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Preface of DD22 Book of Proceedings

This volume contains the proceedings of the 22nd International Conference on
Domain Decomposition Methods, which was hosted by the Institute for Com-
putational Science (ICS) at the Università della Svizzera italiana (USI), Lugano,
Switzerland, September 16–20, 2013.

Background of the Conference Series

The International Conference on Domain Decomposition Methods has been held in
fourteen countries throughout Asia, Europe, and North America, beginning in Paris
in 1987. Held annually for the first fourteen meetings, it has been spaced out since
DD15 at roughly 18-month intervals. A complete list of the past meetings appears
below. The twenty-second International Conference on Domain Decomposition
Methods was the first one held in Switzerland and it took place in the Italian
speaking part of Switzerland in Lugano.

The main technical content of the DD conference series has always been
mathematical, but the principal motivation was and is to make efficient use of
distributed memory computers for complex applications arising in science and
engineering. As we approach the dawn of exascale computing, where we will
command 1018 floating point operations per second, clearly efficient and mathe-
matically well-founded methods for the solution of large-scale systems become
more and more important—as does their sound realization in the framework of
modern HPC architectures. In fact, the massive parallelism, which makes exascale
computing possible, requires the development of new solutions methods, which are
capable of efficiently exploiting this large number of cores as well as the connected
hierarchies for memory access. Ongoing developments such as parallelization in
time, asynchronous iterative methods, or nonlinear domain decomposition methods
show that this massive parallelism does not only demand for new solution and
discretization methods, but also allows to foster the development of new approaches.

v
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The progress obtained in domain decomposition techniques during the last
decades has led to a broadening of the conference program in terms of methods
and applications. Multi-physics, nonlinear problems, and space-time decomposition
methods are more prominent these days than they have been previously. Domain
decomposition has always been an active and vivid field, and this conference series
is representing well the highly active and fast advancing scientific community
behind it. This is also due to the fact that there is basically no alternative to domain
decomposition methods as a general approach for massively parallel simulations at
a large scale. Thus, with growing scale and growing hardware capabilities, also the
methods can—and have to–improve.

However, even if domain decomposition methods are motivated historically by
the need for efficient simulation tools for large scale applications, there are also
many interesting aspects of domain decomposition, which are not necessarily moti-
vated by the need for massive parallelism. Examples are the choice of transmission
conditions between sub-domains, new coupling strategies, or the principal handling
of interface conditions in problem classes such as fluid structure interaction or
contact problems in elasticity.

While research in domain decomposition methods is presented at numerous
venues, the International Conference on Domain Decomposition Methods is the
only regularly occurring international forum dedicated to interdisciplinary tech-
nical interactions between theoreticians and practitioners working in the develop-
ment, analysis, software implementation, and application of domain decomposition
methods.

The list of previous Domain Decomposition Conferences is the following:

1. Paris, France, January 7–9, 1987
2. Los Angeles, USA, January 14–16, 1988
3. Houston, USA, March 20–22, 1989
4. Moscow, USSR, May 21–25, 1990
5. Norfolk, USA, May 6–8, 1991
6. Como, Italy, June 15–19, 1992
7. University Park, Pennsylvania, USA, October 27–30, 1993
8. Beijing, China, May 16–19, 1995
9. Ullensvang, Norway, June 3–8, 1996

10. Boulder, USA, August 10–14, 1997
11. Greenwich, UK, July 20–24, 1998
12. Chiba, Japan, October 25–29, 1999
13. Lyon, France, October 9–12, 2000
14. Cocoyoc, Mexico, January 6–11, 2002
15. Berlin, Germany, July 21–25, 2003
16. New York, USA, January 12–15, 2005
17. St. Wolfgang-Strobl, Austria, July 3–7, 2006
18. Jerusalem, Israel, January 12–17, 2008
19. Zhangjiajie, China, August 17–22, 2009
20. San Diego, California, USA, February 7–11, 2011
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21. Rennes, France, June 25–29, 2012
22. Lugano, Switzerland, September 16–20, 2013

International Scientific Committee on Domain
Decomposition Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, CU Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Roland Glowinski, University of Houston, USA
• Laurence Halpern, University Paris 13, France
• Ronald Hoppe, Universities of Augsburg, Germany, and Houston, USA
• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Alfio Quarteroni, EPFL, Switzerland
• Olof Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong

About the Twenty-Second Conference

The twenty-second International Conference on Domain Decomposition Methods
had 172 participants from over 24 countries. It was the first one to be held in
Switzerland. It was hosted by the Institute of Computational Science (ICS) at USI.
The ICS was founded in 2009 towards realizing the vision of USI to become a new
scientific and educational node for computational science in Switzerland. ICS has
since then grown into a place with strong competences in mathematical modeling,
numerical simulation, and high-performance computing. Research areas range from
numerical simulation in science, medicine, and engineering, through computational
time series analysis and computational shape analysis, to computational cardiology
and the (multi-scale) simulation of physical and biological systems and processes.

As in previous meetings, DD22 featured a well-balanced mixture of established
and new topics, such as the manifold theory of Schwarz methods, isogeometric
analysis, discontinuous Galerkin methods, exploitation of modern HPC architec-
tures, and industrial applications. From the conference program, it is evident that
the growing capabilities in terms of theory and available hardware allow for
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increasingly complex nonlinear and multi-physics simulations, confirming the huge
potential and flexibility of the domain decomposition idea.

The conference, which was organized over an entire week, featured presentations
of three different types: The conference contained

• 14 invited presentations, fostering also younger scientists and their scientific
development, selected by the International Scientific Committee,

• a poster session, which also gave rise to intense discussions with the mostly
younger presenting scientists,

• 13 minisymposia, arranged around a special topic,
• 14 sessions of contributed talks.

The present proceedings volume contains a selection of 66 papers, split into 5
plenary papers, 35 minisymposia papers, and 26 contributed papers.

Sponsoring Organizations

• Swiss National Science Foundation
• Nvidia
• Fondazione Cardiocentro Ticino
• Swiss Mathematical Society
• Swiss National Supercomputing Centre
• CRUS via the PhD school FOMICS Foundations of Mathematics and Informatics

for Computer Simulations in Science and Engineering located at ICS/USI.

Local Organizing Committee Members

• Rolf Krause (ICS/USI Lugano; Chair)
• Thomas Dickopf (ICS/USI Lugano)
• Martin Gander (U Genève)
• Ralf Hiptmair (ETH Zürich)
• Luca F. Pavarino (U Milano)
• Alfio Quarteroni (EPF Lausanne)
• William Sawyer (CSCS Lugano)
• Olaf Schenk (ICS/USI Lugano)

The organizing committee would like to thank USI staff for their invaluable
support and the sponsors for the financial support.
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Research Activity in Domain Decomposition According to
DD22 and Its Proceedings

The conference and the proceedings contain three parts: the plenary presentations,
the minisymposia presentations, and the contributed talks.

Plenary Presentations

The plenary presentations of the conference have been dealing with established
topics in Domain Decomposition as well as with new approaches, including Domain
Decomposition for multiphysics problems and nonlinear problems.

• Nonlinear FETI-DP methods. Oliver Rheinbach (TU Freiberg, Germany)
• Domain decomposition methods for high-order discontinuous Galerkin dis-

cretizations. Paola F. Antonietti (MOX Milano, Italy)
• Numerical treatment of tensors and new discretisation paradigms. Wolfgang

Hackbusch (MPI Leipzig, Germany)
• Domain decomposition methods in isogeometric analysis. Lourenço Beirão da

Veiga (University of Milano, Italy)
• Auxiliary space multigrid based on domain decomposition. Johannes Kraus

(RICAM Linz, Austria)
• Domain decomposition in nonlinear function spaces. Oliver Sander (RWTH

Aachen, Germany)
• Numerical solution of PDE eigenvalue problems in acoustic field computation.

Volker Mehrmann (TU Berlin, Germany)
• Applications of the Voronoi implicit interface method to domain decomposition.

James A. Sethian (UC Berkeley, USA)
• Robin-Neumann explicit schemes in fluid-structure interaction problems. Marina

Vidrascu (INRIA Le Chesnay, France)
• An assembled inexact Schur-complement preconditioner. Joachim Schöberl (TU

Wien, Austria)
• Local simplification of Darcy’s equations with pressure dependent permeability.

Christine Bernardi (LJLL Paris, France)
• BDDC deluxe domain decomposition algorithms. Olof B. Widlund (NYU, USA)
• Coupling Stokes and Darcy equations: modeling and numerical methods. Marco

Discacciati (UPC Barcelona, Spain)
• Robust discretization and iterative methods for multi-physics systems. Jinchao

Xu (Penn State University, USA)
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Minisymposia

There were 13 minisymposia organized within DD22:

1. Advances in FETI-DP and BDDC methods (Axel Klawonn, Olof B. Widlund)
This minisymposium focuses on recent developments of the closely related

families of BDDC and FETI-DP domain decomposition algorithms. These
algorithms have proven very effective in a variety of applications. Talks are
offered on applications to nonlinear problems, discontinuous Galerkin methods,
mixed finite elements for the Stokes equations with continuous pressures, and
on adaptive coarse spaces based on the solution of suitable eigenvalue prob-
lems. Recently, there has also been considerable activity in the development
of a new variant of BDDC, which is due to Clark Dohrmann. Among the
applications of these new ideas are algorithms for H(div) in 3D and for new
special discontinuous approximations of H(curl) problems in 2D.

2. Achieving scalability in domain decomposition methods: advances in coarse
spaces and alternatives (Felix Kwok, Kevin Santugini)

With the increasing availability of massively parallel machines, scalability
becomes a crucial factor in the design of domain decomposition algorithms.
To be scalable, an iterative algorithm must have a convergence rate that does
not depend on the number of subdomains. This precludes methods in which
subdomains send information only to their direct neighbors, since they cannot
converge in fewer iterations than the diameter of the connectivity graph of the
decomposition. A traditional way of introducing long-range communication is
to add a coarse space component; there are also other methods inspired by
multilevel decompositions and interpolation. Speakers present their work on
either innovative coarse spaces or new alternatives to coarse spaces.

3. Non-overlapping discretization methods and how to achieve the DDM-
paradigm (Ismael Herrera, Luis Miguel de La Cruz)

The DDM-paradigm is to obtain the global solution by solving local prob-
lems exclusively. The introduction of non-overlapping DDMs represented an
important step towards achieving this paradigm. However, in non-overlapping
DDMs, the interface-nodes are shared by two or more subdomains of the
coarse-mesh. In this minisymposium, we present the non-overlapping dis-
cretization methods, which use systems of nodes with the property that each
node belongs to one and only one subdomain of the coarse mesh. Then, it
is explained how using non-overlapping discretization methods the DDM-
paradigm can be achieved.

4. Solution techniques for discontinuous Galerkin methods (Blanca Ayuso de
Dios, Susanne Brenner)

Based on the discontinuous finite element spaces, DG methods are extremely
versatile and have many attractive features: local conservation properties;
flexibility in designing hp-adaptivity strategies, and built-in parallelism. DG
methods can deal robustly with PDEs of almost any kind. However, their use
in many real applications is still limited by the larger number of degrees-of-
freedom required compared with other classical discretization methods. The
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aim of this minisymposium is to bring together experts in the field to discuss
and identify the most relevant aspects of the state of the art for DG methods,
including design, theoretical analysis, and issues related to the implementation
and applications of the various solution techniques.

5. Solvers for isogeometric analysis and applications (Lourenço Beirão da Veiga,
Luca F. Pavarino, Simone Scacchi)

Isogeometric analysis (IGA) is a novel and fast developing technology for
the numerical solution of PDEs, that integrates CAD geometric parametrization
and finite element analysis. Since its introduction in 2005 by T.J.R. Hughes and
co-workers, IGA is having a strong impact on the engineering and scientific
computing community, producing a large amount of journal publications and
developing advanced computer codes. In recent years, researchers in this
quickly growing field have started to focus on the design and analysis of effi-
cient solvers for IGA discrete systems, and in particular of multilevel domain
decomposition methods yielding parallel and scalable preconditioners. The
high (global) regularity and polynomial degree of the NURBS spaces employed
in IGA discretizations introduce both new difficulties and opportunities for
the construction and analysis of novel solution techniques. The aim of the
minisymposium is to bring together researchers in both fields of IGA and
domain decomposition methods, focusing on the latest developments and on
the new research pathways and applications.

6. Efficient solvers for heterogeneous nonlinear problems (Juan Galvis, Lisandro
Dalcin, Nathan Collier, Victor Calo)

Multiple scales and nonlinearities are present in many applications, such as
porous media and material sciences. Heterogeneities and disparity in media
properties make it difficult to design robust preconditioning techniques and
coarse multiscale approximations. Certainly, the presence of nonlinearities or
many possible (properly parametrized) scenarios make this task even more
challenging. In particular, the design and analysis of iterative solvers with good
convergence properties with respect to physical parameters and nonlinearities is
important for applications. A main interest of this minisymposium is to develop
techniques and algorithms to approach efficiently heterogeneous and nonlinear
problems such as Richard’s equation for heterogeneous porous media and other
nonlinear models. In this session, we bring together experts working on domain
decomposition methods for multiscale and nonlinear problems.

7. Domain decomposition techniques in practical flow applications (Menno
Genseberger, Mart Borsboom)

Last decade’s domain decomposition techniques have been incorporated in
large computer codes for real-life applications. By bringing together some of
them, this minisymposium aims to (1) illustrate the importance of domain
decomposition (for modeling flexibility, parallel performance, etc.) in the appli-
cation field and (2) highlight the applied domain decomposition techniques, to
discuss these approaches and, reconsider or further improve them. Application
area is restricted to hydrodynamics to have a good basis for further discussion.
The presentations consider domain decomposition techniques in large computer
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codes being used worldwide for shallow water flow in coastal areas, lakes,
rivers, ocean flow, and climate modeling.

8. Domain decomposition methods in implementations (Christian Engwer, Guido
Kanschat)

Domain decomposition and subspace correction methods are tools with
potential for high impact on practical applications. They yield efficient solvers
for high performance simulations of multi-physics applications or multi-scale
problems, way beyond the realm of currently available theoretical analysis.
They are in particular suitable for generic implementations in tool-boxes
and programming libraries, since they replicate structures existing on the
whole computational domain on subdomains, and their mathematical structure
coincides with parallel implementation. Thus, it is possible to implement
these methods in a way that their optimal performance can be evaluated for
the provable problems, but application of the very same code structures to
more advanced problems is straightforward. We bring together experts on the
development of software frameworks for high performance computing and on
challenging applications to discuss possible approaches for generic implemen-
tations as well as demands posed by advanced applications and performance
results. By incorporating improved domain decomposition algorithms into
high-level frameworks, they can be made readily accessible to a wide audience
without particular knowledge of their technical details. The talks focus on
different challenges in the context of domain decomposition methods, e.g.,
multi-physics simulations, construction of preconditioners or generic parallel
simulations, and discuss how such topics can be incorporated into a general
purpose framework and made available to the application level.

9. Parallel multigrid methods (Karsten Kahl, Matthias Bolten)
Modern simulation codes must solve extremely large systems of equations—

up to billions of equations. Hence, there is an acute need for scalable parallel
linear solvers, i.e., algorithms for which the time to solution (or number of
iterations) remains constant as both problem size and number of processors
increase. Multigrid (MG), known to be an optimal serial algorithm, is often
scalable when implemented on a parallel computer. However, newly emerging
many-core architectures present several new challenges that must be addressed
if these methods are to be competitive on such computing platforms. Here, we
discuss new techniques for parallelizing MG solvers for various problems.

10. Efficient solvers for frequency domain wave problems (Victorita Dolean,
Martin J. Gander, Ivan Graham)

In this minisymposium, we explore iterative methods for frequency domain
wave problems such as the Helmholtz and Maxwell equations. Driven by
important technological applications, considerable recent progress in this topic
aims towards obtaining a wavenumber robust efficient scalable solver, accom-
panied by a rigorous analysis. The minisymposium discusses several areas
of recent progress including sweeping and source transfer preconditioners,
techniques based on the principle of limited absorption, and new advances in
optimized Schwarz methods.
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11. Domain decomposition methods for environmental modeling (Florian Lemarié,
Antoine Rousseau)

Many applications in geophysical fluid dynamics and natural hazards pre-
diction require the development of domain decomposition methods (DDMs)
either to optimally use the increasing computational power or to accurately
simulate multi-physics phenomena. Due to the complexity of such numerical
codes, additional constraints arise in the design of the numerical methods as,
for example, in space-time discretizations, subgrid scale parameterizations,
physical/numerical interfaces, etc. In this context, a compromise between
efficient numerical methods and their according constraints imposed by the
target applications must be found. The aim of this minisymposium is to bring
together theoretical and applied scientists working on realistic environmental
simulations. Work presented explores a range of applications from hydrologi-
cal, oceanic, and atmospheric modeling to earthquake dynamics.

12. Efficient solvers (Sébastien Loisel)
Solving large problems is a core interest in domain decomposition. In order

to be useful, an algorithm should be efficient—whether from high paralleliza-
tion, ease of implementation, or low floating point operation counts. One may
improve the efficiency of algorithms by carefully choosing artificial interface
boundary conditions (Dirichlet, Neumann, or Robin); this choice then impacts
the design and implementation of algorithms. A further issue is the physical
nature of the problem (e.g., elliptic or parabolic, with possible heterogeneities).
In this minisymposium, we discuss algorithms related to the optimized Schwarz
and FETI methods and consider especially their performance advantages.

13. Space-time parallel methods (Daniel Ruprecht, Robert Speck)
The number of cores in modern supercomputers increases rapidly, requiring

new inherently parallel algorithms in order to actually harness their computa-
tional capacities. This fact leads to increasing need for methods that provide
levels of concurrency in addition to already ubiquitous spatial parallelization.
For time-dependent problems, algorithms that replace classical serial time-
stepping with typically iterative approaches more amenable to parallelization
have been demonstrated to be promising. The minisymposium features four
talks on recent methodological and application-related developments for three
different methods: Parareal, revisionist deferred corrections (RIDC), and the
parallel full approximation scheme in space and time (PFASST).

Contributed Presentations

The contributed talks have been distributed over 14 different sessions:

1. Helmholtz equation
2. Implementation strategies
3. Flow and porous media
4. Adaptivity in HPC simulations
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5. Additive Schwarz methods
6. Optimized Schwarz methods
7. Parallelization in time
8. Maxwell’s equation
9. Inverse problems

10. Preconditioners and solvers
11. Non-matching meshes
12. Multiphysics problems
13. Parallelization in time
14. FETI and BDD methods
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Multigrid Algorithms for High Order
Discontinuous Galerkin Methods

Paola F. Antonietti, Marco Sarti, and Marco Verani

1 Introduction

In the framework of multigrid solvers for Discontinuous Galerkin (DG) schemes,
the first contributions are due to [10, 16]. In [16] a V-cycle preconditioner for a
Symmetric Interior Penalty (SIP) discretization of an elliptic problem is analyzed.
They prove that the condition number of the preconditioned system is uniformly
bounded with respect to the mesh size and the number of levels. In [10] V-cycle,
F-cycle and W-cycle multigrid schemes for SIP discretizations are presented and
analyzed, employing the additive theory developed in [8, 9]. A uniform bound for
the error propagation operator is shown provided the number of smoothing steps
is large enough. All the previously cited works focus on low order, i.e., linear, DG
approximations. With regard to high order DG discretizations, h- and p-multigrid
schemes are successfully employed for the numerical solution of many different
kinds of problems, see e.g. [6, 14, 20–22, 24], even if only few theoretical results
are available that show the convergence properties of the underlying algorithms.
In the context of fast solution techniques for high order DG methods, we mention
[1, 11, 12], see also [3] were a substructuring preconditioner is analyzed for an
hp domain decomposition method with interior penalty mortaring. Recently, in
[2] a convergence analysis of W-cycle h- and p-multigrid algorithms for a wide
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class of high order DG schemes is provided. More precisely, it is shown that, if
a Richardson smoother is employed, the W-cycle algorithms converge uniformly
with respect the granularity of the underlying mesh and the number of levels; but
the contraction factor of the scheme deteriorates when increasing the polynomial
order. As a further development of the results contained in [2], the aim of this
paper is to investigate the performance of h- and p-multigrid algorithms for high
order DG methods, considering a wide class of smoothers and addressing both
two- and three-dimensional test cases. The paper is organized as follows. In Sect. 2
we briefly introduce the model problem and its DG discretization. The h- and p-
multigrid methods are described in Sect. 3. The numerical experiments are presented
in Sect. 4, where the W-cycle schemes are tested on two- and three-dimensional
problems.

2 Model Problem and DG Methods

Given an open, bounded polygonal/polyhedral domain ˝ and a given function
f 2 L2.˝/, we consider the weak formulation of the Poisson problem with
homogeneous boundary conditions: find u 2 H1

0.˝/ such that

.ru;rv/˝ D . f ; v/˝ 8v 2 H1
0.˝/; (1)

where .�; �/˝ denotes the standard L2 product. We consider a sequence of discontin-
uous finite dimensional spaces Vk, k D 1; : : : ;K, defined as

Vk D fv 2 L2.˝/ W vjE 2M
pk .T/ 8 T 2 Tkg k D 1; : : : ;K;

where M
pk is a suitable space of polynomials of degree pk � 1 and Tk is a partition

of˝ with granularity hk. The sequence of spaces Vk is generated with two different
approaches, depending on whether we are interested in h- or p-multigrid algorithms.
In the h-multigrid algorithm, we fix the polynomial approximation degree pk D p
for all k D 1; : : : ;K, and the spaces Vk are associated to a sequence of nested
partitions fTkgkD1;:::;K obtained from successive uniform refinements of an initial
(coarse) shape regular and quasi-uniform partition T1, cf. Fig. 1 (left). In p-multigrid

Level k

Level k − 1

hk

hk−1

pk

pk−1

Fig. 1 Sample of the space Vk and Vk�1 in the h- (left) and p- (right) multigrid schemes
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schemes, the grid is kept fixed on all the levels and from the level k to the level k�1
the polynomial degree is lowered down, i.e., pk�1 � pk for any k D 2; : : : ;K, cf.
Fig. 1 (right). Notice that, with such a construction the spaces Vk are nested, i.e.,
V1 � V2 � � � � � VK . For the sake of simplicity, we will also suppose that the
polynomial degrees pk satisfy the following local bounded variation among levels:
there exists a constant C > 0 such that pk � Cpk�1, for any k D 2; : : : ;K.

For any level k, we denote by F I
k and FB

k the sets of interior and boundary faces
of Tk, respectively, set Fk D F I

k [ FB
k , and define the lifting operators

.Rk.�/;�/˝ D �
X

F2Fk

.�; ff�gg/F 8� 2 ŒVk�
d; k D 1; : : : ;K;

.Lk.v/;�/˝ D �
X

F2F I
k

.v; ���/F 8� 2 ŒVk�
d; k D 1; : : : ;K;

where the jump and average trace operators are defined as in [5].
We next define the DG bilinear forms Ak.�; �/ W Vk � Vk ! R, k D 1; : : : ;K, as

Ak.w; v/ D .rwCRk.�w�/C Lk.ˇ � �w�/;rv CRk.�v�/C Lk.ˇ � �v�//˝
� �.Rk.�w�/;Rk.�v�//˝ C

X

F2Fk

.�k�w�; �v�/F (2)

where, for a constant ˛k > 0, the stabilization function �k is defined as

�kjF D ˛kp2k
min fdiam.TC/; diam.T�/g F 2 F I

k ; �kjF D ˛kp2k
diam.T/

F 2 FB
k ;

T˙ being the two neighboring elements sharing the face F 2 F I
k . For � D 1 and

ˇ D 0, the bilinear form (3) correspond to the SIP method [4], whereas for � D 1

and ˇ a uniformly bounded (and possibly null) vector in R
d we obtain the LDG

bilinear form [13].
We are interested in solving the following problem on the finest level K:

find uK 2 VK such that AK.uK; vK/ D . f ; vK/˝ 8vK 2 VK ; (3)

with a W-cycle multigrid method. Fixing a basis for VK , Eq. (3) is equivalent to the
following linear system of equations

AKuK D FK; (4)

where AK and FK are the matrix representations of the bilinear form AK.�; �/ and of
the right hand side in (3), respectively, and where, with a slight abuse of notation,
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we used to the same symbol to denote both a function in the finite element space VK

and the vector of its expansion coefficients in a given basis.
It can be shown that the bilinear form AK.�; �/ defined in (3) is continuous and

coercive with respect to the following (mesh-dependent) DG norm

kvk2DG;K D
X

T2TK

krvk2L2.T/ C
X

F2FK

k�1=2K �v�k2L2.F/; (5)

and that the following error estimates are satisfied, cf. [18, 23, 25] for example.

Theorem 1 Let u be the exact solution of problem (1) such that u 2 HsC1.TK/,
s � 1, and let uK 2 VK be the DG solution of problem (3). Then,

ku � uKkDG;K . hmin.pK ;s/
K

ps��=2
K

kukHsC1.TK/
; (6)

with � D 0 whenever a continuous interpolant can be built, cf. [25], or the projector
of [15] can be employed and � D 1 otherwise.

3 W-Cycle h- and p-Multigrid Algorithms

As usual in the multigrid framework, we will employ a recursive algorithm to
describe the multigrid scheme. To this aim, we define on each level k the problem

Akzk D bk;

where Ak is the matrix representation of the bilinear form (3), and zk, bk are vectors
of dimension dim.Vk/. The first ingredient to build a multigrid algorithm are the
intergrid transfer operators, which we denoted by Rk

k�1 (prolongation from Vk�1 to
Vk) and by Rk�1

k (restriction from Vk to Vk�1). Given we are considering nested
spaces, we can simply take Rk

k�1 as the classical embedding operator and Rk�1
k as

its adjoint with respect to the L2 scalar product. The second ingredient is a suitable
smoother, which we denote by Bk. Denoting by u.0/k 2 Vk the initial guess, and by
m1 and m2 the number of pre- and post-smoothing steps, respectively, the W-cycle
multigrid algorithm uk D MGW.k; bk; u

.0/
k ;m1;m2/ is defined recursively as shown

in Algorithm 1. We then employ Algorithm 1 to solve the linear system (4), i.e.,

uK D MGW.K; bK ; u
.0/
K ;m1;m2/:

Notice that if the spaces Vk are associated to a sequence of grids Tk with variable
mesh size and the polynomial degree is kept fixed on all the levels we obtain the
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Algorithm 1 uk D MGW.k; bk; u
.0/
k ;m1;m2/

if k=1 then F Solution on the coarsest level
Solve Akuk D bk

else
for ` D 1; : : : ;m1 do F Pre-smoothing

Set QBk D Bk, if ` is odd and QBk D BT
k if ` is even.

u.`/k D u.`�1/
k C QB�1

k .bk � Aku.`�1/
k /;

end for
Set rk�1 D Rk�1

k .bk � Aku.m1/k /; F Restriction of the residual

Set u.0/k�1 D 0;

Call Nek�1 D MGW .k� 1; rk�1; u
.0/
k�1;m1;m2/; F Recursion

Call ek�1 D MGW .k� 1; rk�1; Nek�1;m1;m2/;
Set u.m1C1/

k D u.m1/k C Rk
k�1ek�1;

for ` D m1 C 2; : : : ;m1 C m2 C 1 do F Post-smoothing
Set QBk D Bk, if ` is odd and QBk D BT

k if ` is even.

u.`/k D u.`�1/
k C QB�1

k .bk � Aku.`�1/
k /;

end for
Set uk D u.m1Cm2C1/

k ;
end if

W-cycle h-multigrid scheme, whereas if the mesh is kept fixed and the polynomial
degree is lower down from one level to a coarser one we then have a W-cycle p-
multigrid algorithm.

We next introduce the following operator Pk�1
k W Vk ! Vk�1

Ak�1.Pk�1
k v;w/ D Ak.v;R

k
k�1w/ 8v 2 Vk;w 2 Vk�1;

and the following discrete norm

jjjvjjj21;k D .Akv; v/k D Ak.v; v/ 8v 2 Vk:

The error propagation operator associated to the W-cycle multigrid scheme is given
by

Ek;m1;m2v D
(
0 k D 1;
Gm2

k .Ik � Rk
k�1.Ik � E2k�1;m1;m2 /P

k�1
k /Gm1

k v k > 1;

where Ik is the identity operator, and Gk D Ik � B�1k Ak, cf. [7, 17]. The following
result, which is proved in [2], state that, whenever a Richardson smoother is
employed, the W-cycle algorithms converge uniformly with respect to the granu-
larity of the underlying mesh and the number of levels, provided the number of
smoothing steps is chosen sufficiently large, but the contraction factor of the scheme
deteriorates when increasing the approximation order.
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Theorem 2 For any k, let Bk be the Richardson smoother, i.e., Bk D �kIk, where
�k is an upper bound for the maximum eigenvalue of Ak. Then, there exist a constant
CW > 0 and an integer mW that are independent of the mesh size, but dependent on
the polynomial degree, such that

jjjEk;m1;m2vjjj1;k � CW
p2C�k

.1C m1/1=2.1C m2/1=2
jjjvjjj1;k 8v 2 Vk; k D 2; : : : ;K;

provided m1 C m2 � mW D mW.pk/.

4 Numerical Results

In this section we test the performance of the W-cycle h- and p-multigrid schemes in
both two- and three-dimensional test cases and with different choices of smoothers.
We compute the convergence factor as

� D exp

�
1

N
ln
krNk2
kr0k2

�
;

with N denoting the iteration counts needed to achieve convergence up to a relative
tolerance of 10�8 and rN and r0 denoting the final and initial computed residuals,
respectively. Throughout the section we have employed an equal number of pre- and
post-smoothing steps, i.e., m1 D m2 D m, and we have set the penalty parameter
˛k appearing in the definition of the DG bilinear form as ˛k D 10, for any level
k D 1; : : : ;K.

We first consider a two-dimensional example with ˝ D .0; 1/2 and focus
on the performance of the h-multigrid algorithm. To this aim, we fix a coarse
(triangular/Cartesian) grid T1 with granularity h1 D 0:25 and consider a sequence of
nested grids Tk, k D 2; : : : ;K, obtained from successive uniform refinements of T1.
In Table 1 we report the computed convergence factors as a function of the number
of smoothing steps m and the number of levels K, fixing the polynomial degree
pk D p D 1; 2 for all the levels k D 1; : : : ;K. The results reported in Table 1 have
been obtained with the SIP method on structured triangular grids and with the LDG
scheme on Cartesian grids, and employing a Richardson smoother. The symbol
“-” means that the maximum number of 1000 iterations has been reached without
achieving the desired tolerance. We have repeated the same set of experiments
employing p D 3; 4, and the same behavior as been observed; for brevity these
results have been omitted. As expected from Theorem 2, the convergence factor
is independent of the number of levels K, decreases when m increases, and the
performance of the algorithm deteriorates as p grows up.

We next fix the number of pre- and post-smoothing steps m D 6, and investigate
how the performance of the h-multigrid algorithm depends on the polynomial
degree, always employing a Richardson smoother. Table 2 shows the computed
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Table 1 2D test case, SIP and LDG methods, h-multigrid scheme

SIP, triangular grids LDG, cartesian grids
K D 2 K D 3 K D 4 K D 5 K D 2 K D 3 K D 4 K D 5

p D 1

m D 2 0.77 0.78 0.78 0.78 – – – –

m D 4 0.60 0.62 0.62 0.62 0.86 0.88 0.87 0.87

m D 10 0.38 0.40 0.40 0.39 0.74 0.76 0.76 0.75

p D 2

m D 2 0.93 0.94 0.93 0.78 0.96 0.96 0.96 0.96

m D 4 0.87 0.88 0.88 0.62 0.93 0.93 0.93 0.92

m D 10 0.76 0.77 0.77 0.39 0.88 0.88 0.88 0.87

Convergence factor as a function of the number of levels K, the polynomial approximation degree
p, and the number of smoothing steps m. Richardson smoother

Table 2 2D test case, SIP and LDG methods, h-multigrid scheme

SIP, triangular grids LDG, cartesian grids
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

p D 1 0.50 0.51 0.50 0.81 0.82 0.82

p D 2 0.83 0.84 0.84 0.91 0.91 0.91

p D 3 0.91 0.92 0.91 0.94 0.94 0.93

p D 4 0.95 0.94 0.93 0.96 0.95 0.95

p D 5 0.96 0.95 0.94 0.97 0.95 0.96

p D 6 0.95 0.96 0.96 0.98 0.96 0.97

Convergence factor as a function of the number of levels K and the polynomial approximation
order p. Richardson smoother (m D 6)

convergence factors as a function of the polynomial degree p D 1; 2; : : : ; 6 and
the number of levels K D 2; 3; 4, for both the SIP and LDG methods. We observe
that, as predicted by Theorem 2, the performance of the h-multigrid algorithm are
independent of the number of levels but deteriorates as p increases.

We next test the performance of the h-multigrid scheme employing different
smoothers as the Gauss-Seidel smoother of [16], an (elementwise) block Gauss-
Seidel smoother and the polynomial smoother proposed in [19]. In Table 3 we
report the computed convergence factors as a function of the number of pre-
and post-smoothing steps m D 2; 4; 10, the number of levels K D 2; 3; 4 and
the polynomial approximation degree p D 1; 2; 3; 4. These results have been
obtained with the SIP method and employing triangular grids. In all the cases
the performance of the h-multigrid algorithm seems to be fairly independent of
the number of levels. Moreover, as expected, the convergence factor decreases
as the number of smoothing steps increases, but still deteriorates as p grows
up (even if the dependence of the convergence factor on p seems to be weaker
than for the Richardson smoother). Moreover, all the smoothers outperform the
Richardson smoother and the polynomial smoother seems to provide the best
convergence factors. The extension of the convergence analysis presented in [2] to
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Table 3 2D test case, SIP method (triangular grids), h-multigrid scheme

p D 1 p D 2 p D 3 p D 4

K ! 2 3 4 2 3 4 2 3 4 2 3 4

Gauss-Seidel smoother

m D 2 0.55 0.56 0.56 0.80 0.80 0.80 0.88 0.87 0.86 0.92 0.92 0.93

m D 4 0.40 0.41 0.41 0.68 0.68 0.68 0.79 0.78 0.77 0.86 0.86 0.86

m D 10 0.20 0.21 0.21 0.44 0.44 0.44 0.61 0.59 0.58 0.71 0.71 0.70

Block Gauss-Seidel smoother

m D 2 0.55 0.56 0.56 0.71 0.72 0.72 0.82 0.82 0.82 0.84 0.84 0.84

m D 4 0.40 0.42 0.41 0.54 0.56 0.55 0.70 0.70 0.70 0.73 0.73 0.73

m D 10 0.20 0.21 0.21 0.27 0.31 0.29 0.47 0.47 0.46 0.51 0.50 0.50

Polynomial smoother

m D 2 0.30 0.31 0.31 0.68 0.69 0.68 0.80 0.80 0.78 0.89 0.88 0.87

m D 4 0.17 0.17 0.17 0.50 0.50 0.49 0.66 0.65 0.63 0.80 0.79 0.78

m D 10 0.07 0.07 0.06 0.21 0.21 0.21 0.40 0.38 0.37 0.60 0.59 0.59

Convergence factors as a function of the number of levels K, the polynomial approximation
degree p, and the number of smoothing steps m. Gauss-Seidel, block Gauss-Seidel and polynomial
smoothers

Table 4 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, cartesian grid
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

m D 2 0.91 0.91 0.94 0.95 0.95 0.97

m D 4 0.85 0.85 0.90 0.88 0.89 0.92

m D 10 0.78 0.77 0.80 0.86 0.86 0.89

Convergence factor as a function of the number of levels K and the number of smoothing steps m.
Richardson smoother, pK D 5

h-multigrid algorithms based on these (more effective) smoothers is currently under
investigation.

We next turn our attention to the performance of the p-multigrid scheme. To
this aim, we fix the finest computational level K, the mesh TK and the polynomial
approximation degree pK � K employed therein. Then, for each level k, we set
pk�1 D pk�1, k D K;K�1; : : : ; 2. In Table 4 we report the computed convergence
factors obtained with pK D 5 and varying the number of smoothing steps m and
the number of levels K. The results reported in Table 4 have been obtained with
the LDG and SIP methods and employing a Richardson smoother. Next, we fix
the number of smoothing steps m D 6 and vary the polynomial approximation
degree pK employed on the finest level. The results obtained with the SIP method
and employing the Richardson smoother are reported in Table 5. From the results
reported in Table 4 and in Table 5, we can conclude that the p-multigrid scheme
seems to be asymptotically uniform with respect to the number of levels (notice that
in this case the ratio pk=pk�1 is not constant from one level to the other), and that, as
expected, the performance of the algorithm improves as m increases. We finally
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Table 5 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, Cartesian grid
K D 2 K D 3 K D 4 K D 2 K D 3 K D 4

pK D 2 0.62 – – 0.83 – –

pK D 3 0.77 0.77 – 0.89 0.90 –

pK D 4 0.79 0.80 0.86 0.86 0.89 0.90

pK D 5 0.83 0.82 0.87 0.89 0.89 0.92

pK D 6 0.86 0.86 0.86 0.91 0.91 0.90

Convergence factor as a function of the number of levels K and the polynomial degree pK .
Richardson smoother (m D 6)

Table 6 2D test case, SIP method (triangular grid), p-multigrid scheme

pK D 2 pK D 3 pK D 4 pK D 5 pK D 6

K ! 2 2 3 2 3 4 2 3 4 2 3 4

m D 2 0.76 0.79 0.79 0.84 0.84 0.85 0.85 0.85 0.85 0.88 0.87 0.86

m D 4 0.60 0.66 0.66 0.73 0.73 0.73 0.75 0.75 0.75 0.79 0.78 0.77

m D 6 0.48 0.57 0.56 0.63 0.63 0.63 0.67 0.67 0.67 0.71 0.71 0.70

m D 10 0.34 0.44 0.44 0.49 0.49 0.49 0.56 0.56 0.56 0.59 0.58 0.58

Convergence factor as a function of the number of levels K, the polynomial degree pK , and the
number of smoothing steps m. Gauss-Seidel smoother

address the performance of the p-multigrid method when employing a different
smoother. For this set of experiments we have considered the SIP formulation
and tested the Gauss-Seidel smoother. The results reported in Table 6 show the
computed convergence factors as a function of the number of levels K, the number
of smoothing steps m and the polynomial degree pK employed on the finest level.
The computed convergence factor seems to be fairly insensitive to the number of
levels employed in the algorithm and it improves as the number of pre- and post-
smoothing steps increases (notice that, no restriction on the minimum number of
smoothing steps seems to be needed in this case). Nevertheless, the convergence
factor still depends on the polynomial degree even if such a dependence seems to be
weaker than that observed employing the Richardson smoother (cf. Table 5). Finally,
comparing these results with the ones reported in Table 5 it is clear that, as for
the h- multigrid algorithm, the Gauss-Seidel smoother outperforms the Richardson
smoother.

We next present some three-dimensional numerical experiments. We have
employed an h-multigrid scheme to solve the linear system of equations arising
from the SIP discretization of model problem (1) posed on˝ D .0; 1/3. We employ
a sequence of tetrahedral meshed obtained by successive uniform refinements of an
initial coarse grid with granularity h1 D 0:25. As before, we fix pk D p for all
the levels k D 1; 2; : : : ;K and consider the Richardson, the Gauss-Seidel and the
symmetric Gauss-Seidel smoothers. The computed convergence factors varying the
number of levels K, the number of pre-and post-smoothing steps m as well as the
polynomial degree p are reported in Table 7. We observe that the performance of
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Table 7 3D test case, SIP method (tetrahedral grids), h-multigrid scheme

p D 1 pD 2 p D 3

K D 2 K D 3 K D 4 K D 2 K D 3 K D 4 K D 2 K D 3

Richardson smoother

m D 2 0.57 0.55 0.53 0.82 0.81 0.80 0.90 0.90

m D 4 0.71 0.71 0.69 0.91 0.90 0.90 0.95 0.95

m D 10 0.46 0.44 0.41 0.79 0.78 0.77 0.88 0.88

Gauss-Seidel smoother

m D 2 0.57 0.55 0.53 0.82 0.81 0.79 0.89 0.89

m D 4 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80

m D 10 0.13 0.15 0.12 0.43 0.41 0.40 0.61 0.60

Symmetric Gauss-Seidel smoother

m D 2 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80

m D 4 0.17 0.19 0.16 0.50 0.48 0.46 0.67 0.66

m D 10 0.05 0.08 0.07 0.22 0.22 0.20 0.41 0.39

Convergence factors as a function of the number of levels K, the polynomial approximation degree
p, and the number of smoothing steps m. Richardson, Gauss-Seidel, and symmetric Gauss-Seidel
smoothers

the h-multigrid schemes are completely analogous to the one observed in the two-
dimensional test case.
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BDDC Deluxe for Isogeometric Analysis

L. Beirão da Veiga, L.F. Pavarino, S. Scacchi, O.B. Widlund, and S. Zampini

1 Introduction

The main goal of this paper is to design, analyze, and test a BDDC (Balancing
Domain Decomposition by Constraints, see [12, 23]) preconditioner for Isogeo-
metric Analysis (IGA), based on a novel type of interface averaging, which we
will denote by deluxe scaling, with either full or reduced set of primal constraints.
IGA is an innovative numerical methodology, introduced in [17] and first analyzed
in [1], where the geometry description of the PDE domain is adopted from a
Computer Aided Design (CAD) parametrization usually based on Non-Uniform
Rational B-Splines (NURBS) and the same NURBS basis functions are also used as
the PDEs discrete basis, following an isoparametric paradigm; see the monograph
[10]. Recent works on IGA preconditioners have focused on overlapping Schwarz
preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping precondi-
tioners [4, 8, 20].
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Deluxe scaling was recently introduced by Dohrmann and Widlund in a study of
H.curl/ problems; see [14, 15, 29] and also [25] for its application to problems in
H.div/ and [21] for Reissner–Mindlin plates. In our previous work on isogeometric
BDDC [4], standard BDDC scalings were employed with averaging weights built
directly from sone representative values of the elliptic coefficients in each subdo-
main (�-scaling) or from the values of the diagonal elements of local and global
stiffness matrices (stiffness scaling). The novel deluxe scaling, originally developed
to deal with elliptic problems with more than one variable coefficient, is instead
based on solving local problems built from local Schur complements associated with
sets of what are known as the dual variables. This new scaling turns out to be much
more powerful than the standard �- and stiffness scalings in the present context, even
for scalar elliptic problems with one variable coefficient. A novel adaptive strategy
to select a reduced set of vertex primal constraints is also studied. The main result
of our h-analysis shows that the condition number of the resulting deluxe BDDC
preconditioner satisfies the same quasi-optimal polylogarithmic bound in the ratio
H=h of subdomain to element diameters, as in [4], and that this bound is independent
of the number of subdomains and jumps of the coefficients of the elliptic problem
across subdomain interfaces. Moreover, our preliminary 2D numerical experiments
with deluxe scaling show a remarkable improvement, in particular for increasing
polynomial degree p of the isogeometric elements. Numerical tests in 3D can be
found in [6].

2 Isogeometric Discretization of Scalar Elliptic Problems

We consider the model elliptic problem on a bounded and connected CAD domain
˝ � R

d, d D 2; 3,

� r � .�ru/ D f in ˝; u D 0 on @˝; (1)

where � is a scalar field satisfying 0 < �min � �.x/ � �max; 8x 2 ˝ . For simplicity,
we describe our problem and preconditioner in the 2D single-patch case. Comments
on the 3D extension can be found at the end of Sect. 3, and comments on the multi-
patch extension can be found in [6]. We discretize (1) with IGA based on B-splines
and NURBS basis functions. The bivariate B-spline discrete space is defined by

OSh WD spanfBp;q
i;j .�; 	/; i D 1; : : : ; n; j D 1; : : : ;mg; (2)
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where the bivariate B-spline basis functions Bp;q
i;j .�; 	/ D Np

i .�/ Mq
j .	/ are defined

by tensor products of 1D B-splines functions Np
i .�/ and Mq

j .	/ of degree p and q,
respectively (in our numerical experiments, we will only consider the case p D q).
Analogously, the NURBS space is the span of NURBS basis functions defined in
1D by

Rp
i .�/ WD

Np
i .�/!iPn

OıD1 Np
Oı .�/! Oı

D Np
i .�/!i

w.�/
; (3)

with the weight function w.�/ WDPn
OıD1 Np

Oı .�/! Oı 2 OSh, and in 2D by

Rp;q
i;j .�; 	/ WD

Bp;q
i;j .�; 	/!i;jPn

OıD1
Pm
OjD1 Bp;q

Oı;Oj .�; 	/! Oı;Oj
D Bp;q

i;j .�; 	/!i;j

w.�; 	/
; (4)

where w.�; 	/ is the weight function and !i;j D .C!
i;j/3 the positive weights

associated with a n � m net of control points Ci;j. The discrete space of NURBS
functions on the domain˝ is defined as the span of the push-forward of the NURBS
basis functions (4) (see, e.g., [17])

Nh WD spanfRp;q
i;j ı F�1; with i D 1; : : : ; nI j D 1; : : : ;mg; (5)

with F W Ő ! ˝ the geometrical map between parameter and physical spaces
defined by F.�; 	/ DPn

iD1
Pm

jD1 Rp;q
i;j .�; 	/Ci;j.

For simplicity, we will consider the case with a Dirichlet boundary condition
imposed on all of @˝; we can then define the spline space in the parameter space
and the NURBS space in physical space, respectively, as

OVh WD Œ OSh \ H1
0.
Ő /�2 D ŒspanfBp;q

i;j .�; 	/; i D 2; : : : ; n � 1; j D 2; : : : ;m � 1g�2;

Vh WD ŒNh\H1
0.˝/�

2 D ŒspanfRp;q
i;j ıF�1; with i D 2; : : : ; n�1I j D 2; : : : ;m�1g�2:

The IGA formulation of problem (1) then reads:

(
Find uh 2 Vh such that:

a.uh; vh/ D< f ; vh > 8v 2 Vh;
(6)

with the bilinear form a.uh; vh/ D
Z

˝

�ruhrvhdx.
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3 BDDC Preconditioners

When using iterative substructuring methods, such as BDDC, we first reduce the
problem to one on the interface by implicitly eliminating the interior degrees of
freedom, a process known as static condensation; see, e.g., Toselli and Widlund [28,
Ch. 4].

Knots and Subdomain Decomposition A decomposition is first built for the
underlying space of spline functions in the parametric space, and is then easily
extended to the NURBS space in the physical domain. From the full set of knots,
f�1 D 0; : : : ; �nCpC1 D 1g; we select a subset f�ik ; k D 1; : : : ;N C 1g of non-
repeated knots with �i1 D 0; �iNC1

D 1. The interface knots are given by �ik for
k D 2; ::;N and they define a decomposition of the closure of the reference interval
into subdomains

�OI� D Œ0; 1� D
� [

kD1;::;N
OIk

�
; with OIk D .�ik ; �ikC1

/;

that we assume to have similar lengths Hk WD diam.OIk/ 	 H. In more dimensions,
we just use tensor products. Thus, in two dimension, we define the subdomains by

OIk D .�ik ; �ikC1
/; OIl D .	jl ; 	jlC1

/; Ő kl D OIk � OIl; 1 � k � N1; 1 � l � N2:
(7)

For simplicity, we reindex the subdomains using only one index to obtain the

decomposition of our domain Ő D S
kD1;::;K Ő k; into K D N1N2 subdomains.

Throughout this paper, we assume that both the subdomains and elements defined
by the coarse and full sets of knot vectors are shape regular and with quasi-uniform
characteristic diameters H and h, respectively.

The Schur Complement System As in classical iterative substructuring, we

reduce the problem to one on the interface 
 WD
�SK

kD1 @ Ő k
�
n@ Ő by static

condensation, i.e., by eliminating the interior degrees of freedom associated with the
basis functions with support in each subdomain. The resulting Schur complement
for Ő k and its local interface 
k WD @ Ő k n @ Ő will be denoted by S.k/: In the sequel,
we will use the following sets of indices:

�˝ D f.i; j/ 2 N
2 W 2 � i � n � 1; 2 � j � m � 1g;

�
 D f.i; j/ 2 �˝ W supp.Bp;q
i;j / \ 
 ¤ ;g:

We note that �
 consists of indices associated with a “fat” interface that typically
consists of several layers of knots associated with the basis functions with support



BDDC Deluxe for Isogeometric Analysis 19

Fig. 1 Schematic illustration in index space of interface equivalence classes in 2D (left) and 3D
(right) parametric space with p D 3; � D 2: fat vertices, consisting of .� C 1/2 knots in 2D and
.�C1/3 in 3D; fat edges (without vertices), consisting of .�C1/ “slim” edges in 2D and .�C1/2
in 3D; fat faces (without vertices and edges), consisting of � C 1 slim faces in 3D

intersecting two or more subdomains, see e.g. Fig. 1. The discrete interface and local
spaces are defined as

OV
 WD spanfBp;q
i;j ; .i; j/ 2 �
 g; V.k/

I WD OVh \H1
0.
Ő k/: (8)

The space OVh can be decomposed as ˚K
kD1V

.k/
I C H. OV
 /, where H W OV
 ! OVh;

is the piece-wise discrete spline harmonic extension operator, which provides the
minimal energy extension of values given in OV
 . The interface component of the
discrete solution satisfies the Schur complement reduced system

s.u
 ; v
 / D< Of ; v
 >; 8v
 2 OV
 ; (9)

with a suitable right-hand side Of and a Schur complement bilinear form defined
by s.w
 ; v
 / WD a.H.w
 /;H.v
 //. For simplicity, in the sequel, we will drop the
subscript 
 for functions in OV
 . In matrix form, (9) is the Schur complement system

OS
 w D Of ; (10)

where OS
 D A
 
 �A
 IA�1II AT

 I;
Of D f
 �A
 IA�1II fI; are obtained from the original

discrete problem by Gaussian elimination after reordering the spline basis functions
into sets of interior (subscript I) and interface (subscript 
 ) basis functions. The
Schur complement system (10) is solved by a Preconditioned Conjugate Gradient
(PCG) iteration, where OS
 is never explicitly formed since the action of OS
 on a
vector is computed by solving Dirichlet problems for individual subdomains and
some sparse matrix-vector multiplies, which are also needed when working with the
local Schur complements required by the application of the BDDC preconditioner
defined below. The preconditioned Schur complement system solved by PCG is then

M�1BDDC
OS
 w D M�1BDDC

Of ; (11)
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where M�1BDDC is the BDDC preconditioner, defined in (18) below using some restric-
tion and scaling operators associated with the following subspace decompositions.

Subspace Decompositions We split the local space V.k/ defined in (8) into a
direct sum of its interior (I) and interface (
 ) subspaces, i.e.

V.k/ WD V.k/
I ˚ V.k/


 ; where

V.k/
I WD spanfBp;q

i;j ; .i; j/ 2 �.k/
I g; V.k/


 WD spanfBp;q
i;j ; .i; j/ 2 �.k/


 g;

which translate in the index sets

�
.k/
I WD f.i; j/ 2 �˝ W supp.Bp;q

i;j / � Ő kg;
�
.k/

 WD f.i; j/ 2 �
 W supp.Bp;q

i;j / \ .@ Ő k \ 
k/ ¤ ;g;

and we define the associated product spaces by

VI WD
KY

kD1
V.k/

I ; V
 WD
KY

kD1
V.k/

 :

The functions in V
 are generally discontinuous (multi-valued) across 
 , while
our isogeometric approximations belong to OV
 , the subspace of V
 of functions
continuous (single-valued) across 
 . We will select some interface basis functions
as primal (subscript ˘ ), that will be made continuous across the interface and will
be subassembled between their supporting elements, and we will call dual (subscript
) the remaining interface degrees of freedom that can be discontinuous across the
interface and which vanish at the primal degrees of freedom. This splitting allows
us to decompose each local interface space into primal and dual subspaces V.k/


 D
V.k/
˘

L
V.k/
 , and we can define the associated product spaces by

V WD
KY

kD1
V.k/
 ; V˘ WD

KY

kD1
V.k/
˘ :

We also need an intermediate subspace QV
 � V
 of partially continuous basis
functions

QV
 WD V
M OV˘;

where the product space V has been defined above and OV˘ is a global subspace of
the selected primal variables.
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For two-dimensional problems, we will consider the primal space OVC
˘ consisting

of vertex basis functions with indices belonging to

�C D f.i; j; k/ 2 �
 W supp.Bp;q;r
i;j;k / \ C ¤ ;g: (12)

In order to define our preconditioners, we will need the following restriction and
interpolation operators represented by matrices with f0; 1g elements

QR
 W QV
 �! V; QR
 ˘ W QV
 �! OV˘; OR˘ W OV
 �! OV˘
R.k/ W V �! V.k/

 ; R.k/˘ W OV˘ �! OV.k/
˘
OR.k/ W OV
 �! V.k/

 :
(13)

For any edge/face F , we will use the symbol RF to denote a restriction matrix to
the (“fat”) set of degrees of freedom associated with F .

Deluxe Scaling We now apply to our isogeometric context the deluxe scaling
proposed in [14]. Let ˝k be any subdomain in the partition, k D 1; 2; : : : ;K. We
will indicate by �k the index set of all the ˝j, j 6D k; that share an edge F with ˝k.
For regular quadrilateral subdomain partitions in two dimensions, the cardinality of
�k is 4 (or less for boundary subdomains).

In BDDC, the average Nw WD EDw of an element in w 2 QV
 ; is computed
separately for the sets of interface degrees of freedom of edge and face equivalence
classes. We define the deluxe scaling for the class of F with only two elements,
k; j; as for an edge in two dimensions. We define two principal minors, S.k/F and S.j/F ,
obtained from S.k/ and S.j/ by removing all rows and columns which do not belong
to the degrees of freedom which are common to the (fat) boundaries of ˝k and˝j:

Let w.k/F WD RFw.k/; the deluxe average across F is then defined as

NwF D
�

S.k/F C S.j/F

��1�
S.k/F w.k/F C S.j/F w.j/F

�
: (14)

If the Schur complements of an equivalence class have small dimensions, they can

be computed explicitly, otherwise the action of
�

S.k/F C S.j/F

��1
can be computed by

solving a Dirichlet problem on the union of the relevant subdomains with a zero
right hand side in the interiors of the subdomains.

Each of the relevant equivalence classes, which involve the subdomain ˝k; will
contribute to the values of Nw. Each of these contributions will belong to OV
 ; after
being extended by zero to 
 nF I the resulting element is given by RT

F NwF : We then
add the contributions from the different equivalence classes to obtain

Nw D EDw D w˘ C
X

F
RT
F NwF : (15)
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ED is a projection and its complementary projection is given by

PDw WD .I � ED/w D w �
X

F
RT
F NwF : (16)

With a small abuse of notation in what follows, we will consider EDw 2 OV
 also as
an element of QV
 , by the obvious embedding OV
 � QV
 . In order to rewrite ED in
matrix form, for each subdomain˝k, we define the block-diagonal scaling matrix

D.k/ D diag.D.k/
F j1
;D.k/

F j2
; : : : ;D.k/

F jk
/;

where j1; j2; : : : ; jk 2 �k and the diagonal blocks are given by the deluxe scaling

D.k/
F WD

�
S.k/F C S.j/F

��1
S.k/F . We can now extend the operators defined in (13) and

define the scaled local operators by R.k/D;
 WD D.k/R.k/
 , QR.k/D; WD R.k/
;R.k/D;
 and the
global scaled operator

QRD;
 WD the direct sum OR˘ ˚K
kD1 QR.k/D;; (17)

so that the averaging operator is ED D QR
 QRT
D;
 , where QR
 WD OR˘ ˚K

kD1 QR.k/ :
The BDDC Preconditioner We denote by A.k/ the local stiffness matrix

restricted to subdomain N̋ k. By partitioning the local degrees of freedom into
those in the interior (I) and those on the interface (
 ), as before, and by further
partitioning the latter into dual () and primal (˘ ) degrees of freedom, then A.k/

can be written as

A.k/ D
"

A.k/II A.k/
T


 I

A.k/
 I A.k/
 


#
D

2
64

A.k/II A.k/
T

I A.k/
T

˘ I

A.k/I A.k/ A.k/
T

˘

A.k/˘ I A.k/˘ A.k/˘˘

3
75 :

Using the scaled restriction matrices defined in (13) and (17), the BDDC precondi-
tioner can be written as

M�1BDDC D QRT
D;

QS�1
 QRD;
 ; where (18)

QS�1
 D QRT



0

@
KX

kD1

h
0 R.k/

T



i"
A.k/II A.k/

T

I

A.k/I A.k/

#�1 "
0

R.k/

#1

A QR
 C ˚S�1˘˘˚T : (19)

Here S˘˘ is the BDDC coarse matrix and ˚ is a matrix mapping primal degrees of
freedom to interface variables, see e.g. [2, 22]. Our main theorem is the following
(see [6] for a proof and more complete details).
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Theorem 1 Consider the model problem (1) in two dimensions and let the primal
set be given by the subdomain corner set OVC

˘ defined in (12). Then the condition
number of the preconditioned operator is bounded by

cond
�

M�1BDDC
OS

�
� C.1C log.H=h//2;

with C > 0 independent of h;H and the jumps of the coefficient �.

Comments on the Three-Dimensional Case The choice of primal degrees of
freedom is fundamental for the construction of efficient BDDC preconditioners.
The space OVC

˘ is not sufficient to obtain scalable and fast preconditioners in three
dimensions. In three dimensions, we can define an additional index set associated
with fat edges

�E D f.i; j; k/ 2 �
 =�C W supp.Bp;q;r
i;j;k / \ E ¤ ;g;

and enrich the primal space with averages computed for each slim edge parallel
to the subdomain edge (see Fig. 1). Three-dimensional numerical results (see [6])
show faster rates of convergence when considering such an enriched coarse space:
in particular, the addition of edge slim averages is sufficient to obtain quasi-
optimality and scalability as is the case with standard FEM discretizations. The
deluxe convergence rate for increasing p seems to be orders of magnitude better
than that of BDDC with stiffness scaling, but not as insensitive to p as in the 2D
results of Table 1 in the next section.

Adaptive Choice of Reduced Sets of Primal Constraints In recent years, a
number of people have investigated different adaptive choices of primal constraints
in BDDC and FETI-DP methods, see e.g. [13, 18, 19, 24, 26, 27]. Most of these
works focus on the adaptive selection of 2D edge or 3D face constraints, i.e.
constraints associated with the interface between two subdomains, by solving
some generalized eigenproblems. It is less clear how to extend such techniques to
equivalence classes shared by more than two subdomains, such as 2D or 3D vertices
and 3D edges. Here, inspired by the techniques of [13], we propose an adaptive
selection of 2D primal vertices, driven by the desire to reduce the expensive fat
vertex primal constrains used in the standard or deluxe BDDC method.

Let ˝k be any subdomain in the partition, k D 1; 2; : : : ;K and consider the
associated local Schur complement S.k/. Denote by F one of the equivalence classes
(a vertex, edge, or face) and partition the degrees of freedom local to˝k into F and
its complement F 0. Then S.k/ can be partitioned as

S.k/ D
 

S.k/FF S.k/FF 0

S.k/F 0F S.k/F 0F 0

!
: (20)
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For each equivalence class F , define the new Schur complement

QS.k/FF D S.k/FF � S.k/FF 0

S.k/
�1

F 0F 0

S.k/F 0F (21)

and define the generalize eigenvalue problem

S.k/FFv D �QS.k/FFv: (22)

Given a threshold � � 1, we select the eigenvectors fv1; v2; : : : ; vNcg associated to
the eigenvalues of (22) greater than � and we perform a BDDC change of basis in
order to make these selected eigenvectors the primal variables.

4 Numerical Results

In this section, we report on numerical experiments with the isogeometric BDDC
deluxe preconditioner for two-dimensional elliptic model problems (1), discretized
with isogeometric NURBS spaces with a mesh size h, polynomial degree p and
regularity �. The domain is decomposed into K nonoverlapping subdomains of char-
acteristic size H, as described in Sec. 3. The discrete Schur-complement problems
are solved by the PCG method with the isogeometric BDDC preconditioner, with
a zero initial guess and a stopping criterion of a 10�6 reduction of the Euclidean
norm of the PCG residual. In the tests, we study how the convergence rate of the
BDDC preconditioner depends on h;K; p; �. The 2D tests have been performed with
a MATLAB code based on the GeoPDEs library by De Falco et al. [11].

Scalability in K and Quasi-Optimality in H=h The condition number cond and
iteration counts nit of the BDDC deluxe preconditioner are reported in the table of
Fig. 2 for a quarter-ring domain (shown on the left of the table), as a function of the
number of subdomains K and mesh size h, for fixed p D 3; � D 2 (top) or p D
5; � D 4 (bottom). The results show that the proposed preconditioner is scalable,
since moving along the diagonals of each table the condition number appears to be
bounded from above by a constant independent of K. The results for higher degree
p D 5 and regularity � D 4 are even better than those for the lower degree case. The
BDDC deluxe preconditioner appears to retain a very good performance in spite of
the increase of the polynomial degree p, a property that was not always satisfied
in [4]. To better understand this issue, we next study the BDDC performance for
increasing values of p.

Dependence on p In this test, we compare the BDDC deluxe performance as
a function of the polynomial degree p and the regularity �. We recall that our
theoretical work is only an h-analysis and does not cover the dependence of the
convergence rate on p and �. The domain considered is the quarter-ring discretized
with a mesh size h D 1=64 and K D 4 � 4 subdomains. The spline degree p
varies from 2 to 10 and the regularity is always maximal (� D p � 1) inside the
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h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit

2 2 1.24 5 1.42 6 1.65 6 1.92 6
p D 3 4 4 2.02 8 2.68 10 3.46 11
D 2 8 8 2.39 10 3.29 12

16 16 2.64 11
2 2 1.19 5 1.35 6 1.55 6 1.78 6

p D 5 4 4 1.62 8 2.19 9 2.86 10
D 4 8 8 1.77 8 2.55 10

16 16 1.87 8

Fig. 2 BDDC deluxe preconditioner for a 2D quarter-ring domain (left): condition number cond
and iteration counts nit as a function of the number of subdomains K and mesh size h. Fixed
p D 3; � D 2 (top), p D 5; � D 4 (bottom)

Table 1 BDDC deluxe dependence on p in the 2D quarter-ring domain: condition number cond
and iteration counts nit as a function of the NURBS polynomial degree p. Fixed h D 1=64; K D
4� 4; � D p� 1 (top), � D 2 (bottom)

p 2 3 4 5 6 7 8 9 10

� D p� 1 Cond 3.22 2.68 2.41 2.19 2.04 1.91 1.80 1.72 1.62

nit 10 10 9 9 9 8 8 8 9

� D 2 Cond - 2.47 2.84 3.16 3.45 3.71 3.94 4.17 4.36

nit - 10 11 11 11 12 12 12 12

subdomains, while at the subdomain interface is either maximal (� D p� 1, top) or
low (� D 2, bottom). The results in Table 1 show that for � D p � 1 the condition
numbers and iteration counts are bounded independently of the degree p and actually
improve slightly for increasing p, while for � D 2 the condition numbers show
a very modest sublinear growth with p, with associated iteration counts that are
practically constant. This is a remarkable property that is not shared by any other
nonoverlapping IGA preconditioner in the (current) literature.

Adaptive Choice of Vertex Primal Constraints Table 2 reports the results
with the proposed adaptive choice of primal constraints applied only to the vertex
constraints (the edge variables remain dual). We consider both an eigenvalue
threshold � D 2 leading to the minimal choice of Nc D 1 primal vertex constraint
(that turns out to be the average of the fat vertex values) and a lower threshold
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� D 1:5 leading to a richer choice of Nc D 4 primal vertex constraints for each
subdomain vertex. In case of variable polynomial degree p, we also consider a very
low threshold � D 1:1 that leads to a richer choice of approximately Nc D 2p primal
constraints for each subdomain vertex. The results in a) show that the BDDC deluxe
preconditioner is scalable, since cond and nit appears to be bounded from above by
a constant independent of K, and the results in b) indicate that the preconditioner
is quasi-optimal, since cond and nit appears to grow polylogarithmically in H=h.
The results in c) show that the minimal choice Nc D 1 does not perform well
for increasing p (there is no convergence for p D 6), while with the richer choice
corresponding to � D 1:1 we obtained only a mild performance degradation up to
p D 6.

References

1. Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric
analysis: approximation, stability and error estimates for h-refined meshes. Math. Models
Methods Appl. Sci. 16, 1–60 (2006)

2. L. Beirão da Veiga, C. Chinosi, C. Lovadina, L.F. Pavarino, Robust BDDC preconditioners
for Reissner-Mindlin plate bending problems and MITC elements. SIAM J. Numer. Anal. 47,
4214–4238 (2010)

3. L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, Overlapping Schwarz methods for
isogeometric analysis. SIAM J. Numer. Anal. 50, 1394–1416 (2012)

4. L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, BDDC preconditioners for isogeometric
analysis. Math. Models Methods Appl. Sci. 23, 1099–1142 (2013)

5. L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, Isogeometric Schwarz preconditioners
for linear elasticity systems. Comput. Methods Appl. Mech. Eng. 253, 439–454 (2013)

6. L. Beirão da Veiga, L.F. Pavarino, S. Scacchi, O.B. Widlund, S. Zampini, Isogeometric BDDC
preconditioners with deluxe scaling. SIAM J. Sci. Comput. 36, A1118–A1139 (2014)

7. M. Bercovier, I. Soloveichik, Overlapping non Matching Meshes Domain Decomposition
Method in Isogeometric Analysis. arXiv:1502.03756 [math.NA]

8. A. Buffa, H. Harbrecht, A. Kunoth, G. Sangalli, BPX-preconditioning for isogeometric
analysis. Comput. Methods Appl. Mech. Eng. 265, 63–70 (2013)

9. L. Charawi, Isogeometric overlapping additive Schwarz preconditioners for the Bidomain
system, in DD22 Proceedings, 2014

10. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Towards integration of CAD
and FEA (Wiley, New York, 2009)

11. C. De Falco, A. Reali, R. Vazquez, GeoPDEs: a research tool for isogeometric analysis of
PDEs. Adv. Eng. Softw. 42, 1020–1034 (2011)

12. C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimiza-
tion. SIAM J. Sci. Comput. 25, 246–258 (2003)

13. C.R. Dohrmann, C. Pechstein, Constraints and weight selection algorithms for BDDC, in
Domain Decomposition Methods in Science and Engineering XXI, Rennes, France, 2012. vol
98 (Springer LNCSE, Berlin, 2014)

14. C.R. Dohrmann, O.B. Widlund, Some recent tools and a BDDC algorithm for 3D problems in
H(curl). In Domain Decomposition Methods in Science and Engineering. XX, San Diego, CA,
2011, vol. 91 (Springer LNCSE, Berlin, 2013), pp. 15–26

15. C.R. Dohrmann, O.B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional
H(curl) problems. Comm. Pure Appl. Math. Appeared electronically in April 2015.



28 L. Beirão da Veiga et al.

16. K. Gahalaut, J. Kraus, S. Tomar, Multigrid methods for isogeometric discretization. Comput.
Methods Appl. Mech. Eng. 253, 413–425 (2013)

17. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194,
4135–4195 (2005)

18. H.H. Kim, E.T. Chung, A BDDC algorithm with enriched coarse spaces for two-dimensional
elliptic problems with oscillatory and high contrast coefficients. Multiscale Model. Simul.
13(2), 571–593 (2015)

19. A. Klawonn, M. Lanser, P. Radtke, O. Rheinbach, On an adaptive coarse space and on nonlinear
domain decomposition. in Domain Decomposition Methods in Science and Engineering. XXI,
Rennes, France, 2012, vol. 98 (Springer LNCSE, Berlin, 2014)

20. S.K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI - isogeometric tearing and interconnecting.
Comput. Methods Appl. Mech. Eng. 247–248, 201–215 (2012)

21. J.H. Lee, A balancing domain decomposition by constraints deluxe method for numerically
thin Reissner-Mindlin plates approximated with Falk–Tu elements. TR2013-951, Courant
Institute, NYU, 2013

22. J. Li, O.B. Widlund, FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Methods
Eng. 66, 250–271 (2006)

23. J. Mandel, C.R. Dohrmann, Convergence of a balancing domain decomposition by constraints
and energy minimization. Numer. Linear Algebra Appl. 10, 639–659 (2003)

24. J. Mandel, B. Sousedik, J. Sistek, Adaptive BDDC in three dimensions. Math. Comput. Simul.
82(10), 1812–1831 (2012)

25. D.-S. Oh, O.B. Widlund, C.R. Dohrmann, A BDDC algorithm for Raviart-Thomas vector
fields. TR2013-951, Courant Institute, NYU, 2013

26. C. Pechstein, C.R. Dohrmann, Modern domain decomposition methods - BDDC, deluxe
scaling, and an algebraic approach. 2013. Seminar talk, Linz, December 2013. http://people.
ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf

27. N. Spillane, V. Dolean, P. Hauret, P. Nataf, J. Rixen, Solving generalized eigenvalue problems
on the interface to build a robust two-level FETI method. C. R. Math. Acad. Sci. Paris 351(5–
6), 197–201 (2013)

28. A. Toselli, O.B. Widlund, Domain Decomposition Methods: Algorithms and Theory (Springer,
Berlin, 2004)

29. O.B. Widlund, C.R. Dohrmann, BDDC deluxe Domain Decomposition, in DD22 Proceedings,
2015

http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf
http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf


Auxiliary Space Multigrid Method for Elliptic
Problems with Highly Varying Coefficients

Johannes Kraus and Maria Lymbery

1 Introduction

The robust preconditioning of linear systems of algebraic equations arising from
discretizations of partial differential equations (PDE) is a fastly developing area
of scientific research. In many applications these systems are very large, sparse
and therefore it is vital to construct (quasi-)optimal iterative methods that converge
independently of problem parameters.

The most established techniques to accomplish this objective are domain decom-
position (DD), see, e.g., [23, 28], and multigrid (MG)/algebraic multilevel iteration
(AMLI) methods, see, e.g., [10, 29, 30].

As demonstrated by Klawonn et al. [12], Toselli and Widlund [28], Graham et
al. [9], two-level DD methods can be proven to be robust for scalar elliptic PDE
with varying coefficient if the variations of the coefficient inside the coarse grid
cells are assumed to be bounded. A key tool in the classical analysis of overlapping
DD methods is the Poincaré inequality or its weighted analog as for problems with
highly varying coefficients. It is well-known that the weighted Poincaré inequality
holds only under certain conditions, e.g., in case of quasi-monotonic coefficients,
see [26]. The concept of quasi-monotonic coefficients has been further developed
in [25] for the convergence analysis of finite element tearing and interconnecting
(FETI) methods.
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Recently the robustness of DD methods has also been achieved for problems with
general coefficient variations using coarse spaces that are constructed by solving
local generalized eigenvalue problems, see, e.g., [5, 8, 27].

In view of computational complexity, MG methods have been known to be most
efficient as they have demonstrated optimality with respect to the problem size,
see [10, 30]. Their design, however, needs careful adaptation for problems with large
variations in the physical problem parameters. The AMLI framework contributes
in achieving this goal, e.g. by providing more general polynomial acceleration
techniques or Krylov cycles, see [1–3, 16].

The idea of integrating domain decomposition techniques into multigrid methods
can be found as early as in [18]. The method that is presented in the following
combines DD and MG techniques with those from auxiliary space preconditioning,
see [31]. It is related to substructuring methods like FETI, see [6], and balancing
domain decomposition (BDD) methods, see [19].

The most advanced of these methods, BDDC (BDD based on constraints),
see [4], and FETI-DP (FETI dual-primal), see [7], can be formulated and analyzed
in a common algebraic framework, see [20–22]. The BDDC method enforces
continuity across substructure interfaces by a certain averaging operator. The
additional constraints can be interpreted as subspace corrections where coarse basis
functions are subject to energy minimization. From this point of view the BDDC
method has a high degree of similarity with the present approach.

However, contrary to BDDC, the auxiliary space multigrid (ASMG) method
considered here naturally allows overlapping of subdomains and coarse degrees of
freedom (DOF) are associated in general not only with the interfaces of subdomains
but also with their interior. Moreover, the aim is to define a full multilevel method
by recursive application of a two-level method. In contrary to standard (variational)
multigrid algorithms coarse-grid correction is replaced by an auxiliary space
correction. The coarse-grid operator then appears as the exact Schur complement of
the auxiliary matrix and defines an additive approximation of the Schur complement
of the original system, see [14, 15].

The purpose of the present paper is to summarize the main steps of the
construction of the ASMG method recently proposed in [17] on a less technical level
(Sects. 2 and 4) and further to discuss its spectral properties and robustness with
respect to highly varying coefficients (Sect. 3). The latter issue is also illustrated by
numerical tests (Sect. 5).
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2 Auxiliary Space Two-Grid Preconditioner

Consider the linear system of algebraic equations

Au D f (1)

obtained after a finite element (FE) discretization of a partial differential equation
(PDE) defined over a domain ˝ , where A denotes the global stiffness matrix and f
is a given right-hand side vector.

Consider a covering of˝ by n (overlapping) subdomains˝i, i.e.,˝ DSn
iD1 ˝ i:

Assume that for each subdomain ˝i there is a symmetric positive semi-definite
(SPSD) subdomain matrix Ai and that A DPn

iD1 RT
i AiRi where Ri restricts a global

vector v 2 V D RN to the local space Vi D Rni related to ˝i. In practice the
matrices Ai are assembled from scaled element matrices where the scaling factors
account for the overlap of the subdomains. The DOF are split into two groups,
coarse and fine, and the matrices A and Ai are partitioned accordingly into two-
by-two blocks, where the lower right blocks (with index 22) are associated with
coarse DOF, i.e.,

A D
�

A11 A12
A21 A22

	
; Ai D

�
AiW11 AiW12
AiW21 AiW22

	
; i D 1; : : : ; n:

Introduce the following auxiliary domain decomposition matrix

QA D

2

66666666664

A1W11 A1W12R1W2
A2W11 A2W12R2W2

: : :
:::

AnW11 AnW12RnW2

RT
1W2A1W21 RT

2W2A2W21 : : : RT
nW2AnW21

nX

iD1
RT

iW2AiW22RiW2

3

77777777775

: (2)

Denote QA11 D diagfA1W11; : : : ;AnW11g, QA22 D A22 D Pn
iD1 RT

iW2AiW22RiW2, i.e., QA D� QA11 QA12
QA21 QA22

	
: The matrices A 2 RN�N and QA 2 R

QN�QN are related via

A D R QART where R D
�

R1 0
0 I2

	
; R1 D

h
RT
1W1 : : : RT

n
W

1

i
; A11 D R1 QA11RT

1 :
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Definition 1 ([15]) The additive Schur complement approximation (ASCA) of S D
A22 � A21A�111 A12 is defined as the Schur complement Q of QA:

Q WD QA22 � QA21 QA�111 QA12 D
nX

iD1
RT

iW2.AiW22 � AiW21A�1iW11AiW12/RiW2 (3)

Next define a surjective mapping˘ QD W QV ! V by

˘ QD D .R QDRT/�1R QD; (4)

where QV D R
QN and QD is a two-by-two block-diagonal SPD matrix.

The proposed auxiliary space two-grid preconditioner is defined by

B�1 WD M
�1 C .I �M�T A/C�1.I � AM�1/ (5)

where the operator M in (5) denotes an A-norm convergent smoother, i.e. kI �
M�1AkA � 1, and M D M.M C MT � A/�1MT is the corresponding symmetrized
smoother. The matrix C defines a fictitious (auxiliary) space preconditioner approx-
imating A and is given by

C�1 D ˘ QD QA�1˘T
QD : (6)

Denote ˘ D .I � M�T A/˘ QD D .I � M�T A/.R QDRT/�1R QD; then the precondi-
tioner (5) can also be presented as

B�1 D M
�1 C˘ QA�1˘T : (7)

The proposed auxiliary space two-grid method differs from the classical two-
grid methods in the replacement of the coarse grid correction step by a subspace
correction with iteration matrix I � C�1A.

3 Spectral Properties and Robustness

As it has been shown in [17] the condition number of the two-grid preconditioner
defined in (7) satisfies the estimate

�.B�1A/ � .NcC c˘/.cC 	/=c;

where �A D �max.A/, c˘ is the constant in the estimate k˘ Qvk2A � c˘kQvk2QA for all

Qv 2 QV , and the constants Nc, c and 	 are such that the following properties hold:

chv; vi � �AhM�1v; vi � Nchv; vi and kM�T Avk2 � 	

�A
kvk2A:
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Moreover, the ASCA defined in (3) is spectrally equivalent to S, i.e. Q ' S:

Theorem 1 ([17]) Denote � QD D RT˘ QD where ˘ QD is defined as in (4) and QD
is an arbitrary two-by-two block-diagonal SPD matrix for the same fine-coarse
partitioning of DOF as used in the construction of QA.
Then hA�1u;ui � h˘ QD QA�1˘T

QDu;ui � c hA�1u;ui 8u 2 V where c WD k� QDk2QA.
Hence,

1

c
hSv2; v2i � hQv2; v2i � hSv2; v2i 8v2: (8)

The upper bound in (8) is sharp, the lower bound is sharp for QD D
� QA11 0
0 I

	
:

To verify that hSv2; v2i � chQv2; v2i is robust with respect to an arbitrary
variation of an elementwise constant coefficient ˛.x/ D ˛e for all x 2 e and all
elements e, see (15), one has to consider all possible distributions of f˛eg on the
finest mesh. However, in the following we will show that the worst condition number
(largest values of c) is obtained for a certain binary distribution of f˛eg so it suffices
to study distributions of this type.

Let ne denote the number of elements e and consider first an arbitrary distribution
f˛eg of a piecewise constant coefficient where ˛e 2 .0; 1� for all e. Further, let
A denote the global stiffness matrix corresponding to this distribution. Then there
exists a set of binary distributions fCi W i D 1; 2; : : : ; neg with Ci D f˛ej W j D
1; 2; : : : ; ne; ˛ej D ˇei if j D i and ˛ej D ı elseg for some constants 0 < ı � ˇei �
1 such that A D Pne

iD1 Ai where Ai is the global stiffness matrix corresponding to
the distribution Ci. It is easy to see that if A is SPD then Ai is SPD for all i. Now,
let Si denote the exact Schur complement of Ai and S be the Schur complement of
A. Moreover, let Qi denote the ASCA corresponding to Ai, i.e., Qi ' Si where Qi is
the exact Schur complement of QAi, cf. (2).

Lemma 1 Using the above notation, assume that

1

cj
hSjv2; v2i � hQjv2; v2i � hSjv2; v2i 8v2 and j D 1; : : : ; ne: (9)

Further, denote cmax D maxi2f1;:::;negfcig. Then the following relations hold:

1

cmax
hSv2; v2i � hQv2; v2i � hSv2; v2i 8v2: (10)

Proof The right inequality in (10) follows directly from the energy minimization
property of Schur complements. In order to prove the left inequality we
assume that (10) is wrong. Then there exists a vector v2 ¤ 0 such that
vT
2Sv2 � Nc vT

2Qv2 > cmaxvT
2Qv2, the left inequality of which can also be
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written in the form minv1

�
v1
v2

�T

A

�
v1
v2

�
� Nc vT

2Qv2, or, equivalently as

minv1

�
v1
v2

�T �Pne
jD1 Aj

��v1
v2

�
� Nc minQv1

� Qv1
v2

�T �Pne
jD1 QAj

�� Qv1
v2

�
: From the

latter inequality it follows that

�
v1
v2

�T
0

@
neX

jD1
Aj

1

A
�

v1
v2

�
� Nc

neX

jD1
min
Qv1

� Qv1
v2

�T

QAj

� Qv1
v2

�
8v1;

which is equivalent to

neX

jD1

�
v1
v2

�T

Aj

�
v1
v2

�
� Nc

neX

jD1
vT
2Qjv2 8v1: (11)

Then, since all matrices Aj and Qj are SPSD, it follows from (11) that there exists at
least one index j0 2 f1; 2; : : : ; neg such that

�
v1
v2

�T

Aj0

�
v1
v2

�
� Nc vT

2Qj0v2 8v1:

Hence vT
2Sj0v2 D minv1

�
v1
v2

�T

Aj0

�
v1
v2

�
� Nc vT

2Qj0v2 which is in contradiction

to (9) since Nc > cmax.

A crucial step in the application of the two-level preconditioner is the realization
of the operator ˘ QD. We propose two different variants that correspond to the
following choices of QD:

[I] QD D diag. QA/;
[II] QD D blockdiag. QA/. The diagonal blocks are determined by the groups of

fine DOF related to different macro structures whereas QD D diag. QA/ in rows
corresponding to coarse DOF.

In variant [I] the matrix R QDRT is diagonal, which makes the application of ˘ QD
notably simple and cost-efficient. In case of variant [II] the action of .R QDRT/�1
can be implemented via an inner iterative method such as a preconditioned
conjugate gradient (PCG) method, which then for reasons of efficiency requires a
uniform preconditioner. A possible candidate is the one-level additive Schwarz (AS)
preconditioner which however has to be adapted in order to be robust with respect to
coefficient jumps. For this reason we study the scaled one-level AS preconditioner
BAS defined via

B�1AS D SRQS�1.QS QDQS/�1 QS�1RTS (12)
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which can be applied to the scaled system with the matrix

Ds D SDS D SR QDRTS;

where S D Œdiag.A/��1=2, if the result is then rescaled. Let us further denote

QDs D QS QDQS and Rs D SRQS�1 where QS D Œdiag. QA/��1=2:

Then the following lemma holds:

Lemma 2 The condition number of the preconditioned system using the scaled one-
level AS preconditioner satisfies the estimate

�.B�1ASDs/ � �. QDs/: (13)

Proof First we show that �min.B�1ASDs/ � 1. Note that Ds D Rs QDsRT
s and

RsR
T
s D SRQS�1 QS�1RTS D Œdiag.A/��1=2R Œdiag. QA/�RT Œdiag.A/��1=2 D I:

Consider next the matrix

�
Rs QDsRT

s I
I Rs QD�1s RT

s

	
D
�

Rs 0

0 Rs

	 � QDs I
I QD�1s

	 �
RT

s 0

0 RT
s

	

which is SPSD with an SPD pivot block Ds D Rs QDsRT
s . Consequently, its Schur

complement is an SPSD matrix, i.e.

Rs QD�1s RT
s � .Rs QDsR

T
s /
�1 � 0

which proves that �min.B�1ASDs/ � 1.
On the other hand we have

�max.B�1ASDs/ D �max.Rs QD�1s RT
s Ds/

D �max.D
1=2
s Rs QD�1s RT

s D1=2
s /

D �max. QD�1=2s RT
s DsRs QD�1=2s /

� �max. QD�1s /�max.RT
s Rs QDsRT

s Rs/

� �max. QD�1s /�max. QDs/�max.RT
s Rs/ D �. QDs/

which completes the proof.

Remark 1 For conforming FEM discretization of the second order scalar elliptic
PDE it is not difficult to show that �. QDs/ is uniformly bounded with respect to
jumps of an elementwise constant coefficient. Furthermore, QDs is block-diagonal
with small-sized blocks and thus �. QDs/ is easily computable.



36 J. Kraus and M. Lymbery

4 Auxiliary Space Multigrid Method

Consider the exact block factorization of the sequence of auxiliary stiffness matrices
QAk, where the superscript k D 0; 1; : : : ; ` � 1 indicates the coarsening level:

QA.k/�1 D QL.k/ T QD.k/ QL.k/; A.kC1/ WD Q.k/;

QL.k/ D
"

I

�QA.k/21 QA.k/11
�1

I

#
; QD.k/ D

"
QA.k/11
�1

Q.k/�1

#
:

Let the algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid
(ASMG) preconditioner B.k/ be defined by (see [17]):

B.k/
�1 WD M

.k/�1

C.I �M.k/�T
A.k//˘.k/ QL.k/ T

D
.k/ QL.k/˘.k/T.I � A.k/M.k/�1/;

D
.k/ WD

"
QA.k/11
�1

B.kC1/�

#
; B.`/� WD A.`/

�1
:

In the nonlinear AMLI-cycle B.kC1/� D B.kC1/� Œ�� is a nonlinear mapping realized
by � iterations of a Krylov subspace method (e.g. the generalized conjugate gradient
(GCG) method), thus employing the coarse level preconditioner B.kC1/. In [13] the
convergence of the multiplicative nonlinear AMLI has been first analyzed, while
Notay and Vassilevski [24], Vassilevski [30], and Hu et al. [11] have provided the
multigrid framework along with a comparative analysis.

We want to stress the fact that the presented construction provides a framework
for both linear and nonlinear AMLI cycle multigrid as well as classical multigrid
methods.

5 Numerical Results

Subject to numerical testing is the scalar elliptic boundary-value problem

� r � .k.x/ru.x// D f .x/ in ˝; (14a)

u D 0 on 
: (14b)

Here ˝ is a polygonal domain in R2, f is a given function in L2.˝/ and

k.x/ D ˛.x/I D ˛eI: (15)



ASMG Method for Elliptic Problems with Highly Varying Coefficients 37

(a) (b) (c)

Fig. 1 Inclusions resolved on different fine scales (meshes). (a) 16� 16 mesh. (b) 64� 64 mesh.
(c) 512� 512 mesh

Upon the entire boundary of the domain Dirichlet boundary conditions have been
imposed as other boundary conditions would not qualitatively affect the numerical
results.

Piecewise bilinear functions have been used in the process of discretization
of (14) leading to the linear system of algebraic equations (1). A uniform mesh
consisting of N�N elements (squares) is considered where N D 2`C2, ` D 1; : : : ; 7,
and the covering is assumed to consist of subdomains composed of 8 � 8 elements
that overlap with half of their width or height. The mesh hierarchy is such that the
coarsest mesh corresponds to ` D 1 and is composed of 21C2�21C2 D 64 elements
whereas the finest mesh is obtained by performing `�1 D 1; : : : ; 6 steps of uniform
mesh refinement.

The vector of all zeros was chosen to be the right hand side f in (1) while the
outer iteration was initialized with a random vector. Three representative coefficient
configurations are considered (on the respective finest mesh, see Fig. 1):

[0] log-uniformly distributed coefficient ˛e D 10prand where ˛e is constant on each
element e and prand 2 .0; q�;

[1] inclusions with coefficient ˛� D 10prand against a background as in [0] where ˛�
is constant on every inclusion � and prand 2 .0; q�, see Fig. 2a;

[2] stiff inclusions with coefficient ˛� D 10q against a background as in [0], see
Fig. 2b.

In Table 1 we compare the condition numbers

�. QDs/ D �.S QDS/; �.B�1ASDs/ D �.SRQS�2 QD�1 QS�2RTS.SR QDRTS//;

with that of the corresponding unscaled preconditioned system

�.R QD�1RT.R QDRT//

for the coefficient distribution [0] on three different meshes with mesh size h 2
f1=16; 1=32; 1=64g and varying contrast q. The obtained numerical results are in
accordance with Lemma 2; They further show that the scaled one-level additive
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(a) (b)

Fig. 2 Random and stiff inclusions against random background ˛e D 10prand . (a) Coefficient for
Problem (P1) on 512 � 512 mesh. (b) Coefficient for Problem (P2) on 512 � 512 mesh

Table 1 Condition numbers of AS-preconditioned systems versus �. QDs/

Unscaled AS method Scaled AS method �. QDs/
����q

h
1=16 1=32 1=64 1=16 1=32 1=64 1=16 1=32 1=64

1 9:76� 101 9:47 � 101 9:35� 101 1:25 1:26 1:26 4:73 4:73 4:73

2 2:25� 102 3:69 � 102 5:89� 102 1:28 1:27 1:29 4:73 4:73 4:73

3 6:93� 102 2:42 � 103 3:70� 103 1:29 1:32 1:33 4:73 4:73 4:73

4 1:93� 104 1:97 � 104 3:77� 104 1:33 1:33 1:33 4:73 4:73 4:73

5 1:78� 105 1:87 � 105 2:16� 105 1:32 1:33 1:33 4:73 4:73 4:73

6 3:07� 105 1:34 � 106 2:15� 106 1:33 1:33 1:33 4:73 4:73 4:73

Schwarz method yields a uniform preconditioner whereas its unscaled analog
suffers from high-contrast coefficients.

Next, the numerical performance of the nonlinear (AMLI)-cycle ASMG method
(V-cycle and W-cycle) utilizing the preconditioner BAS is tested for:

(P1) Problem (14) with coefficient distributions [1] and variants [I] and [II] of ˘ QD.
Variant [II] is realized by ten inner PCG iterations with the scaled one-level
AS preconditioner.

(P2) Same as Problem (P1) but for coefficient distribution 2.

A comparison between variant [I] and variant [II] of the `-level V-cycle and W-
cycle is presented in Tables 2 and 3. Pre- and post-smoothing is performed by one
symmetric point Gauss-Seidel iteration on each level except the coarsest one where
all linear systems are solved directly.

The obtained results demonstrate that the choice of QD and consequently of the
surjective mapping˘ QD affect the performance of the nonlinear AMLI-cycle ASMG
method crucially. As for variant [I] the number of ASMG iterations required to
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Table 2 Number of iterations for residual reduction by 106

Problem (P1)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle

[I] [II] [I] [II]

�
�q
`
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 4 5 6 6 7 8 5 5 6 6 7 8 4 5 5 5 5 5 5 5 5 5 5 5

2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

3 5 6 6 7 7 8 5 6 6 7 7 8 5 6 6 6 6 6 5 5 5 5 5 5

4 5 6 7 8 8 9 5 6 7 8 8 8 5 6 6 6 6 6 5 6 6 6 6 6

5 5 7 7 8 9 9 5 6 7 8 8 8 5 6 6 6 7 7 5 6 6 6 6 6

6 5 7 8 9 13 15 5 7 8 8 8 9 5 6 6 7 9 10 5 6 6 6 6 6

Table 3 Number of iterations for residual reduction by 106

Problem (P2)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle

[I] [II] [I] [II]

�
�q
`
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

3 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 6 5 6 5 5 5 5 5 5

4 5 6 6 7 7 8 5 5 6 7 8 8 5 5 6 6 6 6 5 6 5 5 5 6

5 5 6 7 7 9 9 5 6 7 7 8 8 5 6 6 6 6 6 5 6 6 6 6 6

6 5 6 8 8 12 13 5 6 7 8 9 9 5 6 6 6 8 9 5 6 6 6 6 6

achieve the prescribed accuracy increases with the contrast, variant [II] shows full
robustness.
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A Nonlinear FETI-DP Method with an Inexact
Coarse Problem

Axel Klawonn, Martin Lanser, and Oliver Rheinbach

1 Introduction

We present a new nonoverlapping, nonlinear domain decomposition method with
an inexact solution of the coarse problem. The method can be seen as an inexact
reduced version of a recent nonlinear FETI-DP method [33].

In this method, the nonlinear problem is decomposed before linearization. This
is opposed to standard Newton-Krylov-Domain-Decomposition methods where the
decomposition is performed after linearization. Nonlinear FETI-DP methods were
introduced in [32, 33] as nonlinear versions of the well known family of FETI-DP
domain decomposition methods.

In domain decomposition methods of the FETI-DP [16, 17, 27, 29–31] and
BDDC type [9, 13, 34–36] the coarse spaces are constructed from partial assembly
of the finite elements. This has facilitated the extension of the scalability of
these methods, see, e.g., [26, 28, 37, 41, 43, 44]. Inexact FETI-DP methods were
introduced in [26] and their parallel scalability has been demonstrated in [29, 40].
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Nonlinear approaches to domain decomposition are not new but have attracted
recent interest as a strategy to localize computational work. Reduction of communi-
cation and synchronization is expected to be crucial to obtain good performance on
future supercomputers.

The nonlinear, overlapping ASPIN (Additive Schwarz Preconditioned Inexact
Newton) approach was introduced in [6]. See also [6, 7, 21, 22, 24, 25]. Nonlinear
domain decomposition as a coupling method has been used, e.g., in fluid-structure
interaction; see [10–12], or [18]; it has also been used for the coupling of multiphase
flow, see, e.g., [19, 20]. Nonlinear FETI-1 methods were introduced in [39],
nonlinear Neumann-Neumann methods, as a scalable solver approach, in [4].
Nonlinear Schwarz methods as a solver, i.e., not as a preconditioner, have already
been considered much earlier, see, e.g., [5, 14]. The solution of local nonlinear
problems can also be embedded into standard methods and has been denoted
nonlinear localization; see [8].

2 Nonlinear FETI-DP Formulation

Let ˝i; i D 1; : : : ;N, be a decomposition of the domain ˝ � R
d; d D 2; 3;

into nonoverlapping subdomains. Each subdomain is a union of finite elements.
We denote the associated local finite element spaces by Wi and the product space
by W D W1 � : : : � WN . We consider the minimization of a nonlinear energy
J W Vh ! R,

J.u/ DPN
iD1 Ji.ui/; (1)

where the Ji W Wi ! R; i D 1; : : : ;N are local energy functionals on the
subdomains ˝i. For standard problems, such as nonlinear elasticity, discretized by
finite elements the global energy can be written as a sum of the local nonlinear
energies on the nonoverlapping subdomains; for details, see [33].

Let 'i;j; i D 1; : : : ;N; j D 1; : : : ;Ni the nodal finite element basis functions for
the local finite element space Wi. We write J0i.ui/.'i;j/ in the form

J0i.ui/.'i;j/ D .Ki.ui/� fi/j

where Ki.ui/ depends on ui and fi is independent of ui.
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Let us define the nonlinear, discrete block operator K.u/ and the corresponding
block vectors u and f , i.e.,

K.u/ WD

0

B@
K1.u1/
:::

KN.uN/

1

CA ; f WD

0

B@
f1
:::

fN

1

CA ; and u WD

0

B@
u1
:::

uN

1

CA : (2)

We then define the nonlinear, partially assembled operator QK.Qu/ WD
RT
˘K.R˘ Qu/;and the corresponding partially assembled right hand side Qf WD RT

˘ f .
Here we use the FETI-DP partial assembly operator RT

˘ that is also used to define
the coarse problem of standard (linear) FETI-DP methods; see, e.g., [27, 42] for the
notation. Let B be the standard FETI-DP jump operator, we can then introduce the
nonlinear FETI-DP master system [32, 33]

QK.Qu/C BT� � Qf D 0

BQu D 0:
(3)

The nonlinear FETI-DP methods Nonlinear-FETI-DP-1 (NL-1) and Nonlinear-
FETI-DP-2 (NL-2), see [32, 33], are also based on the master system (3).

We assume that, as a result of a sufficient number of primal constraints, the
operator QK is continuously differentiable and locally invertible. We use Newton’s
method applied to (3) to obtain fast local convergence and a line search as
globalization strategy.

3 An Inexact Reduced Nonlinear FETI-DP Method

Newton’s method applied to (3) results in the linearized system

�
D QK.Qu/ BT

B 0

	 �
Qu
�

	
D
� QK.Qu/C BT� � Qf

BQu
	
: (4)

Following the standard FETI-DP approach, we partition Qu into the primal
variables Qu˘ and the dual variables QuB, i.e., QuT D 


uT
B QuT

˘

�
: We then

obtain from (4) the system

2

4
.D QK.Qu//BB .D QK.Qu//T˘B BT

B

.D QK.Qu//˘B .D QK.Qu//˘˘ 0

BB 0 0

3

5

2

4
uB

Qu˘
�

3

5 D
2

4
. QK.Qu//B C BT

B� � fB
. QK.Qu//˘ � Qf˘

BBuB

3

5 : (5)
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Assuming enough primal constraints such that .D QK.Qu//BB is invertible, we then
eliminate of uB and obtain a reduced system

� QS˘˘ –.D QK.Qu//˘B.D QK.Qu//�1BBBT
B

–BB.D QK.Qu//�1BB.D QK.Qu//T˘B –BB.D QK.Qu//�1BBBT
B

	 �
Qu˘
�

	

D
�
. QK.Qu//˘ � Qf˘ � .D QK.Qu/˘B.D QK.Qu//�1BB

�
. QK.Qu//B C BT

B� � fB
�

BBuB � BB.D QK.Qu//�1BB

�
. QK.Qu//B C BT

B� � fB
�

	 (6)

which we write as Arxr D Fr using the same notation as in [26] for linear problems.
The Schur complement

QS˘˘ D .D QK.Qu//˘˘ � .D QK.Qu//˘B.D QK.Qu//�1BB.D QK.Qu//T˘B (7)

is the coarse problem of the FETI-DP method. In this paper, we will apply a
preconditioned Krylov method to the block system (6), using the block-triangular
preconditioner

OB�1r D
" OS�1˘˘ 0

�M�1BB.D QK.Qu/�1BB.D QK.Qu//T˘B
OS�1˘˘ �M�1

#
(8)

cf. [26, 29], where the irFETI-DP method (inexact reduced FETI-DP) for linear
problems was introduced.

Here, M�1 is one of the standard FETI-DP preconditioners. In this paper, we

always use the Dirichlet preconditioner [42]. Moreover, OS�1˘˘ is assumed to be
a good preconditioner for the coarse problem QS˘˘ . Since the preconditioner (8)
is unsymmetric we have to use a Krylov space method suitable for unsymmetric
systems. In this paper we will use GMRES. The use of conjugate gradients requires
a symmetric reformulation.

In this nonlinear FETI-DP method the continuity of the solution is, in general,
not reached until convergence of the Newton method. This is different from FETI-
DP methods applied after Newton linearization where each Newton iterate is
continuous. This method is thus not identical to a standard Newton-Krylov FETI-DP
approach.

Note that the elimination of Qu˘ from (6) leads to the Nonlinear-FETI-DP-1 (NL1)
method FNL1� D d; introduced in [32, 33]. But this requires an exact solver for
QS˘˘ .

4 Initial Values for the Nonlinear FETI-DP Method

The convergence of Newton-type methods depends on a good initial value. We are
interested to find a suitable initial value Qu.0/ for the Newton iteration presented in
Sect. 3. This initial value has to be continuous in all primal variables Qu.0/˘ but may
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be discontinuous in the dual variables u.0/B . Of course, it should provide a good local
approximation of the problem. We can obtain such an initial value Qu.0/ from solving
the nonlinear problem

QK.Qu.0// D Qf � BT�.0/ (9)

by some Newton type iteration for some given initial value �.0/. In this paper we
set �.0/ D 0. The solution of (9) requires the solution of local nonlinear subdomain
problems which are only coupled in the primal unknowns. This step thus requires
only communication in the primal variables and is otherwise completely parallel. It
may be seen as a nonlinear localization step.

Linearization of (9) results in

�
.D QK.Qu//BB .D QK.Qu//T˘B

.D QK.Qu//˘B .D QK.Qu//˘˘
	 �

uB

Qu˘
	
D
�
. QK.Qu//B C BT

B� � fB
.D QK.Qu//˘ � Qf˘

	
:

A block elimination of uB yields the symmetric system

QS˘˘ Qu D Qd˘ (10)

where QS˘˘ is defined as in (7). We solve (10) by a Krylov method using the

preconditioner OS�1˘˘ ; see (8).

5 Numerical Results

In this section, we compare the standard Newton-Krylov approach, using either the
standard FETI-DP method or the irFETI-DP [26, 29] method as a solver, and the
new nonlinear domain decomposition approach, i.e., the irNonlinear-FETI-DP-1
approach. We have implemented the algorithm presented here using PETSc [1–
3]. For all inexact algorithms, the preconditioner OS˘˘ for the coarse problem QS˘˘
is formed by applying one iteration of BoomerAMG [23]. BoomerAMG is part
of the Hypre library [15]. In all experiments we have used GMRES as a Krylov
method. The Newton method is always combined with a line search using the strong
Wolfe conditions; see [38]. For a minimization problem minx2Rn J.x/ and a descent
directionx the strong Wolfe conditions read J.xC tx/ � J.x/C c1trTJ.x/x
and jrTJ.x C tx/xj � c2jrTJ.x/xj with constants 0 < c1 < c2 < 1, and
where t is the step length.

First, we apply all algorithms to a standard linear diffusion problem, see Table 1,
as a sanity check. For this linear problem, the initialization phase, see Sect. 4, is
omitted as it is not necessary. The test runs on 16–1024 cores of a Cray XT6 show
almost identical numerical and parallel performance of the different algorithms and



46 A. Klawonn et al.

Table 1 Sanity check (irNonlinear-FETI-DP-1); Cray XT6: H=h D 256, standard linear Laplace,
Alg. A

N Max. Max. Krylov-time Runtime

(DCores) Solver Krylov-It. Factor. cond. It. (s) (s)

16 Newton-Krylov FETI-DP 11 1 7.3 11 0.74 5.3

Newton-Krylov irFETI-DP 11 1 7.3 11 0.91 5.5

irNonlinear-FETI-DP-1 11 1 7.3 11 0.92 5.4

64 Newton-Krylov FETI-DP 22 1 8.1 22 1.5 6.3

Newton-Krylov irFETI-DP 22 1 8.0 22 2.0 6.7

irNonlinear-FETI-DP-1 21 1 8.2 21 2.1 6.9

256 Newton-Krylov FETI-DP 32 1 8.3 32 2.3 7.4

Newton-Krylov irFETI-DP 30 1 8.1 30 3.2 8.3

irNonlinear-FETI-DP-1 30 1 8.3 30 4.7 9.9

1024 Newton-Krylov FETI-DP 32 1 8.4 32 2.5 8.8

Newton-Krylov irFETI-DP 30 1 8.3 30 4.2 10.8

irNonlinear-FETI-DP-1 28 1 8.4 28 4.3 11.0

Table 2 Comparison a standard Newton-Krylov irFETI-DP approach with the nonlinear method;
Cray XT6: H=h D 80, C 4p, p D 4, Alg. A

NK-irFETI-DP irNL-FETI-DP-1

Runtime Krylov-time Runtime Krylov-time

N (Cores) (s) Krylov-It. (s) (s) Krylov-It. (s)

64 (1) 92.3 92 23.6 90.5 19 5.5

256 (4) 126.5 88 31.4 107.0 20 7.2

1024 (16) 91.2 68 27.9 97.4 20 8.2

4096 (64) 111.8 67 30.2 100.9 20 9.1

16,384 (256) 113.7 67 28.5 102.5 20 8.5

65,536 (1024) 130.9 65 32.0 110.5 20 9.9

implementations. This is expected since, for a linear problem, the Newton-Krylov-
irFETI-DP method and the irNonlinear-FETI-DP-1 method are equivalent. We do
see some increase in the total runtime, mainly due to an increase in the Krylov
iteration time. This increase is due to an inefficient parallel distribution of the
coarse problem. A redistribution would be necessary on this architecture but was
not performed here. In Table 2, we then perform a weak scaling test for a nonlinear
problem on the Cray XT6 at Universität Duisburg-Essen using up to 1024 cores. We
have considered a nonlinear diffusion problem u C 4pu D f for p D 4, where
 is the standard Laplacian and p is the p-Laplacian. The step length is chosen
according to a Wolfe rule. We have considered subdomains of quite small size, i.e.,
H=h D 80, but up to 65,536 subdomains.
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Table 3
irNonlinear-FETI-DP-1 on
the MIRA Supercomputer
(BG/P) Argonne National
Laboratory; C 4p, p D 4,
H=h D 128

Inexact-reduced-nonlinear-FETI-DP (irNL-FETI-DP-1)

N (DCores) Step Time (s) Krylov-It.

16 Newton init 1: 5.2 0

Newton init 2: 5.2 0

Newton init 3: 5.2 0

Newton init 4: 5.2 0

Newton full 1: 7.3 9

64 Newton init 1: 5.3 0

Newton init 2: 5.2 0

Newton init 3: 5.2 0

Newton init 4: 5.2 0

Newton full 1: 8.2 17

256 Newton init 1: 5.4 0

Newton init 2: 5.4 0

Newton init 3: 5.4 0

Newton init 4: 5.4 0

Newton full 1: 9.5 21

1024 Newton init 1: 5.8 0

Newton init 2: 5.9 0

Newton init 3: 5.8 0

Newton init 4: 5.9 0

Newton full 1: 10.4 20

4096 Newton init 1: 7.6 0

Newton init 2: 7.5 0

Newton init 3: 7.5 0

Newton init 4: 7.5 0

Newton full 1: 13.1 20

Alg. A.; joint work with B. Smith and S. Balay (Argonne
National Laboratory); uses only 4 out of 16 BG/Q cores.
“Newton Init” refers to a Newton step for solving (9)
whereas “Newton Full” refers to a Newton step for solving
(3). A single full Newton step is sufficient for this problem
after four steps to compute the initial value

We can see that the new method is competitive and significantly reduces the
number of Krylov iterations. As a result, the inexact reduced Nonlinear-FETI-DP-1
(irNL-1) method is slightly faster.

We then have performed a weak scalability test using 16–4096 processor cores of
the MIRA supercomputer at the Argonne National Laboratory, see Table 3. We can
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see that, for this problem, up to four Newton steps are performed in the initialization
phase, i.e., to solve (9). No Krylov iteration is necessary in this phase. A single
Newton iteration, using between 9 and 21 Krylov iterations, is sufficient to solve
the nonlinear problem (3) to the desired relative tolerance of 1e�9. The parallel
efficiency drops to 56 % from 16 to 4096 processor cores. This was an unexpected
result on the BG/Q architecture. Indeed, a performance bug in a parallel norm
computation that limited scalability was identified as a result of these experiments.

After eliminating the performance bug we finally have performed a similar weak
scalability test using 32–32,768 processor cores of the SuperMUC supercomputer
at the Leibniz-Rechenzentrum in Munich. The results are presented in Table 4. To
solve this problem eight Newton steps are performed in the initialization phase and
then a single full Newton step is sufficient to reach a tolerance of 1e�10. Overall, the
algorithm needs only between 26 and 34 Krylov iterations. The parallel scalability
seems satisfactory and we reach an efficiency of 74 % using 32,768 cores compared
to the baseline of 32 cores. Let us remark, that a non negligible amount of time
is spent in the MPI initialization called by PETSc in the first Newton step and we
expect to obtain even better results in the future.

Finally, in Table 5, we report on weak scalability for a problem of nonlinear
hyperelasticity on the SuperMUC supercomputer.

Table 4 irNonlinear-FETI-DP-1 on the SuperMUC supercomputer at Leibniz-Rechenzentrum in
Munich;  C 4p; p D 4;Hx=hx D 768;Hy=hy D 384; the algorithm uses all 16 cores of the
node; “Newton Init” refers to a Newton step for solving (9) whereas “Newton Full” refers to a
Newton step for solving (3)

Inexact-reduced-nonlinear-FETI-DP (irNL-FETI-DP-1)

Nx x NyD Newton steps Krylov-time

N (DCores) d.o.f. Krylov-It. init/full (s) Runtime (s) Eff. (%)

32 9,443,329 26 8/1 4.19 112.5 100

128 37,761,025 31 8/1 5.07 117.8 96

512 151,019,521 33 8/1 5.49 119.1 95

2048 604,028,929 33 8/1 5.65 119.1 95

8192 2,416,017,409 34 8/1 6.01 127.9 88

32,768 9,663,873,025 34 8/1 9.13 151.4 74
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6 Summary

The new nonlinear FETI-DP method combines the approaches from [26, 33] and
thus can be denoted inexact reduced Nonlinear-FETI-DP-1 (irNL1). An important
building block of this method is the solution of nonlinear problems on the subdo-
mains. Algorithmically, the same building blocks as standard FETI-DP methods
are used. If exact solvers are used as building blocks the new method shows
the same performance as the Nonlinear-FETI-DP-1 method [33]. If an efficient
preconditioner is used for the coarse problem then the scalability can be extended
substantially.
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Substructuring Methods in Nonlinear Function
Spaces

Oliver Sander

1 Spaces of Manifold-Valued Functions

Let ˝ be a domain in R
d, and M a smooth, connected, finite-dimensional manifold

with positive injectivity radius. We assume M to be equipped with a metric g, which
induces an exponential map exp W TM ! M, where TM is the tangent bundle of
M [7].

In this article we consider spaces1 of functions v W ˝ ! M. We first define
functions of Sobolev smoothness.

Definition 1 Let { W M ! R
m be an isometric embedding for some m 2 N, and let

k 2 N0 and p 2 N. Define

Wk;p.˝;M/ WD ˚v 2 Wk;p.˝;Rm/ W v.x/ 2 {.M/ a:e:
�
;

where Wk;p.˝;Rm/ is the usual Sobolev space of m-component vector-valued
functions on˝ .

