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1 Introduction

In the framework of multigrid solvers for Discontinuous Galerkin (DG) schemes,
the first contributions are due to [10, 16]. In [16] a V-cycle preconditioner for a
Symmetric Interior Penalty (SIP) discretization of an elliptic problem is analyzed.
They prove that the condition number of the preconditioned system is uniformly
bounded with respect to the mesh size and the number of levels. In [10] V-cycle,
F-cycle and W-cycle multigrid schemes for SIP discretizations are presented and
analyzed, employing the additive theory developed in [8, 9]. A uniform bound for
the error propagation operator is shown provided the number of smoothing steps
is large enough. All the previously cited works focus on low order, i.e., linear, DG
approximations. With regard to high order DG discretizations, h- and p-multigrid
schemes are successfully employed for the numerical solution of many different
kinds of problems, see e.g. [6, 14, 20–22, 24], even if only few theoretical results
are available that show the convergence properties of the underlying algorithms.
In the context of fast solution techniques for high order DG methods, we mention
[1, 11, 12], see also [3] were a substructuring preconditioner is analyzed for an
hp domain decomposition method with interior penalty mortaring. Recently, in
[2] a convergence analysis of W-cycle h- and p-multigrid algorithms for a wide
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class of high order DG schemes is provided. More precisely, it is shown that, if
a Richardson smoother is employed, the W-cycle algorithms converge uniformly
with respect the granularity of the underlying mesh and the number of levels; but
the contraction factor of the scheme deteriorates when increasing the polynomial
order. As a further development of the results contained in [2], the aim of this
paper is to investigate the performance of h- and p-multigrid algorithms for high
order DG methods, considering a wide class of smoothers and addressing both
two- and three-dimensional test cases. The paper is organized as follows. In Sect. 2
we briefly introduce the model problem and its DG discretization. The h- and p-
multigrid methods are described in Sect. 3. The numerical experiments are presented
in Sect. 4, where the W-cycle schemes are tested on two- and three-dimensional
problems.

2 Model Problem and DG Methods

Given an open, bounded polygonal/polyhedral domain ˝ and a given function
f 2 L2.˝/, we consider the weak formulation of the Poisson problem with
homogeneous boundary conditions: find u 2 H1

0.˝/ such that

.ru; rv/˝ D . f ; v/˝ 8v 2 H1
0.˝/; (1)

where .�; �/˝ denotes the standard L2 product. We consider a sequence of discontin-
uous finite dimensional spaces Vk, k D 1; : : : ; K, defined as

Vk D fv 2 L2.˝/ W vjE 2 M
pk .T/ 8 T 2 Tkg k D 1; : : : ; K;

where M
pk is a suitable space of polynomials of degree pk � 1 and Tk is a partition

of ˝ with granularity hk. The sequence of spaces Vk is generated with two different
approaches, depending on whether we are interested in h- or p-multigrid algorithms.
In the h-multigrid algorithm, we fix the polynomial approximation degree pk D p
for all k D 1; : : : ; K, and the spaces Vk are associated to a sequence of nested
partitions fTkgkD1;:::;K obtained from successive uniform refinements of an initial
(coarse) shape regular and quasi-uniform partition T1, cf. Fig. 1 (left). In p-multigrid
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Fig. 1 Sample of the space Vk and Vk�1 in the h- (left) and p- (right) multigrid schemes
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schemes, the grid is kept fixed on all the levels and from the level k to the level k � 1

the polynomial degree is lowered down, i.e., pk�1 � pk for any k D 2; : : : ; K, cf.
Fig. 1 (right). Notice that, with such a construction the spaces Vk are nested, i.e.,
V1 � V2 � � � � � VK . For the sake of simplicity, we will also suppose that the
polynomial degrees pk satisfy the following local bounded variation among levels:
there exists a constant C > 0 such that pk � Cpk�1, for any k D 2; : : : ; K.

