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1 Introduction

The main goal of this paper is to design, analyze, and test a BDDC (Balancing
Domain Decomposition by Constraints, see [12, 23]) preconditioner for Isogeo-
metric Analysis (IGA), based on a novel type of interface averaging, which we
will denote by deluxe scaling, with either full or reduced set of primal constraints.
IGA is an innovative numerical methodology, introduced in [17] and first analyzed
in [1], where the geometry description of the PDE domain is adopted from a
Computer Aided Design (CAD) parametrization usually based on Non-Uniform
Rational B-Splines (NURBS) and the same NURBS basis functions are also used as
the PDEs discrete basis, following an isoparametric paradigm; see the monograph
[10]. Recent works on IGA preconditioners have focused on overlapping Schwarz
preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping precondi-
tioners [4, 8, 20].
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Deluxe scaling was recently introduced by Dohrmann and Widlund in a study of
H.curl/ problems; see [14, 15, 29] and also [25] for its application to problems in
H.div/ and [21] for Reissner–Mindlin plates. In our previous work on isogeometric
BDDC [4], standard BDDC scalings were employed with averaging weights built
directly from sone representative values of the elliptic coefficients in each subdo-
main (�-scaling) or from the values of the diagonal elements of local and global
stiffness matrices (stiffness scaling). The novel deluxe scaling, originally developed
to deal with elliptic problems with more than one variable coefficient, is instead
based on solving local problems built from local Schur complements associated with
sets of what are known as the dual variables. This new scaling turns out to be much
more powerful than the standard �- and stiffness scalings in the present context, even
for scalar elliptic problems with one variable coefficient. A novel adaptive strategy
to select a reduced set of vertex primal constraints is also studied. The main result
of our h-analysis shows that the condition number of the resulting deluxe BDDC
preconditioner satisfies the same quasi-optimal polylogarithmic bound in the ratio
H=h of subdomain to element diameters, as in [4], and that this bound is independent
of the number of subdomains and jumps of the coefficients of the elliptic problem
across subdomain interfaces. Moreover, our preliminary 2D numerical experiments
with deluxe scaling show a remarkable improvement, in particular for increasing
polynomial degree p of the isogeometric elements. Numerical tests in 3D can be
found in [6].

2 Isogeometric Discretization of Scalar Elliptic Problems

We consider the model elliptic problem on a bounded and connected CAD domain
˝ � R

d, d D 2; 3,

� r � .�ru/ D f in ˝; u D 0 on @˝; (1)

where � is a scalar field satisfying 0 < �min � �.x/ � �max; 8x 2 ˝ . For simplicity,
we describe our problem and preconditioner in the 2D single-patch case. Comments
on the 3D extension can be found at the end of Sect. 3, and comments on the multi-
patch extension can be found in [6]. We discretize (1) with IGA based on B-splines
and NURBS basis functions. The bivariate B-spline discrete space is defined by

OSh WD spanfBp;q
i;j .�; �/; i D 1; : : : ; n; j D 1; : : : ; mg; (2)
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where the bivariate B-spline basis functions Bp;q
i;j .�; �/ D Np

i .�/ Mq
j .�/ are defined

by tensor products of 1D B-splines functions Np
i .�/ and Mq

j .�/ of degree p and q,
respectively (in our numerical experiments, we will only consider the case p D q).
Analogously, the NURBS space is the span of NURBS basis functions defined in
1D by

Rp
i .�/ WD Np

i .�/!i
Pn

OıD1 Np
Oı .�/! Oı

D Np
i .�/!i

w.�/
; (3)

with the weight function w.�/ WD Pn
OıD1 Np

Oı .�/! Oı 2 OSh, and in 2D by

Rp;q
i;j .�; �/ WD Bp;q

i;j .�; �/!i;j
Pn

OıD1

Pm
OjD1

Bp;q

Oı;Oj .�; �/! Oı;Oj
D Bp;q

i;j .�; �/!i;j

w.�; �/
; (4)

where w.�; �/ is the weight function and !i;j D .C!
i;j/3 the positive weights

associated with a n � m net of control points Ci;j. The discrete space of NURBS
functions on the domain ˝ is defined as the span of the push-forward of the NURBS
basis functions (4) (see, e.g., [17])