Note that Wk;p.˝;M/ does not have a linear structure. By the Sobolev embedding
theorem, it is a Banach manifold if k > d=p [10].

1We use the word space in a topologist’s sense here, without implying the existence of a linear
structure.
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To formulate variational problems in such spaces we need to construct test
functions. Unlike in linear spaces, test function spaces for a function u W ˝ ! M
depend on u.

Definition 2 Let u 2 Wk;p.˝;M/. A vector field along u is a map 	 W ˝ ! TM,
such that 	.x/ 2 Tu.x/M for almost all x 2 ˝ .

More abstractly, vector fields along u are sections in a certain vector bundle. While
the concept of a vector bundle is standard (see, e.g. [7]), we state it here for
completeness.

Definition 3 Let E and B be two differentiable manifolds, and � W E ! B
a surjective continuous map. The triple .E; �;B/ is called a (continuous) vector
bundle if each fiber Ex WD ��1.x/, x 2 B has an n-dimensional real vector space
structure, and the following triviality condition holds: For each x 2 B, there exists a
neighborhood U and a homeomorphism

' W ��1.U/! U � R
n

with the property that for every y 2 U � B

'jEy W Ey ! fyg � R
n

is a bijective linear map. Such a pair .';U/ is called a bundle chart. A family .'i;Ui/

of bundle charts such that the Ui cover B is called a bundle atlas.

In other words, vector bundles are spaces that locally look like products U�Rn. We
call E the total space, B the base space, and � the bundle projection of the vector
bundle. The prototypical vector bundle is the tangent bundle .TM; �;M/ of a smooth
manifold M. In this case, the bundle projection � maps tangent vectors to their base
points.

Vector bundles allow to generalize the concept of a map between spaces. A vector
bundle section is an object s that locally is a map sjU W U ! R

n.

Definition 4 Let .E; �;B/ be a vector bundle. A (global) section of E is a map
s W B! E with � ı s D IdB.

In particular, a map w W ˝ ! R
n can be interpreted as a section in the trivial bundle

.˝ � R
n; �;˝/. A section in the tangent bundle TM of a smooth manifold M is a

vector field on M.
Let now N be another smooth manifold, f W B ! N a continuous map, and

.E; �;N/ a vector bundle over N. We pull back the bundle via f , to obtain a bundle
f �E over B, for which the fiber over x 2 B is Ef .x/, the fiber over the image of x. The
following formal definition is given in [6, Def. 2.5.3].

Definition 5 Let f W B ! N be a continuous map, and .E; �;N/ a vector bundle
over N. The pulled back bundle f �E has as base space B, as total space E1, which is
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the subspace of all pairs .b; x/ 2 B�E with f .b/ D �.x/, and as projection the map
.b; x/ 7! b.

With these preliminaries we can interpret vector fields along a continuous
function as vector bundle sections. The proof of the following lemma follows
directly from the definitions.

Lemma 1 Let f W ˝ ! M be continuous. A vector field 	 in the sense of
Definition 2 is a section in the bundle f �TM.

So far, we have not mentioned the regularity of sections of vector bundles. The
following definition is given in [7].

Definition 6 Let .E; �;B/ be a vector bundle, and s W B ! E a section of E with
compact support. We say that s is contained in the Sobolev space Wk;p.E/, if for any
bundle atlas with the property that on compact sets all coordinate changes and all
their derivatives are bounded, and for any bundle chart ' W EjU ! U � R

n from
such an atlas, we have that ' ı sjU is contained in Wk;p.U;Rn/.

As a special case of this we can define vector fields of Sobolev smoothness along
a given continuous function f W ˝ ! M.

Definition 7 Let f W ˝ ! M be continuous, and 	 a vector field along f . We say
that 	 is of k; p-Sobolev smoothness, and we write 	 2 �k;p

f , if it is a k; p-section in
the sense of Definition 6.

Finally, we need a trace theorem for vector fields along a function. We restrict
our attention to k D 1, p D 2. The following is a special case of a result proved
in [5]. We denote by D.˝;E/ the smooth sections in .E; �;˝/ and by D.˝;Ej
 /
the smooth sections of the bundle restriction on 
 .

Lemma 2 Let ˝ have a C1 boundary, and let .E; �;˝/ be a vector bundle over
˝ . Let 
 be a part of the boundary of ˝ , and suppose it is a submanifold of ˝ .
Then the pointwise restriction tr
 W D.˝;E/ ! D.
;Ej
 / extends to a linear and
bounded operator from W1;2.E/ onto W

1
2 ;2.Ej
 /, i.e.,

tr
 W1;2.E/ D W
1
2 ;2.Ej
 /:

Moreover, tr
 has a linear and bounded right inverse, an extension operator Ex˝ W
W

1
2 ;2.Ej
 /! W1;2.E/.

For p ¤ 2, p � 1 the trace operator still exists, but the traces are only contained
in certain spaces of Besov type [5]. Trace theorems for functions in W1;p.˝;M/
also exist (see, e.g. [8, Chap. 1.12]), but in the following we only look at continuous
functions anyway.
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2 Substructuring Formulation of Variational Problems

We now consider variational problems in the space W1;p.˝;M/. Let ˛ be a form on
W1;p.˝;M/ \ C.˝;M/, i.e., for each continuous u 2 W1;p.˝;M/, ˛Œu� is a linear
map �1;p

u ! R. We look for zeros of such a form, subject to Dirichlet boundary
conditions on part of the boundary of ˝ . Since for that case we need the trace
theorem (Lemma 2) we restrict ourselves to p D 2 again. Let 
D be a subset of
positive d� 1-dimensional measure of @˝ . For a function u0 W 
D ! M sufficiently
smooth define the space H1

D WD fv 2 W1;2.˝;M/ \ C.˝;M/ W tr
D v D u0g,
and for each u 2 H1

D define �1;2
u;0 D f	 2 �1;2

u W tr
D 	 D 0g. We then look for a
function u 2 H1

D such that

˛Œu�.	/ D 0 for all 	 2 �1;2
u;0 . (1)

Such problems occur, for example, as the optimality condition for minimization
problems for functionals J W W1;p.˝;M/ ! R. In that case, ˛Œu� is the differential
of J at u.

The weak problem (1) can be written as a coupled problem, consisting of two
subdomain problems and suitable coupling conditions. This is well-known for linear
problems in linear spaces ([11, Chap. 1.2]). We show that the argument used there
also holds for nonlinear function spaces.

Assume that˝ is partitioned in two nonoverlapping subdomains˝1 and˝2, and
that the interface 
 WD ˝1\˝2 is a d�1-dimensional Lipschitz manifold. We note
the following technical results, which follow directly from the corresponding results
for scalar-valued Sobolev spaces and Definition 1 (see also [8, Thm. 1.12.3]).

Lemma 3

1. If u 2 W1;p.˝;M/, then uj˝i 2 W1;p.˝i;M/ for i D 1; 2.
2. Let ui 2 W1;p.˝i;M/ for i D 1; 2 and tr
 u1 D tr
 u2. Then the function u W
˝ ! M defined by

u.x/ WD
(

u1.x/ if x 2 ˝1

u2.x/ if x 2 ˝2

is contained in W1;p.˝;M/.

Suppose that ˛ is a linear form on W1;p.˝;M/. We assume that ˛ is separable in
the sense that there are linear forms ˛i on W1;p.˝i;M/, i D 1; 2, such that

˛Œu�.	/ D
2X

iD1
˛iŒuj˝i �.	j˝i / for all u 2 W1;p.˝;M/, 	 2 �1;p

u : (2)

This holds in particular if ˛ is defined as an integral over a local density.
For a formal statement of our substructuring result we need the following spaces.
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Definition 8 Let u0 W 
D ! M be a function of prescribed Dirichlet values, of
sufficient smoothness. For i D 1; 2 set

Hi WD
˚
vi 2 W1;2.˝i;M/ \ C.˝i;M/ W vij
D\@˝i D u0

�
:

For i D 1; 2 and each vi W ˝i ! M continuous set

Vi;vi WD
˚
	i 2 �1;2

vi
W 	i.x/ D 0 2 Tvi.x/M for almost all x 2 
D

�
;

V0
i;vi
WD ˚	i 2 �1;2

vi
W 	i.x/ D 0 2 Tvi.x/M for almost all x 2 
D [ 


�
:

Also, we define the interface space

� WD fw W 
 ! M such that tr
 v D w for some v 2 H1g;

and the corresponding spaces of test functions on 


�1=2
w WD � 1

2 ;2
w

for each continuous w 2 �.

Note that the V0
i;vi

and �1=2
w are linear spaces, whereas the Hi and � are not.

Unlike in the linear case, the test function spaces are replaced by entire families of
spaces, parametrized by functions vi 2 Hi and w 2 �, respectively.

Lemma 4 The weak problem (1) is equivalent to: Find ui 2 Hi, i D 1; 2, such that

˛iŒui�.	i/ D 0 8 	i 2 V0
i;ui
; i D 1; 2 (3)

tr
 u1 D tr
 u2 (4)

˛1Œu1�.Ex˝1 �/ D �˛2Œu2�.Ex˝2 �/ for all � 2 �1=2
tr
 u1 ; (5)

where Ex˝i , i D 1; 2 is an extension operator from �
1=2
tr
 u1 to Vi;ui .

Note that the existence of the extension operators Ex˝i is ensured by Lemma 2.

Proof We follow the argument in [11, Chap. 1.2], and show first that the substructur-
ing formulation is a consequence of (1). Let u be a solution of (1). Consequently, it
is an element of W1;2.˝;M/\C.˝;M/, and by Lemma 3, the subdomain functions
ui WD uj˝i ; i D 1; 2 are in H1 and H2, respectively. Equation (4) follows because u
is continuous. Also, (3) holds, because any test function vi 2 V0

i;ui
can be extended

by zero to a test function in �1;2
u;0 . Finally, for every � 2 �1=2

tr
 u1 define

Ex� WD
(

Ex˝1 � in ˝1;

Ex˝2 � in ˝2;
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and note that Ex� 2 �1
u;0. Therefore, Ex� is a valid test function for (1). Together

with the separability (2) of ˛ we get

0 D ˛Œu�.Ex�/ D ˛1Œu1�.Ex˝1 �/C ˛2Œu2�.Ex˝2 �/;

which is (5).
To show the other direction let ui, i D 1; 2, be a solution of (3)–(5), and define

u WD
(

u1 in ˝1

u2 in ˝2:

Since u1 D u2 on 
 we can invoke Lemma 3 to obtain that u 2 W1;2.˝;M/;
additionally, u is continuous.

Let 	 2 �1;2
u be a test function at u. By Lemma 2 it has a trace � WD tr 	 with

� 2 �1=2
tr
 u. Then .	j˝i � Ex˝i �/ 2 V0

i;ui
. With this we can compute

˛Œu�.	/ D
2X

iD1
˛iŒui�.	j˝i/ (by separability (2))

D
2X

iD1



˛iŒui�.	j˝i � Ex˝i �„ ƒ‚ …

2V0i;ui

/C ˛iŒui�.Ex˝i �/
�

(by lin. of ˛iŒui�.�/)

D
2X

iD1
˛iŒui�.ŒEx˝i �/ (by (3))

D 0 (by (5)):

Hence u solves (1).

3 Steklov–Poincaré Formulation

Following the standard substructuring approach we now write the coupled prob-
lem (3)–(5) as a single equation on an interface space. In our setting this interface
space is the nonlinear space �.

We first introduce the Steklov–Poincaré operators for the subdomain problems.
For each subdomain, these map Dirichlet values on 
 to the Neumann traces of the
corresponding subdomain solutions on 
 . These Neumann traces are sections in a
certain dual bundle.
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Definition 9 Let u W ˝ ! M be continuous. For any Sobolev space�k;p
u of sections

in u�TM we call .�k;p
u /� its dual, i.e., the set of all linear functionals L W �k;p

u ! R

such that L.	/ is finite for all 	 2 �k;p
u .

We denote by .�k;p/� the disjoint union of all spaces .�k;p
u /� for all continuous u.

This concept allows to generalize the space .H
1
2 .
 //� used for the Neumann traces

of linear problems.

Definition 10 We call Si the Dirichlet-to-Neumann map associated to the i-th
subdomain. That is, for any � 2 � we set Si� 2 .�1=2

� /� to be such that

Si�Œ�� D ˛iŒui�.Ex˝i �/ for all � 2 �1=2

� ; (6)

where ui fulfills tr
 ui D � and solves

˛iŒui�.	/ for all 	 2 V0
i;ui
:

Remark 1 We assume here for simplicity that the Si are single-valued, i.e., that
for given Dirichlet data � the corresponding subdomain problems have unique
solutions.

Using the Steklov–Poincaré operators we can write the coupled problem (3)–(5)
as a problem on the interface space alone.

Lemma 5 The coupled problem (3)–(5) is equivalent to the Steklov–Poincaré
equation

S1�C S2� D 0: (7)

Note that S1� and S2� are from the same linear space .�1=2

� /�. Hence the addition
is justified.

Proof Let � 2 �. Then the subdomain solutions u1; u2 used in the definition of
S1 and S2 solve the subdomain problems (3) by construction. Also, since they
both assume the same value � on 
 they are continuous on the interface. Finally,
inserting (6) into (7) yields (5). Conversely, if u1; u2 solve (3)–(5), then � WD
tr
 u1 D tr
 u2 solves (7).

4 Nonlinear Preconditioned Richardson Iteration

The natural algorithm for the Steklov–Poincaré interface equation (7) is the precon-
ditioned Richardson iteration. Depending on the preconditioner, various different
domain decomposition algorithms result, which we will describe below.



60 O. Sander

Let k 2 N and �k 2 � be an iterate of the interface variable. Following [3], we
write one iteration of the preconditioned Richardson iteration in three steps:

1. Compute residual �k 2 .�1=2

�k /
� by

�k D S1�
k C S2�

k:

2. Get correction vk 2 �1=2

�k by preconditioning the negative residual

vk D P�1
�k .��k/:

3. Do a damped geodesic update

�kC1 D exp�k !vk;

where ! 2 .0;1/ is a parameter, and the map exp�k is to be understood
pointwise.

The preconditioner P is a vector bundle morphism from �1=2 to .�1=2/�, that
is, a mapping from �1=2 to .�1=2/� such that �.Pv/ D �v for all v 2 �1=2,
and such that for each � 2 � the induced map from �

1=2

� to .�1=2

� /� is linear. It
maps infinitesimal corrections to generalized stresses. We additionally require that
each P�k be invertible. Consequently, its inverse P�1

�k maps generalized stresses to
corrections.

The update step 3 needs to use the exponential map to apply the correction
vk (which is a vector field along �k) to the current iterate �k. The correction is
multiplied with a positive damping factor !. More generally, this factor can be
replaced by a linear map !k from the tangent space �1=2

�k onto itself. If M is a linear
space the exponential map degenerates to the addition of its argument to �k.

Remark 2 The two subdomain solves needed for Step 1 of the Richardson iteration
can be performed in parallel. Since Step 1 is by far the most costly part this
parallelization leads to considerable performance gains.

To construct preconditioners we introduce the derivatives of the Steklov–
Poincaré operators. For Si W �! .�1=2/� we interpret the derivative at a � 2 � as
a linear map S0i.�/ from �

1=2

� to .�1=2

� /�.

Remark 3 This interpretation is most easily understood if we assume for a second
that the space � is smooth enough to form a Banach manifold. We can then write
vector fields as elements of the tangent bundle T�. The Steklov–Poincaré operator
Si becomes a map Si W �! T��, and its derivative at � 2 � is the linear map S0i W
T��! TSi�T���. Since T��� is a linear space we can identify TSi�T��� with T���,
and therefore interpret S0i.�/ as a linear map from T�� to T���. This corresponds to

a map from �
1=2

� to .�1=2

� /� if � is not sufficiently smooth.
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We now describe various preconditioners and the algorithms that result from
them.

• Dirichlet–Neumann Preconditioner: The simplest choice for a preconditioner is
the inverse of the linearized Steklov–Poincaré operator of one of the subprob-
lems. We define the Dirichlet–Neumann preconditioner as

PDN;k WD S01Œ�k�:

With this choice, the damped preconditioned Richardson iteration reads

�kC1 D exp�k .!P�1DN;k.��k// D exp�k



!.S01Œ�k�/�1.�S1�

k � S2�
k/
�
:

Using instead the second subdomain for preconditioning we define the
Neumann–Dirichlet preconditioner

PND;k WD S02Œ�k�:

• Neumann–Neumann Preconditioner: We can generalize the above construction
by allowing arbitrary convex combinations of the Dirichlet–Neumann and
Neumann–Dirichlet preconditioners. Let �1; �2 be two non-negative real numbers
with �1 C �2 > 0. Then

P�1NN;k WD �1.S01Œ�k�/�1 C �2.S02Œ�k�/�1 (8)

is the Neumann–Neumann preconditioner. When M is a linear space and the
equation to be solved is linear, then the Richardson iteration together with the
preconditioner (8) reduces to the usual Neumann–Neumann iterative scheme.

• Robin Preconditioner: Finally, we generalize the Robin–Robin method. Let again
�1 and �2 be two non-negative coefficients such that �1C�2 > 0. Further, let F be
a vector bundle morphism from �1=2 to .�1=2/� that is invertible on each fiber.
For each �k 2 �, F�k is a linear map from �

1=2

�k to .�1=2

�k /
�. We then define the

Robin–Robin preconditioner

PRR;k WD 1

�1 C �2


�1F�k C S01.�k/

�
F�1
�k



�2F�k C S02.�k/

�
:

For the linear finite-dimensional case, the identity map can be chosen for F.
In that case the equivalence of this preconditioner to the Robin–Robin iterative
method has been shown in [4].
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5 Numerical Results

We demonstrate the performance of the Richardson iteration with a numerical
example. Consider a hyperelastic Cosserat shell. Configurations of such a shell are
pairs of functions .';R/ W ˝ ! R

3�SO(3), where˝ is a two-dimensional domain,
and SO(3) is the set of orthogonal 3 � 3-matrices R with det R D 1. For x 2 ˝ we
interpret '.x/ 2 R

3 as the position of a point of the shell midsurface, and R3.x/ 2 R
3

(the third column of R.x/ 2 SO(3)) as a transverse direction. The remaining two
orthonormal vectors R1 and R2 describe an in-plane rotation (Fig. 1). This choice of
kinematics allows to model size-effects and microstructure. We use a hyperelastic
material with the energy functional proposed by Neff [9, Chap. 7]. For this energy,
existence and partial regularity of minimizers have been shown [9], but no further
analytical results are available.

As an example problem we use a rectangular strip of dimensions 10mm�1mm.
The thickness parameter is set to 0:05mm. Both the displacement ' and the
orientation R are clamped at one of the short ends. At the other short end we
prescribe a time-dependent Dirichlet boundary condition to the midsurface position
' and rotations R, which describes a uniform rotation from 0 to 4� about the
long central axis of the strip. The positions and rotations at the long sides are
left free. This makes the strip coil up. Note that we need the hyperelastic shell
energy with the nonlinear membrane term proposed in Chap. 7 of [9] for this to
work, because it is a finite strain example. The resulting model is quasi-static, i.e.,
it does not contain inertia terms. Time enters only through the time-dependence of
the boundary conditions, which is necessary to obtain the coiling behavior.

For the material parameters we choose the Lamé constants � D 3:8462 �
105 N=mm2, � D 2:7149 � 105 N=mm2, and the Cosserat couple modulus �c D
0N=mm2. The internal length scale is set to Lc D 0:1mm, and the curvature
exponent is p D 1 (see [9] for details on these parameters).

We divide the domain into two subdomains of dimensions 5mm � 1mm,
and the time interval in 20 uniform time steps. For each time step we solve
the spatial problem with a nonlinear Richardson iteration and the Neumann–
Neumann preconditioner of Sect. 4, with �1 D �2 D 1

2
. The subdomain problems

Fig. 1 Cosserat shell
configurations consist of the
deformation field ' of the
mid-surface, and an
orientation field R which can
be interpreted as a field of
three orthogonal director
vectors
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Fig. 2 Twisted elastic strip at rotation angles 0, 4
5
� , 8

5
� , 12

5
� , 16

5
� , and 4�

Fig. 3 Left: Convergence rates as a function of time for the Richardson damping parameter ! D
0:1, and different grid resolutions. Right: Convergence rates averaged over time, for several grid
resolutions and values of !

are discretized using first-order geodesic finite elements [12] on a uniform grid
with quadrilateral elements, and the resulting nonlinear algebraic minimization
problems are solved using a Riemannian trust-region algorithm [1, 12]. The linear
preconditioner problems are solved using a CG method. The code was implemented
on top of the DUNE libraries [2].

Figure 2 shows several snapshots from the evolution of the strip. One can see
how the strip coils up following the rotation prescribed to the boundary.

To assess the convergence speed of the substructuring method we monitor the
traces �k defined on the interface 
 D f5g � Œ0; 1�. We estimate the convergence
rate of the Neumann–Neumann solver at iteration k by �k WD kvkk=kvk�1k, where
vk�1 and vk are two consecutive corrections produced by the Richardson iteration.
For the norm k�k we use the Sobolev norm H1.
;R3 � R

4/, using the canonical
embedding of SO(3) into the quaternions to embed tangent vectors of SO(3) into R

4.
This norm is well-defined for discrete functions. We let the domain decomposition
algorithm iterate until the H1-norm of the correction drops below 10�3. The overall
convergence rate for one time step is then determined by taking the geometric
average over the �k.

We measure the rates as a function of the grid resolution and of the Richardson
damping parameter !. One observes immediately that a rather small value for ! is
needed to make the algorithm converge. Figure 3, left, shows the convergence rates
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for ! D 0:1 and four different grids as a function of time. Grid resolutions range
from 10�1 to 80�8, created by uniform refinement. We see that the convergence rate
is rather independent of the time step and of the grid resolution, with the exception
of the coarsest grid, for which convergence rates ameliorate over time.

To get a better idea of the dependence of the convergence speed on the damping
parameter ! we therefore average the rates over time and plot the results in Fig. 3,
right. We observe that the optimal ! decreases and the optimal convergence rate
increases as the grid is refined. This matches what is known for the linear case. A
more detailed study of the behavior at vanishing mesh sizes, along with a proof of
convergence, however, has to be left for future work.
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Robin-Neumann Schemes for Incompressible
Fluid-Structure Interaction

Miguel A. Fernández, Mikel Landajuela, Jimmy Mullaert,
and Marina Vidrascu

1 Introduction

Mathematical problems involving the coupling of an incompressible viscous flow
with an elastic structure appear in a large variety of engineering fields (see, e.g.,
[14, 17, 19–21]). This problem is considered here within a heterogenous domain
decomposition framework, with the aim of using independent well-suited solvers
for the fluid and the solid. One of the main difficulties that have to be faced under
this approach is that the coupling can be very stiff. In particular, traditional Dirichlet-
Neumann explicit coupling methods, which solve for the fluid (Dirichlet) and for the
solid (Neumann) only once per time-step, are unconditionally unstable whenever the
amount of added-mass effect in the system is large (see, e.g., [5, 12]). Typically this
happens when the fluid and solid densities are close and the fluid domain is slender,
as in hemodynamical applications. This explains, in part, the tremendous amount
of work devoted over the last decade to the development of alternative coupling
paradigms (see, e.g., [7] for a review).

In this paper we will review several explicit coupling procedures recently
reported in the literature and present some new developments (Sect. 3.2). The com-
mon feature of these methods is that they are based on Robin-Neumann transmission
conditions, whose nature depends on the thin- or thick-walled character of the
structure (see Fig. 1).
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Fig. 1 Fluid-structure
configurations for a thin-
(left) and a thick-walled
structure (right)

2 Problem Formulation

For the sake of simplicity we consider a low Reynolds regime and assume that the
interface undergoes infinitesimal displacements. The fluid is described by the Stokes
equations, in a fixed domain ˝ f � R

d (d D 2, 3), and the structure by the linear
(possibly damped) membrane equations written in the .d � 1/-manifold ˝s 
 ˙ ,
which is also the fluid-structure interface (see Fig. 1 (left)).

The coupled model problem reads therefore as follows: find the fluid velocity
u W ˝ f � R

C ! R
d, the fluid pressure p W ˝ f � R

C ! R, the solid displacement
d W ˙ � R

C ! R
d and the solid velocity Pd W ˙ � R

C ! R
d such that

(
�f@tu � r � � .u; p/ D 0 in ˝ f;

r � u D 0 in ˝ f;
(1)

8
ˆ̂<

ˆ̂:

u D Pd on ˙;

�s�@t
PdC LedC Lv Pd D �� .u; p/n on ˙;

Pd D @td on ˙:

(2)

This system has to be complemented with appropriate initial and (external) bound-
ary conditions, which will be omitted in the following since they are not relevant
for the discussion. The symbols �f and �s denote, respectively, the fluid and solid
densities, � is the solid thickness and n stands for the unit normal vector on

@˝ f. The fluid Cauchy-stress tensor is given by � .u; p/
defD �pI C 2�".u/, with

".u/
defD 1

2

�ruC ruT
�

and where� denotes the fluid dynamic viscosity. Finally, the
surface differential operators Le and Lv describe the membrane elastic and viscous
behavior, respectively.

Remark 1 In two spatial dimensions and for the geometrical configuration of
Fig. 1 (left) an example of solid elastic operator is given by where d D Œ0; dy�

T

and c0; c1 > 0 are material dependent parameters. A widely used form of the
solid viscous operator is Lv Pd D ˛�s� Pd C ˇLe Pd; where ˛; ˇ > 0 are given
parameters. In artery wall modeling, the zeroth-order term, ˛�s� Pd, describes the
dissipative behavior of external tissues (see [19]), whereas the differential term,
ˇLe Pd, corresponds to the Kelvin-Voigt model (see, e.g., [15, 22]).
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Remark 2 Though simplified, problem (1)–(2) preserves some of the major numer-
ical difficulties that arise in incompressible fluid-structure interaction.

3 Explicit Coupling Schemes

This section is devoted to the numerical approximation of the coupled problem (1)–

(2). In the succeeding text, the symbol � > 0 denotes the time-step size, tn
defD n� ,

for n 2 N, and @�xn defD �
xn � xn�1�=� the first order backward difference in time.

In addition, the superscript ? is used to indicate zeroth- (i.e., without), first-order or
second-order extrapolation from the previous time-steps, namely, x? D 0 if r D 0,
x? D xn�1 if r D 1 and x? D 2xn�1�xn�2 if r D 2, where r denotes the extrapolation
order.

The methods discussed in this review paper are explicit coupling schemes,
in the sense that they enable a decoupled time-marching of the fluid and the
solid. Traditional Dirichlet-Neumann explicit coupling procedures, as reported in
Algorithm 1, are known to be unconditionally unstable, whenever the amount of
added-mass effect in the system is large (see, e.g., [5]). Stability in explicit coupling
for incompressible fluid-structure interaction demands a different treatment of the
interface coupling conditions (2)1;2.

A stable explicit coupling alternative is given by the Robin-Robin methods
introduced in [3, 4], which build on a Nitsche treatment of the interface coupling.
A salient feature of these methods is that they do not depend on the thin- or thick-
walled nature of the solid. Unfortunately, the explicit treatment of the Nitsche’s
penalty induces a deterioration of the accuracy, which demands restrictive CFL
constraints, unless correction iterations with suitable extrapolations are performed
(see [4]). Numerical evidence suggests that optimal first-order accuracy can be

Algorithm 1 Dirichet-Neumann Explicit Coupling Scheme
For n � 1:

1. Fluid step: find un W ˝f �R
C ! R

d and pn W ˝f �R
C ! R such that

8
ˆ̂̂
<

ˆ̂̂
:

�f@�un � r � � .un; pn/ D 0 in ˝f;

r � un D 0 in ˝f;

un D Pdn�1
on ˙:

2. Solid step: find dn W ˙ �R
C ! R

d such that

8
<

:
�s�@� Pdn C Ledn C Lv Pdn D �� .un; pn/n on ˙;

Pdn D @�dn on ˙:
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achieved by using a non-symmetric penalty-free formulation (see [4, Section 4.3]).
The rigorous stability analysis of the resulting schemes remains, however, an open
problem.

3.1 Robin-Neumann Schemes

The key difficulty is hence the derivation of alternative splitting methods which
guarantee stability without compromising accuracy. The Robin-Neumann methods
proposed in [8, 10] achieve this purpose. The fundamental ingredient in the
derivation of these schemes is the interface Robin consistency featured by the
continuous problem (1)–(2). Indeed, from (2)1;2 it follows that

� .u; p/nC �s�@tu D �Led � Lv Pd on ˙; (3)

which can be viewed as a Robin-like boundary condition for the fluid. Hence,
instead of performing the fluid solid time splitting in terms of (2)1;2 as in Algo-
rithm 1, we consider (3) and (2)2. The resulting schemes are detailed in Algorithm 2.

Algorithm 2 completely uncouples the fluid and solid time-marchings. This is
achieved via the explicit Robin condition (4)3 derived from (3). Note that only
the solid inertial effects are implicitly treated in (4)3, this is enough to guarantee
added-mass free stability. It is also worth noting that, from (5)1, the explicit Robin
condition (4)3 can be reformulated as

� .un; pn/nC �s�

�
un D �s�

�

�Pdn�1 C �@� Pd?
�
C � .u?; p?/n on ˙:

Algorithm 2 Robin-Neumann Explicit Coupling Schemes (from [10]).
For n � rC 1:

1. Fluid step: find un W ˝f �R
C ! R

d and pn W ˝f �R
C ! R such that

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�f@�un � r � � .un; pn/ D 0 in ˝f;

r � un D 0 in ˝f;

� .un; pn/nC �s�

�
un D �s�

�
Pdn�1 � Led? � Lv Pd? on ˙:

(4)

2. Solid step: find dn W ˙ �R
C ! R

d such that

8
<

:
�s�@� Pdn C Ledn C Lv Pdn D �� .un; pn/n on ˙;

Pd D @�dn on ˙:
(5)
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The advantage of this new expression is its intrinsic character, in the sense that it
avoids extrapolations of the solid viscoelastic terms within the fluid solver.

Remark 3 It should be noted that the implicit treatment of the solid-damping term
Lv in (4), as advocated in [2, 13, 18], yields a coupling scheme which is not explicit:
it is semi-implicit. Moreover, the resulting solution procedure is not partitioned
either, since the solid viscous contribution Lv has to be integrated within the fluid
solver.

Theoretical results on the stability and accuracy of Algorithm 2 have been
reported in [8, 10]. A fundamental ingredient in the analysis is the fact that
Algorithm 2 can be viewed as a fully implicit scheme with the following perturbed
kinematic constraint

un D Pdn C �

�s�

h
Le
�
dn � d?

�C Lv
�Pdn � Pd?/

i
on ˙: (6)

The stability and the accuracy of Algorithm 2 are hence driven by the impact of this
perturbation (i.e., the last term of (6)) on the stability and accuracy of the underlying
implicit coupling scheme. Unconditional energy stability can be proved for r D 0

and r D 1. The scheme with r D 2 is energy stable under a CFL-like condition.
As regards accuracy, the error analysis shows that the splitting error induced by the
kinematic perturbation (6) scales as O.�2r�1

/. Thus, Algorithm 2 with r D 1 or
r D 2 yields an overall optimal first-order time-accuracy O.�/ in the energy-norm,
while a sub-optimal time convergence rate O.� 12 / is expected for the scheme with
r D 0.

Remark 4 In the particular case of an undamped thin-walled solid (i.e., Lv D 0),
Algorithm 2 with r D 0 yields the splitting scheme reported in [13], which is known
to deliver very poor accuracy (see [8, 10] and the example below).

We conclude this section with a numerical illustration based on the balloon-like
example proposed in [16, Section 7.1] and using a non-linear version of (1)–(2). This
type of problems involving fully enclosed fluids cannot be solved using Algorithm 1
(or iterative variants) due to the constraint enforced by the fluid incompressibility
on the interface solid velocity (unless it is directly prescribed in the solid solver,
see [16]). Figure 2 (left) presents some snapshots of the fluid velocity magnitude
in the deformed configuration obtained with a non-linear version of Algorithm 2
(r D 1 and � D 0:05). The fluid equations are discretized in space with Q1=Q1 finite
elements and a SUPG/PSPG stabilized formulation. Quadrilateral MITC4 (locking-
free) shell elements are considered for the structure (see, e.g., [6]). For comparison
purposes, Fig. 2 (right) shows the maximal displacement magnitude on the interface
obtained with Algorithm 2 and the implicit coupling scheme. Algorithm 2 with r D
1 or r D 2 provides numerical solutions close to the implicit scheme. The superior
accuracy of the variant with r D 2, induced by the second-order extrapolation in (4),
is clearly noticeable. On the contrary, Algorithm 2 with r D 0 (see Remark 4) yields
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Fig. 2 Left: Snapshots of the fluid velocity magnitude in the deformed configuration at t D 0:15,
7:5, 15 (Algorithm 2 with r D 1 and � D 0:05). Right: Comparison of the solid displacements vs.
time obtained with Algorithm 2 and the implicit scheme .� D 0:05/

an extremely poor approximation. This is a clear indication of the O.� 12 /-loss in the
accuracy of the scheme predicted by the error analysis.

3.2 Second-Order Accuracy

So far no explicit stable second-order time-accurate scheme is known for general
fluid-structure interaction. For purely elastic thin-structures, some attempts have
been presented in [18] by combining a Strang operator splitting approach with the
ideas reported in [13]. Though the accuracy of the splitting is improved, second-
order time-accuracy is still not achieved.

In this section we show how the Robin-Neumann explicit coupling paradigm of
Sect. 3.1 can be adapted to deliver second-order time-accuracy. This is achieved
by combining a Crank-Nicholson time-stepping in both the fluid and the solid
subproblems, with an enhanced time-discretization of (3) based on either second-
order extrapolation or defect-correction iterations. It is worth noting that this
strategy for enhancing accuracy might lead to stability problems when applied to
other explicit coupling paradigms (see, e.g., [4]).

The resulting schemes are displayed in Algorithm 3, where K � 0 denotes the

number of correction iterations and xn� 12 ;k defD �
xn;kCxn�1�=2 stands for the midpoint

between the previous value xn�1 and the k-stage corrected one xn;k.
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Algorithm 3 Second-Order Robin-Neumann Schemes
For n � 0 if r D 0; 1 or for n � 1 if r D 2:

1. Extrapolation: dn;0 D d?; Pdn;0 D Pd?:
2. For k D 1; : : : ;KC 1:

a. Fluid step: Find un;k W ˝f �R
C ! R

d and pn�

1
2 ;k W ˝f � R

C! R such that

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�f

�

�
un;k � un�1

�� r � � .un�

1
2 ;k; pn�

1
2 ;k/ D 0 in ˝f;

r � un�

1
2 ;k D 0 in ˝f;

� .un�

1
2 ;k; pn�

1
2 ;k/nC �s�

�
un;k D �s�

�
Pdn�1 C Ledn�

1
2 ;k�1 C Lv Pdn�

1
2 ;k�1

on ˙:

b. Solid step: Find dn;k W ˙ � R
C! R

d such that

8
ˆ̂<

ˆ̂:

�s�

�

�Pdn;k � Pdn�1�C Ledn�

1
2 ;k C Lv Pdn�

1
2 ;k D �� .un�

1
2 ;k; pn�

1
2 ;k/n on ˙;

Pdn�

1
2 ;k D 1

�

�
dn;k � dn�1

�
on ˙:

3. Solution update: un D un;KC1; pn�

1
2 D pn�

1
2 ;KC1; dn D dn;KC1; Pdn D Pdn;KC1

:

Similarly to Algorithm 2, Algorithm 3 with K D 0 can be regarded as
interface kinematic perturbations of an underlying second-order implicit scheme.
Hence, in order to achieve overall second-order time-accuracy, two approaches are
investigated:

1. r D 1 and K > 0: Recall that the consistency errors induced by the kinematic
perturbations with r D 1 scale as O.�/. Thus, after K > 0 defect-corrections the
perturbation of the kinematic constraint scales as O.�KC1/. Hence, in order to
retrieve second-order time-accuracy K D 1 will be enough.

2. r D 2 and K D 0 (genuine explicit scheme): Since the consistency error induced
with r D 2 scales as O.�2/, no defect-correction is needed.

To give some insight into the stability properties of Algorithm 3, we consider a
simplification of the model problem (1)–(2) at hand (see, e.g., [1, 5]). Specifically,
we take ˝ f D Œ0;L� � Œ0;R� � R

2, ˙ D fy D Rg, the solid operators of Remark 1
and � D 0 (potential fluid). In this framework the following proposition holds.

Proposition 1 Take K D 0 (no defect-correction) in Algorithm 3 and write
dn

y D
P1

iD1 dn
y;i�i where we consider the orthonormal basis on L20.˙/ given

by
n
�i.x/ D

p
2=L sin .i�x=L/

o1
iD1. Under the problem setting described in the

previous paragraph, we have:

1. If r D 0 or r D 1, jdn
y;ij �!

n!C1 0 8 i 2 f1; : : : ;1g:
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2. If r D 2, jdn
y;ij �!

n!C1 0 with i 2 f1; : : : ;1g provided

8
ˆ̂̂
<̂

ˆ̂̂
:̂

4aibi C 4b2i � C 4dibi�
2 C d2i

��2�i�
f C ��s

�

��s
�3 � 0;

4ei��
s.bi C di�/.4ai C di�

2 C 4�bi/ � 4di�e2i

� 16��s�.bi C di�/
2.ai��

s C 2bi�i�
f�/ � 0;

(7)

where ai D �i�
f C ��s; bi D ˇc1�i C ˛��s; di D c0 C c1�i; ei D 4ai��

s C
�.bi��

s C 2di�i�
f�/ and �i D L

i� tanh. i�R
L /
; �i D i2�2

L2
are the eigenvalues with

respect to �i of the Neumann-to-Dirichlet map and @xx operators.

Proposition 1 establishes that whenever the Fourier series expansion of dn
y

is truncated (i.e., whenever the spatial discretization is fixed) the solution of
Algorithm 3 with K D 0, under the above assumptions, is unconditionally stable
with zeroth- and first-order extrapolations. For r D 2, the conditions (7) might be
too restrictive since they do not explicitly take into account the effect of the spatial
discretization step h.

In order to numerically illustrate the accuracy and stability of Algorithm 3,
we consider the two-dimensional example of [10]. To provide evidence on the
O.hC�2/ convergence behavior for the first and second order extrapolated variants,
Fig. 3 (left) reports the time-convergence history, with h D 10�1=4 fixed, of the
solid displacement at time t D 0:015, in the relative elastic energy-norm, obtained
with Algorithm 3 and a fully implicit second-order scheme. The reference solution
has been generated using the implicit scheme with � D 10�6 and the same h. The
h-uniformity is guaranteed by Fig. 3 (right) were we have refined both in time and
space according h D O.�2/. The reference solution has been now obtained with
� D 10�6 and h D 3 � 10�3.
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Fig. 3 Left: displacement convergence history in time with h D 10�1=4 fixed. Right: displace-
ment convergence history in time with h D O.�2/
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3.3 Coupling with Thick-Walled Structures

In this section we briefly describe the extension of the Robin-Neumann explicit
coupling paradigm of Algorithm 2 to the case of the coupling with thick-walled
structures (see Fig. 1 (right)). Thus, in the coupled problem (1)–(2), the relations (2)
are replaced by the linear elastodynamics equations

(
�s@t
PdC ˛�s Pd � r �˘ .d; Pd/ D 0 in ˝s;

Pd D @td in ˝s;
(8)

together with the kinematic and kinetic coupling conditions

(
u D Pd on ˙;

˘ .d; Pd/ns D �� .u; p/n on ˙:
(9)

Here, the symbol ns stands for the unit normal vector on @˝s, the solid stress tensor

is given by ˘ .d; Pd/ defD �.d/Cˇ�.Pd/, where �.d/
defD 2�1".d/C�2.r � d/I and �1,

�2 denote the Lamé coefficients. Damping effects in the solid are thus modeled via
the Rayleigh-like term ˛�s Pd � ˇr � �.Pd/.

The fundamental ingredient in the derivation of the schemes described in the
previous sections is the interface Robin consistency (3) featured by the continuous
problem (1)–(2). Unfortunately, this property is not shared by the coupled prob-
lem (1), (8) and (9), since the inertial term in (8) is distributed on the whole solid
domain ˝s and ˙ ¤ ˝s. The following generalized interface Robin consistency
can however be recovered after discretization in space, using a lumped-mass
approximation in the structure (see [11]):

� .u; p/nC �sBh@tu D �sBh@t
Pd �˘ .d; Pd/ns on ˙: (10)

Note that, instead of the usual identity operator, the interface condition (10) involves
the discrete interface operator Bh, which consistently accounts for the solid inertial
effects within the fluid. In fact, at the algebraic level, this operator is given by the
interface entries of the solid lumped-mass matrix. Instead of formulating the time
splitting in terms of (9), we consider (10) and (9)2. This yields the following Robin-
Neumann splitting of (9):

8
<̂

:̂

� .un; pn/nC �s

�
Bhun D �s

�
Bh

�Pdn�1 C �@� Pd?
�
�˘ .d?; Pd?/ns;

˘ .dn; Pdn
/ns D �� .un; pn/n:

(11)

The analysis reported in [11] shows that the splitting (11) preserves the energy
stability of the original Robin-Neumann explicit coupling paradigm (Algorithm 2).
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Fig. 4 Left: Snapshots of the fluid velocity magnitude in the deformed configurations at t D 0:15,
7:5, 15 (generalized Robin-Neumann explicit coupling (11) with r D 1 and � D 0:025). Right:
Comparison of the solid displacements vs. time obtained with the generalized Robin-Neumann
explicit coupling (11) and the implicit scheme (� D 0:025)

Numerical evidence indicates, however, that their optimal (first-order) accuracy
is not preserved. Indeed, the order of the kinematic perturbation induced by
the splitting (11) is expected to be O.�2r�1

=h
1
2 /. Interestingly, the factor h� 12

is intrinsically related to the thick-walled character of the structure, through the
non-uniformity of the discrete viscoelastic operator, and not to the mass lumping
approximation (see [9]).

We conclude this section by considering the balloon-like example of Sect. 3.1
but, this time, involving a thick-walled structure. In Fig. 4 (left) we have reported
some snapshots of the fluid velocity magnitude and of the deformed configurations
obtained with the generalized Robin-Neumann splitting (11) with r D 1 and � D
0:025. A comparison of the different variants with the implicit schemes is given in
Fig. 4 (right). Note that spurious oscillations are visible for the explicit coupling with
r D 2. This is consistent with the fact that stability conditions are expected to be
more restrictive in the case of the coupling with thick-walled structures. Considering
that the value of � is twice smaller than in Sect. 3.1, the poor accuracy of the explicit
scheme with r D 0 is even more striking. For r D 1 and r D 2 we obtain practically
the same results as in Sect. 3.1. This is a clear indication of the h� 12 perturbation
introduced by the splitting: the time-step length must be reduced to achieve a similar
level of accuracy as in the thin-walled case.

4 Conclusion

We have discussed a class of explicit coupling schemes for incompressible fluid-
structure interaction. The key ingredient in the derivation of the methods is the
notion of interface Robin consistency which depends on the thin- or thick-walled
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character of the structure. In the case of the coupling with a thin-walled structure,
energy stability and optimal first-order accuracy are retrieved without any restriction
on the discretization parameters. Besides, under this structure regime, two promising
extensions which deliver second-order time-accuracy have been presented. The
main issue regarding thick-walled structures is accuracy, since the perturbation
induced by the splitting is not uniform with respect to the spatial discretization step
h. It is worth noting, however, that the scheme with first-order extrapolation yields
convergence under a standard hyperbolic-condition without the need of correction
iterations.
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Optimal Finite Element Methods for Interface
Problems

Jinchao Xu and Shuo Zhang

1 Introduction

There are many physical problems such as multiphase flows and fluid-structure
interactions whose solutions are piecewise smooth but may have discontinuity
across some curved interfaces. The direct application of standard finite element
method may not perform well. In this paper, we study some special finite element
methods for this type of problems. For simplicity of exposition, we consider the case
that there is only one interface which is smooth. Let ˝;˝1 � R

2 be two bounded
domains with ˝1 � ˝ . We assume that 
 D @˝1 is sufficiently smooth, and

 \ @˝ D ;. To be focused on the influence of 
 , we assume ˝ D .�1; 1/2.
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To be specific, we consider the homogeneous boundary value problems of the
diffusion equation �div.˛ru/ D f , and the Stokes equation �div.˛ruQ � pIQ/ D f

Q
with the incompressibility condition divuQ D 0. In both of the equations, ˛ represents

a piecewise smooth function, namely ˛ 2 .C1.˝1/˚ C1.˝2// n C.˝/, such that
0 < ˛1 6 ˛ 6 ˛2 for two constants ˛1 and ˛2, and ˝2 D ˝ n˝1:

Because of the discontinuity of the coefficient ˛, the solutions lose their
smoothness near the interface. Accuracy would be lost if we use general uniform
grids for discretisation. A way to remedy the accuracy of approximation is to use
interface-fitted/resolved grids. This way, the non-smoothness of the solution can be
restricted to a “narrow” subdomain with respect to the grid near the interface, and
the approximation error due to the non-smoothness can thus be dominated.

In [10] (English translation: [12]), the following error estimate was obtained:

ku � uIk0;˝ C hju� uIj1;˝ 6 Cj log hj1=2h2juj2;˝1[˝2 ; (1)

where uI is the nodal interpolation of u to the linear element space. Here and after,
we use jwjm;˝1[˝2 or kwkm;˝1[˝2 to denote jwjm;˝1Cjwjm;˝2 or kwkm;˝1Ckwkm;˝2 ,
respectively, for w 2 Hm.˝1 [ ˝2/ WD fv 2 L2.˝/ W vj˝i 2 Hm.˝i/; i D 1; 2g,
with m 2 f0; 1; 2g. See [6] for a same result. A sharper estimate was given in [3]:

ku � uIk0;˝ C hju� uIj1;˝ 6 Ch2juj2;˝1[˝2: (2)

The interface-fitting assumption in the works above can be loosened slightly
to that the interface 
 is “O.h2/-resolved by the mesh”, see [8], and the shape-
regularity restriction of the grid can be loosened to maximal-angle-bounded grids,
see [7]. The optimal approximation accuracy of linear element space can also be
proved on these grids.

We refer to [7] for an algorithm to generate an interface-fitted grid from a
shape-regular grid which is not interface-fitted. (c.f. Fig. 1.) The algorithm is easy
to implement and the generated grid is maximal-angle-bounded. With the linear
element functions constructed thereon, the piecewise smooth functions can be
approximated optimally and economically.

In this paper, we discuss the linear element schemes for the diffusion equa-
tion and the Stokes equation with discontinuous coefficients on interface-fitted
maximal-angle-bounded grids. We will consider the conforming (c.f. also [7])
and nonconforming linear element schemes for the diffusion equation, and the
P1 � P0 element pair for the Stokes equation. Thanks to the above approximation
results, the optimal accuracy of conforming linear element discretisation for the
diffusion equation is straightforwardly obtained. When the nonconforming element
dicretization is considered, the issue of consistency error needs to be addressed.
Because of the irregularity of the grid, the traditional technique by trace theorem
and scaling argument cannot be applied easily. In this paper, we use the relationship
between the nonconforming linear element space and the lowest-order Raviart-
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Fig. 1 Left: interface-unfitted mesh; Right: interface-fitted mesh

Thomas (R-T for short) element space suggested by Acosta and Durán [1], and
obtain the optimal accuracy of the consistency error. As to the incompressible Stokes
problem, we have that the P1�P0 pair satisfies the inf-sup condition, and prove that
it has optimal accuracy.

Then we discuss the optimal multigrid solver for the generated linear system.
Particularly, we consider the special grid that is generated from a uniform grid
with the algorithm of [7]. As the underlying grid is obtained by refining an original
uniform structured grid, the finite element space thereon is different from the one
on the original grid only near the interface. We use the original grid (finite element
space thereon) as a coarse grid (subspace, respectively), with some smoothing
operations added near the interface, to formulate a nested geometrical multigrid
method. We take the conforming linear element system, which is less complicated,
for a demonstration, and show the optimality of the formulated multigrid method.

Through the paper, we make use of this notation. Without bringing in ambiguity,
we use j�j for the measure of subdomains, especially the area of a 2D manifold or the
length of a 1D manifold. We use “Q” for a tensor, and a bold letter for a unit vector

(direction). In the paper, “K” will always denote a triangular cell, unless special
indication. When the triangulation Th is considered, we denote Hm.Th/ WD fw 2
L2.˝/ W wjK 2 Hm.K/; 8K 2 Thg, m D 0; 1; 2.

The remaining of the paper is organised as follows. In Sect. 2, we collect
some existing and new estimation results on interpolation operators, especially for
piecewise smooth functions on interface-fitted and maximal-angle-bounded grids.
In Sects. 3 and 4, we discuss the optimal finite element methods for the interface
problems of the diffusion equation and of the Stokes equation, respectively. In
Sect. 5, we give an optimal multigrid method for the conforming linear element
scheme for diffusion equation. Finally, in Sect. 6, some concluding remarks are
given.
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2 Error Estimates of Interpolation Operators

2.1 Element-Wise Smooth Function on Interface-Fitted Grid

As a foundation of the technical analysis, we will show that on interface-fitted grids,
functions in Hm.˝1[˝2/ can be approximated well by functions that are piecewise
smooth with respect to the grids. We begin with a sharpened embedding result for
the Sobolev space. Here and after, denote !	 WD fx 2 ˝ W dist.x; 
 / 6 	g.
Lemma 1 There exists a constant C, depending on˝ and 
 only, such that it holds
for w 2 H1.˝1 [˝2/ that

kwk20;!	 6 C	kwk21;˝1[˝2 :

The proof of Lemma 1 follows from Theorem 1.1 of [2] directly, and we omit it
here. We also refer to [3, 8] for similar results.

Lemma 2 Let Th be an interface-fitted grid of ˝ , with h the biggest diameter of
K 2 Th. Then there exists a constant C depending on˝ and 
 only, such that these
inequalities hold:

1. given w 2 H1.˝1 [˝2/, there exists a Qw 2 H1.Th/, such that

X

K2Th

k Qwk21;K 6 C.kwk21;˝1 C kwk21;˝2 /; kw � Qwk20;˝ 6 Ch2.kwk21;˝1 C kwk21;˝2 /I

2. given w 2 H2.˝1 [˝2/, there exists Qw 2 H2.Th/, such that

X

K2Th

k Qwk22;K 6 C.kwk22;˝1 C kwk22;˝2 /;
X

K2Th

.kw � Qwk21;K\˝1 C kw � Qwk21;K\˝2/

6 Ch2.kwk22;˝1 C kwk22;˝2 /I

moreover, if w 2 H1.˝/\ H2.˝1 [˝2/, then Qw D w on 
 ;
3. given wQ 2 .H

1.˝1 [ ˝2//
2 \ H.divI˝/, there exists QwQ 2 H1.Th/ \ H.divI˝/,

such that QwQ � n D wQ � n on 
 , and

X

K2Th

k QwQ k
2
1;K 6 C.kwQ k

2
1;˝1
C kwQ k

2
1;˝2

/;
X

K2Th

.kwQ � QwQ k
2
0;K 6 Ch2.kwk21;˝1 C kwk21;˝2 /:

Proof We only prove the third item. The others can be found in [3].
First of all, given K 2 Th, since Th is interface fitted, K does not has vertices

in different subdomains simultaneously. Besides, by approximation theory, there
exists a constant C0, depending on 
 and ˝ , such that if K has a vertex in ˝i, then
.K \˝3�i/ � !C0h2 .
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Now given wQ 2 .H
1.˝1 [ ˝2//

2, by extension theorem, there exist wQ 1;wQ 2 2
H1.˝/2, such that .wQ i�wQ /j˝i D 0, and kwQ ik1;˝ 6 CkwQ k1;˝i , C depending on˝ and


 only. Then we define QwQ by QwQ jK D wQ ijK ; if K has a vertex in˝i:Here, without loss

of generality, we assume the vertices of K are not all on 
 . By the analysis above,
wQ � QwQ D 0; on˝ n !Ch2 : Therefore, kwQ � QwQ k

2
0;˝ D kwQ � QwQ k

2
0;!Ch2

6 3.kwQ k
2
0;!Ch2

C
kwQ 1k

2
0;!Ch2

CkwQ 2k
2
0;!Ch2

/: Further, by Lemma 1, kwQ � QwQ k
2
0;˝ 6 Ch2kwQ k

2
1;˝1[˝2 , with

C depending on 
 and ˝ .
Besides, that wQ 2 .H

1.˝1 [ ˝//2 \ H.divI˝/ implies �wQ � n� vanishes along


 , this further implies that wQ � n, wQ 1 � n and wQ 2 � n are the same along the interface,

thus QwQ � n D wQ � n along 
 . Here and after, we use ��� to denote the jump between

different sides. This finishes the proof.

2.2 Interpolation Error for Piecewise Smooth Functions

Let Th be a grid on ˝ . Denote Qh the piecewise constant space on Th, VCR
h the

linear Crouzeix-Raviart element space, namely VCR
h WD fwh 2 L2.˝/ W whjK 2

P1.K/; 8K 2 Th;
R

e�wh� D 0; on any interior edge eg, Vh the continuous
piecewise linear function space, and V

RT
h the lowest order Raviart-Thomas element

space, namely V
RT
h WD fwQ h 2 .L2.˝//2 W wQ hjK 2 .P0/2 ˚ xQP0;

R
e�wQ h� � n D

0; on any interior edge eg: Associated with the local interpolations, we have these
globally defined interpolations. Denote by P0h the L2 projection operator to Qh, by
Ih the interpolation operator to Vh, by ˘CR

h the interpolation operator to VCR
h , and

by ˘RT
h the interpolation operator to V

RT
h . It is evident that rh˘

CR
h w D P0hrw, and

div˘RT
h wQ D P0hdivwQ :

Lemma 3 Let Th be an interface-fitted grid of ˝ , with h the biggest size of the
elements. With constants C2 and C3 depending on the maximal angle of the grid,
while C1 not, we have:

1. let w 2 H1.˝1 [˝2/, then kw � P0hwk0;˝ 6 C1hkwk1;˝1[˝2 I
2. let u 2 H1.˝/ \ H2.˝1 [ ˝2/, then inf

vh2VCR
h

ju � vhj1;h 6 ju � Ihuj1;˝ 6

C2hkuk2;˝1[˝2 I
3. let wQ 2 .H

1.˝1 [˝2//
2 \ H.divI˝/, then kwQ �˘

RT
h wQ k0;˝ 6 C3hkwQ k1;˝1[˝2:

Proof We only prove the third item, and the first one is similar. We refer to, e.g., [7]
for the second item.
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We begin with a stability result. Let K be a triangle, with e1, e2 and e3 its edges.
On K, it holds for i D 1; 2; 3 that

R
ei
˘RT

h wQ � nei D
R

ei
wQ � nei . Direct calculation

leads to that k˘RT
h wQ k

2
0;K 6 3

16jKj
X

i

2

4.
Z

ei

wQ � nei/
2
X

j¤i

jejj2
3

5 : Now, given wQ 2

.H1.˝1 [˝2//
2 \H.divI˝/, by Lemma 2, there exists QwQ 2 H1.Th/

2 \H.divI˝/,
such that QwQ � n D wQ � n on 
 ,

P
K2Th
k QwQ k

2
1;K 6 C.kwQ k

2
1;˝1
C kwQ k

2
1;˝2

/; and kwQ �
QwQ k

2
0;˝ 6 Ch2.kwQ k

2
1;˝1
C kwQ k

2
1;˝2

/: By triangle inequality,

kwQ �˘
RT
h wQ k0;˝ 6 kwQ � QwQ k0;˝Ck QwQ �˘

RT
h QwQ k0;˝Ck˘

RT
h QwQ �˘

RT
h wQ k0;˝ WD I1CI2CI3:

(3)
For I3, we only have to estimate ˘RT

h QwQ � ˘
RT
h wQ on such K that K \ 
 ¤ ;.

Without loss of generality, we choose K D ŒP0;P1;P2�, such that P0 2 ˝1, and
K \ ˝2 ¤ ;; particularly, 
 goes through K from P1 to P2, c.f. Fig. 2. Denote
e D ŒP1;P2� and K0 D Kn˝1. Then

R
e. QwQ �wQ / �ne D

R
K0

r �. QwQ �wQ /�
R

e0

. QwQ �wQ / �ne0 ,

where e0 D @K0 n e thus e0 � 
 . Note that . QwQ � wQ / � ne0 D 0 on e0, and thus
R

e. QwQ � wQ / � ne D
R

K0

r � . QwQ � wQ / 6 jK0j1=2kr � . QwQ � wQ /k0;K0 : Thus,

k˘RT
h . QwQ � wQ /k

2
0;K 6 3

8
h2K
jK0j
jKj kr � . QwQ � wQ /k

2
0;K0

6 h2Kkr � . QwQ � wQ /k
2
0;K0

6 h2Kkr � . QwQ � wQ /k
2
0;K\!Ch2

:

Further, k˘RT
h . QwQ � wQ /k

2
0;˝ 6

P
K2Th

Ch2Kkr � . QwQ � wQ /k
2
0;K\!Ch2

6 Ch2kr �
. QwQ � wQ /k

2
0;!Ch2

6 Ch2.kwQ k
2
1;˝1[˝2/: Then by (3), we have kwQ � ˘

RT
h wQ k0;˝ 6

Fig. 2 Illustration of a cell
K, and the edge e D P1P2

P0

P2P1

•

•• K

K
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C1hkwQ k1;˝1[˝2 C C2hkwQ k1;˝1[˝2 C C3hkwQ k1;˝1[˝2 6 ChkwQ k1;˝1[˝2 , where C2

depends on the maximal angle of the triangulation (c.f. [1]). This finishes the proof.

3 Optimal Linear Element Methods for Diffusion Equation

We consider the boundary-interface value problem:
8
<

:

�r � .˛.x/ru/ D f ; in˝;
u D 0; on @˝;

�u� D 0; �˛ru � n� D 0; on
;
(4)

where n is the normal direction of 
 . The variational formulation of the above
problem is: Find u 2 H1

0.˝/ such that

a.u; v/ D .f ; v/;8v 2 H1
0.˝/; (5)

where a.u; v/ D
Z

˝

˛.x/ru � rv; and .f ; v/ D
Z

˝

fv:

Evidently, given the coefficient ˛, the energy norm of the boundary value
problem is equivalent to the H1 norm (or piecewise H1 norm for nonconforming
element space). In the sequel, we focus ourselves on the analysis of the H1 norm.

In this section and Sect. 4, we assume Th is an interface-fitted triangulation of
˝ , with h the biggest diameter of all K 2 Th. We consider the case Th is one in a
maximal-angle-bounded family.

3.1 A Conforming Linear Element Method

Let Vh0 D Vh \ H1
0.˝/. The finite element problem is to find uh 2 Vh0, such that

a.uh; vh/ D .f ; vh/; 8 vh 2 Vh0: (6)

Let u be the solution of (5), then by Cea lemma, it is straightforward that

ju � uhj1;˝ 6 C inf
vh2Vh0

ju � vhj1;˝ 6 Chkuk2;˝1[˝2:

We also refer to [3, 7, 8] for related discussions.
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3.2 A Nonconforming Linear Element Method

Let VCR
h0 � VCR

h consist of the C-R element functions that vanish at the midpoints of
the boundary edges. Then the C-R element scheme of the boundary value problem
is to find uh 2 VCR

h0 , such that

.˛rhuh;rhvh/ D .f ; vh/; 8 vh 2 VCR
h0 : (7)

Here rh denotes the piecewise gradient.

Theorem 1 Let u and uh be the solutions of (5) and (7), respectively. Assume u 2
H2.˝1 [˝2/ \H1.˝/. Then it holds with a constant C independent of h that

krh.u � uh/k0;˝ 6 Ch.kuk2;˝1[˝2 C k fk0;˝/: (8)

Proof Firstly, recall the Strang lemma and we have, with j � j1;h D krh � k0;˝ ,

ju � uhj1;h . inf
vh2VCR

h0

ju � vhj1;h C sup
wh2VCR

h0

.˛ru;rwh/� .f ;wh/

jwhj1;h : (9)

By Lemma 3, we have to estimate the consistency error, which is (c.f. also [1])

.˛ru;rhwh/�.f ;wh/ D .˛ru�˘RT
h ˛ru;rwh/�.�div˛ruCdiv˘RT

h ˛ru;wh/ WD I�II:
(10)

By Lemma 3, jIIj D j.f C P0hdiv˛ru;wh/j D j.f � P0hf ;wh/j D j.f ;wh �
P0hwh/j 6 Chkfk0;˝ jwhj1;h: Besides, as ˛ru 2 .H1.˝1 [ ˝2//

2 \ H.divI˝/,
jIj 6 k˛ru � ˘RT

h .˛ru/k0;˝krhwhk0;˝ 6 Chk˛ruk1;˝1[˝2 jwhj1;h: Substituting
all above into (9) finishes the proof.

4 The P1 � P0 Element Method for Stokes Interface Problem

4.1 Model Problem and Finite Element Discretization

Now we consider the system of Stokes equation,

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

�div.˛ruQ � pIdQ / D f
Q
; in˝;

divuQ D 0; in˝;

uQ D 0Q ; on @˝;

�uQ� D 0; �.˛ruQ � pIdQ / � n� D 0; on
:

(11)
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Here IdQ 2 R
2�2 is the identity. The variational formulation is to find .uQ ; p/ 2

.H1
0.˝//

2 � L20.˝/, such that

8
<̂

:̂

.˛ruQ ;rvQ / � .pIdQ ;rvQ / D .fQ
; vQ /; 8 vQ 2 .H

1
0.˝//

2;

.q; div uQ/ D 0; 8 q 2 L20.˝/:
(12)

Let QQh be the space of piecewise constant with zero average, then the finite
element problem is to find .uQh; ph/ 2 .VCR

h0 /
2 � QQh, such that

8
<̂

:̂

.˛rhuQh;rhvQh/� .phIdQ ;rhvQh/ D .fQ
; vQ h/; 8 vQ h 2 .V

CR
h0 /

2;

.qh;rh � uQh/ D 0; 8 qh 2 QQh:
(13)

It is well known that, by the commutative property and the inf-sup
condition of the model problem (12), the discrete inf-sup condition follows as

sup
vQ h2.VCR

h0 /
2

.qh; divhvQh/
kqhk0;˝kvQ hk1;h

> C; for qh 2 QQh: Note that the constant does not depend

on the triangulation.

4.2 Accuracy Analysis

Theorem 2 Let .uQ; p/ and .uQh; ph/ be the solutions of (12) and (13), respectively.

Assume uQ 2 .H
2.˝1 [ ˝2/ \ H1

0.˝//
2, and p 2 H1.˝1 [ ˝2/ \ L20.˝/. Then it

holds with a constant C independent of h that

juQ � uQhj1;h C kp � phk0;˝ 6 Ch.kuQk2;˝1[˝2 C kpk1;˝1[˝2 C kfQ
k0;˝/: (14)

Proof We start with this fundamental estimate [4]:

juQ � uQhj1;h C kp � phk0;˝ . inf
vQ h2.VCR

h0 /
2
juQ � vQ hj1;h C inf

qh2QQh

kp � qhk0;˝

C sup
wQ h2.VCR

h0 /
2

.˛ruQ � pIdQ ;rwQ h/ � .fQ
;wQ h/

jwQ hj1;h :
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By Lemma 3, we only have to estimate the consistency error. Since ˛ruQ � pIdQ 2
.H.divI˝/\.H1.˝1[˝2//

2/2, we can use the same technique as that of Theorem 1
and obtain

j.˛ruQ � pIdQ ;rwQ h/� .fQ
;wQ h/j 6 Ch.k˛ruQ � pIdQ k1;˝1[˝2 CkfQ

k0;˝/jwQ hj1;h: (15)

Summing all above finishes the proof.

5 A Two-Level Geometric Multigrid Method

In this section, we consider the optimal solver of the finite element problem (6).
Define Ah W Vh0 ! Vh0 by .Ahwh; vh/ D ah.wh; vh/, for any wh; vh 2 Vh0. In this
section, QTh is a uniform grid with multilevel structure, and Th is an interface-fitted
grid generated from QTh by local operations near the interface by the algorithm in
[7]. (See Fig. 1 for QTh(left) and Th(right).) Particularly, QTh is shape regular, and Th

is maximal-angle-bounded. Let Nh and QNh be the sets of vertices of Th and QTh,
respectively. Denote QN c

h WD Nh n QNh.

5.1 Theory of Successive Subspace Correction Method

In this section we give some general result of the successive subspace correction
method of solving on a linear vector space V with inner product .�; �/ the equation
.Au; v/ D .f ; v/, where A W V ! V is a symmetric positive definite operator. The
presentation follows closely to [5, 11, 14, 15].

We decompose the space V D PJ
iD0 Vi as the summation of subspaces Vi � V .

We do not assume the summation is a direct sum. The original problem associates
sub-problems in each Vi with smaller size which are relatively easier to solve. We
use the following operators, for i D 0; 1; : : : ; J :

• Qi W V ! Vi the projection in the inner product .�; �/;
• Ii W Vi ! V the natural inclusion which is often called prolongation;
• Pi W V ! Vi the projection in the inner product .�; �/A D .A�; �/;
• Ai W Vi ! Vi the restriction of A to the subspace Vi;
• Ri W Vi ! Vi an approximation of A�1i (often known as smoother);
• Ti W V ! Vi, Ti D RiQiA D RiAiPi.

It is easy to verify QiA D AiPi and Qi D It
i with .It

i u; vi/ WD .u; Iivi/. The operator
It
i is often called restriction. If Ri D A�1i , then we have an exact local solver and

Ti D Pi. With slightly abused notation, we still use Ti to denote the restriction
TijVi W Vi ! Vi and T�1i D .TijVi/

�1 W Vi ! Vi.
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The Successive Subspace Correction (SSC) method performs the correction
in every subspace in a successive way. In operator form, it reads, given some
approximation solution uk,

v0 D uk; viC1 D vi C IiRiI
t
i .f � Avi/; i D 0; : : : ; J; ukC1 D vJC1; (16)

and the corresponding error equation is

u � ukC1 D
"

JY

iD0
.I � IiRiI

t
i A/

#
.u� uk/ D

"
JY

iD0
.I � Ti/

#
.u� uk/: (17)

Here we assume there is a built-in ordering from i D 0 to J. The multiplicative
multigrid method for finite element systems is a special SSC method with subspaces
constructed by finite element functions on multilevel grids. For the convergence, we
have this fundamental estimate.

Lemma 4 (X-Z identity for SSC) If there is a � < 1, such that kI�TikAi 6 �; i D
0; : : : ; J; then it holds that



JY

iD0
.I � Ti/



2

A

D 1 � 1

c1
; (18)

where

c1 D sup
kvkAD1

infPJ
iD0 viDv

JX

iD0
. NT�1i .vi C T�i wi/; vi C T�i wi/A; (19)

with wi D P
j>i vj, and NTi D Ti C T�i � T�i Ti, T�i the adjoint operator of Ti with

respect to .�; �/A.

Remark 1 If we perform a two-level method, and particularly, we perform an exact
solver on a subspace V0, then we have c1 D supkvkAD1.kP0vk2A C kv � ˘hvk NR�1

1
/

where P0 W V ! V0 and ˘h W V ! V1 are the projection operators with respect to
.�; �/A and .�; �/ NR�1

1
, respectively, and NR1 D Rt

1 C Ri � Rt
iARi.

5.2 An Optimal Multigrid Method for (6)

Let QVc
h � Vh be space of nodal basis functions that vanish on QNh. Then Vh D

QVh˚ QVc
h , where QVh is the linear element space on QTh. Let QIh be the nodal interpolation

on QVh. Then .I � QIh/Vh D QVc
h and QIhVh D QVh. Let QAh and QAc

h be the restrictions of Ah

on QVh0 WD QVh \ Vh0 and QVc
h , respectively.
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Lemma 5 It holds for wh 2 Vh0 that kQIhwhkQAh
6 �kwhkAh , with � a constant

independent of h.

Proof When h is sufficiently small, for any p 2 QNh, there exists a segment e with
p being one of its ends, such that e is an edge of QTh and Th simultaneously, and
thus QIhwh D wh on e. Therefore, by the standard technique alike to the stability of
Scott-Zhang operator [9] and a Scott-Zhang type operator [5], we have jQIhwhj1;˝ 6
Cjwhj1;˝ with C depending on the shape regularity of QTh only. This finishes the
proof.

Let QRh W QVh0 ! QVh0 be approximately an inverse of QAh. We have this two-level
successive subspace correction method (Algorithm 1).

Algorithm 1 Implement this iterative procedure until converge:

1. do subspace correction on QVh0 with an inexact solver QRh;
2. do subspace correction on QVc

h with an exact solver . QAc
h/
�1.

Obviously, Algorithm 1 defines an iterative method for solving Ahuh D fh. Let
QPc

h and QQh be the projection operator onto QVc
h and QVh0 with respect to ah.�; �/ and

.�; �/, respectively. Denote by Bh the iterator of the method. Then the error contract
operator on Vh0 is I � BhAh D .I � QPc

h/.I � QRh QQhAh/.

Theorem 3 Assume that kI � QRh QAhkQAh
6 � < 1. Then Algorithm 1 is uniformly

convergent with respect to the mesh size with

kI � BhAhk2Ah
6 �

1 � �2 C�:

Proof By the X-Z identity for the successive subspace correction method, (c.f., e.g.,
[14]) we have

kI � BhAhk2Ah
D 1 � 1

c1
;

with

c1 D sup
vh2Vh0;kvhkAhD1

�
k QPc

hvhk2Ah
C inf
Qvh2QVc

h ;vh�Qvh2QVh

�
. QRt

h C QRh � QRt
h
QAh QRh/

�1.v � Qvh/;

.v � Qvh/
��
:
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Since kI� QRh QAhkQAh
6 � < 1, we have kI�. QRt

hC QRh� QRt
h
QAh QRh/kQAh

6 kI� QRt QAhkQAh
kI�

QR QAhkQAh
6 �2, and thus �max.. QRt

h
QAh C QRh QAh � QRt

h
QAh QRh QAh/

�1/ 6 1
1��2 . Therefore

�
. QRt

h C QRh � QRt
h
QAh QRh/

�1.vh � Qvh/; .vh � Qvh/
�

D �. QRt
h
QAh C QRh QAh � QRt

h
QAh QRh QAh/

�1.vh � Qvh/; QAh.vh � Qvh/
�

6 1
1��2 .vh � Qvh; QAh.vh � Qvh//:

Since evidently k QPc
hvhkAh 6 kvhkAh , we have c1 6 sup

vh2Vh;kvhkAhD1
.1 C

1

1 � �2 inf
Qvh2QVc

h ;vh�Qvh2QVh

kvh � Qvhk2Ah
/: Then by Lemma 5, we have c1 6 1 C �

1��2 ,

and finally obtain kI � BhAhk2Ah
6 �

1��2C� .

When QTh is a shape-regular grid with a geometrical multilevel structure, then
a geometric multigrid process can be implemented on QVh0, and the approximate
inverse QRh of QAh can be chosen to be the iterator of V-cycle multigrid method. The
assumption of Theorem 3 holds (see [11, 13, 14]).

5.3 Numerical Examples

To test the numerical methods, we consider the following example. Let the interface

 be a circle centered at the origin with radius r0. Let the exact solution be u.x/ D
u.r/ D 2r4 C jr4 � r40j, where r D dist.x; 0/. Moreover, we choose ˛.x/ D 1 if
r > r0 and ˛.x/ D 3 if r < r0, and the right hand side can be computed accordingly.
Hereafter we set r0 D 0:6.

We implement Algorithm 1, with V.1; 1/ cycle geometric multigrid based on the
original unfitted grid playing as the coarse grid corrector. We record the numerical
results in Table 1. In these examples, the initial guess is 0, and the stopping criterion
is the l2 norm of the relative residual being smaller than 10�10. From Table 1, we
can see that the multigrid method converges uniformly with respect to the mesh size,
which confirms our theoretical results.

Table 1 Numerical
performance of Algorithm 1

h 2�4 2�5 2�6 2�7 2�8 2�9 2�10

#iter 14 13 13 13 13 13 13
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6 Concluding Remarks

In this paper, we discussed the optimal finite element method for the interface
boundary value problem of the diffusion equation and the Stokes equation. We
proved that the linear Crouzeix-Raviart element schemes provide optimal accuracy
with respect to the mesh size for the two interface boundary value problems on grids
that are interface-fitted and maximal-angle-bounded.

Given a uniform grid, an interface-fitted and maximal-angle-bounded grid can be
generated by some local operations close to the interface. On the grids generated that
way, we discussed the optimal multigrid method of the discrete linear systems. We
took the conforming linear element system, the theory of which is less complicated,
for a demonstration, and show that by the methodology of using the original grid as
a coarse grid and reinforcing the smoothing effect near the interface, we obtain an
optimal multigrid method.

Some other optimal finite element methods and their optimal multigrid solvers
for interface boundary value problems will be discussed in the future works.

Acknowledgement The authors would like to thank Dr. Xiaozhe Hu for his help on the numerical
examples.
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BDDC Deluxe Domain Decomposition

Olof B. Widlund and Clark R. Dohrmann

1 Introduction

We will consider BDDC domain decomposition algorithms for finite element
approximations of a variety of elliptic problems. The BDDC (Balancing Domain
Decomposition by Constraints) algorithms were introduced by Dohrmann [5],
following the introduction of FETI-DP by Farhat et al. [9]. These two families are
closely related algorithmically and have a common theory. The design of a BDDC
algorithm involves the choice of a set of primal degrees of freedom and the choice
of an averaging operator, which restores the continuity of the approximate solution
across the interface between the subdomains into which the domain of the given
problem has been partitioned. We will also refer to these operators as scalings.

This paper principally address the latter choice. All our efforts aim at developing
effective preconditioners for the stiffness matrices. These approximate inverses are
then combined with the conjugate gradient method. We are primarily interested
in hard problems with very many subdomains and to obtain convergence rates
independent of that number and with rates that deteriorate slowly with the size of
the subdomain problems. Our bounds can often be made independent of jumps in
the coefficients between subdomains and our numerical results indicate that our new
BDDC deluxe algorithm is quite promising and robust.

Among our applications are problems formulated in H.curl/, H.div/, and for
Reissner-Mindlin plates. We have worked mostly with the lowest order finite
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element methods for self-adjoint elliptic problems but we have also helped develop
solvers for isogeometric analysis. After introducing the general ideas, we will focus
on our recent work on three-dimensional problems in H.curl/, see [7], since other
applications are discussed in other papers of this volume or elsewhere; cf. [1–
4, 8, 12–14].

2 BDDC, Finite Element Meshes, and Equivalence Classes

The BDDC algorithms work with decompositions of the domain ˝ of the elliptic
problem into non-overlapping subdomains˝i, each often with tens of thousands of
degrees of freedom. In-between the subdomains is the interface 
 , which does not
cut through any elements. The local interface of ˝i is defined by 
i WD @˝i n @˝:

For nodal finite element methods, most nodes are typically interior to individual
subdomains while the others belong to several subdomain interfaces or to the
boundary of the given region. We partition the nodes on 
 into equivalence
classes determined by the set of indices of the local interfaces 
j to which they
belong. In three dimensions, we have equivalence classes of face nodes, associated
with two local interfaces, and classes of edge nodes and subdomain vertex nodes
typically associated with more than two. For H.curl/ and Nédélec (edge) elements,
there are only equivalence classes of element edges for subdomain faces and for
subdomain edges. For H.div/ and Raviart-Thomas elements, we only have degrees
of freedom for element faces and the only equivalence classes are associated with
the subdomain faces. These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

These preconditioners are constructed using partially subassembled stiffness
matrices built from the subdomain stiffness matrices A.i/ of the subdomains˝i; i D
1; : : : ;N:We will first consider nodal finite element problems. The nodes of˝i[
i

are divided into those in the interior .I/ and those on the interface .
 /: The interface
set is further divided into a primal set .˘/ and a dual set ./:

We can then represent the subdomain stiffness matrix, of˝i; as

A.i/ D

0

B@
A.i/II A.i/I A.i/I˘

A.i/I A.i/ A.i/˘
A.i/˘ I A.i/˘ A.i/˘˘

1

CA :

This matrix represents the stiffness contributed by ˝i. Throughout the iteration, we
enforce continuity of the primal variables, as in the given finite element model,
but allow multiple values of the dual variables when working with a partially
subassembled model as in Fig. 1. Partially subassembling the subdomain matrices
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Fig. 1 Torn 2D scalar elliptic
problem; primal variables at
subdomain vertices only

and noting that the matrix QA˘˘ is assembled from the submatrices A.i/˘˘ , we obtain

QA D

0

BBBBBBBBBBB@

A.1/II A.1/I A.1/I˘

A.1/I A.1/ A.1/˘
: : :

:::

A.N/II A.N/I A.N/I˘

A.N/I A.N/ A.N/˘

A.1/˘ I A.1/˘ � � � A.N/˘ I A.N/˘
QA˘˘

1

CCCCCCCCCCCA

:

This partially subassembled stiffness matrix of this alternative finite element model
is an important component of the BDDC preconditioners. The primal variables
provide a necessary, global component of the preconditioners and they make the
partially assembled matrix invertible.

Solving a linear system with the matrix QA is much cheaper than when using the
fully assembled model but results in multiple values of the dual interface variables.
When using BDDC, we therefore restore the continuity of the original finite element
problem by averaging across the interface. When using FETI-DP, we instead employ
Lagrange multipliers.

For scalar second order elliptic equations in the plane, as in Fig. 1, the approach
outlined yields a condition number bound of C.1 C log.H=h//2; where H=h WD
maxi.Hi=hi/ with Hi the diameter of ˝i and hi that of the smallest of the elements
of ˝i: These results can be made independent of jumps in the coefficients, if
the interface averages are chosen carefully, but for three dimensions the primal
set of variables should include averages (and possibly first moments) of the
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displacements over subdomain edges (and possibly subdomain faces) to obtain
competitive algorithms. After introducing primal variables of this type, we can
change the variables to allow us to represent the partially subassembled system
matrix as above.

We note that parallel, public domain BDDC software, developed by Zampini
[17], is available. We also note that Farhat, Pierson, et al. and Klawonn and
Rheinbach have been pioneers in developing FETI-DP software for elasticity
problems.

The BDDC and FETI-DP algorithms can be described in terms of three product
spaces of finite element functions/vectors defined by their interface nodal values:

OW
 � QW
 � W
 :

W
 : no constraints; OW
 : continuity at every point on 
 ; QW
 : common values of the
primal variables. After eliminating the interior variables, we can write the resulting
subdomain Schur complements as

S.i/ WD
 

S.i/ S.i/˘
S.i/˘ S.i/˘˘

!
WD
 

A.i/ A.i/˘
A.i/˘ A.i/˘˘

!
�
 

A.i/I

A.i/˘ I

!�
A.i/II

��1 �
A.i/I A.i/I˘

�
:

By partially subassembling the S.i/, we obtain QS:
Let us denote the BDDC averaging operator, which maps QW
 into OW
 ; by

ED. In each BDDC iteration, we first compute the residual of the fully assembled
Schur complement equation. We then apply ET

D to obtain a right-hand side for the
partially subassembled linear system. We solve this system and then apply ED: In
the conventional BDDC algorithms the averaging across the interface is done point-
wise and that leads to non-zero residuals at the nodes next to 
: In each iteration,
subdomain Dirichlet solves are then used to eliminate them, but in the deluxe
variant this step is not needed. The iteration is accelerated by using a preconditioned
conjugate gradient method.

The core of any theory for BDDC algorithms is the norm of the average operator
ED: By an algebraic argument known, for FETI-DP, since the publication of [11,
Proof of Theorem 1], we have

�.M�1A/ � kEDkQS;

which then provides an upper bound for the number of iterations required of the
preconditioned conjugate gradient method; for details on the BDDC case, see, e.g.,
[1]. Here M�1 represents the action of the preconditioner.
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3 The New Algorithmic Idea

When designing a BDDC algorithm, we have to choose an effective set of primal
constraints and also a good recipe for the averaging across the interface. Traditional
averaging recipes were found not to work uniformly well for three dimensional
problems in H.curl/; see [6]. This is directly related to the fact that there are two
material parameters. An alternative was found and will be outlined in this section.
It has also proven to be very robust for H.div/ problems, see [14], and for Reissner-
Mindlin plates, see [12].

We note that experimentally, the condition numbers are often quite small.
For Reissner-Mindlin plates, in Lee’s experiments, they are � 4 while without
preconditioning the condition numbers can exceed 1011 for very thin plates with
the parameter t D 10�5: The results in the H.div/-study are quite similar and
experiments with the deluxe version of BDDC for isogeometric analysis show
considerable improvement over older variants.

Across a subdomain face F � 
 , common to two subdomains ˝i and ˝j, the
deluxe ED is defined in terms of two Schur complements, which are principal minors
of S.i/ and S.j/; respectively:

S.k/F WD A.k/FF � A.k/FI A.k/II

�1
A.k/IF ; k D i; j:

The face contribution of the deluxe averaging operator is then defined by

NwF WD .EDw/F WD .S.i/F C S.j/F /
�1.S.i/F w.i/F C S.j/F w.j/F /:

This action of this component of ED can be implemented by solving a Dirichlet
problem on˝i[F[˝j: This local problem is larger than those of the conventional
BDDC algorithms, and we are currently exploring the effects of using cheaper,
inexact solvers for these subproblems.

Similar formulas can also be written down for subdomain edges and other
equivalence classes of interface variables. The operator ED is assembled from these
components.

We will now show that the analysis of BDDC deluxe can be reduced to bounds
for individual subdomains. Arbitrary jumps in two coefficients can then often be
well accommodated. We also note that the analysis of traditional BDDC algorithms
requires an extension theorem; the deluxe version does not.

Instead of estimating .RT
F NwF/

TS.i/RT
F NwF , where the restriction operator RF maps

the values on 
 onto those on F; we will work with the norm of RT
F.w

.i/
F � NwF/.

Thus, instead of estimating the norm of ED; we will estimate the norm of I � EDI
a bound on the norm of ED will, as we previously have noted, give a bound on the
condition number.

We easily find that

w.i/F � NwF D .S.i/F C S.j/F /
�1S.j/F .w

.i/
F � w.j/F /:
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By some more algebra and noting that RFS.i/RT
F D S.i/F ; we find that

.RT
F.w

.i/
F � NwF//

TS.i/.RT
F.w

.i/
F � NwF// D

.w.i/F � w.j/F /
TS.j/F .S

.i/
F C S.j/F /

�1S.i/F .S
.i/
F C S.j/F /

�1S.j/F .w
.i/
F � w.j/F /:

We now add the corresponding expression for the subdomain ˝j and, after a
simplification, find that this sum can be written as

.w.i/F � w.j/F /
T.S.i/�1F C S.j/�1F /�1.w.i/F � w.j/F /:

We then find that, for any element w˘ in the primal space,

.RT
F.w

.i/
F � NwF//

TS.i/RT
F.w

.i/
F � NwF/C .RT

F.w
.j/
F � NwF//

TS.j/RT
F.w

.j/
F � NwF/

� 2.w.i/F � RFw˘/
T
S.i/F .w

.i/
F � RFw˘/C 2.w.j/F � RFw˘/

TS.j/F .w
.j/
F � RFw˘/:

Each of the two terms on the right hand side are local to only one subdomain.
For the subdomain faces, what now remains is to estimate, after a suitable shift

w˘ , .w.i/F � RFw˘/TS.i/F .w
.i/
F � RFw˘/ by w.i/

T
S.i/w.i/: This is routine for H1.˝i/

using standard estimates in the domain decomposition literature such as a face
lemma [16, Lemma 4.24] in which we estimate the energy of the extension of the
face values by zero to the rest of 
i with that of the minimal energy extension.
A factor of C.1 C log.H=h//2 results. For H1.˝i/; all these estimates have been
available for 20 years. But for H.div/ and H.curl/, new tools have been required.

Similar estimates are required for subdomain edges. Let RE be the restriction
matrix which maps the values on 
 onto those on a subdomain edge E: If this edge
is common to three subdomains˝i;˝j; and˝k, the edge average NwE is defined by

NwE WD .S.i/E C S.j/E C S.k/E /
�1.S.i/E w.i/E C S.j/E w.j/E C S.k/E w.k/E /:

Here S.i/E WD RES.i/RT
E; etc. We can show that,

.RT
E.w

.i/
E � NwE//

T S.i/ RT
E.w

.i/
E � NwE/ �

3.w.i/E /
TS.j/E w.i/E C 3=4.w.j/E /

T S.j/E w.j/E C 3=4.w.k/E /
TS.k/E w.k/E :

Other bounds, e.g., with a shift with an element of the primal space, can also be
developed, but the one given here has proven of use in our work on problems in
H.curl/: We can also develop similar bounds for any edge, common to more than
three subdomains, using the same kinds of arguments.
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4 H.curl/ Problems in Three Dimensions

Consider the variational problem: Find u 2 H0.curlI˝/ such that

a.u; v/˝ D .f; v/˝ 8v 2 H0.curlI˝/;

where u � n D 0 on @˝ and where

a.u; v/˝ WD
Z

˝

Œ˛r � u � r � vC ˇu � v� dx; .f; v/˝ WD
Z

˝

f � v dx:

Here, ˛.x/ � 0 and ˇ.x/ strictly positive. For coefficients constant in each
subdomain, we have

a.u; v/˝ D
NX

iD1
.˛i.r � u;r � v/˝i C ˇi.u; v/˝i/:

In our work, there are two relevant finite element spaces, namely Whi
curl of the

lowest order triangular Nédeléc elements and Whi
grad of the standard piecewise linear,

continuous elements, on the same triangulation.
The space of Nédélec finite element functions, Whi

curl; can be represented as the
range of an interpolation operator˘ h which is well defined, for sufficiently smooth
elements of w 2 H.curl;˝/; by

˘ h.w/ WD
X

e

�e.w/Ne where �e.w/ WD 1

jej
Z

e
w � teds:

Here te is a unit vector in the direction of the element edge e and Ne the standard
Nédélec basis function.

We have been able to build on the work by Toselli [15]. Thus, for Nédélec
elements, the use of the basis based on fNeg results in a poor result since the coupling
between the subdomain faces and edges is far too strong. Following Toselli, we
change the variables associated with the subdomain edges using a constant along
each subdomain edge and the gradient of the standard Whi

grad basis functions for all
the interior nodes of the subdomain edges. After this change of variables, a quite
stable decomposition can be found.

Domain decomposition theory always involves establishing the stability of a
decomposition; in our context, a new auxiliary result is then needed:

Lemma 1 Let F be a face of a polyhedral subdomain ˝i. Further, let f@F 2
Whi

grad.˝i/ have vanishing nodal values everywhere in ˝i except on @F. There then

exists a giF 2 Whi
curl.˝i/ such that �e.giF/ D �e.rf@F/ for all element edges in the
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interior of the face F, �e.giF/ D 0 for all other element edges on @˝i, and

kgiFk2L2.˝i/
� C..1C log.Hi=hi//kf@Fk2L2.@F/ C H2

i krf@F � t@Fk2L2.@F//;

kr � giFk2L2.˝i/
� C.1C log.Hi=hi//krf@F � t@Fk2L2.@F/:

For a proof of this result, see [7, Lemma 3.5]. We also use several standard auxiliary
results for Whi

grad as collected in [16, Subsection 4.6].
A key to our work is also a result by Hiptmair and Xu [10, Lemma 5.1]:

Lemma 2 For any polyhedral subdomain ˝i and any uh 2 Whi
curl.˝i/, there exist

‰h 2 .Whi
grad.˝i//

3; ph 2 Whi
grad.˝i/; and qh 2 Whi

curl.˝i/; such that

wi D qi C ˘ hi.‰ i/Crpi;

krpik2L2.˝i/
� C.kwik2L2.˝i/

C H2
i kr �wik2L2.˝i/

/;

kh�1i qik2L2.˝i/
C k‰ ik2H1.˝i/

� Ckr � wik2L2.˝i/
:

We note that these bounds are local and that the result has been established for
polyhedra which are not necessarily convex.

This result is essential to Hiptmair and Xu’s work on algebraic multigrid
algorithms for H.curl/ in which AMG Poisson solvers are used.

In contrast to earlier results on domain decomposition algorithms for H.curl/,
we do not have to rely on any trace theorem in our proof.

Toselli primarily advocates the use of two primal variables for each subdomain
edge: the average and first moment and so do we. We have improved Toselli’s
condition number bound from

C max
i
.1C ˇiH2

i

˛i
/.1C log.Hi=hi//

4

to an estimate, with the best possible power of .1C log.Hi=hi/:

C max
i

min..Hi=hi/
2; .1C ˇiH2

i

˛i
//.1C log.Hi=hi//

2:

We have fewer restrictions on the coefficients than Toselli; our constant C is
independent of the ˛i and ˇi:

So far, we have not mastered the case where ˇiH2
i

˛i
is large. We note that for H.div/,

one simple primal space works well in all cases; not so for H.curl/:
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5 Numerical Results

Numerical results are presented in this section, which confirm the theory and
demonstrate that in certain cases, the deluxe BDDC algorithm is much more robust
than older BDDC variants. In our tables iter and cond denote the number of
iterations and the estimated condition numbers obtained using a relative tolerance of
10�8 of the `2-norm of the residual as a stopping criterion. The subdomain problems
are discretized using the lowest order hexahedral edge elements, for which our
theory is equally valid.

In the first example, a unit cube is subdivided into N3
d smaller cubes, which

are each subdivided into 64 D 43 elements. Table 1 illustrates that the rate of
convergence is independent of the number of subdomains.

In the next set of experiments, we study the behavior of our algorithm for
increasing values of H=h, the number of elements across each subdomain. We note
a much more rapid growth of the condition number for the mass-dominated cases,
i.e., with ˇiH2

i >> ˛i; represented by the first column of Table 2.
In our final table, Table 3, we consider a case of a three-dimensional checker-

board arrangement of the material parameters with ˛i D 104, ˇi D 10�2 for the
red subdomains and ˛i D 102, ˇi D 1 for the black. We indeed find a considerable
improvement for the deluxe variant over two standard scalings. In the final columns,

Table 1 Results for unit cube decomposed into smaller cubical subdomains with H=h D 4

˛ D 10�4 ˛ D 10�2 ˛ D 1 ˛ D 102 ˛ D 104

Nd Iter Cond Iter Cond Iter Cond Iter Cond Iter Cond

2 9 2.49 8 1.59 10 1.99 10 2.03 10 2.03

4 12 2.36 10 1.79 14 2.63 15 2.70 16 2.70

6 11 2.12 12 2.07 15 2.81 16 2.88 17 2.88

8 11 2.02 13 2.25 15 2.87 16 2.95 17 2.95

10 11 1.97 13 2.35 16 2.91 17 2.98 18 2.98

12 11 1.92 14 2.44 16 2.93 17 2.99 18 2.99

The material properties are constant with ˛i D ˛ and ˇi D 1

Table 2 Results for unit cube decomposed into 27 smaller cubical subdomains

˛ D 10�7 ˛ D 10�2 ˛ D 1 ˛ D 102 ˛ D 104

H=h Iter Cond Iter Cond Iter Cond Iter Cond Iter Cond

4 12 2.74 9 1.63 13 2.41 13 2.47 14 2.47

6 15 4.51 12 2.15 14 2.93 15 3.01 16 3.01

8 19 6.89 14 2.70 16 3.34 17 3.44 18 3.44

10 22 9.98 15 3.22 17 3.69 18 3.79 19 3.79

12 24 13.8 16 3.69 17 3.98 19 4.09 20 4.10

14 28 18.3 17 4.13 18 4.24 19 4.36 21 4.36

16 30 23.5 18 4.55 19 4.47 20 4.60 22 4.60

The material properties are constant with ˛i D ˛ and ˇi D 1
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Table 3 Results for unit cube decomposed into 27 smaller cubical subdomains with a checker-
board arrangement of material properties

Stiffness scaling Cardinality scaling Deluxe scaling e-deluxe scaling

H=h Iter Cond Iter Cond Iter Cond Iter Cond

4 50 272 80 156 6 1.06 6 1.06

6 67 342 100 207 7 1.20 7 1.20

8 78 398 117 247 8 1.33 8 1.33

10 87 445 128 281 9 1.45 9 1.45

12 95 486 140 310 10 1.55 10 1.55

14 102 522 151 336 10 1.63 10 1.63

16 109 554 160 360 11 1.71 11 1.71

marked e-deluxe, results of replacing the solver over pairs of subdomains with a
common face, by a solver over only a thin neighborhood of the face, which just
includes the element edges next to the face, are given.
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A Stochastic Domain Decomposition Method
for Time Dependent Mesh Generation

Alexander Bihlo and Ronald D. Haynes

1 Introduction

We are interested in PDE based mesh generation. The mesh is computed as the
solution of a mesh PDE which is coupled to the physical PDE of interest. In [3] we
proposed a stochastic domain decomposition (SDD) method to find adaptive meshes
for steady state problems by solving a linear elliptic mesh generator. The SDD
approach, as originally formulated in [1], relies on a numerical evaluation of the
probabilistic form of the exact solution of the linear elliptic boundary value problem.
Monte-Carlo simulations are used to evaluate this probabilistic form only at the sub-
domain interfaces. These interface approximations can be computed independently
and are then used as Dirichlet boundary conditions for the deterministic sub-
domain solves. It is generally not necessary to solve the mesh PDEs with high
accuracy. Only a good quality mesh, one that allows an accurate representation of
the physical PDE, is required. This lower accuracy requirement makes the proposed
SDD method computationally more attractive, reducing the number of Monte-Carlo
simulations required.

Grid adaptation by an SDD approach does generate interesting issues in its own
right. Grid quality should be monitored during the interface solves to give a suitable
stopping criteria for the stochastic portion of the algorithm. Such a stopping criteria
can be readily implemented by checking the mesh quality (as measured e.g. through
mesh smoothness, alignment or equidistribution, see [5]) after every nth Monte-
Carlo simulation. If the mesh quality is below a threshold, the additive nature of
expected value computations allows one to resume the Monte-Carlo simulations
and hence improve the mesh generation.
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As mentioned, in [3] only the steady grid generation problem was considered.
Of course, in practice, the problem of grid generation is coupled with the process
of solving the system of physical, often time dependent, PDEs. It is this latter issue
that we begin to explore in this paper.

We are interested in time dependent PDEs whose solutions evolve on disparate
space and time scales. The solution behaviour lends itself to the use of time
dependent meshes which automatically adapt and evolve to efficiently resolve the
solution features. The generation of these time dependent grids can be done either
by statically applying an elliptic mesh generator using the physical solution obtained
at the previous time step or by employing a time relaxation of the static mesh PDE
resulting in a parabolic moving mesh PDE, as in [5]. The extension of the SDD
approach to (linear) parabolic mesh generators is possible due to the existence of a
stochastic representation of the exact solution of such linear parabolic problems. For
the sake of illustration, we will work with the time-relaxed form of the Winslow-
Crowley variable diffusion mesh generation method, first described in [9].

2 Winslow’s Method

The equipotential method of mesh generation in 2D, as described in [4], found the
mesh lines in the physical co-ordinates x and y as the level curves of the potentials
� and 	 satisfying Laplace’s equations

r2� D 0; r2	 D 0; (1)

and appropriate boundary conditions which ensure grid lines lie along the boundary
of the domain. Here derivatives are with respect to the physical co-ordinates. The
mesh transformation, x.�; 	/ and y.�; 	/, in the physical domain ˝p, can be found
by (inverse) interpolation of the solution of (1) onto a (say) uniform .�; 	/ grid.
In practice, the inversion to the physical co-ordinates is not necessary. Instead
one could transform the physical PDE of interest to the computational co-ordinate
system.

Winslow [10] generalized (1) by adding a diffusion coefficient w.x; y/ depending
on the gradient or other aspects of the solution. This gives the linear elliptic mesh
generator

r � .wr�/ D 0 and r � .wr	/ D 0: (2)

The function w.x; y/, known as a mesh density function, characterizes regions where
additional mesh resolution is needed and in general depends on the solution of the
physical PDE. We assume w and 1=w are strictly positive, bounded C2-functions.
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Here we assume the solution of the physical PDE is time dependent and hence the
mesh density function is changing with time, w D w.t; x; y/. One could still use (2)
to solve the mesh transformation at each time t. For time dependent PDEs this would
result a system of differential-algebraic equations for the physical solution and the
mesh. Instead, we choose to relax (2) to obtain a parabolic linear mesh generator of
the form

�t D 1

T
.rw � r� C wr2�/ and 	t D 1

T
.rw � r	C wr2	/: (3)

This gives a mesh PDE which depends explicitly on the mesh speed and provides
a degree of temporal smoothing for the mesh. In fact one can show the difference
between the solution of (3) and the solution of (2) goes to zero as T ! 0, see [5]. In
the following, we set T D 1.

Below we only work with prescribed functions for w. In practice, however, the
monitor function would be linked to the solution of a physical PDE. For example,

one could use an arc-length type function � D
q
1C ˛.u2x C u2y/ and choose w D

1=�. We also note that our algorithm uses an interpolated form of w instead of
the analytic expression. In practice, this is necessary since u is only known on the
current grid as we alternately solve the mesh and physical PDEs.

3 Linear Parabolic Differential Equations and Stochastic
Domain Decomposition

The system of mesh PDEs (3) is of the form

�t D L�; 	t D L	; (4)

where �.t; x; y/ and 	.t; x; y/ are the computational coordinates defined over Œ0;T��
˝p. In system (4), L is a linear elliptic operator of the form

L D aij
@2

@xi@xj
C bi

@

@xi
;

with continuous coefficient matrix a.t; x; y/ D .aij/.t; x; y/, i; j 2 f1; 2g, and drift
vector b D .b1; b2/T.t; x; y/. Here we employ the summation convention over
repeated indices. System (4) is accompanied by smooth boundary and initial condi-
tions �j@˝p D f .t; x; y/; 	j@˝p D g.t; x; y/; �.0; x; y/ D �0.x; y/; and 	.0; x; y/ D
	0.x; y/:

The solution of such linear parabolic problems can be described using the tools
of stochastic calculus [2, 7]. Provided that � and 	 are C1-functions in t and C2

in .x; y/, the point-wise solution of system (4) at .t; x; y/ 2 Œ0;T� � ˝p is given
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probabilistically as

�.t; x; y/ D E
h
�0.X.t//1Œ�@˝p>t�

i
C E

h
f .t � �@˝p ;X.�@˝p//1Œ�@˝p<t�

i
; (5)

where the process X.t/ D .x.t/; y.t//T satisfies, in the Îto sense, the stochastic
differential equation (SDE)

dX.t/ D b.t;X.t//dt C �.t;X.t//dW.t/:

The relation between � and .aij/ is given through

1

2
�.t; x; y/�.t; x; y/T D a.t; x; y/

for all .t; x; y/ 2 Œ0;T� �˝p. The solution for 	.t; x; y/ is completely analogous.
In (4), the EŒ�� denotes the expected value, �@˝p is the time when the stochastic

path starting at .x; y/ first hits the boundary of the physical domain ˝p, W is two-
dimensional Brownian motion and 1 is the indicator function. See [7] for a proper
definition of the required probability space.

The time dependent mesh generator (3) is a special case of the general form (4)
with

a.t; x; y/ D wI2; b1.t; x; y/ D wx; b2.t; x; y/ D wy; (6)

where I2 is the 2 � 2 identity matrix.
For our two dimensional mesh generator we choose the initial conditions �.t D

0; x; y/ D �0.x; y/ D x and 	.t D 0; x; y/ D 	0.x; y/ D y, corresponding to an initial
uniform mesh, and the static boundary conditions �.t; xl; y/ D 0, �.t; xr; y/ D 1,
	.t; x; yl/ D 0 and 	.t; x; yu/ D 1. This ensures we use the standard computational
domain ˝c D Œ0; 1� � Œ0; 1� and the rectangular physical domain ˝p D Œxl; xr� �
Œyl; yu�. The remaining boundary conditions for �.t; x; yl/; �.t; x; yu/; 	.t; xl; y/ and
	.t; xr; y/ are determined by solving the 1D version of (2) along the boundaries.
Collectively, we use f and g to denote these boundary conditions for � and 	 as in
Eq. (5).

Hence we have to solve the SDE

dX.t/ D rw dtCp2w dW.t/; (7a)

for the single path X.t/. The stochastic form of the exact solution of Eq. (3) for � is
then obtained by evaluating

�.t; x; y/ D E
h
�0.X.t//1Œ�@˝p>t�

i
C E

h
f .X.�@˝p//1Œ�@˝p<t�

i
: (7b)

The point-wise solution for 	.t; x; y/ is obtained in an analogous fashion.
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In principle, the probabilistic solution (7) allows one to determine the compu-
tational coordinates � and 	 at each point in the space-time domain Œ0;T� � ˝p.
However, this is prohibitively expensive (unless a sufficiently large number of
compute cores is available). A more efficient approach is to evaluate the solution (7)
only at points along artificially imposed interfaces. These solutions serve as
boundary values for the DD implementation. Moreover, one can reduce the number
of stochastic solves along the interfaces even further as described at the end of the
next section, cf. [2].

In the mesh generation context it is not possible to obtain the solution of (5) at all
times, as the solution of the mesh PDE is coupled to the physical solution. That is,
rather than solving (5) for a time t 2 Œ0;T�, it is generally only possible to use this
stochastic solution to advance the solution of (4) over one single time step from tn

to tnC1. In this case, �0 and 	0 should be interpreted as the values of � and 	 at time
tn and the monitor function, w, is given at either tn or tnC1 and remains constant over
the time step.

4 The Numerical Method

Stochastic Solver and Domain Decomposition The use of the stochastic solu-
tion (5) for the time-relaxed Winslow mesh generator with parameters (6) is
straightforward. We solve (7a) using the classical Euler-Maruyama scheme, i.e.
we employ linear time-stepping. An alternative would be to use exponential time-
stepping as advocated e.g. in [1, 3, 6]. In our tests, linear time-stepping gives
sufficient accuracy. The components of the Brownian motion dW.t/ are computed
as
p
tN .0; 1/, whereN .0; 1/ is a normally distributed random number with mean

zero and variance one [7].
The time dependent weight only becomes available at each time step (due to

a possible coupling with a physical PDE). Hence we are only able to employ
formula (7b) to integrate over a single time step, i.e. from tn to tnC1. Over this
time step, the weight function is evaluated at tn and held constant, i.e. we have
wn.x; y/ D w.tn; x; y/ in (7a). Accordingly, �0 in Eq. (7b) is to be interpreted as
�n
0 D �.tn; x; y/, i.e. the values of the computational coordinates at the current time

tn. Moreover, the boundary functions f and g are updated at each time step to reflect
changes in the physical solution.

We then numerically integrate the SDE (7a) from tn to tnC1. The drift vector
b D rw is required everywhere along the path of the stochastic process X.t/ but
is only available directly at the grid points of the domain. Bilinear interpolation is
used to obtain the values of b in between these grid points. The quantity rw is
approximated using finite differences.

In the DD context, the stochastic solution is only required at a selection of points,
.xi

k; y
i
k/, which live on the interfaces between sub-domains. One time stept is split

into several smaller sub-time steps in order to numerically integrate the SDE (7a)
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from tn to tnC1. We found this splitting of t into sub-time steps necessary to
determine, with sufficient accuracy, whether the stochastic processes has left the
domain ˝p during t. This is not unlike the Mk approach for mesh generation
discussed in [5]. At each sub-time step, a boundary test is performed to determine
whether the stochastic process has left the domain˝p. If this is the case, the process
contributes via the second term in Eq. (7b) to the approximation of �.tnC1; xi

k; y
i
k/. If

the stochastic process did not leave the domain until tnC1 is reached, it contributes
to the first term in the approximation of �.tnC1; xi

k; y
i
k/ in Eq. (7b). The computation

of 	.tnC1; xi
k; y

i
k/ is handled analogously. The expected values are then replaced by

arithmetic means. Note, it is not desirable to make t itself smaller, as this would
degrade the efficiency of the (deterministic) implicit sub-domain solver, which is
described below.

Deterministic Sub-domain Solver The values of � and 	 along the sub-domain
interfaces serve as boundary conditions for the sub-domain solver. The sub-domain
solver we employ is an implicit finite-difference discretization of Eq. (3). The matrix
system is solved using an LU-factorization.

Parallelization and Further Speed-up It is well-known that Monte-Carlo tech-
niques converge rather slowly [8] and are usually most competitive for problems in
high dimensions. The use of the stochastic solution to obtain the interface values for
a DD solution, however, is considerably more efficient and provides a fully parallel
grid generation algorithm. Moreover, the DD method requires no iteration. The
stochastic solutions on the interfaces can be determined at each point separately
and each Monte-Carlo simulation is independent. Additionally, each sub-domain
solution could potentially be assigned to a single processor once the interface
solutions are obtained, yielding excellent scalability. Due to the fully parallel nature
of the algorithm, the method is also fault tolerant. This renders the method suitable
for an implementation on massively parallel computing architectures, cf. [1–3].

A further source of improvement stems from the fact that � and 	 do not
have to be computed at all grid points along the interfaces. As proposed in [1]
it may be sufficient to use the stochastic solution only at few points on the
interface and recover the solution at the remaining interface points using inter-
polation. In [3] we have used a relatively simple optimal placement strategy
to determine the most important locations on the interface where the stochastic
solution should be computed. We use the same strategy in the present algo-
rithm, i.e. the stochastic solution is computed near the maxima and minima of
wx and wxx along the horizontal interfaces and wy and wyy along the vertical
interfaces.
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5 Numerical Results

We present an example for our SDD method to generate an adaptive (moving) mesh
for the weight function w D 1=�, where

� D 1C ˛ exp

 
ˇ

ˇ̌
ˇ̌
ˇ

�
x � 1

2
� 1
4

cos.2�t/

�2
C
�

y � 1
2
� 1
4

sin.2�t/

�2
� 1

100

ˇ̌
ˇ̌
ˇ

!
:

We choose the parameters ˛ D 10 and ˇ D �50 used in [5]. Both the physical and
computational domains are the unit square. The grid we generate has 41� 41 nodes
and is divided into four sub-domains. On the interfaces we determine the stochastic
solution at the key points using the optimal placement strategy mentioned in the
previous section. Piecewise cubic Hermite interpolation is used to determine the
remaining interface points. We integrate (3) up to t D 0:75 using t D 0:001.
Each time step is split into 20 sub-time steps while solving the SDE (7a) and N D
10000Monte-Carlo simulations are used to estimate the expected value in (7b). The
resulting meshes at t D 0:25, t D 0:5, and t D 0:75 are depicted in Fig. 1.

The method is able to produce smooth meshes over the physical domain that
adapt well to the time-dependent monitor function. No explicit smoothing was
applied to the final meshes in this example. In general we have found sub-domain
smoothing to be a way to further reduce the number of Monte-Carlo simulations
needed in the probabilistic expression (7b), see [3].

6 Conclusion

In this paper we have proposed a new stochastic domain decomposition method for
the construction of adaptive moving meshes suitable for time-dependent problems.
The method is fully parallelizable as the values of the computational coordinates �
and 	 on the single sub-domains can be determined without information exchange
from neighboring sub-domains and all the interface values can be computed
independently.

Future refinements include the use of exponential time-stepping to solve the
SDE (7a). More generally, more sophisticated boundary tests could better determine
the first exit time of a stochastic process. This will allow using larger time steps in
the solution of (7a) thus making the method more efficient. An alternate approach
to generate time dependent meshes is to apply the SDD method from [3] to the
sequence of elliptic problems which result from discretizing (2) in time.
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Fig. 1 Top to bottom: Meshes obtained from the parabolic mesh generator (3) using the SDD
method at t D 0:25, t D 0:5, and t D 0:75. Left: Meshes over the physical domain. Right: Meshes
over the computational domain obtained from the former using natural neighbor interpolation.
Thick line: Sub-domain interfaces. Circles: Points where the mesh is obtained using the stochastic
solution (7)
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Some Geometric and Algebraic Aspects
of Domain Decomposition Methods

D.S. Butyugin, Y.L. Gurieva, V.P. Ilin, and D.V. Perevozkin

1 Introduction

The DDMs include a variety of geometric, algebraic, and functional aspects which
are aimed at a high performance solution of large-size problems on post-petaflop
computers.