For any level k, we denote by F I
k and FB

k the sets of interior and boundary faces
of Tk, respectively, set Fk D F I

k [ FB
k , and define the lifting operators

.Rk.�/; �/˝ D �
X

F2Fk

.�; ff�gg/F 8� 2 ŒVk�
d; k D 1; : : : ; K;

.Lk.v/; �/˝ D �
X

F2F I
k

.v; ���/F 8� 2 ŒVk�
d; k D 1; : : : ; K;

where the jump and average trace operators are defined as in [5].
We next define the DG bilinear forms Ak.�; �/ W Vk � Vk ! R, k D 1; : : : ; K, as

Ak.w; v/ D .rw C Rk.�w�/ C Lk.ˇ � �w�/; rv C Rk.�v�/ C Lk.ˇ � �v�//˝

� �.Rk.�w�/;Rk.�v�//˝ C
X

F2Fk

.�k�w�; �v�/F (2)

where, for a constant ˛k > 0, the stabilization function �k is defined as

�kjF D ˛kp2
k

min fdiam.TC/; diam.T�/g F 2 F I
k ; �kjF D ˛kp2

k

diam.T/
F 2 FB

k ;

T˙ being the two neighboring elements sharing the face F 2 F I
k . For � D 1 and

ˇ D 0, the bilinear form (3) correspond to the SIP method [4], whereas for � D 1

and ˇ a uniformly bounded (and possibly null) vector in R
d we obtain the LDG

bilinear form [13].
We are interested in solving the following problem on the finest level K:

find uK 2 VK such that AK.uK; vK/ D . f ; vK/˝ 8vK 2 VK ; (3)

with a W-cycle multigrid method. Fixing a basis for VK , Eq. (3) is equivalent to the
following linear system of equations

AKuK D FK; (4)

where AK and FK are the matrix representations of the bilinear form AK.�; �/ and of
the right hand side in (3), respectively, and where, with a slight abuse of notation,
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we used to the same symbol to denote both a function in the finite element space VK

and the vector of its expansion coefficients in a given basis.
It can be shown that the bilinear form AK.�; �/ defined in (3) is continuous and

coercive with respect to the following (mesh-dependent) DG norm

kvk2
DG;K D

X

T2TK

krvk2
L2.T/

C
X

F2FK

k�
1=2
K �v�k2

L2.F/
; (5)

and that the following error estimates are satisfied, cf. [18, 23, 25] for example.

Theorem 1 Let u be the exact solution of problem (1) such that u 2 HsC1.TK/,
s � 1, and let uK 2 VK be the DG solution of problem (3). Then,

ku � uKkDG;K . hmin.pK ;s/
K

ps��=2
K

kukHsC1.TK/; (6)

with � D 0 whenever a continuous interpolant can be built, cf. [25], or the projector
of [15] can be employed and � D 1 otherwise.

3 W-Cycle h- and p-Multigrid Algorithms

As usual in the multigrid framework, we will employ a recursive algorithm to
describe the multigrid scheme. To this aim, we define on each level k the problem

Akzk D bk;

where Ak is the matrix representation of the bilinear form (3), and zk, bk are vectors
of dimension dim.Vk/. The first ingredient to build a multigrid algorithm are the
intergrid transfer operators, which we denoted by Rk

k�1 (prolongation from Vk�1 to
Vk) and by Rk�1

k (restriction from Vk to Vk�1). Given we are considering nested
spaces, we can simply take Rk

k�1 as the classical embedding operator and Rk�1
k as

its adjoint with respect to the L2 scalar product. The second ingredient is a suitable
smoother, which we denote by Bk. Denoting by u.0/

k 2 Vk the initial guess, and by
m1 and m2 the number of pre- and post-smoothing steps, respectively, the W-cycle
multigrid algorithm uk D MGW.k; bk; u.0/

k ; m1; m2/ is defined recursively as shown
in Algorithm 1. We then employ Algorithm 1 to solve the linear system (4), i.e.,

uK D MGW.K; bK ; u.0/
K ; m1; m2/:

