
in male gametes may affect embryo development, and there is evidence to suggest 
that these abnormalities can affect offspring phenotype. Even less data are available 
on the impacts of age-associated sperm epigenetic alterations and their impacts on the 
embryo. Despite this, there are many indications that age-associated epigenetic altera-
tions may play a role in both embryogenesis and offspring health.  

4.3     Delayed Parenthood 

 Advanced paternal age has recently become a heavily investigated topic as a result 
of multiple studies demonstrating ties between advanced paternal age and various 
offspring abnormalities. Additional trends contributing to the increasing interest in 
the role of advanced paternal age in reproduction is the trend in delayed parentage 
(Mills et al.  2011 ). Though this trend is justifi ed by increasing life expectancies in 
both sexes, advanced paternal age may affect general semen parameters and sperm 
quality ultimately altering fecundity and offspring health. While many couples con-
sider the risks associated with advanced maternal age in family planning decisions, 
very little thought has been given to the age of male partners. In recent history, 
paternal age has steadily increased, particularly in developed countries. This trend 
is believed to be associated with increased life expectancy, socioeconomic pres-
sures, and divorce rates with subsequent remarriage at older ages (Kuhnert and 
Nieschlag  2004 ). During a 10-year span (1993–2003) in Great Britain, the percent 
of fathers within the age range of 35–54 increased from 25 % of total births to 40 %. 
Associated with this trend was a decrease in the number of births to fathers less than 
35 years of age from 74 % of total births to only 60 % (Bray et al.  2006 ). Over two 
decades in Australia (1988–2008), the average age of fathers has increased by 
approximately 3 years (Australian Bureau of Statistics  2009 ). Similarly, the average 
age of fathers in Germany increased by 2 years over a 10-year period (Kuhnert and 
Nieschlag  2004 ). Congruent trends can be found in the United States and many 
other developed countries. As average paternal age continues to increase, it is 
becoming increasingly important to characterize the potential consequences of 
advanced paternal age on embryonic development and offspring health.  

4.4     Heritability of Epigenetic Alteration Through 
the Paternal Germline 

 Though poorly understood, there is clear evidence that demonstrates a unique 
mechanism of heritability through the paternal germline. This idea initially became 
of great interest to many different scientifi c fi elds as a result of fi ndings from growing 
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catalogs of epidemiologic data coupled with landmark studies in mouse models. 
Specifi cally, data collected during and following massive crop failures in Sweden in 
the late 1800s and early 1900s was used to perform large retrospective studies in 
human populations. From these studies, it was found that paternal diet, independent 
of other factors, contributes to offspring disease susceptibility and general health in 
ways never before identifi ed (Kaati et al.  2007 ; Pembrey et al.  2006 ). Though the 
nature of the data set made it impossible to understand any biological mechanisms 
that underlie these alterations, many believe it plausible that alterations of heritable 
epigenetic marks in gametes play some role in the process. In support of this idea is 
the work on the agouti viable yellow gene in mouse models, which demonstrated 
that nutrition can affect offspring phenotype through heritable altered epigenetic 
marks (Waterland and Jirtle  2003 ). This and other work have stimulated the study 
of transgenerational inheritance as we see it today. 

 Many intriguing studies have come as a result of the increased emphasis on 
transgenerational inheritance in the literature. One recent study found that male 
mice fed a low-protein diet, when mated with a normal female, sire offspring with 
altered expression of many genes important in metabolism and cholesterol synthesis 
(Carone et al.  2010 ). Similarly, metabolic alterations, specifi cally changes in insulin 
sensitivity, were also seen in the female offspring of male rats fed high-fat diets 
(Ng et al.  2010 ). 

 Although no concrete mechanism for inheritance of altered metabolic activity 
has been identifi ed or any other nongenetic inheritance from the male germline, 
there are intriguing candidates including epigenetic inheritance through altered 
sperm DNA methylation. A recent study strongly supports the idea of transgenera-
tional inheritance. Govorko et al. demonstrated that the offspring of male mice 
exposed in utero to alcohol had altered hypothalamic proopiomelanocortin (POMC) 
gene activity as a result of hypermethylation at the POMC promoter and that these 
defi cits were passed down through the F3 generation (Govorko et al.  2012 ). 
Interestingly, although the methylation marks at the POMC promoter were similar 
in the F1 female and male (both exposed to prenatal alcohol), the alterations were 
not inherited via the maternal germline, suggesting a unique mechanism of epigen-
etic inheritance through the paternal germline (Govorko et al.  2012 ). Taken together, 
these data demonstrate the likelihood that the sperm epigenome plays an essential 
role in embryogenesis and is capable of contributing to offspring health.  