Numerous works and Internet sites are devoted to this problem: monographs,
papers, conference proceedings, programs, etc. [2, 10]. The issues that are of most
interest from the practical point of view are the requirements on high resolution of
the numerical approaches to solving multi-dimensional interdisciplinary boundary
value problems described by systems of partial differential equations (PDEs) or
the corresponding variational statements in the computational domains with com-
plicated piecewise smooth boundaries and contrasting material properties of their
subdomains. Approximation of such problems by finite-volume or finite-element
methods on nonstructured grids results in very large systems of linear algebraic
equations (SLAEs) with 108–1010 unknowns with ill-conditioned or nondefinite
sparse matrices with complicated portrait structures.

The solution of the SLAEs is a weak point of modern computing, and the DDMs
are the main tool providing scalable parallelism on multi-processor and multi-core
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systems. The goal of this paper is to experimentally investigate several approaches to
automatic construction of balancing grid subdomains and to parallel solution of the
resulting SLAE using the parametrized width of subdomain overlapping, different
internal boundary conditions, aggregation techniques, see, for example, [9]. The
results of a comparative analysis of the efficiency of various approaches for the
model problems are presented. The computations were carried out with the Krylov
library [1].

2 Grid Domain Decomposition Without Separator Nodes

Let the matrix of the SLAE Au D f be split into P subsystems:

.Au/p D Ap;pup C
PX

qD1
q¤p

Ap;quq D fp; p D 1; : : : ;P; A D fai;jg 2 RN;N ; (1)

A D fAp;q 2 RNp;Nqg; u D fup 2 RNpg; f D f fp 2 RNpg; p; q D 1; : : : ;P:

Assume that SLAE (1) is a system of grid equations approximating a multi-
dimensional boundary value problem for a differential equation, so that the com-
ponents of the vectors u, f correspond to a grid point, the total number of nodes

in the grid computational domain ˝h D
PS

pD1
˝h

p being equal to N. The block

decomposition of the matrix and vectors corresponds to the partitioning of ˝h into
P non-overlapping subdomains˝h

p , each consisting of Np nodes, N1C: : :CNp D N.
The decomposition of ˝h does not use separator nodes, i.e., the boundaries of the
subdomains do not pass through the grid nodes.

The process of system (1) solving can be parallelized by the additive Schwarz
method:

Ap;pun
p D fp �

PX

qD1
q¤p

Ap;qun�1
q 
 gn�1

p : (2)

The above matrix-algebraic representation of the structure of SLAE (1) can be
extended by introducing a graph describing the same problem. Each ith grid node
(or the ith row of the matrix A) can be associated with a vertex vi of a graph G, and
the mesh edge connecting the nodes i and j 2 ˝h, can be associated with the edge
of the graph G D .V;E/, V D fviI i D 1; : : : ;Ng; E D f.vi; vj/ jai;j ¤ 0; i; j D
1; : : : ;Ng.
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Define an extended subdomain N̋ h
p � ˝h

p with overlapping, whose breadth is
defined in terms of the number of layers, or fronts, of the grid nodes.

Let 
 0
p 2 ˝h

p denote a set of internal near-boundary nodes, i.e., nodes Pi 2 ˝h
p ,

in which one of the neighbors does not lie in ˝h
p .Pj … ˝h

p ; j 2 !i; j ¤ i/. In 
 0
p ,

define a subset of nodes 
 0
p;q in which the neighboring nodes belong to the adjacent

subdomain˝h
q ; q 2 N!p, where N!p is a set of numbers of the subdomains adjacent to

˝h
p . Thus, 
 0

p D
S

q2 N!p


 0
p;q; and the subsets 
 0

p;q may intersect, i.e. they can contain

near-boundary nodes with neighbors from different subdomains.
Let 
 1

p denote a set of nodes adjacent to the nodes from 
 0
p but not belonging

to ˝h
p and 
 0

p ; and let 
 2
p be a set of nodes adjacent to the nodes from 
 1

p but not
belonging to the union 
 1

p

S
˝h

p , etc. These sets will be called the first external
layer (front) of nodes, the second layer, etc., respectively. The resulting collection
of nodes˝

p D ˝h
p

S

 1

p : : :
S

 

p will be called the extended pth grid subdomain,
and, the extension breadth. The case  D 0 actually means the decomposition of
the domain˝h into subdomains without intersections (˝0

p D ˝h
p ).

The set 
 
p 2 ˝

p presents internal near-boundary nodes of the extended
subdomain ˝

p , and 
 C1
p , a set of external near-boundary nodes. Thus the

geometric boundary of ˝
p runs between 
 

p and 
 C1
p . Similarly to 
 0

p ,
the set 
 

p can be partitioned into subsets of near-boundary nodes 
 
p D


 
p;q1

S

 

p;q2 : : :
S

 

p;qmp
whose neighboring nodes are located, respectively, in

the subdomains ˝h
q1 ; ˝

h
q2 ; : : : ;˝

h
qmp

(here mp denotes the number of subdomains

that intersect ˝
p , and q1; q2; : : : ; qmp are the numbers of these subdomains).

Consider iterative process (2) for the equation corresponding to the ith near-
boundary node in N̋ h

p . Some of the neighbors belong to other subdomains N̋ h
q , q ¤ p

but do not belong to N̋ h
p :

�
ai;i C �i

X

j… N̋p
ai;j

�
un

i C
X

j2 N̋p
ai;ju

n
j D fi C

X

j… N̋p
ai;j.�iu

n�1
i � un�1

j /: (3)

Here �i 2 Œ0; 1� are parameters, corresponding for �i D 0 or �i D 1 to the
Dirichlet or Neumann boundary conditions, and for 0 < �i < 1, to the Robin
condition.

Introduce matrices NAp;p 2 R NNp; NNp , NAp;q 2 R NNp; NNq for Eq. (3). Then the iterative
process can be transformed to the form

NAp;p Nun
p D Nf p �

PX

qD1
q¤p

NAp;q Nun�1
q 
 Ngn�1

p : (4)

In the above discussion, we have considered the extension of the subdomain
˝h

p towards its outer side. The same procedures are performed for the neighboring
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subdomains, which results in the construction of fronts inside˝h
p . These procedures

can be implemented at the grid layers (fronts) in the extension of the neighboring
subdomains˝h

q ; q ¤ p.
Formula (4) does not describe the iterative process exactly since NN1C : : :C NNp �

N. The vector un can be determined by partitioning the unit:

un
i D

X

qi2 N!i

	qi.Nun
qi
/i;

X

qi2 N!i

	qi D 1; (5)

where N!i is a set of the extended subdomains N̋ h
qi

including the node Pi. Particular,
but important, cases in (5) are 	qi D 1 for Pi 2 ˝h

qi
and 	qi D 0 for Pi ¤ ˝h

qi
.

An alternative approach is to use iterations “in traces”. Let N
p D 
 
p

S

 C1

p

define the trace of the extended subdomain N̋ h
p for �i ¤ 0;Pi 2 
 

p , and N
p D

 C1

p , for �i D 0. We can write N
q DS N
q;p, where N
p;q D N
p
T
˝h

q . From (2) we
have

Nun
p D NA�1p;p.

Nf p �
PX

qD1
q¤p

OAp;q Oun�1
p /: (6)

Here the matrices NAp;p are assumed to be non-singular, OAp;q 2 R NNp; ONp;q and Oup D
fuiIPi 2 N
p;qg 2 R ONp;q ; ONp;q being the number of nodes in N
p;q.

If Nun
p ! Nup for n !1, iterations (6) provide the solution of the preconditioned

SLAE

NAu D Nf ; Nf 2 RN ; NA 2 RN;N : (7)

Multiplying Eq. (6) by NAq;p and denoting NAp;q Nun
q D OAp;q Oun

q D vn
p;q 2 R NNp , we

obtain the algebraic system “in traces”:

vq;p C NAq;p NA�1p;p

PX

qD1
q¤p

vp;q D NAq;p NA�1p;p
Nf p; p D 1; : : : ;PI q 2 N!p: (8)

The degree of freedom of this SLAE is ON D
PP

pD1
ONp D

PP
pD1

P
q2 N!p

ONp;q � N.

Iterative solution of Eq. (8) can be implemented by a Krylov method. To speed
up the iterative DDM process, various approaches, for example, deflation, coarse
grid correction, and smoothed aggregation can be used. We consider the SLAE
reduction procedure based on an interpolation principle, under the assumption of
smooth behavior of the solution to be sought for in each subdomain.
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Define a prolongation matrix WT D fwpg 2 RN;P, where the vectors (columns)
wp have nonzero (unit) entries corresponding to the subdomain˝p only. Then OA D
WTAW 2 RP;P presents the global aggregation matrix, and B D W OA�1WT is, in
a sense, an aggregating preconditioning matrix. For simplicity, we consider non-
overlapping subdomains. In this case, the matrix in (7) has a simple form NA D BJA,
where BJ is the block Jacobi preconditioner [9].

DDM-exploiting iterative processes can be constructed in various ways. We use
a simple one, namely, the FGMRES [9] with dynamic preconditioner Bn: Bn D BA

for n D kmC 1, k D 0; 1; : : :, and Bn D BJ otherwise. The stopping criteria of this
process are

jjOrnjj � jj Of � OAunjj � "ejj Of jj; "e � 1; or n � ne
max: (9)

Subdomain SLAEs are solved by either the direct solver PARDISO [5] or the
iterative BiCGStab method [9].

In the latter case of a two-level iterative algorithm, various approaches can be
chosen for defining the internal stopping criteria "i � "e and ni

max, similarly to (9).

3 Parallel Implementation of Algorithms

The major question in high-performance implementation of DDMs is automatic
construction of balancing grid subdomains, based, for instance, on CSR format of
the original SLAE. This problem is solved by the graph partitioning approach in two
stages. First, we define P subdomains˝h

p , p D 1; : : : ;P, without intersections. Then

extended subdomains N̋ h
p with a given breadth  of overlapping are constructed on

the basis of the following algorithm.
The non-overlapping grid subdomains ˝h

p are formulated as subgraphs
Gp.Vp;Ep/ with possibly small diameters containing approximately equal numbers
of vertices Np 	 N=P. In practice, the task consists in transforming the original
CSR format to the CSRp formats for P subdomains, which should be distributed
among the corresponding MPI processes.

The graph partitioning is a multi-level aggregation procedure of the sequential
macrographs G.l/.V.l/;E.l// D fG.l/

p .V
.l/
p ;E

.l/
p /g, l D 0; 1 : : : ;L, p D 1; : : : ;Pl.

Here L and Pl are the number of levels and the number of macrovertices at the lth
level, respectively, whose macro-vertices include several vertices of a lower level.
If G.0/.V.0/;E.0// denotes the original grid graph, the first aggregation step can be
described by the following pseudocode (breadth-first search [7]):
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i D 1;while fu 2 V j C.u/ D 0g ¤ ;
pick any v from fu 2 V j C.u/ D 0g
Q WD fvg ; n D 0
while .n < nmax and Q ¤ ;/
v Q; C.v/ WD i
Q .Adj.v/\ fu 2 V j C.u/ D 0g/ n Q
n D nCW.v/

end while
i D iC 1

end while

Here C.u/ and W.u/ are the color and weight (integers) of the vertex u,
respectively, with the initial values C.u/ D 0;W.u/ D 1, Adj(v) is a set of vertices
adjacent to u, and Q is the queue type data structure. Later, C.u/ presents the number
of a subdomain (macrovertex) containing the vertex (grid point) u, and W.u/ is
the resulting number of nodes in the subdomain .W.u/ � nmax/. This algorithm is
repeated for the levels l D 1; : : : ;L.

Parallel implementation of DDM–FGMRES is performed using hybrid program-
ming with MPI processes on distributed memory for subdomains and OpenMP tools
for each of the multi-core processors with shared memory.

4 Numerical Experiments

We present the results of some numerical experiments on solving a model Dirichlet
boundary value problem for the 2D and the 3D Laplace equation in the unit
computational domain˝ D Œ0; 1�d; d D 2; 3; which is approximated by a standard
(2d+1)-point finite difference scheme on a square mesh (which is cubic in 3D) with
the degree of freedom N D Nd

x , for different values of Nx. The stopping criteria for
FGMRES without restarts were "e D 10�7 and ne

max D 1. The exact solution and
initial guess for the iterations were taken equal to unit and zero, respectively. All
the experiments were carried out on the NKS-30T cluster [6] with standard double-
precision arithmetic.

Table 1 shows the efficiency of the proposed algorithm for automatic construction
of 3D balancing grid subdomains for P D 1; 8; 16; 32; 64. The subdomain SLAEs
were solved either by the direct method PARDISO from Intel MKL or by the pre-
conditioned BiCGStab method (Eisenstadt modification of incomplete factorization
[4]) with the parameters "i D 0:1; ni

max D 5 (these values are nearly optimal for
the given problem data). Note that the PARDISO was run with 12 threads, whereas
the BiCGStab was implemented without any parallelization. In Table 1, the upper
and lower figures in each line correspond to grids with 1283 and 2563 unknowns,
respectively, and the left and right figures in each column present the numbers of
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Table 1 Comparative analysis of DDM without overlapping for direct and iterative subdomain
solvers, � D 0;N D 1283; 2563

P

Method 1 8 16 32 64

Direct 1 885 53 30.1 75 20.4 108 12.6 130 18.1

– – 72 332 102 212 142 138 169 189

Iterative 18 64.9 68 20.5 92 12.5 103 13.0 197 11.9

18 606 99 296 132 203 197 139 262 115

Table 2 Numbers of
external iterations for solving
SLAEs with aggregation
preconditioning

m

N 0 1 5 10 15 20

82 50 46 41 42 46

1283 132 62 53 52 57 58

143 70 54 51 53 53

2563 193 60 72 61 62 68

external iterations and execution time in seconds. In this case, the DDM parameters
 D � D 0 were used.

Table 2 presents the number of iterations for the aggregation approach for the
same model SLAEs with the exact solution u D 1000 C x C y and initial guess
u0 D 0. The aggregation preconditioner was used once every m steps (with m D 10
as an optimal value). Note that the behavior is also observed for different numbers of
subdomains, whereas the results are given here for P D 16 and 32 (upper and lower
cell values, respectively). The case m D 0 means solving without aggregation.

In the other experiments, 2D problems were solved on square meshes with
N D 1282; 2562, and P D 4; 16; 64 equal square subdomains. The systems in the
subdomains were solved by the PARDISO, and the external iterations were carried
out by the iterative BiCGStab method “in traces”.

Table 3 presents the iterative process versus the overlapping value . The cells
present the same data as in Table 1 for � D 0, and N D 1282; 2562 (upper and
lower lines in each row, respectively). We see that the number of iterations decreases
monotonically with increasing, but for the run time there is some minimum for a
sufficiently small value � 4.

Table 4 contains the number of iterations versus � values. The left and right cell
values correspond to N D 1282 and N D 2562, respectively. No overlapping takes
place, i.e.  D 0.

These results demonstrate that the constant parameter � is appropriate only for
a sufficiently small P. The experiments have also shown that for the overlapping
decomposition ( > 0) it is better to take � D 0.
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Table 3 Numerical results for different overlapping values ; � D 0; N D 1282; 2562



P 0 1 2 3 4 5

4 18 1.75 11 1.45 9 1.37 7 1.26 7 1.26 6 1.20

27 6.85 16 4.37 12 3.51 10 3.02 9 2.82 8 2.49

16 32 1.42 18 1.18 14 1.19 12 1.09 11 0.89 9 0.79

41 3.85 24 2.83 20 2.20 17 1.80 14 1.38 14 1.66

64 43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66

Table 4 Number of
iterations for non-overlapping
DDMs ( D 0) with
different � , N D 1282; 2562

�

P 0 0.5 0.6 0.7 0.9975

4 18 27 16 26 16 24 14 23 10 12

16 32 41 28 40 27 39 27 40 31 75

64 43 60 42 56 40 55 41 55 93 86

5 Conclusions

Our preliminary numerical results show that the DDMs considered have reasonable
efficiency. However, there are too many approaches needing systematic experimen-
tal investigation to construct high-performance code. This concerns, in particular,
the application of various optimized Schwarz methods [3, 8] with different values
of parameter � and coarse grid correction for overlapping or non-overlapping
DDM. Of course, the problem of creating an adapted environment for robust SLAE
solvers on modern supercomputers requires coordinated efforts of algebraists and
programmers.
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Isogeometric Overlapping Additive Schwarz
Solvers for the Bidomain System

Lara Antonella Charawi

1 Introduction

The electrical activity of the heart is a complex phenomenon strictly related to its
physiology, fiber structure and anatomy.

At the cellular level the cell membrane separates both the intra- and extracellular
environments consisting of a dilute aqueous solution of dissolved salts dissociated
into ions. Differences in ion concentrations on opposite sides of the membrane
lead to a voltage called the transmembrane potential, vM , defined as the difference
between the intra- and extracellular potentials, (uI and uE). The bioelectric activity
of a cardiac cell is described by the time course of vM , the so called action potential.
At the tissue level the most complete mathematical model of cardiac electrophysi-
ology is the Bidomain model, consisting of a degenerate reaction-diffusion system
of a parabolic and an elliptic partial differential equation modelling vM and uE of
the anisotropic cardiac tissue, coupled nonlinearly with a membrane model. The
multiscale nature of the Bidomain models yields very high computational costs
for its numerical resolution. The starting point for a spatial discretization is a
geometrical representation that encompasses the required anatomical and structural
details, and that is also suitable for computational studies. Detailed models were
proposed based on structured grids with cubic Hermite interpolation functions,
which enable a smooth representation of ventricular geometry with relatively few
elements, see e.g. [14]. In this study we used an alternative approach based on
Isogeometric Analysis (IGA), a novel method for the discretization of partial
differential equations introduced in [7]. This method adopts the same spline or
Non-Uniform Rational B-spline (NURBS) basis functions used to design domain
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geometries in CAD to construct both trial and test spaces in the discrete variational
formulation of the differential problem, and provides a higher control on the
regularity of the discrete space. The IGA discretization of the Bidomain model in
space and semi-implicit (IMEX) finite differences in time lead to the resolution at
each time step of a large and very ill-conditioned linear system. Since the iteration
matrix is symmetric semidefinite, it is natural to use the preconditioned conjugate
gradient method.

We have developed and analyzed an overlapping additive Schwarz preconditioner
for the isogeometric discretization of the cardiac Bidomain model. We have proved
that the resulting solver is scalable and optimal in the ratio of subdomain/overlap
size. Several tests confirm the theoretical bound on three-dimensional NURBS
domains. We note that Isogeometric overlapping Schwarz preconditioners were
first introduced in [2] for scalar elliptic problems, while multilevel Schwarz
preconditioners for FEM discretizations of the Bidomain system were studied in
[10].

2 The Bidomain Model

The macroscopic Bidomain representation of cardiac tissue volume is obtained by
considering the superposition of two anisotropic continuous media the intra- (I) and
extra- (E) cellular media, coexisting at every point of the tissue and separated by a
distributed continuous cellular membrane; see [12] for a derivation of the Bidomain
model from homogenization of cellular model. The cardiac tissue consists of an
arrangement of fibers that rotate counterclockwise from epi- to endocardium, and
that have a laminar organization modeled as a set of muscle sheets running radially
from epi- to endocardium, see [8]. The anisotropy of the intra- and extracellular
media is described by the orthotropic conductivity tensors DI.x/ and DE.x/, see e.g.
[4]. We denote by˝ the bounded physical region occupied by the cardiac tissue and
introduce a parabolic-elliptic formulation of the Bidomain system. Given an extra-
cellular applied stimulus per unit volume IE

app, we seek the transmembrane and the
extracellular potentials, vM and uE, respectively, and the gating variable w satisfying
the system

8
<

:

cm
@vM
@t � div.DIr.vM C uE//C Iion.vM;w/ D 0 on˝ � .0;T/
�div..DI C DE/ruE/� div.DIrvM/ D IE

app on˝ � .0;T/
@w
@t � R.vM;w/ D 0 on˝ � .0;T/

(1)

with insulating boundary conditions, suitable initial conditions on vM , uE and w,
while cm is the membrane capacitance per unit volume. The non-linear reaction term
Iion, the ionic current of the membrane per unit volume, and the ODE system for
the gating variables are given by the chosen ionic membrane model. Here we will
consider the (LR1) membrane model by Luo and Rudy [9]. The system uniquely
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determines vM , while uE is defined only up to a same additive time-dependent
constant, chosen by imposing

R
˝

uE dx D 0.

3 Discretization and Numerical Methods

Isogeometric Space Discretization In the three-dimensional case, our domain
˝ , representing the left ventricle, is modeled by a family of truncated ellipsoids.
According to the isoparametric approach we discretized the Bidomain system (1)
with IGA based on NURBS basis functions, see e.g. [5]. NURBS functions are built
from B-spline functions.

In what follows, let d � 2 be the dimension of the physical domain of interest.
For any ˛ D 1; : : : ; d, we introduce the open knot vector, a set of non decreasing
real numbers �˛ D f0 D �1; ˛; �2; ˛; : : : ; �n˛CpC1; ˛ D 1g, where p is the order of
the B-spline and n˛ is the number of basis functions necessary to describe it. Given
the knot vector, it is possible to define univariate B-spline basis functions, Bp

i;˛.�/,
and by tensor product the multivariate B-spline basis functions, Bp

i1;:::;id
. Therefore

the tensor product spline space living in the parametric domain is

OV WD spanfBp
i1:::id

; i˛ D 1; : : : ; n˛; 1 � ˛ � dg:

Given!i1:::id the weights associated to Ci1:::id , a mesh of control points, we can define
the NURBS basis function on the parametric domain

Rp
i1:::id

.�/ D Bp
i1:::id

.�/!i1:::id

w.�/
;

with w.�/ WDPn1:::nd
ii:::id

Bp
i1:::id

.�/!i1:::id :

Since the single patch domain ˝ is a NURBS region, we define a geometrical
map F W .0; 1/d ! ˝ as

F.�/ D
n1X

i1D1
: : :

ndX

idD1
Rp

i1:::id
.�/Ci1:::id ;

and the physical space V as the span of the pushforward of the NURBS basis
functions

V WD spanfRp
i1:::id
ı F�1; i˛ D 1; : : : ; n˛; 1 � ˛ � dg:

A semidiscrete problem of (1) is obtained by applying a standard Galerkin proce-
dure. We denote by M the mass matrix, by AI;E the symmetric stiffness matrices
associated to the intra- and extra anisotropic conductivity tensors, respectively.
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Time Discretization The time discretization is performed by a decoupled semi-
implicit method consisting of the two following steps:

– Given vn
M , un

E and wn at the previous step n, we first solve the ODEs system for the
gating and ionic concentration variables. Since the membrane model employed
is the LR1, the ODE integration approach is based on the Rush-Larsen method,
see [13].

– Once computed wnC1, a semi-implicit scheme is applied to the reaction-diffusion
part, see [1], i.e., by using the implicit Euler method for the diffusion term, while
the nonlinear reaction term Iion is treated explicitly. As a consequence at each
time step we need to solve the linear system

� cm
t M C AI AI

AI AI C AE

	�
vnC1

M

unC1
E

�
D
 

cm
t Mvn

M � iion.vn
M;w

nC1/
IE

app

!
(2)

imposing 1TMuE
nC1 D 0. Due to the ill-conditioning of the iteration matrix

and the large number of unknowns required by realistic simulations of cardiac
excitation in three-dimensional domains, a scalable and efficient preconditioner
is required.

We recall that the linear system (2) is equivalent to the elliptic variational
problem: given f 2 L2.˝/,

find u 2 U such that abido.u; z/ D .f ; zM/ 8z D ŒzM ; zE� 2 U;

where U WD V � QV , with QV WD fuE 2 V W R
˝

uE D 0g, while for the definition and
the properties of the bilinear form abido see [11].

4 Overlapping Schwarz Preconditioners

In this section, we construct an isogeometric overlapping additive Schwarz precon-
ditioner for the Bidomain system, using the general framework developed in [2] for
a model elliptic problem, and in [10] for the Bidomain system discretized using
FEM.

For ˛ D 1; : : : ; d, we define a decomposition of the reference interval OI selecting
from the open knot vector �˛ a subset of N˛ C 1 nonrepeated interface knots
f�im˛ ;˛;m˛ D 1; : : : ;N˛ C 1j�i1;˛ D 0; �iN˛C1;˛ D 1g. Thus, the closure of OI can

be decomposed into N˛ intervals OIm˛;˛ WD .�im˛ ;˛; �im˛C1;˛/, assuming that they have
a similar diameter on order H. For each of the interface knots there exists at least
one index sm˛;˛ such that 2 � sm˛;˛ � n˛ � 1 and so that the support of the basis
function Bp

sm˛ ;˛
intersects both OIm˛�1;˛ and OIm˛ ;˛.
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Let r be an integer counting the basis functions shared by adjacent subdomains.
We are able to define N˛ subspaces f OVm˛;˛gN˛m˛D1 forming an overlapping decompo-

sition of the B-spline univariate space, OV , as

OVm˛;˛ WD spanfBp
j;˛.�/jsm˛ ;˛ � r � j � sm˛C1;˛ C rg m˛ D 1; : : : ;N˛:

We build the coarse space OV0;˛ from the partition of OI. Let

�0;˛ D f�1;˛; : : : ; �p;˛ ; �i1;˛; �i2;˛; : : : ; �iN˛�1;˛; �iN˛ ;˛; �iN˛C1;˛; : : : ; �iN˛CpC1;˛g

an open knot vector and let f ıBp
i;˛gN0;˛iD1 be the corresponding N0;˛ basis functions,

then the coarse space is

OV0;˛ D spanf
ı

Bp
i;˛; i D 1 : : :N0;˛g:

In more than one dimension, we proceed by using tensor product. Let N WD Qd
1 N˛ ,

for m D 1; : : : ;N the local and the coarse subspaces are then

OVm 
 OVm1;:::;md WD spanfBp
i1;:::;id

; sm˛ � r � i˛ � sm˛C1 C r; ˛ D 1; : : : ; dgI

OV0 WD spanf
ı

Bp
i1;:::;id ; i˛ D 1 : : :N0;˛; ˛ D 1; : : : ; dg:

The decomposition of the NURBS space V and therefore of U in the physical
domain is trivial:
Um WD Vm � Vm and U0 WD V0 � eV0 with

Vm
Vm1;:::;mdWD spanfRp
i1;:::;id
ı F�1; sm˛� r � i˛ � sm˛C1C r; ˛ D 1; : : : ; dgI

V0 WD spanf ıRp
i1;:::;id ıF�1; i˛ D 1 : : :N0;˛ ; ˛ D 1; : : : ; dg and eV0 WD V0 \ QV:

We are now able to construct a two-level overlapping Additive Schwarz method for
the Bidomain system (2). We remark that U0 � U, whereas Um is not a subset of U,
m D 1; : : : ;N. We define therefore the interpolation operators Im W Um ! U as

given u D .vM; uE/ 2 Um; Imu D .Im;Mu; Im;Eu/ WD .vM; uE � 1

j˝j
Z

˝

uE/;

whereas I0 W U0 ! U is simply the embedding operator. We define the local
projectors operators QTm W U ! Um for m D 0; : : : ;N by

abido. QTmu; v/ D abido.u; Imv/ 8v 2 Um:
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Defining Tm D Im QTm, the 2-level Overlapping Additive Schwarz (OAS) operator is
then

TOAS WD T0 C
NX

mD1
Tm:

We have the following result about the convergence rate bound, see [3].

Theorem 1 Under the assumptions that the parametric mesh is quasi-uniform and
the overlap index r is bounded from above by a fixed constant, the condition number
of the preconditioner operator TOAS is bounded by

�.TOAS/ � C

�
1C H

ı

�
; (3)

where ı WD h.2rC 2/ is the overlap parameter and C is a constant independent of
h;H;N and ı but not of p and the regularity k.

5 Numerical Results

Numerical results presented in this section refer to the 3D Bidomain problem on
a portion of the truncated ellipsoid, representing a simplified ventricular geometry.
The IGA discretization with mesh size h and polynomial degree p and regularity
k is carried out by in MATLAB, using the library GeoPDEs [6]. The domain is
decomposed in N overlapping subdomains of characteristic size H and overlap index
r.

Table 1 shows the scalability of the 2-level OAS preconditioner for a 3D NURBS
domain decomposed into an increasing number of subdomains, such that their size

Table 1 OAS preconditioner in 3D ellipsoidal domain. Scalability test: iteration counts (it.),
condition number � and extreme eigenvalues (�max and �min) as a function of the number of
subdomains N for fixed H=h D 4 for unpreconditioned (Unpc.), 1-level and 2-level OAS
preconditioners. p D 3, k D 2 and r D 0; 1

2-level OAS

Unpc. 1-level OAS r D 0 r D 1

N it. � it. � D �max=�min it. � D �max=�min it. � D �max=�min

2� 2� 1 175 4.98e3 21 65=4.0/6.09e�2 12 11.07=4.74/4.12e�1 6 5:24 D 5:00=0:95

3� 3� 2 185 4.44e3 44 331=8.0/2.41e�2 22 32.13=8.60/2.72e�1 9 10:87 D 9:21=0:85

4� 4� 3 206 6.32e3 61 627=8.0/1.27e�2 23 31.90=8.63/2.73e�1 8 9:00 D 9:31=1:03

5� 5� 4 247 8.89e3 78 1020=8.0/7.84e�3 23 32.09=8.64/2.69e�1 8 10:39 D 9:20=0:89

6� 6� 5 297 1.20e4 94 1507=8.0/5.31e�3 23 31.60=8.64/2.27e�1 7 9:16 D 6:95=1:32
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Fig. 1 2-Level OAS
dependence on H

h : plot of �
as a function of H

h , for
p D 2; 3 and k D p� 1
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are fixed H
h D 4, p D 3, k D 2 and r D 0; 1. The simulation is run for 30 time steps,

1.5 ms, and the condition number is estimated using the usual Lanczos’ method.
As expected the 1-level preconditioner (without coarse problem) has a condition
number growing with N, and the performances of the 2-level OAS improve when
increasing the overlap size. Additional results, for p D 3; 2 and k D p�1, are plotted
in Fig. 1, and confirm that the condition number, �, of the 2-level preconditioned
problem grows linearly with the increasing ratio H

h , as predicted by (3) using
minimal overlap (r D 0).

Finally, Fig. 2 compares the variation of the condition number and iteration
count during a complete heartbeat (300 ms) by using 1- and 2-level OAS solvers
or unpreconditioned Conjugate Gradient. These variations are strictly related to
the time step size (t), that changes according to the adaptive strategy described
in [4], following the different phases of a ventricular action potential. In this test
the number of the subdomains is 6 � 6 � 5 and the ratio H

h D 4. We can note
that the depolarization is the most intense computationally phase, nevertheless OAS
solvers keep the condition number quite uniform for all the duration of the cycle.
As expected, the 2-level greatly improves the conditioning of the problem.
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Fig. 2 Complete heart beat. (a), (b) Variation of the time step size following the phases of a
ventricular action potential. (c), (d) Time course of � (upper panels) and iteration count (lower
panels) during a heartbeat: comparison between unpreconditioned operator (c) and 1- and 2-level
OAS (d). N D 6� 6� 5, H

h D 4, p D 3, k D 2 and r D 0

References

1. U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent partial
differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

2. L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, Overlapping Schwarz methods for
isogeometric analysis. SIAM J. Numer. Anal. 50(3), 1394–1416 (2012)

3. L.A. Charawi, Isogeometric overlapping Schwarz preconditioners in computational electro-
cardiology. Ph.D. thesis, Università degli Studi di Milano, 2014

4. P. Colli Franzone, L.F. Pavarino, B. Taccardi, Simulating patterns of excitation, repolarization
and action potential duration with cardiac bidomain and monodomain models. Math. Biosci.
197(1), 35–66 (2005)

5. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD
and FEA (Wiley, Chichester, 2009)

6. C. De Falco, A. Reali, R. Vázquez, GeoPDEs: a research tool for isogeometric analysis of
pdes. Adv. Eng. Softw. 42(12), 1020–1034 (2011)

7. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (39),
4135–4195 (2005)

8. I.J. LeGrice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, P.J. Hunter, Laminar structure of
the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am.
J. Physiol-Heart C 269(2), H571–H582 (1995)

9. C.-H. Luo, Y. Rudy, A model of the ventricular cardiac action potential, depolarization,
repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

10. L.F. Pavarino, S. Scacchi, Multilevel additive Schwarz preconditioners for the bidomain
reaction-diffusion system. SIAM J. Sci. Comput. 31(1), 420–445 (2008)



Isogeometric Overlapping Additive Schwarz Solvers for the Bidomain System 135

11. L.F. Pavarino, S. Scacchi, Parallel multilevel Schwarz and block preconditioners for the
Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comput.
33(4), 1897–1919 (2011)

12. M. Pennacchio, G. Savaré, P. Colli Franzone, Multiscale modeling for the bioelectric activity
of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2005)

13. S. Rush, H. Larsen, A practical algorithm for solving dynamic membrane equations. IEEE
Trans. Biomed. Eng. 25(4), 389–392 (1978)

14. N.P. Smith, D.P. Nickerson, E.J. Crampin, P.J. Hunter, Multiscale computational modelling of
the heart. Acta Numer. 13(1), 371–431 (2004)



On the Minimal Shift in the Shifted Laplacian
Preconditioner for Multigrid to Work

Pierre-Henri Cocquet and Martin J. Gander

1 Introduction

Multigrid is an excellent iterative solver for discretized elliptic problems with
diffusive nature, see [12] and the references therein. It is natural that substantial
research was devoted to extend the multigrid method for solving the Helmholtz
equation

�u � k2u D f in ˝ (1)

with the same efficiency, but it turned out that this is a very difficult task. Textbooks
mention that there are substantial difficulties, see [3, p. 72], [11, p. 212], [12, p.
400], and also the review [7] for why in general iterative methods have difficulties
when applied to the Helmholtz equation (1).

Motivated by the early proposition in [2] to use the Laplacian to precondition
the Helmholtz equation, the shifted Laplacian has been advocated over the past
decade as a way of making multigrid work for the indefinite Helmholtz equation,
see [1, 4–6, 10] and references therein. The idea is to shift the wave number into
the complex plane to obtain a good preconditioner for a Krylov method when
solving (1). The hope is that due to the shift, it becomes possible to use standard
multigrid to invert the preconditioner, and if the shift is not too big, it is still an
effective preconditioner for the Helmholtz equation with a real wave number. This
implies however two conflicting requirements: the shift should be not too large for
the shifted preconditioner to be a good preconditioner, and it should be large enough
for multigrid to work. It was already indicated in [7] that it is not possible to satisfy
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both these requirements, see also [4]. It was then rigorously proved in [9] that the
preconditioner is effective, i.e. iteration numbers stay bounded independently of the
wave number k if the shift is at most of the size of the wavenumber. We prove here
rigorously for a one dimensional model problem that if the complex shift is less
than the size of the wavenumber squared, multigrid will not work. It is therefore
not possible to solve the shifted Laplace preconditioner with multigrid in the regime
where it is a good preconditioner. We also show that if the complex shift is of the
size of the wave number squared and the constant is large enough, then multigrid
will solve the preconditioner independently of the wave number k. For a different
shift idea as a dispersion correction, where the shift is real and one obtains in one
dimension a multigrid solver with standard components that solves the original
Helmholtz problem (1) independently of the wave number, see [8].

2 Model Problem and Discretization

To study the shifted Laplacian preconditioner for the Helmholtz equation (1) in 1d,
we consider the 1d shifted Helmholtz equation

� u00.x/� .k2 C i"/u.x/ D f .x/ x in .0; 1/ (2)

with homogeneous Dirichlet boundary conditions u.0/ D u.1/ D 0. We dis-
cretize (2) using a standard 3-point centered finite difference approximation on a
uniform mesh with n interior grid points and mesh size h D 1=.nC1/ to get a linear
system Ahu D f with system matrix

Ah D 1

h2
tridiag.�1; 2 � .k2 C i"/h2;�1/: (3)

It is this system matrix which is used as a preconditioner for solving (1), and
therefore following the idea of the shifted Laplacian preconditioner, systems with
this matrix have to be solved effectively using multigrid. We analyze here in detail
a two grid method: we use a Jacobi smoother,

umC1 D um C !D�1.f � Ahum/;

where D D diag.A/, and ! is a relaxation parameter, which we choose here based
on the optimal choice of the case without relaxation, see [8], to be

! WD 2 � .k2 C i"/h2

3 � .k2 C i"/h2
:
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For the coarse correction, we assume n to be a power of two minus one, and use the
extension operator based on interpolation,

Ih
H D

1

2

2
6666666666664

2

1 1

2

1
: : : 1

2

1 1

2

3
7777777777775

2 R
.nC2/�.NC2/; N WD .nC 1/=2� 1;

and for the restriction IH
h D 1

2
.Ih

H/
T , with the coarse grid matrix obtained by Galerkin

projection, AH WD IH
h AhIh

H . The resulting two grid operator with �1 pre-smoothing
and �2 post-smoothing steps is then of the form

T WD .I � !D�1Ah/
�1.I � Ih

HA�1H IH
h Ah/.I � !D�1Ah/

�2 : (4)

Using the subspaces

spanfvh
1; v

h
ng; spanfvh

2; v
h
n�1g; : : : ; spanfvh

N ; v
h
NC2g; spanfvh

NC1g (5)

defined by the eigenfunctions of Ah given by vh
j WD Œsin j`�h�n`D1, j D 1; : : : ; n, one

can block diagonalize the two grid operator (4), see [8]. The action of T on these
one- and two-dimensional subspaces is represented by the block diagonal matrix
diag.T1; : : : ;TN ;TNC1/ with

Tj D
�
�j 0

0 �j0

	�2
2

64
1 � c4j

�h
j

�H
j

c2j s2j
�h

j0

�H
j

c2j s2j
�h

j

�H
j
1 � s4j

�h
j0

�H
j

3

75
�
�j 0

0 �j0

	�1
; TNC1 D ��1C�2NC1 ; (6)

where cj WD cos j�h
2

, sj WD sin j�h
2

, j D 1; : : : ;N, �j WD 1 � !.1 � 2 cos.j�h/
2�.k2Ci"/h2

/,
j D 1; : : : ; n, and

�h
j WD

4

h2
sin2

j�h

2
� .k2 C i"/; j D 1; : : : ; n; (7)

�H
j WD

4

H2
sin2

j�H

2
� .k2 C i"/; j D 1; : : : ;N; (8)

are the eigenvalues of Ah and AH , with j0 WD N C 1� j denoting the complementary
mode index. To prove convergence of the two grid method, one has to prove that the
spectral radius of Tj is smaller than one for all j D 1; : : : ;N C 1, since this implies
that the spectral radius of the two grid operator T is less than one. We will show
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in the next section that if the shift is not large enough, the spectral radius of T will
actually be bigger than one, and hence the two grid method can not be convergent.

3 Analysis

We first study the case of a shift " D Ck2�ı , 0 � ı < 2. The following
theorem shows that with such a shift, it is not possible to obtain robust multigrid
convergence, because for any small mesh parameter h, there exists a wavenumber
of the Helmholtz equation for which the two grid method diverges.

Theorem 1 (Divergence with Too Small Shift) Assume that we are performing
� D �1 C �2 smoothing steps and that " D Ck2�ı for 2 > ı � 0. Then, for h small
enough, there exists a wavenumber k.h/ such that the spectral radius of the two grid
method satisfies

�.T/ �
�
3ı=2

3Chı

��
C o

�
1

hı�

�
;

and hence the two grid method diverges for this mesh size and wavenumber.

Proof Denoting by �j the eigenvalues of the iteration operator T we have

�.T/ � j�jj; j D 1; � � � ; n:

Using the block diagonal form of the two-grid iteration matrix we have obtained
in (6), we have in particular

�.T/ � j��1C�2NC1 j D j1 � !j� D j�NC1j�;

with

j�NC1j WD 1p
.3 � k2h2/2 C C2h4k4�2ı

: (9)

We now wish to find the maximum of j�NC1j as a function of the wavenumber k.
Taking a derivative with respect to k, we obtain

@k.j�NC1.k/j2/ D k2ıC1
2h2.C2k2ıh2 � 2C2k2h2 � 2k2ıC2h2 C 6k2ı/

.C2k4h4 C h4k4C2ı � 6k2C2ıh2 C 9k2ı/2
;

and hence the maximum is reached at k.h/ satisfying

C2k2.ı � 2/h2 � 2k2ıC2h2 C 6k2ı D 0: (10)
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Since this equation can not be solved in closed form, we compute an asymptotic
expansion of k.h/ for small mesh size h. We make the Ansatz

k.h/ D ˛0

h
C o

�
1

h

�

and obtain for h small enough the expansions

k.h/2 D ˛20
h2
C o

�
1

h2

�
; k.h/2ı D ˛2ı0

h2ı
C o

�
1

h2ı

�
:

Substituting the above expressions into the equation (10) satisfied by k.h/ and
considering only the leading order terms, we find

1

h2ı

�
6˛2ıC20 � 2˛2ı0

�
C o

�
1

h2ı

�
D 0;

and therefore

˛0 D
p
3;

and one can check that this is indeed asymptotically a maximum. We now replace
the asymptotic expansion of k.h/ into the expression for j�NC1.k.h//j given in (9).
Since k.h/h D p3C o .1/, a Taylor expansion shows that

�.T/ � j�NC1.k.h//j D 1
p
.3 � k.h/2h2/2 C C2h4k.h/4�2ı

D 3ı=2

3Chı
C o

�
1

hı

�
;

which gives the result.

Remark 1 In our proof, we only gave the first term of the asymptotic expansion of
k.h/, since this was sufficient to obtain divergence. One could however compute the
asymptotic expansion also to any order without additional difficulties.

Now we study the case " D Ck2. Substituting this value into the blocks (6) of
the block diagonal representation, we notice that the matrices become homogeneous
functions of the product kh. One can therefore study the spectral radius directly as
a function of kh > 0 and cj 2 .0; 1/, using trigonometric formulas to replace the
dependency on sj. We show in Fig. 1 on the left for �1 D 1, �2 D 0 the maximum
over all kh of the spectral radius of the matrix T as a function of C for " D Ck2. We
clearly see that for C small, multigrid does not converge. For C larger however,
we get convergence. The value C� where the spectral radius equals one can be
computed, it is C� D 0:3850. We show on the right in Fig. 1 the spectrum of the
blocks Tj, represented as a continuous function of cj 2 .0; 1/ and kh for C D C�,
and one can clearly see where the maximum value one is reached.
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Fig. 1 Maximum over kh of the spectral radius of the two grid operator for shift " D Ck2 as a
function of C on the left, and for C D 0:3850 the spectrum as a function of kh and cj on the right

Remark 2 The value C� is larger than the limiting value C D 1=3 found from the
limiting case as ı goes to zero in Theorem 1 for which divergence can be guaranteed.
This is because Theorem 1 only provides a lower bound for which divergence can
be guaranteed. As we see from the sharper analysis above, divergence even set in a
bit earlier.

Remark 3 From Fig. 1 on the left, we also see that making C very large will
eventually not lead to further improvement, the curve has an asymptote which one
can compute to be at 1=3. Hence, the best contraction factor one can achieve with
the two grid method applied to the shifted Helmholtz equation with shift " D Ck2

for C large in our example is 1=3. Note also that the two grid convergence is uniform
in k as soon as C > C�.

4 Numerical Experiments

We present in this section several numerical illustrations of Theorem 1 and our
additional estimate for the shift " D Ck2. We assume that the source term in the
shifted Helmholtz equation (2) is f D 0 giving u D 0 as the unique solution. We use
for our simulations the parameters

n D 511; h D 1

512
; k D

p
3

h
; � D 1;

so that we are in the regime of Theorem 1 where divergence should be observed
if the shift is not sufficient. We perform twenty iterations of the two grid method
applied to the shifted problem, starting with a random initial guess.
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Fig. 2 Relative error versus iteration index for C D 0:45 and various values of ı D 0:2

We first illustrate the result of Theorem 1. We choose C D 0:45 in the shift " D
Ck2�ı . Figure 2 shows the relative error of the two-grid scheme versus the number
of iterations for various values of ı. We see that the two grid method converges for
ı D 0, but diverges for all other values ı > 0. For the value of h D 1=512 in our
experiment, and the constant C D 0:45, we see that the two grid method would still
converge for a very small, but positive value of ı. This is not in disagreement with
Theorem 1, which only makes a statement for h small enough.

We next show an experiment to illustrate that even with the shift " D Ck2,
the constant still needs to be bigger than C� D 0:3850 for the two grid method
to converge, see also Remark 2. In Fig. 3 we show the relative error versus the
iteration index for various values of C in this case. We observe that for C < C� the
multigrid method does not converge, the shift is not enough. For C > C� however
the multigrid method converges, and convergence gets faster as C increases, as
expected. There is however a limit, as we have seen in Remark 3, the contraction
factor of the two grid method will not be better than 1=3.

5 Conclusions

We have analyzed for the shifted Helmholtz operator how large a shift of the form
" D Ck2�ı has to be to obtain a uniformly convergent two grid method. We
have proved for a one dimensional model problem that uniform convergence in the
wavenumber k is not possible if ı > 0. For ı D 0, we have shown that if the constant
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C > C� D 0:3850, then uniform convergence in the wavenumber k can be achieved.
Our results are for the particular case of a one dimensional problem with a second
order finite difference discretization, using a Galerkin coarse grid correction with
full weighting and a Jacobi smoother with particular relaxation parameter. Using a
different relaxation parameter, for example ! D 2=3, leads to slightly worse results
in this case, e.g. C� becomes approximately 0:75 instead of 0:3850. Our analysis
can be generalized, for example to higher dimensions, or other discretizations.

There is therefore indeed a big gap in the requirements for using the shifted
Laplacian as a preconditioner when solving discretized Helmholtz problems: for
multigrid to invert the preconditioner efficiently, the shift needs to be O.k2/, but
to prove that the preconditioner is effective, the shift needed to be at most O.k/,
see [9], where numerical experiments also indicate that this estimate is sharp. Any
compromise with the shift, i.e. using a shift of O.k˛/ with ˛ 2 .1; 2/, will therefore
lead to a preconditioner which is outside the requirements one would like to impose.
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Multitrace Formulations and
Dirichlet-Neumann Algorithms

Victorita Dolean and Martin J. Gander

1 Introduction

Multitrace formulations (MTF) for boundary integral equations (BIE) were
developed over the last few years in [1, 2, 4] for the simulation of electromagnetic
problems in piecewise constant media, see also [3] for associated boundary integral
methods. The MTFs are naturally adapted to the developments of new block
preconditioners, as indicated in [5], but very little is known so far about such
associated iterative solvers. The goal of our presentation is to give an elementary
introduction to MTFs, and also to establish a natural connection with the more
classical Dirichlet-Neumann algorithms that are well understood in the domain
decomposition literature, see for example [6, 7]. We present for a model problem a
convergence analysis for a naturally arising block iterative method associated with
the MTF, and also first numerical results to illustrate what performance one can
expect from such an iterative solver.
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2 One-Dimensional Example

In this section we introduce the Calderon projectors and the multitrace formulation
for the one dimensional model problem

Au WD u00.x/� a2u.x/ D 0; a > 0: (1)

The family of bounded solutions of (1) on the domains ˝˙ D R
˙ is given by

u.x/ D Ce�ax, where C D u.0/. We say that the solution spaces of the operator A
on R

˙ are given by

Z˙ D fu 2 L2.˝/ju.x/ D Ce�ax; C 2 Rg D Re�ax:

Note that any u˙ 2 Z˙ satisfies the relation u0̇ .0/ D ˙au˙.0/ and thus the space
of all possible Cauchy data of the solutions of (1) on R

˙ is given by

V˙ D f.g0; g1/ D C.1;˙a/; C 2 Rg D R

�
1

˙a

�
:

Definition 1 (Calderon Projectors) Let �˙ W Z˙ ! V˙ be the operator that
associates to any solution of Au D 0 on R

˙ its pair of traces .u.0/; u0.0//. Let
K˙ W R2 ! Z˙ be the operator that associates to any pair .h0; h1/ 2 R

2 the quantity
K˙.h0; h1/ D c�e�ax, where u.x/ D cCeax C c�e�ax is the unique solution of (1)
with Cauchy data .h0; h1/,

Au D 0; u.0/ D h0 and u0.0/ D h1: (2)

Calderon projectors are defined as the projections P˙ W R2 ! V˙, such that

P˙ D �˙ ı K˙:

The expressions of P˙ for our model problem can be computed explicitly. The
solution of (2) is

u.x/ D 1

2a
.ah0 C h1/e

ax C 1

2a
.ah0 � h1/e

�ax;

and thus K˙.h0; h1/ D 1
2a .ah0  h1/e�ax and

P˙.h0; h1/ WD .�˙ ı K˙/.h0; h1/ D
�

1
2a .ah0  h1/
 1
2
.ah0  h1/

�
) P˙ D

�
1
2
 1
2a

 a
2

1
2

	
:
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Remark 1 From the previous construction we see that the Calderon projector is
unique. When working with subdomains, it is however more convenient to introduce
normal derivatives at interfaces, instead of u0.0/, and we thus define the Calderon
projectors for normal derivatives with the modified sign

P
˙.h0; h1/ WD P˙.h0;h1/) P

C D P
� D

�
1
2

1
2a

a
2

1
2

	
; (3)

and we will use P˙ in what follows.

Definition 2 (Cauchy Traces) Following the notations in [4], we denote by

T
˙u WD

�
u.0/
u0.0/

�
(4)

the Cauchy trace (Dirichlet and Neumann) on the boundary fx D 0g of a solution u
of the equation Au D 0 posed on the half space R˙.

Suppose now we have a decomposition of R into two subdomains ˝1 D ˝� and
˝2 D ˝C and we want to solve Eq. (1) by an iterative algorithm involving Dirichlet
and Neumann traces on the interface fx D 0g. Let T1;2 be the trace operators as
defined in (4) (T1 D T

� and T2 D T
C) for the subdomains ˝1;2, and P1;2 the

corresponding Calderon projectors as defined in (3) (P1 D P
� and P2 D P

C) .

Definition 3 (Multitrace Formulation) The multitrace formulation from [4]
states that the pairs .Tiui/iD1;2 are traces of the solution defined on ˝i if they
verify the relations

8
ˆ̂<

ˆ̂:

.P1 � I/T1u1 � �1
�
T1u1 �

�
1 0

0 �1
�
T2u2

�
D 0;

.P2 � I/T2u2 � �2
�
T2u2 �

�
1 0

0 �1
�
T1u1

�
D 0;

(5)

where �1;2 are some relaxation parameters.

We see that a natural iterative method (also introduced in [5]) for (5) starts with
some initial guesses .u0i ; v

0
i /iD1;2 for the traces, and computes for n D 1; 2; : : : the

new trace pairs from the relations

8
ˆ̂<

ˆ̂:

.P1 � I/

�
un
1

vn
1

�
� �1

�
un
1

vn
1

�
D ��1

�
un�1
2

�vn�1
2

�
;

.P2 � I/

�
un
2

vn
2

�
� �2

�
un
2

vn
2

�
D ��2

�
un�1
1

�vn�1
1

�
:

(6)
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By introducing the expressions of Pi, we can rewrite the iteration in the form

2

664

�.�1 C 1
2
/ 1

2a
a
2

�.�1 C 1
2
/

�.�2 C 1
2
/ 1

2a
1
2

�.�2 C 1
2
/

3

775

0

BB@

un
1

vn
1

un
2

vn
2

1

CCA D

0

BB@

��1un�1
2

�1v
n�1
2

��2un�1
1

�2v
n�1
1

1

CCA ; (7)

or when solving for the new iterates

0

BB@

un
1

vn
1

un
2

vn
2

1

CCA D
�
0 A1

A2 0

	
0

BB@

un�1
1

vn�1
1

un�1
2

vn�1
2

1

CCA DW A

0

BB@

un�1
1

vn�1
1

un�1
2

vn�1
2

1

CCA ; (8)

where

Ai D 1

2.�i C 1/
�
2�i C 1 � 1a

a �.1C 2�i/

	
; i D 1; 2:

The convergence factor of (6) is therefore given by the spectral radius of the iteration
matrix A, whose eigenvalues are

�.A/ WD
�
�
r

�1

�1 C 1 ;
r

�1

�1 C 1 ;�
r

�2

�2 C 1 ;
r

�2

�2 C 1
�
: (9)

We see that the convergence factor is independent of a and thus only depends on
the relaxation parameters �i. If we suppose by symmetry that �1 D �2 DW � ,

the convergence factor becomes �.A/ D
q

�
�C1 ; and we show a plot of

�.A/ as a function of � in Fig. 1. We see that the algorithm diverges for
� < � 1

2
, stagnates for � D � 1

2
and converges for � > � 1

2
. For � D 0,

the convergence factor vanishes, but a closer look at the iteration formula (7)
shows that the matrix is then singular and thus the algorithm is no longer well
defined for this value. On the other hand, the associated iteration (8) is still
well defined, the latter being equivalent to (7) only for � ¤ 0. Overall, we see
that algorithm (7) converges rapidly when the relaxation parameter is chosen
close to 0.
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Fig. 1 Convergence factor of
the iterative multitrace
formulation in 1d as function
of the relaxation parameter �

3 Two-Dimensional Example

Suppose we want to solve the Laplace equation

uxx C uyy D 0; in ˝ D R
2; (10)

using the two subdomains ˝1 WD R
� � R and ˝2 WD R

C � R and a multitrace
formulation. To use our results from the previous section we take a Fourier transform
in the y variable,

Ouxx � k2 Ou D 0:

We can now follow the reasoning of the previous section in Fourier space, replacing
a by jkj. Thus any given pair of boundary functions .Oh0.k/; Oh1.k// can be projected
to become compatible boundary traces using the symbol of the Calderon projectors

OPi

� Oh0
Oh1
�
D
"

1
2

1
2jkjjkj

2
1
2

#� Oh0
Oh1
�
; i D 1; 2:

We next express the Calderon projectors in terms of Dirichlet-to-Neumann (DtN)
and Neumann-to-Dirichlet (NtD) operators.
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Lemma 1 (Calderon Projectors and DtN Operators) Calderon projectors can
be written in terms of the local DtN and NtD operators as

OPi D 1

2

"
1 bNtDi

bDtNi 1

#
; i D 1; 2; (11)

where DtNi associates to given Dirichlet data Og0 on the interface x D 0 the normal
derivative @ui

@ni
of the solution ui in˝i and the NtDi associates to given Neumann data

Og1 on the interface x D 0 the trace of the solution Oui.0; k/ on the same boundary.

Proof On ˝1, we obtain explicitly the symbols of these operators from

Ou1.x; k/ D Og0ejkjx ) @Ou1
@x
jxD0 D jkjOg0) bDtN1 D jkj;

Ou1.x; k/ D Ou1.0; k/ejkjx; @Ou1
@x
jxD0 D Og1) Ou1.0; k/jkj D Og1) bNtD1 D 1

jkj :

The corresponding symbols for the domain˝2 are

bDtN2 D jkj; bNtD2 D 1

jkj :

Inserting these expressions into (11) concludes the proof. ut
We are ready now to establish the link between these algorithms and the classical
DtN iterations.

Theorem 1 (Link with the DtN Iterations) The iterative multitrace formulation
for the special choice �1 D �2 D � 12 computes simultaneously a Dirichlet-
Neumann iteration .un

1; v
n
2/ and a Neumann-Dirichlet iteration .vn

1; u
n
2/ without a

relaxation parameter.

Proof According to the results of Lemma 1, in two dimensions, iteration (6)
becomes

1
2

"
�1 � 2�1 bNtD1

bDtN1 �1 � 2�1

#� Oun
1

Ovn
1

�
D ��1

� Oun�1
2

�Ovn�1
2

�
;

1
2

"
�1 � 2�2 bNtD2

bDtN2 �1 � 2�2

#� Oun
2

Ovn
2

�
D ��2

� Oun�1
1

�Ovn�1
1

�
:

(12)

We see that for the special choice �1 D �2 D � 12 , iteration (12) simplifies to

(
bNtD1 Ovn

1 D Oun�1
2 ;

bDtN1 Oun
1 D �Ovn�1

2 ;

(
bNtD2 Ovn

2 D Oun�1
1 ;

bDtN2 Oun
2 D �Ovn�1

1 :
(13)
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From the symbols, we see that bNtDi
�1 D bDtNi, and hence iteration (13) becomes

(
Ovn
1 D bDtN1 Oun�1

2 ;

Oun
1 D �bNtD1 Ovn�1

2 ;

(
Ovn
2 D bDtN2 Oun�1

1 ;

Oun
2 D �bNtD2 Ovn�1

1 ;

which leads to the conclusion. ut
In order to study the role of the relaxation parameters �i, we check first under which
conditions iteration (12), written explicitly as

B1

� Oun
1

Ovn
1

�
WD 1

2

"
�1 � 2�1 1

jkj
jkj �1 � 2�1

#� Oun
1

Ovn
1

�
D ��1

� Oun�1
2

�Ovn�1
2

�
;

B2

� Oun
2

Ovn
2

�
WD 1

2

"
�1 � 2�2 1

jkj
jkj �1 � 2�2

#� Oun
2

Ovn
2

�
D ��2

� Oun�1
1

�Ovn�1
1

�
;

(14)

is well defined. This is the case if the matrices Bi are invertible. Since det.Bi/ D
4�i.�i C 1/,the multitrace iteration is well defined if �i ¤ f0;�1g. In this case (14)
is equivalent to

� Oun
1

Ovn
1

�
D B�11

� Oun�1
2

Ovn�1
2

�
D
 

1C2�1
2.�1C1/ Oun�1

2 � 1
2.�1C1/ bNtD1 Ovn�1

2
1

2.�1C1/ bDtN1 Oun�1
2 � 1C2�1

2.�1C1/ Ovn�1
2

!
;

� Oun
2

Ovn
2

�
D B�12

� Oun�1
1

Ovn�1
1

�
D
 

1C2�2
2.�2C1/ Oun�1

1 � 1
2.�2C1/ bNtD2 Ovn�1

1
1

2.�2C1/ bDtN2 Oun�1
1 � 1C2�2

2.�2C1/ Ovn�1
1

!
:

(15)

Algorithm (15) has the same convergence properties as (8), since we obtain the same
convergence factor independent of the Fourier variable k, which means convergence
is going to be mesh independent.

4 Numerical Results

We now show some numerical experiments for illustration purposes on our two-
dimensional model problem (10) on the domain ˝ D .�1; 1/ � .0; 1/ decomposed
into the two subdomains ˝1 D .�1; 0/ � .0; 1/ and ˝2 D .0; 1/ � .0; 1/. We
use standard five point finite differences for the discretization and simulate directly
the error equations corresponding to the algorithm (15) for different values of the
parameter �i. For �i D �0:6, our analysis shows that the algorithm does not
converge, and we see how the error grows in the iteration in Fig. 2. For �i D �0:5,
our analysis predicts stagnation, and this is also observed in Fig. 3. For �i D 0:1, we
obtain the predicted rapid convergence seen in Fig. 4. We finally show in Fig. 5 on
the left how the error evolves in the maximum norm as the iteration progresses for
different values of � , and on the right the numerically estimated contraction factor,
which looks very similar to the predicted behavior shown in Fig. 1.
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Fig. 2 Evolution of the error for � D �0:6 after 2 Iterations (left), 10 iterations (right)

Fig. 3 Evolution of the error for � D �0:5 after 2 Iterations (left), 10 iterations (right)

Fig. 4 Evolution of the error for � D 0:1 after 2 Iterations (left), 10 iterations (right)
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Fig. 5 Error in the maximum norm as a function of the iteration number for different values of
� (left), and numerically measured contraction factor of the multitrace iteration as function of �
(right)

5 Conclusion

Using a simple model problem and two subdomains, we explained multitrace
formulations and a naturally associated iterative method of domain decomposition
type. Using the formalism of Dirichlet to Neumann operators, we showed that for a
particular choice of the relaxation parameter in the multitrace iteration, a combined
sequence of an unrelaxed Dirichlet-Neumann and Neumann-Dirichlet algorithm is
obtained. Our analysis also indicates good choices for the relaxation parameter in
the multitrace iteration, which was confirmed by numerical experiments.
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A Deluxe FETI-DP Method for Full DG
Discretization of Elliptic Problems

Maksymilian Dryja, Juan Galvis, and Marcus Sarkis

1 Introduction, Differential and Discrete Problems

In this paper we consider a boundary value problem for elliptic second order partial
differential equations with highly discontinuous coefficients in a 2D polygonal
region˝ . The problem is discretized by a (full) DG method on triangular elements
using the space of piecewise linear functions. The goal of this paper is to study a
special version of FETI-DP preconditioner, called deluxe, for the resulting discrete
system of this discretization. The deluxe version for continuous FE discretization
is considered in [1], for standard FETI-DP methods for composite DG method, see
[4], for full DG, see [4], and for conforming FEM, see the book [5].

Now we discuss the continuous and discrete problems we take into consideration
for preconditioning.

M. Dryja
Department of Mathematics, Warsaw University, Banacha 2, 00-097 Warsaw, Poland
e-mail: dryja@mimuw.edu.pl

J. Galvis (�)
Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
e-mail: jcgalvisa@unal.edu.co

M. Sarkis
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110,
CEP 22460-320, Rio de Janeiro, Brazil

Department of Mathematical Sciences at Worcester Polytechnic Institute, 100 Institute Road,
Worcester, MA 01609, USA
e-mail: msarkis@wpi.edu

© Springer International Publishing Switzerland 2016
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXII, Lecture Notes in Computational Science
and Engineering 104, DOI 10.1007/978-3-319-18827-0_14

157

mailto:dryja@mimuw.edu.pl
mailto:jcgalvisa@unal.edu.co
mailto:msarkis@wpi.edu


158 M. Dryja et al.

Differential Problem Find u�ex 2 H1
0.˝/ such that

a.u�ex; v/ D f .v/ for all v 2 H1
0.˝/; (1)

a.u; v/ WDPN
iD1

R
˝i
�iru � rv dx and f .v/ WD R

˝
fv dx;

where the �i are positive constants and f 2 L2.˝/.
We assume that˝ D [N

iD1˝ i and the substructures˝i are disjoint shaped regular
polygonal subregions of diameter O.Hi/. We assume that the partition f˝igNiD1 is
geometrically conforming, i.e., for all i and j with i ¤ j, the intersection @˝i \ @˝j

is either empty, a common corner or a common edge of ˝i and ˝j. For clarity we
stress that here and below the identifier edge means a curve of continuous intervals
and its two endpoints are called corners. The collection of these corners on @˝i are
referred as the set of corners of˝i. Let us denote NEij WD @˝i\@˝j as an edge of @˝i

and NEji WD @˝j \ @˝i as an edge of @˝j. Let us denote by J i;0
H the set of indices j

such that˝j has a common edge Eji with˝i. To take into account edges of˝i which
belong to the global boundary @˝ , let us introduce a set of indices J i;@

H to refer these
edges. The set of indices of all edges of˝i is denoted by J i

H D J i;0
H [ J i;@

H .

Discrete Problem Let us introduce a shape regular and quasiuniform triangulation
(with triangular elements) T i

h on ˝i and let hi represent its mesh size. The resulting
triangulation on ˝ is matching across @˝i. Let Xi.˝i/ WD Q

�2T i
h

X� be the
product space of finite element (FE) spaces X� which consists of linear functions
on the element � belonging to T i

h . We note that a function ui 2 Xi.˝i/ allows
discontinuities across elements of T i

h . We also note that we do not assume that
functions in Xi.˝i/ vanish on @˝ . The global DG finite element space we consider
is defined by X.˝/ DQN

iD1 Xi.˝i/ 
 X1.˝1/ � X2.˝2/ � � � � � XN.˝N/:

We define E i;0
h as the set of edges of the triangulation T i

h which are inside˝i, and
by E i;j

h , for j 2 J i
H , the set of edges of the triangulation T i

h which are on Eij. An edge
e 2 E i;0

h is shared by two elements denoted by �C and �� of T i
h with outward unit

normal vectors nC and n�, respectively, and denote frug D 1
2
.ru�

C

C ru�
�

/ and
Œu� D u�

C

nC C u�
�

n�:
The discrete problem we consider by the DG method is of the form: Find u� D

fu�i gNiD1 2 X.˝/ where u�i 2 Xi.˝i/, such that

ah.u
�; v/ D f .v/ for all v D fvigNiD1 2 X.˝/; (2)

where the global bilinear from ah and the right hand side f are assembled as

ah.u; v/ WD
NX

iD1
a0i.u; v/ and f .v/ WD

NX

iD1

Z

˝i

fvi dx:
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Here, the local bilinear forms a0i, i D 1; : : : ;N, are defined as

a0i.u; v/ WD ai.ui; vi/C s0;i.ui; vi/C p0;i.u; v/C s@;i.u; v/C p@;i.u; v/ (3)

where ai, s0;i and p0;i are defined by,

ai.ui; vi/ WD
X

�2T i
h

Z

�

�irui � rvi dx;

s0;i.ui; vi/ WD �Pe2E i;0
h

R
e .�ifruig � Œvi�C �ifrvig � Œui�/ ds; and

p0;i.u; v/ WD P
e2E i;0

h

R
e ı

�i
he
Œui�:Œvi� ds: The corresponding forms over the local

interface edges are given by

s@;i.u; v/ WD
X

j2J i
H

X

e2E i;j
h

Z

e

1

lij

�
�ij
@ui

@n
.vj � vi/C �ij

@vi

@n
.uj � ui/

�
ds;

p@;i.u; v/ WD
X

j2J i
H

X

e2E i;j
h

Z

e

ı

lij

�ij

he
.ui � uj/.vi � vj/ ds;

respectively. Here �ij D 2�i�j=.�i C �j/, he denotes the length of the edge e. When
j 2 J i;0

H we set lij D 2, when j 2 J i;@
H we denote the boundary edges Eij � @˝i by

Ei@ and set li@ D 1, and on the artificial edge Eji 
 E@i we set u@ D 0 and v@ D 0.
The partial derivative @

@n denotes the outward normal derivative on @˝i and ı is the
penalty positive parameter.

The discrete formulation used here is convenient for our FETI-DP method. We
also mention that problem (2) has a unique solution for sufficiently large ı and its
error bound is known, see for example, [3, 4].

2 Schur Complement Matrices and Harmonic Extensions

In this section, we describe the elimination of unknowns interior to the subdomains
required on the FETI-DP formulation for DG discretizations.

Let the set of degrees of freedom associated to subdomain˝i be defined by

˝ 0i WD ˝ i

[
f[j2J i;0

H

NEjig

i.e., it is the union of˝ i and the NEji � @˝j such that j 2 J i;0
H . Define 
i WD @˝in@˝

and 
 0i WD 
i
S f[j2J i;0

H

NEjig: We also introduce the sets


 WD
N[

iD1

i; 


0 WD
NY

iD1

 0i ; Ii WD ˝ 0in
 0i and I WD

NY

iD1
Ii: (4)
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Let Wi.˝
0
i / be the FE space of functions defined by nodal values on˝ 0i

Wi.˝
0
i / D Wi.˝ i/ �

Y

j2J 0;i
H

Wi. NEji/; (5)

where Wi.˝ i/ WD Xi.˝i/ and Wi. NEji/ is the trace of the DG space Xj.˝j/ on NEji �
@˝j for all j 2 J i;0

H . A function u0i 2 Wi.˝
0
i / is defined by the nodal values on ˝ 0i ,

i.e., by the nodal values on ˝ i and the nodal values on all adjacent faces NEji for all
j 2 J i;0

H . Below, we denote u0i by ui if it is not confused with functions of Xi.˝i/.
A function ui 2 Wi.˝

0
i / is represented as ui D f.ui/i; f.ui/jgj2J i;0

H
g; where .ui/i WD

ui j˝ i
(ui restricted to ˝ i) and .ui/j WD ui j NEji

(ui restricted to NEji). Here and below we
use the same notation to identify both DG functions and their vector representations.
Note that a0i.�; �/, see (3), is defined on Wi.˝

0
i /�Wi.˝

0
i /with corresponding stiffness

matrix A0i defined by

a0i.ui; vi/ D hA0iui; vii ui; vi 2 Wi.˝
0
i /; (6)

where hui; vii denotes the `2 inner product of nodal values associated to the vector
space in consideration. We also represent ui 2 Wi.˝

0
i / as ui D .ui;I; ui;
 0/ where

ui;
 0 represents values of ui at nodal points on 
 0i and ui;I at the interior nodal points
in Ii, see (4). Hence, let us represent Wi.˝

0
i / as the vector spaces Wi.Ii/ �Wi.


0
i /.

Using the representation ui D .ui;I; ui;
 0/, the matrix A0i can be represented as

A0i D
 

A0i;II A0i;I
 0

A0i;
 0I A0i;
 0
 0

!
: (7)

The Schur complement of A0i with respect to ui;
 0 is of the form

S0i WD A0i;
 0
 0

� A0i;
 0I.A
0
i;II/
�1A0i;I
 0

(8)

and introduce the block diagonal matrix S0 D diagfS0igNiD1.
Let us introduce the product space

W.˝ 0/ WD
NY

iD1
Wi.˝

0
i /;

i.e., u 2 W.˝ 0/means that u D fuigNiD1 where ui 2 Wi.˝
0
i /; see (5) for the definition

of Wi.˝
0
i /. Recall that we write .ui/i D ui j˝ i

(ui restricted to ˝ i) and .ui/j D ui j NEji

(ui restricted to NEji). Using the representation ui D .ui;I ; ui;
 0/ where ui;I 2 Wi.Ii/

and ui;
 0 2 Wi.

0

i / were used in (7), let us introduce the product space

W.
 0/ WD
NY

iD1
Wi.


0
i /;
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i.e., u
 0 2 W.
 0/ means that u
 0 D fui;
 0gNiD1 where ui;
 0 2 Wi.

0

i /. The space
W.
 0/ which was defined on 
 0 only, is also interpreted below as the subspace of
W.˝ 0/ of functions which are discrete H0i-harmonic in the sense of a0i.:; :/ in each i.

3 FETI-DP with Corner Constraints

We now design a FETI-DP method for solving (2). We follow the abstract approach
described in pages 160–167 in [5].

We introduce the nodal points associated to the corner unknowns by

V 0i WD Vi

[
f[j2J i;0

H
@Ejig where Vi WD f[j2J i;0

H
@Eijg:

We now consider the subspace QW.˝ 0/ � W.˝ 0/ (and QW.
 0/ � W.
 0/) as the
space of functions which are continuous on all the V 0i as follows.

Definition 1 (Subspaces QW.˝ 0/ and QW.
 0/) We say that u D fuigNiD1 2 QW.˝ 0/ if
it is continuous at the corners V 0i , that is, if for 1 � i � N we have

.ui/i.x/ D .uj/i.x/ at x 2 @Eij for all j 2 J i;0
H ; and (9)

.ui/j.x/ D .uj/j.x/ at x 2 @Eji for all j 2 J i;0
H : (10)

Analogously we define QW.
 0/.
Note that QW.
 0/ � W.
 0:/ Let QA be the stiffness matrix which is obtained by

assembling the matrices A0i for 1 � i � N, from W.˝ 0/ to QW.˝ 0/. Note that the
matrix QA is no longer block diagonal since there are couplings between variables
at the corners V 0i for 1 � i � N. We represent u 2 QW.˝ 0/ as u D .uI; u˘; u4/
where the subscript I refers to the interior degrees of freedom at nodal points I DQN

iD1 Ii, the ˘ refers to the corners V 0i for all 1 � i � N, and the 4 refers to the
remaining nodal points, i.e., the nodal points of 
 0i nV 0i , for all 1 � i � N. The
vector u D .uI; u˘; u4/ 2 QW.˝ 0/ is obtained from the vector u D fuigNiD1 2 W.˝ 0/
using Eqs. (9) and (10), i.e., the continuity of u on V 0i for all 1 � i � N. Using the
decomposition u D .uI; u˘; u4/ 2 QW.˝ 0/ we can partition QA as

QA D
0

@
A0II A0I˘ A0I4
A0̆ I
QA˘˘ A0̆ 4

A04I A04˘ A044

1

A :

We note that the only couplings across subdomains are through the variables ˘
where the matrix QA is subassembled.
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A Schur complement of QA with respect to the 4-unknowns (eliminating the
I- and the ˘ -unknowns) is of the form

QS WD A044 � .A04I A04˘/
�

A0II A0I˘
A0̆ I
QA˘˘

��1 �
A0I4
A0̆ 4

�
: (11)

A vector u 2 QW.
 0/ can uniquely be represented by u D .u˘; u4/, therefore, we
can represent QW.
 0/ D OW˘.


0/�W4.
 0/, where OW˘.

0/ refers to the˘ -degrees

of freedom of QW.
 0/ while W4.
 0/ to the 4-degrees of freedom of QW.
 0/. The
vector space W4.
 0/ can be decomposed as

W4.
 0/ D
NY

iD1
Wi;4.
 0i / (12)

where the local space Wi;4.
 0i / refers to the degrees of freedom associated to the
nodes of 
 0i nV 0i for 1 � i � N. Hence, a vector u 2 QW.
 0/ can be represented as
u D .u˘; u4/ with u˘ 2 OW˘.


0/ and u4 D fui;4gNiD1 2 W4.
 0/ where ui;4 2
Wi;4.
 0i /. Note that QS, see (11), is defined on the vector space W4.
 0/.

In order to measure the jump of u4 2 W4.
 0/ across the 4-nodes let us
introduce the space OW4.
 / defined by

OW4.
 / D
NY

iD1
Xi.
inVi/;

where Xi.
inVi/ is the restriction of Xi.˝i/ to 
inVi. To define the jumping matrix
B4 W W4.
 0/ ! OW4.
 /, let u4 D fui;4gNiD1 2 W4.
 0/ and let v WD B4u where
v D fvigNiD1 2 OW4.
 / is defined by

vi D .ui;4/i � .uj;4/i on Eijh for all j 2 J i;0
H ; (13)

where Eijh is the set of interior nodal points on Eij. The jumping matrix B4 can be
written as

B4 D .B.1/4 ;B.2/4 ; � � � ;B.N/4 /; (14)

where the rectangular matrix B.i/4 consists of columns of B4 attributed to the .i/
components of functions of Wi;4.
 0i / of the product space W4.
 0/, see (12). The
entries of the rectangular matrix consist of values of f0; 1;�1g. It is easy to see that
the Range B4 D OW4.
 /, so B4 is full rank.
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We can reformulate the problem (2) as the variational problem with constraints
in W4.
 0/ space: Find u�4 2 W4.
 0/ such that

J.u�4/ D min J.v4/ (15)

subject to v4 2 W4.
 0/ with constraints B4v4 D 0. Here J.v4/ WD 1
2
hQSv4; v4i�

hQg4; v4i with QS given in (11) and Qg4 is easily obtained using the fact that it can be
represented as f D .fI; f˘ ; f
 n˘/. Note that QS is symmetric and positive definite
since QA has these properties. Introducing Lagrange multipliers � 2 OW4.
 /, the
problem (15) reduces to the saddle point problem of the form: Find u�4 2 W4.
 0/
and �� 2 OW4.
 / such that

� QSu�4 C BT4�� D Qg4
B4u�4 D 0:

(16)

Hence, (16) reduces to

F�� D g (17)

where F WD B4 QS�1BT4 and g WD B4 QS�1 Qg4.

3.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F, see (17). Let S0i;4 be the Schur
complement of S0i, see (8), restricted to Wi;4.
 0i / � Wi.


0
i /, i.e., taken S0i on

functions in Wi.

0

i / which vanish on V 0i . Let

S04 WD diagfS0i;4gNiD1:

In other words, S0i;4 is obtained from S0i by deleting rows and columns corresponding
to nodal values at nodal points of V 0i � 
 0i .

Let us introduce diagonal scaling operators D.i/
4 W Wi;4.
 0i / ! Wi;4.
 0i /, for

1 � i � N. They are based on partial Schur complements of S0i;4 used in [1] for
continuous FE discretization and this is know in the literature as the deluxe version
of FETI-DP preconditioner. We first introduce Wi;4;Eij.


0
i / as the space of ui 2

Wi;4.
 0i / which vanish on @˝i n Eij and Eki � @˝k for k 6D j. Let S0i;4;Eij
denote

the Schur complement of S0i;4 restricted to Wi;4;Eij . In a similar way it is defined the

restricted Schur complement S0j;4;Eji
. The operator D.i/

4 on Eij � @˝i is defined as

D.i/
4;Eij
D .S0i;4;Eij

C S0j;4;Eji
/�1S0j;4;Eji

: (18)
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Let BD;4 D .B.1/4 D.1/

4 ; � � � ;B.N/4 D.N/
4 / and P4 WD BT

D;4B4, which maps W4.
 0/
into itself. It can be checked straightforwardly that P4 preserves jumps in the sense
that B4P4 D B4 and P24 D P4:

In the FETI-DP method, the preconditioner M�1 is defined as follows:

M�1 D BD;4S04BT
D;4 D

NX

iD1
B.i/4D.i/

4S0i;4.D
.i/
4/

T.B.i/4/
T :

Note that M�1 is a block-diagonal matrix, and each block is invertible since S0i;4 and

D.i/
4 are invertible and B.i/4 is a full rank matrix. The following theorem holds.

Theorem 1 For any � 2 OW4.
 / it holds that

hM�; �i � hF�; �i � C

�
1C log

H

h

�2
hM�; �i

where log.H
h / WD maxN

iD1 log.Hi
hi
/, C is a positive constant independent of hi, hi=hj,

Hi, � and the jumps of �i.

The complete proof of Theorem 1 will be presented elsewhere.

Remark 2 The FETI-DP method is introduced for a composite DG discretization in
the 3-D case in [2]. In order to extend the deluxe scaling FETI-DP method for 3-D
DG discretizations, we need to introduce the averaging of the deluxe operators for
faces and edges. The face operators are introduced similarly as described as in (18)
by replacing edges Eij by faces Fij. For the edge operators, consider for instance
that Eijk is an edge of ˝i common to ˝j and ˝k. Let Ejik and Ekij be edges equal
to Eijk but belonging to ˝j and ˝k, respectively. Let Wi;;Eijk.


0
i / be a subspace of

Wi;.

0

i / with nonzero data on Eijk, Ejik and Ekij only. Let S0i;;Eijk
be the restriction

of S0i; to the space Wi;;Eijk . In the same way we introduce S0j;;Ejik
and S0k;;Ekij

. For
the deluxe FETI-DP method with non-redundant Lagrange multipliers on edges, see
[5], it is enough to define the edge averaging operators as follows:

D.i/
;Eijk;1

D .S0i;;Eijk
C S0j;;Ejik

C S0k;;Ekij
/�1S0j;;Ejik

; and

D.i/
;Eijk;2

D .S0i;;Eijk
C S0j;;Ejik

C S0k;;Ekij
/�1S0k;;Ekij

:

In the 3-D case BD;4 is modified by setting BD;4 D .B4D4BT4/�1B4D4 and

M�1 D BD;4S04BT
D;4 where D4 D diagfD.i/

4g and D.i/
4 is a block diagonal

containing the averaging operators corresponding to faces and edges defined above.
The operator P4 D BT

D;4B4 preserves the jumps and is a projection.
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Additive Schwarz Methods for DG
Discretization of Elliptic Problems
with Discontinuous Coefficient

Maksymilian Dryja and Piotr Krzyżanowski

1 Introduction

In this paper we consider a second order elliptic problem defined on a polygonal
region ˝ , where the diffusion coefficient is a discontinuous function. The problem
is discretized by a symmetric interior penalty discontinuous Galerkin (DG) finite
element method with triangular elements and piecewise linear functions. Our goal
is to design and analyze an additive Schwarz method (ASM), see the book by
Toselli and Widlund [11], for solving the resulting discrete problem with rate
of convergence independent of the jumps of the coefficient. The method is two-
level and without overlap of the substructures into which the original region ˝ is
partitioned.

Usually, two level ASMs for discretizations on fine mesh of size h are being built
by introducing a partitioning of the domain into subdomains of size H > h, where
local solvers are applied in parallel. A global coarse problem is then typically based
on the same partitioning. This approach has been generalized for nonoverlapping
domain decomposition methods for DG discretizations by Feng and Karakashian
[10] and further extended by Antonietti and Ayuso [1] by allowing the coarse grid
with mesh size H to be a refinement of the original partitioning into subdomains
where the local solvers are applied.

The ASM discussed here is a generalization to non-constant diffusion coefficient
and very small subdomains of methods mentioned above and of those presented in
[7, 8]. Other recent works towards domain decomposition preconditioning of DG
discretizations of problems with strongly varying coefficients include [2, 4, 5]. In
this paper, local solvers act on subdomains which are equal to single elements of
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the fine mesh. By allowing single element subdomains we substantially increase
the level of parallelism of the method. Very small and cheap to solve local systems
come in huge quantities, which possibly can be an advantage on new multithreaded
processors. Moreover, small subdomains give more flexibility in assigning them
to processors in coarse grain parallel processing. The price to be paid for this in
some sense extreme parallelism is worse condition number of the preconditioned
system, which is of order O.H2=h2/, where H and h are the coarse and the fine
mesh parameters, respectively. This bound is independent of the jumps of diffusion
coefficient if its variation inside substructures is bounded. Numerical experiments
confirm theoretical results.

The paper is organized as follows. In Sect. 2, differential and discrete DG
problems are formulated. In Sect. 3, ASM for solving the discrete problem is
designed and analyzed. Numerical experiments are presented in Sect. 4.

In the paper, for nonnegative scalars x; y, we shall write x . y if there exits a
positive constant C, independent of x, y and the mesh parameters h;H, and of the
jumps of the diffusion coefficient � as well, such that x � Cy. If both x . y and
y . x, we shall write x ' y.

2 Differential and Discrete DG Problems

Let us consider the following variational problem in a polygonal region˝:
Find u� 2 H1

0.˝/ such that

a.u�; v/ D . f ; v/˝; v 2 H1
0.˝/; (1)

where

a.u; v/ D
Z

˝

�ru � rvdx; .f ; v/˝ D
Z

˝

f v:

We assume that � 2 L1.˝/ and that there exist constants ˛0 and ˛1 such that
0 < ˛0 � � � ˛1 in ˝ . In addition we assume that f 2 L2.˝/.

2.1 Discrete Problem

Let TH be a subdivision of ˝ into NH disjoint open polygonal regions ˝i, i D
1; : : : ;NH , such that N̋ DSiD1;:::;NH

N̋ i and that the number of neighboring regions
is uniformly bounded. We set Hi D diam.˝i/ and H D maxiD1;:::;NH Hi. Further, let
Th denote an affine, shape regular conforming triangulation (with triangles) of ˝ ,
N̋ D S�2Th

N�, which is derived from TH by some refinement procedure. Thus, each
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˝i is a union of certain elements from Th. The diameter of a triangle � 2 Th will be
denoted by h� and the mesh parameter is h D max�2Th h� .

In what follows we shall assume that � is piecewise constant (possibly with large
discontinuities) on Th, so that �j� is constant on each � 2 Th.

By E0h we denote the set of all common (internal) faces of elements in Th, so that
eij 2 Eh iff eij D �i \ �j is of positive measure. We will use symbol Eh to denote the
set of all faces, that is those either in E0h or on the boundary @˝; for e 2 Eh, we also
set jej D diam.e/. We shall assume local quasi-uniformity of the grid, i.e. if eij 2 E0h
is such that eij D �i \ �j, then hi ' hj.

For p 2 f0; 1g, we denote by Pp.�/ the set of polynomials of degree not
greater than p on N�. Then we define the finite element space Vh, in which we will
approximate (1),

Vh D fv 2 L2.˝/ W vj� 2 P1.�/;8� 2 Thg: (2)

Note that the traces of the functions from Vh are multi-valued on the interface E0h .
We define the discrete problem as the symmetric interior penalty discontinuous

Galerkin method, see for example [9] or [6]:
Find u 2 Vh such that

Ah.u; v/ D .f ; v/˝; v 2 Vh; (3)

where

Ah.u; v/ 

X

�2Th

.�ru;rv/� C
X

e2Eh

h�Œu�; Œv�ie

�
X

e2Eh

�
hŒu�; f�rvg!ie C hf�rug! ; Œv�ie

�
;

and ı > 0 is sufficiently large to ensure positive definiteness of Ah.�; �/, and on
eij D �i \ �j

� D ı

jeijj
�i�j

�i C �j
; f�rug! D !j�irui C !i�jruj; Œu� D ui ni C uj nj;

with !j D �j=.�i C �j/. Here, for any function ' we use the convention that 'i

(resp.'j) refers to the value of 'j�i (resp. 'j�j ) on eij. The unit normal vector pointing
outward �i is denoted by ni. On the boundary of ˝ , we set f�rug! D �ru and
Œu� D u n.

Let us introduce a simplified form

Dh.u; v/ D
X

�2Th

.�ru;rv/� C
X

e2Eh

h�Œu�; Œv�ie:
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Then it is well known that Dh.�; �/ is spectrally equivalent to Ah.�; �/, i.e.

Ah.u; u/ ' Dh.u; u/ 8u 2 Vh:

3 Additive Schwarz Methods

3.1 Additive Schwarz Method, Version I

Let Nh be the number of elements in Th. We decompose Vh as follows:

Vh D V0 C
NhX

iD1
Vi

where

V0 D fv 2 Vh W vj� 2 P0.�/ on � 2 Thg

and

Vi D fv 2 Vh W vj� D 0 for all � 2 Th such that � ¤ �ig: (4)

Using the above decomposition we define local operators Ti W Vh ! Vi, i D
1; : : : ;Nh, with inexact solver

Dh.Tiu; v/ D Ah.u; v/ 8v 2 Vi;

so that we solve for ui D Tiu defined on �i 2 Th such that

.�i rui;rvi/�i
C
X

e�@�i

Z

e
�uivi D Ah.u; vi/ 8vi 2 Vi;

and set .Tiu/j�j D 0 for j ¤ i. The coarse solve operator is T0 W Vh ! V0 defined
analogously as

Dh.T0u; v0/ D Ah.u; v0/ 8v0 2 V0:

Note that on V0, the approximate form Dh.�; �/ coincides with Ah.�; �/ and simplifies
to

Dh.u0; v0/ D
X

e2Eh

h�Œu0�; Œv0�ie 8u0; v0 2 V0:
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Theorem 1 Let T D T0 CPNh
iD1 Ti. Then

Ah.Tu; u/ ' Ah.u; u/ 8u 2 Vh:

This means that the condition number of the resulting system is uniformly
bounded independently of h, H and �. However, the method is not robust, because
dim V0 D Nh is very large. The proof of Theorem 1 will appear elsewhere.

3.2 Additive Schwarz Method, Version II

Since version I described above suffers from the very large size of the coarse
space V0 (based on edges of the fine triangulation Th, with averaged coefficients
on them), here we consider a coarse space which is set up on the edges of TH , the
coarse partition. In this way the method regains high level of parallelism, as the
coarse problem now can in principle be solved on a single processor. Note that this
approach is similar to that of [10].

We decompose Vh as follows:

Vh D NV0 C
NhX

iD1
Vi

where

NV0 D fv 2 Vh W vj˝i
2 P0.˝i/; i D 1; : : : ;NHg

and the local spaces Vi, i D 1; : : : ;Nh, remain as defined in (4). Now, the coarse
operator NT0 W Vh ! NV0 is defined such that NT0u D Nu0 where

Dh.Nu0; v/ D Ah.u; v/ 8v 2 NV0:

In order to formulate the condition number result, we shall assume uniformly
bounded level of variation of the coefficient within subdomain: there exist positive
constants c and C such that

c N�i � �j˝i
� C N�i; i D 1; : : : ;NH ; (5)

where

N�i WD 1

j˝ij
Z

˝i

�:
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Theorem 2 Let Hi D diam.˝i/ and let T D NT0 C PNh
iD1 Ti. Under the above

assumptions,

ˇ�1Ah.u; u/ . Ah.Tu; u/ . Ah.u; u/

where ˇ D maxiD1;:::;NHf
H2

i

min�2Th;��˝i h2�
g.

Remark 1 Detailed proofs of Theorems 1 and 2 will be provided elsewhere due to
the page limits. Here we only briefly sketch the idea of the proof of Theorem 2.
We follow the abstract theory from the book by Toselli and Widlund [11]. Since the
local stability and strengthened Schwarz inequality assumptions are straightforward,
it remains to prove the existence of stable decomposition for any v 2 Vh. To this
end, we make use of the coarse space which makes it possible to extract subdomain
average from v and deal only with functions with zero average on each subdomain.
Applying Friedrichs inequality for discontinuous functions, [3], and making use
of (5) we prove the stability constant of the decomposition is of order ˇ.

4 Numerical Experiments

Let us choose the unit square as the domain ˝ and for some prescribed integer M
divide it into NH D 2M � 2M smaller squares ˝i (i D 1; : : : ;NH) of equal size. This
decomposition of ˝ is then further refined into a uniform triangulation Th based
on a square 2m � 2m grid (m � M) with each square split into two triangles of
identical shape. Hence, the fine mesh parameter is h D 2�m, while the coarse grid
parameter is H D 2�M. We discretize the problem (1) on the fine triangulation using
the method (3) with ı D 7.

In the following tables we report the number of Preconditioned Conjugate
Gradient iterations for operator T (defined in Sect. 3.2) which are required to reduce
the initial Euclidean norm of the residual by a factor of 106 and (in parentheses) the
condition number estimate for T. We consider two sets of test problems: with either
continuous or discontinuous coefficient �. We always choose a random vector for
the right hand side and a zero as the initial guess.

4.1 ASM Version II vs. “Standard” ASM

First let us consider the performance of ASM version II against a more “standard”
ASM, see [8, Section 3.3], where the local solve is restricted not to a single element
of size h, but to a single subdomain ˝i of size H. For the diffusion coefficient we
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Table 1 Dependence of the number of iterations and the condition number (in parentheses) on
H D 2�M and h D 2�m for the method of Sect. 3.2

Fine (m)!
# Coarse (M) 4 5 6 7

4 29 (22) 39 (40) 59 (1:1 � 102) 96 (3:8 � 102)
5 30 (23) 39 (40) 59 (1:1 � 102)
6 30 (23) 38 (40)

7 30 (23)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on
H D 2�M and h D 2�m for the method of [8, Sect. 3.3]

Fine (m)!
# Coarse (M) 4 5 6 7

4 27 (20) 35 (34) 46 (67) 62 (1:3 � 102 )

5 28 (20) 35 (34) 46 (67)

6 28 (20) 35 (34)

7 28 (20)

take a continuous function, �.x/ D x21 C x22 C 1. As it turns out from Tables 1
and 2, the condition number of the method considered in Sect. 3.2 indeed shows an
O..H=h/2/ behavior, as predicted by Theorem 2, while methods which use local
solves on subdomains of diameter at least H (e.g. [8] or, similarly, [1, 10]) exhibit
more favorable O.H=h/ dependence.

4.2 Discontinuous Coefficient

Next, let us consider � with discontinuities aligned with an auxiliary partitioning of
˝ into 4 � 4 squares. Precisely, we introduce a red–black checkerboard coloring of
this partitioning and set � D 1 in red regions, and the value of �1 reported in Table 3
in black ones. In this way, our fine and coarse triangulations, with m D 7 and M D 4,
will always be aligned with the discontinuities. Table 3 shows the independence of
the condition number on �1 in this case.

Finally, we consider elementwise discontinuous coefficient, with � D 1 on odd
and � D �1 on even-numbered triangles. Table 4 shows that in this case the coarse
space fails (a dash means the method did not converge in 600 iterations). This
confirms the importance of the assumption of mild variation of the coefficient (5).
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Table 3 Dependence of the number of iterations and the condition number (in parentheses) on
the discontinuity when the coefficient is constant inside subdomains

�1 100 10�2 10�4 10�6

Iter (cond) 134 .3:8 � 102/ 141 .3:7 � 102/ 161 .3:7 � 102/ 179 .3:8 � 102/
Red–black 4� 4 distribution of �, aligned with domain decomposition. Fixed H=h D 8

Table 4 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity when the coefficient elementwise discontinuous

�1 100 10�2 10�4 10�6

Iter (cond) 134 (3:8 � 102) 435 (3:8 � 103) � (3:1 � 105) � (2:5 � 107)
Fixed H=h D 8

5 Conclusions

A nonoverlapping ASM for symmetric interior penalty DG discretization of second
order elliptic PDE with discontinuous coefficient has been presented, in which
a very large number of very small local problems is solved in parallel, together
with one coarse problem of moderate size. Under mild assumptions, the condition
number of the resulting system is O..H=h/2/, independently of the jumps of the
coefficient.
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Algebraic Multigrid for Discontinuous Galerkin
Methods Using Local Transformations

Christian Engwer, Klaus Johannsen, and Andreas Nüßing

1 Introduction

Discontinuous Galerkin methods are popular discretization methods for partial
differential equations for over a decade. For the resulting linear system, the need
arises for robust and efficient solvers. A geometric multigrid algorithm which
maintains the properties of the discretization along the grid hierarchy has been
presented in [6]. The grid transfer is based on an L2-projection and an overlapping
element block smoother is applied on each level. For cases where the construction
of a geometric grid hierarchy is not feasible, certain classes of algebraic multigrid
methods have been developed. In [2], an iterative method has been proposed, based
on the splitting of the function space into two non-overlapping subspaces. On those
spaces, the problem can be solved more efficiently. Another approach has been
followed in [7]. There, an algebraic multigrid method has been presented which uses
a smoothed aggregation method to form the coarser grid levels. A combination of
both approaches has been developed in [4]. The algebraic multigrid being described
there uses a projection of the discontinuous space onto the conforming subspace of
linear elements. An agglomeration strategy is employed to create the smoother and
the coarse grid levels. This strategy drops the block structure of the linear system
and loses the information of the discontinuous Galerkin discretization on coarser
grid levels. In addition, it is not applicable to the Stokes equation since the inf-
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sup stability is lost on the first order conforming subspace due to the equal order
discretization of velocity and pressure.

The aim of this paper is to develop and evaluate an algebraic multigrid method for
discontinuous Galerkin discretizations, which preserves and uses the block structure
on each grid level and can be applied to different problems, including the Stokes
equation. We follow the general structure of the geometric multigrid of [6] but also
take ideas from [4] into account. The derivation of the method uses the Poisson
equation and includes comments on the differences for the Stokes equation when
applicable. The paper is structured as follows: Sect. 2 provides a short introduction
to the discretization of the Poisson equation and the resulting linear system. In
Sect. 3 the algebraic multigrid algorithm is presented, including the transfer between
different grid levels and the smoothing operator. The algorithm is evaluated in
Sect. 4 and finally a short conclusion is given.

2 Preliminaries

We describe our method using the discontinuous Galerkin discretization for the
Poisson equation, cf. [1]. Let Th.˝/ WD f˝0; : : : ;˝N�1g define a triangulation
of the domain ˝ with the size parameter h 2 R. The broken Sobolev space is
defined as Vh WD fu 2 L2.˝/juj˝i 2 P.˝i/g for some polynomial spaces P.˝i/.
The discontinuous Galerkin formulation of the Poisson equation with homogeneous
Dirichlet boundary conditions reads: find uh 2 Vh such that a�.uh; v/ D f .v/ holds
for all v 2 Vh (cf. [1] for a derivation and definition of a�). The method parameter
is denoted by � and the penalty parameter by 	 2 R. For each grid element ˝i,
we assume there is a diffeomorphism �i W Rn ! R

n with �i. Ő / D ˝i, mapping
local coordinates on a reference element Ő to global coordinates on ˝ . Next we
introduce local polynomial basis functions on the reference element:

�i W Rn ! R; i 2 f0; : : : ;Nb � 1g (1)

In order to simplify the description, we assume the same local basis on all
elements. Note that this restriction is not essential. Using the local to global
transformations, we define the basis function in global coordinates as �i;k D �iı��1k .
Introducing a representation of uh and v with respect to the global basis functions
in the discontinuous Galerkin formulation yields the linear system for the Poisson
equation:

Ax D b; A D .Akl/k;l
Akl D .akl

ij /ij 2 R
Nb�Nb ; akl

ij D a�.�j;l; �i;k/
(2)
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Besides for the Poisson equation, we also construct the multigrid method for the
Stokes equation. We will not present its discontinuous Galerkin formulation here,
but refer to [8]. We block the degrees of freedom for pressure and velocity element
wise, which again yields a sparse block linear system.

3 Algorithm

3.1 General

The proposed algebraic multigrid method is a method to solve a linear sparse block
system Ax D b resulting from a discontinuous Galerkin discretization using only
geometric information on the finest grid level. The grid levels are numbered from
coarse to fine with 0; : : : ;L, such that 0 denotes the coarsest grid level. By Nl 2 N

we denote the number of elements on level l. We will mark matrices and vectors
with the level they are associated with. If the level index is missing, the matrix or
vector refers to the finest level, if not stated otherwise. On each grid level but L,
we assume there is a prolongation operator Pl mapping a coefficient vector from
grid level l to the next finer level l C 1. The restriction Rl of a vector from level
lC 1 to level l is accomplished using the transposed of the prolongation Rl WD .Pl/t.
We compute the coarse grid matrices recursively from the finest matrix by applying
the Galerkin product Al�1 D Rl�1AlPl�1. To reduce oscillating error frequencies,
we apply the smoother Sl on level l. Both, the prolongation and the smoother are
described in the remainder of this section.

3.2 Grid Transfer

The spaces on coarse levels are constructed recursively as subspaces of the space
at the next finer level using a semi coarsening approach. A semi coarsening can be
constructed based on a matching in the block matrix graph of the block matrix A.
The graph G.A/ D .V.A/;E.A// consists of the nodes and the edges:

V.A/ D f0; : : : ;NL � 1g
E.A/ D ˚.i; j/ 2 V.A/ � V.A/ W i < j ^ Aij 6D 0

� (3)

Since the sparsity pattern of A is symmetric, G.A/ is undirected. In the following,
when selecting edges for coarsening, we only consider strong edges Es.A/ � E.A/.
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We divide the edges into weak and strong ones, using the same criterion as in [4].
The strength of an edge .i; j/ 2 E is defined as

�..i; j// WD kAijkkAjik
kAiikkAjjk (4)

An edge is called strong if its strength is greater than ˇ times the maximum strength
among its neighbors, for a constant ˇ 2 Œ0; 1�. The selection of disjoint strong edges
corresponds to finding a graph matching. A graph matching of strong edges is a
subset of Es.A/ such that every node is part of at most one edge.

The transfer between two grid levels is constructed using so called shift matrices,
consisting of local basis transformations. For a pair of elements, we select the
polynomial basis of the first element to be the basis of the combined element and
embed the basis of the second element into the one of the first. The shift from l to k
for two neighboring elements l and k is defined as

Skl WD M�1k
QSkl

Mk WD .mk
ij/ij mk

ij WD h�i;k; �j;kiL2.˝k/QSkl WD .Qskl
ij /ij Qskl

ij WD h�i;k; �j;liL2.˝k/

(5)

These local shift matrices can be combined into a global sparse block matrix. Due to
the coupling of neighboring elements in the discontinuous Galerkin discretization,
the global shift matrix has the same sparsity pattern as the matrix A. The shift
matrices on coarser grid levels can be obtained from the next finer level by
successive shifting into neighboring elements.

Having selected a set of pairs to be coarsened, we can construct the prolongation
matrix which transfers a block coefficient vector from the coarse to the fine level.
For an element which has not been selected for coarsening, we keep its basis on
the coarse grid and therefore set the associated prolongation block to the identity
matrix. For each pair, we keep the basis of the first element and again set the block
to the identity matrix. The basis of the other element gets transferred into the basis
of the first using the local shift matrices described above. This approach yields the
prolongation as a sparse block matrix Pl which can be defined as

Pl.: : : ; xe; : : : / WD .: : : ; Œxe; Sfexe�; : : : / (6)

for each selected pair .e; f /. We define the corresponding restriction matrix as Rl WD
.Pl/T . The domain˝ l

i associated with an element i on level l is defined as the union
of all elements on the finest grid level which have been aggregated in element i.
Accordingly, the function space Vl on level l is spanned by the bases of the elements
of level l.
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3.3 Smoother

The smoother Sl should reduce oscillating components of the error on the current
level. As presented in [6], we use an additive and multiplicative Schwarz method
as a smoother. Let Vl

i � Vl define a subspace of Vl for each i 2 Il with an index
set Il to be defined later. For each subspace Vl

i ; i 2 Il, we solve al.ul
k C cl

k;i; v/ D
f .v/ 8v 2 Vl

i for cl
k;i 2 Vl

i . The additive Schwarz method is then given by

ul
kC1 D ul

k C � l
X

i2Il

cl
k;i (7)

with a damping parameter � l 2 R. In a similar way, the multiplicative Schwarz
method can be introduced, where the updates are computed and applied succes-
sively.

In [6] different types of patches have been evaluated in a geometric multigrid
setting. The results indicate that non-overlapping element block patches do not yield
a robust smoother. Overlapping vertex based patches, depicted in Fig. 1, show robust
smoothing behavior and are therefore used by the smoother in our method. It should
be pointed out, that the geometric information about vertices and their connection to
elements is only available at the finest level. We need to adopt this information along
the coarsening process. This is done, by keeping only those vertices from level lC1,
which have not become internal vertices between two elements. The connectivity
information between the remaining vertices and their adjoining elements on the
coarse level can be transferred from the fine level: a vertex on level l is connected
to an element i on level l if it was connected to an element on level l C 1 which
has been aggregated into i. The smoother is said to fulfill the smoothing property, if
kAl.Sl/�k � C	.�/ with a function 	.�/! 0 for � !1.

For the Poisson equation, we set Il to be the index set of grid vertices on level l
in the algebraic sense. Vl

i is the linear subspace spanned by the degrees of freedom
associated with an element which is connected to the grid vertex i. The numerical
results in [6] indicate for the one dimensional problem using the NIPG method, that
the additive smoother fulfills the smoothing property with 1=�.

Fig. 1 Overlapping patches
for the Poisson equation (left)
and Stokes equation (right)

v v v

v v

v v v

vp
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For the Stokes equation, in addition to the vertex based patches, we need to
take into account the saddle point structure of the problem. We adopt the idea of
the Vanka type smoother from [10], where, in a staggered grid context, a pressure
degree of freedom is combined with all coupling velocity degrees of freedom.
In addition we include the vertex based approach in order to construct a robust
smoother. Combining both approaches in the context of the discontinuous Galerkin
formulations, we set Il to be the index set of elements on level l. Vl

i is the linear
subspace spanned by the degrees of freedom associated with an element which
shares a grid vertex with element i (see Fig. 1). Based on experimental results, we
apply a different damping factor depending on the position of an element inside the
patch. Theoretic results from [9] and numerical experiments indicate that for Stokes
SIPG, the additive smoother fulfills the smoothing property with at least 1=

p
�.

4 Evaluation

We implemented the algebraic multigrid method using the Distributed and Unified
Numerics Environment (DUNE) (see [3]), using the PDELab toolbox (see [5]) for
the PDE discretization. First, we apply our method to a two dimensional Poisson
problem with ˝ D Œ0; 1�2 on a structured grid with rectangular elements, in order
to reproduce the results given in [6] for a geometric multigrid method. As local
basis functions we use an orthogonalized Qk basis, with Qk WD f.x; y/ 7! x˛x y˛y W
˛x; ˛y 2 N; ˛x; ˛y � kg. For the following tests, we set k WD 2. We use a NIPG
discretization with different penalties and different sizes of the finest grid level. The
penalty ranges from 10�3 to 106 and the fine grid size is increased by successive
uniform refinement starting with a size of 5 � 5. The convergence rate is measured
as

� WD
�kd20k2
kd10k2

� 1
10

; (8)

where di denotes the defect in iteration i. We apply the additive method with
damping � D 1

2
and � D 4 pre- and post smoothing steps. The multiplicative

method is applied with � D 1 and � D 1. The results can be seen in the
second column of Fig. 2. In this Figure and in the following, graphs with higher
convergence rates correspond to finer grid sizes. It can be observed, that the general
convergence behavior of the geometric method can be reproduced, while producing
better convergence rates for higher penalties.

In the next test, we apply our method to the SIPG discretization of the Poisson
equation. The test parameters are the same as in the previous test. The convergence
results can be seen in the third column of Fig. 2. We observe similar convergence
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Fig. 2 Convergence rates for the Poisson equation, left: NIPG method using the geometric
multigrid from [6], center: NIPG method using our multigrid, right: SIPG method using our
multigrid, top: additive smoother, bottom: multiplicative smoother

Table 1 Results for the Poisson equation using the NIPG method on unstructured tetrahedral
grids with the multigrid as a preconditioner for the BiCGSTAB algorithm

Unit sphere Unit cube

Elements 2104 8270 33,418 139,572 547,038 2406 9386 38,202 154,194 635,216

Levels 11 11 10 10 10 11 12 13 12 11

Iterations 3 3 3 3 4 3 3 3 3 3

behavior as in the NIPG case. The method does not converge for a penalty less than
�0 < 10, which corresponds to the theoretic findings in [1].

Next, we use the method as a preconditioner in a BiCGSTAB solver for a second
order NIPG discretization on different unstructured grids. For different values of
h, we create triangulations of the unit sphere and unit cube using tetrahedral
elements. We use the multiplicative smoother and stop the iteration at a relative
defect reduction of 10�10. The results can be seen in Table 1.

Finally, we test for NIPG and SIPG discretizations of the Stokes equation on the
unit square. We choose the orthogonalized Qk basis for the velocity components
and an orthogonalized Pk�1 basis for the pressure, where Pk�1 WD f.x; y/ 7! x˛x y˛y W
˛x; ˛y 2 N; ˛x C ˛y � k � 1g. Again we use a structured grid with rectangular
elements, choose k D 2 and apply the method with different penalties and grid sizes.
We use the same damping parameters as before, but weight the velocity degrees
of freedom differently depending on their local patch position when applying an
update. The weight for the central element of a patch is set to 1

2
and the weight for

the outer elements is set to 1
2m , where m denotes the number of outer elements in



184 C. Engwer et al.

Fig. 3 Convergence rates for the Stokes equation, left: NIPG method, right: SIPG method, top:
additive smoother, bottom: multiplicative smoother

the patch. Our method is used as a preconditioner for the BiCGSTAB algorithm.
The results can be seen in Fig. 3. We observe increased convergence rates when
compared to the Poisson equation. In addition, we observe larger convergence rates
for finer grids and larger penalties.

5 Conclusion

We proposed an algebraic multigrid method for the discontinuous Galerkin dis-
cretization of the Poisson and Stokes problem. It shows good convergence rates
and is flexible enough to be applied to different types of problems, which are
not covered in this paper. Currently, one drawback of the method is its large
computational cost. This effort is dominated by the application of the overlapping
block smoother on the finest grid level. Reducing this effort by applying different
smoothing strategies has not yielded the desired convergence behavior so far. To
avoid increasing convergence rates for finer grids and higher penalties, one can
develop different local shift strategies. Instead of projecting into the local basis of
a single element, one can investigate the possibility to project into a common basis
on all aggregated elements. In order to get a better understanding of the smoother,
an investigation of the smoothing property might be worthwhile.
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Concepts for Flexible Parallel Multi-domain
Simulations

Christian Engwer and Steffen Müthing

1 Introduction

Domain Decomposition methods provide a flexible tool for developing multi-
physics simulations and coupling different discretization methods. In general,
multi-physics simulations will require the handling of non-matching grids. Domain
Decomposition methods like the Mortar method [3] enable us to simulate complex
applications like contact problems, mechanics of moving parts, or heterogeneous
coupling like surface-/groundwater flow.

As we will discuss, coupling unrelated parallel meshes poses significant practical
problems. To our knowledge only very few implementations exist: both the well-
known MpCCI library [7] and the SIERRA framework implement a parallel
rendezvous algorithm [8] based on intersection algorithms, but neither of them is
publicly available. An alternative approach can be based on radial basis functions,
see [5].

