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1 Introduction

The very rapidly increasing number of cores in state-of-the-art supercomputers
fuels both the need for and the interest in novel numerical algorithms inherently
designed to feature concurrency. In addition to the mature field of space-parallel
approaches (e.g. domain decomposition techniques), time-parallel methods that
allow concurrency along the temporal dimension are now an increasingly active field
of research, although first ideas, like in [12], go back several decades. A prominent
and widely studied algorithm in this area is Parareal, introduced in [10], which has
the advantage that one can couple and reuse classical time-stepping schemes in an
iterative fashion to parallelize in time. However, there also exist a number of other
approaches, e.g. the “parallel implicit time algorithm” (PITA) from [5], the “parallel
full approximation scheme in space and time” (PFASST) from [4] or “revisionist
integral deferred corrections” (RIDC) from [3] to name a few. Parareal in particular
and temporal parallelism in general has been considered early as an addition to
spatial parallelism in order to extend strong scaling limits, see [11]. Efficacy of this
approach in large-scale parallel simulations on hundreds of thousands of cores has
been demonstrated for the PFASST algorithm in [14].
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For Parareal, multiple works exist that demonstrate its efficiency for diffusion
problems: Gander and Vandewalle [9] prove super-linear convergence of Parareal
for the standard 1D heat equation. A more general theorem showing super-linear
convergence for nonlinear ODEs is proven by Gander and Hairer [7], while [2]
presents a convergence theorem for linear parabolic PDEs with constant coefficients.
The present paper investigates the effect of space- and time-dependent coefficients
in the two-dimensional heat equation on the convergence of Parareal. This is done
by means of numerical examples, including one that shows how convergence of
Parareal can be estimated by the maximum singular value of a Parareal iteration
matrix.

2 Parareal

To match the numerical examples in Sect. 3, the presentation of Parareal given here
starts with an initial value problem

Myt.t/ D f .y.t/; t/; y.0/ D b 2 R
d; t 2 Œ0; T�; (1)

with a mass matrix M and right-hand side f arising from a finite element discretiza-
tion of a partial differential equation. Let .tn/N

nD0 with t0 D 0 and tN D T be a
decomposition of Œ0; T� into N so-called time-slices Œtn; tnC1� which, for the sake
of simplicity, are assumed to be of equal length here. Furthermore, let yn be an
approximation to the solution at tn, that is yn � y.tn/.

Denote by F a “fine”, computationally expensive and accurate integration
method with a time step ıt (e.g. a higher-order Runge-Kutta method) and by G a
“coarse”, computationally cheap and probably inaccurate method with a time step
�t � ıt (e.g. implicit Euler). Assume here that the constant length of the time-
slices is a multiple of both ıt and �t, so that the fine as well as the coarse method
can integrate over one time-slice using a fixed integer number of time-steps. Denote
the result of integrating over the slice Œtn; tnC1�, starting from an initial value y at
tn, using the fine or coarse method as F.y; tnC1; tn/ and G.y; tnC1; tn/ respectively.
Serial integration using the fine method would then correspond to computing

ynC1 D F.yn; tnC1; tn/; n D 0; : : : ; N � 1; (2)

step-by-step with y0 WD b. Instead, Parareal computes the iteration given by

ykC1
nC1 D G.ykC1

n ; tnC1; tn/ C F.yk
n; tnC1; tn/ � G.yk

n; tnC1; tn/ (3)

where the evaluation of the fine method over the N time-slices can be distributed
over N processors (see [10] for details). The iteration converges to the serial fine
solution as k ! N. Speedup can be achieved if G is sufficiently cheap compared to
F and if the iteration converges in K � N iterations. Therefore, rapid convergence
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is critical for Parareal to be efficient. In the examples below, the defect

dk WD max
iD0;:::;N

�
�yi � yk

i

�
�1 (4)

between the solution provided by the Parareal iteration (3) after k iterations and the
serial fine solution (2) is used to measure convergence.