Nh WD spanfRp;q
i;j ı F�1; with i D 1; : : : ; nI j D 1; : : : ; mg; (5)

with F W Ő ! ˝ the geometrical map between parameter and physical spaces
defined by F.�; �/ D Pn

iD1

Pm
jD1 Rp;q

i;j .�; �/Ci;j.
For simplicity, we will consider the case with a Dirichlet boundary condition

imposed on all of @˝; we can then define the spline space in the parameter space
and the NURBS space in physical space, respectively, as

OVh WD Œ OSh \ H1
0. Ő /�2 D ŒspanfBp;q

i;j .�; �/; i D 2; : : : ; n � 1; j D 2; : : : ; m � 1g�2;

Vh WD ŒNh\H1
0.˝/�2 D ŒspanfRp;q

i;j ıF�1; with i D 2; : : : ; n�1I j D 2; : : : ; m�1g�2:

The IGA formulation of problem (1) then reads:

(
Find uh 2 Vh such that:

a.uh; vh/ D< f ; vh > 8v 2 Vh;
(6)

with the bilinear form a.uh; vh/ D
Z

˝

�ruhrvhdx.
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3 BDDC Preconditioners

When using iterative substructuring methods, such as BDDC, we first reduce the
problem to one on the interface by implicitly eliminating the interior degrees of
freedom, a process known as static condensation; see, e.g., Toselli and Widlund [28,
Ch. 4].

Knots and Subdomain Decomposition A decomposition is first built for the
underlying space of spline functions in the parametric space, and is then easily
extended to the NURBS space in the physical domain. From the full set of knots,
f�1 D 0; : : : ; �nCpC1 D 1g; we select a subset f�ik ; k D 1; : : : ; N C 1g of non-
repeated knots with �i1 D 0; �iNC1

D 1. The interface knots are given by �ik for
k D 2; ::; N and they define a decomposition of the closure of the reference interval
into subdomains

�OI� D Œ0; 1� D
� [

kD1;::;N

OIk

�
; with OIk D .�ik ; �ikC1

/;

that we assume to have similar lengths Hk WD diam.OIk/ � H. In more dimensions,
we just use tensor products. Thus, in two dimension, we define the subdomains by

OIk D .�ik ; �ikC1
/; OIl D .�jl ; �jlC1

/; Ő kl D OIk � OIl; 1 � k � N1; 1 � l � N2:

(7)

For simplicity, we reindex the subdomains using only one index to obtain the

decomposition of our domain Ő D S
kD1;::;K

Ő k; into K D N1N2 subdomains.
Throughout this paper, we assume that both the subdomains and elements defined
by the coarse and full sets of knot vectors are shape regular and with quasi-uniform
characteristic diameters H and h, respectively.

The Schur Complement System As in classical iterative substructuring, we

reduce the problem to one on the interface � WD
�SK

kD1 @ Ő k

�
n@ Ő by static

condensation, i.e., by eliminating the interior degrees of freedom associated with the
basis functions with support in each subdomain. The resulting Schur complement
for Ő k and its local interface �k WD @ Ő k n @ Ő will be denoted by S.k/: In the sequel,
we will use the following sets of indices:

�˝ D f.i; j/ 2 N
2 W 2 � i � n � 1; 2 � j � m � 1g;

�� D f.i; j/ 2 �˝ W supp.Bp;q
i;j / \ � ¤ ;g:

We note that �� consists of indices associated with a “fat” interface that typically
consists of several layers of knots associated with the basis functions with support
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Fig. 1 Schematic illustration in index space of interface equivalence classes in 2D (left) and 3D
(right) parametric space with p D 3; � D 2: fat vertices, consisting of .� C 1/2 knots in 2D and
.� C 1/3 in 3D; fat edges (without vertices), consisting of .� C 1/ “slim” edges in 2D and .� C 1/2

in 3D; fat faces (without vertices and edges), consisting of � C 1 slim faces in 3D

intersecting two or more subdomains, see e.g. Fig. 1. The discrete interface and local
spaces are defined as