The DUNE framework [1] offers different strategies for Domain Decomposition
methods, which are available as DUNE extensions. One approach is to construct indi-
vidual meshes for each sub-domain and relate them afterwards, the alternative is to
create one mesh for the whole domain and define sub-domain meshes as appropriate
sub-meshes. In this paper we only discuss the first approach. In [6, 6] describe a new
algorithm that improves the complexity of matching unrelated meshes from O.n2/ to
O.n/, where n is the number of coupling elements. This algorithm is implemented in
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the DUNE GRID-GLUE [2] library. We discuss extensions of this library for handling
distributed meshes.

When using methods like Dirichlet-Neumann coupling in the parallel context the
user is forced to manage distributed data, as the necessary coupling information
is not available locally. We present an abstraction that hides this non-locality
and allows the user to implement his Domain Decomposition strategy in a clear
mathematical setting. By introducing two auxiliary Finite Element spaces on the
coupling interface we can reformulate the original domain decomposition algorithm
and hide all parallel data handling from the user. In a proof of concept we implement
these auxiliary spaces for the DUNE PDELAB library, where they are created in a
completely automatic fashion.

2 Relating Unrelated Meshes

In the following we only describe a non-overlapping scenario, although the pre-
sented techniques are applicable to more general settings.

We consider a domain ˝ � R
d. ˝ is partitioned into two sub-domains ˝0 and

˝1 which meet at an interface 
 . The domains are triangulated into meshes T0 and
T1 which are independent and in general do not match at the interface. Each mesh
describes a set of entities, e.g. cells, faces, etc. We select a subset of entities which
covers the interface 
 , i.e. the patches P0, P1; on these we impose the coupling
conditions.

In order to relate information on˝0 and˝1 one has to transfer data like approx-
imate solutions and evaluations of local residuals. We follow a mesh intersection
approach, requiring us to compute the intersections of all entities in P0 with those
in P1 (see Fig. 1). Based on the algorithm presented in [6] we identify pairs of
overlapping entities from both sides, for which we then compute entity clippings,
yielding a set of polyhedral intersections.

This algorithm is available as Dune::GridGlue::Merger within DUNE

GRID-GLUE; it is provided as a native implementation and as an interface to legacy
codes. Using a predicate mi the coupling patches are defined as Pi D f� j� 2

: ∩ =

T0(Ω0),T1(Ω1) Pi ⊂ T i ∪ Ωi I

Fig. 1 Intersecting the coupling patches P0 and P1 yields a set I of intersections, which can be
used to evaluate the coupling conditions
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Fig. 2 Left: intersections relate adjacent cells of unrelated grids. Right: geometric mappings
provided by an intersection

Ti \ @˝i ^ mi.�/g. The computed intersections are modelled as the intersections in
the DUNE grid interface and exposed as Dune::GridGlue::Intersection,
which provides topological and geometrical information. In the sequential case
it gives access to the adjacent cells in the two grids T0 and T1. To compute
coupling conditions, intersections provide a mapping from local coordinates to
global coordinates as well as mappings to the local coordinate systems of the
adjacent cells (see Fig. 2).

2.1 Coupling via Intersections

As a short example, let us consider a two-domain Poisson problem with Dirichlet-
Neumann coupling condition: Find u0 and u1 such that

�ui D 0 on ˝i; i 2 0; 1
ui D g at @˝i n 
; i 2 0; 1
u0 D u1 at 


ru1 � n D ru0 � n at 
 :

(1)

We follow the usual approach and introduce discrete trial and test spaces V0,
V1 on ˝0 and ˝1. In the simplest case this might be a conforming Lagrange
discretization. Testing with functions vi 2 Vi and integration by parts yields the
problem in its weak formulation. On ˝0 we impose Dirichlet boundary conditions
along 
 , whereas Neumann boundary conditions are imposed along 
 on ˝1.
As the interface 
 is in general non-conforming, we can employ a Clément
interpolation to interpolate the solution u1 onto ˝0. For given bases ˚0, ˚1, we
obtain a system matrix of the following form, where C0 and C1 correspond to
Dirichlet and Neumann coupling blocks:

�
A0 C0
C1 A1

�
�
�

u0
u1

�
D
�

b0
b1

�
(2)
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Algorithm 1 Classic Dirichlet-Neumann iteration
u0; u1 D initial
while ! converged do

u0  A�1
0 .b0 � C�u1/

u1  A�1
1 .b1 � C�u0/

end while

The matrix entries in the off-diagonal blocks are given by

Ci;j
0 D �hr� i

0n; �
j
1i
 ; Ci;j

1 D �!�j
0
h� i
1; �

j
0i
 ;

with !
�

j
0
D 1=h1; � j

0i
 the weights of the Clément operator and � i� 2 ˚�.
A straightforward approach to solving this problem iteratively is a fix point

iteration on the split problem. In order to better illustrate the differences to the
following parallel setting, we sketch this iteration in Algorithm 1.

2.2 Concepts of Parallel Mesh Coupling

Based on the previously introduced local grid matching algorithm we derive a par-
allel grid matching algorithm, see Algorithm 2. We extract the local part of the cou-
pling patches P0, P1, merge these and communicate the data in a ring. We retrieve
the neighboring patches and intersect them with our local patches. This yields the
set of all intersections of local entities, either in ˝0 or ˝1, with any other entity,
including remote entities. This provides all topological and geometric information
required to evaluate the coupling conditions, but in general, as illustrated in Fig. 3,
we lack access to the data in the adjacent domain. We therefore assign a globally
unique ID to each intersection to provide parallel communication on the interfaces.
This communication is built upon the parallel IndexSets [4] of DUNE and allows
a gather/scatter mechanism to send and receive data across domain intersection
patches. In analogy to the parallel communication in the DUNE grid interface, the
user has to provide a DataHandle object which implements the gather and scatter
operations. The communicated data depends on the chosen Domain Decomposition
method, thus the user is usually required to implement the data communication
himself. For high level frameworks this a very unsatisfactory situation.

For methods like Mortar or FETI-DP the problems are less immanent as we have
no direct coupling along the sub-domain faces. These methods introduce additional
degrees of freedom on the interface, the sub-domains couple only to the interface
and then the arising Schur-Complement system for the interface is solved.

Other methods like classic non-overlapping Schwarz methods or Dirichlet-
Neumann coupling directly couple the sub-domains and require explicit commu-
nication of remote data. The main difference is that in the latter case we cannot
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Algorithm 2 Parallel grid matching algorithm
parallel GridGlue

P F P: # of parallel processes
T .˝0/; T .˝1/ F Sub domain meshes
m0;m1 F Predicates for ˝1 and ˝2

process ˘ [p 2 f0; : : : ;P� 1g]
P0 D f� j� 2 T0jp \ @˝0 ^ m0.�/g F Local coupling patches
P1 D f� j� 2 T1jp \ @˝1 ^ m1.�/g
Ip  merge.P0;P1/ F Set of intersection
.bP0;bP1/ .P0;P1/
for i 2 Œ0;P� 2/ do

asend: .bP0;bP1/ �! .pC 1/%P F send to right neighbor
arecv: .bP0;bP1/ �! .p� 1C P/%P F receive from left neighbor
Ip  Ip [merge.bP0;P1/ F merge remote patches
Ip  Ip [merge.P0;bP1/ . . . with local patches

end for
end process

end parallel

Fig. 3 When coupling distributed grids, neighboring cells of the remote mesh might not be
accessible locally, making it impossible to evaluate coupling conditions (numbers in circles denote
the process rank)

fully represent the local part of the Poincaré-Steklov operator on a single processor,
but only the local contributions.

3 Hiding Parallel Communication Using Auxiliary Spaces

We now describe a mathematical abstraction which allows implementations to hide
all communications from the user. We introduce additional function spaces V� and
V� on the coupling interface 
 , see Fig. 4. The definition of these function spaces
is general; they can thus be constructed automatically as

V� D
n
v 2 L2.
 /

ˇ̌
ˇ vj� 2 Pk.�/; � 2 I; k D order.V0/

o
� tr.V0/

V� D
n
v 2 L2.
 /

ˇ̌
ˇ vj� 2 Pk.�/; � 2 I; k D order.V1/

o
� tr.V1/ ;
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Fig. 4 Through the use of auxiliary spaces on the coupling interface 
 , direct access to non-local
cells of the neighboring domain is avoided (numbers in circles denote the process rank)

where Pk denotes the space of polynomial functions up to degree k. V� and V�
are defined as discontinuous polynomial spaces on the interface, where V� is the
minimal DG space containing the trace spaces of V0 and V� for V1, respectively. For
efficiency we choose L2 orthonormal bases. Note that for order.V0/ D order.V1/
it follows that V� D V� . The arising structure of the global system is as follows,
although it is never assembled as a whole:

0

BB@

A0 0 C� 0

�D� M� 0 0

0 0 M� �D�

0 C� 0 A1

1

CCA �

0

BB@

u0
�

�

u1

1

CCA D

0

BB@

b0
0

0

b1

1

CCA ;

where M�, M� denote the mass matrices of V�, V� and C�, D�, C� , D� are coupling
operators.

The auxiliary spaces V� and V� eliminate the direct coupling between A0 and A1.
We split the original coupling operator C1 to obtain the pair C�, D� and proceed
analogously for C0. As we have chosen L2 orthonormal basis functions for V� and
V� , the mass matrices reduce to the identity �. Therefore the coupling operators
can be evaluated on the fly in an efficient fashion. All computations are completely
local and can be handled by a generic gather/scatter implementation. The relation
between C1 and C�;D� becomes obvious when eliminating � or � , respectively. We
use M� D � and obtain the classical coupled system as in (2)

�
A0 C�D�

C�D� A1

�
�
�

u0
u1

�
D
�

b0
b1

�

In analogy to Algorithm 1, we can solve the coupled parallel system using
Algorithm 3. As we recover the original DD method, it is also possible to use it
as a preconditioner in existing Krylov methods.
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Algorithm 3 Auxiliary space iterative algorithm
u0; u1 D initial
while ! converged do
�  D�u1 F implicit data communication
u0  A�1

0 .b0 � C� �/ F parallel solver on ˝0

�  D�u0 F implicit data communication
u1  A�1

1 .b1 � C��/ F parallel solver on ˝1

end while

Fig. 5 Sketch of the hierarchic construction of the global function space for a coupled problem.
DUNE PDELAB automatically generated the spaces V� and V�

3.1 Implementation in DUNE PDELab

When implementing the Poisson example from Sect. 2.1 with the auxiliary spaces
approach, DUNE PDELAB transparently synthesizes the auxiliary spaces V� and
V� and represents the overall solution space V D V0 � V1 � V� � V� as a tree of
elementary function spaces (cf. Fig. 5). Given a weak problem of the form u 2 U W
a.u; v/ D b.v/ 8 v 2 V , DUNE PDELAB splits the (bi)linear forms into sums of
entity-local contributions ˛e, ˛s and ˛b for cells, interior facets and boundary facets,
respectively, isolating the user from mesh and DOF handling. a.u; v/ thus reads

a.u; v/ D
X

e2Eh

RE
e .˛v; u; v/C

X

f2F
.i/
h

RF
f .˛s; u; v/C

X

f2F
.b/
h

RB
b .˛b; u; v/: (3)

RE, RF and RB map the global spaces U and V to the element-local restrictions on the
cells adjacent to the current entity, leaving the user with the task of implementing
the local contributions ˛e, ˛s and ˛b.

The coupling operators D�, C�, D� and C� resemble the interior facet terms in
that they involve restricted function spaces with different supports, but differ in that
the restrictions do not belong to the same global space. Those terms consequently
require an extension of Eq. (3) with additional coupling terms on the interface 

and the two sub-domains.

D� and D� form projection operators onto V� and V� , whereas C� and C� mimic
the operators C0 and C1. The first one behaves like a source on the interface, whereas
the second one is a direct adoption of the Clément operator. Given local bases
˚
�
� on � (with V�j� D span.˚�

� /) the user has to implement the following local
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contributions to the global stiffness matrix:

˛0;�� .˚
�
0 ; ˚

�

� / D
X

��2˚��
�02˚�0

�hr�0n; ��i� ; ˛�;1� .˚
�

� ; ˚
�
1 / D

X

�12˚�1
��2˚��

h��; �1i� ;

˛1;�� .˚
�
1 ; ˚

�
� / D

X

��2˚��
�12˚�1

�h�1; �� i� ; ˛�;0� .˚�
� ; ˚

�
0 / D

X

�02˚�0
��2˚��

�!�0h�� ; �0i� ;

which correspond to D�, C�, D� and C� , respectively.

4 Conclusions

The DUNE GRID-GLUE library offers software infrastructure for the coupling of
unrelated grids. We presented recent extensions to DUNE GRID-GLUE to work in the
context of distributed meshes. Reconstructed geometrical and topological relations
between the grids are encapsulated as intersection objects. Although presented for
non-overlapping intersections, the parallel implementation also handles overlapping
and mixed-dimensional setups.

The coupling of distributed grids usually requires substantial changes to the
user code and explicit use of parallel communication. We discussed a concept to
reformulate the numerical scheme using auxiliary spaces on the coupling interface

 , which allows the implementation of domain decomposition methods in a
common framework that can hide the parallel communication from the user. This
reformulated coupling problem integrates nicely with the hierarchic function space
and operator concepts available in DUNE PDELAB.

The presented parallel mesh matching is available in the current version of
the DUNE GRID-GLUE library. A prototype implementation for DUNE PDELAB

is available, a more general implementation is under development. The code is
available under an open source license from the DUNE website http://www.dune-
project.org/.
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Domain Decomposition and Parallel Direct
Solvers as an Adaptive Multiscale Strategy
for Damage Simulation in Quasi-Brittle
Materials

Frank P.X. Everdij, Oriol Lloberas-Valls, Angelo Simone, Daniel J. Rixen,
and Lambertus J. Sluys

1 Introduction

Understanding failure processes of heterogeneous materials is an active research
field in computational mechanics. The failure analysis of quasi-brittle materials such
as concrete is a topic of particular interest in civil engineering. Failure in quasi-
brittle materials is characterized by the initial formation of cracks at a microscopic
level followed by their coalescence into macroscopic cracks leading to weakening
and fracture. Because the fracturing process of these materials occurs at different
length scales, care must be taken to provide an accurate description which accounts
for all the relevant mechanical processes while maintaining acceptable computation
costs. With this in mind, we propose a multiscale approach capable of switching
between different spatial discretizations and material representations depending on
the local mechanical behaviour.

In this contribution, we present a non-local damage finite element analysis of a
wedge-split test used to evaluate fracture properties in concrete-like materials. We
apply the classical FETI framework [7] to a non-linear gradient-enhanced damage
(GD) model [15] using both iterative and direct solvers to the interface problem as
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well as using a direct solver for the entire set of equations of the fully dual assembled
system.

2 Framework

2.1 Gradient-Enhanced Damage Model

The gradient-enhanced damage model by Peerlings et al. [15] is employed to
model concrete failure. The GD model is non-local: it consists of a coupled set
of differential equations involving the modified Helmholtz equation for the non-
local equivalent strain and the classical quasistatic equilibrium equations. Damage
evolution is highly non-linear, requiring the use of a loop control dividing the total
load into small steps with an iterative Newton-Raphson (NR) scheme for each step
to assure equilibrium.

The damage parameter !, which modifies the stress–strain relation according to

� D .1 � !/De W " ; (1)

varies from 0 for undamaged to 1 for fully damaged material. Its evolution,

! .�/ D
(
0 � � �0
1 � �0

�

�
1 � ˛ �1 � e�ˇ.���0/

��
� > �0

; (2)

is a function of the history parameter � which is defined as the maximum value ever
attained by the nonlocal equivalent strain. In the above equations, De is the elasticity
fourth-order tensor, � is the second-order stress tensor, " is the second order strain
tensor, �0, ˛ and ˇ are parameters governing the shape of the damage evolution law.

The underlying damage formalism results in an asymmetric stiffness matrix. To
solve the set of equations, a solver supporting asymmetry, both in direct and iterative
approaches, is required.

2.2 Multiscale Domain Decomposition

The key to solving the discrete system of equations in a reasonable amount of
time is to use two different representations of the problem under examination. One
numerical model has a fine mesh with a detailed representation of the mesostructure
of the material. The other numerical model has a coarse mesh with homogenized
material properties which have been determined to approximate the response of the
‘fine’ model in the linear regime. Both numerical models have been decomposed
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into a fixed amount of domains. Each domain in the ‘fine’ model has a corresponding
domain in the ‘coarse’ model matching its shape.

The calculation starts with the ‘coarse’ numerical model for all domains. In each
step and for each domain, a check for the condition of onset of non-linearity is
performed. For every node, the non-local equivalent strain difference is calculated
from the displacement field of the current and two previous steps. Onset of non-
linearity occurs if for a single node the strain difference exceeds a chosen damage
initiation threshold value �0. The domains for which this condition is met are
subsequently replaced by domains with the fine scale mesh. To preserve continuity
of the displacements and forces, a boundary value problem is solved for each
replaced domain followed by a global relaxation step.

Computing the strain difference for the onset of the non-linearity condition is a
choice that should match the nature of the formation of non-linearities. For tensile
test calculations and the gradient-enhanced damage model, our current choice yields
satisfactory results [13].

2.3 Classical FETI Method

In order to solve the multiscale system with a mixture of coarse and fine meshes
for each domain, the classical FETI method [7] is used. Lagrange multipliers ensure
continuity of the solution field between interface nodes of adjacent domains. Linear
multipoint constraints and full-collocation are used for fine mesh interface nodes
which do not have a corresponding coarse mesh node on the adjoining domain [14].

Boundary conditions are also included by means of Lagrange multipliers, thus
implying that all domains in this framework are floating. This method is known as
the Total-FETI method [6]. Rigid body motion vectors are constructed to enforce
compatibility between domains. To solve the local equations for each domain, we
use QR factorization of the domain stiffness matrix which can be stored for later
use in computing the Lagrange multipliers by means of either the iterative or direct
solve of the global interface problem as shown in [12, 13].

3 Numerical Computation

3.1 Model

We use a two-dimensional model of a wedge split specimen for the quasistatic
damage simulation of the heterogeneous sample of concrete shown in Fig. 1.
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Fig. 1 Dimensions and domain decomposition of the wedge split model test. The interface is
represented in dark-grey

Fig. 2 Coarse (left) and fine (right) scale domain meshes. Coloring in the fine domain: aggregates
in black, cement matrix in grey and ITZ in light grey

For the multiscale framework we use two different meshes: a homogeneous
mesh consisting of quadrilateral elements with four integration points for the coarse
domains, and a heterogeneous mesh with triangular elements and one integration
point for fine scale domains. Both meshes are shown in Fig. 2. The fine-scale mesh
is representative of a typical concrete mesostructure which consists of spherical
aggregates, an interface transition zone (ITZ) surrounding the aggregates, and a
cementitious matrix material in which the aggregates are embedded. Because of
the independence of the individual domains, we are not restricted in mesh, element
and material choice per domain provided that the solution field is continuous across
the interface.

The parameters are listed in Table 1. Plane strain conditions are considered. The
Young’s modulus for the homogeneous coarse-scale mesh is an effective Young’s
modulus derived from the heterogeneous mesh. This is necessary for an accurate
material-averaged linear response in the coarse description of the model.
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Table 1 Material data

Material parameters Aggregates Matrix ITZ

E Young’s modulus (GPa) 35.0 30.0 20.0

� Poisson’s ratio (–) 0.2 0.2 0.2

"eq Non-local equivalent strain (–) Mazars Mazars Mazars

�0 Damage initiation threshold (–) dummy 8:5� 10�5 5� 10�5

c Gradient parameter (mm2) 0.75 0.75 0.75

! .�/ Damage evolution law (–) Exponential Exponential Exponential

˛ Residual stress parameter (–) 0.999 0.999 0.999

ˇ Softening rate parameter (–) 150 150 150

3.2 Software Framework and Solvers

The non-linear quasistatic calculation is performed by dividing the total applied
displacement into 200 load increments. In each load increment the non-linear GD
model is evaluated iteratively using an NR scheme with a convergence threshold of
1:0 � 10�6 for the relative error in energy. Usually 3–4 NR iterations are sufficient
for the solution to converge.

In the FETI calculations, all factorizations of the domain stiffness matrices are
being performed by SuiteSparseQR [4]. Solving the flexibility problem iteratively
requires projection to ensure positive semi-definiteness of the matrix, allowing the
iterative solvers to converge. Because of the asymmetry of the flexibility matrix,
only few iterative solvers like BiCGStab by van der Vorst [20] and GMRES by Saad
and Schultz [17] are suitable. We chose BiCGStab with projection using openMP
for the product of the projected stiffness matrix and solution vector (Eqs. (9)–(12)
in [12]).

Superlumped (SL), lumped (L) and Dirichlet (D) type preconditioners from [16]
are used to accelerate iterative convergence, as well as the multiplicity (m), stiffness
(k) and Dirichlet (s) scaling to augment the preconditioners.

The flexibility interface problem can also be solved directly, using openMP for
evaluating the flexibility matrix by distributing the domain contributions to the
sum over all available parallel cores, followed by a dense matrix solver such as
UMFPACK [3]. Even though this approach was discouraged in [7] because of the
large amounts of solutions required, we have performed this direct calculation since
it does provide an upper time limit for finding the Lagrange multipliers with an
iterative approach.

An alternative approach is the solution of the set of equations from which the
FETI method originates:

�
K BT

B 0

	 �
u
�

	
D
�

f
0

	
: (3)
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Because of the reduction in degrees of freedom, obtained by starting with all coarse
domains and a simplified model description, and only substituting domains with
fine, heterogeneous counterparts where it is needed, the full dual assembled matrix
is much smaller than the full numerical solution (FNS) and can be solved using
parallel direct solvers.

In this contribution we have selected a couple of solvers with the requirement of
being able to handle asymmetric cases: MUMPS by Amestoy et al. [1, 2], Pardiso
by Schenk et al. [18], PaSiX by Hénon et al. [9], WSMP by Gupta [8] and SuperLU
by Li [10], Li et al. [11], and Demmel et al. [5]. These solvers can also be applied
to obtain the FNS.

4 Results

The full numerical solution and the 34 domain FETI-direct calculations show iden-
tical damage patterns and displacements as shown in Fig. 3. However, none of the
iterative FETI calculations, regardless of preconditioner and scaling combination,
succeed in completing the calculation within the 1000 BiCGStab iteration limit.

Figure 4 shows a significant rise in BiCGStab iterations as the damage calculation
progresses. This indicates the inability of the iterative preconditioners and scalings
to deal with progressive damage evolution, possibly due to large differences in
material stiffness. In order to ascertain this assumption we study the number
of iterations for one linear elastic calculation with a domain decomposed mesh,
consisting of the 26 zoomed-in domains, by choosing three different load increments
i and their corresponding damage profiles !i from the FETI-direct calculation and
substituting the Young’s modulus E by .1 � !i/E. This approach enables us to
observe the dependency of the damage evolution versus the number of iterative steps
needed for convergence.

From Table 2 we confirm that the iterations strongly depend on the damage
profile: the iterations increase dramatically upon progressively growing differences
in material stiffness. This is caused by the differences of orders of magnitudes in the

Fig. 3 Comparison of final damage profile of FNS (right) and FETI-direct 34 domain
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Fig. 4 BiCGStab iteration trend per NR-iteration number. Refer to Sect. 3.2 for an explanation of
used preconditioner and scaling acronyms

Table 2 Linear elastic BiCGStab iteration count as a function of damage profile for a given load
increment. Two different preconditioner/scaling results are shown

Load increment
Preconditioner + scaling 0 100 Final

Dirichlet + k scaling 16 233 1936

Lumped + k scaling 39 781 >5000

matrix entries. We therefore conclude that the standard preconditioners and scalings
fail to accelerate the BiCGStab iterative solver in situations of substantial damage.

Improving the preconditioners for these type of systems involves adapting new
techniques in combination with the damage model, for instance using eigenvalue
analysis in FETI-GenEO [19]. This is a challenging research topic because of the
asymmetric nature of the stiffness matrix in the GD model.

If we instead turn our attention to the parallel direct solvers for both the FNS
and full assembly of the FETI system, we see a favourable reduction of time and
used memory of the full assembly compared to the FNS for all solvers (Fig. 5). The
reduction is not very large, as was expected since the used model system shows an
extensive damage pattern affecting 75 % of the domains. We are confident that for
larger 3D model systems undergoing damage the amount of zoomed in domains will
be much smaller and therefore more economic in terms of computation time.
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Fig. 5 Comparison of parallel direct solvers. Solid symbols denote FNS, outlined symbols denote
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5 Conclusions

The multiscale framework proposed by Lloberas-Valls et al. [13] in combination
with a classic FETI approach is shown to provide a reduction of degrees of freedom
necessary to efficiently simulate damage evolution in multiscale models of concrete-
like materials. By using parallel direct solvers the calculation can be done in less
time and memory than the FNS.

In the iterative FETI approach, a high iteration count of the iterative solver
is caused by the large differences in material stiffness along domain interface
boundaries because of damage evolution. This poses a challenge for existing
preconditioners and scalings. We nevertheless expect the iterative FETI to become
the most efficient algorithm for very large problems once suitable preconditioners
have been identified.
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Schwarz Methods for the Time-Parallel Solution
of Parabolic Control Problems

Martin J. Gander and Felix Kwok

1 Introduction

Suppose we are interested in the following distributed control problem: given a
system governed by the parabolic PDE PyCL y D u on the time interval Œ0;T� (where
Py denotes the time derivative of y), we wish to choose the forcing term u D u.t/ to
minimize the discrepancy between the trajectory and the desired state Oy D Oy.t/.
After semi-discretization in space, we obtain for a given choice of parameters
�; � > 0 the following minimization problem:

min
y;u

1

2

Z T

0

ky � Oyk2 dtC �

2
ky.T/ � Oy.T/k2 C �

2

Z T

0

kuk2 dt

subject to PyC Ay D u; y.0/ D y0;

(1)

where A is the matrix obtained by semi-discretization of the operator L . While the
PDE in (1) may resemble an initial-value problem, the minimization problem is in
fact a two-point boundary value problem in time, since the first-order optimality
conditions couple the PDE to an adjoint equation that is backwards in time and
contains a final condition, see Sect. 2. To solve such systems in parallel, one can
use multiple shooting methods, see [8] and references therein, or parareal-type
algorithms in a reduced Hessian formulation, see [4, 7]. A Schwarz preconditioner
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in time for such systems was presented in [1], where on each subinterval Ij D
ŒTj;TjC1�, one uses an initial condition for y from Ij�1 and a final condition for
the adjoint state � from IjC1. To the authors’ knowledge, no convergence analysis is
available for this method.

We study in this paper Schwarz methods for the time-parallel solution of (1).
We present a rigorous convergence analysis for the case of two subdomains,
which shows that the classical Schwarz method converges, even without overlap!
Reformulating the algorithm reveals that this is because imposing initial conditions
for y and final conditions on � is equivalent to using Robin transmission conditions
between time subdomains for y. Using well chosen linear combinations of y and � as
transmission conditions allows us to optimize the Robin conditions for performance,
and leads to much faster Schwarz methods, especially when the spatial operator has
eigenvalues close to zero. We illustrate our results with numerical experiments.

2 Schwarz Methods in Time

Using the Lagrange multiplier approach (see e.g. the historical review [6]), one can
derive the forward and adjoint problems to be

( PyC Ay D u on .0;T/,

y.0/ D y0;

( P� � AT� D y � Oy on .0;T/,

�.T/ D ��.y.T/� Oy.T//;

where the control u and adjoint state � are related by the algebraic equation �.t/ D
�u.t/ for all t 2 .0;T/. Eliminating u, the above system can thus also be written as

� Py
P�
	
C
�

A ���1I
�I �AT

	 �
y
�

	
D
�
0

�Oy
	
: (2)

Suppose we wish to divide the time interval .0;T/ into two subintervals I1 D .0; ˇ/
and I2 D .˛;T/ with ˛ � ˇ in order to solve the two subdomain problems in
parallel. Then for any choice of parameters p; q � 0, we propose the following
parallel Schwarz algorithm: for k D 1; 2; : : :, solve

8
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ˆ̂̂
ˆ̂:

� Pyk
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1
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�
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�Oy
	

on I1 D .0; ˇ/,

yk
1.0/ D y0;

�k
1.ˇ/C pyk

1.ˇ/ D �k�1
2 .ˇ/C pyk�1

2 .ˇ/;

(3a)
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�I �AT
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�k
2

	
D
�
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�Oy
	

on I2 D .˛;T/,

yk
2.˛/ � q�k

2.˛/ D yk�1
1 .˛/ � q�k�1

1 .˛/;

�k
2.T/ D ��.yk

2.T/ � Oy.T//:

(3b)

For p D q D 0, the transmission conditions reduce to the classical conditions from
[1]. To understand why we consider transmission conditions of this form, suppose
that A D AT 2 R

m�m, so that A can be diagonalized as A D QDQT , with QTQ D I
and D D diag.d1; : : : ; dm/. Then the ODE system in (3a) can be written as
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�
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�I �D
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1

�k
1

	
D
�
0

�Oz
	

on I1 D .0; ˇ/,

zk
1.0/ D z0;

�k
1.ˇ/C pzk

1.ˇ/ D �k�1
2 .ˇ/C pzk�1

2 .ˇ/;

(4)

where zk
j D QTyk

j , �k
j D QT�k

j for j D 1; 2 and Oz D QT Oy, z0 D QTy0. Thus, we
obtain m independent 2 � 2 systems of the form

Pz.i/;k1 C diz
.i/;k
1 � ��1�.i/;k1 D 0; P�.i/;k1 � di�

.i/;k � z.i/;k1 D Oz.i/; (5)

where z.i/;k1 and �.i/;k1 are the ith components of zk
1 and �k

1 respectively, and di is the
ith eigenvalue of A. By isolating � from the first equation in (5) and substituting
into the second, we obtain the second-order ODE

Rz.i/;k1 � .d2i C ��1/z.i/;k1 D ���1Oz.i/; (6)

whereas the boundary conditions become

z.i/;k1 .0/ D z.i/0 .0/; Pz.i/;k1 C .di C p��1/z.i/;k1

ˇ̌
ˇ
tDˇ D Pz

.i/;k�1
2 C .di C p��1/z.i/;k�12

ˇ̌
ˇ
tDˇ :

Hence, once we eliminate the adjoint state, it becomes apparent that we are in fact
imposing a Robin transmission condition on the elliptic boundary value problem (6),
even with the classical Schwarz method p D q D 0 from [1]. With the additional
parameter p and q, one can now optimize the convergence, as in optimized Schwarz
methods [5]. Boundary conditions of the form y � q� in (3b) can be explained
similarly; here, the minus sign is chosen so that the subdomain problem is well-
posed for q � 0 whenever A is symmetric semi-positive definite.
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Remark on Implementation Since we are primarily interested in the behavior of
the Schwarz method, we will regard solvers for the subdomain problems (3a) and
(3b) as black boxes. We emphasize however that final conditions of the form �C py
already appear when the objective function contains the target term �

2
jy.T/� Oy.T/j2,

see (3b). Thus, existing solvers can be used as is or easily modified to handle the
optimized conditions, see [2] or [3].

3 Convergence Analysis

In this section, we assume A to be symmetric and semi-positive definite, so that (3a)–
(3b) can be diagonalized as in Sect. 2 with di � 0. Moreover, since the problem is
linear, we can analyze the error equation, which means setting y0 and Oy to zero and
studying how yk

j and �k
j converge to zero as k !1. After diagonalization, the first

subdomain solution satisfies (6) with homogeneous initial condition:

Rz.i/;k1 � .d2i C��1/z.i/;k1 D 0; z.i/;k1 .0/ D 0 H) z.i/;k1 .t/ D Ak
i sinh.�it/; (7)

where �i D
q

d2i C ��1 > 0, and Ak
i is a constant determined by the boundary

condition �Pz.i/;k1 C . p C �di/z
.i/;k
1 jtDˇ D g.i/;k. Substituting the solution from (7)

and isolating Ak
i yields Ak

i D g
.i/;k
1

�Œ�i cosh.�iˇ/C.diCp��1/ sinh.�iˇ/�
: Next, we consider the

subdomain I2 D .˛;T/ at iteration k C 1. The boundary data at t D ˛ can be
written as

h.i/;kC1 WD z.i/;k1 � q�.i/;k1

ˇ̌
ˇ
tD˛ D ��qPz.i/;k1 C .1 � �qdi/z

.i/;k
1

ˇ̌
ˇ
tD˛

D �g.i/;k
�iq cosh.�i˛/C .qdi � ��1/ sinh.�i˛/

�i cosh.�iˇ/C .di C p��1/ sinh.�iˇ/
:

(8)

On the other hand, the ODE can be written as

R�.i/;kC12 � .d2i C ��1/�.i/;kC12 D 0 on I2 D .˛;T/;
�
.i/;kC1
2 .T/C �z.i/;kC12 .T/ D 0; z.i/;kC12 .˛/ � q�.i/;kC12 .˛/ D h.i/;kC1:

Since z.i/;kC12 D P�.i/;kC12 � di�
.i/;kC1
2 , the boundary conditions can be written as

� P�.i/;kC12 .T/C.1�di�/�
.i/;kC1
2 .T/ D 0; P�.i/;kC12 .˛/�.diCq/�.i/;kC12 .˛/ D h.i/;kC1:
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The boundary condition at t D T gives

�
.i/;kC1
2 D BkC1

i Œ�i� cosh.�i.T � t//C .1 � di�/ sinh.�i.T � t//� ;

where BkC1
i is a constant. The boundary condition at t D ˛ allows us to determine

this constant (after some algebra) to be

BkC1
i D �h.i/;kC1

.�i.1C q�// cosh.�i.T � ˛//C .di.1 � q�/C qC ��1�/ sinh.�i.T � ˛// :

Note that the denominator does not vanish for any choice of q; � � 0: if we define
�i D tanh�1.di=�i/, which is possible because 0 � di < �i, then we can write the
denominator as

�i cosh.�/C di sinh.�/C q�.�i cosh.�/� di sinh.�//C .qC ��1�/ sinh.�/
D ��1=2 Œcosh.� C �i/C q� cosh.� � �i/�C .qC ��1�/ sinh.�/ > 0:

If we now let g.i/;kC2 D �.i/;kC12 .ˇ/C pz.i/;kC12 .ˇ/, we get

g.i/;kC2

D h.i/;kC1 �
�1=2 Œp cosh.�i.T�ˇ/C�i/�� cosh.�i.T�ˇ/��i/��.1���1p�/ sinh.�i.T�ˇ//
��1=2 Œcosh.�i.T�˛/C�i/C q� cosh.�i.T�˛/��i/�C.qC ��1�/ sinh.�i.T�˛// :

Substituting (8) into the above equations and taking absolute values, we obtain

Theorem 1 The parallel Schwarz method (3a)–(3b) converges whenever � < 1,
where

� D max
di2�.A/

ˇ̌
ˇ̌�iq cosh.�i˛/C .qdi � ��1/ sinh.�i˛/

�i cosh.�iˇ/C .di C p��1/ sinh.�iˇ/

� �
�1=2 Œp cosh.�i.T � ˇ/C �i/� � cosh.�i.T � ˇ/� �i/�� .1� ��1p�/ sinh.�i.T � ˇ//
��1=2 Œcosh.�i.T � ˛/C �i/C q� cosh.�i.T � ˛/� �i/�C .qC ��1�/ sinh.�i.T � ˛//

ˇ̌
ˇ̌
1=2

;

where the maximum is taken over all the set of eigenvalues of A.

To gain a better understanding of the convergence, let us assume that A D AT is
positive semi-definite (so that di � 0) and consider a few special cases.

Classical Transmission Conditions (p D q D 0) Here the expression simplifies to

�2 D max
i

�
sinh.�i˛/

cosh.�iˇ C �i/
� �

1=2 sinh.�i.T � ˇ//C � cosh.�i.T � ˇ/ � �i/

� sinh.�i.T � ˛//C �1=2 cosh.�i.T � ˛/C �i/

�
:
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If � � p�, then � < 1 and the method converges; this is because

sinh.�i˛/ � cosh.�i˛/ � cosh.�iˇ C �i/

and, since sinh.�i.T � ˇ// � cosh.�i.T � ˇ/C �i/, we have

�1=2 sinh.�i.T � ˇ//C � cosh.�i.T � ˇ/ � �i/

� �1=2 sinh.�i.T � ˛//C � cosh.�i.T � ˛/C �i/

� � sinh.�i.T � ˛//C �1=2 cosh.�i.T � ˛/ � �i/:

However, it is possible for the method to diverge if � > �1=2, see Sect. 4. In the case
when � D 0, i.e., when the target state does not appear explicitly in the objective
function, it is possible to estimate the convergence factor directly. Here we have

�2 D max
i

sinh.�i˛/ sinh.�i.T � ˇ//
cosh.�iˇ C �i/ cosh.�i.T � ˛/C �i/

< 1;

since ˛ � ˇ. The term inside the maximum is a function of the eigenvalues di via

�i D
q

d2i C ��1 and �i D arctanh.di=�i/. It can be shown that this function is
decreasing with respect to di on Œ0;1/, see also Fig. 1; thus, if dmin � 0 is the
minimum eigenvalue of A and �min and �min are the corresponding values, then one
can estimate � by

� �
�

exp.�min.˛ C T � ˇ//
exp.�min.ˇ C T � ˛/C 2�min/

�1=2
D e��min.ˇ�˛/��min ;

10−2 10−1 100 101 102
0

0.5

1

1.5

2

2.5
Dirichlet
Optimized
Case A
Case B

Fig. 1 A comparison of contraction factors as a function of eigenvalues di for classical
(p D q D 0) and optimized transmission conditions (p and q obtained by equioscillation)
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where we used the bounds sinh.x/ � 1
2

exp.x/ and cosh.x/ � 1
2

exp.x/, valid for all
x � 0. Thus, when the subdomains overlap, i.e., when ˇ � ˛ > 0, the convergence
factor decreases exponentially with respect to the overlap size ˇ � ˛. When there
is no overlap, i.e., when ˛ D ˇ, it is still possible to bound � by estimating e��min

since tanh.�min/ D dmin=�min by definition, we get

e�min � e��min

e�min C e��min
D 1 � e�2�min

1C e�2�min
D dmin

�min
H) 1 � dmin

�min
D e�2�min

�
1C dmin

�min

�
:

This implies

e�2�min D �min � dmin

�min C dmin
D ��1
�q

d2j C ��1 C dj

�2 :

Taking square roots, we obtain the following estimate:

Theorem 2 Suppose A is symmetric positive definite and � D 0. Then the parallel
Schwarz method (3a)–(3b) with classical transmission conditions (p D q D 0)
converges for all initial guesses with the estimate

� � e�.ˇ�˛/
p

d2C��1

p
1C �d2 C �1=2d ;

where ˇ � ˛ � 0 is the overlap size and d � 0 is the smallest eigenvalue of A.

Note that if A arises from a spatial discretization of a differential operator, then
the smallest eigenvalue of A typically does not vary much as the spatial grid is
refined. Thus, the convergence of the method is independent of the mesh parameter
h. However, if A is singular (d D 0) and there is no overlap, then convergence can
be very slow, see the example in Sect. 4.

Optimized Transmission Conditions, No Target State (� D 0) To accelerate
the convergence of the method when A is singular, let us consider choosing the
parameters p and q to be equal but non-zero. Then the convergence factor becomes

�Dmax
di2�.A/

ˇ̌
ˇ̌�ip cosh.�i˛/C.pdi���1/ sinh.�i˛/

�i cosh.�iˇ/C.diCp��1/ sinh.�iˇ/
� p�i cosh.�i.T�ˇ//C.pdi�1/ sinh.�i.T�ˇ//
�i cosh.�i.T�˛//C. pC di/ sinh.�i.T�˛//

ˇ̌
ˇ̌
1=2

:

A plot of the right-hand side as a function of di for fixed p > 0 is shown in Fig. 1.
We see that as di !1, we have

� �! p � lim
di!1

�
cosh.�i˛ C �i/ cosh.�i.T � ˇ/C �i/

cosh.�iˇ C �i/ cosh.�i.T � ˛/C �i/

�1=2
:
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Thus, if no overlap is used, then the method converges only if 0 � p < 1. On the
other hand, for di D 0, we have

�.di D 0/ D
ˇ̌
ˇ̌p cosh.�i˛/� ��1=2 sinh.�i˛/

cosh.�iˇ/C p��1=2 sinh.�iˇ/
� �

�1=2p cosh.�i.T � ˇ//� sinh.�i.T � ˇ//
��1=2 cosh.�i.T � ˛//C p sinh.�i.T � ˛//

ˇ̌
ˇ̌
1=2

:

Thus, if we assume the eigenvalues of A can be anywhere in the interval Œ0;1/,
then the smallest convergence factor is obtained when j�.di D 0/j D j�.di !1/j,
i.e., by equioscillation.

4 Numerical Experiments

To understand how convergence depends on the different parameters, we consider
for each ODE two different test cases:

Case A: The time interval˝ D Œ0; 3� is subdivided into˝1 D .0; 1/,˝2 D .1; 3/
(no overlap), and the objective function has no explicit target term (� D 0). The
regularization parameter is � D 1.

Case B: The subdomains are ˝1 D .0; 2:9/ and ˝2 D .2:9; 3/, and the objective
function has a target term with � D 10. The regularization parameter is still
� D 1.

For each test case, we plot in Fig. 1 the convergence factor � as a function of the
frequency di, both for classical (p D q D 0) and optimized transmission conditions.
Based on the equioscillation criterion, we choose p D q D 0:37 for case A and
p D q D 0:55 for case B. We see that when classical conditions are used, the
method converges in case A for all frequencies, whereas in case B, the method only
converges when the lowest eigenvalue of the spatial operator is larger than about 2.
However, when optimized conditions are used, the parameters can be chosen so that
the method converges for all frequencies, and the spectral radius can be made much
smaller than in the classical case (0.37 versus about 0.9 for classical).

Next, we solve numerically the optimal control problem (1) with governing PDE
@tu D @xxu and regularization parameters � D 1, � D 0. The problem is discretized
using the second-order Crank–Nicolson method with spatial and temporal mesh size
h D 1=32 and 1=64. The problem is then solved in parallel using two time windows
˝1 D .0; 1/ and ˝2 D .1; 3/. Again we consider two cases: in the first case, we
use Dirichlet boundary conditions in space, which means the operator A in (1) has
lowest eigenvalue �2 	 9:87. From Fig. 2, we see that the method converges very
quickly with a rate that is indeed independent of h (see remark after Theorem 2).
The fast convergence can be explained by Fig. 1: the spectral radius curve beyond
the point di D 9:87 is very close to zero, so the convergence is very quick indeed.

In the second case, we consider the same PDE, but with Neumann boundary con-
ditions in space. In this case, zero is an eigenvalue of the spatial operator, meaning
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0 5 10 15 20
10−15

10−10

10−5

100

Dirichlet, h=1/32
Dirichlet, h=1/64
Neumann p=q=0, h=1/32
Neumann p=q=0, h=1/64
Neumann p=q=0.37, h=1/32
Neumann p=q=0.37, h=1/64

Fig. 2 Convergence of algorithm (3a)–(3b) for different parameters and boundary conditions

we have to minimize the convergence factor over the whole interval di 2 Œ0;1/.
Here, the method with classical transmission conditions (p D q D 0) converges very
slowly, whereas convergence is much faster with optimized transmission conditions.
Again the convergence is independent of the spatial mesh size, as expected.

5 Conclusions

We have presented a first analysis of Schwarz methods in time for parabolic
control problems. We have shown that classical Schwarz methods already use Robin
type transmission conditions, and introduced a parameter which can be chosen to
obtain substantially faster convergence, especially when the spatial operator has
eigenvalues close to zero. We are currently working on error estimates for the many-
subdomain case and on higher order transmission conditions.
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On the Relation Between Optimized Schwarz
Methods and Source Transfer

Zhiming Chen, Martin J. Gander, and Hui Zhang

1 Introduction

Optimized Schwarz methods (OS) use Robin or higher order transmission condi-
tions instead of the classical Dirichlet ones. An optimal Schwarz method for a
general second-order elliptic problem and a decomposition into strips was presented
in [13]. Here optimality means that the method converges in a finite number of
steps, and this was achieved by replacing in the transmission conditions the higher
order operator by the subdomain exterior Dirichlet-to-Neumann (DtN) maps. It is
even possible to design an optimal Schwarz method that converges in two steps for
an arbitrary decomposition and an arbitrary partial differential equation (PDE), see
[6], but such algorithms are not practical, because the operators involved are highly
non-local. Substantial research was therefore devoted to approximate these optimal
transmission conditions, see for example the early reference [11], or the overview
[5] which coined the term “optimized Schwarz method”, and references therein.

Z. Chen
LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,
Chinese Academy of Sciences, Beijing 100190, China
e-mail: zmchen@lsec.cc.ac.cn

M.J. Gander
Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, Case postale 64, 1211
Genève 4, Switzerland
e-mail: martin.gander@unige.ch

H. Zhang (�)
Department of Mathematics, Zhejiang Ocean University, Zhoushan, Zhejiang, China

Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, Case postale 64, 1211
Genève 4, Switzerland
e-mail: mike.hui.zhang@hotmail.com; hui.zhang@unige.ch

© Springer International Publishing Switzerland 2016
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXII, Lecture Notes in Computational Science
and Engineering 104, DOI 10.1007/978-3-319-18827-0_20

217

mailto:zmchen@lsec.cc.ac.cn
mailto:martin.gander@unige.ch
mailto:mike.hui.zhang@hotmail.com
mailto:hui.zhang@unige.ch


218 Z. Chen et al.

In particular for the Helmholtz equation, Gander et al. [9] presents optimized
second-order approximations of the DtN, Toselli [17] (improperly) and Schädle and
Zschiedrich [14] (properly) tried for the first time using perfectly matched layers
(PML, see [1]) to approximate the DtN in OS.

The DtN map arises also naturally in the analytic factorization of partial
differential operators. This has been identified by Gander and Nataf [7] with the
Schur complement occurring in the block LU factorization of block tridiagonal
matrices, which led to analytic incomplete LU (AILU) preconditioners. The AILU
preconditioners consist of one forward and one backward sweep corresponding to
block “L” and “U” solves. In particular, second-order differential approximations of
the DtN were studied by Gander and Nataf [8] for AILU for the Helmholtz equation.
The connection between the DtN and the block LU factorization was rediscovered
in [4], where a PML approximation of the DtN was used to improve the AILU
preconditioners, and this has quickly inspired more research: Stolk [16] showed
a “rapidly converging” domain decomposition method (DDM) based on sweeps,
Chen and Xiang [2, 3] presented and analyzed the source transfer DDM (STDDM),
and Geuzaine and Vion [10] proposed to use the sweeping process to accelerate
Jacobi-type optimized Schwarz methods. All these new algorithms use PML but
apparently in different formulations. In order to show their tight connection, we
present here the relation between STDDM and OS. Such close connections also
exist between OS and AILU, the sweeping preconditioner, and the method in [16],
but these results, as well as the corresponding discrete formulations will appear
elsewhere.

2 Algorithms and Equivalence

We consider a linear second order PDE of the form

Lu D f in ˝; Bu D g on @˝; (1)

where ˝ could either be R
d, or a truncated domain padded with PML, in which

case we consider the PML region as part of the domain. We decompose ˝ into
either overlapping or non-overlapping strips (or slices in higher dimensions) called
subdomains ˝j, j D 1; : : : ; J, which are in turn decomposed into boundary layers
(overlaps) that are shared with neighboring subdomains, and non-shared interior,
i.e. ˝j D 
j�1 [ Ij [ 
j, see Fig. 1 for examples.

We start by introducing the optimized Schwarz method of symmetric Gauss-
Seidel type (OS-SGS) for the strip decomposition we consider here, see also [12].
This method is based on subdomain solves that are performed first by sweeping
forward across the subdomains, and then backward, a technique often used in
the linear algebra community to render a Gauss-Seidel preconditioner symmetric.
We then rewrite the OS-SGS method in residual correction form, in order to show
how closely related it is to the STDDM from [2, 3]. All our formulations are at the
continuous level, but one can also develop the corresponding discrete variants.
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Fig. 1 Non-overlapping and overlapping domain decomposition into strips

In OS-SGS (see below), Sj, QSj and Tj, QTj, are tangential operators on the left
and right interfaces of ˝j which need to ensure well-posedness of the subdomain
problems. Note that on˝1 and˝J we did for simplicity not specify the modification
due to the physical boundary there. If T1 D QT1, then v.nC1/1 D u.n/1 , because the
subdomain problems solved coincide, and so we need only to solve one of them.
Even if T1 ¤ QT1, u.n/1 is not necessary for iteration .n C 1/, only to complete
iteration .n/.

OS-SGS (interface transmission form)

Forward sweep: given .u.n�1/j /JjD1 on
�
˝j
�J

jD1 at iteration step .n � 1/, solve
successively for j D 1; : : : ; J � 1 the subdomain problems

L v.n/j D f in ˝j;

B v.n/j D g on @˝ \ @˝j;

. @
@nj
C Sj/.v

.n/
j � v.n/j�1/ D 0 on @˝j \˝j�1;

. @
@nj
C Tj/.v

.n/
j � u.n�1/jC1 / D 0 on @˝j \˝jC1:

(2)

Backward sweep: solve successively for j D J; : : : ; 1 the subdomain problems

L u.n/j D f in ˝j;

B u.n/j D g on @˝ \ @˝j;

. @
@nj
C QSj/.u

.n/
j � v.n/j�1/ D 0 on @˝j \˝j�1;

. @
@nj
C QTj/.u

.n/
j � u.n/jC1/ D 0 on @˝j \˝jC1:

Definition 1 The Dirichlet to Neumann (DtN) map exterior to ˝j is

DtNc
j W gD ! gN D @nv; s.t. L v D 0; in ˝n˝j;

B v D 0; on @˝j \ @˝;
v D gD; on @˝jn@˝:

The optimal choice for the transmission conditions in the optimal Schwarz method
is to use the DtN, see [13]. We show here that it suffices to choose for the tangential
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operators Sj and QSj the DtN operators, independent of what one uses for Tj and QTj,
to get an optimal result:

Theorem 1 If Sj D QSj; j D 1; : : : ; J � 1 correspond to the DtN maps exterior
to ˝j restricted to @˝j \ ˝j�1, and all the subdomain problems have a unique
solution, then OS-SGS converges in one iteration for any initial guess. In particular,
convergence is independent of the number of subdomains.

This result can either be proved following the arguments in [13] using the error
equations, or by the approach in [6] at the discrete level or in [2] at the continuous
level to substitute exterior source terms with transmission data represented by
subdomain solutions. We omit the details here.

In optimized Schwarz methods, one replaces the DtN with an approximation, for
example an absorbing boundary condition, or a PML. For the latter, we define the
approximation DtNL

j by

DtNL
j W gD ! gN D @nv; s.t. QL v D 0; in ˝L

j ;

B v D 0; on @˝j \ @˝;
v D gD; on @˝jn@˝;

where ˝L
j is the PML region exterior to ˝j and QL is chosen such that DtNL

j closely

approximates DtNc
j from Definition 1. We notice that if Sj D DtNL

j , the subdomain
problem (2) is equivalent to solve one PDE in ˝j [ ˝L

j with the Dirichlet and

Neumann traces v.n/j � v.n/j�1 continuous across @˝L
j \ @˝j.

OS-SGS in the interface transmission form requires the evaluation of operators
on data, such as .@nj C Sj/v

.n/
j�1, which can be inconvenient, especially if Sj is

complicated. This can be avoided if we solve for the corrections. To this end, we
introduce in the forward sweep ıv.n/j WD v.n/j � Qv.n�1/j for some Qv.n�1/j which has the

same Dirichlet and Neumann traces as v.n/j�1 on @˝j\˝j�1 and u.n�1/jC1 on @˝j\˝jC1.
For example, following [2] (see also [15] at the discrete level), we introduce the
weighting functions ˛j and ˇj such that

@

@nj
˛j D 0; ˛j D 1 on @˝j \˝j�1;

@

@nj
ˇj D 0; ˇj D 1 on @˝j \˝jC1: (3)

Then, we can define the auxiliary function Qv.n�1/j as

Qv.n�1/j D

8
<̂

:̂

˛jv
.n/
j�1 C .1 � ˛j/w

.n�1/
j ; on 
j�1;

w.n�1/j ; in Ij;

ˇju
.n�1/
jC1 C .1 � ˇj/w

.n�1/
j ; on 
j;

(4)



Source Transfer and Optimized Schwarz Methods 221

where w.n�1/j is an arbitrary function. One can verify that

@
@nj
Qv.n�1/j D @

@nj
v
.n/
j�1; Qv.n�1/j D v.n/j�1 on @˝j \˝j�1;

@
@nj
Qv.n�1/j D @

@nj
u.n�1/jC1 ; Qv.n�1/j D u.n�1/jC1 on @˝j \˝jC1;

which together with (2) imply

. @
@nj
C Sj/.v

.n/
j � Qv.n�1/j / D 0 on @˝j \˝j�1;

. @
@nj
C Tj/.v

.n/
j � Qv.n�1/j / D 0 on @˝j \˝jC1:

Similar identities also hold for the backward sweep. Therefore, the OS-SGS
algorithm in interface transmission form can equivalently be written in the residual-
correction form (see below).

Remark 1 Usually one uses the subdomain iterates for defining Qv.n�1/j and Qu.n�1/j ,

e.g. w.n�1/j WD u.n�1/j in (4), thus gluing the subdomain solutions together to obtain a
global approximation. If the weighting functions fˇjg for the gluing are the indicator
functions of the corresponding non-overlapping partition, we obtain the so called
restricted Schwarz methods; other choices give the same subdomain iterates but
only different global iterates.

OS-SGS (residual-correction form)

Forward sweep: given .u.n�1/j /JjD1 on
�
˝j
�J

jD1 at iteration .n � 1/, solve succes-
sively for j D 1; : : : ; J � 1 the subdomain problems

L ıv.n/j D f � L Qv.n�1/j in ˝j;

B ıv.n/j D g � B Qv.n�1/j on @˝ \ @˝j;

. @
@nj
C Sj/ıv

.n/
j D 0 on @˝j \˝j�1;

. @
@nj
C Tj/ıv

.n/
j D 0 on @˝j \˝jC1;

each followed by letting v.n/j  Qv.n�1/j C ıv.n/j and setting Qv.n�1/jC1 as in (4).
Backward sweep: solve successively for j D J; : : : ; 1 the subdomain problems

L ıu.n/j D f � LQu.n/j in ˝j;

B ıu.n/j D g � B Qu.n/j on @˝ \ @˝j;

. @
@nj
C QSj/ıu

.n/
j D 0 on @˝j \˝j�1;

. @
@nj
C QTj/ıu

.n/
j D 0 on @˝j \˝jC1;

each followed by setting u.n/j  Qu.n/j C ıu.n/j and setting Qu.n�1/j�1 as in (4).



222 Z. Chen et al.

Theorem 2 The source transfer domain decomposition method defined in [2] is an
overlapping optimized Schwarz method of symmetric Gauss-Seidel type, with the
overlap covering half the subdomains, and using PML transmission conditions on
the left and right interfaces in the forward sweep and Dirichlet instead of PML
on the right interfaces in the backward sweep. In addition, the source terms are
consistently modified in the forward sweep.

Proof As we have seen for OS-SGS, the residual-correction form is equivalent to
the interface transmission form. The only difference of STDDM from the residual-
correction form of OS-SGS is that in the forward sweep the residual for 1 � j �
J � 1 in the overlap with the right neighbor is set to zero, see ALGORITHM 3.1
in [2]. This modification can also be interpreted as taking the boundary layer 
j as
part of the PML on the right of the subdomain so the physical subdomains become
effectively non-overlapping.

To see the consistency of STDDM, we assume u.n�1/j is equal to the exact solution

of the original problem in ˝j for 1 � j � J and check whether u.n/j D u.n�1/j holds,
i.e. the exact solution is a fixed point of the iteration. We note that STDDM uses
w.n�1/j D u.n�1/j in (4). In this case, by the assumption on u.n�1/1 and u.n�1/2 , we

can show Qv.n�1/1 D u.n�1/1 and so the residual vanishes in ˝1 both for OS-SGS

and STDDM. Therefore, the correction ıv.n/1 D v
.n/
1 � Qv.n�1/1 must be zero because

the sub-problem has a unique solution, which gives v.n/1 D Qv.n�1/1 D u.n�1/1 : By

induction, we then show that u.n/j D u.n�1/j for 1 � j � J. ut

3 Numerical Experiments

We solve the Helmholtz equation in rectangles discretized by Q1 finite elements.
For the free space and open cavity problems, the wave speed is constant, c D 1;

and the point source is at (0.5177, 0.6177) while the Marmousi model problem has
a variable wave speed and the point source at (6100, 2200). PML are padded around
all the domains except for the open cavity problem, where homogeneous Neumann
conditions are imposed at the top and bottom. We use the same depth (counted
with mesh elements) of PML for the original domain and the subdomains since
already for a PML with two layers the dominating error is around the point source.
The PML complex stretching function we use is given by s.d/ D 1

1�i4�d2=.L3k/

where k D !=c is the wavenumber, d is the distance to the physical boundary
and L is the geometric depth of the PML. We use the same mesh size and element-
wise constant material coefficients in the physical and PML regions. We use a zero
initial guess for GMRES with relative residual (preconditioned) tolerance 10�6. The
results are shown in Table 1 where “STDDM2” is the STDDM without changing
transmission from PML to Dirichlet in the backward sweep, “PMLh” represents OS-
SGS with two elements overlap and PML on all boundaries, “TO2h” (“TO0h”) is
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the OS-SGS with the Taylor second- (zero-) order transmission conditions and two
elements overlap. The optimized transmission conditions from [9] are also tested
with overlap and the results for the optimized condition of second-order are listed
(the original boundaries still use Taylor second-order conditions) under the name
“O2h”. The optimized condition of zero-order suffers from too many subdomains
and can not converge to the correct solution in all cases. We implemented all the
algorithms in the residual-correction form. We also tested the classical Schwarz
method of symmetric Gauss-Seidel type with Dirichlet transmission conditions
but the preconditioned system is very ill-conditioned so that the obtained solution
comprises a significant error even if the preconditioned residual is reduced by the
tolerance factor. The same failure happens in Table 1 indicated by middle bars. From
the table, we find that, for our particular test problems with open boundaries on both
left and right sides, STDDM2 which uses always PML on both sides works better
than STDDM which changes to Dirichlet on the right side in the backward sweep.

Acknowledgements This work was supported by the Université de Genève. HZ thanks the
International Science and Technology Cooperation Program of China (2010DFA14700).
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Domain Decomposition in Shallow Lake
Modelling for Operational Forecasting
of Flooding

Menno Genseberger, Edwin Spee, and Lykle Voort

1 Introduction

The Netherlands is a highly urbanized area. In addition to flooding from the sea due
to storm surges and high water discharges from rivers, flooding from major lakes is
also a threat. Since 2011 there is a new system in operational use (24 h per day, 7
days per week), for the prediction of flooding at Lake IJssel, Lake Marken, and the
lakes bordering them. This system, RWsOS Meren [5] enables a real-time dynamic
forecasting of wind driven waves, water flow, wave runup, and overtopping at dikes.

At the moment the time horizon of forecasts with RWsOS Meren is 2 days ahead.
To enlarge this time horizon, medium-range global weather forecasts from ECMWF
[4] up to 15 days (two forecasts per day) and short-to-medium range forecasts of
extreme and localised weather events from COSMO-LEPS (limited area ensemble
prediction system) [3] up to 5.5 days (one forecast per day) will be used as input
for RWsOS Meren. In RWsOS Meren, only the two shallow-water models of the
lakes will be run with this input (and not the models for waves, wave runup, and
overtopping). ECMWF and COSMO-LEPS use ensembles (51 and 16 ensemble
members, respectively). Therefore, also the two shallow-water models will be run
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in ensemble mode. As a consequence, for these models 204 runs with a simulation
period of 15 days and 32 runs with a simulation period of 5:5 days have to finish
within a reasonable time on a daily basis. This asks for a balance between low
computational times per ensemble member and the efficient use of the available
hardware (and energy) resources. In this paper we investigate how to manage this
on current hardware.

Here, the essential ingredient is the domain decomposition technique in the
shallow-water solver Simona [6, 10, 2] that we apply. The implementation of this
domain decomposition technique in Simona has the nice property that it enables
(sub)structuring, distribution, and minimizing the exchange of data in a practical and
efficient way. This is both on the high—modelling level (decomposition in physical
subdomains with absorbing boundary conditions), intermediate—numerical level
(parallel solver with minimized iteration count) and low—implementation level
(data distribution with minimized data exchange between different memory blocks).
A lower level inherits the gain in efficiency from a higher level. Therefore, most gain
is on the high level and on the lower levels some fine-tuning remains. However, gain
in efficiency on the high level will not always automatically be there and some effort
is needed. This will be illustrated here for the practical example of the shallow lake
models in RWsOS Meren.

The paper is organized as follows. First, the physical characteristics and the
shallow-water models of the lakes are described in Sect. 2. Then, in Sect. 3 we
apply domain decomposition in Simona for these models in two stages (automatic
partitioning in Sect. 3.1 and fine-tuning in Sect. 3.2). For this purpose, we investigate
the consequences for computational times and (parallel) efficiency by numerical
experiments.

2 Shallow Lake Modelling

The operational system RWsOS Meren [5] covers eight major lakes of the Nether-
lands: Lake IJssel (IJsselmeer in Dutch), Lake Marken (Markermeer), and six
smaller lakes at the borders (with Dutch names Ketelmeer, Vossemeer, Zwarte Meer,
IJmeer, Gooimeer, and Eemmeer), see Fig. 1. All lakes are quite shallow: depths are
in the order of several meters whereas horizontal dimensions are in the order of
kilometers. Ketelmeer, Vossemeer, and Zwarte Meer are in open connection with
Lake IJssel. IJmeer, Gooimeer, and Eemmeer are in open connection with Lake
Marken. Lake Marken is separated from Lake IJssel by a dike (“Houtribdijk”)
with two sluices. On the north, Lake IJssel is separated from the Wadden Sea by
a dike (“Afsluitdijk”) with two sluices. Most important driving force of the water
system is wind. However in specific situations, for instance after heavy rainfall,
river discharges are also important. Here, the largest contribution is from the river
IJssel that enters Ketelmeer. Furthermore, river Overijsselse Vecht enters Zwarte
Meer (via river Zwarte Water) and river Eem enters Eemmeer. The water level of
Lake IJssel is kept to a fixed level by draining off superfluous water via the two
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Fig. 1 Geographical domain with eight major lakes of the Netherlands. (Color figure online.)

sluices to the Wadden Sea. Lake Marken is also kept to a fixed water level, however
discharges through the sluices are much smaller.

For computing flow of water based on medium-range global and short-to-
medium range weather forecasts, the same two models will be used as in the current
operational system of RWsOS Meren. One is the shallow-water model for Lake
IJssel including the smaller lakes Ketelmeer, Vossemeer, and Zwarte Meer and parts
of the rivers IJssel, Zwarte Water, and Overijsselse Vecht. The other is the shallow-
water model for Lake Marken including the smaller lakes IJmeer, Gooimeer, and
Eemmeer and the river Eem with its floodplain. For rivers IJssel and Overijsselse
Vecht boundary conditions are imposed through discharges. Close to the sluices on
the side of the Wadden Sea boundary conditions are imposed through water levels.
Here, both discharges and water levels are a combination of observed values and
predicted values (from neighbouring operational systems). Wind predictions (as
computed externally) are downscaled to the required sizes for the models of the
lakes.
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For the numerical solution of the shallow-water models Simona [6, 10, 2] is
being used. Simona applies a so-called alternating direction implicit (ADI) method
to integrate the shallow-water equations numerically in time, using an orthogonal
staggered grid with horizontal curvilinear coordinates. For this application, the
shallow-water models are depth averaged. The sizes of the horizontal computational
grids are 486�1983 and 430�614 for the shallow-water models of Lake IJssel and
Lake Marken, respectively. See Figs. 2 and 4 for the corresponding geographical
lay-out. The grids are relatively fine in (the floodplain areas of) the rivers and coarse
in the larger lakes. For the shallow-water model of Lake IJssel this can be observed
by comparing the geographical lay-out with the memory lay-out in Fig. 2.

ORB

strip

Fig. 2 Geographical and memory lay-out of computational grid of shallow-water model for Lake
IJssel with automatic partitioning by domain decomposition. Middle bottom: geographical lay-
out of domain decomposed in 6 subdomains (in different colours and numbered from 1 to 6)
with stripwise partitioning, left: corresponding memory lay-out. Middle top: geographical lay-
out of domain decomposed in 6 subdomains (in different colours and numbered from 1 to 6)
with partitioning via orthogonal recursive bisection (ORB), right: corresponding memory lay-out.
(Color figure online.)
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Calibration and validation of the models was carried out for periods with
historical storms (including typical wind behavior, some also with high river
discharges). For this, measured values of discharges, waterlevels, rainfall, and
evaporation were used with some small corrections due to missing terms in the
water balance for the physical system.

Here we take a simulation period of 32 hours for both shallow-water models.
Note that computational times of Simona are almost not influenced by the physical
conditions in a given simulation period (storm or mild wind conditions and/or
high or low river discharges). To get the computational times for an ECMWF
(COSMO-LEPS) ensemble member with a simulation period of 15 (5:5) days the
computational time has to be multiplied with a factor 11:25 (4:125).

Domain decomposition will be used to have a good balance between com-
putational times and (parallel) efficiency for running ensembles with the two
shallow-water models.

3 Domain Decomposition

The domain decomposition technique in the current versions of Simona is based
on a nonoverlapping Schwarz method with optimized coupling at the subdomain
interfaces [2]. This approach has shown to yield excellent parallel performance for
practical flow problems from civil engineering. However, the two shallow-water
models have a complicated geometry and a relatively small number of computa-
tional grid points. Because of this, obtaining a good balance is not straightforward:
increasing the number of subdomains can lower computational times more but may
result in less efficient use of the available hardware (and energy) resources.

As we can not investigate all possibilities, we proceed with a pragmatic approach.
First, we analyse the parallel performance for two automatic partitioning methods
as a function of the number of computational cores in Sect. 3.1. Then, for a nearly
optimal number of subdomains from Sect. 3.1, we try to get efficient ensemble runs
with the models on current hardware by fine-tuning in Sect. 3.2.

3.1 Automatic Partitioning

Here we analyse the parallel performance of both shallow-water models by a
numerical experiment. For this we varied the number of subdomains from 1 to
16 for two automatic partitioning methods. Here, one subdomain is assigned to
one computational core. Both methods are based on domain decomposition of the
active computational grid points. One method makes a stripwise partitioning in
one direction of the domain. The other method decomposes the domain based on
orthogonal recursive bisection (ORB) [1].
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The numerical experiment was performed on the H4+ linux-cluster at Deltares
(nodes interconnected with Gigabit Ethernet, each node contains 1 Intel quad-
core i7-2600 processor “Sandy Bridge” ([7, Sect. 2.8.5.3]; [8, Sect. 2.8.4.1]),
3.4 GHz/core, hyperthreading off) with the 2011 version of Simona (compiled
with Intel Fortran 11 compiler and OpenMPI for Linux 64 bits platform). For
the distribution of the memory blocks (each block contains the unknowns in one
subdomain) over the nodes two options were considered: round-robin (memory
blocks are distributed alternated over the nodes) and compact (option tries to
position each memory block close to blocks of neighbouring subdomains).

Figure 2 (Fig. 4) shows the corresponding geographical lay-out of the computa-
tional grid of the shallow-water model for Lake IJssel (Lake Marken) in case of 6
subdomains. The wall-clock time as a function of the number of computational cores
for this model is shown on the left (right) in Fig. 3. Reported wall-clock times are
averages of three measurements. For all cases the corresponding standard deviation
is less than 3 % of the average.

The speed up is not as ideal as linear (for that case lines will have a downward
slope of 45ı in the double logarithmic figures: doubling the number of computa-
tional cores will half the wall-clock time). But, in general, from Fig. 3 it can be
observed that for both models the wall-clock time can be reduced substantially for
decompositions in up to 6 subdomains. Based on this observation, we choose 6 as
the nearly optimal number of subdomains for both models.

Furthermore, one of the automatic partitioning methods does not clearly seem to
be more beneficial than the other (Fig. 3). This indicates the possibility to further
optimize the decomposition by inspecting the configurations in 6 subdomains of
both methods. That will be subject in Sect. 3.2. Overall, the memory option compact
improves the results of round-robin for more than four computational cores (i.e.
the cases that more nodes are used). This is as expected: for option compact more
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Fig. 3 Wall-clock time (in hours) for shallow-water model of Lake IJssel (left) and Lake Marken
(right) as a function of the number of computational cores. Shown are results for two automatic
partitioning methods: stripwise and ORB (orthogonal recursive bisection) and two options for
memory distribution: round-robin and compact. (Color figure online.)
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neighbouring subdomains are positioned inside the same node, therefore there is
less communication between nodes resulting in lower computational times.

3.2 Fine-Tuning

For the nearly optimal number of 6 subdomains for both models from Sect. 3.1,
we try to get efficient ensemble runs with the models on current hardware by fine-
tuning.

We considered the following hardware at SURFsara:

• 2 socket L5640 node (2 Intel six-core Xeon L5640 processors “Westmere-EP”
[7, Sect. 2.8.5.2], 2.26 GHz/core) (Lisa),

• 2 socket 2650L node (2 Intel eight-core Xeon E5-2650L processors “Sandy
Bridge” ([7, Sect. 2.8.5.3]; [8, Sect 2.8.4.1]), 1.8 GHz/core) (Lisa),

• 2 socket 2695 v2 node (2 Intel twelve-core Xeon E5-2695 v2 processors “Ivy
Bridge” [9, Sect. 2.8.4], 2.4 GHz/core) (Cartesius).

Note that, with 6 subdomains, multiple runs (2 runs for a 2 socket L5640 or 2650L
node, 4 runs for a 2 socket 2695 v2 node) of the models fit in a single node. Instead
of using more than one node for a single run to lower computational times more
(like the numerical experiment in Sect. 3.1), for efficiency we will consider here the
use of a single node for multiple runs simultaneously. A 2013 version of Simona
compiled with Intel Fortran 13 and OpenMPI for Linux 64 bits platform was used.

First, we try to further optimize the decomposition in 6 subdomains by inspecting
the configurations of the two automatic partitioning methods from Sect. 3.1. For that
purpose we used the Visipart package of Simona. By comparing the geographical
lay-out of subdomains for the shallow-water model of Lake Marken for the two
automatic partitioning methods (left and middle picture) in Fig. 4 one can see
that for the stripwise decomposition (left picture) there is a very long subdomain
interface and a part of a subdomain is quite thin. This has a negative effect on
the computational times. Relatively long subdomain interfaces require more data
communication. Very thin subdomains with widths of less than a dozen grid cells
affect the validity of the applied local optimized coupling in Simona. Therefore,
we used the results of the other automatic partitioning method, by ORB (middle
picture) as a basis for further optimization. The right picture of Fig. 4 illustrates the
resulting geographical lay-out of subdomains for the shallow-water model of Lake
Marken. In a similar way, the decomposition in 6 subdomains for the shallow-water
model of Lake IJssel has been optimized. This strategy for further optimization
is confirmed by the wall-clock times as shown in columns 2 (automatic stripwise
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Fig. 4 Geographical lay-out of computational grid of shallow water-model for Lake Marken with
partitioning by domain decomposition in 6 subdomains (in different colours and numbered from
1 to 6). Left: geographical lay-out of subdomains with automatic stripwise partitioning. Middle:
geographical lay-out of subdomains with automatic partitioning via orthogonal recursive bisection
(ORB). Right: geographical lay-out of subdomains with manual fine-tuning of the partitioning.
(Color figure online.)

partitioning), 3 (automatic partitioning with ORB), and 4 (fine-tuning of one of
the automatic partitionings) of Table 1 (Lake IJssel) and Table 2 (Lake Marken).
Here, the reported wall-clock times are averages of three measurements and the
corresponding standard deviation is given after the˙ symbol.

Then, with the further optimized decomposition we ran two models simultane-
ously on one single 2 socket L5640 and 2650L node. Corresponding wall-clock
times are shown in column 5 of Table 1 (Lake IJssel) and Table 2 (Lake Marken).
By comparing these times with column 4 (same decomposition but only one model
run on the node) one can see there is some price to pay. We can relieve a part of this
pain by binding one of the runs to 6 successive cores of socket 1 and the other run
to 6 successive cores of socket 2 as shown in column 6 of both tables. Here data of
each model stays inside one socket and no communication is needed between the
sockets (this is somehow similar to the situation—with nodes instead of sockets—
for memory option compact from Sect. 3.1). On one single 2 socket 2695 v2 node
we were not able to run multiple models without binding. For this type of node we
observe from columns 4, 6, and 7 in the tables that they can be used efficiently for
running 4 models simultaneously.
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4 Conclusions

We studied how to run efficiently shallow-water models of an operational system for
prediction of flooding at the borders of the major Dutch lakes. Aim is to combine
the shallow-water models with short-to-medium weather ensemble forecasts to
enlarge the time horizon. This asks for a balance between low computational times
per ensemble member and the efficient use of the available resources on current
hardware. Here, the essential ingredient is the domain decomposition technique in
the applied shallow-water solver.

First, the parallel performance for two automatic partitioning methods of the
shallow-water models was analyzed. Although the models have a complicated
geometry and a relatively small number of computational grid points, the wall-clock
time can be reduced substantially for decompositions in up to 6 subdomains. Then,
for a nearly optimal partitioning, we tried to get efficient ensemble runs on current
hardware by fine-tuning. The resulting optimized decompositions show relatively
short internal interfaces between the subdomains (less communication needed) and
subdomains that are not too thin (very thin ones affect the validity of the locally
optimized domain decomposition coupling). Finally, multiple models can be run
simultaneously in an efficient way on one 2 socket node of current hardware by
binding the subdomains of each model to successive cores of one socket.
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Parallel Double Sweep Preconditioner for the
Optimized Schwarz Algorithm Applied to High
Frequency Helmholtz and Maxwell Equations

A. Vion and C. Geuzaine

1 Non-overlapping Optimized Schwarz Algorithm

We consider the optimized Schwarz algorithm for the Helmholtz and Maxwell
equations. The algorithm makes use of impedance boundary conditions on the
artificial interfaces; although overlapping variants of it exist, we focus on the
non-overlapping version, with a partition of the domain into Nd subdomains
˝1	i	Nd , such that [ N̋ i D N̋ and with ˙ij D N̋ i \ N̋ j the common
boundary between two adjacent domains. An iteration of the algorithm for
Helmholtz (see e.g. [5] for the Maxwell formulation) is the solution of the
subproblems:

�.C k2/u.kC1/i D 0 in ˝i;

.@n C S/u.kC1/i D g.k/ij on ˙ij;
(1)

with boundary conditions on the external boundaries inherited from the original
problem. The iteration completes with the update relations:

g.kC1/ij D �@nu.kC1/j C Su.kC1/j on ˙ij;

D �g.k/ji C 2Su.kC1/j :
(2)

The algorithm can classically be accelerated by rewriting it in a compact form as a
fixed point iteration involving an iteration operator A:

g.kC1/ D Ag.k/ C b: (3)
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Fig. 1 Two topologies of a decomposed domain into non-overlapping subdomains, without
crosspoint: (a) “layered” decomposition; (b) “cyclic” decomposition around an object

Its solution g satisfies the linear system Fg D b, with F D I � A and b the
right-hand side containing the contribution of the physical sources. Operator F
involves the solution of subproblems and the update of the interface quantities gij;
as we will see in Sect. 2, it is non-symmetric, hence amenable to a GMRes iterative
solver. The optimal choice for the operator S used in the transmission conditions
is the Dirichlet-to-Neumann (DtN) map, as shown in [4]. It is a non-local operator,
hence difficult to manipulate in local discretization methods like the Finite Element
Method. The literature proposes different local approximations of it, among which
we choose a truncated rational approximation of order .2; 2/ (see [1, 2]).

In order to circumvent the difficulties associated with the so-called crosspoints
(points that are at the intersection of more than two subdomains), we will consider
two kinds of decompositions that naturally avoid them: layered or 1d-like decompo-
sitions, and cyclic decompositions around an object. Figure 1 shows basic examples
of such decompositions.

2 Study of the Iteration Operator

Because the unknown g of the system can be regarded as a composite vector of
unknown functions gij, the iteration operator F can be written as a matrix F,
whose coefficients are operators acting on the interface functions. They take as
input a function defined on one side of a domain and transfer the information
over the domain, to the opposite interface, where a homogeneous transmission
condition is imposed. We will refer to them as transport operators. There are
two transport operators defined on the ith subdomain, that we denote by Bf

i and
Bb

i , where the f and b indices refer to the forward or backward direction of
the transfer. This distinction is important for what follows, as we will see in
Sect. 3 that the convergence of the algorithm can be accelerated by propagating
information over longer distances, simultaneously in the forward and backward
directions.
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We will first consider the case where the “true” DtN map D is used as
transmission operator, leading to a perfectly non-reflecting boundary condition
that lets the wave freely propagate outside the domain, without reflection. The
effect of an imperfect transmission condition on the structure and the properties
of the operator will be considered in a second step. The matrix writes, with the
vector of unknown functions g D Œg12; g21; g23; : : : �T and a layered topology of the
decomposition (Fig. 1a):

FD.Nd/ D

2

66666666666666664

I Bb
2

I
I : : :

Bf
2 I

: : :
: : :

Bb
Nd�1

I

Bf
Nd�1 I

3

77777777777777775

: (4)

Even when the optimized Schwarz algorithm is used with the optimal choice
of transmission operator, its convergence is strongly impacted by the number
of subdomains Nd, and can become very slow for large numbers of domains.
This is classically understood as being caused by the local interactions of the
subdomains in the algorithm, that are able to exchange information only with
their direct neighbours at each iteration. There are situations, like in waveg-
uides, where the information needs to travel through all the domains before
the algorithm is able to build an acceptable solution everywhere. The situa-
tion is even worse if the information is distorted while being passed through
a non-ideal transmission condition. That intuitive explanation is supported by
the spectral properties of the iteration operator, that is defective (lacks a full
basis of eigenvectors, while still being invertible) in the case of exact DtN
map, which is known to cause slow convergence of Krylov solvers. With an
approximate DtN map QD and large Nd, another source of poor convergence resides
in the fact that some of the eigenvalues get close to 0 for large Nd, leading
to large condition numbers, while the operator can still be considered close to
defective.

3 Preconditioning Strategy for Convergence Acceleration

We start from the principle that a preconditioner should be a good approximation of
the inverse of the system to be solved, and observe that the inverse of the matrix of
the operator with exact DtN map can be easily obtained via a recurrence relation,
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for an arbitrary number of subdomains. Therefore, we design our preconditioner as
having the same structure as the inverse of the ideal operator (4) F�1D , though using
an approximate DtN map. Its product with a vector can be obtained as a matrix-free
routine that performs a double sequence of subproblem solves, in the forward and
backward directions, hence the name “double sweep” preconditioner [7, 8]. This is
made possible by the fact that we can give an interpretation of the coefficients of
the inverse matrix, that are products of transport operators Bff ;bgi , as the transport of
information between distant subdomains. As the two sweeps are independent from
each other, they can be performed in parallel, as can be seen on the left diagram of
Fig. 3. Because we do not need to know the exact nature of the transport operators,
the strategy is exactly the same for Helmholtz and Maxwell problems.

The effect of the preconditioner on the spectrum of the preconditioned non-
ideal operator F QDF�1D is a strong clustering of the eigenvalues around .1; 0/, which
ensures a good conditioning of the operator. That being so, the eigenvectors are
now well distinct from each other, which enables fast convergence of the modified
algorithm.

4 Parallelization of the Double Sweep

An important shortcoming of the double sweep preconditioner is its sequential
nature, that destroys the scalability of the algorithm on parallel computers: assigning
each subdomain to a separate CPU makes the preprocessing and the application
of the iteration operator fully parallel, but these CPUs will remain idle during
most of the application of the sweeps. An alternative strategy is to perform shorter
sweeps over smaller groups of subdomains, independently of the other groups, by
cutting the long sequence into smaller ones (Fig. 2). This method still enables the
sharing of information over longer distances than a single domain, yet not over
the whole domain as before. The advantage is of course that the sweeps over each
group can be performed simultaneously, therefore partially restoring scalability.
Consequently, one can expect a degradation of the preconditioner performance
compared to the original version, since it approximates the inverse of the Schwarz
operator less accurately. The timeline of subdomains solves reported on Fig. 3
highlights the improved level of parallelism when using 2 cuts (right) instead of
none (left).

A similar preconditioning strategy can be followed when the domain is decom-
posed as in Fig. 1b: introducing (at least) one cut in the cyclic decomposition allows
to use the double sweep preconditioner as is.
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Ω1 Ω4bΩ2 Ω3 Ω4a Ω5 Ω6 Ω7

Fig. 2 Partial sweeps cover non-overlapping groups of domains, separated by the dashed line. The
position of the cut inside the domain is not important as the first and last domains are not solved in
our sweeps, as shown by the arrows
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Fig. 3 Introducing 2 cuts in the double sweep preconditioner (right) enables parallel execution
of the partial sweeps, reducing the application time of the preconditioner without cuts (left). The
white diamonds indicate solves performed in the iteration operator; the black circles and squares
indicate solves in the forward and backward sweeps, respectively. These time lines were obtained
for the COBRA test case of Sect. 5, with 16 subdomains and cuts in subdomains 6 and 11

5 Numerical Results

We present results obtained on three different test geometries: a straight 3d
(parallelepipedic) waveguide, a 3d S-shaped cavity (the COBRA benchmark defined
by the JINA98 workgroup) and the open 2d scattering problem by a circular object
(Fig. 4). The first two are solved using a layered decomposition while the third uses
a cyclic decomposition. The COBRA is solved for both Helmholtz and Maxwell,
while the other two are solved for Helmholtz only. Earlier work [1, 7, 8] has
shown that without preconditioner, the iteration count for such problems typically
grows linearly with the number of domains, and that with the use of the double
sweep it becomes almost independent for layered decompositions, provided that the
approximation of the DtN map is sufficiently accurate.
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Fig. 4 Geometry and typical decomposition of the 3d cobra cavity (JINA98) and 2d scattering
(unit sound-soft disc with Sommerfeld ABC at radius D 5m) test cases. They differ by the
topology of the decomposition (layered vs. cyclic) and by the type of wave involved (guided vs.
free). The parallelepipedic waveguide (not pictured) has dimensions 0:91m � 0:084m � 0:11m,
comparable to the COBRA

Table 1 Straight waveguide (left) and COBRA (right) cases for Helmholtz with 32 subdomains,
k D 314:16 (relative residual decrease by 10�4)

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N.ds/
it 5 6 8 10 16 24

T.ds/
sol 230 138 128 110 112 96

N.np/
it 62

T
.np/
sol 992 496 331 248 142 91

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10

N.ds/
it 116 153 174 188 241 308

T.ds/
sol 5336 3519 2784 2068 1687 1232

N.np/
it 766

T
.np/
sol 12;256 6128 4086 3064 1751 1115

Tables 1, 2, and 3 summarize the number of iterations required by each
algorithm to converge to the prescribed tolerance, together with an estimation of
the normalized times required for the completion of the algorithm. Provided that at
least 2 CPUs are alloted per group of domains, the time required for the application
of the standard Schwarz operator and the double sweep preconditioner with Nd

subdomains, Nc cuts and Ctot CPUs (assumed evenly distributed between the groups
of subdomains) are approximately given, in the case of a layered decomposition by:

TSch D Nd

Ctot
Tp and Tsw.Nc/ D

�
Nd � Nc � 2

Nc C 1
�

Tp;

with Tp the solution time for one subproblem (supposed identical for all subdo-
mains). Note that Tsw would be doubled if only one CPU is available to perform
the double sweep per group of domains. Slightly different estimations hold in the
case of the cyclic decomposition. The total solution times for the unpreconditioned
and double sweep algorithms are then T.np/

sol D TSchN.np/
it and T.ds/

sol .Nc/ D .TSch C
Tsw.Nc//N

.ds/
it .
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Table 3 Scattering test case
for Helmholtz with 128
subdomains, kD 6:28 (left)
and k D 25:13 (right)
(relative residual decrease by
10�4)

#CPU 2 52 86

Nc 1 26 43

N.ds/
it 24 27 31

T
.ds/
sol 4584 189 124

N.np/
it 55

T.np/
sol 3520 136 82

#CPU 2 52 86

Nc 1 26 43

N.ds/
it 20 29 37

T
.ds/
sol 3820 203 148

N.np/
it 85

T.np/
sol 5440 210 127

Tables 1, 2, and 3 show that in all cases the behaviour of the algorithm is
similar. The preconditioner strongly reduces the number of iterations, and thus
the number of overall linear system solves. Moreover, the parallel version of the
preconditioner makes it also an appealing proposition with respect to the overall
computational (wall-clock) time when the number of CPUs is smaller than the
number of subdomains, especially in the high frequency regime. For example, in the
challenging COBRA case for Maxwell, with 32 domains on 8 CPUs (3 cuts), with
k D 100� , the preconditioned version requires 135�.32C2�.32�2�3// D 11; 610
system solves instead of>1000� 32 and runs about 3 times faster than the standard
algorithm.

6 Conclusion

We have presented a double sweep preconditioning strategy for the optimized
Schwarz algorithm and a variant of it that performs the double sweeps in parallel on
groups of subdomains, rather than over all subdomains. Numerical results highlight
the potential of the approach for both Helmholtz and Maxwell in the high frequency
regime.
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A Multiscale Domain Decomposition Method
for Flow and Transport Problems

Victor Ginting and Bradley McCaskill

1 Background

It has been widely recognized that one of the major challenges in the simulation
of flow and transport problems is finding the numerical solution of the pressure
equation [2]. Typically we seek to find the pressure solution, p, such that

8
ˆ̂<

ˆ̂:

�r � .krp/ D f in ˝

p D pD on 
D

�krp � n D gN on 
N;

(1)

where k represents the positive elliptic coefficient, and f represents a forcing
function. The associated Dirichlet, and Neumann boundary conditions are given by
pD and gN respectively. The corresponding variational formulation is to find p, with
.p � pD/ 2 V , that satisfies

a.p; v/ D `.v/ 8v 2 V; (2)

where V D fv 2 H1.˝/ W v D 0 on 
Dg, and

a.p; v/ D
Z

˝

krp � rv dx; and `.v/ D
Z

˝

fv dx�
Z


N

gNv dl: (3)
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Assuming sufficient regularity of the data, the Lax-Milgram Theorem guarantees
a unique solution of (3). The chief difficulty in approximating p stems from the
heterogeneity of k, which can occur in multiple scales. This heterogeneity directly
dictates the degree of the mesh resolution on which the approximate solution is
found. In turn this results in a very high dimensional algebraic system which must
be solved.

With the advances of parallel computing, domain decomposition as a general
framework has gained a stronger role in efficiently finding accurate solutions to
problems of this type. In this paper, we propose an iterative procedure for solving (3)
that relies on a one-time preprocessing step where a set of independent subdomain
problems are computed. This preprocessing step yields a set of so called multiscale
basis functions with which the global solution is represented. Continuity of the
solution at the interface is established by imposing Robin Transmission conditions
on each subdomain interface. This imposition is accomplished in an iterative
manner. In the following section we describe an iterative domain decomposition
technique that serves as the backbone for our proposed procedure.

2 A Domain Decomposition with Robin Transmission
Conditions

We decompose the domain ˝ into a set of non-overlapping subdomains f˝jgNsd
jD1,

and construct a local problem on each subdomain. For ease of notation we define
Nm to be the set of indices for subdomains that share an edge with˝m. For example,
Nm D fl; r; b; tg is associated with the subdomain presented in Fig. 1. Each local
problem is supplied with a boundary condition that allows for the continuity of the
solution and its flux at each subdomain interface to be maintained. In particular, for
each n 2 Nm, we impose

� krpm � em � �mnpm D gmn on 
mn; (4)

Fig. 1 An internal
rectangular subdomain ˝m,
and its neighbouring
subdomains f˝ng

Ωm ΩrΩl

Ωb

Ωt

Γml = ∂Ωm ∩ ∂Ωl

Γmr = ∂Ωm ∩ ∂Ωr

Γmb = ∂Ωm ∩ ∂Ωb

Γmt = ∂Ωm ∩ ∂Ωt



A Multiscale Domain Decomposition Method for Flow and Transport Problems 251

where �mn is a positive constant, em represents the exterior unit normal respective
to subdomain ˝m, 
mn D @˝m \ @˝n, and the value of gmn comes from the
neighbouring subdomain˝n, expressed as

gmn D krpn � en � �nmpn on 
mn: (5)

To establish the iterative procedure, it is assumed that gmn is known, namely, from
the previous iteration level. The resulting local variational formulation is to find
pm 2 H1.˝m/ such that

am.pm;w/C
X

n2Nm

bmn.pm;w/ D `m.w/C
X

n2Nm

rmn.w/ 8w 2 H1.˝m/; (6)

where

am.v;w/ D
Z

˝m

krv � rw dx; bmn.v;w/ D
Z


mn

�mnvw dl;

`m.w/ D
Z

˝m

fw dx; rmn.w/ D �
Z


mn

gmnw dl:

(7)

We use (6) to develop an iterative technique for approximating (2) whose algorithm
is presented in Algorithm 1. At the practical level, this iteration does converge to the
true solution [3–5], but it requires that we calculate a new local solution on every
subdomain for each step of the iteration. Depending on the initial guess, and the
number of subdomains, this can greatly exceed the computational time required to
solve the problem with traditional methods.

Algorithm 1

Set initial guess for fp.0/m gNsd
mD0

for it D 1 until convergence do
Construct g.it�1/

mn , for all n 2 Nm, mD 1; : : : ;Nsd

Solve (6) to get p.it/m for m D 1; : : : ;Nsd

end for

3 Incorporation of Multiscale Basis Functions

To alleviate the aforementioned burden of calculation, our strategy is to form a
preprocessing step aimed at collecting the finescale heterogeneity information on
each subdomain. This information is stored in the so called subdomain multiscale
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basis functions. Here our motivation is to find an approximate solution to (6) that is
expressed as a linear combination of these multiscale basis functions.

For each n 2 Nm we decompose 
mn into a union of nonoverlapping segments
fIi

mngkmn
iD1, and denote by fzi

mngkmn
iD0 the associated vertices. For simplicity we assume

uniformity of these segments as they relate to neighbouring subdomains.
We set

Qgmn D
kmnX

iD0
gmn.z

i
mn/�

i
mn; (8)

where f� i
mngkmn

iD0 is the usual “hat” nodal basis function corresponding to fzi
mngkmn

iD0
expressed in a parametric form associated with 
mn. Examples of these “hat”
functions are presented in Fig. 2. For our approximate solution we construct a new
variational formulation. Find Qpm 2 H1.˝m/, satisfying

am.Qpm;w/C
X

n2Nm

bmn.Qpm;w/ D `m.w/C
X

n2Nm

Qrmn.w/ 8w 2 H1.˝m/; (9)

where

Qrmn.w/ D �
kmnX

iD0
gmn.z

i
mn/

Z


mn

� i
mnw dl: (10)

With this formulation, the same iteration as in Algorithm 1 could have been done.
It is worth noting that there are two sources of error that are committed when
conducting the iteration based on (9). The first error is shared by the iteration
using (6), namely resulting from the fact that in practice only a finite number of
iterations are used. The second error stems from the replacement of gmn by Qgmn,
i.e., an approximation error. There is a nonlinear interaction between these two
error components. We expect, however, that at the asymptotic level of systematic

Ωm

z0
mt z1

mt z2
mt z3

mt

φ0
mt

Ωm

z0
mt z1

mt z2
mt z3

mt

φ1
mt

Ωm

z0
mt z1

mt z2
mt z3

mt

φ2
mt

Ωm

z0
mt z1

mt z2
mt z3

mt

φ3
mt

Fig. 2 Example of “hat” functions associated with an edge 
mt. On edges 
mb; 
mr; 
ml the value
of these functions is zero
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refinement (kmn ! 1 and convergence is reached), Qp D PNsd
mD1 Qpm1˝m should

converge to p. What is more important is that the formulation (9) provides a
building block for the construction of subdomain multiscale basis functions as part
of the preprocessing step. The approximate solution on each subdomain is then
represented using these basis functions.

To each 
mn we associate a set of multiscale basis functions f i
mngkmn

iD0, where
 i

mn 2 H1.˝m/ is the solution to the variational formulation

am. 
i
mn;w/C

X

n2Nm

bmn. 
i
mn;w/ D ri

mn.w/ 8w 2 H1.˝m/: (11)

The linear functional in (11) is given by

ri
mn.w/ D �

Z


mn

� i
mnw dl: (12)

When f ¤ 0, we compute an extra multiscale basis function O m 2 H1.˝m/ that
satisfies

am. O m;w/C
X

n2Nm

bmn. O m;w/ D `m.w/ 8w 2 H1.˝m/: (13)

On each subdomain we set Vm D span
˚
 i

mn; i D 1; � � � ; kmn; n 2 Nm; O m
�

and seek
Qpm 2 Vm, i.e.,

Qpm D O m C
X

n2Nm

kmnX

iD0
˛i

mn 
i
mn 	 pm: (14)

An approximation of the global solution is now recaptured by determining the values
of each ˛mn D Œ˛0mn; : : : ; ˛

kmn
mn � that induce the continuity condition outlined in (4),

and imposed in (6). Thus, for each �j associated with an interface edge 
mn we
require

kmnX

jD0
˛j

mn

Z


mn

� j
mn�

i
mn dl D

Z


mn

Qgmn�
i
mn dl; 8 i D 0; � � � ; kmn C 1: (15)

Here we note that this continuity condition yields a linear system governing ˛mn.
The associated matrix is tridiagonal and of dimension kmn C 1. At a practical level
the calculation of Qgmn can be performed using Qpn, the multiscale representation of pn.
The iterative procedure presented in Algorithm 1, is now modified to be an iteration
governing each ˛mn. The modified iteration is presented in Algorithm 2.
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Algorithm 2

Calculate f i
mngkmn

iD1, for all n 2 Nm, m D 1; : : : ;Nsd

Set initial guess ¸.0/mn, for all n 2 Nm, m D 1; : : : ;Nsd

for it D 1 until convergence do
Calculate Qg.it�1/

mn , for all n 2 Nm, mD 1; : : : ;Nsd

Solve for ˛
.it/
mn , satisfying (15) for all n 2 Nm, mD 1; : : : ;Nsd

Set Qp.it/m , m D 1; : : : ;Nsd

end for

4 Numerical Examples

In this section we present two studies. First, we present a convergence study of
our method when applied to a problem with a known solution. We then apply our
method to a single phase flow model, and compare the results with traditional meth-
ods. To calculate the multiscale basis functions, we use the traditional continuous
Galerkin FEM to solve (11) and (13).

4.1 Convergence Study

We first explore the behaviour of the approximate solution in terms of the dis-
cretization parameters. In particular, it is interesting to study the interaction between
the subdomain and the segment configuration. The former determines how many
local problems are created while the latter determines the number of multiscale
basis functions to represent a particular local problem. The subdomain size is
denoted by H and the segment size is denoted by Qh. The interplay between the
two parameters reflects a choice of balancing the accuracy and efficiency of the
approximate solution.

For this purpose, we choose a problem with a known solution. The problem
is posed in .0; 1/2 with a zero Neumann condition on x2 D 0; 1 and a Dirichlet
condition on x1 D 0; 1. We assume that f D 0 and k.x/ D a1.x1/a2.x2/, where a1
and a2 are

a1.x1/ D Œ0:25 � 0:999.x1 � x1
2/ sin.11:2�x1/�

�1

a2.x2/ D Œ0:25 � 0:999.x2 � x2
2/ cos.5:2�x2/�

�1;

yielding kmax=kmin 	 2 � 104. Comparison of the effect that various segment
and subdomain configurations have on the accuracy of the resulting approximate
solution are presented in Table 1. In this example, the finescale solution is found on
a grid of 256 � 256 rectangles (i.e., h D 1=256/ and this finescale mesh is the base
for the configuration of Qh after H is determined.
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Table 1 Comparison of the L2-norm, H1-norm of the approximate solution found using various
segment lengths, and subdomain sizes

L2 H1

Qh H D 0:250 H D 0:125 H D 0:250 H D 0:125

h 0.000217 0.000217 0.02070 0.02070

2h 0.000217 0.000218 0.02074 0.02079

4h 0.000223 0.000241 0.02137 0.02201

8h 0.000252 0.000485 0.03068 0.03559

16h 0.001159 0.002538 0.08002 0.10412

We note that when Qh D h the resulting solution has exactly the same error
estimates as solutions found with the traditional Galerkin FEM on the fine mesh.
For a fixed H, the errors of the proposed method stay relatively unchanged as Qh is
increased. This can be taken as a potential advantage of the proposed method; lower
dimensional Vm can still produce a relatively accurate numerical solution. This of
course reduces the number of multiscale basis functions which must be calculated.
Furthermore, results in Table 1 indicate that the errors seem to be less sensitive to
H. Traditionally, it has been established (see for example [4, 5]) that an increase
in subdomain interfaces (i.e., the finer H is) can potentially increase the number
of iterations needed for convergence to a desired tolerance. Thus, this indication
suggests that only fewer subdomains (i.e., less interfaces) are required to extract
accurate solutions, which results in fewer iterations for convergence. On the other
hand, this can potentially mean that the multiscale basis functions are governed by a
higher dimensional problem, which correlates to a higher computational load in the
preprocessing step. In the end, a problem dependent choice of H and Qh leads to an
optimized scenario of calculation.

4.2 Applications to Single Phase Flow

The mathematical model is

@tSC u � r�.S/ D 0; with specified I.C. + B.C. and u D �k.x/rp;

where S represents the saturation and r � u D 0, i.e., elliptic PDE governing the
pressure p. The boundary condition for p is the same as the one in the previous
subsection. The model is a typical one way coupling equation where the pressure
is first solved and the velocity u is constructed from it, which in turn is used as an
input in solving the transport equation. We applied the postprocessing technique [1]
to recover a locally conservative flux u �n on the finescale grid. Then a first order up-
winding scheme is used to determine the time evolved saturation value. The elliptic
coefficient that is used for this model is shown in Fig. 3. This elliptic coefficient
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Fig. 3 A logarithmic plot of k.x/ used in single phase flow simulation

h̃ = 12h h̃ = 6h Reference

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4 Comparison of saturation at t D 0:003 (top), t D 0:009 (bottom), all results use H D 0:25

is posed on 240 � 240 grid and has a ratio kmax=kmin 	 6:4 � 104. In Fig. 4 we
show a visual comparison of the saturation solution at various time steps, for our
method and traditional methods. In Fig. 5 a plot of the relative difference between
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%

˜h = 2h
˜h = 3h
˜h = 6h
˜h = 12h

Fig. 5 Comparison of the L2-error of the saturation difference between our method and traditional
Galerkin FEM, for various choices of Qh. In all cases, H D 0:25

the solution found with the proposed method and the solution found with traditional
methods is presented.

5 Conclusion

We have proposed an iterative multiscale domain decomposition method with
certain favourable properties. By incorporating the multiscale basis functions into
an iterative domain decomposition procedure we have reduced its computational
demand. The numerical examples suggest that our method is capable of recapturing
accurate solutions that are comparable to those found with traditional methods. In
the future we will extend the capability of the method to multiphase flow models.
We are also interested in conducting a rigorous convergence analysis of the proposed
method.
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An Optimized Schwarz Algorithm
for a Discontinuous Galerkin Method

Soheil Hajian

1 Introduction

It has been shown in [4] that block Jacobi iterates of a discretization obtained
from hybridizable discontinuous Galerkin methods (HDG) can be viewed as non-
overlapping Schwarz methods with Robin transmission condition. The Robin
parameter is exactly the penalty parameter � of the HDG method. There is a
stability constraint on the penalty parameter and the usual choice of � results in
slow convergence of the Schwarz method. In this paper we show how to overcome
this problem without changing �. To fix ideas, we consider the model problem

.	�/u D f in ˝ � R
2;

u D 0 on @˝;
(1)

where ˝ is a bounded polygon, 0 � 	 � 	0 and f 2 L2.˝/. We then
consider a hybridizable interior penalty (IPH) discretization and develop domain
decomposition algorithms to solve the resulting linear system efficiently. For the
sake of brevity we consider the two-subdomain case in this paper.

Our paper is organized as follows: in Sect. 2 we describe the IPH method. We
introduce a Schur complement system for the IPH discretization and review some
of its properties in Sect. 3. In Sect. 4 we introduce two iterative methods for the
Schur complement and present their convergence behavior. Finally we present some
numerical experiments in Sect. 5.
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2 Hybridizable Interior Penalty Method

IPH was first introduced in [2] and later studied as a member of the class of
hybridizable DG methods in [1]. We first establish some notation and then define
the IPH method in two different but equivalent forms. Let Th D fKg be a shape-
regular and quasi-uniform triangulation of the domain˝ . Let hK be the diameter of
an element of the triangulation and h D maxK2Th hK . If e is an edge of an element,
we denote by he the length of that edge.

We denote by E0 the set of interior edges, by E@ the set of boundary edges and
all edges by E WD E@ [ E0. We introduce the broken Sobolev space Hl.Th/ WDQ

K2Th
Hl.K/ where Hl.K/ is the Sobolev space in K 2 Th and l is a positive integer.

Therefore the element boundary traces of functions in Hl.Th/ belong to T.E/ DQ
K2Th

L2.@K/, where q 2 T.E/ can be double-valued on E0, and is single-valued
on E@.

We also define two trace operators: let q 2 T.E/ and � 2 ŒT.E/�2. On e D
@K1 \ @K2 we then define average ff�gg and jump ŒŒ��� operators by

ffqgg D 1
2
.q1 C q2/; ŒŒq�� D q1 n1 C q2 n2;

ff� gg D 1
2
.� 1 C � 2/; ŒŒ� �� D � 1 � n1 C � 2 � n2; (2)

where ni is the unit outward normal of Ki on e, qi WD qj@Ki\e and � i WD � j@Ki\e.
On @˝ we set the average and jump operators to be ff� gg D � and ŒŒq�� D q n
respectively. Note that we do not need to specify ffqgg and ŒŒ� �� on e 2 E@ because it
is not needed in the formulation.

We define a finite-dimensional broken space on Th for the discrete approximation
Vh WD

˚
v 2 L2.˝/ W vjK 2 P1.K/;8K 2 Th

�
; where Pk.K/ is the space of polyno-

mials of degree � k in the simplex K 2 Th.
For the sake of simplicity we denote the volume and surface integrals by

.a; b/K D
R

K a b for K 2 Th and ha; bie D
R

e a b for e 2 E .
We now present IPH method in primal and hybridizable form. Let u; v 2 H2.Th/,

then the IPH bilinear form of the model problem (1) is defined as

a.u; v/ WD 	.u; v/Th
C .ru;rv/Th

� hffrugg; ŒŒv��iE � hffrvgg; ŒŒu��iE
C˝�

2
ŒŒu��; ŒŒv��

˛
E �

D
1
2�
ŒŒru��; ŒŒrv��

E

E0
;

(3)

where� 2 L2.E/ is the penalty parameter. For a constant ˛ > 0we set �je D ˛h�1e .
We should mention that this scaling cannot be weakened due to stability constraints.
The IPH bilinear form is different from the classical IP only in the last term, i.e. the
last term is not present in the IP bilinear form. For a formal derivation of the bilinear
form (3) see [6], Section 1.2.2.

The IPH bilinear form is coercive over Vh provided ˛ > 0 and sufficiently large,
that is we can show

a.v; v/ � ckvk2DG; 8v 2 Vh;
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where 0 < c < 1 is a constant independent of h. Here the energy norm is defined as

kvk2DG WD 	kvk2Th
C krvk2Th

C
X

e2E
�ekŒŒv��k2e ; 8v 2 Vh: (4)

The discrete problem can be stated as: find uh 2 Vh such that

a.uh; v/ D .f ; v/Th
; 8v 2 Vh: (5)

Since a.�; �/ is coercive over Vh, we can conclude that there exists a unique discrete
solution. Furthermore we can show that IPH has optimal approximation properties
provided ˛ > 0 is sufficiently large; see [6].

We show now that one can write IPH in a hybridized form, such that static
condensation with respect to a single-valued unknown is possible. This is not the
case for most DG methods, e.g. classical IP. Let us decompose the domain into two
non-overlapping subdomains˝1 and˝2. Denoting the interface by 
 WD ˝1\˝2,
we assume 
 � E0, i.e. the cut does not go through any element of the triangulation.
This results in a natural partitioning of Th into T1 and T2; for an example see Fig. 1
(right).

This naturally allows us to introduce local spaces on ˝1 and ˝2 by

Vh;i WD
˚
v 2 L2.˝i/ W vjK2Ti

2 P1.K/
�
; for i D 1; 2: (6)

Note that this domain decomposition setting implies Vh D Vh;1˚Vh;2. We define on
the interface the space of broken single-valued functions by

�h WD
˚
' 2 L2.
 / W 'je2
 2 P1.e/

�
: (7)
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For the sake of simplicity we denote the restriction of v 2 Vh on Vh;i by vi. Observe
that the trace of vi 2 Vh;i on 
 belongs to �h.

Let .u; �/; .v; '/ 2 Vh ��h and consider the symmetric bilinear form

Qa..u; �/; .v; '// WD Qa
 .�; '/C
2X

iD1
Qai.ui; vi/C Qai
 .vi; �/C Qai
 .ui; '/; (8)

where Qa
 .�; '/ WD 2h��; 'i
 , Qai
 .vi; '/ WD
D
@vi
@ni
� �vi; '

E



and

Qai.ui; vi/ WD 	.ui; vi/Ti
C .rui;rvi/Ti

� hffruigg; ŒŒvi��iE0i � hffrvigg; ŒŒui��iE0i
C˝�

2
ŒŒui��; ŒŒvi��

˛
E0i
�
D
1
2�
ŒŒrui��; ŒŒrvi��

E

E0i
�
D
@ui
@ni
; vi

E

@˝i

�
D
@vi
@ni
; ui

E

@˝i

C h� ui; vii@˝i
:

(9)

The bilinear form Qa.�; �/ is also coercive at the discrete level if ˛ > 0, independent
of h and sufficiently large:

Qa..v; '/; .v; '// � c k.v; '/k2HDG 8.v; '/ 2 Vh ��h; (10)

where c is independent of h and the HDG-norm is defined by

k.v; '/k2HDG WD
2X

iD1
	kvik2Ti

C krvik2Ti
C �kŒŒvi��k2Ein
 C �kvi � 'k2
 : (11)

Consider the following discrete problem: find .uh; �h/ 2 Vh ��h such that

Qa..uh; �h/; .v; '// D .f ; v/Th
; 8.v; '/ 2 Vh ��h; (12)

which has a unique solution since Qa.�; �/ is coercive on Vh ��h. One can eliminate
the interface variable, �h, and obtain a variational problem in terms of uh only. It
turns out that this coincides with the variational problem (5); for a proof see [6].

Remark 1 By definition of the bilinear forms, each subproblem is imposing �h

weakly as Dirichlet data along 
 through a Nitsche penalization. This is an IPH
discretization of the continuous problem .	�/w D f in ˝i and w D �h on 
 .

3 Schur Complement System

We choose nodal basis functions for P1.K/ and denote the space of coefficient
vectors with respect to nodal basis functions of Vh by V . If uh 2 Vh we denote by u 2
V its corresponding coefficient vector. The variational problem in (5) is equivalent
to the linear system Au D f . A is called the stiffness matrix. We decompose u into
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fu1;u2g where ui corresponds to coefficients of nodal basis functions in ˝i. Then
we can arrange the entries of A and rewrite the linear system as

�
A1 A21
A21 A2

	�
u1
u2

�
D
�

f 1
f 2

�
: (13)

We use nodal basis functions for �h and denote by � the corresponding coefficient
vector for �h 2 �h. Then the variational form (12) can be written as

2

4
QA1 QA1

QA2 QA2


QA
1 QA
 2 QA


3

5

0

@
u1
u2
�

1

A D
0

@
f 1
f 2
0

1

A ; (14)

where QA
 i D QA>i
 . Note that the advantage of this formulation over (13) is that
subdomains are communicating through � and we can form a Schur complement
for a single-valued function, �h. To do so we define QBi WD QA
 i

QA�1i
QAi
 and g
 WDP2

iD1 QA
 i
QA�1i f i: Then the Schur complement system reads

QS
 � WD
� QA
 �

2X

iD1
QBi

�
� D g
 : (15)

We define ui WD Hi.�h/ to be the discrete harmonic extension of �h 2 �h

into subdomain ˝i, i.e. ui satisfies QAiui C QAi
 � D 0; that is we impose �h as
Dirichlet data (weakly) on 
 and solve inside˝i. The following result shows that an
application of QBi� can be viewed as finding the harmonic extension, ui WD Hi.�h/,
and then evaluating a “Robin-like trace” on the interface.