Notice that if the spaces Vk are associated to a sequence of grids Tk with variable
mesh size and the polynomial degree is kept fixed on all the levels we obtain the
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Algorithm 1 uk D MGW.k; bk; u.0/
k ; m1; m2/

if k=1 then F Solution on the coarsest level
Solve Akuk D bk

else
for ` D 1; : : : ; m1 do F Pre-smoothing

Set QBk D Bk, if ` is odd and QBk D BT
k if ` is even.

u.`/
k D u.`�1/

k C QB�1
k .bk � Aku.`�1/

k /;
end for
Set rk�1 D Rk�1

k .bk � Aku.m1/
k /; F Restriction of the residual

Set u.0/
k�1 D 0;

Call Nek�1 D MGW .k � 1; rk�1; u.0/
k�1; m1; m2/; F Recursion

Call ek�1 D MGW .k � 1; rk�1; Nek�1; m1; m2/;
Set u.m1C1/

k D u.m1/
k C Rk

k�1ek�1;
for ` D m1 C 2; : : : ; m1 C m2 C 1 do F Post-smoothing

Set QBk D Bk, if ` is odd and QBk D BT
k if ` is even.

u.`/
k D u.`�1/

k C QB�1
k .bk � Aku.`�1/

k /;
end for
Set uk D u.m1Cm2C1/

k ;
end if

W-cycle h-multigrid scheme, whereas if the mesh is kept fixed and the polynomial
degree is lower down from one level to a coarser one we then have a W-cycle p-
multigrid algorithm.

We next introduce the following operator Pk�1
k W Vk ! Vk�1

Ak�1.P
k�1
k v; w/ D Ak.v; Rk

k�1w/ 8v 2 Vk; w 2 Vk�1;

and the following discrete norm

jjjvjjj21;k D .Akv; v/k D Ak.v; v/ 8v 2 Vk:

The error propagation operator associated to the W-cycle multigrid scheme is given
by

Ek;m1;m2v D
(

0 k D 1;

Gm2
k .Ik � Rk

k�1.Ik � E2
k�1;m1;m2

/Pk�1
k /Gm1

k v k > 1;

where Ik is the identity operator, and Gk D Ik � B�1
k Ak, cf. [7, 17]. The following

result, which is proved in [2], state that, whenever a Richardson smoother is
employed, the W-cycle algorithms converge uniformly with respect to the granu-
larity of the underlying mesh and the number of levels, provided the number of
smoothing steps is chosen sufficiently large, but the contraction factor of the scheme
deteriorates when increasing the approximation order.
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Theorem 2 For any k, let Bk be the Richardson smoother, i.e., Bk D �kIk, where
�k is an upper bound for the maximum eigenvalue of Ak. Then, there exist a constant
CW > 0 and an integer mW that are independent of the mesh size, but dependent on
the polynomial degree, such that

jjjEk;m1;m2vjjj1;k � CW
p2C�

k

.1 C m1/1=2.1 C m2/1=2
jjjvjjj1;k 8v 2 Vk; k D 2; : : : ; K;

provided m1 C m2 � mW D mW.pk/.

4 Numerical Results

In this section we test the performance of the W-cycle h- and p-multigrid schemes in
both two- and three-dimensional test cases and with different choices of smoothers.
We compute the convergence factor as

� D exp

�
1

N
ln

krNk2

kr0k2

�
;

with N denoting the iteration counts needed to achieve convergence up to a relative
tolerance of 10�8 and rN and r0 denoting the final and initial computed residuals,
respectively. Throughout the section we have employed an equal number of pre- and
post-smoothing steps, i.e., m1 D m2 D m, and we have set the penalty parameter
˛k appearing in the definition of the DG bilinear form as ˛k D 10, for any level
k D 1; : : : ; K.