OV� WD spanfBp;q
i;j ; .i; j/ 2 �� g; V.k/

I WD OVh \ H1
0. Ő k/: (8)

The space OVh can be decomposed as ˚K
kD1V.k/

I C H. OV� /, where H W OV� ! OVh;

is the piece-wise discrete spline harmonic extension operator, which provides the
minimal energy extension of values given in OV� . The interface component of the
discrete solution satisfies the Schur complement reduced system

s.u� ; v� / D< Of ; v� >; 8v� 2 OV� ; (9)

with a suitable right-hand side Of and a Schur complement bilinear form defined
by s.w� ; v� / WD a.H.w� /;H.v� //. For simplicity, in the sequel, we will drop the
subscript � for functions in OV� . In matrix form, (9) is the Schur complement system

OS� w D Of ; (10)

where OS� D A� � � A� IA�1
II AT

� I;
Of D f� � A� IA�1

II fI; are obtained from the original
discrete problem by Gaussian elimination after reordering the spline basis functions
into sets of interior (subscript I) and interface (subscript � ) basis functions. The
Schur complement system (10) is solved by a Preconditioned Conjugate Gradient
(PCG) iteration, where OS� is never explicitly formed since the action of OS� on a
vector is computed by solving Dirichlet problems for individual subdomains and
some sparse matrix-vector multiplies, which are also needed when working with the
local Schur complements required by the application of the BDDC preconditioner
defined below. The preconditioned Schur complement system solved by PCG is then

M�1
BDDC

OS� w D M�1
BDDC

Of ; (11)
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where M�1
BDDC is the BDDC preconditioner, defined in (18) below using some restric-

tion and scaling operators associated with the following subspace decompositions.
Subspace Decompositions We split the local space V.k/ defined in (8) into a

direct sum of its interior (I) and interface (� ) subspaces, i.e.

V.k/ WD V.k/
I ˚ V.k/

� ; where

V.k/
I WD spanfBp;q

i;j ; .i; j/ 2 �
.k/
I g; V.k/

� WD spanfBp;q
i;j ; .i; j/ 2 �

.k/
� g;

which translate in the index sets

�
.k/
I WD f.i; j/ 2 �˝ W supp.Bp;q

i;j / � Ő kg;
�

.k/
� WD f.i; j/ 2 �� W supp.Bp;q

i;j / \ .@ Ő k \ �k/ ¤ ;g;

and we define the associated product spaces by

VI WD
KY

kD1

V.k/
I ; V� WD

KY

kD1

V.k/
� :

The functions in V� are generally discontinuous (multi-valued) across � , while
our isogeometric approximations belong to OV� , the subspace of V� of functions
continuous (single-valued) across � . We will select some interface basis functions
as primal (subscript ˘ ), that will be made continuous across the interface and will
be subassembled between their supporting elements, and we will call dual (subscript
	) the remaining interface degrees of freedom that can be discontinuous across the
interface and which vanish at the primal degrees of freedom. This splitting allows
us to decompose each local interface space into primal and dual subspaces V.k/

� D
V.k/

˘

L
V.k/

	 , and we can define the associated product spaces by

V	 WD
KY

kD1

V.k/
	 ; V˘ WD

KY

kD1

V.k/
˘ :

We also need an intermediate subspace QV� � V� of partially continuous basis
functions

QV� WD V	

M OV˘ ;

where the product space V	 has been defined above and OV˘ is a global subspace of
the selected primal variables.
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For two-dimensional problems, we will consider the primal space OVC
˘ consisting

of vertex basis functions with indices belonging to

�C D f.i; j; k/ 2 �� W supp.Bp;q;r
i;j;k / \ C ¤ ;g: (12)

In order to define our preconditioners, we will need the following restriction and
interpolation operators represented by matrices with f0; 1g elements

QR�	 W QV� �! V	; QR� ˘ W QV� �! OV˘ ; OR˘ W OV� �! OV˘

R.k/
	 W V	 �! V.k/

	 ; R.k/
˘ W OV˘ �! OV.k/

˘
OR.k/

	 W OV� �! V.k/
	 :

(13)

For any edge/face F , we will use the symbol RF to denote a restriction matrix to
the (“fat”) set of degrees of freedom associated with F .