Proposition 1 Let �h 2 �h and define its harmonic extension by ui WD Hi.�h/.

Then '> QBi� D
D
�ui � @ui

@ni
; '
E



for all ' 2 �h.

Proof Let ui WD Hi.�h/. Then by definition of QBi and Qai
 .�; �/ we have

'> QBi� D '> QA
 i
QA�1i
QAi
 � D �'> QA
 iui D

D
�ui � @ui

@ni
; '
E



; for all ' 2 �h,

which completes the proof, since QA
 i D QA>i
 . ut
One can estimate the eigenvalues of f QBig. They are useful in proving convergence
of Schwarz methods later on. The proofs are technical and beyond the scope of this
short paper. They can be found in [5].

Lemma 1 QBi is s.p.d. and there exists ˛ > 0, sufficiently large, such that

cB � k'k2
 � '> QBi' �
�
1 � CB

h

˛

�
� k'k2
 ;

where 0 < cB < 1 and CB > 0. Both constants are independent of h. Moreover
QA
 � 2 QBi is s.p.d. for i D 1; 2.
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4 Schwarz Methods for the Schur Complement System

One approach in solving the linear system (13) is to use the block Jacobi method:

Mu.nC1/ D Nu.n/ C f; M D
�

A1
A2

	
;N D M � A: (16)

Instead in this section we derive two Schwarz algorithms to solve the Schur
complement system where the first one is equivalent to (16) and slow while the
second one has much faster convergence.

Let us relax the constraint that �h is single-valued. Let �h;1; �h;2 2 �h. Assume
�h;2 is known; that is we know u2 2 Vh;2. Then we can split the Schur complement
system (15) and solve for �h;1, through . QA
 � QB1/�1 D QB2�2Cg
 : Lemma 1 ensures
that . QA
 � QB1/ is invertible and we can obtain �h;1. This suggests an iterative method
to find �h.

Algorithm 1 (Block Jacobi) Let �.0/h;1; �
.0/
h;2 2 �h be two arbitrary initial guesses.

Then for n D 1; 2; : : : solve (17) for
˚
�
.n/
h;i

�
.

. QA
 � QB1/�.n/1 D QB2�.n�1/
2 C g
 ;

. QA
 � QB2/�.n/
2 D QB1�.n�1/1 C g
 :

(17)

Note that at convergence we have QA
 .�1 � �2/ D 0 which implies �1 D �2 DQS�1
 g
 since QA
 is s.p.d. We show now that Algorithm 1 is equivalent to the block
Jacobi iteration (16). It suffices to prove this for f D 0 (g
 D 0).

Proposition 2 Let �.0/h;1; �
.0/
h;2 be two random initial guesses. Set the initial guess of

the block Jacobi iteration (16) to be u.0/i D Hi.�
.0/
h;i /. Then u.n/i D Hi.�

.n/
h;i / for all

n > 0, i.e. both methods produce the same iterates.

Proof We start by subdomain ˝1. Set w.n/h;i D Hi.�
.n/
h;i /. By Proposition 1, we

have '> QBi�
.n/
i D

D
�w.n/h;i � @ni w

.n/
h;i ; '

E



for all ' 2 �h. Then the first equation

in iteration (17) implies �.n/h;1 D
�
1
2
� 1

2�
@n1

�
w.n/h;1 C

�
1
2
� 1

2�
@n2

�
w.n�1/h;2 : Recall that

w.n/h;1 is the harmonic extension, hence it satisfies Qai.w
.n/
h;1; v1/ C Qai
 .v1; �

.n/
h;1/ D 0

for all v1 2 Vh;1. Now we substitute �.n/h;1 in terms of w.n/h;1 and w.n�1/h;2 . We arrive at

exactly the first row of block Jacobi (16), i.e. A1w
.n/
1 CA12w

.n�1/
2 D 0. The proof for

˝2 is similar. ut
Convergence of the block Jacobi (16) or equivalently Algorithm 1 can be proved

with the contraction factor �h � 1 � O.h/. For details we refer the reader to [5].
The slow convergence of this algorithm is due to the fact that the transmission

condition is of Robin type with Robin parameter � D ˛h�1; see [4]. According to
optimized Schwarz theory the best choice is � D O.h�1=2/; see [3]. We would like



An Optimized Schwarz Algorithm for a Discontinuous Galerkin Method 265

to emphasize that for IPH, one cannot change the scaling of � because of coercivity
and approximation property constraints.

The remedy is to split the Schur complement differently. We know from Lemma 1
that QA
 � 2Bi is s.p.d. Therefore assuming �2 is known we can multiply the Schur
complement by .1C Op/ where Op is a constant and solve for �1 such that

. QA
 � .1C Op/B1/�1 D �.Op QA
 � .1C Op/ QB2/�2 C .1C Op/g
 :

If 0 � Op < 1 then the left hand side is still s.p.d. We use Op to obtain a fast converging
solver. Note that for Op D 0 we have Algorithm 1.

Algorithm 2 (Optimized Schwarz) Let �.0/h;1; �
.0/
h;2 2 �h be two arbitrary initial

guesses and 0 � Op < 1 be a constant. Then for n D 1; 2; : : : solve (18) for
˚
�
.n/
h;i

�
.

. QA
 � .1C Op/ QB1/�.n/
1 D �.Op QA
 � .1C Op/ QB2/�.n�1/

2 C .1C Op/g
 ;
. QA
 � .1C Op/ QB2/�.n/

2 D �.Op QA
 � .1C Op/ QB1/�.n�1/
1 C .1C Op/g
 :

(18)

At convergence we have .1 � Op/ QA
 .�1 � �2/ D 0 which implies �1 D �2 DQS�1
 g
 if Op 6D 1. An application of Proposition 1 and Remark 1 shows Algorithm 2
has a modified Robin parameter which we summarize in the next proposition.

Proposition 3 Algorithm 2 is the discrete version of the non-overlapping optimized
Schwarz method

Lu.nC1/1 D f in ˝1; Lu.nC1/2 D f in ˝2;

B1u
.nC1/
1 D B1u

.n/
2 on 
 ; B2u

.nC1/
2 D B2u

.n/
1 on 
 ;

where L WD .	�/, Bi WD O�C @ni and Robin parameter O� WD 1�Op
1COp�.

A heuristic approach in obtaining optimal Op is to set the modified Robin

parameter to O� D O.h�1=2/ and solve for Op. This results in Op D 1�ph
1Cph

< 1. A
rigorous proof at the discrete level in [5] gives same scaling and with this choice of
Op the contraction factor of Algorithm 2 is bounded by �h � 1 �O.

p
h/.

5 Numerical Experiments

We consider .	�/u D f in ˝ and u D 0 on @˝ where we set 	 D 1,˝ D .0; 1/2
and f such that the exact solution is u.x; y/ D sin.�x/ sin.2�xC �

4
/ sin.2�y/ in ˝ .

We set the penalty parameter to � D 10h�1e . We choose a non-straight interface as
in Fig. 1 (right). We measure the number of iterations necessary to reduce the error
kuh � u.n/h k0 to 10�10 on a sequence of (quasi-uniform) unstructured meshes while
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the interface is fixed. As for the initial guess, we set DOFs of the initial guess using
a random number generator; in Matlab given by rand(N_DOF).

In Fig. 1 (left) we observe for Algorithm 1 that the number of iterations grows
like O.h�1/. This is equivalent to �h � 1 � O.h/. For Algorithm 2 with the optimal
value of Op we see that it grows like O.h�1=2/ hence �h � 1 � O.

p
h/. This is in

agreement with the results in Sect. 4. For more extensive numerical experiments see
[5].

6 Conclusions

It has been shown in [4] that for some DG methods one can obtain a fast converging
solver by just modifying the penalty parameter while for some other it is not possible,
e.g. IPH. We showed that it is possible to define an iterative method, Algorithm 2, for
IPH such that we obtain fast convergence without changing the penalty parameter.
We are now studying a multi-subdomain version of Algorithm 2 and the case of
higher polynomial degree, k > 1.

Acknowledgement The author thanks Martin J. Gander for his useful comments.
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On Full Multigrid Schemes for Isogeometric
Analysis

Clemens Hofreither and Walter Zulehner

1 Introduction

Isogeometric analysis (IGA), a numerical technique for the solution of partial
differential equations first proposed in [11], has attracted considerable research
attention in recent years. The use of spline spaces both for representation of the
geometry and for approximation of the solution affords the method several very
interesting features, such as the possibility to use exactly the geometry generated
by CAD systems, refinement without further communication with the CAD system,
the possibility of using high-continuity trial functions, the use of high-degree spaces
with comparatively few degrees of freedom, and more. We refer to [1, 11] as well
as the monograph [8] and the references therein for details on this method.

The efficient solution of the discretized systems arising in isogeometric analysis
has been the topic of several publications, among these, [2, 3, 5, 7, 9, 12]. In the
present paper, we investigate geometric full multigrid methods for IGA. It is known
[9] that geometric multigrid solvers for IGA possess h-independent convergence
rates for V-cycle iteration using standard smoothers. Our aim is to study more
closely the performance of the full multigrid (FMG) iteration strategy, especially
in dependence of the spline degree.
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2 Isogeometric Analysis

We construct, in every direction i D 1; : : : ; d, a B-spline space of degree pi over
an open knot vector which spans the parameter interval .0; 1/. Open means that the
first and last knots are repeated pi C 1 times. We restrict ourselves to maximum
continuity, i.e., all knots in the interior are simple. For the definition of B-splines,
see, e.g., [8, 14, 15]. Taking the tensor product of the B-splines bases over all
directions i, we obtain a tensor product basis fBj W .0; 1/d ! R

C
0 gj. To each of

its basis functions Bj, we associate a control point (coefficient) Cj 2 R
d in such a

way that we obtain an invertible geometry mapping F D P
j CjBj W .0; 1/d ! ˝ ,

where ˝ � R
d is the computational domain. The isogeometric basis functions on

˝ are given by Bj ı F�1 W ˝ ! R
C
0 ; and their span is the isogeometric trial space

on ˝ .
In practice, NURBS, i.e., rational versions of the B-spline basis functions,

are commonly used to represent the geometry. In this paper, we however restrict
ourselves to the case of B-splines for the sake of simplicity.

In the following, let Vh � H1
0.˝/ denote a tensor product spline space over˝ as

constructed above. An isogeometric method for the Poisson equation with Dirichlet
boundary conditions is given by the discrete variational problem: find uh 2 Vh such
that, for all vh 2 Vh,

Z

˝

ru � rv dx DW a.uh; vh/ D hF; vhi WD
Z

˝

fvh dx � a.Qg; v/;

where Qg 2 H1.˝/ is a suitable extension of the Dirichlet data g. Here, uh C Qg is the
approximation to the solution of the boundary value problem.

Essential boundary conditions require some care in isogeometric methods. In our
setting, we construct an approximation gh to g which lies in the spline space. Due to
the use of open knot vectors, the degrees of freedom (DoFs) can be cleanly separated
into boundary DoFs and interior DoFs. The values for the boundary DoFs of gh are
determined by solving a .d� 1/-dimensional Lagrange interpolation problem on
each face of the patch ˝ , where the Gréville points of the spline basis are chosen
as interpolation points. The interior DoFs of gh are set to zero. In the variational
setting, this corresponds to solving a problem with the approximate right-hand side

hFh; vi D
Z

˝

fv dx � a.gh; v/: (1)

On the topic of essential boundary conditions in isogeometric analysis, we also refer
to [6, 13, 17].
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3 Geometric Multigrid Methods for IGA

In the following, we outline very briefly the construction of a geometric multigrid
scheme for IGA. We refer to the multigrid literature [4, 10, 16] for further details.

Starting from a coarse isogeometric mesh, inserting a new knot at the midpoint
of every non-empty knot span creates a “fine” spline space with a halved mesh
size which contains all functions of the original “coarse” spline space, yielding the
isogeometric analogue of uniform h-refinement.

Let OV0 denote a coarse parametric spline space over .0; 1/d which is rich enough
to represent the geometry ˝ exactly. With repeated uniform refinement steps, we
obtain a sequence of h-refined spline spaces OV1; OV2; : : : The push-forward to the
geometry yields isogeometric spline spaces V0;V1;V2; : : :

Let VH � Vh denote two successive spline spaces with the canonical embedding
P W VH ! Vh. One step of the two-grid iteration process is given by a pre-smoothing
step, the coarse-grid correction, and a post-smoothing step. Given a starting value
u0 2 Vh, the next iterate u1 is thus obtained from

u.1/ WD u0 CM�1.fh � Ahu0/;

u.2/ WD u.1/ C PA�1H P>.fh � Ahu.1//;

u1 WD u.3/ WD u.2/ CM�>.fh � Ahu.2//:

Here, M is a suitable smoother for the fine-space stiffness matrix Ah. Common
choices are the Richardson smoother (with M being a scalar multiple of identity), the
damped Jacobi smoother (M being a scaled diagonal of Ah), and the Gauss-Seidel
smoother (M being the lower triangular part of Ah). A multigrid scheme is obtained
by considering a hierarchy of nested spline spaces and replacing the exact inverse
A�1H in the above procedure recursively with the same procedure applied on the next
coarser space, until V0 is reached, where an exact solver is used.

We set up a Poisson model problem, �u D f , with pure Dirichlet boundary
conditions on the d-dimensional unit interval ˝ D .0; 1/d. We choose tensor
product B-spline basis functions defined on equidistant knot vectors with constant
spline degrees p1 D : : : D pd D p and maximum continuity. The geometry mapping
F is chosen as identity. The right-hand side f and the boundary conditions are chosen
according to the prescribed analytical solution u.x/ DQd

iD1 sin.�.xi C 0:5//.
As a comparison point, we test the V-cycle iteration numbers. For this, we choose

a random starting vector u0 and perform V-cycle iteration until the initial residual is
reduced by a factor of 10�8 in the Euclidean norm. The resulting iteration numbers
are shown in Table 1. We point out that very similar numbers have been obtained in
[9]. In higher dimensions, in particular for d D 3, the number of iterations sees a
dramatic increase as the spline degree is raised.
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4 Full Multigrid for IGA

We set up a full multigrid (FMG) method in the usual way. That is, we start from the
exact coarse-grid solution u0 D A�10 f0 2 V0 and transfer it to the next higher level
by means of a full interpolation operator, u1 D I10.u0/. Here the solution is corrected
by one multigrid V-cycle with a suitable coarse-space right-hand side fi, and the
result is again interpolated to the next higher level by means of I21 . This procedure
is continued until the finest space V` is reached, where one final V-cycle is applied.
We found that two issues related to the treatment of Dirichlet boundary conditions
need attention.

First, we need a sequence of full interpolation operators IiC1
i W Vi ! ViC1

which transfer solutions, as opposed to mere corrections, to the next finer level
while maintaining a high order of accuracy. Dirichlet boundary conditions must be
carefully taken into account here. Recall that the approximation to the solution of the
boundary value problem on level i is given by ui C gi, where gi is a spline function
approximating the Dirichlet boundary data having non-zero coefficients only on
the boundary DoFs, whereas ui vanishes on the boundary DoFs since they were
eliminated from the linear system. Prolonging both contributions separately, we see
that PiC1

i ui 2 ViC1 still vanishes on the boundary DoFs. On the other hand, the
representation of gi in ViC1 has non-zero contributions in some interior DoFs close
to the boundary. This situation is illustrated in the 1D setting in Fig. 1. Therefore,
the proper choice for the full interpolation operator is IiC1

i .ui/ WD PiC1
i ui C VPiC1

i gi;

where by VPiC1
i we mean the operator which prolongs the boundary function and

discards the boundary DoFs, keeping only the contributions to the interior DoFs.
The second issue is related to the choice of the coarse-space right-hand sides

fi, i D 1; : : : ; ` � 1. The seemingly natural choice fi D .PiC1
i />fiC1 does not

take into account that the right-hand side vector f` stems from the approximated
linear functional hFh; �i given in (1), where we have chosen a fine-grid spline
approximation gh for the Dirichlet data. This approximation by necessity depends
on the mesh level: the fine-grid Dirichlet functions must have better approximation
properties, but cannot be represented on coarser grids. We thus found it necessary
to assemble fi on every level separately.

Fig. 1 Prolongation of boundary functions creates non-zero contributions to interior DoFs
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Table 2 Errors after one full multigrid cycle in 1D

p D 1 p D 2

N L2-error Ratio N L2-error Ratio

33 4:944858 � 10�4 4.76 34 3:722578 � 10�6 8.09

65 1:034253 � 10�4 4.78 66 4:646054 � 10�7 8.01

129 2:231043 � 10�5 4.64 130 5:808685 � 10�8 8.00

257 5:090763 � 10�6 4.38 258 7:263190 � 10�9 8.00

513 1:218115 � 10�6 4.18 514 9:081029 � 10�10 8.00

p D 3 p D 4

N L2-error Ratio N L2-error Ratio

35 6:536758 � 10�8 16.71 36 4:984064 � 10�9 34.42

67 3:966554 � 10�9 16.48 68 1:527129 � 10�10 32.64

131 2:439422 � 10�10 16.26 132 4:754326 � 10�12 32.12

259 1:512164 � 10�11 16.13 260 1:750396 � 10�13 27.16

515 9:883776 � 10�13 15.30 516 9:712425 � 10�14 1.80

Table 3 Errors after one full multigrid cycle in 2D

p D 1 p D 2

N L2-error Ratio N L2-error Ratio

4225 1:76004 � 10�4 4.20 4356 4:8427 � 10�7 8.05

16;641 4:28888 � 10�5 4.10 16;900 6:0407 � 10�8 8.02

66;049 1:05903 � 10�5 4.05 66;564 7:5446 � 10�9 8.01

263;169 2:63839 � 10�6 4.01 264;196 9:4271 � 10�10 8.00

1;050;625 6:59801 � 10�7 4.00 1;052;676 1:1782 � 10�10 8.00

p D 3 p D 4

N L2-error Ratio N L2-error Ratio

4489 6:8025 � 10�9 17.47 4624 1:2380 � 10�9 28.05

17;161 3:8527 � 10�10 17.66 17;424 6:1208 � 10�11 20.23

67;081 2:2387 � 10�11 17.21 67;600 3:6698 � 10�12 16.68

265;225 1:3527 � 10�12 16.55 266;256 2:4967 � 10�13 14.70

1;054;729 2:6654 � 10�13 5.07

With these issues taken care of, we apply a single FMG cycle using the Gauss-
Seidel smoother to the Poisson model problem introduced in Sect. 3 for different
values of the space dimension d, the spline degree p and the problem size N and
compute the resulting L2-error with respect to the exact solution. The errors are
presented in Tables 2, 3, and 4 for the 1D, 2D and 3D cases along with the error
ratio between successive refinement levels. (In some cases, the errors stagnate once
a threshold sufficiently close to the machine accuracy is reached due to rounding
errors.) From the approximation properties derived in [1], we would hope for an
error which asymptotically behaves like O.hpC1/. We observe that this behavior is
achieved using a single FMG cycle for all tested spline degrees up to 4 in the 1D
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Table 4 Errors after one full multigrid cycle in 3D

p D 1 p D 2

N L2-error Ratio N L2-error Ratio

125 7:2738 � 10�2 – 216 3:0617 � 10�3 –

729 1:2829 � 10�2 5.67 1000 2:0613 � 10�4 14.85

4913 3:2797 � 10�3 3.91 5832 2:4836 � 10�5 8.30

35;937 7:9084 � 10�4 4.15 39;304 3:5042 � 10�6 7.09

274;625 1:9521 � 10�4 4.05 287;496 4:3712 � 10�7 8.02

p D 3 p D 4

N L2-error Ratio N L2-error Ratio

343 4:5383 � 10�4 – 512 1:1096 � 10�4 –

1331 5:4518 � 10�5 8.32 1728 2:5938 � 10�5 4.28

6859 3:4414 � 10�6 15.84 8000 3:1818 � 10�6 8.15

42;875 1:8704 � 10�7 18.40 46;656 1:9189 � 10�7 16.58

300;763 1:0657 � 10�8 17.55 314;432 9:5155 � 10�9 20.17

Table 5 Errors for p D 4

after one FMG cycle with �
pre- and postsmoothing steps

d D 2; � D 2 N L2-error Ratio

64 7:809885 � 10�5 –

144 4:964622 � 10�6 15.75

400 1:426569 � 10�7 34.80

1296 3:616898 � 10�9 39.44

4624 8:554892 � 10�11 42.28

17,424 2:027914 � 10�12 42.19

67,600 5:222339 � 10�14 38.83

266,256 1:010133 � 10�13 0.52

d D 3; � D 3 N L2-error Ratio

512 6:282724 � 10�5 –

1728 3:377428 � 10�6 18.60

8000 1:116225 � 10�7 30.26

46,656 2:372285 � 10�9 47.05

case, and for degrees up to 3 in the 2D and 3D cases. One possible measure to
restore the optimal convergence orders in the case p D 4 is to increase the number
of pre- and postsmoothing steps. In Table 5, we display the resulting errors with two
smoothing steps in 2D and with three smoothing steps in 3D.

We remark that the solution time using the FMG method was typically only a
small fraction of the time used to assemble the problems.
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Simulation of Cavity Flows by an Implicit
Domain Decomposition Algorithm
for the Lattice Boltzmann Equations

Jizu Huang, Chao Yang, and Xiao-Chuan Cai

1 Introduction

The 2D steady state lid-driven cavity flow problem is a benchmark problem to test
new numerical methods due to its simple geometry and interesting flow behaviors.
There are several mathematical models available for simulating this flow, such
as the Navier–Stokes (NS) equations and the Boltzmann equations among others.
For problems satisfying the continuum assumption, the Boltzmann model and the
NS model usually have the same solution in some sense, because the NS model
can be derived from the Boltzmann model. But for problems that don’t satisfy
the continuum assumption, the NS model fails to provide a physically meaningful
solution and the Boltzmann model can be viewed as a higher level model. In the past
two decades, numerical methods based on the Boltzmann model, such as the lattice
Boltzmann equations (LBEs) become increasingly popular [2, 10] in simulating
the 2D lid-driven cavity flow. There are extensive numerical experiments carried

J. Huang
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

C. Yang (�)
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190,
P.R. China
e-mail: yangchao@iscas.ac.cn

X.-C. Cai
Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309, USA

© Springer International Publishing Switzerland 2016
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXII, Lecture Notes in Computational Science
and Engineering 104, DOI 10.1007/978-3-319-18827-0_26

275

mailto:yangchao@iscas.ac.cn


276 J. Huang et al.

out with the LBEs [10, 13, 14]. However, all existing approaches are explicit or
semi-implicit and the time step size of these approaches is limited by the Courant–
Friedrichs–Lewy (CFL) condition, and the numerical solutions obtained by using
these methods are less accurate than those of the NS equations.

In this paper, we introduce a fully implicit and parallel Newton–Krylov–RAS
algorithm for the LBEs, which is unconditionally stable and the time step size
depends only on the accuracy requirement. The method is based on an inexact
Newton method whose Jacobian systems are solved with an overlapping RAS
preconditioned Krylov subspace method. To reduce the computational cost and
improve the scalability of the RAS preconditioner, a first-order discretization is
developed just for the preconditioner which is re-computed only once per time
step. We report accuracy results and scalability studies on fine meshes and on a
supercomputer with more than 10,000 processors.

2 Model Problem, Discretization, and Domain
Decomposition Preconditioning

In this paper, the LBEs [2] are considered

@f˛
@t
.x; t/C e˛ �Of˛.x; t/ D �˛; ˛ D 0; 1; � � � ; 8; x 2 ˝; t 2 .0;T/; (1)

where f˛ is the particle distribution function, e˛ D .e˛1; e˛2/ is the discrete particle
velocity, �˛ is the collision operator, ˝ D .0; 1/2 2 R2 is the computational
domain, and .0;T/ is the time interval. The macroscopic density � and the
macroscopic velocity u D .u1; u2/ of the fluid are respectively induced from the
particle distribution function by

� D
X

˛

f˛; u D 1

�

X

˛

f˛e˛: (2)

The collision operator is defined as �˛ D � 1� .f˛.x; t/ � f .eq/
˛ .x; t//; where � D

c�2s � is the relaxation time of the fluid and f .eq/
˛ is the local equilibrium distribution

function (EDF) defined as

f .eq/
˛ D w˛�

h
1C 1

c2s
e˛ � uC 1

2c4s
.e˛ � u/2 � 1

2c2s
juj2

i
: (3)

Here � is the shear viscosity, cs D 1=
p
3 is the sound speed, juj D .u21Cu22/

1=2, and
the discrete velocities are given by e0 D .0; 0/, and e˛ D �˛.cos �˛; sin �˛/, with
�˛ D 1, �˛ D .˛�1/�=2 for ˛ D 1; 2; 3; 4 and �˛ D

p
2, �˛ D .˛�5/�=2C�=4
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for ˛ D 5; 6; 7; 8. The weighting factors are defined as w0 D 4=9, w˛ D 1=9 for
˛ D 1; 2; 3; 4 and w˛ D 1=36 for ˛ D 5; 6; 7; 8.

Assume .0;T/ is divided into time intervals, where n is the time step index. A
fully implicit backward Euler scheme is used to discretize the temporal derivative.
Then we obtain a semi-discretized system for (1) as follows

f nC1
˛ � f n

˛

tnC1
C e˛ �Of nC1

˛ D �nC1
˛ ; (4)

where the time step size is tnC1 D tnC1 � tn, f n
˛ .x/ 	 f˛.x; tn/, and �nC1

˛ 	
�˛.x; tnC1/. If e˛k ¤ 0, we implement a family of fully implicit finite difference
schemes originally proposed in [10] for an explicit method to discretize the spatial
derivative @f˛

@xk
. We partition the domain˝ to a uniform N � N mesh with mesh size

h D 1=.N � 1/ and mesh points .xi
1; x

j
2/; i; j D 0; 1; : : : ;N � 1. Let us define a

scheme @f˛
@xi

k
jm in the family as

@f˛
@xi

k

ˇ̌
ˇ
m
D � @f˛

@xi
k

ˇ̌
ˇ
u
C .1 � �/ @f˛

@xi
k

ˇ̌
ˇ
c
; k D 1; 2; 1 � i � N � 2; (5)

where 0 � � � 1 is a control parameter that determines how much upwinding is
added,

@f˛
@xi

k

ˇ̌
c
D 1

2h



f˛.x

iC1
k ; �/� f˛.x

i�1
k ; �/�;

and

@f˛
@xi

k

ˇ̌
ˇ
u
D

8
<̂

:̂

e˛k

2h



3f˛.x

i
k; �/� 4f˛.x

i�e˛k
k ; �/C f˛.x

i�2e˛k
k ; �/� if 2 � i � N � 3;

e˛k

h



f˛.x

i
k; �/� f˛.x

i�e˛k
k ; �/� if i D 1; or i D N � 2:

Theoretically, the scheme is second-order in the interior of the domain and first-
order near the boundary, but for our test cases, the scheme is effectively second-
order. We also introduce a cheaper first-order upwinding scheme @f˛

@xi
k
D e˛k

h



f˛.xi

k; �/
�f˛.x

i�e˛k
k ; �/� to construct an efficient preconditioner for the scheme (5).

The initial condition is set to be the EDF, i.e. f˛.x; 0/ D f .eq/
˛ .x; 0/. The boundary

conditions are obtained by a nonequilibrium extrapolation method [11]. Assume that
xb is a mesh point on the boundary of the domain, and xnb is the nearest neighboring
mesh point of xb in the interior of the domain. According to the nonequilibrium
extrapolation method, the particle distribution function at xb is set to be

f˛.xb/ D f .eq/
˛ .xb/C Œ f˛.xnb/ � f .eq/

˛ .xnb/�: (6)
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After the discretization, a system of nonlinear algebraic equations

F nC1.XnC1/ WD XnC1 �Xn

tnC1
C G nC1.XnC1/ D 0; n D 0; 1; : : : (7)

is obtained and needs to be solved at each time step. Here G nC1 is dependent on
the spatial discretization and the collision term. We employ a Newton–Krylov–
Schwarz (NKS) [6, 7] type algorithm to solve (7). At each Newton iteration, a
Jacobian system is analytically computed and approximately solved by using a
Krylov subspace method

JnC1SnC1 D �F nC1.XnC1/; (8)

where the Jacobian matrix JnC1 D .F nC1/0.XnC1/ and SnC1 is the search direction
of the Newton method. A restarted GMRES (20) method is applied to approximately
solve the right-preconditioned system

JnC1.MnC1/�1.MnC1SnC1/ D �F nC1.XnC1/; (9)

where MnC1 is the restricted additive Schwarz (RAS) preconditioner defined in [5].
The initial guess for the Newton iteration is chosen as the final solution from the
previous time step.

3 Numerical Experiments

We implement the new algorithm described in the previous section based on PETSc
[1]. A steady state driven cavity flow in 2D is carefully studied in this section. The
numerical tests are carried out on a supercomputer Tianhe-2, which tops the Top-
500 list as of June, 2013. The computing nodes of Tianhe-2 are interconnected via a
proprietary high performance network. And there are two 12-core Intel Ivy Bridge
Xeon CPUs and 24 GB local memory in each node. In the numerical experiments
we use all 24 CPU cores in each node and assign one subdomain to each core.

In the 2D driven cavity flow problem, we assume the top boundary of the cavity
moves from right to left with a constant velocity U0 D �0:1 while the other three
boundaries are fixed. The initial condition of macroscopic variables � D 1:0 and
u D .0; 0/ in the cavity. The Reynolds number is defined as Re D U0H=� with
H D 1:0. In our simulations, Re is chosen to be 100, 1000, 3200, 5000, 7500, and
10,000.

Simulating this flow by solving the NS equations is a popular approach [8, 9, 12],
in which the presence of singularities at the corners is a well-known difficulty. At
the corners (0,1) and (1,1), the pressure and the vorticity are unbounded, and at
the corners (1,0) and (0,0) the second derivatives of the pressure and vorticity are
unbounded. To improve the accuracy of the solution at the corners, Deng et al. [8]
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Table 1 Re D 100, extrema of the velocity through the centerlines of the cavity

Reference N u1;max x2;max u2;max x1;max u2;min x1;min

Present 65 0:2075 0:4531 0:1674 0:7656 �0:2471 0:1875

Present 97 0:2098 0:4583 0:1711 0:7604 �0:2492 0:1875

Present 129 0:2107 0:4609 0:1725 0:7656 �0:2500 0:1875

Present 161 0:2111 0:4562 0:1733 0:7625 �0:2504 0:1875

Present 257 0:2117 0:4609 0:1742 0:7617 �0:2510 0:1875

Botella and Peyret [3] 96 0:2140 0:4581 0:1796 0:7630 �0:2538 0:1896

Deng et al. [8] 64 0:2132 – 0:1790 – �0:2534 –

Ghia et al. [9] 129 0:2109 0:4531 0:1753 0:7656 �0:2453 0:1953

Bruneau and Jouron [4] 129 0:2106 0:4531 0:1786 0:7656 �0:2521 0:1875

perform a Richardson extrapolation of solutions obtained by a finite volume method.
In [3], a spectral method is developed to remove the pollution of the singularities.
To check the accuracy of the discretization, we simulate the flow at Re D 100

with different mesh sizes. The maximum of u1 on the vertical line x1 D 0:5 is
denoted as u1;max and its location x2;max. The minimum and maximum of u2 on
the horizontal line x2 D 0:5 are, respectively, denoted as u2;min and u2;max; their
locations are, respectively, denoted as x1;min and x1;max. Table 1 shows the values of
these extremum and previously published results obtained by the NS equations. Our
results are in agreement with those of [4, 9], but less accurate than the results of
[3, 8]. In [4, 9], second-order schemes are used to solve the NS equations. In [3, 8],
higher order schemes are given to remove the pollution from the corner singularities.

The streamline contours for the cavity flow configurations with Re increasing
from 100 to 10;000 are shown in Fig. 1. We observe that the flow structures are
in good agreement with the benchmark results obtained by Ghia et al. [9]. These
plots show clearly the effect of Re on the flow pattern. For flows with Re � 1000,
only three vortices appear in the cavity; a primary one near the center and a pair
of secondary ones in the corners of the cavity. At Re D 3200, a third secondary
vortex is seen in the upper right corner. At Re D 5000, a tertiary vortex appears in
the lower left corner. Furthermore, another tertiary vortex appears in the lower right
corner as Re � 7500.

To show the parallel scalability of the implicit method, we consider a 4096�4096
uniform mesh. We use a fixed time step size t D 0:0244 and run the code for 10
time steps. We test two overlapping factors ı D h; 2h with different number of
processors. We compare the point-block LU subdomain solver and the point-block
ILU(l) solver. Here l is the fill-in level for the incomplete LU factorization. The
point-block size is 9�9. We set the fill-in levels l D 0; 1; 2; 3. The numbers of linear
and nonlinear iterations are reported in Table 2. The number of linear iterations
grows slowly with the increase of the number of processors. Large overlap or larger
fill-in helps reduce the total number of linear iterations. The compute time of both
an explicit method [10] and the implicit method with different subdomain solvers is
shown in Fig. 2. The optimal compute time can be obtained with fill-in level l D 1,
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Fig. 1 Streamline patterns for the primary, secondary, and additional corner vortices. (a) Re D
100, 128 � 128 mesh. (b) Re D 1000, 128 � 128 mesh. (c) Re D 3200, 256 � 256 mesh. (d)
Re D 5000, 512 � 512 mesh. (e) Re D 7500, 768� 768 mesh. (f) Re D 10;000, 768� 768 mesh
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Table 2 Test results using different overlapping factors and number of processors, 4096 � 4096
mesh (# of unknowns D 150; 994; 944), t0 D 0, time step size t D 0:0244, CFL D 100,
Re D 3200, 10 time steps

Newton(avg.) GMRES/Newton

ı Np LU ILU(0) ILU(1) ILU(2) ILU(3) LU ILU(0) ILU(1) ILU(2) ILU(3)

h 512 4:7 6:1 6 6 6 20:68 26:62 21:93 21:95 21:85

1024 4:7 6:1 6 6 6 21:83 27:21 22:92 22:98 22:90

2048 4:7 6:1 6 6 6 22:62 27:93 23:42 23:52 23:55

4096 4:7 6:1 6 6 6 24:02 28:82 24:45 24:63 24:55

8192 4:7 6:1 6 6 6 26:11 30:43 25:73 25:80 25:73

16;384 4:7 6:1 6 6 6 27:60 32:08 26:98 27:07 26:98

2h 512 6 6:1 6 6 6 20:65 26:16 20:85 20:67 20:63

1024 6 6:1 6 6 6 21:78 26:82 21:50 21:60 21:60

2048 6 6:1 6 6 6 22:35 27:43 22:03 22:07 22:12

4096 6 6:1 6 6 6 23:85 28:10 22:83 22:97 23:10

8192 6 6:1 6 6 6 25:47 29:43 23:78 23:77 23:78

16;384 6 6:1 6 6 6 26:85 30:97 24:90 24:68 25:20

which is less than that of the explicit method. Excellent speedup is obtained from
512 processors to 16,384 processors. From the figure we see that ILU is faster in
terms of the total compute time than LU.

We also do some weak scaling tests of proposed implicit method with local
solvers (LU or ILU(1)). It is observed that the method does not reach the ideal
performance, because the number of GMRES iterations increases as more processor
cores are used. We believe that coarse level corrections in the additive Schwarz
preconditioner can improve the weak scaling performance of the fully implicit
solver and plan to study this issue in the future. But, due to the page limit, the
results are not given in the paper.

4 Conclusions

We developed a parallel, highly scalable fully implicit method for the LBEs. The
accuracy of the method is comparable with that of the NS equations. The fully
implicit method exhibits an excellent speedup with up to 150 million unknowns
on a supercomputer with up to 16,384 processors. Without the CFL limit, the fully
implicit method can be used with a suitable adaptive time stepping method that
increases the time step size as the solution approaches steady state. Because of the
page limit, the discussion related to adaptive time stepping and comparisons with
other methods will be presented in a separate report.

Acknowledgements The work was supported in part by NSFC grants 61170075 and 973 grant
2011CB309701.
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Fig. 2 Compute time and speedup comparison on a 4096�4096mesh with 512, 1024, 2048, 4096,
8192, and 16,384 processors. Implicit method with different subdomain solvers: 10 time steps with
a fixed time step size t D 0:0244. Explicit method [10]: 20,000 time steps with a fixed CFL =
0.05 (a, c) ı D h, compute time comparison (b, d) ı D h, speedup curve
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Multiplicative Overlapping Schwarz Smoothers
for Hdiv-Conforming Discontinuous Galerkin
Methods for the Stokes Problem

Guido Kanschat and Youli Mao

1 Introduction

The efficient solution of the Stokes equations is an important step in the development
of fast flow solvers. The saddle point structure due to the divergence constraint
makes the solution process more complicated. Block preconditioners are often
employed, but their performance is limited by the inf-sup constant of the problem
and by the difficulty of finding a good preconditioner for the pressure Schur comple-
ment. This could be avoided, if the multigrid method operated on the divergence free
subspace directly. Recently in [8], we introduced and analyzed a multigrid method
with an additive overlapping Schwarz smoother. The main ingredients of our method
are a smoother which implicitly operates on the divergence free subspace and a
grid transfer operator from coarse to fine mesh which maps the coarse divergence
free subspace into the fine one. In this contribution here, we now employ the
multiplicative version of this Schwarz method and present numerical results for it.
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We consider discretizations of the Stokes equations with no-slip boundary
conditions

�4u C rp D f in ˝;

r�u D 0 in ˝;

u D uB on @˝;

(1)

on a bounded domain ˝ � R
d of dimension d D 2; 3. The natural solution spaces

for this problem are V D H1
0.˝IRd/ for the velocity u and the space of mean value

free square integrable functions Q D L20.˝/ for the pressure p. We point out that
other well-posed boundary conditions do not pose a problem.

In order to obtain a finite element discretization, we partition the domain ˝ into
a hierarchy of meshes fT`g`D0;:::;L of parallelogram and parallelepiped cells in two
and three dimensions, respectively. By F` we denote the set of all faces of the mesh
T`. The set F` is composed of the set of interior faces Fi

` and the set of all boundary
faces F@`.

In order to discretize (1) on the mesh T`, we choose discrete subspaces X` D
V` � Q`, where Q` � Q. Following [6], we employ discrete subspaces V` of the
space Hdiv

0 .˝/, where

Hdiv.˝/ D ˚v 2 L2.˝IRd/
ˇ̌r�v 2 L2.˝/

�
;

Hdiv
0 .˝/ D

˚
v 2 Hdiv.˝/

ˇ̌
v �n D 0 on @˝

�
:

On each mesh cell T, we choose the Raviart–Thomas [9] space of degree k with
k � 1, mapped by the Piola transformation if necessary and denoted by VT . We
point out that any pair of velocity spaces V` and pressure spaces Q` is admissible, if
the key relation

r�V` D Q` (2)

holds. We obtain the finite element spaces

V` D
˚
v 2 Hdiv

0 .˝/
ˇ̌8T 2 T` W vjT 2 VT

�
;

Q` D
˚
q 2 L20.˝/

ˇ̌8T 2 T` W qjT 2 QT
�
:

1.1 Discontinuous Galerkin Discretization

While the fact that V` is a subspace of Hdiv
0 .˝/ implies continuity of the normal

component of its functions across interfaces between cells, this is not true for
tangential components. Thus, V` 6� H1.˝IRd/, and it cannot be used immediately
to discretize (1). We follow the example in for instance [6] and apply a DG
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formulation to the discretization of the elliptic operator. Here, we focus on the
interior penalty method [1]. Let T1 and T2 be two mesh cells with a joint face F,
and let u1 and u2 be the traces of a function u on F from T1 and T2, respectively. On
this face F, we introduce the averaging operator

ffugg D u1 C u2
2

: (3)

Using the notation, that every integral form over a set of mesh cells or faces is the
sum of the integrals over all objects in the set, the interior penalty bilinear form
reads

a`.u; v/ D .ru;rv/
T`
C 4 h�Lffu˝ ngg; ffv˝ nggi

F
i
`

� 2 hffrugg; ffn˝ vggi
F

i
`
� 2 hffrvgg; ffn˝ uggi

F
i
`

C 2 h�Lu; vi
F
@
`
� h@nu; vi

F
@
`
� h@nv; uiF@` :

(4)

The operator “˝” denotes the Kronecker product of two vectors. We note that the
term 4ffu˝ ngg W ffv ˝ ngg actually denotes the product of the jumps of u and v.

The discrete weak formulation of (1) reads now: find .u`; p`/ 2 V` � Q`, such
that for all test functions v` 2 V` and q` 2 Q` there holds

A`

��
u`
p`

�
;

�
v`
q`

��

 a`.u`; v`/C .p`;r�v`/ � .q`;r�u`/ D F .v`; q`/ 
 .f ; v`/ :

(5)

Discussion on the existence and uniqueness of such solutions can be found
for instance in [5]. Here, we summarize, that a`.:; :/ is symmetric and, if �L is
sufficiently large, it is positive definite. Thus, we can define a norm on V` by

v`


V`
D pa`.v`; v`/: (6)

In order to obtain optimal convergence results, �L is chosen as �=hL, where hL

is mesh size on the finest level L and � is a positive constant depending on the
polynomial degree. A key result in the convergence analysis of this discretization as
well as in the analysis of the additive Schwarz smoother is the inf-sup condition

inf
v2V`

sup
q2Q`

.q;r�v/v


V`

q


Q`

� �` > 0 (7)

where �` D c
q

hL
h`
D c
p
2`�L and c is a constant independent of the grid level `.
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2 Multigrid Method

In this section we define a V-cycle multigrid preconditionerB` for the operator A`.
We define the action of the multigrid preconditioner B` W X` ! X` recursively as
the multigrid V-cycle with m.`/ � 1 pre- and post-smoothing steps. Let R` be a
suitable smoother. Let B0 D A �10 . For ` � 1, define the action of B` on a vector
L` D .f`; g`/ by

1. Pre-smoothing: begin with .u0; p0/ D .0; 0/ and let

�
ui

pi

�
D
�

ui�1
pi�1

�
CR`

�
L` �A`

�
ui�1
pi�1

��
i D 1; : : : ;m.`/; (8a)

2. Coarse grid correction:

�
um.`/C1
pm.`/C1

�
D
�

um.`/

pm.`/

�
CB`�1I t

`�1
�
L` �A`

�
um.`/

pm.`/

��
; (8b)

3. Post-smoothing:

�
ui

pi

�
D
�

ui�1
pi�1

�
CR`

�
L` �A`

�
ui�1
pi�1

��
; i D m.`/C 2; : : : ; 2m.`/C 1

(8c)

4. Assign:

B`L` D
�

u2m.`/C1
p2m.`/C1

�
(8d)

We distinguish between the standard V-cycle with m.`/ D m.L/ and the variable
V-cycle with m.`/ D m.L/2L�`, where the number m.L/ of smoothing steps on the
finest level is a free parameter. We refer to BL as the V-cycle preconditioner of AL.
The iteration

�
ukC1
pkC1

�
D
�

uk

pk

�
CBL

�
LL �AL

�
uk

pk

��
(9)

is the V-cycle iteration.

2.1 Overlapping Schwarz Smoothers

In this subsection, we define a class of smoothing operators R` based on a subspace
decomposition of the space X`. Let N` be the set of vertices in the triangulation T`,
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and let T`;� be the set of cells in T` sharing the vertex � . They form a subdivision
of ˝ with N overlapping subdomains (also called patches) which we denote by
f˝`;�gN�D1.

The subspace X`;� D V`;� � Q`;� consists of the functions in X` with support in
˝`;� . Note that this implies homogeneous slip boundary conditions on @˝`;� for the
velocity subspace V`;� and zero mean value on˝`;� for the pressure subspace Q`;� .
The Ritz projection P`;� W X` ! X`;� is defined by the equation

A`

�
P`;�

�
u`
p`

�
;

�
v`;�
q`;�

��
D A`

��
u`
p`

�
;

�
v`;�
q`;�

��
8
�
v`;�
q`;�

�
2 X`;� : (10)

Note that each cell belongs to no more than four (eight in 3D) patches T`;� , one for
each of its vertices.

We recall the additive Schwarz smoother

Ra;` D 	
X

�2N`

P`;�A
�1
`

where 	 2 .0; 1� is a scaling factor, R` is L2 symmetric and positive definite. In [8],
it was shown based on arguments from [2, 10], that this smoother yields a uniformly
convergent multigrid method if 	 is chosen appropriately.

Here, we use the symmetric multiplicative Schwarz smoother Rm;` associated
with the spaces X`;� , defined by

Rm;` D .I � E`/A
�1
` ;

E` D .I �P`;1/ : : : .I �P`;N/ : : : .I �P`;1/ :

We proved uniform convergence for the variable V-cycle iteration with the smoother
Ra;` in [8] and showed its efficiency by numerical experiments. Since stan-
dard arguments from domain decomposition theory like stable decomposition and
strengthened Cauchy-Schwarz inequalities are used, we conjecture that the analysis
applies to the multiplicative version in the usual fashion. We note that the use of
the variable V-cycle is induced by the level dependence of the inf-sup condition (7).
Since optimality of this estimate has not been established, we study standard cycles
as well.

3 Numerical Results

We present numerical results for the multiplicative Schwarz method in various V-
cycle methods and different solvers in order to show that the contraction numbers are
not only bounded away from one, but are actually small enough to make this method
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Table 1 Number of
iterations n8 to reduce the
residual by 10�8 with the
variable V-cycle and the
standard V-cycle iteration
with one and two pre- and
post-smoothing steps

m.`/ D 2L�` m.`/ D 1 m.`/ D 2

L RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3
3 5 5 5 5 5 5 3 3 3

4 6 6 7 6 6 7 5 5 5

5 6 6 6 6 6 7 5 5 6

6 5 5 6 6 6 7 5 5 6

7 5 5 6 7 7 7 5 5 6

8 5 5 6 7 7 7 6 6 6

Penalty parameter dependent of the finest level mesh size 21�L

very efficient. The following results were produced using the deal.II library [3, 4]
and its multigrid capabilities [7].

The experimental setup for most of the tables is as follows: the domain is ˝ D
Œ�1; 1�2, the coarsest mesh T0 consists of a single cell T D ˝ . The mesh T` on level
` is obtained by dividing all cells in T`�1 into four quadrilaterals by connecting the
edge midpoints. Thus, a mesh on level ` has 4` cells, and the length of their edges
is 21�`. The right hand side is f D .1; 1/.

In Table 1, we first study convergence of the linear multigrid method (precon-
ditioned Richardson iteration) with the multiplicative Schwarz smoother using a
variable V-cycle algorithm on a square domain with no-slip boundary condition. The
penalty constant in the DG form (4) is chosen as N�=hL, where N� D .kC 1/.kC 2/,
on the finest level L and all lower levels `. Results for pairs of RTk=Qk with orders
k between one and three are reported in the table which show the fast and uniform
convergence. On the right of this table, we keep the same experimental setup and
present iteration counts for the standard V-cycle algorithm with one and two pre-
and post-smoothing steps, respectively. Although not proven for this case, we still
observe uniform convergence results. We also see that the variable V-cycle with a
single smoothing step on the finest level is as fast as the standard V-cycle with two
smoothing steps, and thus the variable V-cycle is more efficient.

In Table 2, we test the variable and standard V-cycles with penalty parameters
depending on the mesh level `, namely N�=h` (where N� is a positive constant
depending on the polynomial degree) in the DG form (4). This is the typical situation
when the operators are assembled independently on each grid level.

In Table 3, we provide results with GMRES solver and BL as preconditioner for
experimental setups as in Tables 1 and 2, respectively. The second to fourth columns
are results for the variable V-cycle with penalty parameter dependent of the finest
level mesh size. The fifth and seventh columns are the results for the standard V-
cycle with penalty parameter dependent of the finest level mesh size. The last three
columns are the results for the standard V-cycle with penalty parameter depend on
the mesh size of each level. From this table, we see that the GMRES method, as
expected, is faster in every case.
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Table 2 Penalty parameter
dependent on the mesh size of
each level

Variable Standard

Level RT1 RT2 RT3 RT1 RT2 RT3
3 6 6 6 6 6 6

4 6 6 6 6 6 7

5 6 6 6 6 6 7

6 5 5 6 6 6 7

7 5 5 6 6 6 7

8 5 5 6 6 6 7

Number of iterations n8 to reduce the residual
by 10�8 with variable and standard V-cycle
iterations with m.L/ D 1

Table 3 Number of
iterations n8 to reduce the
residual by 10�8 with
GMRES solver and
preconditioner BL; variable
and standard V-cycle with
inherited forms, variable
V-cycle with noninherited
forms

Variable Standard Noninherited

Level RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3
3 2 2 2 2 2 2 3 3 3

4 3 3 4 4 4 4 5 5 5

5 5 5 5 5 5 5 5 5 5

6 4 4 5 5 5 5 5 5 5

7 4 4 5 5 5 5 5 5 5

8 5 4 5 5 5 5 5 5 5

One pre- and post-smoothing step on the finest level

Table 4 Three-dimensional
domain

Richardson GMRES

Level RT1 RT2 RT1 RT2
2 1 1 1 1

3 5 5 4 4

4 6 5 4 4

5 6 5 4 4

Number of iterations n8 to reduce
the residual by 10�8 with the vari-
able V-cycle algorithm with penalty
parameter dependent of the finest
level mesh size

In Table 4, we provide results in three dimensions for variable V-cycle methods
with the same penalty parameter as we choose in Table 1. We keep the similar
experimental setups: domain ˝ D Œ�1; 1�3 and right hand side f D .1; 1; 1/. We
observe the similar fast and uniform convergence performance as in two dimensions.

We finish our experiments by applying our method to a non-simply connected
domain. We choose a square with a square hole, namely the domain ˝ D Œ�1; 1� n
Œ� 1

3
; 1
3
�. The coarse grid on level ` D 0 consists of the squares of the form Œ�1 C

2i
3
;�1 C 2iC2

3
� � Œ�1 C 2j

3
;�1 C 2jC2

3
� with 0 � i; j � 2, and with the index pair

.i; j/ D .1; 1/ missing. We note that the Hodge decomposition in this case is more
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Table 5 Number of
iterations n8 to reduce the
residual by 10�8, different
finite element orders and
solvers on the domain with
hole Œ�1; 1�2 n Œ�1=3; 1=3�2

Richardson GMRES

Level RT1 RT2 RT1 RT2
2 6 6 4 4

3 6 6 4 4

4 6 6 4 4

5 5 5 4 4

6 5 5 4 4

7 5 5 4 4

complicated due to the presence of a harmonic form. Nevertheless, the results with
the multiplicative Schwarz method in Table 5 exhibit the same performance we
observed in the simply connected case.
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A Newton-Krylov-FETI-DP Method
with an Adaptive Coarse Space Applied
to Elastoplasticity

Axel Klawonn, Patrick Radtke, and Oliver Rheinbach

1 Introduction

We consider a Newton-Krylov-FETI-DP algorithm to solve problems in elasto-
plasticity. First, the material model and its discretization will be described. The
model contains a Prandtl-Reuss flow rule and a von Mises flow function. We restrict
ourselves to the case of perfect elastoplasticity; thus, there is no hardening. For
more information on elastoplasticity; see, e.g., [1, 4, 10]. In this material model we
will have local nonlinearities introduced by plastic material behavior in activated
zones of the domain. For the finite element discretization we follow the framework
given in [1]. Second, we will briefly present the linearization and the FETI-DP
method which is used to solve the linearized problems. For more details on the
FETI-DP algorithm, see, e.g., [2, 7, 8, 11]. The convergence of the Newton-Krylov-
FETI-DP method using a standard coarse space with vertices and edge averages can
deteriorate when the plastically activated zone intersects the interface introduced
by the domain decomposition. In this case, we use an adaptive coarse space which
successfully decreases the number of cg iterations and the condition numbers of the
preconditioned linearized systems. Only a small amount of adaptive constraints is
needed if the plastically activated zone is restricted to a small part of the domain.
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Additional constraints are needed mainly in the final time and Newton steps. The
additional constraints for the coarse space are chosen by a strategy proposed in [9]
for linear elliptic problems. In contrast to their implementation, here, the additional
constraints will be implemented using a deflation approach; see [6].

2 Elastoplastic Material Model and Discretization

The material model is derived from the quasi-static equation of equilibrium

div �.x; t/ D f .x; t/I

see, e.g., [1, 4, 10]. Let d be the dimension of the domain. Multiplying the equation
with v 2 H1

D.˝/
d WD fv 2 H1.˝/d W v D 0 on 
Dg and application of the Gauss

theorem yields the weak formulation: Find u 2 H1.˝/d which satisfies u D w on

D, such that for all v 2 H1

D.˝/
d:

Z

˝

�.u/ W �.v/dx D
Z

˝

f � vdxC
Z


N

g � vds: (1)

By discretization in time using the implicit Euler method we obtain:
Find un 2 H1.˝/d with un D w on 
D, such that 8v 2 H1

D.˝/
d

Z

˝

�n W ".v/ dx D
Z

˝

fn v dxC
Z


N

gn � v ds;

where �n is dependent on the displacement un. This dependency is determined by
the von Mises flow function and the chosen type of hardening. In this article we
consider perfect elastoplastic material behavior and hardening effects are absent. In
this case the von Mises flow function is given by ˚.�/ D jdev.�/j��y, where �y is
the yield point and dev .�/ D �� 1

d tr .�/Id�d. The tension tensor in the nth timestep
is then linear elastic if ˚.�n/ � 0 and plastic otherwise. In the first case we have

�n D .�C �/tr.".un � un�1/C C
�1�n�1/C 2�dev.".un � un�1/C C

�1�n�1/

with the Lamé constants �, � and the fourth order elasticity tensor C. In the second
case the tension tensor in the nth timestep reads

�n D .�C �/tr.".un � un�1/C C
�1�n�1/

C �y
dev.".un � un�1/C C

�1�n�1/
jdev.".un � un�1/C C�1�n�1/j :



Newton-Krylov Adaptive FETI-DP for Elastoplasticity 295

Note that in the first case, we have a linear relationship between the tension and
the displacement, while in the second case, we have a nonlinearity introduced by
normalizing the deviatoric term. For a more detailed description how to obtain the
time discrete tension tensor explicitly for different types of hardening, see [1].

3 Linearization

We need to linearize the nonlinear discrete problem in every time step. For this we
will represent the problem as a root finding problem. We define the pth component
of the vector field F by

Fp.un/ D
Z

˝

�n W ".'p/ dx �
Z

˝

fn � 'p dx �
Z


N

gn � 'p ds:

Then the nonlinear problem reads: Solve F.un/ D 0. The Newton update in the
.kC 1/th Newton step is ukC1

n D uk
n CukC1

n with ukC1
n defined by

DF.uk
n/ukC1

n D �F.uk
n/;

where the tangential stiffness matrix DF is given by .DF.uk
n//pq D @Fp.uk

n/

@uk
n;q
: In

our numerical examples we iterate in each timestep until the residual satisfies
jjF.uk

n/jj2 � 10�10 C 10�6jjF.u0n/jj2, where u0n WD 0; for the stopping criterion,
see, e.g. [1], p. 171, l. 34 of the source code and [5], p. 73, (5.4). To guarantee the
convergence we will use the Armijo rule, see, e.g., [5], as a line search algorithm.
In each Newton iteration we will first set � D 1 as an initial step length and
then assemble local stiffness matrices K.i/ D DF.uk;.i/

n / and right-hand sides
f .i/ D F.uk;.i/

n /, i D 1; : : : ;N: Then we will solve the linearized system

DF.uk
n/ukC1

n D �F.uk
n/

with FETI-DP as described in the following section. Our trial update is given by
ukC1

n;� D uk
n C �ukC1

n . We test if the Armijo condition

jjF.ukC1
n;� /jj2 < .1 � 10�4 � �/jjF.uk

n/jj2

is satisfied. In this case we update ukC1;.i/
n  ukC1;.i/

n;� . Otherwise we halve the step
length �  �=2.
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4 FETI-DP and Deflation

We will now briefly describe the FETI-DP algorithm. For more details on FETI-DP,
see, e.g., [7, 8, 11]. Let the primal variables, for example, vertices or edge averages
in subdomain˝i be denoted by u.i/˘ and the remaining variables be denoted by u.i/B ,
and the corresponding stiffness matrices and right-hand sides be sorted accordingly.
Then, we have for the local stiffness matrices K.i/ and local load vectors f .i/

K.i/ D
"

K.i/
BB K.i/T

˘B

K.i/
˘B K.i/

˘˘

#
and f .i/ D

"
f .i/B

f .i/˘

#
;

respectively. We denote by KBB D diagN
iD1K

.i/
BB, K˘˘ D diagN

iD1K
.i/
˘˘ , and K˘B D

ŒK.1/
˘B; : : : ;K

.N/
˘B�. We introduce the following notation

�
KBB QKT

˘BQK˘B QK˘˘
	
D
�

IB 0

0 RT
˘

	 �
KBB KT

˘B

K˘B K˘˘

	 �
IB 0

0 R˘

	
;

where RT
˘ is the partial assembly operator in the primal variables. We define a jump

operator BB consisting of entries 0; 1; and �1, which enforces continuity in the
remaining unknowns by BBuB D 0. Then the FETI-DP system reads F� D d; with

F D BBK�1BB BT
B C BBK�1BB

QKT
˘B
QS�1˘˘ QK˘BK�1BB BT

B;

d D BBK�1BB fB � BBK�1BB
QKT
˘B
QS�1˘˘

�Qf � QK˘BK�1BB fB
�
;

where QS˘˘ D QK˘˘ � QK˘BK�1BB
QKT
˘B. We further partition the remaining variables

u.i/B D Œu.i/TI u.i/T �T into dual variables on the interface u.i/ and inner variables u.i/I and

the stiffness matrices and right-hand sides accordingly. Define K D diagN
iD1K

.i/
,

KII D diagN
iD1K

.i/
II , and KI D ŒK.1/

I : : :K
.N/
I �. The FETI-DP algorithm is the

preconditioned conjugate gradient algorithm applied to F� D d with the Dirichlet
preconditioner

M�1 D BB;D Œ0 I�
T �K � KIK

�1
II KT

I

�
Œ0 I�B

T
B;D:

An additional coarse level in the FETI-DP method can be introduced by a deflation
approach; see, e.g., [6] for more details. We will aggregate constraints as columns
in a matrix U. The constraint UTBu D 0 will be enforced by introducing projections
P D U.UTFU/�1UTF and Q D I�P. Then the projected system QTF� D QTd will
be solved iteratively, while PTF� D PTd will be solved directly. We can also solve
the original system with the balancing preconditioner M�1BP D QM�1QT C PF�1
where M�1 is the classical Dirichlet preconditioner instead; see, e.g., [6].
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5 Adaptive Coarse Space

The presentation in this section follows the ideas proposed in [9] for linear elliptic
problems. We will start our Newton-Krylov-FETI-DP algorithm with an initial
coarse space consisting of vertex constraints as primal variables enforced by
subassembly. It is well known that the condition number satisfies �.M�1F/ �
! WD supw2 QW

jPDwj2S
jwj2S , where PD WD BT

B;DBB; see, e.g., [7, 11]. Consider a local edge

between the subdomains ˝i and ˝j and define SEij WD diag .S.i/; S. j//: Let BEij be
a local version of the Matrix B defined as the matrix with the rows of ŒB.i/ B. j/�,
which consist of a 1 and a �1 and are zero elsewhere. Let QWEij be the subspace of
functions in W.i/ � W. j/ which are continuous in vertices which both subdomains
have in common and define

!Eij WD sup
wEij2 QWEij

jPD;EijwEij j2SEij

jwEij j2SEij

as the local condition number estimator, where PD;Eij D BT
D;Eij

BEij and BD;Eij is a
scaled version of BEij . Define Q! WD max

Eij�

!Eij as the maximum !Eij of all edges

on the interface. Then Q! is expected to be a good estimator of the bound ! of
the condition number �.M�1F/. We choose a prescribed tolerance TOL � 1 for the
condition number. With local orthogonal projections˘Eij from W.i/�W. j/ onto QWEij

and˘ onto range .˘Eij SEij˘Eij/ we solve the following local generalized eigenvalue
problem on each edge

˘˘EijP
T
D;Eij

SEijPD;Eij˘Eij˘wEij

D �Eij

�
˘
�
˘EijSEij˘Eij C �.I �˘Eij/

�
˘ C �.I �˘/�wEij ;

where � > 0 is a shift parameter here chosen as maxi.SEij/ii; see also [9]. We are
only interested in eigenvectors to eigenvalues which exceed the tolerance TOL.
Let the eigenvalues �Eij;l, l D 1; ::; n be sorted in a decreasing order. For each
eigenvector wEij;l to an eigenvalue �Eij;l � TOL, l D 1; : : : ; k we set uEij;l D
BD;EijSEijPD;EijwEij;l: Let uEij;l be vectors representing functions in the Lagrange
multiplier space that coincide with uEij;l on the edge Eij and that are zero elsewhere.
For each edge we collect the uEij;l as columns of a matrix U and apply the modified
Gram-Schmidt algorithm to detect and remove linearly dependent constraints.
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6 Numerical Examples

In the following we will present numerical examples. Consider a square domain
˝ D .0; 1/2 with zero Dirichlet boundary conditions imposed on the lower edge
f.x; y/ 2 @˝jy D 0g which is exposed to a surface force g.x; y; t/ D .150t; 0/T if
x 2 f.x; y/ 2 @˝jy D 1g and g.x; y; t/ D 0 elsewhere. The material has a Young
modulus of E D 206; 900, a Poisson ratio of � D 0:29 and �y D 200. We compute
the solution in the time interval T D Œ0; 0:45� in nine time steps of step length
t D 0:05. The space is discretized with P2 finite elements in all our examples
(Fig. 1).

In the first set of numerical experiments we consider a classical coarse space with
only vertex and edge average constraints using different partitions into elements and
subdomains. There are no problems with the classical coarse space if the plastically
activated zone does not intersect the interface; see Table 1 for a decomposition

     150 t

(0,1)

(0,0) (1,0)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 1 Unit square with zero Dirichlet boundary conditions at the lower edge y D 0 exposed to a
surface force g.t/ D .150t; 0/T at the upper edge y D 1 (left). Displacement magnified by factor 20
and shear energy density in the last timestep (right). Material parameters E D 206;900, � D 0:29

and �y D 200

Table 1 FETI-DP maximal condition numbers and iteration counts in Newton’s scheme with a
coarse space consisting of vertices and edge averages

Newton its

n D H=h N D 1=H Max. cond Max. CG-It. per timestep

20 2 4.06 13 1/1/1/4/4/6/7/9/11

30 2 4.53 14 1/1/3/5/5/7/8/10/11

40 2 4.87 14 1/1/3/4/5/7/9/13/13

We use P2 finite elements in all our examples
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Table 2 Problems with the
classical coarse space

n D H=h N D 1=H Max. cond Max. CG-It.

4 15 900;837 371

6 15 >106 >1000

8 15 >106 >1000

FETI-DP maximal condition numbers and iteration
counts

Fig. 2 Plastically activated zone in the last timestep. Decomposition into 2 � 2 subdomains. The
plastically activated zones stay completely inside of subdomains (left). Decomposition into 15�15
subdomains. The plastically activated zones intersect the interface (right)

in 2 � 2 subdomains. In this case each linearized system can be analyzed as in
[3] using a slab technique. However if the plastically activated zone intersects
the interface, the condition numbers and iteration counts increase considerably;
see Table 2 for the results with a decomposition in 15 � 15 subdomains (Fig. 2).
For the results with the adaptive coarse space described in Sect. 5, see Table 3.
The eigenpairs were computed using the MATLAB built-in function “eig”. The
complexity thus is cubic with respect to the length of the subdomain edges.
For constant H=h the length of the subdomain edges is constant. Moreover, the
global number of subdomain edges, and thus also the number of eigenvalue
problems, grows linearly with the number of subdomains. The solution of the
eigenvalue problems can, of course, be performed in parallel. The condition
numbers and iteration counts decrease for the cost of a few more primal constraints
in the last time steps. The tolerance is currently determined heuristically; see
Table 3.
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Table 3 For each subdomain in each space direction, there are n finite elements and in each space
direction there are N subdomains

n D N D Max Constraints/ Constraints/

H=h 1=H TOL cond Max it timestep Global dofs global dofs (%)

4 15 6.0 5.84 25 (25 elasticity) 0/0/0/0/0/0/19/46/121 8316 1.5

6 15 7.0 7.06 28 (27 elasticity) 0/0/0/0/0/0/29/71/180 11; 676 1.5

8 15 8.0 8.01 30 (29 elasticity) 0/0/0/0/0/0/35/81/225 15; 036 1.5

4 15 5.9 5.84 25 (25 elasticity) 0/0/0/0/0/0/19/46/123 8316 1.5

6 15 7.1 7.06 28 (27 elasticity) 0/0/0/0/0/0/29/71/179 11; 676 1.5

TOL denotes the prescribed tolerance for the condition number, max cond the maximal condition
number in the Newton iterations, max it the maximal number of preconditioned conjugate gradient
iterations, and constraints/timestep the amount of constraints in each timestep. The tolerances TOL
were chosen from considering the condition numbers of corresponding linear elastic problems. The
number in brackets in the “max it” column refers to the iteration counts of these corresponding
elasticity problems. We can also use the condition number of the first few time steps, where the
material still behaves elastically, as a reference. It can be seen that the results are not very sensitive
to small changes in the tolerance
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Adaptive Coarse Spaces for BDDC
with a Transformation of Basis

Axel Klawonn, Patrick Radtke, and Oliver Rheinbach

1 Introduction

We describe a BDDC algorithm, see e.g., [1], and an adaptive coarse space enforced
by a transformation of basis for the iterative solution of scalar diffusion problems
with a discontinuous diffusion coefficient. The coefficient varies over several orders
of magnitude both inside of the subdomains and along the interface. A related
algorithm for FETI-DP with a balancing preconditioner has been already described
in [6, 7]. Other adaptive coarse space constructions for FETI, FETI-DP, and BDDC
methods have been proposed in [8, 10]. We also present some preliminary numerical
results for different scalings, including the recent deluxe scaling; cf., [2].

We consider the following model problem. Let˝ � R
2 be a bounded polyhedral

domain. We subdivide @˝ into a subset of positive measure @˝D where Dirichlet
boundary conditions are imposed and @˝N D @˝ n @˝D where general Neumann
boundary conditions are prescribed. Define the Sobolev space H1

0.˝; @˝D/ D
fv 2 H1.˝/ W v D 0 on @˝Dg and consider the piecewise linear finite element
approximation of the scalar diffusion problem: Find u 2 H1

0.˝; @˝D/, such that
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a.u; v/ D f .v/ holds for all v 2 H1
0.˝; @˝D/. The bilinear form a.u; v/ and the

functional f .v/ are defined by

a.u; v/ D
Z

˝

�.x/rurv dx and f .v/ D
Z

˝

fv dxC
Z

@˝N

gNv ds;

where gN is the Neumann boundary data on @˝N . The model problem is discretized
with linear finite elements. We assume �.x/ to be positive and piecewise constant
on ˝ and constant on single elements of the triangulation.

The remainder of the paper is organized as follows. We describe the transfor-
mation of basis which is performed in our BDDC algorithm to introduce additional
coarse constraints in Sect. 2. The characterization how these constraints are chosen
via the solution of local eigenvalue problems and an overview over our theoretical
results is given in Sect. 3. For a more detailed analysis, see [7]. In Sect. 4 we consider
some examples and present numerical results.

2 Transformation of Basis and Scaling in the BDDC
Algorithm

As a domain decomposition method we use BDDC. Due to space limitation,
for a description of the algorithm and the notation, we refer the reader to [5].
Given a set of primal vertex variables, in the next section, we describe a way
to obtain adaptively additional primal variables in the form of weighted edge
averages. To implement these edge averages, we transform our local stiffness
matrices K.i/ and right hand sides f .i/ with a transformation matrix T.i/. The

resulting transformed stiffness matrices K
.i/ D T.i/TK.i/T.i/ and right hand sides

f
.i/ D T.i/T f .i/ then replace K.i/ and f .i/ in the BDDC algorithm; see, e.g., [5]

for more details. We construct the transformation matrices T.i/ edge by edge.
Consider an edge E of ˝i and the restriction of T.i/ to this edge, denoted by
TE. Suppose we have selected a set of weighted edge averages with weights
described by orthonormal column vectors fv.i/E;1; : : : ; v

.i/
E;mg. We augment this set to

an orthonormal basis fv.i/E;1; : : : ; v
.i/
E;m; v

.i/
E;mC1; : : : ; v

.i/
E;nE
g of RnE , where nE denotes

the number of nodes of the edge E. The transformation matrix TE is defined by
TE D Œv

.i/
E;1; : : : ; v

.i/
E;m; v

.i/
E;mC1; : : : ; v

.i/
E;nE

� and describes the change of basis from the
new to the original nodal basis. The first m columns of TE correspond to the new
additional primal variables and the remaining columns correspond to the new dual
unknowns. Denoting the edge unknowns in the new basis by OuE and the unknowns in
the original basis by uE, we have uE D TE OuE. We denote by T.i/E the transformation
matrix which operates on all edges of @˝i. The transformation matrix T.i/ is then
defined by T.i/ D diag.II; IV ;T

.i/
E /; where II and IV denote the identity on inner

variables and on vertex variables, respectively. The transformed stiffness matrices
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are of the form

T.i/TK.i/T.i/ D

2
64

K.i/
II K.i/

IV K.i/
IE T.i/E

K.i/
VI K.i/

VV K.i/
VET.i/E

T.i/TE K.i/
EI T.i/TE K.i/

EV T.i/TE K.i/
EET.i/E

3
75 ;

with right hand sides T.i/T f .i/ D Œ f .i/TI f .i/TV f .i/TE T.i/E �
T . We can now per-

form our BDDC algorithm with the transformed problem; see, e.g., [5] for a
detailed description. In our algorithm we will use two different scalings. Let
'i be the nodal finite element function associated with the node xi and define
O�j.xi/ D maxT2supp.'i/\˝j�jjT .xi/. Our scaling weights are now defined as ı�j .x/ D
O�j.x/=

P
k2Nx
O�k.x/, where Nx is the set of indices of the subdomains that have the

node x on their boundary. The scaling matrices D. j/ are diagonal matrices in this
case with the weights ı�j .x/ on the diagonal. This approach is usually referred to
as �-scaling. We consider another scaling variant, also known as deluxe scaling,
see e.g., [2]. In this case the restriction D.k/

Eij
of D.k/ to an edge Eij is defined by

D.k/
Eij
D .S.i/EijEij

C S. j/
EijEij

/�1S.k/EijEij
, k D i; j, where S.k/EijEij

is the restriction of S.k/ to the
edge Eij after the transformation of basis.

3 Choice of Weighted Edge Averages

In the following we will consider two different eigenvalue problems to compute
weighted edge averages for our algorithm; see also [7]. The first eigenvalue
problem is a replacement for the weighted Poincaré inequalities in the case of non-
quasimonotone coefficient functions; see [6, 7]. The second is related to an extension
theorem; see [7]. For a common edge Eij of the subdomains ˝i and ˝j we define

S.l/Eij;�
, l D i; j, as the Schur complement which is obtained after eliminating all

variables of K.l/ except of the variables on the closure of Eij, denoted by E ij. We

define the mass matrix .M.l/
Eij;�

/pq WD
R
Eij
�l'p'qds, p; q D 1; : : : ; nEij , where nEij

denotes the number of degrees of freedom on E ij and 'p is the nodal finite element
basis function associated with a node xp 2 E ij. We also introduce the bilinear

forms s.l/Eij;�
.u; v/ WD uTS.l/Eij;�

v and m.l/
Eij;�

.u; v/ WD uTM.l/
Eij;�

v. If the coefficient
�.x/ of the diffusion problem varies over several orders of magnitude inside of
subdomains and over the interface of the decomposition and is non-quasimonotone
the constant in the Poincaré inequality is polluted by the contrast of the coefficient.
For a definition of quasimonotone coefficients and a detailed analysis of weighted
Poincaré inequalities, see [9]. The Poincaré constant also appears in the bound of
the condition number estimate of substructuring methods equipped with a classical
coarse space, e.g., a coarse space consisting of vertices and standard edge averages
only. To circumvent this problem we introduce a generalized eigenvalue problem to
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compute new weighted averages which will be used to enhance our coarse space.
Note, that related eigenvalue problems are also used in [3, 4] in the context of
overlapping Schwarz methods. However, our approach is more local. We denote
the finite element trace space on Eij by Wh.Eij/.

Eigenvalue Problem 1 (EVP 1) Find .u.i/k ; �
.i/
k / 2 Wh.Eij/ � R such that

s.i/Eij;�
.u.i/k ; v/ D �.i/k m.i/

Eij;�
.u.i/k ; v/ 8v 2 Wh.Eij/: (1)

For L 2 f1; : : : ; nEijg, where nEij is the number of degrees of freedom on E ij, and for
l D i; j we introduce the projection

I
Eij;.l/
L D

LX

kD1
m.l/

Eij;�
.u.l/k ; v/u

.l/
k ; l D i; j;

with the eigenvectors u.l/k of Eigenvalue Problem 1. The next lemma provides a
generalized Poincaré inequality and is needed to estimate weighted L2-norms of
projected finite element functions on edges; for a proof, see [7].

Lemma 1 For v 2 Wh.Eij/ and w WD
�
v � I

Eij;.l/
L v

�
2 Wh.Eij/, we have

jjv � I
Eij;.l/
L vjj2L2�l

.Eij/
D m.l/

Eij;�
.w;w/ � 1

�
.l/
LC1

s.l/Eij;�
.v; v/ (2)

and s.l/Eij;�
.w;w/ � s.l/Eij;�

.v; v/: (3)

In our BDDC coarse space we will enforce the equality of the projected functions

I
Eij;.i/
L v.i/ D I

Eij;.i/
L v. j/ and I

Eij;. j/
L v.i/ D I

Eij;. j/
L v. j/ on the interface. We cannot

directly enforce this equality, but instead we guarantee that m.l/
Eij;�

.u.l/k ; v
.i/
Eij
/ D

m.l/
Eij;�

.u.l/k ; v
. j/
Eij
/, for k D 1; ::;L, by a transformation of basis. To do so, we first build

M.l/
Eij;�

u.l/k and discard the entries related to primal vertices. Then, this vector defines

those columns of the local transformation matrices T.i/E and T. j/
E which are related

to the corresponding primal variable in the new basis. We choose all eigenvectors
of Eigenvalue Problem 1 whose corresponding eigenvalues satisfy � � �� with a
chosen tolerance ��.

To guarantee that certain extensions can be bounded with constants independent
of coefficient jumps, we introduce a second eigenvalue problem.
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Eigenvalue Problem 2 (EVP 2)

s. j/
Eij;�j

.v;w�/ D �.i/� s.i/Eij;�i
.v;w� /; � D 1; : : : ; nEij : (4)

Remark 1 If ker.s. j/
Eij;�j

/ D ker.s.i/Eij;�i
/, instead of solving Eigenvalue Problem 2 on

range.s. j/
Eij;�j

/, we solve

˘S. j/
Eij;�j

˘w D �
�
˘S.i/Eij;�i

˘ C � �I �˘�
�

w;

where � is any positive constant and ˘ is an orthogonal projection onto
range.s.i/Eij;�i

/. In our computations we have chosen � as the maximum diagonal

entry of ˘S.i/Eij;�i
˘ . The right-hand side of this problem is positive definite; see also

[8].

We introduce a second projection operator

˘
.l/
K v WD

KX

kD1
s.l/Eij;�

.w.l/k ; v/w
.l/
k ; l D i; j;

with K 2 f1; : : : ; nEijg and obtain the following lemma; see [7] for a proof.

Lemma 2 We have 8w. j/ 2 Wh.Eij/

s.i/Eij;�i

�
w. j/ �˘.i/

K w. j/;w. j/ �˘.i/
K w. j/

�
� 1

�
.i/
KC1

s. j/
Eij;�j

�
w. j/;w. j/

�
:

To take advantage of Lemma 2 we need to introduce a second set of primal
constraints of the form ˘

.i/
K w.i/ D ˘

.i/
K w. j/ and ˘

. j/
K w.i/ D ˘

. j/
K w. j/: For

both generalized eigenvalue problems 1 and 2 we introduce tolerances to decide
which eigenvectors are chosen to enhance our coarse space. Additionally to the
eigenvectors of Eigenvalue Problem 1 we choose all eigenvectors of Eigenvalue
Problem 2 whose corresponding eigenvalues satisfy � � ��:with a chosen tolerance
�� .

Definition 1 By an 	-patch ! � ˝ we denote an open set which can be represented
as a union of shape regular finite elements and which has diam.!/ 2 O.	/ and a
measure of O.	2/. Let Eij � @˝i be an edge. Then, a slab Q̋ i	 is a subset of ˝i of
width 	 with Eij � @ Q̋ i	 which can be represented as the union of 	-patches !ik,

k D 1; : : : ; n, such that E .k/ij WD .@!ik \ Eij/
ı ¤ ;; k D 1; : : : ; n.

For each edge Eij let Q̋ i	 � ˝i be a slab of width 	, such that Eij � @ Q̋ i	. Let
!ik � Q̋ i	, k D 1; : : : ; n; be a set of 	-patches such that Q̋ i	 D [n

kD1!ik, and the
coefficient function �ij!ik D �ik is constant on each !ik. Let !ik\!il D ;, k ¤ l. We
obtain the following condition number estimate which is proven in [7].
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Theorem 1 The condition number for our BDDC algorithm satisfies

�.M�1BDDC S/ � C
�
1C log

�	
h

��2 1

�KC1

�
1C 1

	�LC1

�
:

Here, C > 0 is a constant independent of H, h, and 	 and

1

�LC1
D max

kD1;:::;N

(
1

�
.k/
LkC1

)
;

1

�KC1
D max

(
1; max

kD1;:::;N
1

�
.k/
KC1

)
:

4 Numerical Results

We now present a few numerical examples that support our theory. We choose
˝ D Œ0; 1�2 with Dirichlet boundary conditions on @˝ and a constant right hand
side f D 0:1. The coefficient distributions are depicted in Fig. 1. Algorithm A
corresponds to a FETI-DP method using only vertex constraints. In Table 1 we vary
the number of elements for each subdomain. In Table 2 we vary the coefficient in
the channels. In both cases the coefficient distribution is symmetric with respect
to the interface, and thus the extension from EVP 2 is not needed. Indeed, the
results in Tables 1 and 2 support that EVP 1 is sufficient, here. In Table 3 we
vary the number of subdomains. In Table 4 we apply the adaptive method using
EVP 1 for the coefficient distribution in Fig. 1 (middle) using standard �-scaling
and deluxe scaling. The coefficient distribution is mildly unsymmetric and a good
condition number is obtained using only EVP 1. This is different for Fig. 1 (right);
see Table 5. Here, EVP 2 seems to be necessary. It interesting to note that, in Table
5, using deluxe scaling a relatively low condition number can be obtained using
Algorithm A. This is not the case in Table 4.
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Fig. 1 Coefficient distribution for 3� 3 domain decomposition: three channels (left), two shorter
and displaced channels (middle), three shorter and displaced channels (right). Black corresponds
to a high coefficient � D 1eC 06, white corresponds to � D 1
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Table 1 Three channels for each subdomain; see Fig. 1 (left)

Algorithm A Adaptive method Adaptive method
(�� D �1, �� D �1) EVP 1 (�� D 1) EVP 1+2 (�� D 1, �� D 1e� 01)

H=h Cond Its # primal Cond Its # primal Cond Its # primal

14 1:227e05 13 4 1.0387 2 24 1.0387 2 24

28 1:545e05 17 4 1.1507 3 24 1.1507 3 24

42 1:730e05 16 4 1.2471 3 24 1.2462 4 28

56 1:861e05 16 4 1.3272 3 24 1.3272 3 24

70 1:962e05 16 4 1.3954 3 24 1.3954 5 28

We have �1 D 1e06 in the channel, and �2 D 1 elsewhere. The number of additional constraints is
clearly determined by the structure of the heterogeneity and independent of the mesh size. 1=H D 3

Table 2 Three channels for each subdomain; see Fig. 1 (left)

Algorithm A Adaptive method Adaptive method
(�� D �1, �� D �1) EVP 1 (�� D 1) EVP 1+2 (�� D 1, �� D 1e� 01)

�2=�1 Cond # its # primal Cond # its # primal Cond # its # primal

1e00 3:207 5 4 1.6376 5 8 1.6376 5 8

1e01 5:581 7 4 1.5663 7 8 1.5663 7 8

1e02 1:998eC 01 9 4 1.4599 7 12 1.4567 7 16

1e03 1:591eC 02 10 4 1.1505 4 24 1.1505 4 32

1e04 1:550eC 03 13 4 1.1507 3 24 1.1476 4 31

1e05 1:545eC 04 15 4 1.1507 3 24 1.1507 3 28

1e06 1:545eC 05 17 4 1.1507 3 24 1.1507 3 24

Adaptive method using Eigenvalue Problem 1+2. We have �2 in the channels, and �1 D 1

elsewhere. H=h D 28. The number of additional constraints is bounded for increasing contrast
�2=�1. 1=H D 3

Table 3 Three channels for each subdomain; see Fig. 1 (left)

Algorithm A Adaptive method Adaptive method
(�� D �1, �� D �1) EVP 1 (�� D 1) EVP 1+2 (�� D 1, �� D 1e� 01)

1=H Cond # its # primal Cond # its # primal Cond # its # primal

2 1 1 1 1.0000 1 1 1.0000 1 1

3 1:545eC 05 17 4 1.1507 3 24 1.1507 3 24

4 2:734eC 05 26 9 1.1507 3 51 1.1502 4 59

5 3:475eC 05 65 16 1.1507 3 88 1.1507 3 90

6 4:078eC 05 65 25 1.1507 3 135 1.1507 3 152

Increasing number of subdomains and channels. We have �2 D 1e06 in the channels, and �1 D 1

elsewhere. H=h D 28
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Table 4 Adaptive method for the coefficient distribution in Fig. 1 (middle)

Algorithm A Adaptive method
H=h (�� D �1, �� D �1) EVP 1 (�� D 1)

�-scaling Deluxe �-scaling Deluxe
Cond Its Cond Its # primal Cond Its Cond Its # primal

10 6.201e4 25 6.200e4 20 4 1.1480 6 1.1421 5 24

20 7.684e4 25 7.683e4 20 4 1.1978 7 1.1948 6 24

30 8.544e4 25 8.544e4 23 4 1.2630 7 1.2618 6 24

1=H D 3. Deluxe scaling and standard �-scaling is used

Table 5 Adaptive method for the heterogenous problem from the image in Fig. 1 (right) with a
coefficient of 106 (black) and 1 (white) respectively

Multiplicity-scaling Deluxe-scaling
�� �� H=h Cond # its Cond # its # primal

Algorithm A �1 �1 42 2:492e5 161 24:4261 17 4

EVP 1 1 �1 42 2:496e5 128 9:760e4 40 24

EVP 1+2 1 1=10 42 1.5184 10 1.4306 9 126

1=H D 3. Either multiplicity or deluxe scaling are used
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A Massive Parallel Fast Marching Method

Petr Kotas, Roberto Croce, Valentina Poletti, Vit Vondrak, and Rolf Krause

1 Introduction

In this paper we present a novel technique based on domain decomposition which
enables us to perform the fast marching method (FMM) [4] on massive parallel
high performance computers (HPC) for given triangulated geometries. The FMM
is a widely used numerical method and one of the fastest serial state-of-the-art
techniques for computing the solution to the Eikonal equation.

For clarification we define an open set˝ D ˝I[˝E[
 � R
2.or R3/ where˝I

is the interior and ˝E the exterior of the domain enclosed by 
 and the bounding
box itself, as shown in Fig. 1. Then the resulting problem for the Eikonal equation
reads as the following boundary value formulation

jrT.x/jF.x/ D 1 for x 2 ˝;
Tj
 D 0; (1)

T.x/ > 0 for x 2 ˝E and T.x/ < 0 for x 2 ˝I:

with F.x/ as speed function. The solution to this problem with F.x/ D 1 leads to
the well-known signed distance function T with respect to 
 .
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Fig. 1 Set-up of the Eikonal
equation problem

Signed distance functions are indispensable in varied fields such as seismic
imaging, approximation of geodesic distances and computational fluid dynamics
[5]. Hence, finding a fast solution method for the Eikonal equation is of high
interest. Several attempts lead to different approaches for a fast and reliable
solver. Among various techniques are iterative schemes, expanding box schemes,
expanding wavefront schemes, and sweeping schemes [2].

Though the FMM is a very efficient algorithm of complexity O.N log N/, its
major drawback is that it cannot be easily parallelized due to its inherently serial
nature. Attempts to parallelize it either modify its underlying scheme, losing some
of its agility, or have limited scalability. Nevertheless various authors tried to achieve
a faster and more efficient scheme.

In [7] a modification of the FMM algorithm is introduced to make it paralleliz-
able. The implementation relies heavily on memory shareability, and the maximal
number of processes is limited by the size of the updating stencil. Other authors
have relied on different schemes all together, such as level set methods or variations
thereof [1, 2, 6]. The speed-up gained by the scalability of these methods comes
at the loss of serial algorithmic efficiency as the complexity of the underlying
algorithms is higher.

In this paper we will present a parallel algorithm for the computation of
the FMM on distributed memory machines via MPI. Another strength of our
parallel algorithm is that inter-processor communication does not exist during the
parallel FMM computation, each core is basically computing independently the
level-set function on its subdomain. This is possible, because each subdomain
computes accurate boundary values for its local dataset before starting the parallel
FMM.

The remainder of this paper is organized as follows: the sequential fast marching
method is shortly explained in Sect. 2 and our extensions towards a Massive Parallel
Fast Marching Method (MPFMM) are presented in Sect. 3. Finally, we present
several numerical results in Sect. 4 which investigate the performance of the new
MPFMM-algorithm. We conclude with some remarks in Sect. 5.
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Algorithm 1 Sequential Fast Marching Method (SFMM)
1: Compute the distance T.x/ to all node values that are directly adjacent to the interface and tag them as accepted.

Tag all nodes adjacent to these accepted nodes as narrow nodes and all others as away nodes.
2: Compute T.x/ of all narrow nodes via Eq. (1), treating T.x/ in any adjacent narrow or away node as1. Set the

loop index n D 1.
3: repeat
4: Mark as accepted the narrow node i; j; k with the smallest T.x/ value, denoted by T.x/n D T.x/i;j;k.
5: Mark all away nodes adjacent to T.x/i;j;k as narrow.
6: Recompute the T.x/ values of all narrow nodes adjacent to T.x/i;j;k by Eq. (1), treating T.x/ in any adjacent

narrow or away node as1.
7: Set n D nC 1.
8: until All nodes are tagged as accepted

2 Sequential Fast Marching Method (SFMM)

The Fast Marching Method [4, 5] is designed to efficiently solve the Eikonal equa-
tion (1). To do so, the FMM uses the first order Godunov scheme to approximate
the gradient term jrT.x/j, thus the Eikonal equation is given as

F.x/

2

64
max.D�x

ijk T.x/;�DCx
ijk T.x/; 0/2C

max.D�y
ijk T.x/;�DCy

ijk T.x/; 0/2C
max.D�z

ijk T.x/;�DCz
ijk T.x/; 0/2

3

75

1
2

D 1 (2)

where D�ijk is the first order backward and DCijk the first order forward finite difference
operator. Equation (2) utilizes the upwind technique for approximating the Eikonal
equation (1). This works, because the front 
 propagates forward and visits each
cell only once.

In the core of the FMM there are three lists preserving the state of each cell in
the computation domain. Nodes marked as accepted are nodes for which the singed
distance function has already been computed. Nodes within the vicinity of known
nodes are marked narrow band and are updated according to equation (2). Finally,
nodes with unknown distance are marked as away. The complete and easy to follow
description of FMM algorithm is given by Sethian in his book [5].

3 Massive Parallel Fast Marching Method (MPFMM)

A few existing strategies for parallelizing the FMM exist, with varying level of
success. The simplest approach is to split the interface in two disjoint regions and to
run the FMM on both of them at once. This method however lacks larger parallelism
and it cannot achieve ideal load-balancing. To overcome this problem another
natural approach of decomposing the computational region into a group of sub
regions was studied in [6]. This implementation utilizes the strategy of overlapping
domain decomposition. To exchange the boundary information an iterative update
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Algorithm 2 Parallel Fast Marching Method (MPFMM)
1: Divide the given gridded domain into N sub-domains D0;D1; : : :DN

2: On each domain Di chose initial points on the local narrow band around the geometry and on the domain boundary.
3: Load balance initial data points among domains.
4: Compute the initial data in parallel on each domain using closest point projection to triangulated geometry.
5: Compute the SDF in parallel on each domain using the SFMM algorithm

strategy is used. The overall algorithm is designed in an iterative fashion, since
after the boundary update, the FMM needs to be re-run on each sub-domain. This
process repeats until convergence is achieved. Finally, methods decomposing the
computational domain in such a way that each sub-domain contains part of the
initial interface are shown for instance in [3]. With this strategy global minima need
to be exchanged in each FMM run, therefore the algorithm is not entirely parallel
in nature. Furthermore, none of the existing methods is able to provide reasonable
scalability and performance needed by large datasets.

In our approach we use domain decomposition with a combination of exact
boundary conditions on each sub-domain. Our decomposition scheme does not
require the initial interface to be present in each sub-domain, however the exact
distance between the initial interface and the sub-domain boundaries is necessary.
This property allows us to loosen the strict limit on scalability that the above
mentioned methods possess and allow even very large computational domains to
be processed.

The features of our algorithm can be summarized as:

• Easy to implement since it is the SFMM with according boundary conditions on
the subdomains and narrow band.

• The algorithm works for massive parallel computations.
• Excellent FMM-speedup on fine grids since no communication is needed.
• Parallelization improves accuracy, for as the number of processes increases, the

number of points computed directly with closest point projection increases.
• The parallel algorithm works also for second order schemes.

The parallelization of the entire algorithm basically consists of the parallelization of
its two main subroutines, i.e.

1. Narrow band initialization.
2. Ghostcell boundary data computation.

4 Numerical Experiments

In the following section we designed a series of test cases to exploit the numerical
features of our algorithm. We show numerically the performance and scalability of
our new massive parallel fast marching algorithm, as well as to check the accuracy of
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the computed signed distance function. In particular we will show that it maintains
first order error, as can be easily deduced from the type of evolution scheme we use.

4.1 MPFMM Performance for “Analytical Circle/Sphere”

At first, we investigate the parallel error propagation of our MPFMM algorithm. We
make use of a 2D circle with its center xc D .0; 0; 0/, radius R D 3:0, and set in
a computational domain with the size Œ�10; 10� � Œ�10; 10�. The signed distance
function for this geometry can be computed analytically via the following equation

T.x/ D R0 � kx � xck; x 2 RN : (3)

This simplifies both the initialization procedure and the computation of the error.
We used two different grid resolutions: 41� 41 and 81 � 81 grid cells on a uniform
grid with grid cell sizes dx D 0:48780 and dx D 0:24691. The computation is
performed on 16 cores. Figure 2 shows the error distribution through the global
domain subdivided into 16 subdomains.

As expected, the MPFMM algorithm aggregates the error in diagonal direction.
This is because the fast marching method computes the discrete gradient in the
horizontal and vertical coordinate directions. The maximum global error on each
grid is 0:21 and 0:14. This is less than the grid sizes dx D 0:48780 and dx D
0:24691. Thus this experiment shows that the MPFMM algorithm maintains first
order accuracy on all local subdomains.

In order to further exploit the nice initialization properties of the analytical
sphere, we set up the 3D problem described in [1]. In this problem, the sphere is
located inside a unit cube, with xc D . 1

2
; 1
2
; 1
2
/ and radius R0 D 0:25. The signed

distance function in this problem, is defined similarly to Eq. (3), thus we provide the
initial data for the MPFMM algorithm using this equation. Again, we make use of
two grid sizes: 192 � 192 � 192 and 384 � 384 � 384. We run our algorithm using
up to 8192 parallel cores. Figure 3, shows the MPFMM algorithm’s super linear

Fig. 2 On the left: parallel signed distance computation on 16 cores for a circle. In the middle and
right: error-evolution on a 41� 41 and a 81 � 81 grid
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Fig. 3 Speedup for “analytical sphere” for up to 8192 cores (left 1923 , right 3843)

scalability over all processor ranges. This is due to the logarithmic complexity of the
sequential Fast Marching, which therefore scales logarithmically. It is worth noting
that the only limiting factor in the number of subdomains on which the MPFMM
algorithm can be parallelized on is the number of global grid cells. This does not
present a problem particularly when dealing with larger domains. Thus it is a highly
scalable algorithm for computing the signed distance function on large domains.

4.2 MPFMM for Triangulated Surfaces

Here we show some numerical tests targeting the overall performance of the
MPFMM algorithm. Thus we run our MPFMM algorithm together with the data
initialization routine. We run our algorithm on two different benchmark geometries,
each of which is composed of a different number of triangles:

• Tetrahedron (Fig. 4) consisting of 4 triangles,
• Sphere (Fig. 4) comprising 840 triangles.

We run our algorithm on the benchmark geometries using three different meshes:
643 and 1283 and 2563. With this set up we can investigate the performance of all
the important algorithmic parts.

In the first test we compute the signed distance function on a tetrahedron. This
shows the performance of the MPFMM algorithm paired with the initialization
routine for a very simple initialization. Due to the simple nature of the geometry,
we can easily deduce the performance of the MPFMM with an accelerated search
algorithm for the closest triangle. Such results are shown in Fig. 5.

In the second test, we compute the signed distance function on a triangulated
sphere in order to investigate the performance of the MPFMM on larger triangulated
meshes. Results depicted in Fig. 6 show that the MPFMM maintains good scalability
and performance in this case as well.
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Fig. 4 A tetrahedron consisting of four triangles (left) and a triangulated sphere consisting of 840
triangles (right) are used for our speedup investigations

Fig. 5 Speedup for up to 2048 cores performed for the triangulated tetrahedron with three grid-
resolutions: 643 (left) and 1283 (middle) and 2563 (right) gridcells

Fig. 6 Speedup for up to 2048 cores performed for the triangulated sphere with three grid-
resolutions: 643 (left) and 1283 (middle) and 2563 (right) gridcells

Both tests show similar scaling properties and performance, suggesting that the
latter are maintained through larger meshes. However, the algorithm performs more
poorly for the smaller mesh of size 643. This is due to the fact that the ratio of set-up
time to PFMM-computation time is higher, as the number of degrees of freedom is
too small to obtain reasonably efficient parallel computation. These benchmark tests
therefore show that scaling is limited only on the lower size of the mesh.
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5 Concluding Remarks

In this paper we presented a parallel algorithm for the fast marching method. We
investigated several massive parallel FMM-computations (MPFMM) for simple
geometries with respect to their speedup behaviour on up to 2048- and 8192 cores
respectively. As expected, the parallel FMM-speedup scales optimally for fine grid
resolutions and the numerical results show an according global signed distance
function. However, the parallel boundary value initialization could still be improved
by storing the geometry information in a tree and use a triangle search with a special
partition on the tree, instead of distributing the entire geometry to each process.
Furthermore, we showed that the order of convergence is conserved for the parallel
computations.
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Discontinuous Galerkin Isogeometric Analysis
of Elliptic PDEs on Surfaces

Ulrich Langer and Stephen E. Moore

1 Introduction

The Isogeometric Analysis (IGA), that was introduced by Hughes et al. [9] and
has since been developed intensively, see also monograph [4], is a very suitable
framework for representing and discretizing Partial Differential Equations (PDEs)
on surfaces. We refer the reader to the survey paper by Dziuk and Elliot [7] where
different finite element approaches to the numerical solution of PDEs on surfaces are
discussed. Very recently, Dedner et al. [6] have used and analyzed the Discontinuous
Galerkin (DG) finite element method for solving elliptic problems on surfaces.
The IGA of second-order PDEs on surfaces has been introduced and numerically
studied by Dede and Quarteroni [5] for the single-patch case. Brunero [3] presented
some discretization error analysis of the DG-IGA applied to plane (2d) diffusion
problems that carries over to plane linear elasticity problems which have recently
been studied numerically in [1]. Evans and Hughes [8] used the DG technology in
order to handle no-slip boundary conditions and multi-patch geometries for IGA of
Darcy-Stokes-Brinkman equations. The efficient generation of the IGA equations,
their fast solution, and the implementation of adaptive IGA schemes are currently
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hot research topics. The use of DG technologies will certainly facilitate the handling
of the multi-patch case.

In this paper, we use the DG method to handle the IGA of diffusion problems on
closed or open, multi-patch NURBS surfaces. The DG technology easily allows us
to handle non-homogeneous Dirichlet boundary conditions and multi-patch NURBS
spaces which can be discontinuous across the patch boundaries. We also derive
discretization error estimates in the DG- and L2-norms. Finally, we present some
numerical results confirming our theoretical estimates.

2 Surface Diffusion Model Problem

Let us assume that the physical (computational) domain ˝ , where we are going
to solve our diffusion problem, is a sufficiently smooth, two-dimensional generic
(Riemannian) manifold (surface) defined in the physical space R

3 by means of a
smooth multi-patch NURBS mapping that is defined as follows. Let TH D f˝.i/gNiD1
be a partition of our physical computational domain˝ into non-overlapping patches

(sub-domains) ˝.i/ such that ˝ D SN
iD1 ˝

.i/
and ˝.i/ \ ˝. j/ D ; for i ¤ j, and

let each patch ˝.i/ be the image of the parameter domain Ő D .0; 1/2 � R
2 by

some NURBS mapping G.i/ W Ő ! ˝.i/ � R
3; � D .�1; �2/ 7! x D .x1; x2; x3/ D

G.i/.�/, which can be represented in the form

G.i/.�1; �2/ D
n1X

k1D1

n2X

k2D1
P.i/.k1;k2/

OR.i/.k1;k2/.�1; �2/ (1)

where f OR.i/.k1;k2/g are the bivariate NURBS basis functions, and fP.i/.k1;k2/g are the
control points, see [4] for a detailed description.

Let us now consider a diffusion problem on the surface˝ , the weak formulation
of which can be written as follows: find u 2 Vg such that

a.u; v/ D hF; vi 8v 2 V0; (2)

with the bilinear and linear forms are given by the relations

a.u; v/ D
Z

˝

˛ r˝u � r˝v d˝ and hF; vi D
Z

˝

fv d˝ C
Z


N

gNv d
;

respectively, where r˝ denotes the so-called tangential or surface gradient, see e.g.
Definition 2.3 in [7] for its precise description. The hyperplane Vg and the test space
V0 are given by Vg D fv 2 V D H1.˝/ W v D gD on 
Dg and V0 D fv 2 V W v D
0 on 
Dg for the case of an open surface˝ with the boundary 
 D 
 D [ 
 N such
that meas1.
D/ > 0, whereas Vg D V0 D fv 2 V W R˝ v d˝ D 0g in the case of a
pure Neumann problem (
N D 
 ) as well as in the case of closed surfaces unless
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there is a reaction term. In case of closed surfaces there is of course no integral
over 
N in the linear functional on the right-hand side of (2). In the remainder of
the paper, we will mainly discuss the case of mixed boundary value problems on an
open surface under appropriate assumptions (e.g., meas1.
D/ > 0, ˛—uniformly
positive and bounded, f 2 L2.˝/, gD 2 H

1
2 .
D/ and gN 2 L2.
N/ ) ensuring

existence and uniqueness of the solution of (2). For simplicity, we assume that the
diffusion coefficient ˛ is patch-wise constant, i.e. ˛ D ˛i on˝.i/ for i D 1; 2; : : : ;N.
The other cases including the reaction-diffusion case can be treated in the same way
and yield the same results like presented below.

3 DG-IGA Schemes and Their Properties

The DG-IGA variational identity

aDG.u; v/ D hFDG; vi 8v 2 V D H1Cs.TH/; (3)

which corresponds to (2), can be derived in the same way as their FE counterpart,
where H1Cs.TH/ D fv 2 L2.˝/ W vj˝.i/ 2 H1Cs.˝.i//; 8 i D 1; : : : ;Ng with
some s > 1=2. The DG bilinear and linear forms in the Symmetric Interior Penalty
Galerkin (SIPG) version, that is considered throughout this paper for definiteness,
are defined by the relationships

aDG.u; v/ D
NX

iD1

Z

˝.i/
˛ir˝u � r˝v d˝

�
X

�2EI[ED

Z

�

.f˛r˝u � ngŒv�C f˛r˝v � ngŒu�/ d


C
X

�2EI[ED

ı

h�

Z

�

˛� Œu�Œv� d
 (4)

and

hFDG; vi D
Z

˝

fvd˝ C
X

�2EN

Z

�

gNv d


C
X

�2ED

Z

�

˛�

�
�r˝v � nC ı

h�
v

�
gD d
; (5)

respectively, where the usual DG notations for the averages fvg D 1=2.vi C vj/,
jumps Œv� D vi�vj and ˛� D .˛iC˛j/=2 on EI , with the corresponding modifications
fvg WD vi DW Œv� and ˛� D ˛i on ED, are used, where i and j correspond to the indices
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of the patches to which the edge � belongs, see, e.g., [12]. The sets EI , ED and EN

denote the sets of edges � of the patches belonging to 
I D [ @˝.i/ n f
D [ 
Ng,

D and 
N , respectively, whereas h� is the mesh-size on � . The penalty parameter ı
must be chosen such that the ellipticity of the DG bilinear on the DG space Vh can
be ensured. The relationship between our model problem (2) and the DG variational
identity (3) is given by the consistency theorem that can easily be verified.

Theorem 1 If the solution u of the variational problem (2) belongs to Vg \
H1Cs.TH/ with some s > 1=2, then u satisfies the DG variational identity (3).
Conversely, if u 2 H1Cs.TH/ satisfies (3), then u is the solution of our original
variational problem (2).

Now we consider the finite-dimensional Multi-Patch NURBS subspace

Vh D fv 2 L2.˝/ W vj˝.i/ 2 Vi
h.˝

.i//; i D 1; : : : ;Ng

of our DG space V , where Vi
h.˝

.i// D spanfR.i/k g denotes the space of NURBS
functions on each single-patch˝.i/; i D 1; : : : ;N, and the NURBS basis functions
R.i/k D OR.i/k ı G.i/�1 are given by the push-forward of the NURBS functions OR.i/k to
their corresponding physical sub-domains ˝.i/ on the surface ˝ . Finally, the DG
scheme for our model problem (2) reads as follows: find uh 2 Vh such that

aDG.uh; vh/ D hFDG; vhi; 8vh 2 Vh: (6)

For simplicity of our analysis, we assume matching meshes, see, e.g., [10].
Using special trace and inverse inequalities in the NURBS spaces Vh and Young’s
inequality, for sufficiently large DG penalty parameter ı, we can easily establish Vh

coercivity and boundedness of the DG bilinear form with respect to the DG energy
norm

kvk2DG D
NX

iD1
˛ikr˝vik2L2.˝.i//

C
X

�2EI[ED

˛�
ı

h�
kŒv�k2L2.�/; (7)

yielding existence and uniqueness of the DG solution uh 2 Vh of (6) that can be
determined by the solution of a linear system of algebraic equations.

4 Discretization Error Estimates

Theorem 2 Let u 2 Vg \ H1Cs.TH/ with some s > 1=2 be the solution of (2),
uh 2 Vh be the solution of (6), and the penalty parameter ı be chosen large enough.
Then there exists a positive constant c that is independent of u, the discretization



Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs on Surfaces 323

parameters and the jumps in the diffusion coefficients such that the DG-norm error
estimate

ku � uhk2DG � c
NX

iD1
˛ih

2t
i kuk2H1Ct.˝.i//

; (8)

holds with t WD minfs; pg, where the discretization parameter hi characterizes the
mesh-size in the patch˝.i/, and p always denotes the underlying polynomial degree
of the NURBS.

Proof Let us give a sketch of the proof. By the triangle inequality, we have

ku � uhkDG � ku �˘hukDG C k˘hu � uhkDG (9)

with some quasi-interpolation operator ˘h W V 7! Vh such that the first term can
be estimated with optimal order, i.e. by the term on the right-hand side of (8) with
some other constant c. This is possible due to the approximation results known for
NURBS, see, e.g., [2, 4]. Now it remains to estimate the second term in the same
way. Using the Galerkin orthogonality aDG.u � uh; vh/ D 0 for all vh 2 Vh, the Vh

coercitivity of the bilinear form aDG.�; �/, the scaled trace inequality

kvkL2.e/ � Ch�1=2E

�
kvkL2.E/ C h1=2C�E jvjH1=2C�.E/

�
; (10)

that holds for all v 2 H1=2C�.E/, for all IGA mesh elements E, for all edges
e � @E, and for � > 0, where hE denotes the mesh-size of E or the length
of e, Young’s inequality, and again the approximation properties of the quasi-
interpolation operator ˘h, we can estimate the second term by the same term

c
�PN

iD1 ˛ih2t
i kuk2H1Ct.˝.i//

�1=2
with some (other) constant c. This completes the

proof of the theorem, cf. [12] for the finite element case. ut
Using duality arguments, we can also derive L2-norm error estimates that depend on
the elliptic regularity. Under the assumption of full elliptic regularity, we get ku �
uhkL2.˝/ � c hpC1kukHpC1.˝/ that is nicely confirmed by our numerical experiments
presented in the next section for p D 1; 2; 3; 4.

5 Numerical Results

The DG IGA method presented in this paper as well as its continuous Galerkin
counterpart have been implemented in the object oriented C++ IGA library “Geom-
etry + Simulation Modules” (G+SMO).1 We present some first numerical results for
testing the numerical behavior of the discretization error with respect to the mesh

1G+SMO: www.gs.jku.at.

www.gs.jku.at
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Fig. 1 Yeti foot: geometry (left) and DG-IGA solution (right)

parameter h and the polynomial degree p. Concerning the choice of the penalty
parameter, we used ı D 2.pC 2/.pC 1/:

As a first example, we consider a non-homogeneous Dirichlet problem for the
Poisson equation in the 2d computational domain ˝ � R

2 called Yeti’s footprint,
see also [10], where the right-hand side f and the Dirichlet data gD are chosen
such that u.x1; x2/ D sin.�x1/ sin.�x2/ is the solution of the boundary value
problem. The computational domain (left) and the solution (right) can be seen in
Fig. 1. The Yeti footprint consists of 21 patches with varying open knot vectors
� describing the NURBS discretization in a short and precise way, see, e.g., [4]
for a detailed definition. The open knot vectors for building the patches 1 to 16
and 21 are given by � D .0; 0; 0; 0:5; 1; 1; 1/ in both directions, whereas the
knot vectors for the patches 17 to 20 are given by �1 D .0; 0; 0; 0:5; 1; 1; 1/ and
�2 D .0; 0; 0; 0:25; 0:5; 0:75; 1; 1; 1/: In Fig. 2, the errors in the L2-norm and in
the DG energy norm (7) are plotted against the degree of freedom (DOFs) with
polynomial degrees from 1 to 4. It can be observed that we have convergence rates
of O.hpC1/ and O.hp/ respectively. This corresponds to our theory in Sect. 4.