We first consider a two-dimensional example with ˝ D .0; 1/2 and focus
on the performance of the h-multigrid algorithm. To this aim, we fix a coarse
(triangular/Cartesian) grid T1 with granularity h1 D 0:25 and consider a sequence of
nested grids Tk, k D 2; : : : ; K, obtained from successive uniform refinements of T1.
In Table 1 we report the computed convergence factors as a function of the number
of smoothing steps m and the number of levels K, fixing the polynomial degree
pk D p D 1; 2 for all the levels k D 1; : : : ; K. The results reported in Table 1 have
been obtained with the SIP method on structured triangular grids and with the LDG
scheme on Cartesian grids, and employing a Richardson smoother. The symbol
“-” means that the maximum number of 1000 iterations has been reached without
achieving the desired tolerance. We have repeated the same set of experiments
employing p D 3; 4, and the same behavior as been observed; for brevity these
results have been omitted. As expected from Theorem 2, the convergence factor
is independent of the number of levels K, decreases when m increases, and the
performance of the algorithm deteriorates as p grows up.

We next fix the number of pre- and post-smoothing steps m D 6, and investigate
how the performance of the h-multigrid algorithm depends on the polynomial
degree, always employing a Richardson smoother. Table 2 shows the computed



Multigrid Algorithms for High Order DG Methods 9

Table 1 2D test case, SIP and LDG methods, h-multigrid scheme

SIP, triangular grids LDG, cartesian grids
K D 2 K D 3 K D 4 K D 5 K D 2 K D 3 K D 4 K D 5

p D 1

m D 2 0.77 0.78 0.78 0.78 – – – –

m D 4 0.60 0.62 0.62 0.62 0.86 0.88 0.87 0.87

m D 10 0.38 0.40 0.40 0.39 0.74 0.76 0.76 0.75

p D 2

m D 2 0.93 0.94 0.93 0.78 0.96 0.96 0.96 0.96

m D 4 0.87 0.88 0.88 0.62 0.93 0.93 0.93 0.92

m D 10 0.76 0.77 0.77 0.39 0.88 0.88 0.88 0.87

Convergence factor as a function of the number of levels K, the polynomial approximation degree
p, and the number of smoothing steps m. Richardson smoother

Table 2 2D test case, SIP and LDG methods, h-multigrid scheme

SIP, triangular grids LDG, cartesian grids
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

p D 1 0.50 0.51 0.50 0.81 0.82 0.82

p D 2 0.83 0.84 0.84 0.91 0.91 0.91

p D 3 0.91 0.92 0.91 0.94 0.94 0.93

p D 4 0.95 0.94 0.93 0.96 0.95 0.95

p D 5 0.96 0.95 0.94 0.97 0.95 0.96

p D 6 0.95 0.96 0.96 0.98 0.96 0.97

Convergence factor as a function of the number of levels K and the polynomial approximation
order p. Richardson smoother (m D 6)

convergence factors as a function of the polynomial degree p D 1; 2; : : : ; 6 and
the number of levels K D 2; 3; 4, for both the SIP and LDG methods. We observe
that, as predicted by Theorem 2, the performance of the h-multigrid algorithm are
independent of the number of levels but deteriorates as p increases.

We next test the performance of the h-multigrid scheme employing different
smoothers as the Gauss-Seidel smoother of [16], an (elementwise) block Gauss-
Seidel smoother and the polynomial smoother proposed in [19]. In Table 3 we
report the computed convergence factors as a function of the number of pre-
and post-smoothing steps m D 2; 4; 10, the number of levels K D 2; 3; 4 and
the polynomial approximation degree p D 1; 2; 3; 4. These results have been
obtained with the SIP method and employing triangular grids. In all the cases
the performance of the h-multigrid algorithm seems to be fairly independent of
the number of levels. Moreover, as expected, the convergence factor decreases
as the number of smoothing steps increases, but still deteriorates as p grows
up (even if the dependence of the convergence factor on p seems to be weaker
than for the Richardson smoother). Moreover, all the smoothers outperform the
Richardson smoother and the polynomial smoother seems to provide the best
convergence factors. The extension of the convergence analysis presented in [2] to
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Table 3 2D test case, SIP method (triangular grids), h-multigrid scheme