Deluxe Scaling We now apply to our isogeometric context the deluxe scaling
proposed in [14]. Let ˝k be any subdomain in the partition, k D 1; 2; : : : ; K. We
will indicate by 
k the index set of all the ˝j, j 6D k; that share an edge F with ˝k.
For regular quadrilateral subdomain partitions in two dimensions, the cardinality of

k is 4 (or less for boundary subdomains).

In BDDC, the average Nw WD EDw of an element in w 2 QV� ; is computed
separately for the sets of interface degrees of freedom of edge and face equivalence
classes. We define the deluxe scaling for the class of F with only two elements,
k; j; as for an edge in two dimensions. We define two principal minors, S.k/

F and S.j/
F ,

obtained from S.k/ and S.j/ by removing all rows and columns which do not belong
to the degrees of freedom which are common to the (fat) boundaries of ˝k and ˝j:

Let w.k/
F WD RFw.k/; the deluxe average across F is then defined as

NwF D
�

S.k/
F C S.j/

F
��1�

S.k/
F w.k/

F C S.j/
F w.j/

F
�
: (14)

If the Schur complements of an equivalence class have small dimensions, they can

be computed explicitly, otherwise the action of
�

S.k/

F C S.j/
F
��1

can be computed by

solving a Dirichlet problem on the union of the relevant subdomains with a zero
right hand side in the interiors of the subdomains.

Each of the relevant equivalence classes, which involve the subdomain ˝k; will
contribute to the values of Nw. Each of these contributions will belong to OV� ; after
being extended by zero to � n F I the resulting element is given by RT

F NwF : We then
add the contributions from the different equivalence classes to obtain

Nw D EDw D w˘ C
X

F
RT
F NwF : (15)
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ED is a projection and its complementary projection is given by

PDw WD .I � ED/w D w	 �
X

F
RT
F NwF : (16)

With a small abuse of notation in what follows, we will consider EDw 2 OV� also as
an element of QV� , by the obvious embedding OV� � QV� . In order to rewrite ED in
matrix form, for each subdomain ˝k, we define the block-diagonal scaling matrix

D.k/ D diag.D.k/

F j1
; D.k/

F j2
; : : : ; D.k/

F jk
/;

where j1; j2; : : : ; jk 2 
k and the diagonal blocks are given by the deluxe scaling

D.k/
F WD

�
S.k/
F C S.j/

F
��1

S.k/
F . We can now extend the operators defined in (13) and

define the scaled local operators by R.k/
D;� WD D.k/R.k/

� , QR.k/
D;	 WD R.k/

�;	R.k/
D;� and the

global scaled operator

QRD;� WD the direct sum OR˘ ˚K
kD1

QR.k/
D;	; (17)

so that the averaging operator is ED D QR�
QRT

D;� , where QR� WD OR˘ ˚K
kD1

QR.k/
	 :

The BDDC Preconditioner We denote by A.k/ the local stiffness matrix
restricted to subdomain N̋ k. By partitioning the local degrees of freedom into
those in the interior (I) and those on the interface (� ), as before, and by further
partitioning the latter into dual (	) and primal (˘ ) degrees of freedom, then A.k/

can be written as

A.k/ D
"

A.k/
II A.k/T

� I

A.k/
� I A.k/

� �

#

D

2

6
4

A.k/
II A.k/T

	I A.k/T

˘ I

A.k/
	I A.k/

		 A.k/T

˘	

A.k/
˘ I A.k/

˘	 A.k/
˘˘

3

7
5 :

Using the scaled restriction matrices defined in (13) and (17), the BDDC precondi-
tioner can be written as

M�1
BDDC D QRT

D;�
QS�1

�
QRD;� ; where (18)

QS�1
� D QRT

�	

0

@
KX

kD1

h
0 R.k/T

	

i
"

A.k/
II A.k/T

	I

A.k/
	I A.k/

		