In the second example, we apply the DG-IGA to the same Laplace-Beltrami
problem on an open surface as described in [5], Section 5.1, where ˝ is a quarter
cylinder represented by four patches in our computations, see Fig. 3 (left). The open
knot vectors �1 WD .0; 0; 0; 1; 1; 1/ and �2 WD .0; 0; 1; 1/ are used to build the
patches. The L2-norm errors plotted on the right side of Fig. 3 exhibit the same
numerical behavior as in the plane case of the Yeti foot. The same is true for the
DG-norm.
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Fig. 2 Yeti foot: L2- and DG-norm errors with polynomial degree p
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Fig. 3 Quarter cylinder: geometry with the solution (left) and L2 norm errors (right)

6 Conclusions

We have developed and analyzed a new method for the numerical approximation of
diffusion problems on open and closed surfaces by combining the discontinuous
Galerkin technique with isogeometric analysis. We refer to our approach as the
Discontinuous Galerkin Isogeometric Analysis (DG-IGA). In our DG approach
we allow discontinuities only across the boundaries of the patches, into which
the computational domain is decomposed, and enforce the interface conditions in
the DG framework. For simplicity of presentation, we assume that the meshes are
matching across the patches, and the solution u is at least patch-wise in H1Cs,
i.e. u 2 H1Cs.TH/, with some s > 1=2. The cases of non-matching meshes
and low-regularity solution, that are technically more involved and that were
investigated, e.g., by Di Pietro and Ern [11], will be considered in a forthcoming
paper. The parallel solution of the DG-IGA equations can efficiently be performed
by Domain Decomposition (DD) solvers like the IETI technique proposed by Kleiss
et al. [10], see also [1] for other DD solvers. The construction and analysis of
efficient solution strategies is currently a hot research topic since, beside efficient
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generation techniques, the solvers are the efficiency bottleneck in large-scale IGA
computations.
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A FETI-DP Algorithm for Saddle Point
Problems in Three Dimensions

Xuemin Tu and Jing Li

1 Introduction

In [2, 6, 7], a new class of FETI-DP type domain decomposition algorithms was
introduced and analyzed by the authors for solving incompressible Stokes equations
in two dimensions. Both discontinuous and continuous pressures can be used in the
mixed finite element discretization. In both cases, the indefinite system of linear
equations can be reduced to a symmetric positive semi-definite system. Therefore,
the preconditioned conjugate gradient method can be applied.

Both lumped and Dirichlet preconditioners have been studied in [2, 6, 7]. For
the lumped preconditioner, it has been proved in [2] that the coarse level space
can be chosen as simple as for solving scalar elliptic problems corresponding to
each velocity component to achieve a scalable convergence rate. However, for
the Dirichlet preconditioner, most existing FETI-DP and BDDC type algorithms
[1, 3, 4] for Stokes problems use subdomain Stokes extensions in the preconditioners
and the coarse level velocity space has to contain sufficient components to enforce
divergence free subdomain boundary velocity conditions. Due to this divergence
free requirement, the coarse space becomes very complicated, especially for
three-dimensional problems as discussed in [3]. For the Dirichlet preconditioner
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introduced in [6, 7], an application of subdomain harmonic extension instead of
Stoke extension in the preconditioner makes it possible to remove the divergence
free constraints for the coarse level velocity space. Unfortunately, the analysis
provided for the algorithms in [6, 7] still requires the divergence free constraints.

In this paper, we provide a new analysis for the algorithms in [6, 7], which can
not only analyze both lumped and Dirichlet preconditioners in a same framework,
but also remove the divergence free constraints for the Dirichlet preconditioner. We
then extended this class of algorithms [2, 6, 7] to three dimensional problems; see
[8] for more details.

2 Discretization, Domain Decomposition, and a Reduced
Interface System

Let ˝ be a bounded, three-dimensional polyhedral domain. We consider solving
the following saddle point problem: find u� 2 �H1

0.˝/
�3 D fv 2 .H1.˝//3

ˇ̌
v D

0 on @˝g and p� 2 L2.˝/, such that

(
a.u�; v/C b.v; p�/ D .f; v/; 8v 2 �H1

0.˝/
�3
;

b.u�; q/ D 0; 8q 2 L2.˝/ ,
(1)

where

a.u�; v/ D
Z

˝

ru� � rv; b.u�; q/ D �
Z

˝

.r � u�/q; .f; v/ D
Z

˝

f � v:

The solution of (1) is not unique and the pressure p� is determined up to an additive
constant.

The domain ˝ is partitioned into shape-regular rectangular elements of char-
acteristic size h, and the Q2-Q1 Taylor-Hood mixed finite element is used to
solve (1). The pressure finite element space, Q � L2.˝/, is taken as the space
of continuous piecewise trilinear functions while the velocity finite element space,
W 2 �H1

0.˝/
�3

, is formed by the continuous piecewise triquadratic functions.
The finite element solution .u; p/ 2W

L
Q of (1) satisfies

�
A BT

B 0

	 �
u
p

	
D
�

f
0

	
; (2)

where A, B, and f represent, respectively, the restrictions of a.�; �/, b.�; �/ and .f; �/
to the finite-dimensional spaces W and Q. The solution of (2) always exists and is
uniquely determined when the pressure is required to have a zero average.
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The Q2-Q1 Taylor-Hood mixed finite element space W � Q is inf-sup stable in
the sense that there exists a positive constant ˇ, independent of h, such that, in
matrix/vector form,

sup
w2W

hq;Bwi2
hw;Awi � ˇ

2 hq;Zqi ; 8q 2 Q=Ker.BT/: (3)

Here the matrix Z represents the mass matrix defined on the pressure finite element
space Q, i.e., for any q 2 Q, kqk2

L2
D hq;Zqi. It is easy to see, cf. [5, Lemma

B.31], that Z is spectrally equivalent to h3I for three-dimensional problems, where
I represents the identity matrix of the same dimension.

The domain ˝ is decomposed into N non-overlapping polyhedral subdomains
˝i, i D 1; 2; : : : ;N. Each subdomain is the union of a bounded number of elements,
with the diameter of the subdomain in the order of H. The nodes on the interface

 of neighboring subdomains match across the subdomain boundaries and 
 is
composed of subdomain faces, which are regarded as open subsets of 
 shared by
two subdomains, subdomain edges, which are regarded as open subsets of 
 shared
by more than two subdomains, and of the subdomain vertices, which are end points
of edges.

The velocity and pressure finite element spaces W and Q are decomposed into

W DWI

M
W
 ; Q D QI

M
Q
 ;

where WI and QI are direct sums of independent subdomain interior velocity spaces
W.i/

I , and interior pressure spaces Q.i/
I , respectively. W
 and Q
 are subdomain

interface velocity and pressure spaces, respectively. All functions in W
 and Q


are continuous across 
 ; their degrees of freedom are shared by neighboring
subdomains. A partially sub-assembled subdomain interface velocity space QW
 is
defined as

QW
 DW

M
W˘ D

 
NM

iD1
W.i/



!
M

W˘ :

W˘ is the continuous, coarse level, primal velocity space which is typically
spanned by subdomain vertex nodal basis functions, and/or by interface edge/face-
cutoff functions with constant nodal values on each edge/face, or with values of
positive weights on these edges/faces. The primal, coarse level velocity degrees of
freedom are shared by neighboring subdomains. The complimentary space W is
the direct sum of independent subdomain dual interface velocity spaces W.i/

 , which
correspond to the remaining subdomain interface velocity degrees of freedom and
are spanned by basis functions which vanish at the primal degrees of freedom. Thus,
an element in QW
 typically has a continuous primal velocity component and a
discontinuous dual velocity component.
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We construct a matrix B from f0; 1;�1g to enforce the continuity for dual
velocity components. For any w in W, each row of Bw D 0 implies that
the two independent degrees of freedom from the neighboring subdomains be the
same. The range of B applied on W is a vector space of the Lagrange multipliers,
denoted by �. For each node x on the subdomain boundary 
 , we define a positive
scaling factor ı�.x/ D 1=Nx, where Nx represents the number of subdomains
sharing x. Multiplying the entries on each row of B by the corresponding scaling
factor ı�.x/ gives us B;D.

The original system (2) is equivalent to: find .uI; pI; u; u˘ ; p
 ; �/ 2
WI

L
QI
L

W

L
W˘

L
Q


L
�, such that

2
66666666664

AII BT
II AI AI˘ BT


 I 0

BII 0 BI BI˘ 0 0

AI BT
I A A˘ BT


 BT


A˘ I BT
I˘ A˘ A˘˘ BT


 ˘ 0

B
 I 0 B
 B
 ˘ 0 0

0 0 B 0 0 0

3
77777777775

2
66666666664

uI

pI

u

u˘

p


�

3
77777777775

D

2
66666666664

fI

0

f

f˘

0

0

3
77777777775

, (4)

where the sub-blocks in the coefficient matrix represent the restrictions of A and
B of (2) to appropriate subspaces. The leading three-by-three block can be ordered
to become block diagonal with each diagonal block representing one independent
subdomain problem.

Lemma 1 ([8, Lemma 4]) The basis vector in the null space of (4), corre-
sponding to the one-dimensional null space of the original incompressible Stokes
system (2), is

�
0; 1pI ; 0; 0; 1p
 ; �B;DŒBT

I BT

�

�
1pI

1p


	�
: (5)

Here 1pI 2 QI and 1p
 2 Q
 represent vectors with each entry equal to 1.

System (4) can be reduced to a Schur complement problem for the variables
.p
 ; �/

G

"
p


�

#
D g; (6)

where

G D BC QA�1BT
C; g D BC QA�1

2

66664

fI

0

f

f˘

3

77775
; (7)
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with

QA D

2

66664

AII BT
II AI AI˘

BII 0 BI BI˘

AI BT
I A A˘

A˘ I BT
I˘ A˘ A˘˘

3

77775
and BC D

"
B
 I 0 B
 B
 ˘

0 0 B 0

#
: (8)

G is symmetric positive semi-definite. The null space of G can be derived from
Lemma 1, and its basis has the form

�
1p
 ; �B;DŒBT

I BT

�

�
1pI

1p


	�
:

Let X D Q


L
�. The range of G, denoted by RG, is the subspace of X, which

is orthogonal to the null space of G and has the form

RG D
("

gp


g�

#
2 X

ˇ̌
ˇ gT

p
 1p
 � gT
�

�
B;DŒB

T
I BT


�

�
1pI

1p


	�
D 0

)
: (9)

The restriction of G to its range RG is positive definite. The conjugate gradient
method will be used to solve (6), with preconditioners given in the next section.

We denote

Arr D

2

64
AII BT

II AI

BII 0 BI

AI BT
I A

3

75 ; A˘r D AT
r˘ D



A˘ I BT

I˘ A˘
�
; fr D

2

64
fI

0

f

3

75 ;

and define the Schur complement S˘ D A˘˘ � A˘rA�1rr Ar˘ , which is symmetric
positive definite and defines the coarse level problem of this algorithm.

The main operation in the implementation of multiplying G by a vector is
the product of QA�1 with a vector consisting of fr and f˘ . This product can be
represented by

"
A�1rr fr

0

#
C
"
�A�1rr Ar˘

I˘

#
S�1˘

�
f˘ � A˘rA

�1
rr fr

�
;

which requires solving the coarse level problem once and independent subdomain
Stokes problems with Neumann type boundary conditions twice.
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3 Preconditioners and Condition Number Bounds

We define QV DWI
L

QI
L

W

L
W˘ , and its subspace

QV0 D
˚
w D .wI; pI; w; w˘/ 2 QV W BIIwI C BIw C BI˘w˘ D 0

�
:

For any v 2 QV0, the value hv; viQA D vT QAv is independent of its pressure component
pI . h�; �iQA defines a semi-inner product on QV0; hv; viQA D 0 if and only if the
velocity component of v is zero while its pressure component can be arbitrary.
We denote the restriction operator from QV onto W by QR such that for any
v D .wI; pI; w; w˘/ 2 QV , QRv D w.

Let H represent the direct sum of discrete subdomain harmonic extension
operators. Let M�1L;� D B;D QR QA QRT

BT
;D and M�1D;� D B;DHBT

;D. The lumped
and Dirichlet preconditioners M�1L and M�1D for solving (6) are given by

M�1L D
"

˛
h3

Ip


M�1L;�

#
and M�1D D

"
˛
h3

Ip


M�1D;�

#
:

Here Ip
 is the identity matrix of the same length as p
 . ˛ is a given constant,
whose value is typically taken as 1. We introduce ˛ in the preconditioner just for the
convenience in the numerical experiments to demonstrate the convergence rates of
the proposed algorithm.

For both lumped and Dirichlet preconditioners, the coarse space includes only
subdomain corner and edge-average variables for each velocity component, just as
for solving scalar elliptic problems. Such coarse space is sufficient for this algorithm
to achieve scalable convergence rates as given in the following theorem for both type
preconditioners, denoted here by M�1.

Lemma 2 ([8, Lemma 10]) There exists a constant C, such that for all v 2 QV0,
˝
M�1BCv;BCv

˛ � C .˛ C ˚.H=h//
˝ QAv; v˛ :

Here, for the lumped preconditioner, ˚.H; h/ D C.H=h/.1C log .H=h//, and for
the Dirichlet preconditioner, ˚.H; h/ D C.1C log .H=h//2.

Lemma 3 ([8, Lemma 11]) There exists a constant C, such that for any nonzero
y D .gp
 ; g�/ 2 RG, there exits v 2 QV0, which satisfies BCv D y, hv; viQA ¤ 0, and

˝ QAv; v˛ � C max
˚
1; 1

˛

� �
1C 1

ˇ2

� ˝
M�1y; y

˛
.

Theorem 1 ([8, Theorem 1]) There exist positive constants c and C, such that for
all x in the range of M�1G,

min f1; ˛g cˇ2

.1C ˇ2/ hMx; xi � hGx; xi � C .˛ C˚.H=h// hMx; xi :
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4 Numerical Experiments

We solve the saddle point problem (1) on the cube˝ D Œ0; 1�3 with a zero Dirichlet
boundary condition. The right-hand side f is chosen such that the exact solution is

u D

2

64
sin2.�x/ .sin.2�y/ sin.�z/ � sin.�y/ sin.2�z//

sin2.�y/ .sin.2�z/ sin.�x/ � sin.�z/ sin.2�x//

sin2.�z/ .sin.2�x/ sin.�y/ � sin.�x/ sin.2�y//

3

75 ; p D xyz � 1
8
:

The Q2-Q1 Taylor-Hood mixed finite element is used and the preconditioned
system is solved by a conjugate gradient (CG) method. The CG iteration is stopped
when the L2�norm of the residual is reduced by a factor of 10�6. We use the
tridiagonal Lanczos matrix generated in the iteration to estimate the extreme
eigenvalues of M�1G.

For both preconditioners, the coarse level velocity space is the same as for solving
scalar elliptic problems in [5, Algorithm 6.25] corresponding to each velocity
component, which is spanned by the subdomain vertex nodal basis functions and
subdomain edge-cutoff functions.

We take ˛ D 1 in Table 1 and ˛ D 1=2 in Table 2, to demonstrate more clearly
the upper eigenvalue bound in Theorem 1. Using the Dirichlet preconditioner can
reduce ˚.H=h/ compared with the lumped preconditioner. However, for a small
value of H=h, ˛ D 1 will be dominant in the upper bound and the effect of
˚.H=h/ on the convergence rate is not visible in Table 1. When ˛ is reduced to 1=2,
˚.H=h/ becomes visible and the upper eigenvalue bounds in Table 2 exhibit the
pattern of ˚.H=h/ for both preconditioners. They are independent of the number
of subdomains for fixed H=h; for fixed number of subdomains, they depend on
H=h in the order of .H=h/.1 C log .H=h// for the lumped preconditioner, and
.1C log .H=h//2 for the Dirichlet preconditioner. The lower eigenvalue bounds in

Table 1 Performance of solving three-dimensional problem on Œ0; 1�3, ˛ D 1

Lumped Dirichlet

H=h #sub �min �max Iteration �min �max Iteration

4 3� 3� 3 0:0776 9:13 56 0:0776 8:97 56

4� 4� 4 0:0775 9:35 54 0:0774 9:19 55

6� 6� 6 0:0773 9:41 58 0:0773 9:23 59

8� 8� 8 0:0773 9:51 57 0:0772 9:34 61

#sub H=h �min �max Iteration �min �max Iteration

3� 3� 3 3 0:0760 8:06 54 0:0760 7:96 54

4 0:0776 9:13 56 0:0776 8:97 56

6 0:0780 11:88 53 0:0780 9:35 55

8 0:0780 16:64 57 0:0780 9:44 55
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Table 2 Performance of solving three-dimensional problem on Œ0; 1�3, ˛ D 1=2

Lumped Dirichlet

H=h #sub �min �max Iteration �min �max Iteration

4 3� 3� 3 0:0395 7:20 59 0:0395 4:89 54

4� 4� 4 0:0394 8:15 66 0:0394 5:01 53

6� 6� 6 0:0393 8:85 70 0:0393 5:03 55

8� 8� 8 0:0393 9:09 72 0:0393 5:09 56

#sub H=h �min �max Iteration �min �max Iteration

3� 3� 3 3 0:0387 5:15 55 0:0387 4:35 53

4 0:0395 7:20 57 0:0395 4:89 54

6 0:0397 11:70 63 0:0397 5:11 52

8 0:0397 16:52 73 0:0397 5:17 52

Table 2 are half of those in Table 1 since ˛ is reduced by half, and they are also
independent of the mesh size, consistent with Theorem 1.

We also comment that the inf-sup stability constant ˇ of the mixed finite element
space determines the lower eigenvalue bound in Theorem 1, which is quite small as
shown in Tables 1 and 2 for this example. Some mixed finite element spaces with
discontinuous pressures have better inf-sup stability and as a result give better lower
eigenvalue bounds in Theorem 1.
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Error of an eFDDM: What Do Matched
Asymptotic Expansions Teach Us?

Jérôme Michaud and Pierre-Henri Cocquet

1 Introduction

In this paper, we are interested in heterogeneous decomposition methods. For
complex problems, it may be useful to rely on approximations on subdomains and
obtain an approximate global solution through appropriate coupling conditions on
the interface. For an overview of such techniques, see [5] and references therein. In
particular, we want to look at methods that neglect diffusion in a subdomain of non-
zero measure. Gander and Martin [6] have compared the existing coupling methods
with respect to their order in the small parameter in the different subdomains. An
example of such a method is the �-method, see [1, 2]. We want to extend these
results to the Fuzzy Domain Decomposition Methods developed by Gander and
Michaud [7]. This method is interesting as it provides an adaptive coupling method
that allows for a tracking of domain of validity of different approximations. In [7],
the authors show an approximation error analysis for a very simple problem that
does not seem to generalize to higher dimensions. We develop a more general
analysis based on matched asymptotic expansions [3] that show the convergence
of an explicit FDDM (eFDDM) [7] method. For the comparison with the result of
Gander and Martin [6], we note that our results compare with their a < 0 case.
They show that the coupling is usually of order O.�/, unless a factorization of the
operator is done, in which case, the result can be improved to get an order of O.�m/.
We show that an eFDDM is of order O.�/ and have numerical evidence that (in 1D
at least) this method is of order O.�3=2/ in the subdomain where diffusion is taken
into account.
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Basic facts about eFDDMs: Following [7], we recall that an eFDDM is a
numerical method based on a FDD ˝ D ˝1C � � �C˝n; where˝i are fuzzy sets of
membership functions hi and

Pn
iD1 hi D 1. In this paper, we will work with a FDD

of two subdomains ˝1 and ˝2 of membership function h1 D h and h2 D 1 � h
respectively.

We approximate the linear problem with zero Dirichlet boundary condition

L.u/ D f on ˝; uj@˝ D 0; (1)

using two approximations Li, i D 1; 2, valid in a fuzzy sense in ˝i.
We have the global approximation

hL1.u/C .1 � h/L2.u/ D f ; on ˝; uj@˝ D 0; (2)

equivalent to the eFDD approximation

� QL1.u1/ D hf C L12.u2/ on Supp.˝1/; uij@˝ D 0;
QL2.u2/ D .1 � h/f C L21.u1/ on Supp.˝2/;

(3)

with ui D hiu and QLi and Lij are linear operators coming from the application of the
product rule to exchange h with the operators Li, see [7] for details.

2 Model Problem

We are interested in the reaction diffusion model problem

�
Lh�.uh�/ WD �h�uh� � a � ruh� C cuh� D f ; in ˝

uh� D 0; on @˝
(4)

where � > 0, a > 0 and c.x/ C div a.x/=2 � �h=2 � ˛ > 0 a.e. in a smooth
domain˝ , 0 � h � 1 is a smooth function with r.h1=2/ 2 L2.˝/.1

We want to study the approximation error of an eFDDM for an approximation of
L1�.u1�/ D L�.u�/ D f by the global approximation hL�.u/ C .1 � h/L0�.u/ D
Lh�.uh�/ D f , which can be written in the eFDDM as in (3).

We multiply (4) by v 2 Hh
0 D fu 2 L2.˝/; h1=2ru 2 L2.˝/; .h1=2u/j@˝ D 0g

(this is a Hilbert space for the inner product .u; v/L2 C .h1=2ru; h1=2rv/L2 ) and

1This is only a technicality to guaranty the wellposedness of the trace h1=2u on @˝. Typical smooth
“plateau” functions satisfy this condition.
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integrate by parts to obtain the following variational formulation

�
Find uh� WD Qu 2 Hh

0 such that for every v 2 Hh
0 ,

ah�.Qu; v/ WD �
R
˝ hrQu � rvdx � R˝Œ..a � �rh/ � r Qu/v C cQuv�dx D R˝ fvdx:

(5)
In order to see that problem (5) is well-posed, we need the following lemma.

Lemma 1 If c.x/C div a.x/=2 � �h=2 � ˛ > 0 a.e., where ˛ is independent of
�, we have:

ah�.u; u/ � �kh 1
2ruk2L2.˝/ C ˛kuk2L2.˝/; (6)

kuh�kL2.˝/ �
1

˛
k fkL2.˝/: (7)

Proof In order to obtain a lower bound of the bilinear form we use

ah�.u; u/ D �kh 1
2ruk2L2.˝/ C

Z

˝

.cC 1

2
diva/juj2dx � �

2

Z

˝

hjuj2dx

� �kh 1
2ruk2L2.˝/ C ˛kuk2L2.˝/:

(8)

The first equality follows from the definition of the bilinear form using an integration
by parts and the divergence theorem to rewrite

R
˝ u.a �ru/dxD � 1

2

R
˝.diva/juj2dx.

The a priori estimate (7) follows from the fact that ah�.uh�; uh�/ �
kuh�kL2.˝/k fkL2.˝/ and using (6). ut
Remark 1 We want the constant ˛ > 0 to be independent on �. In general, this
induces a restriction on h since �h=2 needs to be small. For example this is
achieved if h is independent of �.

We assume that (4) has a solution in Hh
0 at least, then the a priori estimate (7)

ensures the uniqueness and the stability of the solution whenever the assumptions
of Lemma 1 holds.

3 Matched Asymptotic Expansion

From now on, we restrict ourselves to a 1D problem with constant coefficient
on ˝ D .0; 1/. We want to use matched asymptotic expansions to study the
approximation error of the eFDDM. Therefore we compute a matched asymptotic
expansions solution of (4) assuming that the membership function h D 1 at least in
the boundary layer of size of order � forming near 0 [3].

To obtain a matched asymptotic expansions solution, we use:

1. For the external field we assume that u.x/ 	Pk�0 �k'k.x/; x 2 .0; 1�:
2. For the internal field, we zoom in the boundary layer by rescaling x. This is done

by setting X D x=� and assuming that u.�X/ D ˚.X/ 	Pk�0 ˚k.X/�k:
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The zeroth-order approximation, to which we will restrict our analysis, is obtained
by solving the following system [3]

8
<

:

�a' 00 C c'0 D f ; '0.1/ D 0;
�˚ 000 � a˚ 00 D f .0/; ˚0.0/ D 0;
limX!1˚0.X/ D '0.0/:

(9)

If f .0/ D 0, the solution of this system is given by

˚0.X/ D 1 � e�aX

a

Z 1

0

f .y/e�
cy
a dy; '0 .x/ D 1

a
e

cx
a

Z 1

x
f .y/ e�

cy
a dyI (10)

otherwise the matching fails and the system does not have any solution.
We obtain a globally valid approximation by merging the two solutions using a

partition of unity f�; 1 � �g

Qu�;�.x/ WD �.x/˚0. x

�
/C .1 � �.x//'0.x/I (11)

�.x/ WD
8
<

:

1; if x < d1�s

�� 2 Œ0; 1�; if d1�s � x � d2�s; 0 < s < 1;
0; otherwise

(12)

is smooth. Note that if we scale the � function �.x�s/, then � and its derivatives
become independent of �.

Lemma 2 For every function � defined as in (12), we have

k�.n/kL1.˝/ D O.��ns/: (13)

Proof This result is a direct consequence of the independence of �.x�s/ on �. We
change the variable in the function � and every derivative leads to an additional
factor of ��s, hence the result. ut

4 Approximation Error Estimates

We use a membership function similar to � to simplify the computations

h.x/ WD
8
<

:

1; if x < c1� t

h�.x/ 2 Œ0; 1�; if c1� t � x � c2� t

0; otherwise;
(14)

and have the following result:
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Theorem 1 Let uh� be the weak solution of (4) with constant a ¤ 0 and c, h defined
in (14) with 0 � t < 1 such that c � �h=2 � ˛ > 0 a.e. and Qu�;� the globally
valid approximation of the corresponding first term in the matched asymptotic
expansions. Assume also that f .0/ D 0 and f 2 W1;1.˝/. For ˝ D .0; 1/ and
s D 2=3C t=3 in (12), we have

kuh� � Qu�;�kL2.˝/ D O.�1Ct=2/: (15)

Proof We look at the equation for the error and use the fact that the internal and
external fields satisfy (9) and Lh�.Qu�;�/ D .�h � a � r C c/.�˚0 C .1 � �/'0/.
The triangle inequality implies

kLh�.uh� � Qu�;�/kL2.˝/ D k f � Lh�.Qu�;�/kL2.˝/

� k� fkL2.˝/ C
c�˚0.

�
�
/


L2.˝/
C
.˚0.

�
�
/ � '0.�//.h��00 C a�0/


L2.˝/

C
2h��0.˚ 00.

�
�
/ � ' 00.�//


L2.˝/

C
�.1� h/�.˚ 000 .

�
�
/� ' 000 .�//


L2.˝/

C �.h� �/' 000


L2.˝/

� k fkL2.0;d2�s/ C c
˚0.

�
�
/


L2.0;d2�s/

C
.˚0.

�
�
/ � '0.�//


L2.d1�s;d2�s/

.��00 C a�0/


L1.d1�s;d2�s/

C 2� �0L1.d1�s;d2�s/

.˚ 00.
�
�
/ � ' 00.�//


L2.d1�s;d2�s/

C �
.˚ 000 .

�
�
/ � ' 000 .�//


L2.0;d2�s/

C � ' 000


L2.d1�s;c2�t/
: (16)

The second inequality follows from the definition of � using the support of its
derivatives. In order to finish the proof, we need a technical lemma.

Lemma 3 Let s < 1, ˝s D .�1�s; �2�
s/ and f .0/ D 0. For n D 0; 1; 2 we have the

following estimates


dn

dxn

�
˚0.
�
�
/ � '0.�/

�
L2.˝s/

D O.� 5
2 s�ns/: (17)

Proof We start by computing the derivatives of ˚0. x
�
/ � '0.x/:

˚0.
x

�
/� '0.x/ D 1

a

�Z x

0

f .y/e�
cy
a dy � e�

ax
�

Z 1

0

f .y/e�
cy
a dy

	
;
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d

dx

�
˚0.

x

�
/� '0.x/

�
D 1

a
f .x/e�

cx
a C 1

�
e�

ax
�

Z 1

0

f .y/e�
cy
a dy;

d2

dx2

�
˚0.

x

�
/� '0.x/

�
D
�

f 0.x/
a
� cf .x/

a2

�
e�

cx
a � a

�2
e�

ax
�

Z 1

0

f .y/e�
cy
a dy:

In order to estimate the L2-norm of these expressions, we use the fact that
k R x

0
f .y/dykL2.˝s/ �

p
3�s=2.�32 � �31/1=2kfkL1.˝s/=3, kfkL2.˝s/ � �s=2.�2 �

�1/
1=2kfkL1.˝s/ and the fact that e� cx

a < 1, for all x 2 .0; 1/. Furthermore, as
f .0/ D 0, we have kfkL1.˝s/ � �s�2kf 0kL1.0;�2/, hence we have

˚0.
�
�
/� '0.�/


L2.˝s/

�
p
3k fkL1.˝s/

3a
�
3s
2 .�32 � �31/

1
2 CO.� 1

2 e
�a�1
�1�s /

� C1�
sk f 0kL1.˝s/�

3s
2 CO.� 1

2 e
�a�1
�1�s /

D O.�5s=2 C � 1
2 e

�a�1
�1�s /;


d

dx

�
˚0.
�
�
/ � '0.�/

�
L2.˝s/

�
p
�2 � �1

a
�s=2k fkL1.˝s/ CO.�� 12 e

�a�1
�1�s /

� C2�
sk f 0kL1.˝s/�

s
2 CO.�� 12 e

�a�1
�1�s /

D O.�3s=2 C �� 12 e
�a�1
�1�s /;


d2

dx2

�
˚0.
�
�
/ � '0.�/

�
L2.˝s/

� p�2 � �1�s=2


�

f 0

a
� cf

a2

�
L1.˝s/

CO.�� 32 e
�a�1
�1�s /

D O.�s=2 C �� 32 e
�a�1
�1�s /:

We obtain the desired result noting that if s < 1 then the exponential terms are
negligible and can be neglected in the O. ut
We can now finish the proof of Theorem 1. Using Eqs. (13) and (17) and estimates
previously used for the norms of f and ' 000 . Equation (16) becomes

k f � Lh�.Qu�;�/kL2.˝/ D O.�3s=2/CO.�3s=2/CO.�5s=2/
�
O.�1�2s/CO.��s/

�

C �O.��s/O.�3s=2/C �O.�s=2/C �O.� t=2/

D O.�3s=2 C �1Cs=2 C �1Ct=2/

We know that t < s by hypothesis so that the second term is subdominant, choosing
s such that 3s=2 D 1C t=2 gives the condition on s in Theorem 1. We conclude the
proof using the a priori estimate (7). ut
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Corollary 1 The approximation error done by the use of an eFDDM as described
in Sect. 2 is of order 1 in �, that is

ku� � uh�kL2.˝/ D O.�/: (18)

Proof This follows from Theorem 1 by the triangle inequality, noting that h D 1

implies t D 0. ut
The approximation error obtained here is global. We now show a numerical example
that illustrates the local convergence of the approximation error of the method.

Numerical experiment: We show here that an eFDDM for the problem L�.u/ D
f on ˝ D .0; 1/ is of order O.�/ as predicted by Corollary 1 and that it is
numerically of order O.�3=2/ in the subdomain where diffusion is taken into
account. For this, we solve the corresponding eFDD approximation (3) with L1 WD
L� and L2 WD L0� and a D c D 1, see [7] for the definition of the operators QLk and
Lkl, k; l D 1; 2.

We define h as in (14) with h� a cubic spline on .c1� t; c2� t/,

h�.x/ D ı�3.2x3 � 3� t.c1 C c2/x
2 C 6�2tc1c2x � c22�

3t.3c1 � c2//;

with ı WD .c2 � c1/� t and 0 < c1� t � c2� t � 1.
In order to satisfy the hypothesis of Theorem 1, we need to have ˛ > 0.

In our case, we have kh00kL1.˝/ D 6=ı2 which implies the condition � t�1=2 >
.3=c/1=2=.c2 � c1/. Choosing t D 1=2, c1 D 6 and c2 D 8, we satisfy this
condition and we expect an order of convergence of O.�5=4/ in the diffusive domain.
Intuitively we can understand this result by Theorem 1, as both u� and uh� have
h D 1 in this domain. A triangle inequality then implies the result. This order of
convergence is better than the order of most of the available methods [6], but not
optimal. Using the same reasoning, we can hope for a O.�3=2�"/ for t D 1 � ".

We now show a numerical example with t D 0:99 that realizes an order
O.�3=2�"/. Even if we can not prove the corresponding hypothesis in this case, the
numerical example behaves as expected.

We introduce a set of equidistant points xi D i � x, i D 0; : : : ; n C 1 and
x D 1=.nC1/ and discretize the eFDDM with an upwind 3-point finite difference
scheme. This gives us a system of 2n coupled equations. For each component uj,
j D 1; 2, we remove from the system all the irrelevant equations, those for which
hj.xi/ D 0; this corresponds to the restriction to Supp.˝j/. In order to obtain an
approximation error curve, we let � tends to 0 keeping n� constant to insure the
resolution of the boundary layer. This is just to test the behavior of the method. In
Fig. 1 we display the L2 relative error between the numerical approximations of u�
and uh� computed with the eFDDM scheme for three choices of f .

We see that for the three choices of f the method behaves as predicted by
Corollary 1, that is the error is of orderO.�/ in the advective subdomain. And we see
numerically that the error curves are of order O.�3=2/ in the diffusive subdomain,
as expected.
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Fig. 1 Approximation errors where we refined the grid keeping n� constant. (a) Results for the
pure advective subdomain. Approximation error of order 1. (b) Results for the diffusive subdomain.
Approximation error of order 3=2

5 Conclusion

In this paper we have shown that matched asymptotic expansions are useful for the
analytical study of approximation error of an eFDDM. We have proved that the error
is of order � by taking advantage of the similarities between the two approaches. The
first is based on a decomposition of the operator whereas the second is based on a
decomposition of the solution.

Our results compare those for a < 0 in Gander and Martin [6] with Dirichlet
boundary conditions. We have proven that an eFDDM is not worse than the other
coupling methods and our numerical example shows that we are in fact better inside
the diffusive subdomain. The justification of the order O.�3=2/ in the diffusive
subdomain is only heuristic as we have not been able to prove it yet. We will address
this problem and get local estimates in future work. The only other known method
that achieves an order better than O.�/ is the one based on the factorization of the
operator, which does not generalize to higher dimensions. Our method generalize to
higher dimensions and we are working on extension of this work to 2D, 3D and time-
dependent problems. We also want to generalize the method to more complicated
problem such as the kinetic equations. This has been done for example in the work
of Degond et al. [4], but without any approximation error analysis.
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A Comparison of Additive Schwarz
Preconditioners for Parallel Adaptive Finite
Elements

Sébastien Loisel and Hieu Nguyen

1 Introduction

We consider a second order elliptic boundary value problem in the variational form:
find u� 2 H1

0.˝/, for a given polygonal (polyhedral) domain ˝ � R
d; d D 2; 3

and a source term f 2 L2.˝/, such that

Z

˝

ru�.x/ � rv.x/ dx
„ ƒ‚ …

�a.u�;v/

D
Z

˝

f .x/v.x/ dx
„ ƒ‚ …

�.f ;v/

; for all v 2 H1
0.˝/: (1)

The Bank–Holst parallel adaptive meshing paradigm [1–3] is utilised to solve (1)
in a combination of domain decomposition and adaptivity. It can be summarised as
follows:

Step I—Mesh Partition: Starting with a coarse mesh TH , the domain is partitioned
into non-overlapping subdomains:˝ D [p

iD1˝i.
Step II—Adaptive Meshing: Each processor i is provided with TH and instructed

to sequentially solve the entire problem, with the stipulation that its adaptive
enrichment should be limited largely to ˝i. At the end of this step, the local
mesh Ti on processor i are regularised such that the global fine mesh described
in Step III is conforming.

Step III—Global Solve: A final finite element solution is computed on the mesh
Th D [p

iD1Tij˝i , which is the union of the refined submeshes.
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Fig. 1 A coarse mesh with partition (left), a local mesh on a processor (middle) and the global
mesh (right)

An example of meshes in different steps of the Bank–Holst paradigm is
illustrated in Fig. 1.

Discretizing (1) using linear finite elements on the global mesh Th, we arrive at
the following system of linear equations:

Au D f ; A 2 R
n�n; u; f 2 R

n: (2)

The purpose of this paper is to formulate and compare three additive Schwarz
preconditioners that can be used to accelerate Krylov methods in solving (2). The
improved convergence analysis will be reported somewhere else. The considered
preconditioners are: the two-level additive Schwarz preconditioner with small
overlap [5, 8], two-level additive Schwarz preconditioner with weakly overlapping
[4] and optimal one-level additive Schwarz preconditioner based on full-domain
decomposition [6].

2 Preconditioners Formulation

As all of the considered preconditioners are additive Schwarz preconditioners, they
can be formulated and analyzed using the abstract theory of Schwarz methods (cf.
[8]) which is summarized as follows.

Assume the global finite element space Vh associated with Th admits the
decomposition

Vh D
pX

iDi0

Vi; (3)

where Vi are subspaces of Vh and i0 D 0 or 1. The subspace V0 is usually related
to a coarse problem, built on a coarse mesh (TH in the Bank–Holst paradigm). The
subspaces Vi, on the other hand, are often related to a partition in subdomains and



Additive Schwarz Preconditioners for Parallel Adaptive Finite Elements 347

are associated with local submeshes. But, this is not the case for the third considered
preconditioner, which is proposed in [6].

Now let f .i/1 .x/; : : : ;  .i/ni .x/g be a basis of Vi and let x1; : : : ; xn be the nodal
points of the global mesh Th. We define

Ri D

2
64
 
.i/
1 .x1/ � � �  .i/1 .xn/
::: � � � :::

 
.i/
ni .x1/ � � �  .i/ni .xn/

3
75 : (4)

It can be noted that Ri is the matrix representation of the restriction operator from
Vi to V . Using this operator, the local stiffness matrix associated with subspace Vi is
defined by

Ai D RiART
i : (5)

Then the additive Schwarz preconditioner associated with the decomposition (3) is

P D
pX

iDi0

RT
i A�1i Ri (6)

The preconditioner P is said to be two-level when i0 is 0 (coarse level: V0, fine level:
fVigpiD1) or one-level when i0 is 1.

Next we will formulate three different additive Schwarz preconditioners for the
Bank–Holst paradigm using different decomposition (3) with different choices of Vi.
For clarity, we will use different variations of the notations Vi, Ri and Ai to denote
the subspace, its corresponding restriction matrix and local stiffness matrix.

Two-level additive Schwarz preconditioner with small overlap: This is
the standard and most popular version of additive Schwarz preconditioner. It
is introduced in a general context without adaptivity. However, it can be used
for the Bank–Holst paradigm and we present it here for comparison. For this
preconditioner, each subdomain ˝i is extended to a larger region Ő i by adding a
small number of layers of elements in the global (fine) mesh Th (see Fig. 2, left).
The subspaces OVi are then defined as

OVi D fv.x/ 2 H1
0.
Ő i/j v.x/jT 2 P1.T/; 8T 2 Thg: (7)

The two-level additive Schwarz preconditioner with small overlap is simply

PSO D RT
0A�10 R0 C

pX

iD1
ORT

i
OA�1i
ORi: (8)

The condition number of the preconditioned system associated with PSO is bounded
from above by C.1C .H=ı//, where C is a constant independent of the mesh sizes,
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Fig. 2 Extension regions (shaded areas) and their associated meshes in cases of small overlap
(left), weak overlap (center), full domain overlap (right)

H is the coarse mesh size and ı is the width of the overlap (cf. [5, 8] and references
therein). If ı is of size O.h/, the usual case in practice, the condition number of
the preconditioned system in the Bank–Holst paradigm will increase linearly as the
level of refinement increases. In case the overlap is “generous”, ı is of size O.H/,
the condition number is bounded by a constant, i.e. O(1), independent of the mesh
sizes H, h and the number of subdomains p. But, there is an important practical
concern that the cost of using generous overlap is too expensive as the number of
vertices in the overlapping region would be O.h�2/ in 2D and O.h�3/ in 3D.

Weakly overlapping two-level additive Schwarz preconditioner: The formu-
lation of this preconditioner is very much similar to that of PSO. The only difference
is that each subdomain ˝i is extended to a larger region Q̋ i by adding layers of
elements in the adaptive mesh Ti so that the overlap is of size O.H/ (see Fig. 2,
center). Then the subspace QVi is defined by

QVi D fv.x/ 2 H1
0.
Q̋ i/j v.x/jT 2 P1.T/; 8T 2 Tig; (9)

and the weakly overlapping two-level additive Schwarz preconditioner is defined by

PWO D RT
0A�10 R0 C

pX

iD1
QRT

i
QA�1i
QRi: (10)

By using adaptive mesh Ti instead of Th, the number of vertices in the overlapping
region is reduced to O.h�1/ in 2D and O.h�2/ in 3D. In addition, the condition
number of the preconditioned system associated with PWO can be bounded indepen-
dently of the mesh sizes H, h and the number of subdomains p, i.e. is O(1) (see
[4]).

Optimal one-level additive Schwarz preconditioner: In order to take full
advantage the Bank–Holst paradigm, [6] formulate an additive Schwarz precon-
ditioner that utilises the subspaces associated with the local adaptive meshes
in the paradigm. These are meshes of the whole domain ˝ residing locally
on each processor. They form a “full domain overlap” partition of the domain
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(see Fig. 2, right). In this case, the local subspaces are:

Vi D fv.x/ 2 H1
0.˝/j v.x/jT 2 P1.T/; 8T 2 Tig: (11)

And the optimal one-level additive Schwarz preconditioner is

PO1 D
pX

iD1
RT

i A�1i Ri: (12)

Here, we should emphasize that explicit coarse component (in two-level formula-
tion) is not needed in this case because the coarse space V0 is contained in each and
every subspace Vi.

It is shown in [6] that the condition number of the preconditioned system
associated with PO1 can also be bounded independently of the mesh sizes H, h
and the number of subdomains p, i.e. is O(1).

3 Remarks on the Implementation

In order to compute the restriction matrices as defined in (4), one usually uses the
nodal basis functions corresponding to the submeshes/meshes associated with Vi for
f .i/1 .x/; : : : ;  .i/ni .x/g. In cases of PSO, the nodal points in the submesh associated
with OVi form a subset of the fine nodal points fx1; : : : ; xng. Consequently, ORi, i > 0,
are rectangular matrices of zeros and ones, which extracts the nodal points that lie
in the extension region Ő i: In case of PWO and PO1 , the nodal points associated with
QVi and Vi that lie outside ˝i does not belong to the fine mesh Th. Therefore, the
corresponding rows of QRi and Ri can have values in .0; 1/. For simplex elements,
one can compute these rows using the fact that  .i/j .xk/ equals either zero or the
barycentric coordinate of xk with respect to the coarse element containing xk and
having x.i/j as one of its vertices. Here x.i/j is the nodal point in Ti associated with

 
.i/
j . The same technique can be used to compute the restriction matrix R0.
For PO1 , if minimal refinement is allowed outside the local subdomain in each

local adaptive mesh, the rows of Ri associated with nodal points far away from ˝i

are the same with the corresponding rows of R0. Computing these rows requires
only the knowledge of the coarse mesh TH and the local submesh of Th which is
available locally on each processor. Therefore, each processor can compute parts of
R0 locally and exchange the information with others to construct the full Ri.

In case of PSO and PWO, the only way of obtaining the local stiffness matrices
Ai is via (5), which has the computational cost of O.N2

i /. Here Ni is the number
of degrees of freedom in ˝i. If the global matrix A is assembled but distributed,
there will also be communication cost that can be expensive. For PO1, one is able to
assemble Ai with the computational cost of roughly O.Ni/. The assembling requires
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no communication as Ti are available locally and are meshes of the whole domain
˝ . In addition, the communication cost can be reduced further as A is not needed to
be assembled.

4 Numerical Experiments

In this section, we present numerical experiments for the following problem

�u D 1 in ˝;

u D 0 on @˝;
(13)

where˝ is a L-shaped domain (the unit square missing the lower right quarter). The
solution of this problem is shown in Fig. 3 (left).

We start with an unstructured triangular (coarse) mesh of 436 vertices and 1026
elements. Then, we partition it into p subdomains, p D 16; 32; 64; 128. Each
processor gets exactly the same copy of this mesh. The coarse mesh with a partition
of 16 subdomains are shown in Fig. 3. In Step 2, local adaptive meshes are obtained
by refining elements inside and surrounding local subdomains. In this experiment,
we limit outside refinement by refining only ones which share at least one point
with the local subdomain. Hanging nodes are allowed even though they are not
considered as real nodal points. When an element is refined, it is split into four
similar elements having half of its size. We use l levels of refinement for each local
mesh, l D 4; 5; 6. The preconditioners PSO, PWO and PO1 are implemented with the
first two having the overlap of size h (one layer of fine elements) and H (equivalent
to one layer of coarse elements) respectively.

Fig. 3 Solution (left) and a coarse mesh with a partition of 16 subdomains (right)
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Since all of the three preconditioners are symmetric positive definite, they
are suitable to use with the CG method. However, it is well-known [7] that the
convergence of CG in finite precision departs significantly from the theoretical
convergence of CG in exact arithmetic. Therefore, we also use the GMRES method,
which is slightly more numerically robust, in our experiments.

Table 1 reports the number of CG and GMRES iterations to bring the relative
residual below 10�6. The number of degrees of freedom and the average of
elapsed time required to apply the preconditioners on a vector are also provided
for comparison.

It can be seen that PSO requires the most iterations for both CG and GMRES to
converge. The iteration counts are clearly increasing as h becomes smaller (higher
level of refinement). For GMRES, PO1 is the best performer. It requires just half
the number of iterations needed in case of PWO. The numbers of GMRES iterations
for these two preconditioners appear to be bounded by a constant, as predicted by
theory. For CG, the number of iterations increases when l increases in case of PWO,
and when p increases in case of PO1 . Between the two preconditioners, PO1 has more
wining cases.

In term of elapsed time, PO1 and PWO are roughly the same. Even though they
are more expensive to apply, they are more efficient than PSO because they require
fewer number of iterations.

In the second experiment, we study whether it is beneficial to refine local meshes
in the region outside local subdomains. Now instead of using minimal outside
refinement, we perform at least one level of refinement for elements that do not
belong to the local subdomain. It should be noted that the global mesh Th and the
global stiffness matrix A are the same with those in the previous experiments. The
restriction matrices and local stiffness matrix, however, are changed.

We do not see any improvement in term of iterations count for PWO. Perhaps, this
is due to the fact that a coarse space is already incorporated in this preconditioner.
We do see clear improvement for PO1 with significant reduction in iteration counts
and slight increase of time. However, care must be taken when using generous
refinement outside subdomains as this would require more memory and time to
calculate restriction matrices (Table 2).
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A BDDC Preconditioner for Problems Posed
in H .div/ with Deluxe Scaling

Duk-Soon Oh

1 Introduction

Let ˝ be a bounded polyhedral domain in R3. We will work with the Hilbert space
H.divI˝/, the subspace of vector valued functions u 2 .L2.˝//3 with div u 2
L2.˝/: The space H0.divI˝/ is the subspace of H.divI˝/ with a vanishing normal
component on the boundary @˝ .

We will consider the following problem: Find u 2 H0.divI˝/, such that

a.u; v/ WD
Z

˝

.˛ div u div vC ˇ u � v/dx D
Z

˝

f � v dx; v 2 H0.divI˝/: (1)

We will assume that the coefficient ˛ 2 L1.˝/ is nonnegative, that ˇ 2 L1.˝/ is
strictly positive, and that the right hand side f 2 .L2.˝//3.

The model problem (1) is equivalent to the variational forms of mixed or first
order system least-squares formulations as in [3]. There are also other applications
of H.div/, e.g., in the sequential regularization method for the Navier-Stokes
equations; see [12].

The main purpose of this paper is to construct a BDDC preconditioner for
vector field problems discretized with Raviart-Thomas finite elements. Iterative
substructuring methods for such problems were first considered in [25]. Other
iterative substructuring methods for these types of problems have been developed
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in [19]. Overlapping Schwarz methods have also been introduced; see [1, 14–
16]. Other methods such as multigrid methods have been applied successfully in
[2, 8, 10]. We also remark that domain decomposition methods for H.curl/ problems
were introduced in [5, 7, 9, 20–22]. BDDC methods for other problems related to
H .div/ can be found in [18, 23, 24].

In the construction of a BDDC preconditioners, a set of primal constraints and a
weighted averaging technique have to be chosen and these choices will very directly
affect the performance. Effective primal constraints are very simple for the Raviart-
Thomas elements; we choose the average value of the normal component over the
subdomain faces as primal variables. However, the choice of averaging is much
more intricate. We will use a new type of weighted averaging technique introduced
in [6] for three dimensional H.curl/ problems.

2 Preliminary

We first introduce a triangulation Th of˝ of hexahedral elements. We will consider
the lowest order Raviart-Thomas elements on mesh Th. We then decompose the
domain ˝ into N nonoverlapping subdomains ˝i. We also define the global
interface 
 and the local interface 
i by


 WD
 

N[

iD1
@˝i

!
n@˝; 
i WD 
 \ @˝i;

respectively.
Let W.i/ be the space of the finite elements on ˝i with a zero normal component

on @˝ \ @˝i. We decompose W.i/ into two subspaces, W.i/

 and W.i/

I . Here, W.i/



is the interface space which consists of degrees of freedom corresponding to 
i

and W.i/
I is the space of discrete unknowns of the interior of ˝i. The space W.i/




can be decomposed into a primal space W.i/
˘ and a dual space W.i/

 . In general, the

functions in W
 WD QN
iD1 W.i/


 have discontinuous normal components across the
interface while those of the finite element solutions are continuous. We denote the
continuous subspace by OW
 .� W
 /. We next define operators R.i/
 W OW
 ! W.i/




which extract the degrees of freedom associated with 
i. Similarly, we define a
space QW
 , for which all the primal constraints are enforced. We next define local

operators R
.i/

 W QW
 ! W.i/


 which extract the degrees of freedom corresponding to

i. We also define the global operator QR
 W OW
 ! QW
 . Finally, we introduce the
scaled operator QRD;
 W OW
 ! QW
 obtained by pre-multiplying the entries of QR

associated with W.i/

 by a scaling matrix D.i/. The discrete form of our problem is
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written in terms of local stiffness matrices as

�
AII AI


A
 I A
 


	 �
uI

u


	
D

NX

iD1

"
A.i/II A.i/I


A.i/
 I A.i/
 


#"
u.i/I

u.i/


#
D

NX

iD1

"
f .i/I

f .i/


#
: (2)

Before we introduce the BDDC algorithm, we eliminate all interior unknowns
locally. After this step, we obtain these local Schur complements:

S.i/
 WD A.i/
 
 � A.i/
 IA
.i/�1
II A.i/I
 :

By using the local Schur complements, we can build a reduced interface problem.
The global problem is given by

OS
 u
 D g
 ; (3)

where

OS
 WD
NX

iD1
R.i/T
 S.i/
 R.i/
 and g
 WD

NX

iD1
R.i/T


�
f
 � A.i/
 IA

.i/�1
II f .i/I

�
:

Moreover, we have the partially assembled Schur complement QS
 :

QS
 D
NX

iD1
R
.i/



T
S.i/
 R

.i/

 : (4)

3 BDDC

We consider a BDDC preconditioner to solve the interface problem (3). We can find
background information and a description of the algorithm in [4, 11]. The BDDC
preconditioner has the following form:

M�1 D QRT
D;

QS�1
 QRD;
 : (5)

It is convenient to make a change of variables by introducing a basis for the
primal degrees of freedom and a complementary basis for the dual subspace W.i/

 :

Here we can follow the recipes of [11, Sect. 3.3] closely. For our problem, the only
primal variables will be the averages of the normal component over the subdomain
faces.

In order to specify the algorithm completely, we need to define the weighted
averaging operator D.i/. Conventional weighted averaging techniques, known as
stiffness and � scalings, are described in [4, 13]. However, these methods are
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designed for constant coefficients or for one variable coefficient. For more than one
variable coefficient, we need a different approach and we will use the new weighted
averaging technique introduced in [6] for H.curl/ problems.

Let Fij be the common face of two adjacent subdomains ˝i and ˝j. Moreover,

let R.i/Fij
be the restriction operator which extracts the degrees of freedom on Fij

from those on 
i. Then, the two Schur complements associated with Fij are given

by S.i/Fij
D R.i/Fij

S.i/
 R.i/Fij

T
and S.j/Fij

D R.j/Fij
S.j/
 R.j/Fij

T
. We will use the scaling matrices

D.i/
j WD

�
S.i/Fij
C S.j/Fij

��1
S.i/Fij

. We note that we can apply the operator
�

S.i/Fij
C S.j/Fij

��1

by solving a Dirichlet problem on ˝i [ Fij [ ˝j with zero Dirichlet boundary
conditions. The scaling operator D.i/ is then given by a block diagonal matrix with
the diagonal components D.i/

j1
;D.i/

j2
; � � � ;D.i/

jk
, where j1; j2; : : : ; jk 2 Ni and Ni is the

set of indices of the ˝j’s .i ¤ j/ which share a subdomain face with ˝i.
The condition number of M�1 OS
 is bounded by C .1C log H=h/2, where the

constant C does not depend on the size of subdomain and mesh size as well as
the coefficients and their jumps between subdomains. Due to space restriction, a
detailed analysis will not be reported here. Further details are provided in [17].

4 Numerical Results

We have applied the BDDC algorithm to our model problem (1). For algorithmic
details, we follow [11]. We set ˝ D .0; 1/3 and decompose the unit cube into N3

identical cubic subdomains. Each subdomain has a side length H D 1=N. Moreover,
we assume that the coefficients ˛ and ˇ have jumps across the interface between the
subdomains with a checkerboard pattern in which .˛; ˇ/ for a subdomain is either
.˛b; ˇb/ or .˛w; ˇw/. We discretize the model problem (1) by using the lowest order
hexahedral Raviart-Thomas finite elements and use the preconditioned conjugate
gradient method to solve the discretized problem. The iteration is stopped when the
l2-norm of the residual has been reduced by a factor of 10�6.

We first fix the value of ˇ and vary ˛. Second, we fix the value of ˛ and vary ˇ.
Tables 1 and 2 show the first two sets of results. We next use a different distribution,
instead of the checkerboard distribution. We first generate 2N3 random numbers
fr˛igiD1;:::;N2 and frˇigiD1;:::;N2 in Œ�3; 3� with a uniform distribution. We then assign
10r˛i and 10rˇi for ˛i and ˇi, respectively. The third set of results can be found in
Table 3. We see that the condition number is insensitive to the jumps of coefficients.

We next report on numerical experiments for the case where coefficients have
jumps inside the subdomains. For each subdomain˝i, we let˝o

i D f.x; y; z/ j 1=4 �
xo; yo; zo � 1=2;where xo D x=H � bx=Hc; yo D y=H � by=Hc; and zo D z=H �
bz=Hc:g. Here, bxc D maxfm 2 Z jm � xg, where Z is the set of integers. We
use the ˛i and ˇi specified in Tables 1 and 2 as coefficients for ˝in˝o

i . For ˝o
i ,

we assign 100˛i and 100ˇi and with ˛i and ˇi in a checkerboard pattern. Tables 4
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Table 1 Condition numbers and iteration counts (in parentheses)

.˛b; ˇb/ .˛w; ˇw/ H=h D 2 H=h D 4 H=h D 8 H=h D 16

.10�2; 1/ .1; 1/ 1.64 (7) 2.32 (9) 3.26 (11) 4.37 (13)

.10�1; 1/ .1; 1/ 1.80 (7) 2.64 (9) 3.70 (12) 4.94 (13)

.1; 1/ .1; 1/ 1.83 (7) 2.69 (10) 3.75 (11) 5.01 (14)

.101; 1/ .1; 1/ 1.83 (7) 2.69 (10) 3.76 (11) 5.02 (14)

.102; 1/ .1; 1/ 1.83 (7) 2.69 (10) 3.76 (11) 5.02 (14)

Checkerboard constant ˇ pattern and N D 4

Table 2 Condition numbers and iteration counts (in parentheses)

.˛b; ˇb/ .˛w; ˇw/ H=h D 2 H=h D 4 H=h D 8 H=h D 16

.1; 10�2/ .1; 1/ 1.03 (3) 1.06 (4) 1.09 (4) 1.12 (4)

.1; 10�1/ .1; 1/ 1.28 (5) 1.53 (6) 1.89 (8) 2.31 (9)

.1; 101/ .1; 1/ 1.27 (5) 1.51 (6) 1.85 (7) 2.27 (9)

.1; 102/ .1; 1/ 1.02 (3) 1.05 (4) 1.08 (4) 1.12 (4)

Checkerboard constant ˛ pattern and N D 4

Table 3 Condition numbers and iteration counts (in parentheses)

H=h D 2 H=h D 4 H=h D 8 H=h D 16

Set 1 1.80 (8) 2.69 (11) 3.76 (13) 5.01 (16)

Set 2 1.65 (8) 2.37 (9) 3.39 (11) 4.61 (14)

Set 3 1.78 (8) 2.50 (10) 3.49 (12) 4.82 (14)

Set 4 1.67 (8) 2.50 (10) 3.50 (12) 4.68 (14)

Set 5 1.74 (8) 2.49 (10) 3.45 (13) 4.54 (15)

Random coefficients and N D 4

Table 4 Condition numbers and iteration counts (in parentheses)

H=h D 4 H=h D 8 H=h D 16

˛b D 10�2 2.32 (9) 3.34 (11) 4.41 (13)

˛b D 10�1 2.64 (9) 3.83 (12) 5.05 (14)

˛b D 100 2.69 (10) 3.90 (12) 5.16 (14)

˛b D 101 2.69 (10) 3.91 (12) 5.17 (14)

˛b D 102 2.69 (10) 3.91 (12) 5.17 (14)

Specified values as indicated in Table 1 with jumps inside subdomains and N D 4

and 5 show the results. We see that our method works well even though we have
discontinuities inside the subdomains.

Finally, for a comparison, we report on some numerical experiments using
conventional techniques. We have performed three different types of experiments
with the same set of coefficient distributions. The first set of experiments, named
“deluxe”, is based on the deluxe scaling techniques. In the second, “diag”, we use
the conventional methods described in [4, 13]. In this case, the scaling is based on
the diagonal entries of each subdomain matrix. We use the cardinality in the last set,
“card”. For Raviart-Thomas elements, only two subdomains share a subdomain face
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Table 5 Condition numbers and iteration counts (in parentheses)

H=h D 4 H=h D 8 H=h D 16

ˇb D 10�2 1.05 (4) 1.09 (4) 1.13 (4)

ˇb D 10�1 1.51 (6) 1.90 (8) 2.34 (9)

ˇb D 101 1.53 (6) 1.95 (8) 2.39 (9)

ˇb D 102 1.06 (4) 1.09 (4) 1.13 (4)

Specified values as indicated in Table 2 with jumps inside subdomains and N D 4

Table 6 Condition numbers and iteration counts (in parentheses)

.˛b; ˇb/ .˛w; ˇw/ Deluxe Diag Card

.10�3; 103/ .1; 1/ 1.05e0 (3) 9.03e2 (47) 2.66e2 (43)

.10�2; 102/ .1; 1/ 1.17e0 (4) 1.88e2 (36) 5.13e1 (31)

.10�1; 101/ .1; 1/ 1.82e0 (7) 7.22e1 (43) 2.19e1 (30)

.101; 10�1/ .1; 1/ 1.89e0 (8) 8.63e1 (48) 2.61e1 (32)

.102; 10�2/ .1; 1/ 1.09e0 (4) 1.01e3 (74) 2.58e2 (66)

.103; 10�3/ .1; 1/ 1.01e0 (3) 1.48e4 (130) 3.71e3 (120)

Checkerboard pattern, N D 4, and H=h D 8

in common. Hence, we use 1=2 as scaling factors. As we see in Table 6, our weighted
averaging technique works well while the others are sensitive to the discontinuities
across the interface.

We remark that the deluxe scaling technique requires additional computational
costs for solving local subproblems on each subdomain face. Experimentally,
conventional methods are approximately 5–6 times faster than deluxe scaling in each
iteration. However, deluxe scaling requires much less iteration counts especially for
the case where we have large jumps between subdomains. Hence, we can expect a
better performance. We note that a more computationally efficient version of deluxe
scaling is introduced in [7].

Acknowledgement This work was completed while the author was working at Louisiana State
University. This material is based upon work supported by the HPC@LSU computing resources
and the Louisiana Optical Network Institute (LONI).
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Pipeline Schwarz Waveform Relaxation

Benjamin Ong, Scott High, and Felix Kwok

1 Introduction

Schwarz Waveform Relaxation (SWR) introduced in [2] has been analyzed for a
wide range of time-dependent problems, including the parabolic heat equation [6],
wave equation and advection-diffusion equations [7, 8], Maxwell’s equations [4],
and the porous medium equation [9]. In contrast to classical Schwarz iterations,
where the time-dependent PDE is discretized in time and domain-decomposition is
applied to the sequence of steady-state problems, SWR solves time-dependent sub-
problems; this relaxes synchronization of the sub-problems and provides a means
to couple disparate solvers applied to individual sub-problems, as shown in [10] for
example. SWR has also been shown in [1, 8] to have superlinear convergence for
small time windows. This paper outlines a framework that reformulates SWR so that
successive waveform iterates can be computed in a pipeline fashion, allowing for
increased concurrency and hence, increased scalability for SWR-type algorithms.
In Sect. 2, we review the SWR algorithm before introducing and comparing several
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Pipeline Schwarz Waveform Relaxation algorithms (PSWR) in Sect. 3. Numerical
scaling results for the linear heat equation are presented in Sect. 4.

2 Schwarz Waveform Relaxation

Denote the PDE of interest as

ut D L.t; u/; .x; t/ 2 ˝ � Œ0;T� (1)

u.x; 0/ D f .x/; x 2 ˝
u.z; t/ D g.z; t/; z 2 @˝:

Consider a partitioning of the domain, ˝ D [i˝i. The domains in the partition
may be overlapping or non-overlapping. Let ui denote the solution on sub-domain
˝i. Then, Eq. (1) can be decomposed into a coupled system of equations,

.ui/t D L.t; ui/; .x; t/ 2 ˝i � Œ0;T� (2)

ui.x; 0/ D f .x/; x 2 ˝i

ui.z; t/ D g.z; t/; z 2 @˝i \ @˝;
Tij.ui.z; t// D Tij.uj.z; t//; z 2 @˝i \ @˝j;

where T are transmission operators appropriate to the Eq. (1). SWR decouples the
system of PDEs in Eq. (2). Let uŒk�i denote the kth waveform iterate on sub-domain
˝i. After specifying an initial estimate for the sub-domain solution on the interfaces,
uŒ0�i .z; t/; z 2 @˝in@˝ , the SWR algorithm iteratively solves PDEs (3) for waveform
iterates k D 1; 2; : : : until convergence,

.uŒk�i /t D L.t; uŒk�i /; .x; t/ 2 ˝i � Œ0;T� (3)

uŒk�i .x; 0/ D f .x/; x 2 ˝i

uŒk�i .z; t/ D g.z; t/; z 2 @˝i \ @˝;
Tij.u

Œk�
i .z; t// D Tij.u

Œk�1�
j .z; t//; z 2 @˝i \ @˝j:

A pseudo-code for the algorithm is presented on the next page. Observe that SWR
allows for each sub-domain to independently compute time-dependent solutions
on their respective sub-domains (lines 9–11) During each waveform iteration,
transmission data on each sub-domain is aggregated for the entire computational
time interval before boundary data is exchanged between neighboring sub-domains
(lines 12–14).
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Schwarz Waveform Relaxation Algorithm
1. MPI Initialization

2. parallel for i D 1 : : :N (Sub-domain)

3. for t D t : : : T

4. Guess u
Œ0�
i .z; t/; z 2 @˝i \ @˝j

5. end

6. end

7. for k D 1 : : :K (Waveform iteration)

8. parallel for i D 1 : : :N (Sub-domain)

9. for t D t : : : T

10. Solve for uŒk�i .x; t/

11. end

12. for t D t : : :T

13. Exchange transmission data T .uŒk�i .z; t//

14. end

15. Check convergence

16. end

17. end

.

3 Pipeline Schwarz Waveform Relaxation

Using a similar approach described in [3, 12], the relaxation framework can
be rewritten so that after initial start-up costs, multiple waveform iterations can
be computed in a pipeline-parallel fashion. A graphical example of the PSWR
algorithm for two subdomains is shown in Fig. 1. To simplify the presentation, we

Fig. 1 The proposed PSWR
algorithm allows for multiple
Schwarz waveform iterations
to be simultaneously
computed. After an initial
start-up cost, multiple iterates
are computed in a pipeline
fashion
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present the algorithm for the simplified case where the same time discretization is
used for all sub-problems (PSWR Algorithm 1).

Pipeline Schwarz Waveform Relaxation Algorithm 1
1. MPI Initialization

2. parallel for i D 1 : : :N (Sub-domain)

3. for t D t : : : T

4. Guess u
Œ0�
i .z; t/; z 2 @˝i \ @˝j

5. end

6. Set tŒ0� D T

7. end

8. parallel for k D 1 : : :K (Waveform iteration)

9. parallel for i D 1 : : :N (Sub-domain)

10. set tŒk� D t

11. While tŒk� 	 T

12. If tŒk� < tŒk�1�

13. Solve for uŒk�i .x; t
Œk�/

14. Exchange transmission data T .uŒk�i .z; t
Œk�//

15. tŒk� tŒk� Ct

16. end

17. end

18. Check convergence

19. end

20. end

.

Several observations should be made about the proposed PSWR algorithm. First,
a Schwarz iteration can only proceed if boundary data (i.e. transmission conditions)
from the previous iterate are available; this condition (part of the start-up cost before
the PSWR algorithm can be run in a pipeline fashion) is checked by the if statement
in line 12. Secondly, transmission data is exchanged after every time step to facilitate
the pipeline parallellism. This added synchronization can be relaxed at the expense
of increasing the start-up cost needed to run this algorithm in a pipeline fashion. This
pipeline parallelism allows for N � K concurrent processes in the PSWR algorithm
with efficiency Nt

KCNt
(accounting for start-up costs), where Nt is the number of time

steps used to discretize the time domain Œ0;T�, N is the number of sub-domains, K
is the number of waveform iterates. This contrasts with the SWR algorithm, which
can only utilize N concurrent processes corresponding to the N sub-domains. This
increased concurrency in PSWR comes with the overhead of an increased number
of messages and synchronization.

For the SWR algorithm, one needs to send O.K � 1/ message of size O.Nt/. If
N � K processors are used in a pipeline parallel fashion as described in Pipeline
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Schwarz Waveform Relaxation Algorithm 1, O..K � 1/ �Nt/ messages of size O.1/
are needed. More generally, if N � p processors are used in the PSWR algorithm,
where p < K is a multiple of K, then O..p�1/=p �K �Nt/messages of size O.1/, and
O.K=p� 1/ messages of size O.Nt/, are needed. We note that the PSWR algorithm
can also be implemented using a framework that naturally reduces the number of
messages in a system. Assuming a heterogeneous computing platform (where each
socket has multiple cores), one can use the MPI-3 framework [11] or the OpenMP
protocol in the outer “parallel for” statement in line 8, to aggregate transmission
data from line 14 naturally before exchanging transmission data with neighboring
nodes. Alternatively, because nodes working on waveform iterate k only need to
communicate with waveform iterates k � 1, the PSWR algorithm allows for a
natural grouping of nodes so that one can (in principle) use multiple overlapping
communicators to leverage data/network-topology and software defined networking
advances (see [5]) to add scalability.

Generalizations to allow for disparate time discretizations in each sub-problem
are possible. We list the algorithm (Algorithm 2) without implementation. Unlike
PSWR Algorithm 1, it is not possible to keep the “pipe” full, i.e. domain i might
necessarily need to wait for its neighboring domains to provide boundary data.
Additionally, solving for uŒk�i .x; t

Œk�
i / in line 14 requires an interpolation algorithm

to obtain the correct transmission condition to be used in the solution of (3). Lastly,
an implementation decision has to be made on how to collect and store the data
from neighboring domains before the interpolation is used to obtain the transmission
conditions for an update in line 14.

4 Numerical Experiments

We present results from scaling studies, which vary the number of computational
cores used to compute the PSWR algorithm while keeping total discretized problem
size constant. The diffusion equation ut D k.uxx C uyy/ is solved in R

2 using a
centered five point finite-difference approximation in space, and a backward Euler
time integrator. The convergence of the waveform iterates is shown in Fig. 2. In our
first scaling study, 400�400 grid points are decomposed into 4�4 non-overlapping
domains for 400 total time steps. Optimized robin transmission conditions of the
form

TijŒ�� D
�

d

d On C p

�
Œ��; TjiŒ�� D

�
d

d On � p

�
Œ��;

are used, where d
dOn is the derivative in the normal direction, and p D 1. (A recursive

formula is used to compute the transmission condition in lieu of discretizing
the derivative in the normal direction.) In each experiment a total of 16 full
waveform iterations are completed. Timing results are obtained using the Stampede,
a supercomputer at the Texas Advanced Computing Center. Good parallel efficiency



368 B. Ong et al.

Pipeline Schwarz Waveform Relaxation Algorithm 2
1. MPI Initialization

2. parallel for i D : : : 1::N (Sub-domain)

3. for ti D ti : : : T

4. Guess u
Œ0�
i .z; t/; z 2 @˝i \ @˝j

5. end

6. Set tŒ0�i D T

7. end

8. parallel for k D 1 : : :K (Waveform iteration)

9. parallel for i D 1 : : :N (Sub-domain)

10. initialize t
Œk�
i

11. set t
Œk�
i D t

Œk�
i

12. While tŒk�i 	 T

13. If tŒk�i < tŒk�1�
j for all neighbors j

14. Solve for uŒk�i .x; t
Œk�
i /

15. Send transmission data T .uŒk�i .z; t
Œk�
i // to neighbor nodes

16. tŒk�i  tŒk�i CtŒk�i

17. end

18. end

19. Check convergence

20. end

21. end

.

and speedup is observed in spite of the increase in the number of messages required
by the PSWR algorithm. Note that the 4�4�1 case is identically the SWR algorithm.

In our second scaling study, 1600�1600 grid points are decomposed into 16�16
non-overlapping domains for 400 total time steps. Again, a centered five point finite
difference stencil, a backward Euler time integrator, and optimized transmission
conditions are used. Good parallel efficiency and speedup is observed even with the
increased synchronization/number of messages in the system.

Nx � Ny � Nk # Cores Walltime (s) Speedup Efficiency

4� 4� 1 16 293.02 1.00 � 1.00

4� 4� 2 32 149.92 1.95 � 0.98

4� 4� 4 64 75.48 3.89 � 0.97

4� 4� 8 128 38.71 7.57 � 0.95

4� 4� 16 256 23.90 12.26 � 0.77
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Fig. 2 The error of the waveform iterates at time T is computed relative to monodomain solution
for a 4�4 decomposition of the problem using optimized transmission conditions. The convergence
behavior of the PSWR algorithm is identical to the convergence behavior of the SWR algorithm

In the above computations, a linear solve on a sub-domain takes O.10�2/ s. This
relatively small problems size was chosen (100 � 100 on each sub-domain) so that
communications would play a substantial role in the timing studies. The presented
efficiencies can be improved by partitioning the problem to be more computationally
expensive (i.e. more time is spent in the linear solve).

Nx � Ny � Nk # Cores Walltime (s) Speedup Efficiency

16 � 16� 1 256 295.86 1.00 � 1.00

16 � 16� 2 512 155.98 1.90 � 0.95

16 � 16� 4 1024 77.10 3.84 � 0.96

16 � 16� 8 2048 43.20 6.85 � 0.86

16 � 16� 16 4096 26.65 11.10 � 0.69

5 Conclusions

In this paper, we have reformulated classical Schwarz waveform relaxation to allow
for pipeline-parallel computation of the waveform iterates, after an initial startup
cost. Theoretical estimates for the parallel speedup and communication overhead
are presented, along with scaling studies to show the effectiveness of the pipeline
Schwarz waveform relaxation algorithm.
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Parareal for Diffusion Problems with Space-
and Time-Dependent Coefficients

Daniel Ruprecht, Robert Speck, and Rolf Krause

1 Introduction

The very rapidly increasing number of cores in state-of-the-art supercomputers
fuels both the need for and the interest in novel numerical algorithms inherently
designed to feature concurrency. In addition to the mature field of space-parallel
approaches (e.g. domain decomposition techniques), time-parallel methods that
allow concurrency along the temporal dimension are now an increasingly active field
of research, although first ideas, like in [12], go back several decades. A prominent
and widely studied algorithm in this area is Parareal, introduced in [10], which has
the advantage that one can couple and reuse classical time-stepping schemes in an
iterative fashion to parallelize in time. However, there also exist a number of other
approaches, e.g. the “parallel implicit time algorithm” (PITA) from [5], the “parallel
full approximation scheme in space and time” (PFASST) from [4] or “revisionist
integral deferred corrections” (RIDC) from [3] to name a few. Parareal in particular
and temporal parallelism in general has been considered early as an addition to
spatial parallelism in order to extend strong scaling limits, see [11]. Efficacy of this
approach in large-scale parallel simulations on hundreds of thousands of cores has
been demonstrated for the PFASST algorithm in [14].
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For Parareal, multiple works exist that demonstrate its efficiency for diffusion
problems: Gander and Vandewalle [9] prove super-linear convergence of Parareal
for the standard 1D heat equation. A more general theorem showing super-linear
convergence for nonlinear ODEs is proven by Gander and Hairer [7], while [2]
presents a convergence theorem for linear parabolic PDEs with constant coefficients.
The present paper investigates the effect of space- and time-dependent coefficients
in the two-dimensional heat equation on the convergence of Parareal. This is done
by means of numerical examples, including one that shows how convergence of
Parareal can be estimated by the maximum singular value of a Parareal iteration
matrix.

2 Parareal

To match the numerical examples in Sect. 3, the presentation of Parareal given here
starts with an initial value problem

Myt.t/ D f .y.t/; t/; y.0/ D b 2 R
d; t 2 Œ0;T�; (1)

with a mass matrix M and right-hand side f arising from a finite element discretiza-
tion of a partial differential equation. Let .tn/NnD0 with t0 D 0 and tN D T be a
decomposition of Œ0;T� into N so-called time-slices Œtn; tnC1� which, for the sake
of simplicity, are assumed to be of equal length here. Furthermore, let yn be an
approximation to the solution at tn, that is yn 	 y.tn/.

Denote by F a “fine”, computationally expensive and accurate integration
method with a time step ıt (e.g. a higher-order Runge-Kutta method) and by G a
“coarse”, computationally cheap and probably inaccurate method with a time step
t � ıt (e.g. implicit Euler). Assume here that the constant length of the time-
slices is a multiple of both ıt and t, so that the fine as well as the coarse method
can integrate over one time-slice using a fixed integer number of time-steps. Denote
the result of integrating over the slice Œtn; tnC1�, starting from an initial value y at
tn, using the fine or coarse method as F.y; tnC1; tn/ and G.y; tnC1; tn/ respectively.
Serial integration using the fine method would then correspond to computing

ynC1 D F.yn; tnC1; tn/; n D 0; : : : ;N � 1; (2)

step-by-step with y0 WD b. Instead, Parareal computes the iteration given by

ykC1
nC1 D G.ykC1

n ; tnC1; tn/C F.yk
n; tnC1; tn/ � G.yk

n; tnC1; tn/ (3)

where the evaluation of the fine method over the N time-slices can be distributed
over N processors (see [10] for details). The iteration converges to the serial fine
solution as k ! N. Speedup can be achieved if G is sufficiently cheap compared to
F and if the iteration converges in K � N iterations. Therefore, rapid convergence
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is critical for Parareal to be efficient. In the examples below, the defect

dk WD max
iD0;:::;N

yi � yk
i

1 (4)

between the solution provided by the Parareal iteration (3) after k iterations and the
serial fine solution (2) is used to measure convergence.

3 Heat Equation with Non-constant Coefficients

The test problem used here to study the convergence of Parareal for non-constant
coefficients is the two-dimensional heat equation

ut.x; y; t/ D �.t/r � .a.x; y/ru.x; y; t// (5)

on a square ˝ D Œ0; 1�2. The initial values are given by

u0.x; y/ D exp

� �.x � 0:5/2 C .y � 0:5/2� =�2� ; � D 0:35; (6)

and the problem is run until T D 4:0. The interval Œ0;T� is divided into N D 40

time-slices and an implicit Euler method with t D 1=100 is used for G and a third
order RadauIIA(3) method with ıt D 1=200 for F . The spatial domain˝ is divided
into three “strips”

˝1 D Œ0; x0/ � Œ0; 1�; (7)

˝2 D Œx0; x0 C w/ � Œ0; 1�; (8)

˝3 D Œx0 C w; 1� � Œ0; 1�; (9)

and a different constant value for a is prescribed on every strip, that is

a.x; y/ D
8
<

:

a1 W .x; y/ 2 ˝1

a2 W .x; y/ 2 ˝2

a3 W .x; y/ 2 ˝3:

(10)

Furthermore, the effect of varying the width w of the middle strip˝2 is investigated.
Conforming triangle meshes aligned with the strips ˝i are generated for values
of w 2 f0:2; 0:1; 0:05; 0:02g. Then, for every value of w, a number of uniform
refinement steps is performed in order to produce meshes of comparable mesh
width. After refinement, the minimum element sizes for the different values of
w range from hmin D 0:01 to hmin D 0:005 and the maximum element sizes
from hmax D 0:02 to hmax D 0:035, so that the resolutions are comparable. All
experiments reported below use linear finite elements, but preliminary tests not
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Fig. 1 Defect dk between Parareal and the serial fine solution versus the iteration number k
depending on the magnitude of the jump in the diffusion coefficient from ˝1, ˝3 to ˝2

documented here suggest that the results are not significantly affected by the use
of higher-order FEM. Homogeneous Dirichlet boundary conditions are employed.
Simulations are run with a1 D a3 D 0:01 fixed and a2 2 f0:01; 1:0; 100g, resulting
in ratiosa D a2=a3 D a2=a1 2 f1; 100; 10000g.

3.1 Space-Dependent Coefficients

First, set � 
 1 in order to study only the effect of spatially varying coefficients.
Figure 1 shows the resulting convergence of Parareal for the different values of a
and w D 0:2 (left) and w D 0:02 (right). Convergence in the cases with jumping
coefficients is slightly slower, but the effect is very small. Also, the reduction in
convergence speed seems to be rather independent of the magnitude of the jump in
the diffusion coefficient: In both plots, the lines for a D 100 and a D 10;000

are more or less indistinguishable.
Convergence of Parareal is utterly oblivious to the width w of the middle strip˝2:

When plotting the defects for fixed a and different values of w, the resulting data
points all essentially coincide so that the corresponding plots are rather uninteresting
and are therefore omitted.

3.2 Space- and Time-Dependent Coefficients

To investigate the effect of a time-dependent diffusion coefficient on the conver-
gence of Parareal, fix the strip width to w D 0:2 and the coefficient jump to
a D 100. Furthermore, use the following three different profiles for the time-
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Fig. 2 Defect dk of Parareal versus the iteration number k for different time-dependent �-profiles
witha D 100, ˛ D 1 (left) and ˛ D 10 (right)

dependent diffusion coefficient �:

�.t/ D 1 (“constant”); (11)

�.t/ D 1

2

�
1C cos

�
˛
�

2
t
��

(“cosine”); (12)

�.t/ D 1

2
.1C erf.˛.t � 2/// (“erf”): (13)

Initial value and boundary conditions are set as described above. Two sets of
simulations are performed, one with ˛ D 1 corresponding to a very slowly changing
� and one with ˛ D 10 corresponding to a more rapid change. The resulting
convergence of Parareal is shown in Fig. 2. In both cases, the slow as well as the fast
varying one, Parareal’s convergence is only marginally affected by the space- and
time-dependent diffusion coefficients. The resulting defects are slightly larger than
for the reference case and the difference is a little more pronounced for ˛ D 10,
but the overall effect is not drastic: In the fast varying case with the error function
profile (13), Parareal requires only a single additional iteration compared to the
constant reference in order to reach the same defect level.

3.3 Error Bound from Singular Values

Parareal can be considered as a fixed point iteration, see e.g. [1] or [6] for more
detailed explanations. For � 
 1 and the linear problem considered here, the action
of the propagators F and G can be expressed as multiplication by matrices G or F.
Then, running the fine or coarse method over all N time-slices can be expressed as
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inversion of size Nd � Nd matrices

Mf D

2

6664

I : : :

�F I
: : :

: : :

�F I

3

7775 ; Mg D

2

6664

I : : :

�G I
: : :

: : :

�G I

3

7775 ; (14)

so that computing the fine solution through (2) corresponds to a block-wise solution
of Mfy D b with y D .y0; : : : ; yN/

T and b D .b; 0; : : : ; 0/T. The Parareal
iteration (3) can then be written as the preconditioned fixed point iteration

MgykC1 D �Mg �Mf
�

yk C b; (15)

where inverting Mg corresponds to running the coarse method. A straightforward
computation shows that the iteration matrix I�M�1g Mf is nilpotent and thus that its
spectral radius is zero, corresponding to the well-known fact that Parareal always
converges to the fine solution after N iterations, see e.g. [9] (although Parareal
won’t provide any speedup in this case). A bound for the convergence rate can
be obtained by computing the maximum singular value instead. In order to keep
the size of the iteration matrix manageable, the example studied here uses only
the w D 0:2 geometry with a coarser grid with hmin D 0:04, hmax D 0:068

and only N D 20 time-slices. The maximum singular values of the iteration
matrix are computed with Matlab’s SVDS function and are �max 	 0:162 for
a D 1 and �max 	 0:163 for a D 10;000: The minimal difference gives
an additional indication that the coefficient jump should not influence Parareal’s
convergence. Figure 3 shows the convergence rates of Parareal for this example
for a D 1, i.e. with a constant coefficient (left) and with a D 10;000 (right),
as well as the estimate d0 � .�max/

k resulting from the maximum singular value.
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Fig. 3 Convergence of Parareal and error estimate from the largest singular value of the Parareal
iteration matrix (dashed line)
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In both cases, actual convergence is a little better than expected but �max gives a
reasonable estimate. Again, the jumping coefficients affect Parareal’s convergence
only marginally. Note that interpreting variants like the “Krylov-subspace-enhanced
Parareal”, introduced in [8] and studied further in [13], as a non-stationary fixed
point iteration could be an interesting approach for a mathematical analysis.

4 Conclusions

The paper presents a numerical study of the convergence behavior of the time-
parallel Parareal method for the heat equation with space- and time-dependent
coefficients. It demonstrates that the good convergence of Parareal for diffusive
problems is only marginally affected by both jumps in the diffusion coefficients
and a diffusion coefficient that changes in time. For linear problems, Parareal can be
interpreted as a preconditioned fixed point iteration and, at least for small enough
problems, the iteration matrix and its maximum singular value can be computed
numerically. An example is shown that demonstrates that the largest singular value
gives a reasonable estimate for the convergence of Parareal. Extending the analysis
presented here to more complicated cases e.g. in three dimensions with complicated
geometries, with coefficient jumps not aligned with the mesh or cases that also
include advection would be an interesting direction of future research.
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A Discontinuous Coarse Space (DCS) Algorithm
for Cell Centered Finite Volume Based Domain
Decomposition Methods: The DCS-RJMin
Algorithm

Kévin Santugini

1 Introduction

Due to the ever increasing parallelism in modern computers, and the ever increasing
affordability of massively parallel calculators, it is of utmost importance to develop
algorithms that are not only parallel but scalable. In this paper, we are interested
in Domain Decomposition Methods (DDMs), which is one way to parallelize the
numerical resolution of Partial Differential Equations (PDE).

In Domain Decomposition Methods, the whole domain is subdivided in several
subdomains and a computation unit is assigned to each subdomain. In this paper, we
only consider non-overlapping domain decompositions. The numerical solution is
then computed in parallel inside each subdomain with artificial boundary conditions.
Then, subdomains exchange information between each other. This process is
reapplied until convergence. In practice, such a scheme, called iterative DDM,
should be accelerated using Krylov methods. However, for the purpose of analyzing
an algorithm, it can be interesting to work directly with the iterative algorithm
itself as Krylov acceleration is so efficient it can hide small design problems in
the algorithm.

In one-level DDMs, only neighboring subdomains exchange information. Most
classical DDM are one-level. While one-level DDMs can be very efficient and can
converge in few iterations, they are not scalable: convergence can never occur before
information has propagated between the two furthest apart subdomains, i.e., a one
level DDM must iterate at least as many times as the diameter of the connectivity
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graph of the domain decomposition. Typically, if N is the number of subdomains,
this means at least O.N/ iterations for one-dimensional problems, O.

p
N/ for two-

dimensional ones and O. 3
p

N/ for three-dimensional ones. For DDMs to be scalable,
some kind of global information exchange is needed. The traditional approach to
achieve such global information exchange is adding a coarse space to a pre-existing
one-level DDM.

To the author’s knowledge, the first use of coarse spaces in Domain Decomposi-
tion Methods can be found in [19]. Because coarse spaces enable global information
exchange, scalability becomes possible. Well known methods with coarse spaces
are the two-level Additive Schwarz method [4], the FETI method [16], and the
balancing Neumann-Neumann method [5, 15, 17]. Coarse spaces are also an active
area of research, see for example [3, 9, 18, 21] for high contrast problems. It
is not trivial to add an effective coarse space to one-level DDMs that produce
discontinuous iterates such as Optimized Schwarz Methods, see [7, 8], and [6,
Chap. 5].

In [11], the authors introduced the idea of using discontinuous coarse spaces.
Since many DDM algorithms produce discontinuous iterates, the use of discontinu-
ous coarse corrections is needed to correct the discontinuities between subdomains,
where the iterates of the one-level OSM are discontinuous. In [11], one possible
algorithm, the DCS-DMNV (Discontinuous Coarse Space Dirichlet Minimizer
Neumann Variational), was described at the continuous level and at the discrete
level for Finite Element Methods on a non-overlapping Domain Decomposition.
In [20], a similar method, the DCS-DGLC algorithm was proposed. Both the DCS-
DMNV and the DCS-DGLC are well suited to finite element discretizations. Also,
a similar approach was proposed in [10] for Restricted Additive Schwarz (RAS), an
overlapping DDM.

The proof of convergence for Schwarz found in [2, 14] can be extended to the
Discrete Optimized Schwarz algorithm with cell centered finite volume methods,
see [1, 12, 13]. It would be interesting to have a discontinuous coarse space
algorithm that is suited to cell centered finite volumes. Unfortunately, neither
the DCS-DMNV algorithm nor the DCS-DGLC algorithm are practical for cell
centered-finite volume methods: the stiffness matrix necessary to compute the
coarse correction is not as sparse as one would intuitively believe. In this paper,
our main goal is to describe one family of algorithms making use of discontinuous
coarse spaces suitable for cell centered finite volumes discretizations.

In Sect. 2, we briefly recall the motivations behind the use of discontinuous
coarse spaces. In Sect. 3, we present the DCS-RJMin algorithm. In Sect. 4, we
prove that under some conditions on the algorithm parameter, the L2-norm of
the difference between two consecutive iterates goes to zero. Finally, we present
numerical results in Sect. 5.
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2 Optimized Schwarz and Discontinuous Coarse Spaces

Let us consider a polygonal domain˝ in R
2. As a simple test case, we wish to solve

	u �4 u D f in ˝;

u D 0 on @˝:

Without a coarse space, the Optimized Schwarz Method is defined as

Algorithm 1 (One-Level OSM)

1. Set u0i to either the null function or to a first approximation.
2. Until convergence

a. Set unC1
i as the unique solution to

	unC1
i �4 unC1

i D f in ˝i;

@unC1
i

@ni
C punC1

i D @un
j

@ni
C pun

j on @˝i \ @˝j;

unC1 D 0 on @˝i \ @˝:

The main shortcoming of the one-level Optimized Schwarz method is the
absence of direct communication between distant subdomains. To get a scalable
algorithm, one can use a coarse space. A general version of a coarse space method
for the OSM is

Algorithm 2 (Generic Two-Level OSM)

1. Set u0i to either the null function or to the coarse solution.
2. Until convergence

a. Set unC1
i as the unique solution to

	unC1=2
i �4 unC1

i D f in ˝i;

@unC1=2
i

@ni
C punC1=2

i D @un
j

@ni
C pun

j on @˝i \ @˝j;

unC1=2 D 0 on @˝i \ @˝:

b. Compute in some way a coarse corrector UnC1 belonging to the coarse space
X, then set

unC1 D unC1=2 C UnC1:
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More important than the algorithm used to compute the coarse correction UnC1
is the choice of an adequate coarse space itself. The ideas presented in [11] still
apply. In particular, the coarse space should contain discontinuous functions and the
discontinuities of the coarse corrector should be located at the interfaces between
subdomains. For these reasons, we suppose the whole domain˝ is meshed by either
a coarse triangular mesh or a cartesian meshTH and we use each coarse cell of TH

as a subdomain ˝i of ˝ . The optimal theoretical coarse space A is the set of all
functions that are solutions to the homogenous equation inside each subdomain:
for linear problems, the errors made by any iterate are guaranteed to belong to that
space. With an adequate algorithm to compute UnC1, the coarse space A gives a
convergence in a single coarse iteration. Unfortunately this complete coarse space
is only practical for one dimensional problems as it is of infinite dimension in higher
dimensions. One should therefore choose a finite dimensional subspace Xd of A .

The choice of the coarse space Xd is primordial. It should have a dimension that
is a small multiple of the number of subdomains. To choose Xd, one only needs
to choose boundary conditions on every subdomain, then fill the interior of each
subdomain by solving the homogenous equation in each subdomain. In this paper,
we have not tried to optimize Xd and for the sake of simplicity have chosen Xd as the
set of all functions in A with linear Dirichlet boundary conditions on each interface
between any two adjacent subdomains.

3 The DCS-RJMin Algorithm

We now describe the DCS-Robin Jump Minimizer algorithm:

Algorithm 3 (DCS-RJMin)

1. Set p > 0 and q > 0 and Xd a finite dimensional subspace of A .
2. Set u0 to either 0 or to the coarse space solution.
3. Until Convergence

a. Set unC 1
2 as the unique solution to

	unC 1
2 �4 unC 1

2 D f in ˝i;

@u
nC 1

2

i

@	ij
C pu

nC 1
2

i D @un
j

@	ij
C pun

j on @˝i \ @˝j;

ui D 0 on @˝i \ @˝j.
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b. Set UnC1 in Xd as the unique coarse function that minimizes

NX

iD1

X

j2N .i/


@.u

nC 1
2

i C UnC1
i /

@	i
C q.u

nC 1
2

i C UnC1
i /

� @.u
nC 1

2

j C UnC1
j /

@	i
� q.u

nC 1
2

j C UnC1
j /


2

L2.@˝i\@˝j/

;

where 	i is the outward normal to subdomain ˝i and N .i/ is the set of all j
such that ˝j and ˝i are adjacent.

c. Set unC1 WD unC1=2 C UnC1.

4 Partial Convergence Results for DCS-RJMin

We do not have a complete convergence theorem for the DCS-RJMin algorithm.
However, we can prove the following results concerning the iterates of the DCS-
RJMin algorithm when p D q:

Proposition 1 If q D p, then the iterates produced by the DCS-RJMin Algorithm 3
satisfy limn!C1kunC1=2

i � un
i kL2 D 0.

Proof Let u be the mono-domain solution and set en
i D un

i � ui. Then, following
Lions energy estimates [14], we compute

	

Z

˝i

jenC1=2
i � en

i j2dxC
Z

˝i

jr.enC1=2
i � en

i /j2dx

D
Z

@˝i

@.enC1=2
i � en

i /

@	
� .enC1=2

i � en
i /

D 1

4p

 Z

@˝i

j@.e
nC1=2
i � en

i /

@	
C p.enC1=2

i � en
i /j2

�j@.e
nC1=2
i � en

i /

@	
� p.enC1=2

i � en
i /j2

!

D 1

4p

 Z

@˝i

j@.e
nC1=2
i � en

i /

@	
C p.enC1=2

i � en
i /j2

�
Z

@˝i

j@.e
nC1=2
i � en

i /

@	
� p.enC1=2

i � en
i /j2

!
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D 1

4p

�X

j

Z

@˝i\@˝j

ˇ̌
ˇ̌
ˇ

�
@en

j

@	i
C pen

j

�
�
 
@en/

i

@	i
C pen

i

!ˇ̌
ˇ̌
ˇ

2

�
X

j

Z

@˝i\@˝j

ˇ̌
ˇ̌
ˇ

 
@enC1=2

i

@	i
� penC1=2

i

!
�
 
@enC1=2/

j

@	i
� penC1=2

j

!ˇ̌
ˇ̌
ˇ

2�
:

We sum the above equality over all subdomains˝i and get

	
X

i

Z

˝i

jenC1=2
i � en

i j2dxC
Z

˝i

jr.enC1=2
i � en

i /j2dx D

D
X

.i;j/

1

4p

 Z


ij

ˇ̌
ˇ̌
�
@en

@	i
C pen

	ˇ̌
ˇ̌
2

�
Z


ij

ˇ̌
ˇ̌
�
@enC1=2

@	i
C penC1=2

	ˇ̌
ˇ̌
2
!
;

where Œ�� represents a jump across the interface. Since the coarse step of the DCS-
RJMin algorithm minimizes the Robin Jumps, we have

	
X

i

Z

˝i

jenC1=2
i � en

i j2dxC
Z

˝i

jr.enC1=2
i � en

i /j2dx �

�
X

.i;j/

1

4p

 Z


ij

ˇ̌
ˇ̌
�
@en

@	i
C pen

	ˇ̌
ˇ̌
2

�
Z


ij

ˇ̌
ˇ̌
�
@enC1

@	i
C penC1

	ˇ̌
ˇ̌
2
!
:

Summing over n � 0 yields the stated result.

Remark 1 For q ¤ p, convergence can be proven in the two subdomain case if
each subdomain is obtained by reflection of the other with respect to the common
interface.

5 Numerical Results

We have implemented the DCS-RJMin algorithm in C++ for cell-centered finite
volumes on a cartesian grid. We chose˝ D�0; 4Œ��0; 4Œ, 	 D 0 and iterated directly
on the errors by choosing f D 0. We initialized the Robin transmission conditions
at the interfaces between subdomains at random and performed multiple runs of the
DCS-RJMin algorithm for various values of p, q and of the number of subdomains.
We had p vary from 1:0 to 20:0 with 0:5 increments and q took the values qm � 10qe

with qm in f1:0; 2:0; 4:0; 8:0g and qe in f0; 1g. We consider 2 � 2, 4 � 4, 6 � 6 and
8� 8 subdomains. There are always 20� 20 cells per subdomains. In Fig. 1, we plot
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Fig. 1 Convergence for OSM and DCS-RJmin with ˝ D Œ0; 4�2, f .x; y/ D 0 and random guess.
Plotting log.ke50k1=ke0k1/

log.ke50k1=ke0k1/ as a function of p for various values of q. First, we notice that
for each value of q, the convergence deteriorates above a certain pq. In fact, for low
values of q and high values of p, the iterates diverge. For two different values of q,
the curves are very close when p is smaller than both pq. We also notice that even
though we could only prove Proposition 1 for the case p D q, we observe numerical
convergence even when p ¤ q. In fact p D q is not the numerical optimum. This
is to be expected intuitively: for a theoretical proof of convergence, we want the
algorithm to keep lowering some functional. The existence of such a functional
is likely only if all the substeps of the algorithm are optimized for the same kind
of errors. If p D q, both the coarse step or the local step will either remove low
frequency errors (small p and q) or high frequency ones (high p and q). An efficient
numerical algorithm should have substeps optimized for completely different kind
of errors.

6 Conclusion

In this paper, we have introduced a new discontinuous coarse space algorithm, the
DCS-RJMin, which is suitable for cell-centered finite volume discretizations. The
coarse space greatly improves numerical convergence. It would be of great interest
to study which is the optimal low-dimensional subspace of all piecewise discontin-
uous piecewise harmonic functions. Future work also includes the development of a
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possible alternative to a coarse space in order to get scalability: “Piecewise Krylov
Methods” where the same minimization problem than the one used in DCS-RJMin
is used but where the coarse space is made of piecewise (per subdomain) differences
between consecutive one-level iterates.
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managed by the French National Research Agency (ANR) in the frame of the “Investments for the
future” Programme IdEx Bordeaux—CPU (ANR-10-IDEX-03-02).
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Inexact Spectral Deferred Corrections

Robert Speck, Daniel Ruprecht, Michael Minion, Matthew Emmett,
and Rolf Krause

1 Introduction

Implicit integration methods based on collocation are attractive for a number of
reasons, e.g. their ideal (for Gauss-Legendre nodes) or near ideal (Gauss-Radau
or Gauss-Lobatto nodes) order and stability properties. However, straightforward
application of a collocation formula with M nodes to an initial value problem
with dimension d requires the solution of one large Md � Md system of nonlinear
equations.

Spectral deferred correction (SDC) methods, introduced by Dutt et al. [4], are an
attractive approach for iteratively computing the solution to the collocation problem
using a low-order method (like implicit or IMEX Euler) as a building block. Instead
of solving one huge system of size Md � Md, SDC iteratively solves M smaller
d� d systems to approximate the solution of the full system (see also the discussion
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in [7]). It has been shown e.g. by Xia et al. [17] that each iteration/sweep of SDC
raises the order by one, so that SDC with k iterations and a first-order base method
is of order k, up to the order of the underlying collocation formula. Therefore, to
achieve formal order p, SDC requires p=2 nodes and p iterations and thus p2=2
solves of a d � d system (for Gauss-Legendre nodes).

Considering the number of solves required to achieve a certain order, one might
conclude that, notwithstanding the results presented here, SDC is less efficient
than e.g. diagonally implicit Runge Kutta (DIRK) methods, see e.g. [1], which
only require p � 1 solves. However, the flexibility of the choice of the base
propagator in SDC and the very favorable stability properties make it an attractive
method nevertheless. In particular, semi-implicit methods of high order can easily
be constructed with SDC which make it competitive for complex applications,
see [2, 10]. Further extensions to SDC allow it to integrate processes with different
time scales, see [3, 8], efficiently; and the iterative nature of SDC also allows it to be
extended to a multigrid-like multi-level algorithm, where work is shifted to coarser,
computationally cheaper levels, see [15].

In the present paper, we introduce another strategy to improve the efficiency of
SDC, which is similar to ideas from [12] where a single V-cycle of a multigrid
method is used as a preconditioner. We show here that the iterative nature of SDC
allows us to use incomplete solves of the linear systems arising in each sweep. In the
resulting inexact spectral deferred corrections (ISDC), the linear problem in each
Euler step is solved only approximately using a small number (two in the examples
presented here) of multigrid V-cycles. It is numerically shown that this strategy
results in only a small increase of the number of required sweeps while reducing the
cost for each sweep. We demonstrate that ISDC can provide a significant reduction
of the overall number of multigrid V-cycles required to complete an SDC time step.

2 Semi-Implicit Spectral Deferred Corrections

We consider an initial value problem in Picard form

u.t/ D u0 C
Z t

T0

f .u.s// ds (1)

where t 2 ŒT0;T� and u; f .u/ 2 R
N . Subdividing a time interval ŒTn;TnC1� into M

intermediate substeps Tn D t0 � t1 < : : : < tM � TnC1, the integrals from tm to
tmC1 can be approximated by

ImC1
m D

Z tmC1

tm

f .u.s// ds 	 t
MX

jD0
sm;jf .uj/ D SmC1

m F.u/ (2)
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where um 	 u.tm/, m D 0; 1; : : : ;M, F.u/ D . f .u1/; : : : ; f .uM//
T ,t D TnC1� Tn,

and sm;j are quadrature weights. The nodes tm correspond to quadrature nodes of
a spectral collocation rule like Gauss-Legendre or Gauss-Lobatto quadrature rule.
The basic implicit SDC update formula at node m C 1 in iteration k C 1 can be
written as

ukC1
mC1 D ukC1

m Ctm


f .ukC1

mC1/� f .uk
mC1/

�C SmC1
m F.uk/; (3)

where tm D tmC1 � tm, for m D 0; : : : ;M � 1. Alternatively, if f can be split into
a stiff part f I and a non-stiff part f E, a semi-implicit update is easily constructed for
SDC using

ukC1
mC1 D ukC1

m Ctm


f I.ukC1

mC1/� f I.uk
mC1/

�

Ctm


f E.ukC1

m / � f E.uk
m/
�C SmC1

m F.uk/: (4)

Here, only the f I-part is treated implicitly, while f E is explicit. We refer to [10] for
the details on semi-implicit spectral deferred corrections.

3 Inexact Spectral Deferred Corrections

In the following, we consider the linearly implicit case f I.u/ D Au, where A
is a discretization of the Laplacian operator. Here, spatial multigrid is a natural
choice for solving the implicit part in (4). As in [15], we use a high-order compact
finite difference stencil to discretize the Laplacian (see e.g. [16]). This results in
a weighting matrix W for the right-hand side of the implicit system and, with the
notation Qf I.u/ D Wf I.u/, the semi-implicit SDC update (4) becomes

.W �tmA/ukC1
mC1 D WukC1

m CtmW


f E.ukC1

m /� f E.uk
m/
�

�tmQf I.uk
mC1/C SmC1

m
QF.uk/; (5)

where Qf D Wf E C Qf I and QF.uk/ D .Qf .uk
1/; : : : ;

Qf .uk
M//

T . Thus, instead of inverting
the operator I � tmA in (4), the right-hand side of (4) is modified by W and the
operator W � tmA needs to be inverted. We note that for calculating the residual
during the SDC iteration, the weighting matrix needs to be inverted once per node,
which can be done using multigrid as well.

For classical SDC, each computation of ukC1
mC1 includes a full inversion of

W �tmA using e.g. a multigrid solver in space. For K iterations and M nodes, the
multigrid solver is executed K.M � 1/ times, each time until a predefined tolerance
is reached. In order to reduce the overall number of required multigrid V-cycles,
ISDC replaces this full solve with a small fixed number L of V-cycles, leading to
an accumulated number of QK.M � 1/L V-cycles in total. Naturally, the number of
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iterations in ISDC will be larger than the number of SDC, that is K � QK. However, if
QK is small enough so that QK.M�1/L is below the total number of multigrid V-cycles
required for K.M�1/ full multigrid solves, inexact SDC will be more efficient than
classical SDC.

Convergence is monitored using the maximum norm of the SDC residual, a
discrete analogue of uk.t/�u0�

R t
T0

f .uk.s// ds, that measures how well our iterative
solution satisfies the discrete collocation problem. See [15] for definition and details.
In the tests below, sweeps are performed until the SDC residual is below a set
threshold.

4 Numerical Tests

In order to illustrate the performance of ISDC, we consider two different numer-
ical examples, the 2D diffusion equation and 2D viscous Burgers’ equation. As
described above, in both cases the diffusion term is discretized using a 4th-order
compact stencil with weighting matrix and a spatial mesh with 64 points. For
Burgers’ equation, the advection term is discretized using a fifth order WENO
scheme.

4.1 Setups

The first test problem is the 2D heat equation on the unit square, namely

ut.x; t/ D �u.x; t/; x 2 ˝ D .0; 1/2 (6)

u.x; 0/ D sin.�x/ sin.�y/ (7)

u.x; t/ D 0 on @˝ (8)

with x D .x; y/. The exact solution is u.x; t/ D exp.�2�2�t/ sin.�x/ sin.�y/. An
implicit Euler is used here as base method in SDC.

The second test problem is the nonlinear viscous Burgers’ equation

ut.x; t/C u.x; t/ux.x; t/C u.x; t/uy.x; t/ D �u.x; t/; x 2 .�1; 1/2; (9)

u.x; 0/ D exp

�
� x2

�2

�
; � D 0:1 (10)

with periodic boundary conditions. Here, an IMEX Euler is used as base method, i.e.
the Laplacian is treated implicitly, while the advection term is integrated explicitly.
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Table 1 Accumulated multigrid V-cycles for (a) the heat equation and (b) the viscous Burgers’
equation with different values for the diffusion coefficients � and the number of quadrature
nodes M. Cycles are accumulated over all sweeps required to reduce the SDC or ISDC residual
below 5 � 10�8. The number of deferred correction sweeps is shown in parentheses. Saving
indicates the amount of V-cycles saved by ISDC in percent of the cycles required by SDC

(a) Heat equation (b) Viscous Burgers’ equation

� M SDC ISDC Savings (%) � M SDC ISDC Savings (%)

1 3 16(4) 12(4) 25 10�1 3 21(8) 21(8) 0

5 23(3) 20(3) 13 5 26(6) 26(6) 0

7 32(3) 28(3) 13 7 33(5) 33(5) 0

10 3 36(5) 20(5) 44 1:0 3 97(17) 66(17) 32

5 61(5) 40(5) 34 5 140(17) 117(17) 16

7 79(4) 47(4) 41 7 160(15) 143(15) 11

100 3 106(13) 52(13) 51 10 3 207(25) 100(25) 52

5 150(10) 104(13) 31 5 523(38) 298(38) 43

7 187(9) 167(14) 11 7 902(50) 578(50) 36

In both examples the diffusion parameter � controls the stiffness of the term
f I: for a given spatial resolution, the shifted Laplacian W � �tA, and therefore
the performance of the multigrid solver, depends critically on �. We choose three
different values of � for each example to measure the impact of stiffness on the
performance of ISDC: � D 1, 10, 100 for the heat equation and � D 0:1, 1,
10 for Burgers’ equation. For ISDC, each implicit solve is approximated using
L D 2 V-cycles. A single time-step of length t D 0:001 is analyzed for a spatial
discretization withx D y D 1=64 in both cases, leading to CFL numbers for the
diffusive term of approximately 4:1, 41 and 410 for the heat equation and 0:41, 4:1
and 41 for Burgers’ equation.

4.2 Results

Table 1 shows the total number of multigrid V-cycles for the heat equation (left) and
for Burgers’ equation (right) for three different numbers of collocation nodes M and
different values of �. The number of SDC or ISDC sweeps performed is shown in
parentheses. In each case, sweeps are performed until the SDC or ISDC residual is
below 5 � 10�8. To simplify the analysis in the presence of the weighting matrix,
the V-cycles required to invert the weighting matrix are not counted here. In the last
row, the amount of V-cycles saved by ISDC is given in percent of the required SDC
cycles.

In most cases, ISDC provides a substantial reduction of the total number of
required multigrid V-cycles and requires only slightly more sweeps to converge
than SDC. The most savings can be obtained if the number of multigrid V-cycles
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in SDC is high but ISDC does not lead to a significant increase in sweeps, which
is the case for mildly stiff problems (e.g. � D 10 for heat equation and � D 1 and
� D 10 for Burgers) or stiff problems with small values for M. For stiff problems
with large M (e.g. heat equation with � D 100 and M D 7), however, ISDC leads
to a more significant increase in required sweeps, therefore only resulting in small
savings. For the non-stiff cases, particularly for Burger’s equation, ISDC does not
provide much benefit, but also does no harm: the multigrid solves in SDC take only
very few V-cycles to converge, so that SDC and ISDC are almost identical (for
Burgers with � D 0:1, SDC and ISDC are actually identical). In a sense, for simple
problems where the stopping criterion of the multigrid solver is reached after one or
two V-cycle anyhow, SDC automatically reduces to ISDC.

In summary, the tests presented here suggest that replacing full multigrid solves
by a small number of V-cycles in SDC only leads to a small increase in the total
number of SDC sweeps required for convergence but can significantly reduce the
computational cost of each sweep. The savings in the overall number of multigrid
V-cycles of ISDC directly translates into faster run times of ISDC runs compared to
classical SDC. Preliminary numerical tests not document here suggest that, as long
as the approximate solution of the linear system is sufficiently accurate, the order of
ISDC still increases by each iteration, as shown for SDC in [17]. A detailed study
confirming this, including a possible extension of the proof, is left for future work.

4.3 Interpretation

The good performance of ISDC in the examples presented above is mainly due
to the choice of the starting values for the multigrid solver. When performing the
implicit Euler step to compute ukC1

mC1, the value uk
mC1 from the previous SDC sweep

gives a very good starting value, particularly in later sweeps. Therefore, even two
multigrid V-cycles are sufficient to approximate the real solution of the linear system
of equations reasonably well. This effect can be observed by monitoring the number
of V-cycles in classical SDC. During the first sweep, many more V-cycles are
typically required for multigrid to converge than in later sweeps where the initial
guess becomes very accurate as the SDC iterations converge. In fact, during the last
sweeps of SDC, a single V-cycle is often sufficient for solving the implicit system.
Hence, the additional sweeps required by ISDC are mainly due to the less accurate
approximations during the first sweeps. As soon as the initial guess uk

mC1 for ukC1
mC1

is good enough, ISDC basically proceeds like SDC. A computational experiment
that confirms this is as follows: if, when solving for ukC1

mC1, we replace the initial
guess with the zero vector, or even ukC1

m , then ISDC fails to converge altogether. On
the other hand, SDC still convergences in this scenario, but the number of required
multigrid V-cycles increases dramatically.