p D 1 p D 2 p D 3 p D 4

K ! 2 3 4 2 3 4 2 3 4 2 3 4

Gauss-Seidel smoother

m D 2 0.55 0.56 0.56 0.80 0.80 0.80 0.88 0.87 0.86 0.92 0.92 0.93

m D 4 0.40 0.41 0.41 0.68 0.68 0.68 0.79 0.78 0.77 0.86 0.86 0.86

m D 10 0.20 0.21 0.21 0.44 0.44 0.44 0.61 0.59 0.58 0.71 0.71 0.70

Block Gauss-Seidel smoother

m D 2 0.55 0.56 0.56 0.71 0.72 0.72 0.82 0.82 0.82 0.84 0.84 0.84

m D 4 0.40 0.42 0.41 0.54 0.56 0.55 0.70 0.70 0.70 0.73 0.73 0.73

m D 10 0.20 0.21 0.21 0.27 0.31 0.29 0.47 0.47 0.46 0.51 0.50 0.50

Polynomial smoother

m D 2 0.30 0.31 0.31 0.68 0.69 0.68 0.80 0.80 0.78 0.89 0.88 0.87

m D 4 0.17 0.17 0.17 0.50 0.50 0.49 0.66 0.65 0.63 0.80 0.79 0.78

m D 10 0.07 0.07 0.06 0.21 0.21 0.21 0.40 0.38 0.37 0.60 0.59 0.59

Convergence factors as a function of the number of levels K, the polynomial approximation
degree p, and the number of smoothing steps m. Gauss-Seidel, block Gauss-Seidel and polynomial
smoothers

Table 4 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, cartesian grid
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

m D 2 0.91 0.91 0.94 0.95 0.95 0.97

m D 4 0.85 0.85 0.90 0.88 0.89 0.92

m D 10 0.78 0.77 0.80 0.86 0.86 0.89

Convergence factor as a function of the number of levels K and the number of smoothing steps m.
Richardson smoother, pK D 5

h-multigrid algorithms based on these (more effective) smoothers is currently under
investigation.

We next turn our attention to the performance of the p-multigrid scheme. To
this aim, we fix the finest computational level K, the mesh TK and the polynomial
approximation degree pK � K employed therein. Then, for each level k, we set
pk�1 D pk � 1, k D K; K � 1; : : : ; 2. In Table 4 we report the computed convergence
factors obtained with pK D 5 and varying the number of smoothing steps m and
the number of levels K. The results reported in Table 4 have been obtained with
the LDG and SIP methods and employing a Richardson smoother. Next, we fix
the number of smoothing steps m D 6 and vary the polynomial approximation
degree pK employed on the finest level. The results obtained with the SIP method
and employing the Richardson smoother are reported in Table 5. From the results
reported in Table 4 and in Table 5, we can conclude that the p-multigrid scheme
seems to be asymptotically uniform with respect to the number of levels (notice that
in this case the ratio pk=pk�1 is not constant from one level to the other), and that, as
expected, the performance of the algorithm improves as m increases. We finally
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Table 5 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, Cartesian grid
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

pK D 2 0.62 – – 0.83 – –

pK D 3 0.77 0.77 – 0.89 0.90 –

pK D 4 0.79 0.80 0.86 0.86 0.89 0.90

pK D 5 0.83 0.82 0.87 0.89 0.89 0.92

pK D 6 0.86 0.86 0.86 0.91 0.91 0.90

Convergence factor as a function of the number of levels K and the polynomial degree pK .
Richardson smoother (m D 6)