4.5     Age-Associated Sperm Epigenetic Alterations 

 An important consideration in the role of paternal aging on embryo quality and 
offspring health is the degree to which the sperm is susceptible to genomic or epig-
enomic perturbation that could lead to embryonic or offspring dysfunction and 
disease. Because of the plastic nature of epigenetic marks in the sperm and the 
potential heritability of any perturbations, sperm epigenetics, in particular DNA 
methylation, has become one of the main candidates on which studies have focused. 
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Only recently has data become available to describe the epigenetic landscape of the 
aged sperm, and these have focused primarily on DNA methylation in both human 
and mouse models. It is informative to describe this in context of somatic cell 
alteration associated with age where it is known that DNA methylation is altered in 
many somatic cell types with age in relatively consistent patterns (Wilson and 
Jones  1983 ; Oakes et al.  2003 ). From the few studies that have been performed, it 
appears that sperm methylation patterns resultant from aging are far different and 
of greater magnitude than what is seen in somatic cells (Jenkins et al.  2013 ,  2014 ). 
In fact, these cells display a virtually opposite profi le of epigenetic change with age 
(Fig.  4.2 ). Although this may appear counterintuitive, it is important to note that 
other genomic alterations, such as telomere length, follow similar trends between 
these two tissue types (Eisenberg  2011 ). Furthermore, the idea that the magnitude 
of methylation alteration is greater in sperm as compared to somatic cells with 
aging is not without precedence. Work in support of this idea demonstrates that 
frequently dividing cells have more striking methylation changes associated with 
age than do cells that divide less frequently. As sperm undergo large amounts of 
division over the lifespan of an individual, it is not surprising that the magnitude of 
epigenetic change is greater in sperm over time than in other human tissues.  

 Two recent studies on human sperm from anonymous donors have revealed dis-
tinct patterns of methylation alteration with age (Jenkins et al.  2013 ,  2014 ). These 
studies utilized sperm donors who collected two samples many years apart (between 
10 and 20 years approximately). This allowed the authors to analyze paired data to 
determine the intraindividual impact of aging on the sperm methylome. It was dis-
covered that there is an increase in the global level of methylation in human sperm, 

  Fig. 4.2    General tissue-specifi c age-associated alterations that occur in sperm and other somatic 
tissues. Sperm tend to have slight increases in global methylation with age, while regionally there 
is a bias toward methylation loss. In somatic cells the opposite is true, as global methylation 
decreases and regional methylation increases with age       

 

T.G. Jenkins et al.



87

a surprising fi nding based on the baseline hypermethylation in the mature sperm 
and the contrasting global hypomethylation that occurs with age in somatic cells 
(Jenkins et al.  2013 ,  2014 ). A number of regional alterations (approximately 
1,000 bps in length) were also signifi cantly altered with age and displayed a strong 
bias toward demethylation. This fi nding is, again, in opposition to what has been 
described in somatic cells where there is a bias toward regional hypermethylation 
(Jenkins et al.  2014 ). Alterations at these sites were confi rmed with the use of tar-
geted bisulfi te sequencing in an independent cohort of unpaired general population 
sperm samples. These fi ndings were remarkably consistent at the identifi ed regions 
of alteration (Fig.  4.3 ). Intriguingly, it appeared that the age-associated regional 
alterations identifi ed were enriched at genes known to be associated with neuropsy-
chiatric disease. Similar results were identifi ed in mice where regional hypomethyl-
ation was common in the sperm of aged mice though no global changes were 
identifi ed (Milekic et al.  2014 ). Interestingly, all offspring of older males had simi-
lar alterations to methylation patterns in brain tissue coupled with alterations in 
social behaviors. Taken together, age-associated methylation perturbations repre-
sent a plausible mechanism by which the increased incidence of disease in the off-
spring of older fathers may be transmitted.   