3 Heat Equation with Non-constant Coefficients

The test problem used here to study the convergence of Parareal for non-constant
coefficients is the two-dimensional heat equation

ut.x; y; t/ D �.t/r � .a.x; y/ru.x; y; t// (5)

on a square ˝ D Œ0; 1�2. The initial values are given by

u0.x; y/ D exp
�� �

.x � 0:5/2 C .y � 0:5/2
�

=�2
�

; � D 0:35; (6)

and the problem is run until T D 4:0. The interval Œ0; T� is divided into N D 40

time-slices and an implicit Euler method with �t D 1=100 is used for G and a third
order RadauIIA(3) method with ıt D 1=200 for F . The spatial domain ˝ is divided
into three “strips”

˝1 D Œ0; x0/ � Œ0; 1�; (7)

˝2 D Œx0; x0 C w/ � Œ0; 1�; (8)

˝3 D Œx0 C w; 1� � Œ0; 1�; (9)

and a different constant value for a is prescribed on every strip, that is

a.x; y/ D
8

<

:

a1 W .x; y/ 2 ˝1

a2 W .x; y/ 2 ˝2

a3 W .x; y/ 2 ˝3:

(10)

Furthermore, the effect of varying the width w of the middle strip ˝2 is investigated.
Conforming triangle meshes aligned with the strips ˝i are generated for values
of w 2 f0:2; 0:1; 0:05; 0:02g. Then, for every value of w, a number of uniform
refinement steps is performed in order to produce meshes of comparable mesh
width. After refinement, the minimum element sizes for the different values of
w range from hmin D 0:01 to hmin D 0:005 and the maximum element sizes
from hmax D 0:02 to hmax D 0:035, so that the resolutions are comparable. All
experiments reported below use linear finite elements, but preliminary tests not
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Fig. 1 Defect dk between Parareal and the serial fine solution versus the iteration number k
depending on the magnitude of the jump in the diffusion coefficient from ˝1, ˝3 to ˝2

documented here suggest that the results are not significantly affected by the use
of higher-order FEM. Homogeneous Dirichlet boundary conditions are employed.
Simulations are run with a1 D a3 D 0:01 fixed and a2 2 f0:01; 1:0; 100g, resulting
in ratios �a D a2=a3 D a2=a1 2 f1; 100; 10000g.

3.1 Space-Dependent Coefficients

First, set � � 1 in order to study only the effect of spatially varying coefficients.
Figure 1 shows the resulting convergence of Parareal for the different values of �a
and w D 0:2 (left) and w D 0:02 (right). Convergence in the cases with jumping
coefficients is slightly slower, but the effect is very small. Also, the reduction in
convergence speed seems to be rather independent of the magnitude of the jump in
the diffusion coefficient: In both plots, the lines for �a D 100 and �a D 10;000

are more or less indistinguishable.
Convergence of Parareal is utterly oblivious to the width w of the middle strip ˝2:

When plotting the defects for fixed �a and different values of w, the resulting data
points all essentially coincide so that the corresponding plots are rather uninteresting
and are therefore omitted.

3.2 Space- and Time-Dependent Coefficients

To investigate the effect of a time-dependent diffusion coefficient on the conver-
gence of Parareal, fix the strip width to w D 0:2 and the coefficient jump to
�a D 100. Furthermore, use the following three different profiles for the time-
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Fig. 2 Defect dk of Parareal versus the iteration number k for different time-dependent �-profiles
with �a D 100, ˛ D 1 (left) and ˛ D 10 (right)

dependent diffusion coefficient �:

�.t/ D 1 (“constant”); (11)

�.t/ D 1

2

�

1 C cos
�

˛
�

2
t
��

(“cosine”); (12)

�.t/ D 1

2
.1 C erf.˛.t � 2/// (“erf”): (13)