#�1 "
0

R.k/
	

#1

A QR�	 C ˚S�1
˘˘ ˚T : (19)

Here S˘˘ is the BDDC coarse matrix and ˚ is a matrix mapping primal degrees of
freedom to interface variables, see e.g. [2, 22]. Our main theorem is the following
(see [6] for a proof and more complete details).
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Theorem 1 Consider the model problem (1) in two dimensions and let the primal
set be given by the subdomain corner set OVC

˘ defined in (12). Then the condition
number of the preconditioned operator is bounded by

cond
�

M�1
BDDC

OS�

�
� C.1 C log.H=h//2;

with C > 0 independent of h; H and the jumps of the coefficient �.

Comments on the Three-Dimensional Case The choice of primal degrees of
freedom is fundamental for the construction of efficient BDDC preconditioners.
The space OVC

˘ is not sufficient to obtain scalable and fast preconditioners in three
dimensions. In three dimensions, we can define an additional index set associated
with fat edges

�E D f.i; j; k/ 2 �� =�C W supp.Bp;q;r
i;j;k / \ E ¤ ;g;

and enrich the primal space with averages computed for each slim edge parallel
to the subdomain edge (see Fig. 1). Three-dimensional numerical results (see [6])
show faster rates of convergence when considering such an enriched coarse space:
in particular, the addition of edge slim averages is sufficient to obtain quasi-
optimality and scalability as is the case with standard FEM discretizations. The
deluxe convergence rate for increasing p seems to be orders of magnitude better
than that of BDDC with stiffness scaling, but not as insensitive to p as in the 2D
results of Table 1 in the next section.

Adaptive Choice of Reduced Sets of Primal Constraints In recent years, a
number of people have investigated different adaptive choices of primal constraints
in BDDC and FETI-DP methods, see e.g. [13, 18, 19, 24, 26, 27]. Most of these
works focus on the adaptive selection of 2D edge or 3D face constraints, i.e.
constraints associated with the interface between two subdomains, by solving
some generalized eigenproblems. It is less clear how to extend such techniques to
equivalence classes shared by more than two subdomains, such as 2D or 3D vertices
and 3D edges. Here, inspired by the techniques of [13], we propose an adaptive
selection of 2D primal vertices, driven by the desire to reduce the expensive fat
vertex primal constrains used in the standard or deluxe BDDC method.

Let ˝k be any subdomain in the partition, k D 1; 2; : : : ; K and consider the
associated local Schur complement S.k/. Denote by F one of the equivalence classes
(a vertex, edge, or face) and partition the degrees of freedom local to ˝k into F and
its complement F 0. Then S.k/ can be partitioned as

S.k/ D
 

S.k/
FF S.k/

FF 0

S.k/

F 0F S.k/

F 0F 0

!

: (20)
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For each equivalence class F , define the new Schur complement

QS.k/
FF D S.k/

FF � S.k/

FF 0S
.k/�1

F 0F 0S
.k/

F 0F (21)

and define the generalize eigenvalue problem

S.k/
FFv D �QS.k/

FFv: (22)

Given a threshold � � 1, we select the eigenvectors fv1; v2; : : : ; vNcg associated to
the eigenvalues of (22) greater than � and we perform a BDDC change of basis in
order to make these selected eigenvectors the primal variables.

4 Numerical Results

In this section, we report on numerical experiments with the isogeometric BDDC
deluxe preconditioner for two-dimensional elliptic model problems (1), discretized
with isogeometric NURBS spaces with a mesh size h, polynomial degree p and
regularity �. The domain is decomposed into K nonoverlapping subdomains of char-
acteristic size H, as described in Sec. 3. The discrete Schur-complement problems
are solved by the PCG method with the isogeometric BDDC preconditioner, with
a zero initial guess and a stopping criterion of a 10�6 reduction of the Euclidean
norm of the PCG residual. In the tests, we study how the convergence rate of the
BDDC preconditioner depends on h; K; p; �. The 2D tests have been performed with
a MATLAB code based on the GeoPDEs library by De Falco et al. [11].