It is important to contrast this behavior to non-iterative schemes like diagonally
implicit Runge-Kutta, where usually only the value from the previous time step or
stage is available to be used as starting value. Our experience with SDC methods
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suggests that more multigrid V-cycles would be required to solve each stage in a
DIRK scheme than in later SDC iterations. Hence, simply counting the number of
implicit function evaluations required could be a misleading way to compare the
cost of SDC and DIRK schemes.

5 Conclusion and Outlook

The paper presents a variant of spectral deferred corrections called inexact spectral
deferred corrections that can significantly reduce the computational cost of SDC.
In ISDC, full spatial solves within SDC sweeps with an implicit or semi-implicit
Euler are replaced by only a few V-cycles of a multigrid. In the two investigated
examples, ISDC saves up to 52% of the total multigrid V-cycles required by SDC
with full linear solves in each step, while only minimally increasing the number
of sweeps required to reduce the SDC residual below some set tolerance. The main
reason for the good performance of ISDC is that the iterative nature of SDC provides
very accurate initial guesses for the multigrid solver. Besides providing significant
speedup, ISDC essentially removes the need to define a tolerance or maximum
number of iterations for the spatial solver.

A natural extension of the work presented in this paper is the application of ISDC
sweeps in MLSDC, the multi-level version of SDC. MLSDC performs SDC sweeps
in a multigrid-like way on multiple levels. The levels are connected through an FAS
correction term in forming the coarsened spatial representation of the problem on
upper levels of the hierarchy. Using ISDC corresponds to the “reduced implicit
solve” strategy mentioned in [15] and incorporating it into MLSDC could further
improve its performance. Finally, the “parallel full approximation scheme in space
and time” (PFASST, see [5, 6, 11] for details) performs SDC sweeps on multiple
levels combined with a forward transfer of updated initial values in a manner similar
to Parareal (see [9]). Instead of performing a full time integration as done in Parareal,
PFASST interweaves SDC sweeps with Parareal iterations so that on each time level,
only a single SDC sweep is performed (i.e. an inexact time integrator is applied),
leading to a time-parallel method with good parallel efficiency (see e.g. [13, 14]).
Integrating ISDC into PFASST could further improve its parallel efficiency.
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Schwarz Preconditioner for the Stochastic Finite
Element Method

Waad Subber and Sébastien Loisel

1 Introduction

For large-scale problems, domain decomposition techniques are a natural way
to split the problem into smaller subproblems that can be solved in parallel
on multiprocessors computers. To this end, stochastic versions of FETI-DP and
BDDC domain decomposition techniques for uncertainty quantification of large-
scale problems have been recently proposed in [2, 6, 7]. In this paper, we formulate
two-level Schwarz domain decomposition technique for the solution of the large-
scale linear system arising from the SSFEM discretization. In the stochastic Schwarz
preconditioner, we partition the spatial domain and preserve all the couplings along
the stochastic directions. Consequently, stochastic Dirichlet problems are defined
and solved on each subdomain concurrently. The solution of these local problems
are used to define the first level of the preconditioner. A coarse grid correction is
added to the one-level preconditioner to provide a global mechanism to propagate
information over the subdomains. This global exchange of information across the
spacial and stochastic directions leads to a scalable preconditioner. It turns out that
the one-level stochastic Schwarz preconditioner based on the mean properties can
be viewed as a parallel generalization of the block-diagonal mean based precon-
ditioner [3], whereby the associated deterministic problems are solved in parallel
using the deterministic Schwarz preconditioner. For the numerical illustrations, a
two dimensional stochastic elliptic PDE with spatially varying random coefficients
is considered. The numerical scalability of the algorithm is investigated with respect
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to the geometric parameters and the strength of the input uncertainty, dimension and
order of the stochastic expansion.

2 Mathematical Formulations

We consider the case of finite dimensional noise in a suitable probability space
.�;˙;P/ [1]. That is we assume that there exist a finite set of independent
and identically distributed random variables �.�/ D f�1.�/; �2.�/; � � � ; �M.�/g with
joint probability density function p.�/ D p1.�1/p2.�2/ � � � pM.�M/which can be used
to parametrize the input uncertainty. Consider the following stochastic boundary
value problem: Find a random function u.x; �.�// W ˝ � 
 ! R such that:

�r � .�.x; �.�//ru.x; �.�/// D f .x/; in ˝ � 
;
u.x; �.�// D 0; on @˝ � 
; (1)

where (˝ � R
d; d D 1; 2; 3) denotes a bounded domain with Lipschitz boundary

@˝ and 
 D 
1 � 
2 � � � � 
M � R
M is the support of the joint probability density

function p.�/ of the random vector �.�/. Here we assume that the input uncertainty
�.x; �.�// W ˝ �
 ! R is a P-almost surely bounded and strictly positive random
field, that is

0 < �min � �.x; �.�// � �max < C1; a.e. in ˝ � 
: (2)

The weak form of the stochastic boundary value problem (1), can be stated as: Find
u.x; �/ 2 V such that for all v 2 V

Z




�Z

˝

�.x; �/ru.x; �/rv.x; �/dx
�

p.�/d� D
Z




�Z

˝

f .x/v.x; �/dx
�

p.�/d�

where the tensor product function space V D H1
0.˝/˝ L2.
 / is defined as

V D fv.x; �.�// W ˝ � 
 ! R j kvk2V <1g � H1
0.˝/˝ L2.
 /; (3)

here H1
0.˝/ and L2.
 / represent the deterministic Hilbert space and the space of

second-order random variables, respectively. The energy norm k � k2V is given by

kv.x; �.�//k2V D
Z




�Z

˝

�.x; �/jrv.x; �/j2dx
�

p.�/d�: (4)
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3 Stochastic Process Representation

Let �0.x/ and C��.x1; x2/ denote the mean and covariance function of the input
uncertainty, then the Karhunen-Loéve expansion (KLE) can be used to represent
�.x; �/ as

�.x; �/ D
MX

iD0
�i.x/�i.�/; (5)

where �0.�/ D 1 and �i.x/ D �
p
�i�i.x/I i � 1, here � denotes the standard

deviation of the input process and �i and �i.x/ are the eigenpairs of the covariance
kernel and can be obtained from the solution of the following integral equation

Z

˝

C��.x1; x2/�i.x1/dx1 D �i�i.x2/: (6)

The solution process (with a priori unknown mean and covariance function) can be
approximated using the PC expansion as

u.x; �/ D
NX

jD0
uj.x/#j.�.�//; (7)

where NC1 denote the total number of terms in PCE and uj.x/ are the deterministic
PC coefficients to be determined and #j.�/ are a set of multivariate orthogonal
random polynomials with the following properties

h#0i D
Z




#0.�/p.�/d� D 1; h#ji D 0; j > 0; and h#j#ki D ıjkh#2
j i:

4 The Stochastic Finite Element Discretization

Let Th denote the triangulation of the physical domain˝ with a maximum element
size h, and let the associated finite element space Xh � H1

0.˝/ be spanned by the
traditional nodal basis functions f�l.x/gLlD1. Further, for the stochastic discretization,
let Yp � L2.
 / be a finite dimensional space spanned by the PC basis functions
f#j.�/gNjD0 in the random variables �. Thus, the approximate SSFEM solution uhp

in the discrete tensor product space Xh ˝ Yp � H1
0.˝/˝ L2.
 / can be expressed

as

uhp.x; �/ D
NX

jD0

LX

lD1
ujl�l.x/#j.�/: (8)
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Using (5) and (8), we can translate the stochastic weak form defined in (3) into the
following coupled set of deterministic linear system

NX

jD0

MX

iD0

LX

lD1
ujl

�Z




�i#j.�/#k.�/p.�/d�

��Z

˝

�i.x/r�l.x/ � r�m.x/dx
�
D

Z




�Z

˝

f .x/�m.x/dx
�
#k.�/p.�/d�; m D 1; � � � ;L; k D 0; � � � ;N (9)

The linear system arising from (9) can be expressed as follows

MX

iD0
A.i/UC.i/ D F; (10)

where we define

A.i/
lm D

Z

˝

�ir�l � r�mdx; C.i/
jk D

Z




� i#j.�/#k.�/p.�/d�: (11)

Fmk D
Z




�Z

˝

f .x/�m.x/dx
�
#k.�/p.�/d�: (12)

Equation (10) can be vectorized by taking the vec.�/ operator for the both sides
leading to the following concise form

AU D F ; (13)

where

A D
MX

iD0
C.i/ ˝ A.i/; U D vec.U/ and F D vec.F/: (14)

5 Schwarz Preconditioner for Stochastic PDEs

In the Schwarz preconditioner for the stochastic problem, the physical domain˝ is
partitioned into a number of overlapping subdomain f˝s; 1 � s � Sg by splitting
the vertices of the computational mesh. For each subdomain ˝s � ˝ , let Rs be a
restriction matrix of size ns � n (where ns and n are the size of the subdomain and
global unknowns) to extract the local nodal values from the global unknowns vector
as

Us D RsU; (15)
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applying the vec.�/ operator to (15), leads to

vec.Us/ D .I˝ Rs/vec.U/; (16)

here I is .N C 1/ � .N C 1/ identity matrix. Let Us D vec.Us/ and Rs D .I˝ Rs/

denote the stochastic subdomain nodal values and the stochastic restriction matrix,
then (16) becomes

Us D RsU : (17)

Consequently, the stochastic stiffness matrix for subdomain ˝s can be defined as a
block extracted from the global stiffness matrix A as

As D RsART
s ; (18)

D .I˝ Rs/

 
MX

iD0
C.i/ ˝ A.i/

!
.I˝ RT

s /; (19)

D
MX

iD0
C.i/ ˝A.i/

s : (20)

Next, we define the one-level stochastic Schwarz preconditioner as a direct sum of
the solution of the local stochastic Dirichlet problems as:

M�1 D
SX

sD1
RT

s A�1s Rs; (21)

which can be expressed as follows

M�1 D
SX

sD1
.I˝ RT

s /

 
MX

iD0
C.i/ ˝ A.i/

s

!�1
.I˝ Rs/: (22)

Remark 1 The stochastic Schwarz preconditioner has the same structure as the
stochastic Neumann-Neumann preconditioner in [5].

Remark 2 The stochastic Schwarz preconditioner based on the mean properties can
be obtained from (22) by setting i D 0 which gives

M�1
0 D ŒC.0/��1 ˝

SX

sD1
RT

s ŒA
.0/
s ��1Rs; (23)

where A.0/
s D RsA.0/RT

s and C.0/ D ıijh#2
i i.
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Remark 3 For one subdomain S D 1 and normalized PC basis functions, C.0/ D I,
the mean-based Schwarz preconditioner defined in (23) becomes

M�1
0 D I˝ ŒA.0/��1: (24)

Remark 4 The one-level stochastic Schwarz preconditioner based on the mean
properties is a generalization of the block-diagonal mean based preconditioner [3]
whereby the associated deterministic problem is solved in parallel using the
deterministic Schwarz preconditioner.

6 Coarse Grid Correction

Domain decomposition preconditioners can achieve a scalable performance pro-
vided that they are equipped with a coarse grid correction for global communication.
To define a coarse problem for the stochastic Schwarz preconditioner, let RT

0 2
R

ni�n0 be an interpolation matrix defined as

RT
0 D

2
6664

 1.x1/  2.x1/ � � �  n0 .x1/
 1.x2/  2.x2/ � � �  n0 .x2/
:::

::: � � � :::

 1.xni/  2.xni/ � � �  n0 .xni/

3
7775 (25)

where f i.x/gn0iD1 is a set of linear basis functions, here n0 denotes the dimension of
the coarse space and .x1; x2; � � � ; xni/ are the coordinates of the nodal points of the
fine mesh. The corresponding stochastic coarse space interpolation operator can be
defined as

R0 D I˝R0; (26)

and thus the coarse grid correction for the stochastic problem can be obtained as

A0 D RT
0AR0: (27)

According, the two-level stochastic Schwarz preconditioner can be defined by
adding the coarse grid correction to the one-level preconditioner in (21) leading
to

M�1 D RT
0A�10 R0 C

SX

sD1
RT

s A�1s Rs: (28)
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Theorem 1 There exists positive constants C and d that are independent of the
geometric parameters (i.e. mesh size h, subdomain size H and the overlap distance
ı) and the stochastic parameters (i.e. strength of randomness � , dimension M and
order p of the stochastic expansion), such that

cond.M�1A/ � C.d C 1/2
�
�max

�min

�2 H

ı
: (29)

Proof See [4]. ut

7 Numerical Results

In this section, we illustrate the performance of the two-level stochastic Schwarz
preconditioner defined in (28). In particular, we consider the following elliptic
SPDE

�r � .�.x; �/ru.x; �// D f .x/; in ˝ ��;
u.x; �/ D 0; on @˝ ��; (30)

where f .x/ denotes the source term taken as unity. The diffusivity coefficient �.x; �/
is modelled as a uniform random field with an invariant mean and the following
exponential covariance function

C��.x; y/ D �2 exp

��jx1 � y1j
b1

C �jx2 � y2j
b2

�
; (31)

Fig. 1a, b show the mean and standard deviation of the solution process. In Fig. 2a,
b, we show the condition number growth of the Schwarz preconditioner for fixed

(b)(a)

Fig. 1 The mean and standard deviation of the solution process. (a) Mean; (b) st. deviation
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Fig. 2 Condition number growth with respect to fixed problem size per subdomain. (a) M D 2;
(b) p D 2

Table 1 Condition number
and iterations count with
respect to M and p

M p Cond Iter

1 1 10:1642 17

2 10:1706 19

3 10:1725 19

4 10:1733 19

2 1 10:1781 19

2 10:1834 19

3 10:1861 19

4 10:1876 19

3 1 10:1785 19

2 10:1842 19

3 10:1873 19

4 10:1892 19

4 1 10:1816 19

2 10:1887 20

3 10:1926 20

4 10:1951 20

number of random variables M D 2 and fixed order p D 2, respectively, while
increasing the global problem size by adding more subdomains with fixed problem
size per subdomain. Tables 1 and 2 show the condition number and iterations
count of the preconditioned conjugate gradient solver equipped with Schwarz
preconditioner with respect to dimension and order and coefficient of variation
(CoV), respectively.
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Table 2 Condition number
and iterations count with
respect to the CoV

�
�

p Cond Iter

0:2 1 10:1760 19

2 10:1812 19

3 10:1841 19

4 10:1860 19

0:3 1 10:1816 19

2 10:1887 20

3 10:1926 20

4 10:1951 20

0:4 1 10:1871 19

2 10:1959 20

3 10:2006 20

4 10:2035 20

0:5 1 10:1925 20

2 10:2030 20

3 10:2085 20

4 10:2122 20

8 Conclusion

A two-level Schwarz domain decomposition preconditioner is proposed for the
iterative solution of the large-scale linear system arising from the stochastic finite
element discretization. The proposed preconditioner demonstrates a scalable perfor-
mance with respect to the mesh parameters, strength of randomness, dimension and
order of the stochastic expansion.
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Domain Decomposition for a Hybrid Fully 3D
Fluid Dynamics and Geophysical Fluid
Dynamics Modeling System: A Numerical
Experiment on Transient Sill Flow

H.S. Tang, K. Qu, X.G. Wu, and Z.K. Zhang

1 Introduction

Now it has become necessary to simulate multiphysics coastal ocean flow phenom-
ena at distinct scales, especially those at small scales, in many emerging problems
such as hydrodynamic impact on coastal bridges during Hurricane Katrina in 2005
and oil spill at the Deepwater Horizon in the Gulf of Mexico in 2010 (e.g., [2, 4]).
Efforts using numerical simulations to predict coastal ocean flows have been greatly
successful but strictly speaking, until now, are limited to large spatial scales in range
O(10)–O(10,000)km and individual phenomena such as circulation currents and
surface waves.

A natural and actually the most effective and feasible approach to simulate
multiphysics coastal ocean flows at an affordable computational expense will be
an integration of a fully three dimensional fluid dynamics (F3DFD) model, which
is commonly referred as to a computational fluid dynamics (CFD) model in the
coastal ocean community, and a geophysical fluid dynamics (GFD) model into a
single modeling system using a domain decomposition method (DDM). In this
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approach, a flow field is divided into many subdomains dominated with different
physical phenomena, and each subdomain will be assigned either with a F3DFD
or a GFD model, whichever appropriate. With this idea, the authors proposed to
couple the Solver for Incompressible Flow on Overset Meshes (SIFOM) developed
by ourselves, which is a F3DFD model, and the unstructured grid Finite Volume
Coastal Ocean Model (FVCOM), which is a GFD model, and demonstrated its
capabilities and performance in capturing multiple physical phenomena [6, 9]. The
SIFOM–FVCOM system is the first-of-its-kind system for coastal ocean flows, and
it is able to simulate many flows that are beyond the reach of any other existing
models.

This paper makes a numerical experiment to evaluate the performance of the
SIFOM–FVCOM system, illustrating its promise in simulation of complicated flows
as well as difficulties to be overcome. A comprehensive study on the SIFOM–
FVCOM system has been presented in [8].

2 Governing Equations and Discretization

The governing equations of the F3DFD model are the continuity and the Reynolds-
averaged Navier–Stokes equations that read as

r � u D 0; (1)

ut Cr � uu D �1
�
rpCr � ..� C �t/ru/ ; (2)

where u is the velocity, with component u, v, and w in x, y, and z direction
respectively. Here x and y are in the horizontal direction, respectively, and z is
in the vertical direction. p is the pressure, � the density, � the viscosity, and �t

the turbulence viscosity. Different turbulence closures are available to evaluate the
turbulence viscosity, such as the mixing length model, k � � model, and detached
eddy simulation.

SIFOM has been developed by the first author and co-workers to solve the above
governing equations (e.g., [3, 7]). In SIFOM, the governing equations are discretized
using a second-order accurate, implicit, finite difference method in curvilinear
coordinates, and they are solved using a dual time-stepping artificial compress-
ibility method. The time derivative is approximated using a three-point backward
difference, the convective terms are discretized using the QUICK scheme, and the
other terms are treated using central difference. A DDM approach in conjunction
with Chimera grids is implemented to deal with complex geometry. An effective
mass conservation algorithm, which is a mass-flux based interpolation (MFBI),
is proposed to achieve seamless transition of solutions between subdomains. For
details about the technical aspects of the model, the reader is referred to [3, 5, 7].
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FVCOM is a popular GFD model, and it has an external and an internal mode.
The governing equations for the external mode in the hydrostatic version of the
model are the two dimensional continuity and momentum equations [1]:

	t CrH � .VD/ D 0; (3)

.VD/t CrH � .VVD/ D �gDrH	C �s � �b

�
CG: (4)

For the internal mode in that version, the governing equations are the three
dimensional continuity and momentum equations:

	t CrH � .vD/C !� D 0; (5)

.vD/t CrH � .vvD/C .v!/� D �gDrH	

CrH � .˛e/C 1

D
.ˇv� /� CH:

(6)

In the external mode, V is the depth-averaged horizontal velocity, D is the water
depth, �s and �b are the shear stress on water surface and seabed, respectively,
g is the gravity, and G includes the rest terms such as the Coriolis force. rH

is the gradient operator in the horizontal plane. In the internal mode, � is the
vertical coordinate, 	 is water surface elevation, v is the horizontal velocity, e is
the strain rate, ! is the vertical velocity in �-coordinate, and H represents the other
terms. Subscript � stands for the derivative in �-direction. ˛ and ˇ are diffusion
coefficients, which are evaluated by the Mellor and Yamada level-2.5 turbulent
closure [1].

3 Methodology

A schematic representation of the hybrid SIFOM–FVCOM system is depicted in
Fig. 1a, in which SIFOM is employed within a subdomain that covers the local flow
around a seamount and FVCOM is used for the large-scale background flow. An
overlapping zone is arranged between the regions of SIFOM and FVCOM, and it
is assumed that the overlapping zone is located at a place where the hydrostatic
assumption holds. Since variable u in the governing equations of SIFOM and
variables v and ! in the internal mode of FVCOM are essentially the same, or, they
are the three components of velocity, the two models will exchange solutions for
them (Fig. 1b). In addition, pressure p at the boundary of SIFOM can be determined
by the value of 	 obtained with FVCOM using the hydrostatic assumption, which
states that pressure is proportional to water depth. Chimera grids, or overset grids,
will be used to couple SIFOM and FVCOM, and grid connectivity and solutions
exchange at interfaces of them will be implemented using interpolation. The
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domain decomposition solution exchange

(b)(a)

Fig. 1 A schematic representation of the hybrid SIFOM–FVCOM system. (a) Domain decompo-
sition. (b) Solution exchange

Schwarz alternative iteration method is employed for the iteration between the
solutions of the two models, and, in advancing solution of the hybrid system at
time step n to that at nC 1, it reads as

Step I. Assign solution at time step n to all grid nodes/elements.
Step II. Exchange solution at model interfaces by interpolation.
Step III. Solve SIFOM and FVCOM.
Step IV. If SIFOM and FVCOM solutions converge, go to Step V. If not, return

to Step II.
Step V. Assign the convergent solution as the solution at time step nC 1.

SIFOM and FVCOM will exchange solution at each time step. It is noted that the
two models may use different time steps. In addition, the external and internal mode
in FVCOM also permit different time steps. For details of the modeling system, the
reader is referred to [6, 8, 9].

4 Numerical Experiment

Sill is a typical form of topography at bottom of oceans, and flows over it are
rich in physical phenomena. Previous investigation indicates that it is necessary to
include non-hydrostatic effects to adequately reproduce mixing and other processes
involved in the flows (e.g., [10]). The hybrid SIFOM–FVCOM system is applied to
simulate a transient flow over sill with configuration

8
ˆ̂<

ˆ̂:

�1500 < x < 2000;
y D ˙200.1� 0:8e�4�10�6x2 /; x < 0I y D ˙40; x > 0;

z D �150C 140

1C .x=500/4 ; x < 0I z D �120C 110

1C .x=500/4 ; x > 0;

(7)
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Fig. 2 Meshes for the sill
flow

and initial and boundary condition

�
u; v;w D 0; t D 0;
	u D 0:9175.1� e�0:01t/; x D �1500I 	 D 0; x D 2000: (8)

In above expressions, length is in m, time in s, and velocity in m/s.
The grid of FVCOM covers the whole flow field, and that of SIFOM is located

over the sill (Fig. 2). The grid of FVCOM has 10,400 triangle elements in the
horizontal plane and 41 �-layers in the vertical direction, and the number of grid
nodes of SIFOM is 161� 33� 49 in the longitudinal, lateral, and vertical direction,
respectively. The time step of the SIFOM–FVCOM system is 0.5.

As indicated in the initial condition in Eq. (8), the water body is initially
stationary. Because of the imposition of an inflow at the entrance, a current occurs
and moves to the right. Instantaneous solutions for the current at different moments
are shown in Fig. 3. Figure 3a–f illustrate the current roughly when its front
approaches, arrives at, and passes the top of the sill. Figure 3g and h present
solutions for the flow after the front exits the computational domain, and it seems
that it is at its equilibrium state at this moment. The solutions presented in the figures
are reasonable in large scales in aspect of streamlines and velocity distribution.

Nevertheless, a detailed examination of the solutions in Fig. 3 finds problems
with them. Figure 4a, e indicate that, near the front of the current, where water
bodies in motion and at rest are adjacent to each other, the solutions of the SIFOM
model cannot react simultaneously to those obtained with the FVCOM model, and
there is a delay in them. In addition, there is a pronounced difference, in both
magnitude and direction, between the velocity solutions provided by the two models
in their overlapping regions (Fig. 4a, c, e). In Fig. 4c, near the top of the sill, FVCOM
provides a forward flow in the upper layer, while SIFOM produces a reverse flow in
the lower layer. It is expected that there is no physical mechanism to generate such
reverse flow, and apparently it is an artifact. It is not clear what causes the delay
and difference in solutions and the reverse flow. All of these indicate that the hybrid
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Fig. 3 Simulation of the sill flow at different moments. The solid lines around the sill indicate the
boundary of SIFOM
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Fig. 4 Zoom of the simulated sill flow at y=0

system in its current form has difficulties to correctly resolve the flow at the current
front, which is complicated and involves strong unsteadiness and non-hydrostatic
effect. After the front passes, the solution becomes normal and above mentioned
problems disappear, see Fig. 4b, d, f.

5 Concluding Remarks

Hybrid of F3DFD and GFD models based on domain decomposition is a feasible
approach to simulate multiscale and multiphysics coastal processes. However,
this approach is challenging in view it involves coupling of different governing
equations, distinct numerical methods, and dissimilar computational meshes. This
paper indicates that, while its performance is promising, such approach faces
difficulties to correctly resolve a current front associated with strong transient effect
and it needs discretion in implementation.
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Recently, a method has been proposed to overcome the difficulties reported in
this paper. In this method, pressure is decomposed into hydrostatic pressure and
dynamic pressure in the governing equations of SIFOM. As a result of the pressure
decomposition, a term for gradient of surface elevation appears in the momentum
equations, and it serves as a driving force in the horizontal direction. Details of
this method and a comprehensive evaluation of the SIFOM–FVCOM system in
aspects of theoretical analysis, numerical experiment, and laboratory measurement
are presented in [8].
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A Domain Decomposition Based
Jacobi-Davidson Algorithm for Quantum Dot
Simulation

Tao Zhao, Feng-Nan Hwang, and Xiao-Chuan Cai

1 Introduction

Quantum dot (QD) is a semiconducting nanostructure where electrons are confined
in all three spatial dimensions [8], as shown in Fig. 1. The quantum states of
the pyramidal quantum dot with a single electron can be described by the time-
independent 3D Schrödinger equation

� r �
� „2
2m.r; �/

ru

�
C V.r/u D �u; (1)

defined on a cuboid ˝ , where � is called an energy state or eigenvalue, and u
is the corresponding wave function or eigenvector. In (1), „ is the reduced Plank
constant, r is the space variable, m.r; �/ is the effective electron mass, and V.r/ is
the confinement potential.

The Ben Daniel-Duke interface condition
�

1

m.r; �/
@u

@n

�ˇ̌
ˇ̌
@D

�

D
�

1

m.r; �/
@u

@n

�ˇ̌
ˇ̌
@D

C

is imposed on the interface, where D denotes the domain of the pyramid dot and n
is the unit outward normal of @D. We impose the homogeneous Dirichlet boundary
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Fig. 1 Structure of a
pyramidal quantum dot
embedded in a cuboid. The
size of the cuboid is
24.8�24.8�18.6 nm; the
width of the pyramid base is
12.4 nm and the height of the
pyramid is 6.2 nm

condition u D 0 on the boundary of the cuboid. For details, see [5, 8] and references
therein.

A cell-centered finite volume method on an uniform mesh in Cartesian coordi-
nates is applied to discretize the Schrödinger equation with non-parabolic effective
mass model [5]. Then we obtain the polynomial eigenvalue problem

.�5A5 C �4A4 C �3A3 C �2A2 C �A1 C A0/x D 0; (2)

where � 2 C, x 2 C
N , Ai 2 R

N�N , and N is the total number of unknowns. The
matrices A0 and A1 are diagonal, and all other matrices are nonsymmetric.

The rest of the paper is organized as follows. In Sect. 2, we first recall the
convergence of the single-vector version of Jacobi-Davidson (JD) based on the
residual of the approximate eigenpair for solving the general polynomial eigenvalue
problem of degree m. Then we propose a three-grid parallel domain decomposition
based JD algorithm for computing the relevant quantum dot eigenvalues and the
corresponding eigenvectors. Numerical results are reported in Sect. 3. Some finial
remarks are given in Sect. 4.

2 Jacobi-Davidson Algorithm and Domain Decomposition
Based Preconditioners

For given Ai 2 C
N�N , i D 0; 1; � � � ;m, we define A� D Pm

iD0 � iAi as a matrix
polynomial of � 2 C. If there exist � 2 C and x 2 C

N such that A�x D 0, then
� is called an eigenvalue of A� and x is the eigenvector of A� associated with the
eigenvalue �. There are several versions of JD for solving eigenvalue problems; see
[4] and references therein. A relatively simple version referred to as JD1 in this
paper is summarized in Algorithm 1 below.

Algorithm 1 JD1 for polynomial eigenvalue problems

Input: Ai for i D 0; � � � ;m, and the maximum number of iterations k.

1: Choose an initial eigenvector u0 with ku0k2 D 1.
For n D 0; � � � ; k

2: Solve u�nA�n un D 0 for a new eigenvalue approximation �n.
3: Compute the residual rn D A�n un.
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4: If the stopping criteria is satisfied, then stop.
5: Compute pn D A0�n

un D
�Pm

iD1 i� i�1
n Ai

�
un:

6: Solve
�I � .pnu�n /=.u�n pn/

�
A�n zn C rn


2
� "nkrnk2; zn ? un.

7: Compute a new eigenvector approximation unC1 D .un C zn/=kun C znk2.
End for

Theorem 1 Let Pn D pnu�n=.u�n pn/ and .�; x/ be an eigenpair of A� . There exists
D.�; x; d/ D f� 2 C; u 2 C

N W A� is nonsingular and kA�uk2 < dg. If the initial
eigenpair .�0; u0/ and any eigenpair .�n; un/ generated by JD1 are all in D.�; x; d/,
then the residuals satisfy

k.I � Pn/rnC1k2 � "nkrnk2 C �nkrnk22 CO.krnk32/ (3)

if A�n is non-Hermitian, and

k.I � Pn/rnC1k2 � "nkrnk2 C $nkrnk32 CO.krnk42/ (4)

if A�n is Hermitian. Here, �n and $n depend on "n, �n and Ai’s.

Because of the page limit, the proof of the theorem is not shown. Theorem 1
implies that if rnC1 is orthogonal to un, then I � Pn can be removed from the left-
hand sides without changing the right-hands sides of (3) and (4). The authors of [4]
suggest that a subspace VnC2 is built by all the correction vectors u0ns and the initial
vector u0. Then a new approximate eigenvector unC1 is extracted from the subspace
with the Galerkin condition rnC1 ? VnC2. We will refer the resulting method as
the JD algorithm described in Algorithm 2 below. In the JD algorithm, rnC1 is
orthogonal to any ui for i � nC 1, which leads to .I � Pn/rnC1 D rnC1. Thus one
can reasonably expect that the JD algorithm has a quadratic or cubic convergence if
"n is sufficiently small relative to the residual.

Algorithm 2 JD for polynomial eigenvalue problems

Input: Ai for i D 0; � � � ;m, and the maximum number of iterations k.

1: Let V D Œv�, where v is an initial eigenvector such that kvk2 D 1.
For n D 0; � � � ; k

2: Compute Wi D AiV and Mi D VHWi for i D 0; � � � ;m.
3: Solve the projected polynomial eigenvalue problem

�Pm
iD0 � iMi

�
s D 0,

then obtain the desired eigenpair .�; s/ such that ksk2 D 1.
4: Compute the Ritz vector u D Vs, and the residual vector r D A�u.
5: If the stopping criteria is satisfied, then stop.
6: Compute p D A0�u D �Pm

iD1 i� i�1Ai
�

u:

7: Solve
.I � .pu�/=.u�p//A�.I � uu�/tC r


2
� "nkrk2; t ? u.

8: Orthogonalize t against V , set v D v=ktk2, then expand V  ŒV; v�.
End for
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Remark 1 If the initial guess is good enough, and if the tolerance of the correction
equation satisfies "n � O.krnk2/, then the JD algorithm may converge quadratically,
but we are unable to theoretically prove this.

Remark 2 If "n is chosen as a constant independent of n, then the convergence can
only be linear in theory, however, in practice, if the constant tolerance is reasonably
small, quadratic or near quadratic convergence has been observed in our numerical
experiments.

In the entire JD approach, the linear correction equation is the most expensive
part of the calculation since it is in the inner most loop. In earlier work, people often
restrict the number of iterations to be carried out for the correction equation to be
a small number (5 or 10) without considering how large the residual is when the
iteration is stopped. This does cut down the computational cost per iteration, but as
a result, the outer JD iteration may not have a quadratic convergence. In this paper,
we make sure the correction equation is solved to a certain accuracy. A two-level
preconditioner with a sufficiently fine coarse grid is used to control the number of
iterations and scalability of the correction equation solver.

In JD, the preconditioner is of the form QM D .I � .pu�/=.u�p//M.I � uu�/,
where M is an approximation of A� . We assume that the Krylov subspace method
starts with an initial vector t D 0, and is preconditioned by QM from the right with
a fixed �. In the Krylov solver, we have to compute x D QM�1y at each iteration.
To avoid forming QM�1 explicitly, we solve a linear system QMx D y for x. Assume
that x is orthogonal to u. It is straightforward to show that x takes the following form
x D M�1y�.u�M�1y/=.u�M�1p/M�1p. Thus, for solving each correction equation,
we need to compute s D M�1y at each iteration of Krylov subspace method, while
compute M�1p only once.

In our method, we let M�1 be a two-level multiplicative type Schwarz precondi-
tioner [1, 3]. Its multiplication with a vector y requires two steps:

s Ih
c M�1c Rc

hy;

s sCM�1f .y �A�s/:

Here, Mc is a preconditioner defined on the coarse mesh ˝c. To obtain Mc,
we discretize the Schrödinger equation (1) on ˝c by the finite volume method
mentioned in Sect. 1 and then obtain a coarse mesh polynomial eigenvalue problem�Pm

iD0 �iBi
�

x D 0. For this particular quantum dot simulation that we are interested,
m is equal to 5. The matrix Bi .i D 0; � � � ;m/ is much smaller than Ai in (2), but has
the same nonzero structure pattern as Ai. Then we define Mc DPm

iD0 � iBi; where �
is the Ritz value computed on the fine mesh ˝f .

In the first step of the two-level Schwarz preconditioner, Ih
c is an interpolation

from ˝c to ˝f , and Rc
h is a restriction from ˝f to ˝c. As before, computing

w D M�1c .Rc
hy/ is equivalent to solving a linear system Mcw D Rc

hy. In practice,
we solve it approximately using a Krylov subspace method preconditioned by a
one-level RAS preconditioner defined on the coarse mesh˝c using the same number
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of processors as on the fine mesh. In the second step of the two-level preconditioner,
Mf is the RAS preconditioner defined on the fine mesh ˝f .

To build the RAS preconditioners, we partition the cuboid into non-overlapping
subdomains !i, i D 1; � � � ; np, then generate the overlapping subdomain !ıi by
including the ı layers of mesh cells in the neighboring subdomains of !i, i.e.,
!i � !ıi . Here, np is the number of processors that is the same as the number
of subdomains, and ı is the size of overlap. Let R0i and Rıi be restriction operators
to non-overlapping and overlapping subdomains, respectively. With Rıi , we define
the matrix Ji D Rıi A�.Rıi /

T . Then the one-level RAS preconditioner reads as
M�1RAS D

Pnp
iD1.R0i /TJ �1i Rıi : In practice, J �1i is not formed explicitly, instead it

is approximated by ILU factorization.
In theory, a good initial guess implies good convergence of JD, but in practice, it

is a nontrivial issue to find the right initial guess, especially when both the accuracy
and the computational cost need to be balanced since our goal is to achieve near
linear speedup measured by the total compute time. For convenience (less coding,
less memory required, and computationally cheaper), the coarse mesh for finding the
initials is usually chosen to be the coarse mesh of the two-level Schwarz method.
However, as is shown in the next section, the coarse mesh of the two-level Schwarz
preconditioner in this paper is not suitable to generate the initial guess since it is still
very large. Note that only several eigenpairs around the ground state are of interests
in this simulation. As a result, we have to generate another much coarser mesh ˝o

for computing the initials.
On ˝o, we discretize the Schrödinger equation using the finite volume method

mentioned in Sect. 1. Next, the resulting polynomial eigenvalue problem is solved
using, for instance, the QZ method with linearization. Once we obtain the desired
eigenpair .�o; vo/, �o is used as the initial eigenvalue and vo is interpolated to the
fine mesh ˝f to generate the initial eigenvector on the fine mesh vh  Ih

ovo, where
Ih
o is an interpolation operator from ˝o to ˝f . Due to the small size, .�o; vo/ is

computed redundantly on all processors.
With the coarse and fine grids, we describe the three-grid parallel domain

decomposition based JD algorithm in Algorithm 3.

Algorithm 3 Three-grid parallel domain decomposition based JD algorithm for
polynomial eigenvalue problems

Input: Coefficient matrices on ˝o, ˝c and˝f for i D 0; � � � ;m.

1: On˝c, solve the polynomial eigenvalue problem roughly and obtain the desired
eigenpair .�o; vo/.

2: Obtain the initial eigenvector on the fine mesh vh  Ih
ovo.

3: Solve the polynomial eigenvalue problem on ˝f by Algorithm 2. At each
iteration, the correction equation is solved to a modest accuracy by Krylov
subspace method with either one-level or two-level preconditioner.
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3 Numerical Results

We use Algorithm 3 to compute 6 smallest positive eigenvalues and the corre-
sponding eigenvectors of the pyramidal quantum dot problem as shown in Fig. 1.
The physical parameters in the non-parabolic effective mass model are the same
as described in [5]. The software is implemented using PETSc [2], SLEPc [6] and
PJDPack [5].

The fine mesh ˝f is 600�600�450 with 161,101,649 unknowns. The coarse
mesh ˝o to generate the initial guess is 12�12�9 with 968 unknowns. Due to the
small size of ˝o, the Schrödinger equation discretized on ˝o is solved redundantly
on all processors using JD with the one-vector as the initial guess. The JD iteration
is stopped when either the absolute or the relative residual norm is below 10�8. The
eigenvectors on˝o are interpolated to the fine mesh by trilinear interpolation.

On ˝f , we stop the JD iteration when either the absolute or the relative residual
norm is below 10�10. The correction equation is solved by the flexible GMRES
(FGMRES) without restarting [7] preconditioned by either one-level or two-level
preconditioners. The stopping criteria of FGMRES on˝f is 10�4. For the two-level
Schwarz preconditioner, we solve the linear system on ˝c by FGMRES with the
RAS preconditioner. The stopping criteria of FGMRES on˝c is 10�1. For the RAS
preconditioners on ˝c and ˝f , ILU(0) is applied to solve the linear system on each
subdomain; the size of overlap is 1.

Tables 1, 2, and 3 show the numerical performance of JD with the one-level
and two-level preconditioners in terms of the number of JD iterations, the average

Table 1 The ground state e0 D 0:4162094856604 and ˝c is 56� 56 � 42
One-level Two-level

np JD FGMRES Time JD FGMRES Time

5120 4 185.25 42.48 4 38.75 7.48

7168 4 185.25 29.20 4 39.50 6.36

9216 4 186.00 23.23 4 38.75 5.34

10,240 4 186.00 22.46 4 39.75 4.84

Table 2 The first excited state e1 D 5:990754117523 and ˝c is 80� 80 � 60
One-level Two-level

np JD FGMRES Time JD FGMRES Time

5120 4 251.75 71.10 4 34.75 9.47

7168 4 255.75 47.96 4 34.25 6.20

9216 4 254.50 39.29 4 34.50 5.64

10,240 4 256.50 37.37 4 34.00 5.29
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Table 3 The second excited state e2 D 0:5990754117522 and ˝c is 80� 80� 60
One-level Two-level

np JD FGMRES Time JD FGMRES Time

5120 4 258.25 71.90 4 34.25 9.99

7168 4 243.25 45.42 4 34.25 6.71

9216 4 258.00 40.99 4 35.50 5.92

10,240 4 250.50 35.42 4 34.50 5.44
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Fig. 2 Speedup with the one-level preconditioner

number of FGMRES for solving the correction equations and the compute time.
Since the imaginary parts of the computed eigenvalues are less than 10�13, we
report the real parts only. Consider the compute time and the average number of
FGMRES iterations, the two-level preconditioner is much better than the one-level
preconditioner.

Figures 2 and 3 plot the speedup curves of JD with one-level and two-level
preconditioners. Obviously, JD with both preconditioners are scalable, and the two-
level approach is faster in terms of the total compute time (Table. 4).
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Fig. 3 Speedup with the two-level Schwarz preconditioner

Table 4 Residual norms of the first six eigenpairs at each Jacobi-Davidson iteration using 10,240
processors

it e0 e1 e2 e3 e4 e5
0 2:590eC 00 4:249eC 00 4:249eC 00 9:430eC 00 5:457eC 00 7:339eC 00
1 7:614e� 02 2:236e� 01 2:233e� 01 3:926eC 00 5:959e� 01 1:465eC 00
2 1:911e� 04 3:433e� 04 3:505e� 04 1:211eC 00 6:696e� 03 8:375e � 02
3 1:640e� 08 3:657e� 08 3:780e� 08 1:418e � 01 1:044e� 06 8:642e � 05
4 1:780e� 12 8:054e� 12 8:216e� 12 3:547e � 04 1:036e� 11 3:270e � 08
5 6:083e � 08 7:659e � 12
6 8:533e � 12

The correction equations are preconditioned by the two-level Schwarz preconditioner. “it” is the
index for the JD iteration

4 Conclusions

A parallel domain decomposition based Jacobi-Davidson algorithm with three
meshes was introduced and studied for the pyramidal quantum dot simulation.
The proposed method requires three meshes; one fine mesh that determines the
accuracy of the solution and two coarse meshes to accelerate the convergence of the
inner and outer iterations. Numerical results confirmed that our method converges
quadratically with the proposed strategy for computing the initial guess, and also is
scalable for problems with over 160 millions unknowns on a parallel computer with
over 10,000 processors.
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Globally Convergent Multigrid Method for
Variational Inequalities with a Nonlinear Term

Lori Badea

1 Introduction

In [1], one- and two-level Schwarz methods have been proposed for variational
inequalities with contraction operators. This type of inequalities generalizes the
problems modeled by quasi-linear or semilinear inequalities. It is proved there
that the convergence rates of the two-level methods are almost independent of
the mesh and overlapping parameters. However, the original convex set, which
is defined on the fine grid, is used to find the corrections on the coarse grid,
too. This leads to a suboptimal computing complexity. A remedy can be found
in adopting minimization techniques from the construction of multigrid methods
for the constrained minimization of functionals. In this case, to avoid visiting the
fine grid, some level convex sets for the corrections on the coarse levels have been
proposed in [4, 7–10] and the review article [6] for complementarity problems, and
in [2] for two two-obstacle problems. In this paper, we introduce and investigate
the convergence of a new multigrid algorithm for the inequalities with contraction
operators, and we have adopted the construction of the level convex sets which
has been introduced in [2]. In this way, the introduced multigrid method has an
optimal computing complexity of the iterations. Also, the convergence theorems
for the methods introduced in [1] contain a convergence condition depending on
the total number of the subdomains in the decompositions of the domain. The
convergence condition of a direct extension of these methods to more than two-
levels will introduce an upper bound for the number of mesh levels which can be
used in the method. In comparison with these methods, the convergence condition of
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the algorithm introduced in this paper is less restrictive and depends neither on the
number of the subdomains in the decompositions of the domain nor on the number
of levels. Moreover, this convergence condition is very similar with the condition of
existence and uniqueness of the solution of the problem.

The paper is organized as follows. In Sect. 2, the method is introduced as a
subspace correction algorithm in a general reflexive Banach space. Under the same
assumptions in [2] concerning the level convex sets where we are looking for
the corrections, we prove that the algorithm is globally convergent and estimate
the global convergence rate, provided that the convergence condition is satisfied.
In Sect. 3, we show that the algorithm can be viewed as multilevel or multigrid
methods if we associate finite element spaces to the level meshes and to the domain
decompositions at each level. In [2], it has been proved that the assumptions made in
the previous section hold for problems having the convex set of two-obstacle type.
For this type of problems, we write the convergence rate of the proposed multigrid
method in function of the number of level meshes.

2 Abstract Convergence Results

We consider a reflexive Banach space V and let K � V be a nonempty closed convex
set. Let F W V ! R be a Gâteaux differentiable functional and we assume that there
exist two constants ˛; ˇ > 0 for which

˛jjv � ujj2 � hF0.v/ � F0.u/; v � ui and jjF0.v/ � F0.u/jjV0 � ˇjjv � ujj; (1)

for any u; v 2 V . Above, we have denoted by F0 the Gâteaux derivative of F, and V 0
is the dual space of V . Following the way in [5], we can prove that

hF0.u/; v� uiC ˛
2
jjv� ujj2 � F.v/�F.u/ � hF0.u/; v� uiC ˇ

2
jjv� ujj2; (2)

for any u; v 2 V . We point out that since F is Gâteaux differentiable
and satisfies (1), then F is a convex functional (see Proposition 5.5 in [3],
p. 25). Also, let T W V ! V 0 be an operator with the property that there exists
a constant � > 0 such that

jjT.v/ � T.u/jjV0 � � jjv � ujj for any v; u 2 V: (3)

Now, we consider the quasi-variational inequality

u 2 K : hF0.u/; v � ui C hT.u/; v � ui � 0 for any v 2 K: (4)
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Using (2), we get

˛
2
jjv � ujj2 � F.v/ � F.u/C hT.u/; v � ui for any v 2 K: (5)

Problem (4) has a solution and it is unique (see [1], for instance) if

�=˛ < 1: (6)

Now, let us assume that we have J closed subspaces of V , V1; : : : ;VJ , and let
Vji, i D 1; : : : Ij be some closed subspaces of Vj, j D J; : : : ; 1. The subspaces Vj,
j D J; : : : ; 1, will be associated with the grid levels, and, for each level j D J; : : : ; 1,
Vji, i D 1; : : : Ij, will be associated with a domain decomposition. Let us write I D
maxjDJ;:::;1 Ij:

To introduce the algorithm, we make an assumption on choice of the convex sets
Kj, j D 1; : : : ; J, where we look for the level corrections. The chosen level convex
sets depend on the current approximation in the algorithms.

Assumption 1 For a given w 2 K, we recursively introduce the convex sets Kj,
j D J; J � 1; : : : ; 1, as

– at level J: we assume that 0 2 KJ , KJ � fvJ 2 VJ : wC vJ 2 Kg and consider a
wJ 2 KJ ,

– at a level J � 1 � j � 1: we assume that 0 2 Kj and Kj � fvj 2 Vj : wC wJ C
: : :C wjC1 C vj 2 Kg, and consider a wj 2 Kj.

We now introduce the algorithm, which is of multiplicative type, and where the
argument of T is kept unchanged for several iterations.

Algorithm 1 We start the algorithm with an arbitrary u0 2 K. Assuming that at
iteration n � 0 we have un 2 K, we write Qun D un and carry out the following two
steps:

1. We perform � � 1multiplicative iterations, keeping the argument of T equal with
un. We start with Qun and having QunCk�1 at iteration 1 � k � �, we successively
calculate level corrections and compute QunCk:

– at the level J, we construct the convex set KJ as in Assumption 1, with w D
QunCk�1. Then, we first write wk

J D 0, and, for i D 1; : : : ; IJ, we successively

calculate wkC1
Ji 2 VJi, w

kC i�1
IJ

J C wkC1
Ji 2 KJ , the solution of the inequality

hF0.QunCk�1 C w
kC i�1

IJ
J C wkC1

Ji /; vJi � wkC1
Ji i

C hT.un/; vJi � wkC1
Ji i � 0;

for any vJi 2 VJi, w
kC i�1

IJ
J C vJi 2 KJ , and write w

kC i
IJ

J D w
kC i�1

IJ
J C wkC1

Ji ,
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– at a level J�1 � j � 1, we construct the convex set Kj as in Assumption 1 with
w D QunCk�1 and wJ D wkC1

J ; : : : ;wjC1 D wkC1
jC1 . Then, we write wkC1

j D 0,

and for i D 1; : : : ; Ij, we successively calculate wkC1
ji 2 Vji, w

kC i�1
Ij

j C wkC1
ji 2

Kj, the solution of the inequality

hF0.QunCk�1 C
JX

lDjC1
wkC1

l C w
kC i�1

Ij

j C wkC1
ji /; vji � wkC1

ji i

C hT.un/; vji � wkC1
ji i � 0;

for any vji 2 Vji, w
kC i�1

Ij

j C vji 2 Kj, and write w
kC i

Ij

j D w
kC i�1

Ij

J C wkC1
ji ,

– we write QunCk D QunCk�1 CPJ
jD1 wkC1

j .

2. We write unC1 D QunCk.

In order to prove the convergence of the above algorithm, we shall make two
new assumptions. In the case of the multigrid decompositions, the constants of
some inequalities can be taken independent of the number J of levels, the classical
Cauchy–Schwarz inequality can be strengthened, for instance. In this sense we make
the following assumption.
Assumption 2

1. There exist some constants 0 < ˇjk � 1, ˇjk D ˇkj, j; k D J; : : : ; 1, such that
hF0.v C vji/ � F0.v/; vkli � ˇˇjkjjvjijjjjvkljj, for any v 2 V, vji 2 Vji, vkl 2 Vkl,
i D 1; : : : ; Ij and l D 1; : : : ; Ik.

2. There exists a constant C1 such that jjPJ
jD1

PIj

iD1 wjijj �
C1.

PJ
jD1

PIj

iD1 jjwjijj2/ 12 , for any wji 2 Vji, j D J; : : : ; 1, i D 1; : : : ; Ij.

Evidently, for the moment, we can consider C1 D .IJ/
1
2 and ˇjk D 1; j; k D

J; : : : ; 1: The second new assumption refers to additional properties asked to the
convex sets Kj, j D 1; : : : ; J, introduced in Assumption 1.

Assumption 3 There exists a constant C2 > 0 such that for any w 2 K, wji 2 Vji,
wj1 C : : : C wji 2 Kj, j D J; : : : ; 1, i D 1; : : : ; Ij, and u 2 K, there exist uji 2 Vji,
j D J; : : : ; 1, i D 1; : : : ; Ij, which satisfy

uj1 2 Kj and wj1 C : : :C wji�1 C uji 2 Kj; i D 2; : : : ; Ij; j D J; : : : ; 1;

u � w D
JX

jD1

IjX

iD1
uji; and

JX

jD1

IjX

iD1
jjujijj2 � C2

2

0

@jju � wjj2 C
JX

jD1

IjX

iD1
jjwjijj2

1

A :
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The convex sets Kj, j D J; : : : ; 1, are constructed as in Assumption 1 with the

above w and wj DPIj

iD1 wji, j D J; : : : ; 1.

The global convergence of Algorithm 1 is proved by

Theorem 1 Let V be a reflexive Banach space, Vj, j D 1; : : : ; J, closed subspaces
of V, and Vji, i D 1; : : : ; Ij, some closed subspaces of Vj, j D 1; : : : ; J. Let K be a
non empty closed convex subset of V, and we suppose that Assumptions 1–3 hold.
Also, we assume that F is a Gâteaux differentiable functional which satisfies (1) and
the operator T satisfies (3). On these conditions, if

�=˛ < 1=2 (7)

and � satisfies

.
QC
QCC 1/

� <
1 � 2�

˛

1C 3�
˛
C 4�2

˛2
C �3

˛3

; (8)

where constant QC is given by

QC D 1

C2"

�
1C C2 C C1C2 C C2

"

	
; " D ˛

2ˇI.maxkD1;��� ;J
PJ

jD1 ˇkj/C2
; (9)

then Algorithm 1 is convergent and we have the following error estimations:

F.unC1/C hT.u/; unC1i � F.u/� hT.u/; ui
� Œ2 �

˛
C . QCQCC1 /�.1C 3

�

˛
C 4�2

˛2
C �3

˛3
/�n

�ŒF.u0/C hT.u/; u0i � F.u/� hT.u/; ui�;
(10)

kun � uk2 � 2
˛
Œ2
�

˛
C . QCQCC1/�.1C 3

�

˛
C 4�2

˛2
C �3

˛3
/�n

�ŒF.u0/C hT.u/; u0i � F.u/� hT.u/; ui�: (11)

Proof First, we see that in view of (5), (11) can be obtained from (10). Now, for a
fixed n � 0, let us consider the problem

Qu 2 K : hF0.Qu/; v � Qui C hT.Qun/; v � Qui � 0; for any v 2 K; (12)

where Qun D un 2 K is the approximation obtained from Algorithm 1 after n
iterations. By applying Theorem 2.2 in [2] to variational inequality (12) we get that
after � iterations the following error estimation holds

F.QunC�/C hT.Qun/; QunC�i � F.Qu/ � hT.Qun/; Qui
� . QCQCC1 /�ŒF.Qun/C hT.Qun/; Quni � F.Qu/� hT.Qun/; Qui�
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or

F.unC1/C hT.un/; unC1i � F.Qu/� hT.un/; Qui
� . QCQCC1 /�ŒF.un/C hT.un/; uni � F.Qu/ � hT.un/; Qui�; (13)

where QC is given in (9). From (2), (12) and (3), we have

F.Qu/C hT.u/; Qui � F.u/� hT.u/; ui C ˛
2
jjQu� ujj2

� hF0.Qu/; Qu � ui C hT.un/; Qu � ui C hT.u/� T.un/; Qu � ui
� hT.u/� T.un/; Qu � ui � � jju� unjjjju� Qujj � �

2
jju� unjj2 C �

2
jju � Qujj2:

From (4) and using again (2), we get

˛
2
jju � unjj2 � hF0.u/; u� uni C F.un/� F.u/
� F.un/C hT.u/; uni � F.u/� hT.u/; ui: (14)

From the last two equations, in view of (7), we get

F.Qu/C hT.u/; Qui � F.u/ � hT.u/; ui
� �

˛
ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�: (15)

Now, we have

F.unC1/C hT.u/; unC1i � F.u/� hT.u/; ui
D F.unC1/C hT.un/; unC1i � F.Qu/ � hT.un/; Qui
CF.Qu/C hT.u/; Qui � F.u/� hT.u/; ui
ChT.u/ � T.un/; unC1 � Qui:

(16)

But, in view of (13), we get

F.unC1/C hT.un/; unC1i � F.Qu/ � hT.un/; Qui
� . QCQCC1 /�ŒF.un/C hT.un/; uni � F.Qu/� hT.un/; Qui�
D . QCQCC1/� ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui
CF.u/C hT.u/; ui � F.Qu/� hT.u/; Qui�
C. QCQCC1/�hT.un/ � T.u/; un � Qui:

(17)

It follows from (16), (17), (15) and (3) that

F.unC1/C hT.u/; unC1i � F.u/� hT.u/; ui

� .
QC
QCC 1/

�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�
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CŒ1 � .
QC
QCC 1/

��ŒF.Qu/C hT.u/; Qui � F.u/� hT.u/; ui�

C.
QC
QCC 1/

�hT.un/� T.u/; un � Qui C hT.u/� T.un/; unC1 � Qui

� Œ.
QC
QCC 1/

� � �
˛
.
QC
QCC 1/

� C �

˛
�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�

C�.
QC
QCC 1/

� jjun � ujjjjun � Qujj C � jjun � ujjjjunC1 � Qujj:

Also, we have

.
QC
QCC1 /

� jjun � ujjjjun � Qujj C jjun � ujjjjunC1 � Qujj
� . QCQCC1 /�.jjun � ujj2 C jjun � ujjju� Qujj/C jjun � ujjjjunC1 � Qujj
� 1

2
Œ3.

QC
QCC1 /

� C 1�jjun � ujj2 C 1
2
.
QC
QCC1 /

� jju� Qujj2 C 1
2
jjunC1 � Qujj2:

Therefore, from the last two equation, we have

F.unC1/C hT.u/; unC1i � F.u/� hT.u/; ui
� Œ. QCQCC1 /� �

�

˛
.
QC
QCC1 /

� C �

˛
�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�

C �

2
Œ3.

QC
QCC1 /

� C 1�jjun � ujj2 C �

2
.
QC
QCC1 /

� jju� Qujj2 C �

2
jjunC1 � Qujj2:

(18)

From (2), (4) and (15) we have

˛
2
jjQu� ujj2 � hF0.u/; u � Qui C F.Qu/� F.u/ � F.Qu/C hT.u/; Qui
�F.u/� hT.u/; ui � �

˛
ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�: (19)

In view of (2), (12), (17) and (3), we get

˛
2
jjunC1 � Qujj2 � hF0.Qu/; Qu � unC1i C F.unC1/� F.Qu/
� . QCQCC1 /�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui
CF.u/C hT.u/; ui � F.Qu/ � hT.u/; Qui�C �. QCQCC1 /� jjun � ujjjjun � Qujj:

As previously, using (14) and (19), we get

jjun � ujjjjun � Qujj � 3
2
jjun � ujj2 C 1

2
jju � Qujj2

� Œ 3
˛
C �

˛2
�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�:
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From the last two equations, since F.u/� F.Qu/C hT.u/; u� Qui � 0, we have

˛
2
jjunC1 � Qujj2 � . QCQCC1/� Œ1C 3

�

˛
C �2

˛2
�

�ŒF.un/C hT.u/; uni � F.u/� hT.u/; ui�: (20)

Finally, from (18), (14), (19) and (20), we get

F.unC1/C hT.u/; unC1i � F.u/� hT.u/; ui
� Œ2 �

˛
C . QCQCC1 /�.1C 3

�

˛
C 4�2

˛2
C �3

˛3
/�ŒF.un/C hT.u; un/� F.u/� hT.u; u/�:

Remark 1 Theorem 1 shows that if the convergence condition (7) is satisfied and
the number � of the intermediate iterations is sufficiently large then Algorithm 1
converges and error estimation (11) holds.

3 Multilevel and Multigrid Methods

We consider a family of regular meshes Thj of mesh sizes hj, j D 1; : : : ; J over the
domain˝ � Rd and assume that ThjC1

is a refinement of Thj , j D 1; : : : ; J�1. Also,
at each level j D 1; : : : ; J, we consider an overlapping decomposition f˝ i

jg1	i	Ij of
˝ , and assume that the mesh partition Thj supplies a mesh partition for each ˝ i

j ,
1 � i � Ij.

At each level j D 1; : : : ; J, we introduce the linear finite element spaces Vhj

whose elements vanish on @˝ . Also, for i D 1; : : : ; Ij, we consider the subspaces
Vi

hj
of Vhj whose elements vanish on˝n˝ i

j . With these spaces, Algorithm 1 becomes
a multilevel method. In [2], for a problem of two-obstacle type, K D Œ';  �,
level convex sets Kj D Œ'j;  j�, j D 1; : : : ; J, satisfying Assumption 1 have
been constructed. Also, it has been proved there that Assumption 3 holds with the
constant

C2 D CI2.J � 1/ 12 Œ
JX

jD2
Cd.hj�1; hJ/

2�
1
2 ;

where

Cd.H; h/ WD 1 if d D 1; .ln H

h
C 1/ 12 if d D 2 and .

H

h
/

d�2
2 if 2 < d;

d being the Euclidean dimension of the space where the domain ˝ lies and C is
a constant independent of J and Ij, i D 1; � � � ; J. Consequently, Theorem 1 shows
that the multilevel method corresponding to Algorithm 1 is convergent and we can
explicitly write its convergence rate.
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If the level decompositions of the domain are given by the supports of the
nodal basis functions of the spaces Vhj , j D J; : : : ; 1, Algorithm 1 becomes
a multigrid method. In this case, it is proved in [2] that we can take C1 D
C and maxkD1;:::;J

PJ
jD1 ˇkj D C, where C � 1 is a constant independent of

the number of meshes. By expressing the constant C2 only in function of J, the
following result is a direct consequence of Theorem 1,

Corollary 1 As a function of the number J of levels, the error estimate of the
multigrid method obtained from Algorithm 1 can be written as

kun � uk21 � C

"
2
�

˛
C
 QC.J/
QC.J/C 1

!� �
1C 3�

˛
C 4�

2

˛2
C �3

˛3

�#n

;

where jj � jj1 is the norm of H1.˝/ and QC.J/ D CJSd.J/2, in which Sd.J/ is
hPJ

jD2 Cd.hj�1; hJ/
2
i 1
2

expressed in function of J,

Sd.J/ WD .J � 1/ 12 if d D 1; CJ if d D 2 and CJ if d D 3;

constant C being independent of the number of levels J.

Acknowledgement The author acknowledges the support of this work by “Laboratoire Euroéen
Associé CNRS Franco-Roumain de Matématiques et Moélisation” LEA Math-Mode.

References

1. L. Badea, Schwarz methods for inequalities with contraction operators. J. Comput. Appl.
Math. 215(1), 196–219 (2008)

2. L. Badea, Global convergence rate of a standard multigrid method for variational inequalities.
IMA J. Numer. Anal. 34(1), 197–216 (2014). doi:10.1093/imanum/drs054

3. I. Ekeland, R. Temam, Analyse Convexe et Problèmes Variationnels (Dunod, Paris, 1974)
4. E. Gelman, J. Mandel, On multilevel iterative method for optimization problems. Math.

Program. 48, 1–17 (1990)
5. R. Glowinski, J.L. Lions, R. Trémolières, Analyse Numérique des Inéquations Variationnelles

(Dunod, Paris, 1976)
6. C. Graser, R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math. 27(1),

1–44 (2009)
7. R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I. Numer.

Math. 69, 167–184 (1994)
8. R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities II. Numer.

Math. 72, 481–499 (1996)
9. J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementar-

ity problems. Appl. Math. Optim. 11, 77–95 (1984a)
10. J. Mandel, Etude algébrique d’une méthode multigrille pour quelques problèmes de frontière

libre. C.R. Acad. Sci., Ser. I 298, 469–472 (1984b)



Partially Updated Restricted Additive Schwarz
Preconditioner

Laurent Berenguer and Damien Tromeur-Dervout

1 Introduction

The solution of differential equations with implicit methods requires the solution of
a nonlinear problem at each time step. We consider Newton-Krylov ([8], Chap. 3)
methods to solve these nonlinear problems: the linearized system of each Newton
iteration of each time step is solved by a Krylov method. Generally speaking,
the most time-consuming part of the numerical simulation is the solution of
the sequence of linear systems by the Krylov method. Then, providing a good
preconditioner is a critical point: a balance must be found between the ability of
the preconditioner to reduce the number of Krylov iterations, and its computational
cost. The method that combines a Newton-Krylov method with a Schwarz domain
decomposition preconditioner is called Newton-Krylov-Schwarz (NKS) [5]. In this
paper, we deal with the Restricted Additive Schwarz (RAS) preconditioner [4].
We propose to freeze this preconditioner for a few time steps, and to partially
update it. Here, the partial update of the preconditioner consists in recomputing
some parts of the preconditioner associated to certain subdomains, keeping the other
ones frozen. These partial updates improve the efficiency and the longevity of the
frozen preconditioner. Furthermore, they can be computed asynchronously in order
to improve the parallelism.

The remainder of this paper is organized as follows: Sect. 2 presents the partial
update of the Restricted Additive Schwarz (RAS) preconditioner. In Sect. 3, we
propose to compute this partial update asynchronously on additional devices in
order to achieve a parallel algorithm. The third section is devoted to numerical
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experiments on a reaction-diffusion problem. They show that the partially updated
preconditioner is more robust than the frozen preconditioner, and that a superlinear
speed-up can be achieved.

2 The Partial Update of the RAS Preconditioner

We consider ordinary differential equations of the form Px D f .x; t/ where x 2 R
n is

the solution and the function f fromR
nC1 to R

n is nonlinear. The problem Px D f .x; t/
is solved for a given initial condition x.0/ D x0 and suitable boundary conditions. If
an implicit method is used for the time integration, then a nonlinear problem of the
form F.xl; tl/ D 0must be solved in xl at each time step tl. This nonlinear problem is
generally solved by Newton-like methods that require the solution of linear systems
of the form

J.xl
k; t

l/ıxl
k D �F.xl

k; t
l/ (1)

where the subscript k stands for the number of the Newton iteration, J.xl
k; t

l/ 2 R
n�n

is the Jacobian matrix of F.�; tl/ at the solution xl
k. The Newton-Krylov method can

be viewed as an inexact Newton method if Eq. (1) is solved by a Krylov method.
A good preconditioning method is needed to accelerate the convergence of Krylov
methods. The preconditioning matrix Ml

k should approximate J.xl
k; t

l/ and its inverse
must be computed easily. Preconditioners based on domain decomposition methods
are often used because their application to vectors requires only the solution
of subdomain problems. The domain of n unknowns is split in N overlapping
subdomains. Each subdomain i has ni unknowns if we include the overlap, and Qni

if we exclude the overlap (i.e. n DPN
i Qni). Let Ri 2 R

ni�n denote the operator that
restricts a vector to the ith subdomain, including the overlap. We also denote by
QRi 2 R

ni�n the restriction operator to the ith subdomain that excludes the overlap by
setting to zero the lines corresponding to the overlap. For simplicity of notation, we
write J instead of J.x; t/ when no confusion can arise. Thus, the RAS preconditioner
of the matrix J is given by Eq. (2).

M�1RAS D
NX

iD1
QRT

i

�
RiJRT

i

��1
Ri (2)

In Eq. (2), we assumed that the local Jacobian matrices Ji D RiJRT
i are

invertible. This is not necessary to compute explicitly the matrices J�1i because
the Krylov method requires only the application of the preconditioner to vectors.
This application is computed by the parallel solution of N local linear systems. In
the following, we solve this local linear system using the LU factorizations of the
matrices Ji.
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Several methods have been proposed to optimize the solution of a sequence
of slightly changing linear systems, and all of them consist in reusing some
computations done at the previous linear systems. Then, several ways to reuse the
Krylov subspace have been considered. An overview of these techniques is given in
[9] but it is worth mentioning that the information provided by the Krylov subspace
can be used to update a preconditioner. Hence, in [6] a preconditioner based on
deflation is updated at each restart of GMRES. In order to save computational
time, we consider the reuse of the same RAS preconditioner for a few successive
linear systems: this frozen preconditioner is called Lagged RAS (LRAS) in the
following. In this case, it may be relevant to update the preconditioner from one
linear system to another, instead of recomputing it. Several ways to update a
preconditioning matrix have already been considered. It has been proposed in [3]
to update the preconditioner, adding a low rank matrix that corresponds to the
quasi-Newton update. The update of a factorized preconditioner has also been
considered: the update AINV preconditioner has been studied in [2] for a sequence
of diagonally shifted matrices. In [12], an algebraic formula is derived to update the
ILU preconditioner from the difference of two successive linear operators. This idea
has been extended to Jacobian-free methods in [13]. The frozen preconditioner is
expected to become less and less efficient from one linear system to another. Then, a
recomputation of the preconditioner may be needed to prevent convergence failures
of the Krylov method. It is a difficult task to decide when a frozen preconditioner
needs recomputed, but two heuristic criteria are often used:

• The preconditioner can be recomputed if the previous linear system has needed
more than Kmax Krylov iterations.

• The preconditioner can also be updated every L linear systems.

In this paper, we choose the first approach that seems more flexible: it can allow
to save numerous of unnecessary global updates. On the other hand, the number
of needed Krylov iterations can vary during the simulation because it does not only
depend on the age of the preconditioner. Then, to be optimal, Kmax should be adapted
during the simulation. However, this topic exceeds the scope of this paper.

When LRAS is used, the update of the preconditioner is global: all the local
LU factorizations are computed simultaneously. We can extend this idea to a
partial update: only some parts of the preconditioner are updated. Hence, the
preconditioner can be written as in Eq. (3), where AsRAS stands for Asynchronous
Restricted Additive Schwarz. The preconditioner is now compounded of local
Jacobian matrices evaluated at different Newton iterations or time steps. It is worth
pointing out that if ti D t and ki D k for i D 1 : : :N then M�1AsRAS D M�1LRAS.

M�1AsRAS D
NX

iD1
QRT

i Ji.x
li
ki
; tli /�1Ri (3)
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In order to avoid idle time, asynchronous solvers have been studied for linear
and nonlinear problems [7, 11]. The disadvantage of asynchronous solvers lies
in the fact that one needs to make extra assumptions on the problem and its
splitting to ensure the convergence. Here, the updates of the local parts of the
preconditioner are asynchronous, but the communications between subdomains are
synchronous. Then, the theoretical framework of Newton-Krylov solvers applies
directly: the exact solution of preconditioned linear systems is the same regardless
of the preconditioning matrix. That being said, Krylov methods approximate the
solution to a given tolerance, the digits of the solution beyond this tolerance might
differ from one preconditioner to another.

One can expect that the partial update allows to save Krylov iterations during the
simulation. Numerical results will confirm this idea from a global point of view, but
we do not assume that every single partial update improves the condition number of
the linear systems.

The sequential implementation of the AsRAS preconditioner is straightforward.
The implementation on a parallel computer is a much more difficult task because
idle time may arise when only some processors compute the LU factorization. To
circumvent this difficulty, in the next section we propose to dedicate additional
processes to the LU factorizations.

3 Parallel Implementation of the Asynchronous RAS
Preconditioner

The method presented in the previous section does not seem suitable for parallel
computing because the load is not balanced: some of the processors will have to wait
while the other ones compute the LU factorizations since the Krylov method entails
synchronizations. In the following, we present an efficient algorithm where the LU
factorizations are computed by processors that are not in charge of a subdomain.

The key point of the asynchronous partial update of the RAS preconditioner is
to define two kinds of tasks that communicate: the first one is the solution of a
subdomain problem (i.e. the classical Newton-Krylov method). The second one is
the LU factorizations of local Jacobian matrices. Then, in order to solve the physical
problem, one should assign most of the CPU cores to the first task.

Algorithm 1 describes how to implement the method in a client-server approach.
The client processes are those assigned to subdomains, while the server processes
are devoted to the computation of LU factorizations. The client processes must
be able to continue the computation between the sending of the local Jacobian
matrix and the reception of the factorized matrix. The reception of the factorized
matrix is the partial update since the new LU factorization is received in the
memory space of the previous one. In our MPI implementation, the communication
pattern is the following: client processes check if the server is ready to receive
the local Jacobian matrix before they send it. This checking is implemented using
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Algorithm 1 Asynchronous update of the preconditioner

1: // Client process
2: for each time step do
3: // Newton iterations:
4: repeat
5: if a LU factorization is available,

partially update M−1
AsRAS

6: if global update then
7: M−1

AsRAS =
∑N

i=1 R̃T
i J−1

i Ri

8: end if
9: Krylov method to solve

Jδx = −F (x) preconditioned by
M−1

AsRAS
10: x ← x + δx
11: if needed, send J
12: until convergence
13: end for

1: // Server process

2: repeat
3: receive the matrix
4: compute the LU factorization
5: send the factorization
6: until the end of the integration

MPI_Test. Likewise, client processes check if the LU factorization is ready before
they start the reception. The reception can be done between two Newton iterations
or even between two Krylov iterations if the Krylov method allows variable
preconditioners [10]. Finally, Algorithm 1 can be viewed as an improvement of
LRAS: both algorithms are equivalent if no processes are assigned to the partial
update of the preconditioner. As stated above, there are more client processes than
server processes. As a consequence, only few partial updates can be computed
simultaneously. Then, one needs to decide in which order the requests will be
treated. In the remainder of this paper, we limit ourselves to a cyclic update: we first
update the first subdomains, then the second ones and so on. This approach is not
optimal, because it does not update more frequently the subdomains where highly
nonlinear phenomena appear. Since we proposed an asynchronous implementation
of AsRAS in Algorithm 1, we cannot assume that the partial updates will be
received it time to prevent convergence failure of the Krylov method. That is the
reason why, there is a global restart in Algorithm 1, step 7, as in classical LRAS
implementations.

4 Numerical Tests

This section presents some tests that highlight the behavior of the methods. The
computer cluster used for the numerical experiments is an SGI Altix XE 1300, with
two six-cores Intel Xeon 5650 per node. The PETSc library [1] was used for the
implementation. Generally speaking, one should avoid the exchange of factorized
matrix through the network, then a MPI library that performs efficient intranode
communications is required. The tasks must be distributed in such a way that client
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processes and their server share some memory. For example, one core per processor
hosts the server process and the other cores host its client processes. We compare
the behavior of AsRAS to LRAS for a reaction-diffusion problem given in Eq. (4).
The domain is the unit square with periodic boundary conditions.

� Pu � ˛1u=AC u2v � .BC 1/u
Pv � ˛2v=Bu� u2v

(4)

We consider the following parameters:

• The domain is discretized in 100 � 100 points, using a five-point stencil and
decomposed in 16 subdomains.

• The problem is solved for t 2 Œ0; 10� using the backward Euler scheme with a
variable time step. The solution at t D 0 is u.x; y/ D A C 10�2 � r.x; y/ and
v.x; y/ D A=BC 10�2 � r.x; y/ where r.x; y/ 2 Œ�0:5; 0:5� are random numbers.

• The coefficients of the reaction are A D 3:5, B D 12, ˛1 D 1 � h2 and ˛2 D
2:6 � h2, where h is the spatial length scale.

• The nonlinear solver is a Newton method with line search where Jacobian
matrices are approximated by finite differences. The linear solver is a right-
preconditioned BiCGSTAB [14].

• The RAS preconditioner, with an overlap of one, is recomputed if the number of
Krylov iterations of the previous linear system has exceed Kmax.

• LRAS has run on 16 cores, and AsRAS on 20 cores (16 cores associated to
subdomains, and 4 cores dedicated to the partial update of the preconditioner).

Let us remark that, because of the asynchronous behaviour of our implementation
of AsRAS, the number of Krylov iterations and the last digits of the solution may
vary from one run to another. That is the reason why the execution time and the
number of Krylov iterations given in Figs. 1 and 2 are averages over five runs. The
cumulate number of Krylov iterations is given in Fig. 1. In both cases, the number
of total Krylov iterations increases with respect to Kmax, that is to say when the
number of global updates decreases. However, the partial update limits this increase.
The total execution times are plotted in Fig. 2. The minimum wall time is given by
the best balance between the Krylov iterations and the computational cost of the
preconditioner. The minimum wall time is 2:46 for LRAS and 2:15 for AsRAS. If
we compare these minimum wall times, the speedup is 1:14 which is lower than the
theoretical linear speedup 1:25. On the other hand, if we consider all the tests, the
average speedup is about 1:5 because AsRAS is less sensitive to Kmax than LRAS.
In practice, one will solve the problem only once with a poor approximation of the
best Kmax. In that case a superlinear speedup can be obtained.
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5 Conclusions

The utilization of domain decomposition preconditioners allows us to update only
certain parts of the preconditioner, keeping the other ones constant. In the context
of parallel computing, this partial update can be computed asynchronously, that
is to say that the time-stepper computations are not stopped if the update is
not available. Finally, numerical results showed that superlinear speedups can be
obtained by adding processes dedicated to the LU factorizations. Furthermore, the
preconditioner is continually updated which makes the results less sensitive to the
frequency of global update. In this paper, all subdomain parts of the preconditioner
are successively updated, but it would be relevant to update more often the LU
factorizations associated to subdomains with high local nonlinearities. Then, the
AsRAS preconditioner should benefit from a numerical criterion that helps to
choose which subdomains need the more an update.



444 L. Berenguer and D. Tromeur-Dervout

Acknowledgement This work has been supported by the French National Agency of Research
(project ANR-MONU12-0012 H2MNO4), and the région Rhône-Alpes. Authors also thank the
Center for the Development of Parallel Scientific Computing (CDCSP) of the University of Lyon
1 for providing us with computing resources.

References

1. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C.
McInnes, B.F. Smith, H. Zhang, PETSc users manual. Technical Report ANL-95/11 - Revision
3.3, Argonne National Laboratory (2012)

2. M. Benzi, D. Bertaccini, Approximate inverse preconditioning for shifted linear systems. BIT
Numer. Math. 43(2), 231–244 (2003)

3. L. Bergamaschi, R. Bru, A. Martínez, M. Putti, Quasi-Newton preconditioners for the inexact
Newton method. Electron. Trans. Numer. Anal. 23, 76–87 (electronic) (2006)

4. X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput. 21(2), 792–797 (electronic) (1999)

5. X.-C. Cai, W.D. Gropp, D.E. Keyes, M.D. Tidriri, Newton-Krylov-Schwarz methods in CFD,
in Proceedings of the International Workshop on Numerical Methods for the Navier-Stokes
Equations (Vieweg, Braunschweig, 1995), pp. 17–30

6. J. Erhel, K. Burrage, B. Pohl, Restarted gmres preconditioned by deflation. J. Comput. Appl.
Math. 69(2), 303–318 (1996)

7. A. Frommer, D.B. Szyld, On asynchronous iterations. J. Comput. Appl. Math. 123(1–2),
201–216 (2000) [Numerical Analysis, vol. III. Linear Algebra (2000)]

8. C.T. Kelley, Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms,
vol. 1 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2003)

9. M.L. Parks, E. De Sturler, G. Mackey, D.D. Johnson, S. Maiti, Recycling Krylov subspaces
for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)

10. Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.
14(2), 461–469 (1993)

11. P. Spiteri, J.-C. Miellou, D.E. Baz, Parallel asynchronous Schwarz and multisplitting methods
for a nonlinear diffusion problem. Numer. Algorithms 33(1–4), 461–474 (2003). [International
Conference on Numerical Algorithms, vol. I (Marrakesh, 2001)]

12. J.D. Tebbens, M. Tuma, Efficient preconditioning of sequences of nonsymmetric linear
systems. SIAM J. Sci. Comput. 29(5), 1918–1941 (2007)

13. J.D. Tebbens, M. Tuma, Preconditioner updates for solving sequences of linear systems in
matrix-free environment. Numer. Linear Algebra Appl. 17, 997–1019 (2010)

14. H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the
solution of nonsymetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)



Coupling Finite and Boundary Element
Methods Using a Localized Adaptive Radiation
Condition for the Helmholtz’s Equation

Y. Boubendir, A. Bendali, and N. Zerbib

1 Introduction

In this paper, we are interested in impenetrable surfaces with relatively large size
on which a heterogeneous object of relatively small size is posed. In this case, a
straightforward FEM-BEM (finite and boundary element methods) coupling leads to
a linear system of very large scale difficult to solve [7]. In this work, we propose an
alternative method derived from a modification of the adaptive radiation condition
approach [1, 11, 12]. This technique consists of enclosing the computational domain
by an artificial truncating surface on which the adaptive radiation condition is posed.
This condition is expressed using integral operators acting as a correction term of the
absorbing boundary condition. However, enclosing completely the computational
domain by an artificial surface in this range leads to problems with very large
size, and results in very slow convergence of the iterative procedure. We propose
to localize this surface only around the heterogenous region, which will generates
a relatively small bounded domain dealt with by a FEM, and suitably coupled
with a BEM expressing the solution on the impenetrable surface. The resulting
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formulation, based on a particular overlapping domain decomposition method, is
solved iteratively where FEM and BEM linear systems are solved separately. The
wave problem considered in this paper is stated as follows

8
<̂

:̂

r � .�ru/C ��2n2u D 0 in ˝;

�@nu D �f on 
;

limjxj!1 jxj1=2.@jxju � i�u/ D 0;
(1)

where ˝ is the complement of the impenetrable obstacle. We indicate by ˝1 a
bounded domain filled by a possibly heterogeneous material and posed on a slot

slot on which are applied the sources producing the radiated wave u. The interface
˙ separates ˝1 from the free propagation domain ˝0, n denotes the normal to 

or to ˙ directed outwards respectively the impenetrable obstacle enclosed by 

or the domain ˝1 (see Fig. 1), � and n indicate, respectively, the relative dielectric
permittivity and the relative magnetic permeability, and � is the wave number. Let
us note finally that � D n D 1 in ˝0: For the sake of presentation, we express
problem (1) in the form of the following system

8
<̂

:̂

u0 C �2u0 D 0 in ˝0;

@nu0 D 0 on 
 \ @˝0;

limjxj!1 jxj1=2.@jxju0 � i�u0/ D 0;
(2)

(
r � .�ru1/C ��2n2u1 D 0 in ˝1;

�@nu1 D �f on 
 \ @˝1.
(3)

These boundary-value problems are coupled on ˙ through the transmission condi-
tions

u0 D u1; @nu0 D �@nu1: (4)

Fig. 1 Non-overlapping decomposition of the exterior domain ˝ into˝0 and ˝1
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2 The Adaptive Localized Radiation Condition

To localize the truncating interface only around the penetrable material, Fig. 2, we
introduce a fictitious boundary S which in turn produces the bounded domain ˝S

limited by S and the impenetrable zone. The goal is to derive a formulation of
problem (1) as a coupled system composed of two equations with two unknowns
u0 and uS where the function uS D uj˝S is approximated by a FEM, and u0, already
defined above, is computed using an integral equation on 
˙ (Fig. 3). The integral
representation of the function u0 is given in terms of a single- and a double-layer
potential created by densities on 
˙ , and as a result can be seen as the restriction
to ˝0 of the solution of a transmission problem posed on all of the plane R

2 (cf.,
e.g., [10, 13, 14]). In view of the equations that are set in˝S, we are in the case of a
particular decomposition with an overlap of the computational domain (see similar
ideas in [3, 4] for the usual adaptive radiation condition). However, it will be more
convenient not to distinguish u0 from uS and to refer to them as the same function u
in H1

loc.˝/. Simply by restricting u to ˝S, we get from (1) that u satisfies

(
r � .�ru/C ��2n2u D 0; in ˝S;

�@nu D �f on 
 \ @˝S:
(5)

In˝0, we use the integral representations of the solutions to the Helmholtz equation
satisfying the Sommerfeld radiation condition (cf., e.g., [5, 8, 9, 14])

u.x/ D V�;˙p.x/� N�;
˙ u.x/; x 2 ˝0; (6)

Fig. 2 The bounded domain
˝S and the fictitious
boundary S on which is posed
the adaptive radiation
condition

Fig. 3 Representation of
˝

C

0 and its boundary
˙

.

Ω+
0

ΓΣ

.
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with

V�;˙p.x/ D
Z

˙

G.x; y/p.y/ dsy (7)

p D ��@nuj˙ (8)

N�;
˙ u.x/ D �
Z


˙

@ny G.x; y/u.y/ dsy (9)

where G.x; y/ D .i=4/H.1/
0 .�jx � yj/ for x 6D y 2 R

2:

The derivation of the FEM-BEM coupling procedure can be introduced starting
from the following Green formula

Z

˝S

�
�ru � rv � �2n2uv� dx D h@nu; vi QH�1=2.S/;H1=2.S/ C (10)

hf ; vi QH�1=2.
slot/;H1=2.
slot/

where h�; �i QH�1=2.S/;H1=2.S/ denotes the duality pairing between QH�1=2.S/ and H1=2.S/,

and v is an arbitrary test function in H1
loc.˝/. The space QH�1=2.S/ is defined

similarly to QH�1=2.
slot/ (cf. [6, 13] for the definition of Sobolev spaces).
The localized adaptive radiation condition approach (LRC) uses an iterative

method to solve problem (10) where the term @nu, at the right-hand side, is updated
at each iteration. However, there is no guarantee that problem (10) can be safely
solved. To avoid these kinds of difficulties, we introduce the stabilization term
�i�

R
S uv ds in both sides of (10). On the other hand, S is an open curve having

its end-points A and B on 
 (see Fig. 2). To prevent singular integrals near these
points, we introduce a cut-off function 	 2 D.R2/ such that 0 � 	 � 1, 	 D 1 on S,
except small neighborhood of any of A and B, 	 being moreover equal to 0 around
A and B, and write (10) in the following form

Z

˝S

�
�ru � rv � �2n2uv� dx � i�

Z

S
	uv ds D h@nu; vi QH�1=2.S/;H1=2.S/

�i�
Z

S
	uv dsC hf ; vi QH�1=2.
slot/;H1=2.
slot/

:

(11)

Consider now the curve 
S obtained by joining S and the part of 
 outside ˝S and
express that @nu D 0 there outside S variationally as follows

h@nu; vi QH�1=2.S/;H1=2.S/ D h@nu; viH�1=2.
S/;H1=2.
S/
; (12)
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for all test function v. We then get

Z

˝S

�
�ru � rv � �2n2uv� dx � i�

Z

S
	uv ds D

h@nu; viH�1=2.
S/;H1=2.
S/
� i�

Z

S
	uv dsC hf ; vi QH�1=2.
slot/;H1=2.
slot/

(13)

where the traces in the right-hand side are expressed from the integral representa-
tion (6) of u

�
	ujS D 	VS;˙p � 	NS;
˙ u
@nuj
S D @nV
S;˙p � @nN
S ;
˙ u:

(14)

Clearly, since ˙ and S share no common point and 	 is zero in the proximity of
the end-points of S, if p and u are sufficiently smooth functions, say for example
continuous, only the integral corresponding to @nN�;
˙ u in (14) is an improper
integral which can be expressed by means of a weakly singular kernel as follows

˝
@nN
S ;
˙ u; v

˛
H�1=2.
S/;H1=2.
S/

D ˝@sv;V
S ;
˙ @su
˛
H�1=2.
S/;H1=2.
S/

��2 ˝v�;V
S ;
˙ .u�/
˛
H�1=2.
S/;H1=2.
S/

(15)

from a slight adaptation of the case where 
S D 
˙ (cf., e.g., [10], p. 5). The
superscripts in the integral operators indicate that they correspond to a potential
created by a density on 
˙ and evaluated on 
S, and � is the unit tangent vector
pointing in the growth direction of the arc length s.

In order to be able to use a nodal approximation of (13), we use a standard
technique for gluing finite element approximations of different kinds or associated
with non-conforming meshes generally called mortar FEM (cf., e.g., [2]). It is
worth mentioning that here only standard meshes and finite element methods of
the same kind are used. This way to proceed is just considered as a tool providing
an approximation for the additional unknown p in the framework of a nodal finite
element method. This technique consists in breaking the continuity across ˙ that
u is compelled to satisfy a priori and to express it as a constraint. The Lagrange
multiplier corresponding to this constraint will be precisely the unknown p. It is
hence more convenient to denote by separate symbols: u0 for the restriction of u to
˝0 \ ˝S and 
˙ and u1 for its restriction to ˝1. More precisely, we will use the
following functional framework

8
<

:

X0 D fu0 defined (a.e.) on ˝0 \˝S and 
˙ I
9U 2 H1.˝0/;Uj
˙ D u0j
˙ and Uj˝0\˝S D u0j˝0\˝S

�

X1 D H1.˝1/; X D X0 � X1;
(16)
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relation (8) and (13) to write

Z

˝S\˝0

�ru0 � rv0 � �2u0v0
�

dx � i�
Z

S
	u0v ds

C
Z

˝1

�
�ru1 � rv1 � �2n2u1v1

�
dxC hp; v1 � v0i QH�1=2.˙/;H1=2.˙/ D

h@nu; v0iH�1=2.
S/;H1=2.
S/
� i�

Z

S
	uv0 dsC hf ; v1i QH�1=2.
slot/;H1=2.
slot/

for all .v0; v1/ 2 X. Using then the integral representation of @nuj
S and ujS
given above in (14), we readily arrive to the formulation effectively used to solve
problem (1) numerically

8
<

:

.u; p/ 2 X �M; 8 .v; q/ 2 X �M
a.u; v/C d.u0; v0/C b.p; v/C r.p; v0/ D hf ; v1i QH�1=2.
slot/;H1=2.
slot/

b.q; u/ D 0
(17)

with the following notation

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

a0.u0; v0/ D
Z

˝S\˝0

�ru0 � rv0 � �2u0v0
�

dx � i�
Z

S
	u0v0ds;

a1.u1; v1/ D
Z

˝1

�
�ru1 � rv1 � �2n2u1v1

�
dx;

a.u; v/ D a0.u0; v0/C a1.u1; v1/;

d.u0; v0/ D
˝
@nN
S ;
˙ u0; v0

˛
H�1=2.
S/;H1=2.
S/

� i�
Z

S
	v0NS;˙u0ds

r.p; v0/ D �
Z


S

v0@nV
S ;˙p dsC i�
Z

S
	v0VS;˙p ds;

b.p; v/ D hp; v1 � v0i QH�1=2.˙/;H1=2.˙/ ;

(18)

and M D QH�1=2.˙/: We refer to [6] for the analysis of the well-posedness and the
stability of (17).

3 Numerical Results

To validate the LRC method, we will compare it with a direct FEM-BEM coupling
and a domain decomposition one noted P-DDM (see [6] for more details about
this method). The reference solution will be given by BE formulation (boundary
elements) known to be the less dispersive. The geometry considered here (Fig. 4)
depends on a parameter L used to set a large size for the impenetrable domain
relatively to the zone meshed in triangles as shown in Fig. 4. By varying this
parameter, we test each numerical technique in terms of accuracy, CPU time, and
convergence for the iterative ones. The lengths are expressed in wavelength units.
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Fig. 4 Geometry of the test-case

Table 1 Comparison of the
various formulations in terms
of accuracy, CPU time, and
number of iterations

L CPU E Iter

BE 4 3 – –

50 94 – –

FEBE 4 19 0.14 –

50 169 0.14 –

LRC 4 38 0.17 11

50 148 0.23 11

P-DDM 4 13 0.14 30

50 127 0.14 30

To be able to compare the LRC formulation with the BE one, we suppose � and
n constant in ˝1. More precisely, we choose � D 1=4 and n D 2.1 C i/, which
correspond to a magnetic material in electromagnetism. The sources are located on
the segment fx2 D 0; �0:25 < x1 < 0:25g and are given by the Gaussian function
f .x1/ D � exp.�.10x1/2/.

The mesh used is of 20 points by wavelength in the free propagation zone and
15 points by wavelength in the material for the FEM-BEM formulations. The BE
formulation is meshed using 20 points by wavelength for both the free propagation
zone and the material. All the iterative methods are solved using the GMRES
algorithm (cf., e.g. [15]). The first test concerns the case of a moderately elongated
impenetrable domain corresponding to L D 4 and the second, much more elongated,
is obtained for L D 50. Table 1 summarizes the numerical for each method in
terms of accuracy and CPU time. For the iterative methods, we also compute the
iteration number, noted “Iter” in Table 1, obtained by reducing the residual by a
factor 10�6. To measure the accuracy, we use the quantity E D max js.�/� sBE.�/j
where sBE.�/ is the far field computed by the BE approach.

The results reported in Table 1 confirm the robustness of the LRC formulation,
it keeps the accuracy of the FEBE and P-DDM approaches. The CPU time used by
the different methods also clearly shows the advantage of decoupling the solution
of the sparse and the dense parts in the problem. Even if usual DDMs exhibit the
same efficiency in terms of number of iterations and accuracy, their related iterative
procedures may break down if the corresponding boundary-value problems set in
the interior domain ˝1 present a resonance at the considered frequency, contrary
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to the LRC approach, see [6] for more explanations and numerical results. Another
remarkable feature is that all the iterative procedures require the same number of
iterations to converge for small to very large impenetrable domains.

Acknowledgement Y. Boubendir gratefully acknowledges support from NSF through grant No.
DMS-1319720.
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Simulating Flows Passing a Wind Turbine
with a Fully Implicit Domain Decomposition
Method

Rongliang Chen, Zhengzheng Yan, Yubo Zhao, and Xiao-Chuan Cai

1 Introduction

Wind power is an increasingly popular renewable energy. In the design process of
the wind turbine blade, the accurate aerodynamic simulation is important. In the
past, most of the wind turbine simulations were carried out with some low fidelity
methods, such as the blade element momentum method [9]. Recently, with the rapid
development of the supercomputers, high fidelity simulations based on 3D unsteady
Navier-Stokes (N-S) equations become more popular. For example, Sorensen et
al. studied the 3D wind turbine rotor using the Reynolds-Averaged Navier-Stokes
(RANS) framework where a finite volume method and a semi-implicit method are
used for the spatial and temporal discretization, respectively [17]. Bazilevs et al.
investigated the aerodynamic of the NREL 5 MW offshore baseline wind turbine
rotor using large eddy simulation built with a deforming-spatial-domain/stabilized
space-time formulation [3, 11] and later extended the simulation to the full wind
turbine including both the rotor and the tower [10]. Li et al. conducted dynamic
overset CFD simulations for the NREL phase VI wind turbine using RANS and
detached eddy models [15].

In this paper, we study a scalable parallel method based on the 3D unsteady
incompressible N-S equations and its application to a NREL S-series wind tur-
bine with realistic geometry and Reynolds number. In this simulation, the main
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challenges are: (1) the moving of the computation domain because of the rotation
of the rotor; (2) the complex geometry; (3) the large computational meshes; and
(4) the high nonlinearity resulting from high Reynolds number. To answer these
challenges, an Arbitrary-Lagrange-Eulerian (ALE) method is used to handle the
mesh movement, an unstructured tetrahedron mesh with a stabilized finite element
method and a fully implicit backward difference scheme are employed to discretize
the N-S equations [6, 18] and a parallel Newton-Krylov-Schwarz (NKS) method
[5, 12] is used to solve the large sparse nonlinear system at each time step. In NKS,
an inexact Newton method with analytic Jacobian is employed as the nonlinear
solver, a Krylov subspace method is used as the linear Jacobian system solver in
the Newton steps, and an overlapping domain decomposition method is used as a
preconditioner to accelerate the convergence of the linear solver [4, 14]. For the
rotor-only simulation, one can either fix the computation domain and apply a given
velocity on the surface of the rotor, or let the domain move with the rotating rotor
and apply a no-slip boundary condition on the rotor surface. We choose the latter
one in this paper. We mainly focus on the solution method, including the robustness
and parallel scalability.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the governing equations and their discretization. In Sect. 3, the Newton-Krylov-
Schwarz algorithm is discussed, and some numerical results are presented in Sect. 4.
In Sect. 5, we draw some conclusions.

2 Governing Equations and a Fully Implicit Discretization

We model the flow around the wind turbine using the 3D unsteady incompressible
N-S equations. Since the computational domain moves during the simulation, a
moving mesh method is introduced to handle the change of the flow domain. In
this paper, we use the ALE method. Let Y be the ALE coordinate, X the Eulerian
coordinate. Then the N-S equations read as [7]:

�

�
@u
@t

ˇ̌
ˇ̌
Y
C .u� !/ � ru

�
Cr � � D f in ˝ t;

r � u D 0 in ˝ t;

u D g on 
inlet

� � n D 0 on 
outlet;

u D 0 on 
wall;

u D u0 in ˝ t at t D 0;

(1)

where ˝ t is the computational domain at time t and ! D @x
@t is the velocity of

the rotating flow domain which is equal to the rotor speed since we let the whole
computation domain rotate with the rotor. � D �pIC�.ruC.ru/T / is the Cauchy
stress tensor. u and p are the velocity and pressure of the flow. � and� are the density
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and viscosity of the fluid, respectively. f refers to the source term and g is a given
function defined at the inlet boundary. u0 is a given initial condition which is zero
in our test cases. 
inlet, 
outlet and 
wall refer to the inlet, outlet and wall boundaries,
respectively.

A P1 � P1 finite element method is used to discretize (1) on an unstructured
tetrahedral mesh T h D fKg. Since this finite element method is not stable for the
N-S equations because it does not satisfy the Ladyzenskaja-Babuska-Brezzi (LBB)
condition, additional stabilization terms are needed in the formulation as described
in [2]. We denote the finite element spaces of the trial and weighting functions for
the velocity and pressure as Uh, U0;h, and Ph, respectively. Then the semi-discrete
stabilized finite element formulation of (1) is given as follows: Find uh 2 Uh and
ph 2 Ph, such that for any ˚h 2 U0;h and  h 2 Ph,

Bh.uh; phI˚h;  h/� Fh.˚h;  h/ D 0; (2)

where uh, ph are the nodal values of the velocity and pressure functions, 'h and
each of the three components of ˚h are the basis functions which are piecewise
continuous linear functions, and

Bh.uh; phI˚h;  h/ D �
Z

˝ t

@uh

@t

ˇ̌
ˇ̌
Y
� ˚hd˝ t C �

Z

˝ t
ruh W r˚hd˝ t

C�
Z

˝ t
..uh � !/ � r/uh � ˚hd˝ t �

Z

˝ t
phr � ˚hd˝ t

C
Z

˝ t
.r � uh/'hd˝ t C

X

K2T

�r � uh; �cr � ˚h
�

K

C
X

K2T

�
@uh

@t

ˇ̌
ˇ̌
Y
C ..uh � !/ � r/uh Crph; �m.uh � r˚h Cr'h/

�

K

;

Fh.˚h;  h/ D
Z

˝ t
f � ˚hd˝ t C

X

K2T

�
f; �m.uh � r˚h Cr'h/

�
K
:

Here the parameters �c and �m are defined as in [2].
For the temporal discretization, we use an implicit backward finite difference

formula with a fixed time step size t. In the implicit method, one needs to solve a
nonlinear system at each time step (the nth time step):

Fn.Un/ D 0; (3)

to obtain the solution of the nth time step Un, which consists of the nodal values of
the velocity and pressure.
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3 Monolithic Newton-Krylov-Schwarz Algorithm

In most N-S solvers, such as the projection methods, the operator is split into the
velocity component and pressure component, and the algorithm takes the form of a
nonlinear Gauss-Seidel iteration with two large blocks. In the monolithic approach
that we consider in this paper, the velocity and pressure variables associated with
a grid point stay together throughout the computation. In this approach, the two
critically important ingredients, namely the monolithic Schwarz preconditioner,
and the robustness and scalability are realized with the point-block ILU based
subdomain solver.

The nonlinear system (3) is solved by a Newton-Krylov-Schwarz method which
reads as

(a) Let U0 be the given initial condition and set n D 0
(b) For n D 1; 2; � � � ; do

• Using an initial guess Un
0 D Un�1 and set k D 0

• Move the computational domain (˝n�1 ! ˝n) and the mesh T n
h (the

coordinate of each mesh point at the current time step xn is obtained by
rotating the initial mesh x0):

xn D
2

4
cos.!nt/ �sin.!nt/ 0
sin.!nt/ cos.!nt/ 0

0 0 1

3

5 x0

• For k D 1; 2; � � � ; until converges, do

– Find dn
k such that

k rFn.Un
k�1/.Mn

k/
�1.Mn

kdn
k/C Fn.Un

k�1/ k� 	 k Fn.Un
k�1/ k (4)

– Set Un
k D Un

k�1 C �n
k dn

k

• Set Un D Un
k

Here .Mn
k/
�1 is an additive Schwarz preconditioner to be defined shortly, ! is the

angular speed of the rotor, and 	 is the relative tolerance for the linear solver [8].
Note that, in the wind turbine simulation, we simply let the whole computational
domain rotate at the same angular speed as the rotor, so the current mesh can be
obtained by rotating the initial mesh and the connectivity of the mesh does not
change. For simplicity, we ignore the scripts n and k for the rest of the paper.

In NKS, the most difficult and time-consuming step is the solution of the
large, sparse, and nonsymmetric Jacobian system (4) by a preconditioned GMRES
method. In the Jacobian solver, the most important component is the preconditioner,
without which GMRES doesn’t converge or converges very slowly, and a good
preconditioner accelerates the convergence significantly. In this paper, we use an
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overlapping restricted additive Schwarz preconditioner introduced in [4]:

MRAS D
npX

lD1
.R0l /

TJ�1l Rıl ; (5)

where Jl is the local Jacobian matrix defined on the overlapping subdomain, np

is the number of subdomains, Rıl and R0l are the restriction operators from the
whole domain to the overlapping and non-overlapping subdomain, respectively.
In practice, we only need the application of J�1l to a given vector, which can be
obtained by solving a subdomain linear system. Since J�1l is used as a preconditioner
here, the subdomain linear system can be solved exactly or approximately by using
LU factorization or incomplete LU factorization (ILU) in the point-block format
[16].

4 Numerical Experiments

In this section, we report some numerical experiments using the proposed algorithm.
Our solver is implemented on top of the Portable Extensible Toolkit for Scientific
computation (PETSc) [1]. The computations are carried out on the Dawning
Nebulae supercomputer at the China National Supercomputer Center at Shenzhen.
The geometry of the wind turbine is provided by GrabCAD1 (we scale the size
to that of a 5 MW wind turbine) and meshed by ANSYS; see Fig. 1 for details.
The mesh partitions for the additive Schwarz preconditioner are obtained with

Fig. 1 A three-blade wind turbine with NREL S807 root region airfoil and NREL S806 tip region
airfoil from GrabCAD (left), the computational domain (mid), and the computational mesh (right)

1www.grabcad.com.

www.grabcad.com
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Fig. 2 The velocity distribution (left) and the isosurface (right) of the simulation

Table 1 Parallel performance of the algorithm

np ILU(3) ILU(2)
Newton GMRES Time(s) Newton GMRES Time(s)

512 3.0 51.72 127.3 3.0 64.02 75.0

1024 3.0 52.77 77.7 3.0 66.40 45.8

1536 3.1 53.94 67.5 3.0 67.60 35.6

2048 3.0 57.42 53.0 3.0 67.75 29.3

Here the degrees of freedom (DOF) is about 8:4 � 106 and the overlapping size is 4. The “Time”
refers to the average compute time in seconds at each time step

ParMETIS [13]. The relative stopping conditions for the nonlinear and linear solvers
are 10�12 and 10�6, respectively.

In the experiments, we set the wind speed to be uniform at 15 m/s and the rotor
speed to be 22 rpm (revolutions per minute). For the air flow, we set the kinematic
viscosity � D 1:831 � 10�5 kg=.ms/ and the density � D 1:185 kg=m3. Figure 2
shows the simulation results: the velocity distribution and the isosurface of the flow
at t D 10:0 s, which are obtained on a mesh with about 1:1 � 107 elements and a
fixed time step size t D 0:01 s.

The parallel performance results are given in Table 1 for two different subdomain
solvers ILU(2) and ILU(3) (here 2 and 3 refer to the fill-in levels of the point-block
ILU factorization). With the increase of the number of processors (np) from 512
to 2048, the number of Newton iterations (Newton) changes a little, the number of
GMRES iterations (GMRES) increases reasonably, and the compute time (Time)
decreases. These results show that the algorithm scales well when np is around
1024 or less and the efficiency reduces with the increase of np, which is reasonable
because we use a one-level method. The result also suggests that for large number of
processors, in order to obtain a good scalability, multilevel methods are necessary.
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5 Concluding Remarks

A domain decomposition based fully implicit parallel algorithm for the numerical
simulation of the flow around a wind turbine rotor was introduced and studied in
this paper. The algorithm begins with a fully implicit discretization of the unsteady
incompressible N-S equations on a moving unstructured mesh with a stabilized
finite element method, then an inexact Newton method is employed to solve the
large nonlinear system at each time step, and a preconditioned GMRES method
is employed to solve the linear Jacobian system in each Newton step with a one-
level restricted additive Schwarz preconditioner. We tested the algorithm for a flow
around a 5 MW wind turbine with more than eight million degrees of freedom on
a supercomputer with up to 2048 processors. The algorithm scales well when the
number of processors is around 1024 or less. We plan to develop a multilevel version
of the algorithm in order to obtain better scalability results when the number of
processors is larger.
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Overlapping Domain Decomposition Applied
to the Navier–Stokes Equations

Oana Ciobanu, Laurence Halpern, Xavier Juvigny, and Juliette Ryan

1 Introduction

This article focuses on the research field of laminar flow of an ideal gas, on the
resolution of aerodynamic multi-scale problems that are costly and difficult to solve
in their original form. In order to solve these large data systems several techniques
of parallel computing have been developed but some convergence problems may
occur for large number of sub-domains.

Robust and fast methods are now available, which combine non-linear and linear
solvers requiring less memory capacity. In the context of long term simulations,
global implicit approaches have proven their superiority as they are able to simulate
a quasi-steady-state behaviour without being restricted to short time steps to ensure
convergence. Implementing these approaches on GPUs can certainly improve the
efficiency versus a simple CPU implementation, as will be shown below, but
by combining this implementation with domain decomposition another scale of
efficiency could be achieved. In this paper, we propose an improved parallel time-
space method for steady/unsteady problems modelled by Euler and Navier-Stokes
equations for a direct numerical simulation.

Domain decomposition methods split large problems into smaller sub-problems
that can be solved in parallel. Usually, only space domain decomposition method
is used to provide high-performing algorithms in many fields of numerical applica-
tions. To achieve full performance on large clusters with up to 100,000 nodes (such
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as recently the IBM Sequoia, or GPUs) the time dimension has to be taken into
account. An essential gain to be obtained from time-space domain decomposition
is the ability to apply different time-space discretisation on sub-domains thus
improving efficiency and convergence of implicit schemes.

In practice, we are often working with large computational domains where only
a small part is highly interactive and a wide region of the domain is close to
equilibrium state. What is usually done is that the sub-domains are balanced in
space so that each processor finishes the simulation at the same moment and the
computation is done, on each sub-domain with the same time step, the global one.
The time step depends on the CFL condition, the value of the flow velocity and the
space step. This means that the part of the simulation domain which is not dominated
by strong non-linearities is solved with a much higher precision than is needed.
Some sub-domains are over-solved. The sub-domain close to the equilibrium state
converges in fewer iterations and it is less costly, but it has to wait for the high
reactive sub-domain to end in order to continue the simulation. To avoid this loss of
efficiency and optimize the computational cost, the time step should be computed
locally and the distribution of flow in sub-domains should take into consideration
several factors: closeness to equilibrium region, strong non-linearities region and
time step influence.

Our work focuses on the improvement of the Schwarz waveform relaxation
(SWR) Method introduced under this name by Gander [4] at the 10th Domain
Decomposition Conference to solve parabolic equations. It was previously pre-
sented by Gander and Stuart [5] as a multi-splitting formulation on overlapping sub-
domains [9] combined with a waveform relaxation algorithm [12] in space-time for
the heat equation. The purpose is to solve the space-time partial differential equation
in each sub-domain in parallel, and to transmit domain boundary information to the
neighbours at the end of the time interval. Originally applied to linear PDEs, the
SWR algorithm was extended and optimised to the non-linear reactive transport
equations by Haeberlein [6] and Haeberlein and Halpern [7]. With the SWR method
different time-space discretisation can be applied on sub-domains thus improving
efficiency and convergence of the schemes.

2 Navier–Stokes Solvers

The Navier–Stokes equations are given by three conservation laws.

• Mass conservation:
@�

@t
Cr:.�u/ D 0

• Momentum conservation:
@�u
@t
Cr:.u˝ .�u//Cr:pI � r:� D 0

• Energy conservation:
@�E

@t
Cr:.u.�EC p//�r:.�u � q/ D 0
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where �;u;E; �; q are, respectively density, velocity, energy, viscous tensor and
heat flux. Three algorithms are presented. They are all based on the same time
discretisation (second order implicit Backward Differentiation Formula), the non-
linear problem is solved with the Newton method and linear problems are solved
directly (.L C D/D�1.D C U/ factorisation). The first method is a classical non-
linear domain decomposition method [10, 11] which consists in semi-discretising
uniformly in time the system, in applying a global Newton linearisation, then
dividing the linear system in several local overlapping subsystems that we can solve
in parallel. This algorithm is referred to as the Newton-Schwarz algorithm.

Newton-Schwarz Algorithm: � Semi-discretisation in time
� Linearisation (Newton)
� Space Schwarz DDM

–Solve the local linear system

In some cases, one Schwarz iteration is sufficient to achieve convergence of
Newton to the solution of the problem. Space decomposition and linearisation are
independent. The next idea is to first do the decomposition and then solve in each
sub-domain the non-linear system. This algorithm is the same as the one introduced
by Cai and Keyes [1], but using a different linear solver.

Schwarz-Newton Algorithm: � Semi-discretisation in time
� Space Schwarz DDM

–Solve the local non-linear system

To achieve full speed-up performance, a SWR method is used, as it allows local
space and time stepping. The whole time interval of study is split into sub-intervals
or time windows, then space is decomposed into sub-domains. For each time
window the space-time Navier-Stokes equations are solved in each sub-domain in
parallel. Boundary conditions are transmitted at the end of the time window.