  Fig. 4.3    An example of sperm-specifi c regional methylation. At this relatively small genomic win-
dow (approximate 250 bps), there is a signifi cant decrease in fraction methylation ( y  axis) at each 
CpG ( x  axis) that occurs within men over 50 ( n  = 9) when compared to men under 40 ( n  = 12). These 
data represent an example of one of many loci signifi cantly affected by age in (Jenkins et al.  2014 )       
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4.6     Embryo Quality, Pregnancy Outcomes, 
and Offspring Health 

 The effects of paternal age on pregnancy outcome and embryo quality are contro-
versial. This controversy is mainly a result of the scant data available on the subject. 
Some reports suggest that there is a signifi cant decline in fertility (as measured by 
time to pregnancy) with age, while others report no such associations (Hassan and 
Killick  2003 ; Begueria et al.  2014 ). Additional data does suggest that paternal age 
is a signifi cant factor when compounded with maternal age (de la Rochebrochard 
and Thonneau  2002 ). Other studies support these data by suggesting an increased 
frequency of fetal loss, increased time to pregnancy, and decreased probability of 
conception in older men (Selvin and Garfi nkel  1976 ; Ford et al.  2000 ; Dunson et al. 
 2002 ). However, there are confl icting data which suggest little to no effect of pater-
nal age on fertility in natural conception or with the use of assisted reproductive 
technologies (ART) (Begueria et al.  2014 ; Olsen  1990 ; Bellver et al.  2008 ). Similar 
controversy exists in the effect of paternal age on embryo quality with the use of 
ART with some studies showing no effect (Bellver et al.  2008 ; Ferreira et al.  2010 ) 
and some suggesting decreased quality of embryos sired by older fathers on day 3, 
4, and 5 (Luna et al.  2009 ; Frattarelli et al.  2008 ). The most compelling indication 
that paternal age may affect embryo quality is data on miscarriage. In general, the 
consensus from the available data is that advanced paternal age is a risk factor for 
miscarriage though no real mechanisms for this fi nding have been elucidated 
(Kleinhaus et al.  2006 ; Slama et al.  2005 ). Other studies evaluating ART with donor 
eggs (to completely remove the infl uence of maternal factors) found no associations 
between paternal age and risk of miscarriage (Begueria et al.  2014 ). Taken together, 
much work remains to determine what, if any, effect advanced paternal age has on 
male fertility and embryo quality. 

 The subtlety of the effect of age on male fertility, and particularly pregnancy out-
comes, is in striking contrast to the dramatic decline seen in female fertility. In fact, 
even men of advanced age are able to sire offspring with little diffi culty, though 
possibly with slightly reduced effi ciency which is why paternal age has largely been 
ignored and has received far less attention in the clinical setting than the age of the 
female partner. The fact that males are still fertile at advanced ages may present, and 
potentially complicate, another issue that, while subtle, is far more consistent, 
namely, the effect of paternal age on offspring health and disease susceptibility. 
It has been shown that the offspring of older fathers have increased incidence of 
various forms of cancer, including hematological and central nervous system tumors 
(Hemminki et al.  1999 ; Oksuzyan et al.  2012 ; Murray et al.  2002 ; Yip et al.  2006 ), 
though the data remains somewhat controversial. Furthermore, it has long been sug-
gested that advanced paternal age is a risk factor for schizophrenia (Hare and Moran 
 1979 ; Miller et al.  2011 ; Matheson et al.  2011 ; Wohl and Gorwood  2007 ). More 
recently, it has been suggested that advanced paternal age is signifi cantly associated 
with many forms of neuropsychiatric or neurocognitive diseases including autism 
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spectrum disorders (ASD) (Gardener et al.  2009 ; Hultman et al.  2011 ), bipolar dis-
order (Frans et al.  2008 ; Menezes et al.  2010 ), and general increases in behavioral 
issues (Kuja-Halkola et al.  2012 ; Saha et al.  2009a ) in children of older fathers 
though some controversy exists. In addition, some studies indicate that children of 
older fathers display slightly reduced IQ compared with children of younger fathers 
(Malaspina et al.  2005 ; Saha et al.  2009b ), although the differences are small, and 
confl icting reports exist (Svensson et al.  2011 ). 