Initial value and boundary conditions are set as described above. Two sets of
simulations are performed, one with ˛ D 1 corresponding to a very slowly changing
� and one with ˛ D 10 corresponding to a more rapid change. The resulting
convergence of Parareal is shown in Fig. 2. In both cases, the slow as well as the fast
varying one, Parareal’s convergence is only marginally affected by the space- and
time-dependent diffusion coefficients. The resulting defects are slightly larger than
for the reference case and the difference is a little more pronounced for ˛ D 10,
but the overall effect is not drastic: In the fast varying case with the error function
profile (13), Parareal requires only a single additional iteration compared to the
constant reference in order to reach the same defect level.

3.3 Error Bound from Singular Values

Parareal can be considered as a fixed point iteration, see e.g. [1] or [6] for more
detailed explanations. For � � 1 and the linear problem considered here, the action
of the propagators F and G can be expressed as multiplication by matrices G or F.
Then, running the fine or coarse method over all N time-slices can be expressed as



376 D. Ruprecht et al.

inversion of size Nd � Nd matrices

Mf D

2

6
6
6
4

I : : :

�F I
: : :

: : :

�F I

3

7
7
7
5

; Mg D

2

6
6
6
4

I : : :

�G I
: : :

: : :

�G I

3

7
7
7
5

; (14)

so that computing the fine solution through (2) corresponds to a block-wise solution
of Mfy D b with y D .y0; : : : ; yN/T and b D .b; 0; : : : ; 0/T. The Parareal
iteration (3) can then be written as the preconditioned fixed point iteration

MgykC1 D �

Mg � Mf
�

yk C b; (15)

where inverting Mg corresponds to running the coarse method. A straightforward
computation shows that the iteration matrix I � M�1

g Mf is nilpotent and thus that its
spectral radius is zero, corresponding to the well-known fact that Parareal always
converges to the fine solution after N iterations, see e.g. [9] (although Parareal
won’t provide any speedup in this case). A bound for the convergence rate can
be obtained by computing the maximum singular value instead. In order to keep
the size of the iteration matrix manageable, the example studied here uses only
the w D 0:2 geometry with a coarser grid with hmin D 0:04, hmax D 0:068

and only N D 20 time-slices. The maximum singular values of the iteration
matrix are computed with Matlab’s SVDS function and are �max � 0:162 for
�a D 1 and �max � 0:163 for �a D 10;000: The minimal difference gives
an additional indication that the coefficient jump should not influence Parareal’s
convergence. Figure 3 shows the convergence rates of Parareal for this example
for �a D 1, i.e. with a constant coefficient (left) and with �a D 10;000 (right),
as well as the estimate d0 � .�max/k resulting from the maximum singular value.
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Fig. 3 Convergence of Parareal and error estimate from the largest singular value of the Parareal
iteration matrix (dashed line)
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In both cases, actual convergence is a little better than expected but �max gives a
reasonable estimate. Again, the jumping coefficients affect Parareal’s convergence
only marginally. Note that interpreting variants like the “Krylov-subspace-enhanced
Parareal”, introduced in [8] and studied further in [13], as a non-stationary fixed
point iteration could be an interesting approach for a mathematical analysis.

4 Conclusions

The paper presents a numerical study of the convergence behavior of the time-
parallel Parareal method for the heat equation with space- and time-dependent
coefficients. It demonstrates that the good convergence of Parareal for diffusive
problems is only marginally affected by both jumps in the diffusion coefficients
and a diffusion coefficient that changes in time. For linear problems, Parareal can be
interpreted as a preconditioned fixed point iteration and, at least for small enough
problems, the iteration matrix and its maximum singular value can be computed
numerically. An example is shown that demonstrates that the largest singular value
gives a reasonable estimate for the convergence of Parareal. Extending the analysis
presented here to more complicated cases e.g. in three dimensions with complicated
geometries, with coefficient jumps not aligned with the mesh or cases that also
include advection would be an interesting direction of future research.
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