Scalability in K and Quasi-Optimality in H=h The condition number cond and
iteration counts nit of the BDDC deluxe preconditioner are reported in the table of
Fig. 2 for a quarter-ring domain (shown on the left of the table), as a function of the
number of subdomains K and mesh size h, for fixed p D 3; � D 2 (top) or p D
5; � D 4 (bottom). The results show that the proposed preconditioner is scalable,
since moving along the diagonals of each table the condition number appears to be
bounded from above by a constant independent of K. The results for higher degree
p D 5 and regularity � D 4 are even better than those for the lower degree case. The
BDDC deluxe preconditioner appears to retain a very good performance in spite of
the increase of the polynomial degree p, a property that was not always satisfied
in [4]. To better understand this issue, we next study the BDDC performance for
increasing values of p.

Dependence on p In this test, we compare the BDDC deluxe performance as
a function of the polynomial degree p and the regularity �. We recall that our
theoretical work is only an h-analysis and does not cover the dependence of the
convergence rate on p and �. The domain considered is the quarter-ring discretized
with a mesh size h D 1=64 and K D 4 � 4 subdomains. The spline degree p
varies from 2 to 10 and the regularity is always maximal (� D p � 1) inside the
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h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit

2 2 1.24 5 1.42 6 1.65 6 1.92 6
p D 3 4 4 2.02 8 2.68 10 3.46 11
D 2 8 8 2.39 10 3.29 12

16 16 2.64 11
2 2 1.19 5 1.35 6 1.55 6 1.78 6

p D 5 4 4 1.62 8 2.19 9 2.86 10
D 4 8 8 1.77 8 2.55 10

16 16 1.87 8

Fig. 2 BDDC deluxe preconditioner for a 2D quarter-ring domain (left): condition number cond
and iteration counts nit as a function of the number of subdomains K and mesh size h. Fixed
p D 3; � D 2 (top), p D 5; � D 4 (bottom)

Table 1 BDDC deluxe dependence on p in the 2D quarter-ring domain: condition number cond
and iteration counts nit as a function of the NURBS polynomial degree p. Fixed h D 1=64; K D
4 � 4; � D p � 1 (top), � D 2 (bottom)

p 2 3 4 5 6 7 8 9 10

� D p � 1 Cond 3.22 2.68 2.41 2.19 2.04 1.91 1.80 1.72 1.62

nit 10 10 9 9 9 8 8 8 9

� D 2 Cond - 2.47 2.84 3.16 3.45 3.71 3.94 4.17 4.36

nit - 10 11 11 11 12 12 12 12

subdomains, while at the subdomain interface is either maximal (� D p � 1, top) or
low (� D 2, bottom). The results in Table 1 show that for � D p � 1 the condition
numbers and iteration counts are bounded independently of the degree p and actually
improve slightly for increasing p, while for � D 2 the condition numbers show
a very modest sublinear growth with p, with associated iteration counts that are
practically constant. This is a remarkable property that is not shared by any other
nonoverlapping IGA preconditioner in the (current) literature.

Adaptive Choice of Vertex Primal Constraints Table 2 reports the results
with the proposed adaptive choice of primal constraints applied only to the vertex
constraints (the edge variables remain dual). We consider both an eigenvalue
threshold � D 2 leading to the minimal choice of Nc D 1 primal vertex constraint
(that turns out to be the average of the fat vertex values) and a lower threshold
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� D 1:5 leading to a richer choice of Nc D 4 primal vertex constraints for each
subdomain vertex. In case of variable polynomial degree p, we also consider a very
low threshold � D 1:1 that leads to a richer choice of approximately Nc D 2p primal
constraints for each subdomain vertex. The results in a) show that the BDDC deluxe
preconditioner is scalable, since cond and nit appears to be bounded from above by
a constant independent of K, and the results in b) indicate that the preconditioner
is quasi-optimal, since cond and nit appears to grow polylogarithmically in H=h.
The results in c) show that the minimal choice Nc D 1 does not perform well
for increasing p (there is no convergence for p D 6), while with the richer choice
corresponding to � D 1:1 we obtained only a mild performance degradation up to
p D 6.
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