 Taken together, it is clear that advanced paternal age does not have a dramatic 
affect on pregnancy outcomes, embryo quality, or fertility in general, but it may 
impact offspring health and disease susceptibility. While the lack of striking age- 
associated fertility declines in males has garnered it little attention in the study of 
fertility, it is this same maintenance of fertility that might require more study in the 
fi eld of transgenerational inheritance. Age-associated alterations to sperm, which 
appear to affect offspring health, do not seem to be catastrophic to spermatogenesis 
or cause declines in fertility. This, in turn, means that aged sperm are entirely com-
petent to fertilize an oocyte and produce viable offspring, while harboring altera-
tions that may potentially affect offspring health.  

4.7     Future Directions 

 To gain a more complete understanding of the epigenetic alterations in sperm that 
are capable of embryonic or offspring phenotype alterations, much work is still 
needed. A number of genomic regions have been identifi ed that have both methyla-
tion alterations with age and are important in various cell processes and diseases 
known to have increased occurrence in the offspring of older males. To determine if 
these marks can contribute to disease susceptibility in the offspring or affect events 
in the embryo, a number of unanswered questions must be addressed. 

  What is the impact of altered methylation profi les at our regions of interest ? To 
completely understand the alterations which have been identifi ed and their impact 
on offspring phenotype or embryo development, it must be determined if these 
alterations are associated with transcriptional changes. Future work can target 
genomic sites that are known to be altered with age in mouse models to determine 
if (1) there are changes to transcription in the embryo and (2) determine if there are 
altered transcript levels in various tissues in the offspring (should the sperm be 
competent to generate viable offspring). 

  Do the altered methylation marks seen in sperm escape, or impact in any way, 
embryonic epigenetic reprogramming ? This is an essential question to fully under-
stand the impact of an altered epigenetic profi le. It is feasible that an alteration could 
affect embryogenesis in one of two ways. First, it could directly affect transcription 
of an important developmental factor. Second, the epigenetic abnormality may 
result in not a targeted perturbation but in the global alteration of epigenetic repro-
gramming, effectively altering an important aspect of embryogenesis, likely to the 
point of embryonic arrest. 
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  Do methylation perturbations contribute to neuropsychiatric disorders in the 
offspring or perturbations to embryogenesis ? To date, there are many intriguing 
studies that have provided some small degree of insight into the effect of aging on 
the sperm epigenome. However, much of the potential impacts are simply extrapo-
lation of the available data without any real targeted studies to prove causative 
relationships. While the data is exciting, future targeted work is still required to 
enable us to reach these further conclusions.  

4.8     Conclusions 

 The role of the paternal epigenome in embryogenesis should not be downplayed. 
It appears from a growing body of evidence that the sperm epigenetic landscape is 
essential in facilitating gene poising and general transcription regulation at genes 
important in embryonic development (Hammoud et al.  2009 ). However, with our 
current understanding, we are unable to defi nitively determine that sperm epigene-
tic alterations associated with age are causative of any poor pregnancy outcomes or 
decreased embryo quality declines. In fact, the aged male remains remarkably fer-
tile with, at most, only modest declines in fecundity. When we consider this fact 
coupled with the data regarding known and consistent age-associated alterations to 
the paternal epigenome, it is easy to contemplate the implications of these altera-
tions beyond embryogenesis. Specifi cally, a great deal of focus has now been given 
to the increased incidence of diseases seen in the offspring of older fathers and the 
transgenerational impacts that they impose. This is of particular concern in devel-
oped countries where the age of paternity is steadily increasing. While the questions 
regarding paternal age and epigenetic alterations that may affect embryogenesis are 
essential and must be addressed further, the impact of these alterations on the off-
spring appears to be a more relevant question due to the fact that the alterations 
identifi ed with aging do not appear to affect (at least in a great degree) the compe-
tency of sperm to yield viable offspring. 

 Many important questions must still be addressed in regard to the epigenetic 
fi ndings associated with advanced paternal age. While we know that there are real 
alterations that occur with remarkable consistency, the impact of these alterations is 
unknown. Mouse data suggesting similar methylation patterns in the brain of off-
spring sired by older fathers is intriguing (particularly when coupled with the identi-
fi ed behavioral abnormalities), but this also requires a great degree of further study. 
We currently have a great deal of genomic targets that are known to be altered in the 
sperm of men with advanced age, and these can be used to analyze potential impli-
cations in the embryo and the offspring. Taken together, while having learned much 
about the impacts of advanced age in the recent past, there is still a great deal of 
work that needs to be performed to truly elucidate the impact of age-associated 
sperm epigenetic alterations on the embryo and beyond.     
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