Table 6 2D test case, SIP method (triangular grid), p-multigrid scheme

pK D 2 pK D 3 pK D 4 pK D 5 pK D 6

K ! 2 2 3 2 3 4 2 3 4 2 3 4

m D 2 0.76 0.79 0.79 0.84 0.84 0.85 0.85 0.85 0.85 0.88 0.87 0.86

m D 4 0.60 0.66 0.66 0.73 0.73 0.73 0.75 0.75 0.75 0.79 0.78 0.77

m D 6 0.48 0.57 0.56 0.63 0.63 0.63 0.67 0.67 0.67 0.71 0.71 0.70

m D 10 0.34 0.44 0.44 0.49 0.49 0.49 0.56 0.56 0.56 0.59 0.58 0.58

Convergence factor as a function of the number of levels K, the polynomial degree pK , and the
number of smoothing steps m. Gauss-Seidel smoother

address the performance of the p-multigrid method when employing a different
smoother. For this set of experiments we have considered the SIP formulation
and tested the Gauss-Seidel smoother. The results reported in Table 6 show the
computed convergence factors as a function of the number of levels K, the number
of smoothing steps m and the polynomial degree pK employed on the finest level.
The computed convergence factor seems to be fairly insensitive to the number of
levels employed in the algorithm and it improves as the number of pre- and post-
smoothing steps increases (notice that, no restriction on the minimum number of
smoothing steps seems to be needed in this case). Nevertheless, the convergence
factor still depends on the polynomial degree even if such a dependence seems to be
weaker than that observed employing the Richardson smoother (cf. Table 5). Finally,
comparing these results with the ones reported in Table 5 it is clear that, as for
the h- multigrid algorithm, the Gauss-Seidel smoother outperforms the Richardson
smoother.

We next present some three-dimensional numerical experiments. We have
employed an h-multigrid scheme to solve the linear system of equations arising
from the SIP discretization of model problem (1) posed on ˝ D .0; 1/3. We employ
a sequence of tetrahedral meshed obtained by successive uniform refinements of an
initial coarse grid with granularity h1 D 0:25. As before, we fix pk D p for all
the levels k D 1; 2; : : : ; K and consider the Richardson, the Gauss-Seidel and the
symmetric Gauss-Seidel smoothers. The computed convergence factors varying the
number of levels K, the number of pre-and post-smoothing steps m as well as the
polynomial degree p are reported in Table 7. We observe that the performance of
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Table 7 3D test case, SIP method (tetrahedral grids), h-multigrid scheme

p D 1 p D 2 p D 3

K D 2 K D 3 K D 4 K D 2 K D 3 K D 4 K D 2 K D 3

Richardson smoother

m D 2 0.57 0.55 0.53 0.82 0.81 0.80 0.90 0.90

m D 4 0.71 0.71 0.69 0.91 0.90 0.90 0.95 0.95

m D 10 0.46 0.44 0.41 0.79 0.78 0.77 0.88 0.88

Gauss-Seidel smoother

m D 2 0.57 0.55 0.53 0.82 0.81 0.79 0.89 0.89

m D 4 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80

m D 10 0.13 0.15 0.12 0.43 0.41 0.40 0.61 0.60

Symmetric Gauss-Seidel smoother

m D 2 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80

m D 4 0.17 0.19 0.16 0.50 0.48 0.46 0.67 0.66

m D 10 0.05 0.08 0.07 0.22 0.22 0.20 0.41 0.39

Convergence factors as a function of the number of levels K, the polynomial approximation degree
p, and the number of smoothing steps m. Richardson, Gauss-Seidel, and symmetric Gauss-Seidel
smoothers

the h-multigrid schemes are completely analogous to the one observed in the two-
dimensional test case.

References

1. P.F. Antonietti, P. Houston, A class of domain decomposition preconditioners for hp-
discontinuous Galerkin finite element methods. J. Sci. Comput. 46(1), 124–149 (2011)

2. P.F. Antonietti, M. Sarti, M. Verani, Multigrid algorithms for hp-discontinuous Galerkin
discretizations of elliptic problems. SIAM J. Numer. Anal. 53(1), 598–618 (2015)

3. P.F. Antonietti, B. Ayuso, S. Bertoluzza, M. Penacchio, Substructuring preconditioners for
an hp domain decomposition method with interior penalty mortaring. Calcolo 52(3), 289–316
(2015)

4. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J.
Numer. Anal. 19(4), 742–760 (1982)

5. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/2002)

6. F. Bassi, A. Ghidoni, S. Rebay, P. Tesini, High-order accurate p-multigrid discontinuous
Galerkin solution of the Euler equations. Int. J. Numer. Methods Fluids 60(8), 847–865 (2009)

7. J. Bramble, Multigrid Methods. Number 294 in Pitman Research Notes in Mathematics Series
(Longman Scientific & Technical, London, 1993)

8. S.C. Brenner, Convergence of the multigrid V-cycle algorithm for second-order boundary
value problems without full elliptic regularity. Math. Comput. 71(238), 507–525 (2002)

9. S.C. Brenner, Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for
second order elliptic boundary value problems. Math. Comput. 73(247), 1041–1066 (2004)

10. S.C. Brenner, J. Zhao, Convergence of multigrid algorithms for interior penalty methods. Appl.
Numer. Anal. Comput. Math. 2(1), 3–18 (2005)



Multigrid Algorithms for High Order DG Methods 13

11. K. Brix, M. Campos Pinto, C. Canuto, W. Dahmen, Multilevel preconditioning of discon-
tinuous Galerkin spectral element methods. Part I: geometrically conforming meshes. IMA J.
Numer. Anal. (2014). doi:10.1093/imanum/dru053

12. C. Canuto, L.F. Pavarino, A.B. Pieri, BDDC preconditioners for continuous and discontinuous
Galerkin methods using spectral/hp elements with variable local polynomial degree. IMA J.
Numer. Anal. 34(3), 879–903 (2014)

13. B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (electronic) (1998)

14. K.J. Fidkowski, T.A. Oliver, J. Lu, D.L. Darmofal, p-multigrid solution of high-order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J.
Comput. Phys. 207(1), 92–113 (2005)

15. E.H. Georgoulis, E. Süli, Optimal error estimates for the hp-version interior penalty
discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25(1), 205–220 (2005)

16. J. Gopalakrishnan, G. Kanschat, A multilevel discontinuous Galerkin method. Numer. Math.
95(3), 527–550 (2003)

17. W. Hackbusch, Multi-Grid Methods and Applications. Springer Series in Computational
Mathematics, vol. 4 (Springer, Berlin, 1985)

18. P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-
diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

19. J. Kraus, P. Vassilevski, L. Zikatanov, Polynomial of best uniform approximation to 1=x and
smoothing in two-level methods. Comput. Methods Appl. Math. 12(4), 448–468 (2012)

20. H. Luo, J.D. Baum, R. Löhner, A p-multigrid discontinuous Galerkin method for the Euler
equations on unstructured grids. J. Comput. Phys. 211(2), 767–783 (2006)

21. B.S. Mascarenhas, B.T. Helenbrook, H.L. Atkins, Coupling p-multigrid to geometric multigrid
for discontinuous Galerkin formulations of the convection-diffusion equation. J. Comput. Phys.
229(10), 3664–3674 (2010)

22. C.R. Nastase, D.J. Mavriplis, High-order discontinuous Galerkin methods using an hp-
multigrid approach. J. Comput. Phys. 213(1), 330–357 (2006)

23. I. Perugia, D. Schötzau, An hp-analysis of the local discontinuous Galerkin method for
diffusion problems. J. Sci. Comput. 17(1–4), 561–571 (2002)

24. K. Shahbazi, D.J. Mavriplis, N.K. Burgess, Multigrid algorithms for high-order discontinuous
Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys.
228(21), 7917–7940 (2009)

25. B. Stamm, T.P. Wihler, hp-optimal discontinuous Galerkin methods for linear elliptic problems.
Math. Comput. 79(272), 2117–2133 (2010)


	Multigrid Algorithms for High Order Discontinuous GalerkinMethods
	1 Introduction
	2 Model Problem and DG Methods
	3 W-Cycle h- and p-Multigrid Algorithms
	4 Numerical Results
	References