SWR Algorithm: � Schwarz DDM over time windows
� For each sub-domain:

–Semi-discretisation in time
–Solve the local non-linear system

SWR uses time windowing techniques that doesn’t degrade the solution and
exchanges less information between processors. After each iteration we proceed
to the improvement of the interface condition in each sub-domain. This can lead
to a completely different time step to satisfy either a stability criteria (for explicit
schemes) or an accuracy bound, both based on the CFL number, thus the necessity
to locally recompute the time step which is an improvement of the classical SWR
algorithm. In this paper we propose, within the SWR iterative process, an adaptive
time stepping technique to improve the scheme consistency, thus different time steps
in each sub-domain and inside each time window. In the following we shall test the
scalability of these three algorithms.
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3 Numerical Results

Space discretisation is achieved with finite volumes on cartesian non-conforming
grids. The Euler fluxes are computed using the MUSCL-Hancock (Monotone
Upstream centred Scheme for Conservative Laws) second order scheme combined
with the AUSMC-UP (Advection Upstream Splitting Method) scheme. The advan-
tage of the AUSMC-UP developed by Liou [13] is that it was conceived to be
uniformly valid for all speed regimes. The viscous fluxes are computed with a
second order Finite Difference scheme. First, we solve the global domain for a
simple configuration on CPU and we compare the results with those found using
exactly the same second order algorithm, but on GPUs. Then, performances of the
different parallel computing strategies (using OpenMP, MPI) are compared on the
inviscid and viscous motion of a 2D isolated vortex in an uniform free-stream based
on [15] and on the case of the mixing layer. The sub-domains overlap region has the
stencil size. We use a second order projection method to exchange data in time and
in space. All implicit algorithms are second order in time and space.

3.1 GPU Versus CPU for Euler Equations

First, these algorithms can be accelerated using GPUs. GPUs are used to solve a
global problem or a local one using a massive parallel architecture. We start by
solving the global problem on a GPU (NVidia Corporation GF110 [Geforce GTX
580] Compute Capability 2.0) with CUDA [3] launched from a CPU and compare
its computational cost with one running on a CPU (7.8 GB, 2 Cores at 3.33 GHz)
with OpenMP. The computational domain is a rectangular one with an imposed
inflow velocity at each time step. On Table 1 is shown the ratio of the computation
on a CPU with OpenMP with the computation on CPU-GPU. As can be seen there
is a definite gain to be obtained on the CPU-GPU configuration with one domain,
and the greater the number of points the better is the ratio. GPU code is portable
on any NVidia GPUs using CUDA programming model, though, it should be noted
that performances on GPUs vary a great deal depending on the GPU specifications.

Table 1 CPU-OPENMP time cost/CPU-GPU time cost

Grid size Time step 2D fluxes Update step Boundary update Total

130 � 130 43.08 1.63 8.62 0.31 3.72

260 � 260 109.26 1.71 15.90 1.58 4.65

525 � 525 164.83 2.81 40.37 1.38 6.88

1050 � 1050 392.72 2.58 321.21 2.39 7.80
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3.2 2D Isentropic Vortex for Euler Equations

We present results on a convective vortex with .u1; v1/ D .1; 1/ for a perfect
gas: � D 1:4, p

��
D 1. The computational domain is Œ�5:; 5:� � Œ�5:; 5:�. The initial

condition equals the mean flow field plus an isentropic vortex with no perturbation in
entropy. We use periodic boundary conditions and Dirichlet transmission conditions.
This test is interesting as the isentropic vortex is an exact solution of the Euler
equations. At the end of each cycle that lasts 10 s the vortex equals the initial
solution.

� D .T1 C ıT/ 1
��1 D .1 � .��1/ˇ2

8��
e1�.x2Cy2//

1
��1

�u D �.u1 C ıu/ D �.1 � ˇ

2�
e
1�.x2Cy2/

2 /

�v D �.v1 C ıv/ D �.1C ˇ

2�
e
1�.x2Cy2/

2 /

p D ��
e D p

��1 C 1
2
�.u2 C v2/

3.2.1 Accuracy Study

Let us begin with an accuracy study of the Euler equations computing L2 and L1
slopes of errors in the case of non adaptive time steps. First, let us fix the number of
sub-domains to 2 � 2 and a common time step. We increase the global number of
space cells from 40� 40 cells to 60� 60 cells and 80� 80 cells (the time step varies
in the same ratio as the space step) We consider that we have converged when we
reach an error less than a tolerance equal to 1:e � 6 for both Newton and Schwarz
stopping criteria.

As can be seen in Fig. 1, all presented methods are second order in time and close
to second order in space, depending on the Van Albada limiter chosen in MUSCL
scheme. Velocity, pressure and energy errors behave similarly for all presented
methods. The method denoted as Newton in Fig. 1 is the Newton-Schwarz method
using only one Schwarz iteration, it only has order one accuracy showing that
Schwarz is a good preconditioner for our scheme.

3.2.2 Computational Cost

To evaluate the cost (machine independent), a good indicator is the number of local
linear solves, given by the product between the number of Newton iterations and the
number of Schwarz iterations. This cost is a linear function of the number of cells.
On Table 2 are shown the average number of local linear solves per time step for
the Newton-Schwarz (NS) method, the Schwarz-Newton (SN) method and for the
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Fig. 1 L2 error over density
field

SWR-Newton (SWR) method for an increasing number of sub-domains with a fixed
number of size cells in each sub-domain (weak scalability). The sub-domain size is
fixed to 20�20 points and the CFL number has the value 0.5. For the SWR-Newton
scheme, we choose ıt the same time step on each sub-domain and T D 5ıt
the time window. The Newton stopping tolerance is set to 1e � 6. The Schwarz
convergence tolerance is varying as shown on Table 2. This table shows the good
weak scalability of all considered methods. Moreover, it proves that a tolerance of
1e�2 in the Schwarz stopping criteria decreases the number of linear solves without
affecting the precision of the non-linear system. Thus, we can conclude that there
is no need to achieve convergence in Schwarz. The SWR method is competitive
with the Newton-Schwarz, but two times less efficient than the Schwarz-Newton
scheme. On Table 2, in order to compute one time window the four processors
communicate in average over all time windows 18.6 times (average number of
Schwarz iterations per window) when a SWR-Newton scheme is chosen. In order to
reach the same time window the Schwarz-Newton scheme communicates in average
35.45 times (Schwarz iterations � window size) and the Newton-Schwarz scheme
communicates in average 250 times (Newton iterations � Schwarz iterations �
window size). The SWR method is thus ideal for clusters with high latencies. Note:
It should be mentioned that higher order coupling conditions like unsteady Robin
type conditions can improve the efficiency of the algorithm and should positively
influence the number of Schwarz iterates (cf. [7]).

The adaptive time step SWR method converges to the solution in exactly the
same way as the fixed time step SWR method. The gain of the SWR method comes
from the improved stability of the scheme since the time step is recomputed at each
iteration thus less communication between the sub-domains as it appears that when
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the coupling conditions are improved, larger times steps are usually needed. This
also leads to less CPU memory when fewer coupling conditions need to be stored.

3.3 Sound Generation in a 2D Low-Reynolds Mixing Layer

The second case presented here if the case of a 2D low-Reynolds mixing layer
where a high precision scheme is required. It is studied especially focusing on
the acoustic waves emitted by the vortex pairings in a perturbed mixing layer.
The flow configuration is the same as the one proposed by Colonius et al. [2]
consisting in a slightly perturbed hyperbolic tangential shape velocity profile, u D
Nu C 0:125 tanh.2y/, with Nu D .u1 C u�1/=2 and u1 D 0:5, u�1 D 0:25,
and �1 D ��1 D 1 and p1 D p�1 D 1=� , respectively, with � D 1:4.
We fix the Reynolds number at 250 and add a sponge layer as shown in Fig. 2 to
absorb the flow. This is a particularly sensitive case in acoustics and phenomena
are quite different within each subdomain. The results presented on Table 3 are for
simulations between t D 200 s and t D 250 s, interval inside which all sub-domains
are interacting. The initial solution was computed with an explicit second order
Runge-Kutta method. We have fixed the stopping criterion in the Newton algorithm
to a tolerance of 1:e� 4 and the stopping criterion of the Schwarz decomposition to
a tolerance of 1:e � 2 (cf. Sect. 3.2) which gives a good solution. The time window
inside the SWR methods equal 5 times the smallest global time step and the global
domain was divided in 22 sub-domains : 18 sub-domains of equal size 107�21 cells
in the middle region and 4 sponge sub-domains with 107 � 41 in the sponge area.
The number of linear solves is no longer a good measure since sub-domains with
different size have been computed and we adapt the time step after each iteration
for SWR and for all time steps in SWRA the adaptive SWR. On Table 3 we vary the

Fig. 2 Mixing layer acoustic pressure field. Initial condition (left) and computational domain with
sponge layer (right)
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Table 3 Global computational costs for T D 5ıt, Schwarz tol. = 1:e � 2 and Newton tol. =
1:e� 4
SchemenCFL 0.5 1 2 5 10

NS 333.56 167.65 116.45 24.20 18.79

SN 129.97 76.07 89.41 26.76 10.45

SWR 189.13 189.65 121.77 21.90 5.87

SWRA 189.82 191.08 121.54 21.86 5.12

Fig. 3 Mixing layer acoustic pressure field (top) and vorticity (bottom)

time window length and show only the total computational time cost for all three
methods. For low CFL (less than 2) SWR is less efficient than SN. For higher CFL,
SWR becomes the most efficient, the SWR with adaptive step becoming the leader
in terms of performance.

Results obtained with the time adaptive SWR scheme (see Fig. 3) compare well
with those obtained with an explicit third order Runge Kutta Discontinuous Galerkin
solver developed by Halpern et al. [8].

4 Conclusion and Remarks

A variation on the non-linear SWR algorithm has been developed using an
adaptive time stepping approach to simulate 2D multi-scale Euler and Navier-Stokes
problems. The above results show that the method has the ability to treat large
data systems without loss of parallel efficiency. This SWR algorithm has similar
computational efficiency as the original SWR and adds a new flexibility to the SWR
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method. There are at least three ways to improve the SWR technique. One is to
optimize the time space interface condition, another is to implement the pipeline
SWR iterations as presented by Ong et al. [14] and of course the use of GPUs that
can considerably improve the efficiency.

References

1. X.-C. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM 24
(1),183–200 (2002)

2. T. Colonius, S.K. Lele, P. Moin, Sound generation in a mixing layer. J. Fluid Mech. 330,375–
409 (1997)

3. CUDA (2015), http://www.nvidia.com/object/cuda_home_new.html
4. M.J. Gander, Overlapping Schwarz waveform relaxation for parabolic problems, in DD10

Proceedings, vol. 218 (1998), pp. 425–431
5. M.J. Gander, A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat

equations. SIAM 19(6), 2014–2031 (1998)
6. F. Haeberlein, Time-space domain decomposition methods for reactive transport. Ph.D. thesis,

University Paris 13, 2011
7. F. Haeberlein, L. Halpern, Optimized Schwarz waveform relaxation for nonlinear systems of

parabolic type, in DD21 Proceedings (2012)
8. L. Halpern, J. Ryan, M. Borrel, Domain decomposition vs. overset Chimera grid approaches

for coupling CFD and CAA, in ICCFD7 (2012)
9. R. Jeltsch, B. Pohl, Waveform relaxation with overlapping splittings. SIAM 16(1), 40–49

(1995)
10. D.E. Keyes, Domain decomposition in the mainstream of computational science, in DD14

Proceedings (2002)
11. D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and

applications. J. Comput. Phys. 193(2), 357–397 (2004)
12. E. Lelarasmee, A.E. Ruehli, A.L. Sangiovanni-Vincentelli, The waveform relaxation method

for time-domain analysis of large scale integrated circuits. IEEE 1(3), 131–145 (1982)
13. M.-S. Liou, A sequel to AUSM, part II: AUSMC-up for all speeds. J. Comput. Phys. 214(1),

137–170 (2006)
14. B. Ong, S. High, F. Kwok, Pipeline Schwarz waveform relaxation, in 22nd DDM Conference

(2013, submitted)
15. H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods

using characteristic-based filters. J. Comput. Phys. 150(1), 199–238 (1999)

http://www.nvidia.com/object/cuda_home_new.html


Schwarz Methods for Second Order Maxwell
Equations in 3D with Coefficient Jumps

Victorita Dolean, Martin J. Gander, and Erwin Veneros

1 Introduction

Classical Schwarz methods need in general overlap to converge, but in the case of
hyperbolic problems, they can also be convergent without overlap, see [5]. For the
first order formulation of Maxwell equations, we have proved however in [11] that
the classical Schwarz method without overlap does not converge in most cases in
the presence of coefficient jumps aligned with interfaces.

Optimized Schwarz methods have been developed for Maxwell equations in first
order form without conductivity in [8], and with conductivity in [9, 13]. These
methods use modified transmission conditions, and often converge much faster than
classical Schwarz methods. For DG discretizations of Maxwell equations, optimized
Schwarz methods can be found in [6, 7, 10]. Optimized Schwarz methods were also
developed for the second order formulation of Maxwell equations, see [1, 17, 18] for
scattering problems with applications [13], see also the earlier work by [2–4, 15, 16].

While usually coefficient jumps hamper the convergence of domain decomposi-
tion methods, this is very different for optimized Schwarz methods. For diffusive
problems, it was shown in [12] that jumps in the coefficients can actually lead to
faster iterations, when they are taken into account correctly in the transmission
conditions: optimized Schwarz methods benefit from jumps in the coefficients at
interfaces. We had shown in [11] that this also holds for the special case of transverse
magnetic modes (TMz) in the two dimensional first order Maxwell equations. We
show in this short paper that these results for the TMz modes [and the corresponding
ones for the transverse electric modes (TEz)] can be used to formulate optimized
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Schwarz methods for the 3D second order Maxwell equations which then in some
cases converge faster, the bigger the coefficient jumps are.

2 Classical Schwarz for Second Order Maxwell Equations

The time dependent Maxwell equations in their second order formulation are

�@2t E Cr � .��1r � E / D @tJ ; (1)

where E D .E1;E2;E3/T is the electric field, � is the electric permittivity, � is the
magnetic permeability, and J is the applied current density. We assume that the
applied current density is divergence free, divJ D 0. There is a similar system
also for the magnetic field H D .H1;H2;H3/

T ,

�@2t H Cr � .��1r �H / D r � ��1J ; (2)

but we will only consider the Eq. (1) for the electric field in this short paper.
The time dependent Maxwell equations (1) form a system of hyperbolic partial

differential equations [8]. Imposing incoming characteristics is equivalent to impos-
ing the impedance condition

Bnj.E
m;n/ D 1

�m
.r � E m;n � nj/ � nj C i!

Zm
.E m;n � nj/ D s; (3)

where Zm D
q

�m
�m

. We are interested here in the time-harmonic Maxwell equations,

which are obtained by supposing that E .x; t/ D ei!tE.x/ for a fixed frequency !.
After some simplifications, we obtain from Eq. (1) the time harmonic second order
Maxwell equation

�!2E � r � .��1r � E/ D �i!J: (4)

We are interested here in the heterogeneous case, where the domain ˝ of interest
consists of two non-overlapping subdomains ˝1 and ˝2 with interface 
 , and
piecewise constant parameters �j and �j in ˝j, j D 1; 2. We want to solve such
problems using the Schwarz algorithm

�
�1!

2E1;n � r � .��11 r � E1;n/ D �i!J; in ˝1;

Tn1 .E
1;n/ D Tn1 .E

2;n�1/ on 
;�
�2!

2E2;n � r � .��12 r � E2;n/ D �i!J; in ˝2;

Tn2 .E
2;n/ D Tn2 .E

1;n�1/ on 
;

(5)
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with the transmission condition

Tnj .E
m;n/ D .Id � Aj/.

1

�m
nj �r �Em;n/� i!j

�j
.IdC Aj/.nj � .Em;n � nj//: (6)

with !j D !
p
�j�j; j D 1; 2. The classical Schwarz algorithm is obtained for

the choice Aj D 0, for j D 1; 2. We see that the classical Schwarz algorithm is
exchanging characteristic information at the interfaces between subdomains, i.e.
Tnj.E

m;n/ DBnj.E
m;n/ where B is defined in (3).

In [11], we studied the classical Schwarz algorithm for the first order Maxwell
equations on the domain ˝ D R

3, with subdomains ˝1 D .�1; 0� � R
2 and

˝2 D Œ0;1/ � R
2 and interface 
 D f0g � R

2 and the Silver-Müller radiation
condition. We showed that the convergence factor of the classical Schwarz algorithm
in 3D is �cla D maxf�Ecla; �Mclag, where �Ecla and �Mcla are the convergence factors
of the TEz and TMz cases in 2D. We then proved that if there are coefficient jumps
along the interface 
 , i.e. �1 ¤ �2 and/or �1 ¤ �2, the classical Schwarz algorithm
is divergent in 3D if �1�2 ¤ �2�1. If �1�2 D �2�1, we obtained �Ecla D �Mcla,
and �cla < 1 for the propagative modes, jkj < !j, j D 1; 2, but �cla.jkj/ D 1 for
the evanescent modes, jkj > !j, j D 1; 2, so the algorithm is stagnating for all
evanescent modes. It is thus never convergent in 3D. We then investigated in [11]
the 2D case of TMz modes in more detail, and found that the classical Schwarz
algorithm in the presence of coefficient jumps is convergent in certain situations,
depending on the jumps in � and �.

These results also hold for the second order Maxwell equations when the
Schwarz algorithm (5), (6) with classical transmission conditions is applied, and
for the convergent cases from [11] in 2D, we have the following new contraction
estimate:

Theorem 1 (Classical Schwarz in 2D) If the classical Schwarz algorithm (5,6) in
2D converges, then we have the asymptotic convergence factor estimate

�Mcla.k; !1; !2;Z/ D �Ecla.k; !1; !2;Z/ D 1 �O.h2/

with Z D
q

�1�2
�2�1

and h the uniform mesh size.

Proof As in [11], we can write the convergence factors for the TMz case as

�Mcla.k; !1; !2;Z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�q
k2 � !21 � i!1Z

��q
k2 � !22 � i!2=Z

�

�q
k2 � !21 C i!1

��q
k2 � !22 C i!2

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1
2

; (7)
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and for evanescent modes (k > !1; !2), Eq. (7) is equal to

�Mcla.k; !1; !2;Z/ D 1C .Z2 � 1/!21
Z2k2

�
Z2 � Y2 � .Z

2 � 1/!22
k2

�
; (8)

with Y D !2
!1

. From Eq. (8) we see that limk!1 �Mcla D 1. If the classical Schwarz
algorithm is convergent then �Mcla < 1; 8k, the previous remark permits us to
conclude that the maximum over all the frequencies must be at k D kmax D cmax

h ,
the largest frequency supported by the numerical grid, where h is the mesh size and
cmax is a constant depending on the geometry. To conclude the proof, we just insert
k D cmax=h into (8) and the result follows by expansion. The proof for the TEz case
is similar.

3 Optimized Schwarz for Second Order Maxwell Equations

Since the classical Schwarz method is not an effective solver for Maxwell equations
in the presence of coefficient jumps, we introduce now more effective transmission
conditions which take the coefficient jumps into account. We consider algorithm (5),
(6) with the particular choice

Aj WD �jMSTM C �jESTE; STM D r�r� �; STE D r� � r��;

where � is the tangential direction to the interface. We note that STM � STE D � I,
where � is the Laplace-Beltrami operator in the tangential plane (for example ,
� D @yy C @zz when n D .1; 0; 0/). The constants �1E, �2E and �1M, �2M can be
chosen in order to optimize the algorithm.

Performing a Fourier transform in the yz plane, we find after a lengthy calculation
the iteration matrix of the optimized Schwarz algorithm to be

IT D
�

CE 0

0 CM

�
(9)

with the coefficients

CED ..�1 � i!1=Z/ � �2Mjkj2.�1 C i!1=Z//..�2 � i!2Z/ � �1Mjkj2.�2 C i!2Z//

.2!1 � i.�1 � i!1/.1 � �1Mjkj2//.2!2 � i.�2 � i!2/.1 � �2Mjkj2// ;

CM D ..�1 � i!1Z/ � �2Ejkj2.�1 C i!1Z//..�2 � i!2=Z/� �1Ejkj2.�2 C i!2=Z//

..1 � �1Ejkj2/.�1 � i!1/C 2i!1/..1� �2Ejkj2/.�2 � i!2/C 2i!2/
;

(10)
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with �j D
q
jkj2 � !2j ; j D 1; 2. If we choose for the parameters the values

�1M D �2 � i!2Z

jkj2.�2 C i!2Z/
; �1E D �2 � i!2=Z

jkj2.�2 C i!2=Z/
;

�2E D �1 � i!1Z

jkj2.�1 C i!1Z/
; �2M D �1 � i!1=Z

jkj2.�1 C i!1=Z/
;

(11)

then the iteration matrix IT in (9) vanishes and we have convergence in two itera-
tions. The corresponding transmission conditions are called transparent conditions,
and are optimal, since they lead to a direct solver. But the operators corresponding
to the symbols in (11) are non local and thus costly to use. We therefore propose to
replace �1 and �2 in (11) by zeroth order approximations s1E , s1M , s2E and s2E. The
convergence factor of the method is then the maximum of the spectral radius of (9)
over all Fourier frequencies. We obtain

�opt D maxf�Eopt; �Moptg; (12)

with

�Eopt.jkj; !; �1; �2; �1; �2; s1M; s2M/ D
ˇ̌
ˇ .�2�s2M/.�1�s1M/

.�2Cs1M�2=�1/.�1Cs2M�1=�2/

ˇ̌
ˇ
1=2

;

�Mopt.jkj; !; �1; �2; �1; �2; s1E; s2E/ D
ˇ̌
ˇ .�1�s1E/.�2�s2E/

.�2Cs1E�2=�1/.�1Cs2E�1=�2/

ˇ̌
ˇ
1=2

:
(13)

These factors can be optimized separately and they are once again the convergence
factors of the TMz and TEz cases in 2D. In order to optimize we have to choose
sjE; sjM , j D 1; 2 such that �opt is as small as possible for all numerically relevant
frequencies k 2 K WD Œkmin; kmax�. Here kmin is the smallest frequency relevant to
the subdomain, and kmax D cmax

h is the largest frequency supported by the numerical
grid, h being the mesh size, see for example [14]. We search for sjE and sjM of the
form sjE D cjE.1 C i/, sjM D cjM.1 C i/ such that sjE , sjM , j D 1; 2 will be the
solutions of the min-max problems

min
s1E ;s2E2C

max
k2K

�Mopt.jkj; !; �1; �2; �1; �2; s1E; s2E/; (14)

min
s1M ;s2M2C

max
k2K

�Eopt.jkj; !; �1; �2; �1; �2; s1M ; s2M/: (15)

Since the optimization can be performed independently, we can use our results from
[11] and obtain
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Corollary 1 (2D Asymptotically Optimized Contraction Factor) For TMz, the
solution of (14) for Y ¤ 1 gives the asymptotic convergence factor

��Mopt D

8
ˆ̂<

ˆ̂:

1 �O.h1=4/ if Z D Y;q
�min
�max
C O.h/ if Z � Y <

p
2Z or Y � Z <

p
2Y;

4

q
1
2
C O.h/ if Z <

p
2Y or Y >

p
2Z:

(16)

If Z ¤ 1 and Y D 1, we obtain after excluding the resonance frequency [8]

��Mopt D
r
�min

�max
CO.h/:

For the TEz case, the same conclusion holds if we replace Y by Y�1 and � by �.

The results in 3D follow now by a systematic consideration of both cases together:

Theorem 2 (3D Asymptotically Optimized Contraction Factor, Case A) If Z ¤
Y;Y�1 and Y ¤ 1, the optimized convergence factor ��opt in (12) has the asymptotic
behavior:

1. If min
˚
maxf.ZY/�1;ZYg;maxfZ=Y;Y=Zg� > p2, then

��opt D 4
p
1=2C O.h/: (17)

2. If min
˚
maxf.ZY/�1;ZYg;maxfZ=Y;Y=Zg� D maxfZ=Y;Y=Zg � p2, then

��opt D
r
�min

�max
C O.h/: (18)

3. If min
˚
maxf.ZY/�1;ZYg;maxfZ=Y;Y=Zg� D maxf.YZ/�1;YZg � p2, then

��opt D
r
�min

�max
C O.h/: (19)

Proof To prove 1. we use twice Corollary 1. If maxfZ=Y;Y=Zg > p2, we use the
third result in (16) for the TMz case. Similarly if maxfZY; .ZY/�1g > p2 we use
also the third result in (16) but for the TEz case. From Eq. (12) we know that �opt is
the maximum of �Eopt and �Mopt, and if both of them have the asymptotic behaviour
4
p
1=2C O.h/, we get (17) as required.
For 2. we know that maxfZ=Y;Y=Zg � p2, which means that we can use the

second result in (16), i.e. �Mopt D
q

�min
�max
CO.h/. We note that Z=Y D �1

�2
and ZY D

�2
�1

which implies 1 �
q

�min
�max
� 4

q
1
2
. If maxf.ZY/�1;ZYg > p2, by Corollary 1 we
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have �Eopt D 4
p
1=2CO.h/, and we clearly see �Mopt > �Eopt. If maxf.ZY/�1;ZYg �p

2, we obtain by hypothesis the inequality maxfZ=Y;Y=Zg � maxf.ZY/�1;ZYg �p
2, and this implies �min

�max
� �min

�max
. Then we obtain �Mopt � �Eopt and thus (18).

Finally, for 3., one can proceed as for 2 to obtain (19).

Theorem 3 (3D Asymptotically Optimized Contraction Factor, Case B) If Z D
Y or Z D Y�1, then the optimized convergence factor ��opt in (12) satisfies

��opt D 1 � O.h1=4/: (20)

Proof We use the first result in (16) of Corollary 1 and proceed as in Theorem 2.

Theorem 4 (3D Asymptotically Optimized Contraction Factor, Case C) If Y D
1 and Z ¤ Y, then the optimized convergence factor ��opt in (12) satisfies

��opt D
r
�min

�max
C O.

p
h/: (21)

Proof After excluding the resonance frequency, we apply the second part of
Corollary 1. Note that in this case �Mopt D �Eopt.

Theorem 2 and 4 contain the important result that in the presence of jumps in
the coefficients, the convergence of the optimized Schwarz method for Maxwell
equations gets faster when the jump increases, the method benefits from the
jumps! In the first part of Theorem 2, the convergence is independent of the jump
in the coefficients, and in all these cases the nonoverlapping method converges
independently of the mesh parameter, also unusual for optimized Schwarz methods
without jumps in the coefficients. In the case of Z D Y or Z D Y�1 (�1 D �2
or �1 D �2) in Theorem 3 however, the convergence factor depends on h and
deteriorates as h goes to zero, as in the case without jumps presented in [8].

We now illustrate graphically the improvement of the optimized Schwarz method
over the classical one in 2D. We show in Fig. 1 in red the divergence regions and in
blue the convergence regions for different values of Z and Y. In the left graphic the
white part is still an open problem. In the right the light blue line have convergence
dependant of the mesh size h, the light blue region have convergence dependent on
the coefficients �0s and the dark blue region have convergence independent of the
mesh size h and the coefficients �0s, the red line is the zone of resonance corrected
with Theorem 1. We clearly see that the optimization of the transmission conditions
transforms an algorithm that fails for a large range of problems into one that works
in all cases.



478 V. Dolean et al.

Fig. 1 Convergence regions in blue and divergence regions in red for Classical Schwarz (left,
converges only for .Y; Z/ on the line between C0 and C� D�1), and optimized Schwarz (right,
converges everywhere, except on the line Y D 1)

4 Conclusions

Classical Schwarz methods applied to 3D Maxwell equations with jumps in the
coefficients aligned with the interfaces do not converge, and this is also the case
for the second order formulation of Maxwell equations. Using however optimized
transmission conditions, we showed that one can obtain Schwarz methods for the
3D Maxwell equations that converge independently of the mesh parameter in some
cases, and even become faster as the jumps get larger at the interfaces. These
methods directly benefit from the jumps in the coefficients. We presented precise
asymptotic convergence factor estimates for the many different cases of coefficient
jumps, and are currently working on the numerical implementation of these methods
in the full 3D setting.
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Martin J. Gander, Laurence Halpern, Florence Hubert, and Stella Krell

1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

L.u/ WD �div.Aru/C 	u D f in ˝; u D 0 on @˝; (1)

with .x; y/ 2 ˝ 7! A.x; y/ D
�

Axx Axy

Axy Ayy

�
: (2)

Over the last 5 years, classical and optimized Schwarz methods have been developed
for (1) discretized with Discrete Duality Finite Volume (DDFV) schemes. Like
for Discontinuous Galerkin methods, it is not a priori clear how to appropriately
discretize transmission conditions. Two versions have been proposed for Robin
transmission conditions in [2, 4]. Only the second one leads to the expected
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rapid convergence rate of the optimized Schwarz algorithm, see [1] for parabolic
problems.

The DDFV method needs a dual set of unknowns located on both vertices and
“centers” of the initial mesh, which leads to two meshes, the primal and the dual
one. This permits the reconstruction of two-dimensional discrete gradients located
on a third partition of ˝ , called the diamond mesh. A discrete divergence operator
is also defined by duality. This method is particularly accurate in terms of gradient
approximations, see the benchmark [6] for problem (1) with 	 D 0, and also an
extensive bibliography.

A non-overlapping Schwarz method using Ventcell transmission conditions was
first proposed in [7]. For the model problem (1), the algorithm with two non-
overlapping subdomains,˝ D ˝1 [˝2, and iteration index l D 0; 1; : : : is

L.ulC1
j / D f in ˝j; u D 0 on @˝j \ @˝; (3)

.ArulC1
j ;nji/C�ulC1

j D �.Arul
i;nij/C�ul

i on 
 D @˝i \ @˝j; (4)

with�u D pu�q@y.Ayy@yu/ (assuming that 
 D fx D 0g) and nji is the unit normal
directed from ˝j to ˝i. A FV4 finite volume discretization of this algorithm for an
advection diffusion equation with isotropic diffusion is analyzed in [5]. We present
here a DDFV discretization of (3) and (4), and prove convergence of the discretized
algorithm.

2 DDFV Schemes

The Meshes We now describe the DDFV Schwarz algorithm for general subdo-
mains and decompositions using the notation from [2], see Fig. 1. The primal mesh
Mj is a set of disjoint open polygonal control volumes K � ˝j such that [K D ˝j.
We denote by @Mj the set of edges of the control volumes in Mj included in @˝j,
and by @Mj;
 the set of edges of primal boundary cells related to the interface 
 .
We use the same notations for the dual mesh, M�j , @M�j and @M�j;
 . We define
the diamond cells D�;�� as the quadrangles whose diagonals are a primal edge
� D KjL D .xK� ; xL�/ and a corresponding dual edge �� D K�jL� D .xK; xL/.
The set of diamond cells is called the diamond mesh, denoted by Dj.

For any V in Mj [ @Mj or M�j [ @M�j , we denote by mV its Lebesgue measure,
by EV the set of its edges, and DV WD fD�;�� 2 Dj; � 2 EVg. For D D D�;�� with
vertices .xK; xK� ; xL; xL�/, we denote by xD the center of D, that is the intersection
of the primal edge � and the dual edge ��, by mD its measure, by m� the length of
� , by m�� the length of ��, by m�K�

the length of @K� \ 
 , by m�L
the length of

D \
 , and by m�K
the length of ŒxK; xD�. n�K is the unit vector normal to � oriented

from xK to xL, and n��K� is the unit vector normal to �� oriented from xK� to xL� .
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Fig. 1 Diamond symbols are vertices of primal cells, circles are vertices of dual cells. Left: zoom
on diamond cells in gray. Center: zoom on the interface 
 , and new unknowns needed to describe
the DDFV scheme as the limit of the Schwarz algorithm. Right: zoom on a dual cell K� cut by 
 :
K� D K�

1 [ K�

2 with K�

i D ˝i \ K�

The Unknowns The DDFV method associates to all primal control volumes K 2
Mj[@Mj an unknown value uj;K, and to all dual control volumes K� 2M�j [@M�j an
unknown value uj;K� . We denote the approximate solution on the mesh Tj by uTj D
..uj;K/K2.Mj[@Mj/; .uj;K�/K�2.M�

j [@M�

j /
/ 2 R

Tj . DDFV schemes are described by

two operators: a discrete gradient rD and a discrete divergence divT , which are
dual to each other, see [2]. We define the discrete gradient rD W uT 2 R

T 7!�rDuT

�
D2D 2 .R2/D by

rDuT WD 1

2mD
..uL � uK/m�n�K C .uL� � uK�/m��n��K�/ ; 8D 2 D;

and the discrete divergence divT W �D D .�D/D2D 7! divT �D 2 R
T by

divK�D WD 1

mK

X

D2DK

m� .�D;n�K/; 8K 2M; and divK�D D 0;8K 2 @M; (5)

divK�

�D WD 1

mK�

X

D2DK�

m��.�D;n��K�/; 8K� 2M� [ @M�: (6)

We introduce additional flux unknowns  j;K� for j D 1; 2 on interface dual cells
K� 2 @M�j;
 . Let N be the number of edges on 
 . We sort these edges �1; : : : ; �N

such that �s\�sC1 6D ;, and xK�

s
; xK�

sC1
are the vertices of �s, where xK�

s
D �s\�s�1.

For uT j 2 R
Tj , #T j 2 R

@M�

j;
 , fT j 2 R
Tj and hT j 2 R

@Mj;
[@M�

j;
 , we denote by
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LT j

˝j;

.uT j ; #T j ; fT j ; hT j/ D 0 the linear system

�divK
�
ADrDuT j

�C 	Kuj;K D fK; 8 K 2Mj; (7)

�divK�

�
ADrDuT j

�C 	K� uj;K� D fK� ; 8 K� 2M�j ; (8)

�
X

D2DK�

m��

mK�

�
ADrDuT j ;n��K�

��m�K�

mK�

 j;K�C	K� uj;K�D fK� ;8K� 2 @M�j;
 ; (9)

�
ADrDuT j ;n�Lj

�C�@Mj;

L .u@Mj;
 / D hj;L; 8 L 2 @Mj;
 ; (10)

 j;K� C�@M�

j;


K�

.u@M�

j;

/ D hj;K� ; 8 K� 2 @M�j;
 ; (11)

uj;K D 0; 8 K 2 @Mj \ @˝; uj;K� D 0; 8 K� 2 @M�j \ @˝; (12)

and for s D 1; � � � ;N

�
@Mj;

Ls .u@Mj;
 / D puj;Ls � Ayy

q

m�s

0

@uj;LsC1
� uj;Ls

m�
K�

sC1

� uj;Ls � uj;Ls�1

m�
K�

s

1

A ;

where uj;L0 D uj;LNC1
D 0, and for s D 2; � � � ;N

�
@M�

j;


K�

s
.u@M�

j;

/ D puj;K�

s
� Ayy

q

m�K�s

�uj;K�

sC1
� uj;K�

s

m�s

� uj;K�

s
� uj;K�

s�1

m�s�1

�
:

Note that uj;K�

1
D uj;K�

NC1
D 0 because of the homogeneous boundary condition on

@˝ . The unit normal n�Lj is oriented from˝j to ˝i.
Equations (7)–(9) correspond to approximations of the equation after integration

on Mj, M�j and @M�j ; Eqs. (10) and (11) stem from the transmission condition on
@Mj;
 and @M�j;
 ; Eq. (12) corresponds to the Dirichlet boundary condition on @˝ .

The DDFV optimized Schwarz algorithm performs for an arbitrary initial guess
h0T j
2 R

@Mj;
 [@M�

j;
 , j 2 f1; 2g and l D 1; 2; : : : the following steps:

• Compute for j D 1; 2 the solutions .ulC1
T j
; # lC1

T j
/ 2 R

Tj � R
@M�

j;
 of

LT j

˝j;

.ulC1

T j
; # lC1

T j
; fT j ; h

l
T j
/ D 0: (13)

• Evaluate for i; j 2 f1; 2g, j 6D i the new interface values hlC1
T j

by

hlC1
j;L D �

�
ADrDulC1

T i
;n�Li

�C�@Mj;

L .ulC1

@Mi;

/; 8L 2 @Mi;
 ; (14a)

hlC1
j;K�

D � lC1
i;K�

C�@M�

j;


K�

.ulC1
@M�

i;

/; 8K� 2 @M�i;
 : (14b)
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Theorem 1 (Well-Posedness of Subdomain Problems) For any fT j 2 R
T j and

hT j 2 R
@Mj;
[@M�

j;
 , there exists a unique solution .uT j ; #T j/ 2 R
Tj � R

@Mj;
[@M�

j;


of the linear system LT j

˝j;

.uT j ; #T j ; fT j ; hT j/ D 0:

Proof By linearity, it is sufficient to prove that if LT j

˝j ;

.uT j ; #T j ; 0; 0/ D 0, then

uT j D 0 and #T j D 0. We multiply Eq. (7) by mKuj;K and Eqs. (8) and (9) by
mK� uj;K� and sum the results over all control volumes in Mj and M�j [ @M�j;
 .
Reordering the different contributions over all diamond cells, we obtain

2
X

D2D
mD.ADrDuT j ;rDuT j/C .�@M
 .u@Mj;
 /; u@Mj;
 /

C .�@M�


 .u@M�

j;

/; u@M�

j;

/C

X

K2Mj

mK	Ku2j;K C
X

K�2M�

j

mK�	K� u2j;K�

D 0:

The result thus follows by discrete Poincaré inequalities (see for example [2]) and
the properties of �@M
 and�@M�


 . ut
Theorem 2 (Convergence of the DDFV Schwarz Algorithm) The solution of the
Schwarz algorithm (13) and (14) converges as l goes to 1 to the solution of the
DDFV scheme on the entire domain˝ .

Proof We follow the ideas of [5]: we first rewrite the DDFV scheme for the problem
on˝ as the limit of the Schwarz algorithm. To this end, we introduce new unknowns
near the boundary 
 , see Fig. 1:

• 8 xK 2 ˝j and xK� 2 ˝j, we set u1j;K D uK and u1j;K�

D uK� ,
• 8 xK 2 @˝ and xK� 2 @˝ , we set u1j;K D 0 and u1j;K�

D 0,

• 8 xL 2 
 , choose u1j;L in such a way that AjrDu1T j
� n�Kj D �AirDu1T i

� n�Ki :

u1j;L D u1i;L D
m�Kj

m�Ki�
Ajm�Ki

C Aim�Kj

�
.n�Kj ;n�Kj/

"
uKj

.Ajn�Kj ;n�Kj/

m�Kj

C uKi

.Ain�Kj ;n�Kj/

m�Ki

CuL� � uK�

m�

�
Ai � Aj

�
.n��K�

j
;n�Kj/

	
;

• 8 xK� 2 
 , K� D K�1 [ K�2 with K�j 2 @M�j;
 , choose u1j;K�

D u1i;K�

D uK� and

 1j;K�

D� 1i;K�

D � 1

m�K�

X

D2D
K�

j

m��

�
ADrDu1T j

;n��K�

j

�
C

mK�

j

m�K�

.	K� uK� � fK�/

D 1

m�K�

X

D2D
K�

i

m��

�
ADrDu1T i

;n��K�

i

�
� mK�

i

m�K�

.	K� uK� � fK�/:
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By linearity, it suffices to prove convergence of the DDFV Schwarz algorithm (7)
to 0. We have constructed .u1T j

;  1T j
/ from the solution uT of the DDFV scheme on

˝ such that

LT j

˝j;

.u1T j

;  1T j
; fT j ; h

1
T j
/ D 0:

Observe that the errors elC1
T j
D ulC1

T j
� u1T j

, # lC1
T j
D  lC1

T j
�  1T j

satisfy

LT j

˝j;

.elC1

T j
; # lC1

T j
; 0;Hl

T j
/ D 0;

with

8 K� 2 @M�i;
 ; Hl
j;K�

D �# l
i;K�

C�@M�

i;


K�

.el
T i
/;

8 ł 2 @Mi;
 ; Hl
j;L D �.ADrDel

T i
;n�Li/C�@Mi;


L .el
T i
/:

An a priori estimate using discrete duality leads to

2
X

D2Dj

mD.ADrDelC1
T j
;rDelC1

T j
/

�
X

L2@Mj;


m�L
.ADrDelC1

T j
;n�Lj/e

lC1
j;L �

X

K�2@M�

j;


m�K�

# lC1
j;K�

elC1
j;K�

C
X

K2Mj

mK	K.e
lC1
j;K /

2 C
X

K�2M�

j [@M�

j;


mK�	K�.elC1
j;K�

/2 D 0:

Using the scalar product defined by .�@M
 /�1, we get

�
X

L2@Mj;


m�L
.ADrDelC1

T j
;n�Lj/e

lC1
j;L D

�
.ADrDelC1

T j
;nj/;�

@M
 .elC1
@Mj;


/
�

.�@M
 /�1
;

with nj the unit outward normal of ˝j. The formula �4ab D .a � b/2 � .a C b/2

now implies

�
X

L2@Mj;


m�L
.ADrDelC1

T j
;n�Lj/e

lC1
j;L

D1
4

�.ADrDelC1
T j
;nj/C�@M
.elC1

@Mj;

/

2

.�@M
 /�1

� 1
4

.ADrDelC1
T j
;nj/C�@M
 .elC1

@Mj;

/

2

.�@M
 /�1
:
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Using the Ventcell transmission condition, we now obtain

�
X

L2@Mj;


m�L
.ADrDelC1

T j
;n�Lj/e

lC1
j;L

D1
4

�.ADrDelC1
T j
;nj/C�@M
 .elC1

@Mj;

/

2

.�@M
 /�1

� 1
4

�.ADrDel
T i
;ni/C�@M
 .el

@Mi;

/

2

.�@M
 /�1
:

In a same way, we also obtain

�
X

K�2@M�

j;


m�K�

# lC1
j;K�

elC1
j;K�

D 1

4

�# lC1
T j
C�@M�


 .elC1
@M�

j;

/

2

.�
@M�


 /�1

�1
4

�# l
T i
C�@M�


 .el
@M�

i;

/

2

.�@M
�


 /�1
:

Summing over l and j, the boundary terms cancel and we obtain the estimate

2

lmax�1X

lD0

X

jD1;2

X

D2Dj

mD.ADrDelC1
T j
;rDelC1

T j
/

C
lmax�1X

nD0

X

jD1;2

X

K2Mj

mK	K.e
lC1
j;K /

2 C
lmax�1X

nD0

X

jD1;2

X

K�2M�

j [@M�

j;


mK�	K�.elC1
j;K�

/2

�
X

jD1;2

1

4

�.ADrDe0T j
;nj/C�@M
 .e0@Mj;


/

2

.�@M
 /�1

C
X

jD1;2

1

4

�#0
T j
C�@M�


 .e0
@M�

j;

/

2

.�@M
�


 /�1
:

This shows that the total energy stays bounded as the iteration l goes to infinity, and
hence the algorithm converges. ut

3 Numerical Experiments

We use the domain ˝ D .�1; 1/ � .0; 1/ with the two subdomains x > 0 and
x < 0. For the first experiment, we choose the data such that the exact solution is
u.x; y/ D cos.2:5�x/ cos.2:5�y/, where we set 	 WD 1 and

A.x; y/ WD
�
1:5 0:5

0:5 1:5

�
for x < 0; and A.x; y/ WD

�
1:5 0:5

0:5 1

�
for x > 0:
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Fig. 3 Behavior of the numerically optimized parameter p on the left, q on the right

Starting with a random initial guess, Fig. 2 shows the convergence history of
the algorithms using the Robin or Ventcell transmission conditions. For a fair
comparison, the parameters p and q were numerically chosen to obtain the best
convergence rate in each case. On the left, we used a non-conforming 32�32 square
mesh on ˝1 and a 48 � 48 square mesh on ˝2 with p D 11:2 and q D 0:007 for
the Ventcell transmission condition, and p D 28 and q D 0 for the Robin one. On
the right, we used a conforming triangle-square mesh on ˝1–˝2 with p D 11:6

and q D 0:014 for the Ventcell transmission condition, and p D 23:5 and q D 0

for the Robin one. We clearly see that the algorithm converges much faster with the
Ventcell condition.

We next simulate the error equations, i.e. using homogeneous data, for a
conforming square mesh (2i � 2i squares on ˝j, j D 1; 2). We start again with a
random initial guess. On the left in Fig. 3, we show the p that worked best as h is
refined, and on the right the corresponding q. We also plot the asymptotic parameters
from [3], which shows that the optimized parameters of the DDFV discretization
behave asymptotically as expected.

In conclusion, we have shown how to discretize an optimized Schwarz algorithm
with Ventcell transmission conditions using discrete duality finite volumes. Using
energy estimates, we proved that the algorithm converges, and we showed in
numerical experiments that the convergence is substantially faster than for Robin
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transmission conditions. We also showed that the optimized parameters behave
asymptotically as expected from a continuous analysis. We are currently working
on an asymptotic analysis for the optimized parameters and associated contraction
factor of the algorithm.
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A Direct Solver for Time Parallelization

Martin J. Gander, Laurence Halpern, Juliet Ryan, and Thuy Thi Bich Tran

1 Introduction

Using the time direction in evolution problems for parallelization is an active field of
research. Most of these methods are iterative, see for example the parareal algorithm
analyzed in [3], a variant that became known under the name PFASST [10], and
waveform relaxation methods based on domain decomposition [4, 5], see also [1]
for a method called RIDC. Direct time parallel solvers are much more rare, see
for example [2]. We present here a mathematical analysis of a different direct
time parallel solver, proposed in [9]. We consider as our model partial differential
equation (PDE) the heat equation on a rectangular domain˝ ,

@u

@t
�u D f in ˝ � .0;T/, u D g on @˝ , and u.�; 0/ D u0 in ˝: (1)

Using a Backward Euler discretization on the time mesh 0 D t0 < t1 < t2 <
� � � < tN D T, kn D tn � tn�1, and a finite difference approximationh of  over a
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rectangular grid of size J D J1J2, we obtain the discrete problem

1

kn
.un � un�1/ �hun D fn: (2)

Let It be the N � N identity matrix associated with the time domain and Ix be the
J � J identity matrix associated with the spatial domain. Setting u WD .u1; : : : ;uN/,
f WD .f1 C 1

k1
u0; f2; : : : ; fN/ and using the Kronecker symbol, (2) becomes

.B˝ Ix � It ˝h/u D f; B WD

0

BBBB@

1
k1
� 1

k2
1
k2

0

0
: : :

: : :

� 1
kN

1
kN

1

CCCCA
: (3)

If B is diagonalizable, B D SDS�1, then (3) can be solved in 3 steps:

.a/ .S˝ Ix/g D f;

.b/ . 1kn
�h/wn D gn; 1 � n � N;

.c/ .S�1 ˝ Ix/u D w:
(4)

The N equations in space in step (b) can now be solved in parallel. This interesting
idea comes from [9], but its application requires some care: first, B is only diago-
nalizable if the time steps are all different, and this leads to a larger discretization
error compared to using equidistant time steps, as we will see. Second, the condition
number of S increases exponentially with N, which leads to inaccurate results in step
.a/ and .c/ because of roundoff error. We accurately estimate these two errors, and
then determine for a user tolerance the maximum N and optimal time step sequence
of the form knC1 D qkn, which guarantees that errors stay below the user tolerance.

2 Error Estimate for Variable Time-Steps

We start by studying for a > 0 the ordinary differential equation (ODE)

du

dt
C au D 0; t 2 .0;T/; u.0/ D u0 H) u.t/ D u0ae�aT : (5)

For Backward Euler, un D .1C akn/
�1 un�1 with time steps from the division T D

.k1; : : : ; kN/ satisfying T DPN
1 kn, we define the error propagator by

Err.T I a;T;N/ WD
NY

nD1
.1C akn/

�1 � e�aT ; (6)
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such that the error at time T equals Err.T I a;T;N/u0. We also define the equidistant
division T WD .k; : : : ; k/, where k D T=N.

Theorem 1 (Equidistant Partition Minimizes Error) For any a;T and N, and
any division T , the error propagator is positive, and for the equidistant division
T , the error is globally minimized.

Proof Rewriting Err.T I a;T;N/ D
NQ

nD1
.1C akn/

�1 �
NQ

nD1
.eakn/�1, we see that the

error propagator is positive, since for all positive x, ex > 1 C x. To minimize the

error, we thus have to minimize˚.T / WD
NQ

nD1
.1Cakn/

�1 as a function of T 2 R
N ,

with N inequality constraints kn � 0, and one equality constraint
PN

nD1 kn D T. We
compute the derivatives

@˚

@ki
.T / D � a

1C aki
˚.T /;

@2˚

@kikj
.T / D .1C ıij/a2

.1C aki/.1C akj/
˚.T /;

and to show that ˚ is convex, we evaluate for an arbitrary vector x D .x1; : : : ; xN/

NX

i;jD1

@2˚

@kikj
.T /xixj D

�X

i¤j

a2

.1C aki/.1C akj/
xixj C

X

i

a2

.1C aki/2
x2i
�
˚.T /

D
�� NX

iD1

axi

1C aki

�2 C
NX

iD1

� axi

1C aki

�2�
˚.T / > 0:

Therefore the Kuhn Tucker theorem applies, and the only minimum is given by the
existence of a Lagrange multiplier p with ˚ 0.T /C p1 D 0, 1 the vector of all ones,
whose only solution is T D T , p D a.1C ak/�N�1.

We now consider a division Tq of geometric time steps kn WD qn�1k1 for n D
1; : : : ;N as it was suggested in [8]. The constraint

PN
nD1 kn D PN

nD1 qn�1k1 D T
fixes k1, and using this we get

kn D qn

PN
jD1 qj

T: (7)

Since according to Theorem 1 the error is minimized for q D 1, one should not
choose q very different from 1, and we now study the case q D 1C" asymptotically.

Theorem 2 (Asymptotic Truncation Error Estimate) Let uN.q/ WD ˚.Tq/u0 be
the approximate solution obtained with the division Tq for q D 1 C ". Then, for
fixed a;T and N, the difference between the geometric mesh and fixed step mesh
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approximations satisfies for " small

uN.q/� uN.1/ D ˛.aT;N/u0"2 C o."2/; with

˛.x;N/ D N.N2 � 1/
24

�
x=N

1C x=N

�2
.1C x=N/�N :

(8)

Proof Using a second order Taylor expansion, we obtain in the following two
lemmas an expansion of ˚.T1C"/ for small ".

Lemma 1 The time step kn in (7) has for " small the expansion kn D k.1C ˛n"C
ˇn"

2 C o."2//, with ˛n D n � NC1
2

and ˇn D n.n � N � 2/ C .NC1/.NC5/
6

. These

coefficients satisfy the relations
P

n ˛n DPn ˇn D 0,
P

n ˛
2
n D N.N�1/.NC1/

12
.

Lemma 2 For " small, we have the expansion

NY

nD1
.1C akn/ D .1C ak/N.1 � b2

2

NX

nD1
˛2n"

2 C o."2//;with b D ak
1Cak

.

We can now apply Lemma 2 to obtain ˚.T1C"/ D ˚.T1/.1 C b2

2

PN
nD1 ˛2n"2 C

o."2//, and replacing ˚ in the definition of uN concludes the proof.

3 Error Estimate for the Diagonalization of B

The matrix B is diagonalizable if and only if all time steps kn are different. The
eigenvalues are then 1

kn
, and the eigenvectors form a basis of R

N . We will see
below that the matrix of eigenvectors is lower triangular. It can be chosen with unit
diagonal, in which case it belongs to a special class of Toeplitz matrices:

Definition 1 A unipotent lower triangular Toeplitz matrix of size N is of the form

T.x1; : : : ; xN�1/ D

0
BBBB@

1

x1
: : :

:::
: : :

: : :

xN�1 : : : x1 1

1
CCCCA
: (9)

Theorem 3 (Eigendecomposition of B) If kn D qn�1k1 as in (7), then B has the
eigendecomposition B D VDV�1, with D WD diag. 1kn

/, and V and its inverse are
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unipotent lower triangular Toeplitz matrices given by

V D T.p1; : : : ; pN�1/; with pn WD
1

Qn
jD1.1 � qj/

; (10)

V�1 D T.q1; : : : ; qN�1/; with qn WD .�1/nq.
n
2/pn: (11)

Proof Let v.n/ be the eigenvector with eigenvalue 1
kn

. Since B is a lower bidiagonal

matrix, a simple recursive argument shows that v.n/j D 0 for j < n. One may choose

v
.n/
n D 1, which implies that for j > n we have v.n/j D .

Qn�j
iD1.1 � knCi

kn
//�1, and the

matrix V D .v.1/; : : : ; v.N// is lower triangular with unit diagonal. Furthermore, if
kn D qn�1k1, we obtain for j D 1; 2; : : : ;N � n that v.n/nCj D .

Qj
iD1.1� qi//�1 which

is independent of n and thus proves the Toeplitz structure in (10).
Consider now the inverse of V . First, it is easy to see that it is also unipotent

Toeplitz. To establish (11) is equivalent to prove that

for 1 � n � N�1;
nX

jD0
pn�jqj D 0; with the convention that p0 D q0 D 1: (12)

This result can be obtained using the q�analogue of the binomial formula, see [7]:

Theorem 4 (Simplified q�Binomial Theorem) For any q > 0, q ¤ 1, and for
any n 2 N,

nX

jD0
.�1/jq j.j�1/

2
.1 � qn�jC1/ � � � .1 � qn/

.1 � q/ � � � .1 � qj/
D 0: (13)

Multiplying (13) by pn then leads to (12).

In the steps (a) and (c) of the direct time parallel solver (4), the condition number
of the eigenvector matrix S has a strong influence on the accuracy of the results.
Normalizing the eigenvectors with respect to the `2 norm, S WD V QD, with QD D
diag. 1p

1CPN�n
iD1 jpi j2

/, leads to an asymptotically better condition number:

Theorem 5 (Asymptotic Condition Number Estimate) For q D 1C ", we have

cond1.V/ �
�
.N � 1/Š"N�1��2 ; (14)

cond1.S/ � N

�.N/
"�.N�1/; �.N/ D

(
N
2
Š.N
2
� 1/Š if N is even;

.N�1
2
Š/2 if N is odd:

(15)

Proof Note first that jqnj � jpnj � .nŠ "n/�1. Therefore

kVk1 D 1C jp1j C jp2j C � � � C jpN�1j � jpN�1j �
�
.N � 1/Š"N�1��1 :
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The same holds for V�1, and gives the first result. We next define �n WDq
1CPN�n

jD1 jpjj2, Qdn WD 1
�n

, which implies QD D diag.Qdn/. Then �n � jpN�nj,
and we obtain

kSk1 D sup
n

nX

jD1

jpn�jj
�j
� sup

n

nX

jD1

jpn�jj
jpN�nj � sup

n

nX

jD1

.N � j/Š

.n � j/Š
"N�n � N:

By definition S�1 D QD�1V�1 D QD�1T.q1; � � � ; qN�1/, that is the line n of
T.q1; � � � ; qN�1/ is multiplied by �n. Therefore

kS�1k1 D supn �n
Pn�1

jD0 jqjj � supn �njqn�1j � supn �njpn�1j � supn jpN�njjpn�1j
� "�.N�1/ supn

1
.n�1/Š.N�n/Š � 1

�.N/"
�.N�1/:

4 Relative Error Estimates for ODEs and PDEs

We first give an error estimate for the ODE (5):

Theorem 6 (Asymptotic Roundoff Error Estimate for ODEs) Let u be the exact
solution of Bu D f, and Ou be the computed solution from the direct time parallel
solver (4) applied to (5), and u denote the machine precision. Then

ku � Ouk1
kuk1 . u

N2.2N C 1/.N C aT/

�.N/
"�.N�1/: (16)

Proof In the ODE case, D D diag. 1kn
C a/ and kDk1 D 1=k1C a. Using backward

error analysis [6], the computed solution satisfies the perturbed systems

.SC ıS1/Og D f; .DC ıD/ Ow D Og; .S�1 C ıS2/ Ou D Ow;

and since S and S�1 are triangular and D is diagonal we get (see [6])

kıS1k � NukSkCO.u2/; kıS2k � NukS�1kCO.u2/; kıDk � ukDkCO.u2/:

Using Algorithm (4) to solve Bu D f by decomposition is equivalent to solving
.SC ıS1/.DC ıD/.S�1 C ıS2/ Ou D f, which is of the form

.BC ıB/ Ou D f; kıBk � .2N C 1/ukSkkS�1kkDk CO.u2/:

The relative error then satisfies (see [6])

ku � Ouk
kuk � cond.B/

kıBk
kBk � .2N C 1/u kB�1k kSk kS�1k kDk:
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By a direct computation, we obtain for the inverse of B

B�1 D k1

0
BBBBBB@

1

1 q

1
::: q2

:::
:::
:::
: : :

1 q q2 : : : qN�1

1
CCCCCCA
;

and hence kB�1k1 D k1.1C qC : : : qN�1/ � Nk1. Since k1 � k D T=N, (16) is
proved.

The error of the direct time parallel solver at time T can be estimated by

je�aTu0 � OuN j
ju0j � je

�aTu0 � uN.1/j
ju0j C juN.1/� uN.q/j

ju0j C juN.q/� OuN j
ju0j : (17)

The first term on the right is the truncation error of the sequential method using
equal time steps. The second term is due to the geometric mesh and was estimated
asymptotically in Theorem 2 to be ˛"2. The last term can be estimated by ku.q/ �
Ouk1=ju0j and thus Theorem 6, since a > 0 which implies ju0j D kuk1. Because
the second term is decreasing in " and the last term is growing in ", we equilibrate
them asymptotically:

Theorem 7 (Optimized Geometric Time Mesh) Suppose the time steps are
geometric, kn D qn�1k1, and q D 1C" with " small. Let u be the machine precision.
For " D "0.aT;N/ with

"0.aT;N/ D
�

u
N2.2N C 1/.N C aT/

�.N/˛.aT;N/

� 1
NC1

; (18)

where ˛.aT;N/ is defined in (8) and �.N/ in (15), the error due to time paralleliza-
tion is asymptotically comparable to the one produced by the geometric mesh.

Proof This is a direct consequence of Theorem 6.

We show in Fig. 1 on the left the optimized value "0.aT;N/ from Theorem 7.
Choosing " D "0.aT;N/, the ratio between the additional errors due to paralleliza-
tion to the truncation error of the fixed time step method is shown in Fig. 1 on the
right.

In order to obtain a PDE error estimate for the heat equation (1), one can argue as
follows: expanding the solution in eigenfunctions of the Laplacian, we can apply our
results for the ODE with a D �`, �` for ` D 1; 2; : : : the eigenvalues of the negative
Laplacian. One can show for all N � 1 and machine precision u small enough
(single precision suffices in practice) that our error estimate (17) has its maximum
for aT < a�T D 2:5129, and thus if �min and T are such that �minT > a�T , one can
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Fig. 2 Discretization and parallelization errors, and condition number of the eigenvector matrix,
together with our theoretical bounds, left for the ODE, right for the PDE

read off the optimal choice "0 and resulting error estimate in Fig. 1 at aT D �minT
for a given number of processors N. Similarly, if we have N processors and do not
want to increase the error compared to a sequential computation by more than a
given factor, we can read in Fig. 1 on the right the size of the time window T to use
(knowing a D �min), and the corresponding optimized "0 on the left.

5 Numerical Experiments

We first perform a numerical experiment for the scalar model problem (5) with
a D 1, T D 1 and N D 10. We show in Fig. 2 on the left how the discretization error
increases and the parallelization error decreases as a function of ", together with
our theoretical estimates, and also the condition number of the eigenvector matrix,
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and our theoretical bound. We can see that the theoretically predicted optimized "
marked by a rhombus is a good estimate, and on the safe side, of the optimal choice
a bit to the left, where the dashed lines meet.

We next show an experiment for the heat equation in two dimensions on the unit
square, with homogeneous Dirichlet boundary conditions and an initial condition
u0.x; y/ D sin.�x/ sin.�y/. We discretize with a standard five point finite difference
method in space with mesh size h1 D h2 D 1

10
, and a Backward Euler discretization

in time on the time interval .0; 1
5
/ using N D 30 time steps. In Fig. 2 on the right we

show again the measured discretization and parallelization errors compared to our
theoretical bounds. As one can see from the graph, in this example, one could solve
the problem using 30 processors, and would obtain an error which is within a factor
two of the sequential computation.
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Dirichlet-Neumann and Neumann-Neumann
Waveform Relaxation for the Wave Equation

Martin J. Gander, Felix Kwok, and Bankim C. Mandal

1 Introduction

We present two new types of Waveform Relaxation (WR) methods for hyperbolic
problems based on the Dirichlet-Neumann and Neumann-Neumann algorithms,
and present convergence results for these methods. The Dirichlet-Neumann algo-
rithm for elliptic problems was first considered by Bjørstad and Widlund [2];
the Neumann-Neumann algorithm was introduced by Bourgat et al. [3]. The
performance of these algorithms for elliptic problems is now well understood, see
for example the book [13].

To solve time-dependent problems in parallel, one can either discretize in time
to obtain a sequence of steady problems, and then apply domain decomposition
algorithms to solve the steady problems at each time step in parallel, or one can first
discretize in space and then apply WR to the large system of ordinary differential
equations (ODEs) obtained from the spatial discretization. WR has its roots in the
work of Picard and Lindelöf, who studied existence and uniqueness of solutions of
ODEs in the late nineteenth century. Lelarasmee et al. [11] rediscovered WR as a
parallel method for the solution of ODEs. The main computational advantage of
WR is parallelization, and the possible use of different discretizations in different
space-time subdomains.

Domain decomposition methods for elliptic PDEs can be extended to time-
dependent problems by using the same decomposition in space. This leads to WR
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type methods, see [1]. The systematic extension of the classical Schwarz method
to time-dependent parabolic problems was started independently in [8, 9]. Like
WR algorithms in general, the so-called Schwarz Waveform Relaxation algorithms
(SWR) converge relatively slowly, except if the time window size is short. A remedy
is to use optimized transmission conditions, which leads to much faster algorithms,
see [4] for parabolic problems, and [5] for hyperbolic problems. More recently,
we studied the WR extension of the Dirichlet-Neumann and Neumann-Neumann
methods for parabolic problems [6, 10, 12]. We proved for the heat equation that
on finite time intervals, the Dirichlet-Neumann Waveform Relaxation (DNWR)
and the Neumann-Neumann Waveform Relaxation (NNWR) methods converge
superlinearly for an optimal choice of the relaxation parameter. DNWR and NNWR
also converge faster than classical and optimized SWR in this case.

In this paper, we define DNWR and NNWR for the second order wave equation

@ttu � c2u D f .x; t/; x 2 ˝; 0 < t < T;

u.x; 0/ D u0.x/; ut.x; 0/ D v0.x/; x 2 ˝; (1)

u.x; t/ D g.x; t/; x 2 @˝; 0 < t < T;

where ˝ � R
d, d D 1; 2; 3, is a bounded domain with a smooth boundary, and c

denotes the wave speed, and we analyze the convergence of both algorithms for the
1d wave equation.

2 Domain Decomposition and Algorithms

To explain the new algorithms, we assume for simplicity that the spatial domain ˝
is partitioned into two non-overlapping subdomains˝1 and˝2. We denote by ui the
restriction of the solution u of (1) to ˝i, i D 1; 2, and by ni the unit outward normal
for˝i on the interface 
 WD @˝1 \ @˝2.

The Dirichlet-Neumann Waveform Relaxation algorithm (DNWR) consists of the
following steps: given an initial guess h0.x; t/, t 2 .0;T/ along the interface 
 �
.0;T/, compute for k D 1; 2; : : : with uk

1 D g; on @˝1 n 
 and uk
2 D g; on @˝2 n 


the approximations

@ttuk
1 � c2uk

1 D f ; in ˝1;

uk
1.x; 0/ D u0.x/; in ˝1;

@tuk
1.x; 0/ D v0.x/; in ˝1;

uk
1 D hk�1; on 
;

@ttuk
2 � c2uk

2 D f ; in ˝2;

uk
2.x; 0/ D u0.x/; in ˝2;

@tuk
2.x; 0/ D v0.x/; in ˝2;

@n2u
k
2 D �@n1u

k
1; on 
;

hk.x; t/ D �uk
2

ˇ̌

�.0;T/ C .1 � �/hk�1.x; t/;

(2)

where � 2 .0; 1� is a relaxation parameter.
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The Neumann-Neumann Waveform Relaxation algorithm (NNWR) starts with an
initial guess w0.x; t/, t 2 .0;T/ along the interface 
 � .0;T/ and then computes
for � 2 .0; 1� simultaneously for i D 1; 2 with k D 1; 2; : : :

@ttuk
i � c2uk

iDf ; in ˝i;

uk
i .x; 0/Du0.x/;in ˝i;

@tuk
i .x; 0/Dv0.x/;in ˝i;

uk
iDg; on @˝i n 
;

uk
iDwk�1; on 
;

@tt 
k
i � c2 k

i D0; in ˝i;

 k
i .x; 0/D0; in ˝i;

@t 
k
i .x; 0/D0; in ˝i;

 k
i D0; on @˝i n 
;

@ni 
k
i D@n1u

k
1 C @n2u

k
2;on 
;

wk.x; t/ D wk�1.x; t/ � � 
 k
1

ˇ̌

�.0;T/ C  k

2

ˇ̌

�.0;T/

�
:

(3)

3 Kernel Estimates and Convergence Analysis

We present the case d D 1, with ˝ D .�a; b/, ˝1 D .�a; 0/ and ˝2 D .0; b/. By
linearity, it suffices to study the error equations, f .x; t/ D 0, g.x; t/ D 0, u0.x/ D
v0.x/ D 0 in (2) and (3), and to examine convergence to zero.

Our convergence analysis is based on Laplace transforms. The Laplace transform
of a function u.x; t/ with respect to time t is defined by Ou.x; s/ D L fu.x; t/g WDR1
0

e�stu.x; t/ dt, s 2 C. Applying a Laplace transform to the DNWR algorithm
in (2) in 1d, we obtain for the transformed error equations

.s2�c2@xx/Ouk
1.x; s/D0 in .�a; 0/;

Ouk
1.�a; s/D0;
Ouk
1.0; s/DOhk�1.s/;

.s2�c2@xx/Ouk
2.x; s/D0 in .0; b/;

@x Ouk
2.0; s/D@x Ouk

1.0; s/;
Ouk
2.b; s/D0;Ohk.s/ D � Ouk

2.0; s/C .1 � �/Ohk�1.s/:
(4)

Solving the two-point boundary value problems in (4), we get

Ouk
1 D Ohk�1.s/

sinh.as=c/ sinh
�
.xC a/ s

c

�
; Ouk

2 D Ohk�1.s/ coth.as=c/
cosh.bs=c/ sinh

�
.x � b/ s

c

�
;

and inserting them into the updating condition [last line in (4)], we get by induction

Ohk.s/ D Œ1 � � � � coth.as=c/ tanh.bs=c/�k Oh0.s/; k D 1; 2; : : : (5)

Similarly, the Laplace transform of the NNWR algorithm in (3) for the error
equations yields for the subdomain solutions

Ouk
1.x; s/ D Owk�1.s/

sinh.as=c/ sinh
�
.xC a/ s

c

�
; Ouk

2.x; s/ D � Ow
k�1.s/

sinh.bs=c/ sinh
�
.x � b/ s

c

�
;

O k
1 .x; s/ D Owk�1.s/#.s/

cosh.as=c/ sinh
�
.xC a/ s

c

�
; O k

2 .x; s/ D Owk�1.s/#.s/
cosh.bs=c/ sinh

�
.x � b/ s

c

�
;
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where #.s/ D Œcoth.as=c/C coth.bs=c/�. Therefore, in Laplace space the updating
condition in (3) becomes

Owk.s/ D
�
1 � �

�
2C coth.as=c/

coth.bs=c/
C coth.bs=c/

coth.as=c/

�	k

Ow0.s/; k D 1; 2; : : : (6)

Theorem 1 (Convergence, Symmetric Decomposition) For a symmetric decom-
position, a D b, convergence is linear for DNWR (2) with � 2 .0; 1/, � ¤ 1

2
, and

for NNWR (3) with � 2 .0; 1/, � ¤ 1
4
. If � D 1

2
for DNWR, or � D 1

4
for NNWR,

convergence is achieved in two iterations.

Proof For a D b, Eq. (5) reduces to Ohk.s/ D .1 � 2�/k Oh0.s/; which has the
simple back transform hk.t/ D .1 � 2�/kh0.t/. Thus for the DNWR method, the
convergence is linear for 0 < � < 1; � ¤ 1

2
. For � D 1

2
, we have h1.t/ D 0. Hence,

one more iteration produces the desired solution on the whole domain.
For the NNWR algorithm, inserting a D b into Eq. (6), we obtain similarly

wk.t/ D .1 � 4�/kw0.t/, which leads to the second result. ut
We next analyze the case of an asymmetric decomposition, a ¤ b.

Lemma 1 Let a; b > 0 and s 2 C, with Re.s/ > 0. Then, we have the identity

Ga
b.s/ WD coth.as=c/ tanh.bs=c/� 1

D 2
1X

mD1
e�2ams=c � 2

1X

nD1
.�1/n�1e�2bns=c � 4

1X

nD1

1X

mD1
.�1/n�1e�2.bnCam/s=c:

Proof Using that
ˇ̌
e�2bs=c

ˇ̌
< 1 for Re.s/ > 0, we expand

�
1C e�2bs=c

��1
into an

infinite binomial series to obtain

tanh

�
bs

c

�
D e

bs
c � e� bs

c

e
bs
c C e� bs

c

D
�
1 � e�

2bs
c

��
1C e�

2bs
c

��1D1 � 2
1X

nD1
.�1/n�1e� 2bns

c :

Similarly, we get coth.as=c/ D 1 C 2

1X

mD1
e� 2ams

c , and multiplying the two and

subtracting 1, we obtain the expression for Ga
b.s/ in the Lemma. ut

Using Ga
b.s/ from Lemma 1, we obtain for (5)

Ohk.s/ D ˚.1 � 2�/ � �Ga
b.s/

�k Oh0.s/: (7)

Now if � D 1
2
, we see that the linear factor in (7) vanishes, and convergence will

be governed by convolutions of Ga
b.s/. We show next that this choice also gives

finite step convergence, but the number of steps depends on the length of the time
window T.
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Theorem 2 (Convergence of DNWR, Asymmetric Decomposition) Let � D 1
2
.

Then the DNWR algorithm converges in at most kC1 iterations for two subdomains
of lengths a ¤ b, if the time window length T satisfies T=k � 2min fa=c; b=cg,
where c is the wave speed.

Proof With � D 1
2

we obtain from (7) for k D 1; 2; : : :

Ohk.s/ D
�
�1
2

�k ˚
Ga

b.s/
�k Oh0.s/ D

"
�e�

2as
c C e�

2bs
c C

 1X

n>1

.�1/n�1e� 2bns
c

�
1X

m>1

e� 2ams
c C 2

1X

mD1

1X

nD1
.�1/n�1e� 2.amCbn/s

c

!#k

Oh0.s/ D .�1/ke� 2aks
c Oh0.s/

C e� 2bks
c Oh0.s/C

 1X

l>k

p.k/l e� 2bls
c C

1X

l>k

q.k/l e� 2als
c C

X

mCn�k

r.k/m;ne�
2.amCbn/s

c

!
Oh0.s/;

(8)

p.k/l ; q
.k/
l ; r

.k/
m;n being the corresponding coefficients. Using the inverse Laplace

transform

L�1 fe�˛s Og.s/g D H.t � ˛/g.t � ˛/; (9)

H.t/ being the Heaviside step function, we obtain

hk.t/ D .�1/kh0.t � 2ak=c/H.t� 2ak=c/C h0.t � 2bk=c/H.t� 2bk=c/

C
1X

l>k

p.k/l h0.t � 2bl=c/H.t � 2bl=c/C
1X

l>k

q.k/l h0.t � 2al=c/H.t� 2al=c/

C
X

mCn�k

r.k/m;nh0.t � 2.amC bn/=c/H.t� 2.amC bn/=c/:

Now if we choose our time window such that T � 2k min
˚

a
c ;

b
c

�
, then hk.t/ D 0, and

therefore one more iteration produces the desired solution on the entire domain. ut
Using Ga

b.s/ from Lemma 1, we can also rewrite (6) in the form

Owk.s/ D ˚.1� 4�/� � �Ga
b.s/CGb

a.s/
��k Ow0.s/; k D 1; 2; : : : ; (10)

and we see that for NNWR, the choice � D 1
4

removes the linear factor.

Theorem 3 (Convergence of NNWR, Asymmetric Decomposition) Let � D 1
4
.

Then the NNWR algorithm converges in at most kC1 iterations for two subdomains
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of lengths a ¤ b, if the time window length T satisfies T=k � 4min fa=c; b=cg, c
being again the wave speed.

Proof With � D 1
4

we obtain from (10) with a similar calculation as in (8)

Owk.s/ D
�
�1
4

�k 

Ga

b.s/C Gb
a.s/

�k Ow0.s/ D
"
�
1X

mD1

�
e� 4ams

c C e� 4bms
c

�

C
1X

mD1

1X

nD1
.�1/n�1

�
e�

2.amCbn/s
c Ce�

2.anCbm/s
c

�#k

Ow0.s/ D .�1/ke�
4aks

c Ow0.s/

C
2

4.�1/ke� 4bks
c C

0

@
1X

l>k

d.k/l e� 4als
c C

1X

l>k

z.k/l e� 4bls
c C

X

mCn�2k

j.k/m;ne�
2.amCbn/s

c

1

A

3

5 Ow0.s/;

where d.k/l ; z
.k/
l ; j

.k/
m;n are the corresponding coefficients. Now we use (9) to back

transform and obtain

wk.t/ D .�1/kw0.t � 4ak=c/H.t� 4ak=c/C .�1/kw0.t � 4bk=c/H.t � 4bk=c/

C
1X

l>k

d.k/l w0.t � 4al=c/H.t� 4al=c/C
1X

l>k

z.k/l w0.t � 4bl=c/H.t� 4bl=c/

C
X

mCn�2k

j.k/m;nw0.t � 2.amC bn/=c/H.t� 2.amC bn/=c/:

So for T � 4k min
˚

a
c ;

b
c

�
, we get wk.t/ D 0, and the conclusion follows. ut

4 Numerical Experiments

We perform now numerical experiments to measure the actual convergence rate of
the discretized DNWR and NNWR algorithms for the model problem

@ttu � @xxu D 0; x 2 .�3; 2/; t > 0;
u.x; 0/ D 0; ut.x; 0/ D xe�x; � 3 < x < 2; (11)

u.�3; t/ D �3e3t; u.2; t/ D 2e�2t; t > 0;

with ˝1 D .�3; 0/ and ˝2 D .0; 2/, so that a D 3 and b D 2 in (4, 5, 6). We
discretize the equation using the centered finite difference in both space and time
(Leapfrog scheme) on a grid with x D t D 2�10�2. The error is calculated by
ku � ukkL1.0;TIL2.˝//, where u is the discrete monodomain solution and uk is the
discrete solution in kth iteration.
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Fig. 1 Convergence of DNWR for various values of � and T D 16 on the left, and for various
lengths T of the time window and � D 1
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Fig. 3 Comparison of DNWR, NNWR, and SWR for T D 4 on the left, and T D 10 on the right

We test the DNWR algorithm by choosing h0.t/ D t2; t 2 .0;T� as an initial
guess. In Fig. 1, we show the convergence behavior for different values of the
parameter � for T D 16 on the left, and on the right for the best parameter � D 1

2

for different time window length T. Note that for some values of � (> 0:7) we get
divergence. For the NNWR method, with the same initial guess, we show in Fig. 2
on the left the convergence curves for different values of � for T D 16, and on the
right the results for the best parameter � D 1

4
for different time window lengths T.

We finally compare in Fig. 3 the performance of the DNWR and NNWR
algorithms with the Schwarz Waveform Relaxation (SWR) algorithms from [5]
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with and without overlap. We consider the same model problem (11) with Dirichlet
boundary conditions along the physical boundary. We use for the overlapping
Schwarz variant an overlap of length 24x, where x D 1=50. We observe that
the DNWR and NNWR algorithms converge as fast as the Schwarz WR algorithms
for smaller time windows T. Due to the local nature of the Dirichlet-to-Neumann
operator in 1d [5], SWR converges in a finite number of iterations just like DNWR
and NNWR. In higher dimensions, however, SWR will no longer converge in a finite
number of steps, but DNWR and NNWR will [7].

5 Conclusions

We introduced the DNWR and NNWR algorithms for the second order wave equa-
tion, and analyzed their convergence properties for the 1d case and a two subdomain
decomposition. We showed that for a particular choice of the relaxation parameter,
convergence can be achieved in a finite number of steps. Choosing the time window
length carefully, these algorithms can be used to solve such problems in two
iterations only. For a detailed analysis for the case of multiple subdomains, see [7].
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Binned Multilevel Monte Carlo for Bayesian
Inverse Problems with Large Data

Robert N. Gantner, Claudia Schillings, and Christoph Schwab

1 Introduction

In recent years, various methods have been developed for solving parametric opera-
tor equations, mainly focusing on the estimation of parameters given measurements
of the parametric solution, subject to a stochastic observation error model. A second
objective is prediction of a “most likely” response of the parametric system given
noisy measurements. The Bayesian approach to such inverse problems for partial
differential equations (PDEs for short) has been the focus of numerous papers
[7–10] and will be considered here. For multiple data points, averaging is often
done with a standard Monte Carlo approach. We consider here the case where
computational resources are limited and develop a multilevel Monte Carlo method
(MLMC) achieving an error of the same order while requiring less work [1, 2, 5, 6].

2 Bayesian Inversion of Parametric Operator Equations

We assume an operator equation depending on a distributed, uncertain “parameter” u
with values in a separable Banach space X. It takes the form of the operator equation

Given u 2 QX � X; find q 2 X W A.uI q/ D F.u/ in Y 0 ; (1)
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where we denote by X and Y two reflexive Banach spaces over R with (topo-
logical) duals X 0 and Y 0, respectively and A.uI �/ 2 L .X ;Y 0/. Assuming that
the forcing function F W QX 7! Y 0 is known, and the uncertain operator A.uI �/ W
X 7! Y 0 is locally boundedly invertible for uncertain input u in a sufficiently
small neighborhood QX, let the uncertainty-to-observation map G W QX 7! R

K have
the structure

X � QX 3 u 7! G .u/ WD O.G.uIF// 2 R
K : (2)

Here, QX 3 u 7! q.u/ D G.uIF/ 2 X denotes the (noise-free) response of the
forward problem for a given instance of u 2 QX and O a bounded linear observation
operator O 2 L .X ;RK/; K < 1. The goal of computation is assumed to be the
low-order statistics of a quantity of interest (QoI) given noisy observational data ı
of the form

ı D G .u/C 	 ; (3)

where ı represents the observation of G .u/ perturbed by the noise 	, a random
variable with given statistical properties. We restrict ourselves to the case where
the measurement error is Gaussian and the covariance matrix symmetric positive
definite, i.e. 	 � N .0; 
 / with 
 2 R

K�K
spd .

We work in the following under the assumption that the uncertainty u admits a
parametric representation of the form

u D u.y/ WD hui C
X

j2J
yj j 2 X

for some “nominal” value hui 2 X of the uncertain datum u, a countable sequence
. j/j2J of X with J WD f1; : : : ; Jg; J < 1 or J D N and for some coefficient
sequence y D .yj/j2J (after possibly rescaling the fluctuations) in the reference
domain U D Œ�1; 1�J D N

j2JŒ�1; 1� with unconditional convergence. We assume
y to be a random variable on the countable product probability space .U;B.U/; �0/
with U as above and with �0.dy/ D Q

j2J 12�
1.dyj/. This also makes ı a random

variable; for a fixed value of y, (3) gives an expression for ı.y/, denoted by
ıjy.

In general, our aim is to compute the “most likely” value of a QoI over all
realizations of u, with the QoI defined as a function � W U ! S mapping from
the parameter space U to some Banach space S . Bayes’ theorem characterizes
this value as the mathematical expectation with respect to a probability measure �0
(the “Bayesian prior”) on U which we choose as a countable product of uniform
measures. In particular, we consider in what follows � D G, and S D X the
response of the system. To this end, we use Bayes’ Theorem to obtain an expression
for yjı, as in [9, 10].
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Theorem 1 (Bayes’ Theorem) Let G
ˇ̌
ˇ
uDhuiCPj2J yj j

W U ! R
K be bounded and

continuous. Then, �ı.dy/, the distribution of yjı, is absolutely continuous with
respect to �0.dy/, and

d�ı.y/
d�0.y/

D 1

Zı
exp

�
�1
2
jjı � G .y/jj2


�

with Zı WD
R

Uexp .�˚.yI ı// �0.dy/ > 0 ; kık2
 D ı>
 �1ı:
In the Bayesian setting, the distribution d�0.y/ is called the prior distribution and
is assumed to be known and easily computable. Thus, we can write our desired
expectation as an integral over the prior measure �0:

E
�ı Œ�� D

Z

U
�.y/ �ı.dy/ D 1

Zı

Z

U
�.y/ exp

�
�1
2
jjı � G .y/jj2


�
�0.dy/ DW Z0ı

Zı
:

(4)

This formulation of the expectation E
�ı Œ�� is based on just one measurement ı.

For a given model for the measurement errors 	, we would like to additionally
compute the expectation over all errors. Assuming that the perturbations 	 are
normally distributed as above, this can be written as an expectation with respect to
the measure �K


 .	/, the K-variate Gaussian measure with covariance 
 > 0. Here,
and throughout, we assume the observation noise 	 to be statistically independent
from the uncertain parameter u in (1). This yields the total expectation of the QoI
� in terms of Z0ı and Zı as

E
�K



h
E
�ı Œ��

i
D
Z

RK

Z0ı
Zı

ˇ̌
ˇ̌
ıDG .y0/C	

�K

 .d	/ ; (5)

where G .y0/ denotes the observation at the unknown, exact parameter y0.
In practice, we are given a set of measurements  WD fıi; i D 1; : : : ;Mg

with which this outer expectation should be approximated. The measurements can
be taken at different positions, i.e. with respect to different observation maps Oi

in (2). In the derivations below, we consider the notationally more convenient case
where the measurements are all obtained using the same observation map. We do,
however, impose the restriction that the measurements are homoscedastic, i.e. ıi

is Gaussian with the same covariance 
 for all i D 1; : : : ;M. In Sect. 4, we will
approximate the outer expectation in (5) by a multilevel Monte Carlo averaging
approach.
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3 Approximation of Posterior Expectation

A first simplification of (5) is achieved by replacing the inner expectation over the

posterior distribution �ı by an approximation E�
ı

�L Œ�� with tolerance parameter �L >

0. We assume that the following bound holds for the considered QoI �:

E�
ı

Œ�� � E�
ı

�L
Œ��

X
� �L : (6)

Our method of choice is the adaptive Smolyak algorithm developed in [7], which
adaptively constructs a sparse tensor quadrature rule that approximates Zı and Z0ı .
More precisely, the results in [7, 8] ensure existence of a monotone index set� with

E�
ı

Œ�� � E�
ı

�L
Œ��

X
� CSM


 N
�. 1p�1/
L ; (7)

where NL is the cardinality of the index set � assuming that the forward solution
map U 3 y 7! q.y/ is .b; p; �/-analytic for some 0 < p < 1 and � > 0, i.e. Instance
well-posedness of the forward problem:

for each instance y 2 U, there exists a unique realization u.y/ 2 QX � X of
the uncertainty and a unique solution q.y/ 2 X of the forward problem (1)
satisfying kq.y/kX � C0 for all y 2 U.

(b; p; �) Analyticity:

There exists a 0 � p � 1 and a positive sequence b D .bj/j2J 2 `p.J/ such that
for every sequence 
 D .�j/j2J of poly-radii �j > 1 with

P
j2J.�j� 1/bj � 1� �,

the solution map U 3 y 7! q.y/ 2X admits an analytic continuation to the open
poly-ellipse E� WDNj2J E�j � C

J and satisfies kq.z/kX � C�.
/; 8z 2 E
 .

The concept of .b; p; �/-analyticity allows to analyze the regions of analyticity E� of
the solution in each parameter and exploit the anisotropic smoothness of the problem
reflected by the poly-radii 
. Sufficient conditions on the .b; p; �/-analyticity of the
forward problem (1) are given in [4, 8]. The results presented in [7, 8] suggest
dimension robust convergence rates of the form (7) for adaptive Smolyak-based
quadrature algorithms using a greedy-type approach to construct the monotone
index set. The underlying quadrature points are symmetrized Léja sequences (see
[3] and the references therein for more details), which allow us to relate the number
of quadrature points to the prescribed tolerance �L as follows.

Proposition 1 The work required for the evaluation of the adaptive Smolyak
approximation up to the tolerance � > 0 based on symmetrized Léja quadrature

is bounded by C.
 /�� log2 3�. 1p�1/�1 with C.
 / > 0 independent of � .

Proof For a multiindex � in a monotone index set �N with #�N � N, the bound
#fi 2 J W � ¤ 0g � blog2 Nc holds as argued in the proof of Lemma 5:4 in [7].
A worst case bound can be derived by considering an isotropic refinement in the
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first blog2 Nc dimensions, i.e. it holds for the maximal number of quadrature points
M � 3log2 N D Nlog2 3. Equating (7) to � , solving for N and inserting into the above
yields the claimed bound on the number of quadrature points.

Remark 1 Note that the result derived in Proposition 1 is based on a worst case
bound on the number of quadrature points arising in the case of isotropic refinement.

4 Binned Multilevel Monte Carlo

In this section, we formulate our method for combining M realizations of ı,  D
fıi W i D 1; : : : ;Mg to compute an approximation to

E
�K



h
E
�ı Œ��

i
D
Z

RK

1

Zı

Z

U
�.y/ exp

�
�1
2
jjı � G .y/jj2


�ˇ̌
ˇ̌
ıDG .y0/C	

�0.dy/ �K

 .d	/ :

(8)

Our approach is based on the multilevel Monte Carlo method originally applied by
Heinrich [6] and Giles [5] and, in the current form, by Barth et al. [2].

Formulation of the Binned MLMC Algorithm We interpret the approximation

E�
ı

�L Œ�� obtained by the method explained in Sect. 3 as corresponding to a discretiza-
tion level L and write it as a telescopic sum over the levels ` D 0; : : : ;L. Using the

convention E�
ı

�
�1 D 0, we obtain the exact reformulation

E�
ı

�L
Œ�� D

LX

`D0

�
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
�
: (9)

Inserting this back into (8) and applying the linearity of the expectation yields

E
�K



"
LX

`D0

�
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
�#
D

LX

`D0
E
�K



h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i
:

Replacing the expectations on each level by a sample mean over a level-dependent
number of samples M` yields a full approximation to (8),

E
�K



ML;LŒE
�ı

�L
Œ��� WD

LX

`D0
E
�K



M`

h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i
; (10)

where we denote by EMŒY� the standard Monte Carlo estimator for realizations OYi of
a random variable Y W ˝ ! S, given by EMŒY� D 1

M

PM
iD1 OYi.
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A crucial aspect of this formulation is the choice of the number of samples per
level .M`/

L
`D0 and the tolerances per level .�`/L`D0. Since the total number of samples

is fixed, a natural approach is to make an ansatz for M` and then choose �` optimally.

Number of Samples Per Level Thinking of the levels ` D 0; : : : ;L as “bins”
containing measurements over which we wish to average, we distribute the samples
according to the ansatz M` D bL�`C1 with b 2 N; b > 1. The analysis presented
can also be generalized to the case b 2 R; b > 1. The total number of samples isPL

`D0 bL�`�1, which we assume to be the given number of measurements M.

Error Bounds For the computation of the error, we consider the Gaussian proba-
bility space .˝;B.˝/; �K


 / and the random variable 	. The approximation of the
inner expectation is an X -valued random variable whereas the full expectation is in

X . Clearly, E�
ı

�` Œ�� 2 L2.˝IX / and the error of (10) in the L2.˝IX / norm can
be bounded by

E�
K



h
E
�ı Œ��

i
�E

�K



ML;LŒE
�ı

�L
Œ���


L2.˝IX /

�
E�

K



h
E
�ı Œ��

i
�E�K




h
E�

ı

�L
Œ��
i

L2.˝IX /

C
E

�K



h
E�

ı

�L
Œ��
i
�

LX

`D0

E
�K



M`

h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i

L2.˝IX /

: (11)

Since the first term on the right in (11) already contains the expectation with respect

to �K

 , we simply obtain the discretization error from (6), kE�ı Œ���E�

ı

�L Œ��kX � �L.
Inserting an expansion analogous to (9) into the second term of (11) yields



LX

`D0

�
E
�K



h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i
� E

�K



M`

h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i�

L2.˝IX /

�
LX

`D0

E�
K



h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i
� E

�K



M`

h
E�

ı

�`
Œ�� � E�

ı

�`�1
Œ��
i

L2.˝IX /
:

For each summand above, we use the standard Monte Carlo error bound that holds

for any M 2 N, Y 2 L2.˝IX /, i.e. kEŒY� � E
�K



M ŒY�kL2 .˝IX / � 1p
M
kYkL2.˝IX /:

Combining this with the given bound (7) as follows

E�
ı

�`
Œ�� � E�

ı

�`�1
Œ��


L2.˝IX /
D E

�K



�E�
ı

�`
Œ�� � E�

ı

�`�1
Œ��

2

X

	 1
2

�

E
�K



��E�
ı

�`
Œ���E�ı Œ��


X
C
E�

ı

Œ���E�
ı

�`�1
Œ��

X

�2	 1
2

� C`�`CC`�1�`�1 ;
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and using ��1 D 0, we obtain a total sampling error bound of

E�
K



h
E�

ı

�L
Œ��
i
� E

�K



ML;LŒE
�ı

�L
Œ���


L2.˝IX /

�
LX

`D1

M
�

1
2

` .C`�` C C`�1�`�1/C C0M
�

1
2

0 :

Combined with the discretization error, the total error is then bounded by

etot � �L C
LX

`D1
M
� 1
2

` .C`�` C C`�1�`�1/C C0M
� 1
2

0 : (12)

Theorem 2 (Optimal Tolerances) Given the sample distribution M` D bL�`C1,
the optimal tolerances for the inner expectation that minimize the total work bound
at given error are

�` D M
� 1
2

0

C.s; b;L/

�
M`

D`

� 1
sC1

; 0 � ` � L ;

for a constant C.s; b;L/ and M�1 D D�1 D 0, D0 D C0M
�1=2
1 , DL D CL.1 C

M�1=2L / and for 0 < ` < L, D` D C`.M
�1=2
` CM�1=2`C1 /.

Proof The optimization problem we consider is the minimization of the total work
subject to the constraint that the discretization and sampling errors are equilibrated,

min
LX

`D0
M`w` s.t. �L C

LX

`D1

C`�` C C`�1�`�1p
M`

D C0p
M0

;

where w` � ��s
` , s > 0 denotes the work on level ` (for the Smolyak approach

mentioned above, we use s D . 1p � 1/�1). Using Lagrange multipliers, one can
impose the necessary condition that the partial derivatives of the Lagrange function
L .�0; : : : ; �L; �/ D PL

`D1 M`
1
� s
`
C �

�
�L C PL

`D0
�`C�`�1p

M`
� C0p

M0

�
vanish in the

optimum.

A straightforward calculation reveals that the total work when using M samples
and the tolerances from above is bounded for 0 < s < 2 and a constant C.s; b/ by
WL

tot � C.s; b/M�wL; � D 2�s
2.sC1/ 2 .0; 1/: A slightly more involved computation

yields an optimal error versus work relationship with exponent �1=2, independent

of s, given by etot � C.s; b/
�
WL

tot

��1=2
.
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5 Numerical Experiment

As a model problem of the abstract, .b; p; �/-analytic operator equation described
in Sect. 2 we consider the diffusion equation �r � .urp/ D 100x in D WD Œ0; 1�,
p D 0 on @D with stochastic diffusion coefficient u modeled as a random field
described by u D u.y/ WD hui CP64

jD1 yj j 2 X with constant mean hui D 1,

parameters y D .yj/
64
jD1 2 U WD Œ�1; 1�64 and basis functions  j D 0:9

j3
�Dj ; Dj D

Œ j�1
64
; j
64
/ describing the fluctuations and X D [64jD1C0.Dj/. The problem is solved by

a finite element approach with piecewise linear basis functions on a uniform mesh.
The meshwidth is h D 2�14 to avoid discretization error effects. Given a noisy
measurement with 	 � N .0; 1/, our goal is to evaluate the conditional expectation
E
�ı Œ�� of the QoI �.u/ D G .u/. The observation operator O consists of the system

response at the point x1 D 0:5 (note that here S D R).
For MLMC, the maximal level was chosen by numerically observing that (12)

is convex in L and increasing the value of L until the error bound stops decreasing.
For each L, b is computed such that

PL
`D0 M` D M is satisfied. The reference

solution is computed to high accuracy using 96-point Gauss-Hermite quadrature.
The numerical results are summarized in Fig. 1.

Fig. 1 Convergence of L2 error approximation ERŒjE�
1
1

ML;LŒE
�ı

�` Œ��� � E
�11 ŒE�

ı
Œ���j2� 12 with R D

200 vs. the work, which is assumed proportional to the number of forward evaluations. The
theoretically computed rates are �1=3 for Monte Carlo (MC) and �1=2 for multilevel Monte
Carlo (MLMC). The number of measurements were M D 16; 64; 256; 1024; 4096; 16;384 and all
tolerances were scaled with C D 0:1. For MLMC, the first point is not used in computing the
slope, as L D 0 which corresponds to a MC simulation
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6 Conclusion

Assuming a given set of measured responses of a forward problem, a multilevel
Monte Carlo averaging method was derived by computing optimal values of forward
map evaluation tolerances on each level. Numerical results based on Bayesian
inversion of a parametric diffusion equation confirm the analytically derived optimal
convergence rate of the error with respect to the work.
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Optimized Schwarz Method for the
Fluid-Structure Interaction with Cylindrical
Interfaces

Giacomo Gigante and Christian Vergara

1 Introduction

The Optimized Schwarz Method (OSM) is a domain decomposition method based
on the introduction of generalized Robin interface conditions obtained by linearly
combining the two physical interface conditions through the introduction of suitable
symbols, and then on the optimization of such symbols within a proper subset, see
[10, 13]. This method has been considered so far for many problems in the case of
flat interfaces, see, e.g., [3, 5–7, 11, 16, 17]. Recently, OSM has been considered and
analyzed for the case of cylindrical interfaces in [8, 9], and for the case of circular
interfaces in [2]. In particular, in [8] we developed a general convergence analysis
of the Schwarz method for elliptic problems and an optimization procedure within
the constants, with application to the fluid-structure interaction (FSI) problem.

In this work, we provide a numerical study of the performance of the optimization
procedure developed in [8] for the FSI problem when the solution is characterized by
non-null angular frequencies, thus breaking the radial symmetry. The reported 3D
numerical results for a cylindrical domain showed the effectiveness of the procedure
proposed in [8] also in such a case.

G. Gigante
Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università
di Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy
e-mail: giacomo.gigante@unibg.it

C. Vergara (�)
MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133
Milan, Italy
e-mail: christian.vergara@polimi.it

© Springer International Publishing Switzerland 2016
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXII, Lecture Notes in Computational Science
and Engineering 104, DOI 10.1007/978-3-319-18827-0_53

521

mailto:giacomo.gigante@unibg.it
mailto:christian.vergara@polimi.it


522 G. Gigante and C. Vergara

The outline of this paper is as follows. In Sect. 2 we report the convergence result
developed in [8] with application to the FSI problem, whereas in Sect. 3 we describe
the optimization procedure. Finally, in Sect. 4 we show the numerical results.

2 Convergence Analysis

We consider the interaction between an incompressible, inviscid and linear fluid in
the cylindrical domain ˝f WD f.x; y; z/ 2 R

3 W x2 C y2 < R2g, for a given R 2 R
C,

and a linear elastic structure described by the wave equation in the cylindrical crown
˝s WD f.x; y; z/ 2 R

3 W R2 < x2 C y2 < .RC H/2g, with H the structure thickness.
The two subproblems interact at the common cylindrical interface˙R D f.x; y; z/ 2
R
3 W x2 C y2 D R2g. We also introduce the cylindrical variables r; ' defined by

x D r cos' and y D r sin '. After the time discretization obtained with a BDF1
scheme for both subproblems, the coupled problem at time tnC1 WD .nC 1/t, t
being the time discretization parameter, reads

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�f ıtuCrp D 0 in ˝f ;

r � u D 0 in ˝f ;R1
�1

R 2�
0 jp .r cos'; r sin'; z/j d'dz bounded as r! 0C;

u � n D ıt� � n on ˙R;

�pn D �r� n on ˙R;

� � n D 0 on ˙R;

�sıtt� � �4� D 0 in ˝s;

�ST�C �r� n D Pext n on ˙out;

(1)

where �f and �s are the fluid and structure densities, � the square of the wave
propagation velocity, ıtw WD w�wn

t ; ıttw WD ıtw�ıtwn

t , ˙out D f.x; y; z/ 2 R
3 W

x2 C y2 D .RC H/2g, n is the unit vector orthogonal to the interfaces, and we have
omitted the time index nC 1. Problem (1)1�3 is the fluid problem, problem (1)7�8
is the structure problem equipped with a Robin condition at the external surface to
model the elastic surrounding tissue, Pext is the external pressure, whereas (1)4�6 are
the coupling conditions at the FS interface, stating the continuity of the velocities
and of the tractions along the normal direction. The fluid and the structure problems
have to be completed with initial conditions and with the assumption of decay to
zero for jzj ! 1.

By combining linearly (1)4 and (1)5 through the introduction of the linear
operators Sf and Ss acting in the tangential direction to˙R, we obtain the following
generalized Robin interface conditions (see [8])

8
<̂

:̂

Sft ıtur � p D Sf

t
	r C � @r	r;

Ss

t
	r C � @r	r D Sst ıtur � p;
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where ur D u �n and 	r D � �n, and where we have set to zero the terms at previous
time steps since we analyze the convergence to the zero solution. Then, at time tnC1,
the corresponding iterative Schwarz method reads:

Given u0; p0; 	0, solve for j � 0 until convergence

1. Fluid problem

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�f ıtujC1 CrpjC1 D 0 in ˝f ;

r � ujC1 D 0 in ˝f ;R1
�1

R 2�
0 jp .r cos'; r sin '; z/j d'dz bounded as r! 0C;

Sft ıtu
jC1
r � pjC1 D Sf

t
	j

r C � @r	
j
r on ˙RI

(2)

2. Structure problem

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�sıtt�
jC1 � �4�jC1 D 0 in ˝s;

�ST�jC1 C �r�jC1 n D 0 on ˙out;
Ss

t
	jC1

r C � @r	
jC1
r D Sst ıtu

jC1
r � pjC1 on ˙R;

�jC1 � n D 0 on ˙R;

(3)

where we have set to zero the forcing term Pext since we analyze the convergence to
the zero solution.

By introducing the Fourier transform with respect to z and ', and the symbols �f

and �s related to Sf and Ss, we can write the previous iterations with respect to the
variables .r;m; k/, where m is the discrete frequency variable related to the angular
variable ' and k is the continuous frequency variable related to z. Then, we have the
following

Proposition 1 Set

A.m; k/ D ��tˇ
�
K0m.ˇ R/ � � I0m.ˇ R/

�

Km.ˇ R/� � Im.ˇ R/
; B.m; k/ D � �f Im.kR/

t k I0m.kR/
; (4)

where I� and K� are the modified Bessel functions, see [12], ˇ.k/ D
q

k2 C �s
�t2

,

and

�.m; k/ WD �STKm .ˇ.RC H//C �ˇK0m.ˇ.RC H//

�STIm.ˇ.RC H//C �ˇI0m.ˇ.RC H//
: (5)

Then, the reduction factor of iterations (2)–(3) is given by

� j.m; k/ D �.m; k/ D
ˇ̌
ˇ̌ �f .m; k/� A.m; k/

�s.m; k/ � A.m; k/
� �s.m; k/ � B.m; k/

�f .m; k/ � B.m; k/

ˇ̌
ˇ̌ : (6)
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Moreover, for any given frequency .m; k/, the convergence set is given by�
�f ; �s

� 2 �1 .A;B/[�2 .A;B/, where

�1 .A;B/ D
n�
�f ; �s

� W �s < �f and
�
�f � ACB

2

� �
�s � ACB

2

�
<
�

B�A
2

�2o
;

�2 .A;B/ D
n�
�f ; �s

� W �s > �f and
�
�f � ACB

2

� �
�s � ACB

2

�
>
�

B�A
2

�2o
;

with A and B given by (4).

Proof See [8].

3 Optimization Procedure

From the previous results it follows that the reduction factor (6) is equal to zero
for �opt

f D A.m; k/ and �opt
s D B.m; k/, with A and B given by (4). However,

such choices are not implementable since they lead to non-local conditions. Then, a
classical approach is to find the best values of the interface symbols within a suitable
subset (Optimized Schwarz Method). In particular, in [8] it has been proposed to
look for the best symbols belonging to a properly chosen curve parametrized with
respect to a variable q 2 R, so that in fact we have a minimization problem over
q. Let K be the set of the admissible frequencies. Then, we introduce the following
quantities:

B D max
.m;k/2K

B .m; k/ ; A D min
.m;k/2K

A .m; k/ ; M D 1

2

�
AC B

�
;

D .m; k/ D 1

2
.A .m; k/ � B .m; k// ; M .m; k/ D 1

2
.A .m; k/C B .m; k// ;

Q .m; k/ D
ˇ̌
M .m; k/ �M

ˇ̌

D .m; k/
; Q D sup

.m;k/2K
Q .m; k/ ; N D inf.m;k/2K D .m; k/

sup.m;k/2K D .m; k/
:

We have the following

Theorem 1 Assume that A .m; k/ and B .m; k/ given by (4) are bounded on K; for
all .m; k/ 2 K. Let

�0 D max

8
<̂

:̂

 
1 �pN

1CpN

!2
I

0
B@
1 �

q
1 � Q

2

Q

1
CA

29>=

>;
:
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Then, for all .m; k/ 2 K, we have

O�.q;m; k/ D
ˇ̌
ˇ̌
ˇ

q � A .m; k/

2M � q � A .m; k/

2M � q � B .m; k/

q � B .m; k/

ˇ̌
ˇ̌
ˇ � �0; (7)

if and only if q 2 Œq�; qC� with

q� D M

C sup.m;k/2K

�
1C�0
1��0 D .m; k/ �

r�
M �M .m; k/

�2 C 4�0

.1��0/2 .D .m; k//
2

�
;

qC D M

C inf.m;k/2K

�
1C�0
1��0 D .m; k/C

r�
M �M .m; k/

�2 C 4�0

.1��0/2 .D .m; k//
2

�
:

Proof In [8], a proof of a general result holding for any A and B satisfying B <

A for all .m; k/ 2 K, and B < A, has been provided. Here, we notice that these
assumptions are automatically satisfied in our case. Indeed, first of all notice that
I; I0;K > 0 while K0 < 0, so that B < 0 for any .m; k/. As for A, we first observe
that

K0m .ˇR/� �I0m .ˇR/

Km .ˇR/� �Im .ˇR/
< 0

if and only if

K0m .ˇR/

I0m .ˇR/
< � <

Km .ˇR/

Im .ˇR/
;

which thanks to (5) becomes

K0m .ˇR/

I0m .ˇR/
<
�STKm .ˇ .RC H//C �ˇK0m .ˇ .RC H//

�STIm .ˇ .RC H//C �ˇI0m .ˇ .RC H//
<

Km .ˇR/

Im .ˇR/
: (8)

Since the denominators are positive, the first inequality becomes

�STK0m .ˇR/ Im .ˇ .RCH//C �ˇK0m .ˇR/ I0m .ˇ .RC H//

< �STI0m .ˇR/Km .ˇ .RC H//C �ˇI0m .ˇR/K0m .ˇ .RC H// :

Dividing by I0m .ˇR/K0m .ˇR/ < 0, we obtain

�ST

�
Im .ˇ .RCH//

I0m .ˇR/
� Km .ˇ .RC H//

K0m .ˇR/

�

> ��ˇ
�
�K0m .ˇ .RC H//

K0m .ˇR/
C I0m .ˇ .RC H//

I0m .ˇR/

�
;



526 G. Gigante and C. Vergara

and this inequality follows immediately, since

Im .ˇ .RC H//

I0m .ˇR/
> 0;

Km .ˇ .RC H//

K0m .ˇR/
< 0;

and

I0m .ˇ .RCH//

I0m .ˇR/
> 1;

K0m .ˇ .RC H//

K0m .ˇR/
< 1

(since I0m is positive and increasing, while K0m is negative and increasing). The second
inequality in (8) is treated similarly. ut

By comparing (7) with (6), we observe that moving along the line

�
�f D q
�s D �qC 2M;

q 2 Œq�; qC�, the reduction factor is guaranteed to be below a suitable value (�0).
This allows to choose properly the value of q in view of the numerical simulations.

4 Numerical Results

In [8] we studied the numerical performance of the proposed estimates for a real
fluid-structure interaction problem, inspired by haemodynamics, where the solution
was characterized by radial symmetry, thus to a null dominant angular frequency
m. In particular, we showed that in this case, the estimates provided by Theorem 1
allowed to choose effective values of the interface parameters.

Here we want to study some cases where the solution features non null dominant
angular frequencies. In particular, we considered the coupling between the incom-
pressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian
formulation, see [4], and the linear infinitesimal elasticity, see for example [15], and
we used a Robin-Robin partitioned procedure for its numerical solution, see [1, 14].
In all the numerical experiments, we used the BDF scheme of order 1 for both the
subproblems with a semi-implicit treatment of the fluid convective term. Moreover,
we used the following data: �f D 1 g/cm3; �s D 1:1 g/cm3; �ST D 3�106 dyne/cm3,
fluid viscosity � D 0:035 dyne/cm2, Poisson ratio � D 0:49, Young modulus
E D 3�106 dyne/cm2. All these data are inspired from haemodynamic applications.
We considered a cylinder with length L D 5 cm, partitioned in an inner cylinder
for the fluid problem with radius R D 0:5 cm, 4680 tetrahedra and 1050 vertices,
and an external cylindrical crown for the structure with thickness 0:1 cm and 1260
vertices. For the numerical discretization, we used P1bubble � P1 finite elements
for the fluid subproblem and P1 finite elements for the structure subproblem, and
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a time discretization parameter t D 0:001 s. The space discretization parameter
is h D 0:25 cm, so that the frequency k varies in the range Œ0:6; 12:5�. In all the
numerical experiments we prescribed the pressure Pin D 1000 dyne/cm2 at the inlet.
All the numerical results have been obtained with the parallel Finite Element library
LIFEV developed at MOX—Politecnico di Milano, INRIA—Paris, CMCS—EPF
of Lausanne and Emory University—Atlanta.

We studied the following two cases, characterized by the following initial
conditions for the velocity u0z along the z direction:

1.

u0z .x; y/ D 103
�
x5 � 10x3y2 C 5xy4

�
cm/s D 103r5 cos.5'/ cm/s: (9)

In this case the leading frequency is m D 5 and therefore we apply Theorem 1
with m D 5 and 0:6 � k � 12:5, obtaining �0 D 0:05, provided that q 2
Œ6684; 9586�, with M D 3651;

2.

u0z.x; y/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

10
�
x2 C y2

� sin.10:5 arctan. y
x //

sin.0:5 arctan. y
x //

cm/s x > 0; y ¤ 0;
210x2 cm/s x > 0; y D 0;
10
�
x2 C y2

� cos.10:5 arctan. y
x //

cos.0:5 arctan. y
x //

cm/s x < 0;

�10y2 cm/s x D 0:

(10)

D 10r2
 
1C 2

10X

mD1
cos .m'/

!
cm/s:

This function is the Dirichlet kernel which is characterized by the fact that all
the frequencies m between 0 and 10 are equally distributed. We then apply
Theorem 1 with 0 � m � 10 and 0:6 � k � 12:5, obtaining �0 D 0:32,
provided that q 2 Œ1983; 7521�, with M D 1323.

Of course we prescribe a compatible initial condition for the displacement �

along the z direction.
In both the cases the solution is supposed to feature, at least for the first time

steps, the same leading frequencies as the initial condition, so that the application of
the estimates provided by Theorem 1 are supposed to lead to excellent convergence
properties. In particular, we run the numerical experiments for two time steps, that
is we set T D 0:002 s as the final instant.

In Fig. 1 we depict the computed velocity along the z direction after the first time
step.

We run the numerical simulations for a wide range of the parameter q. We found
that the optimal value is q D 9000 for the first case and q D 3000 for the second
case. In Table 1, we report the mean number of iterations for some of the couples of
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Fig. 1 Velocity along the z direction after the first time step. Left: case characterized by mD 5 as
the leading frequency; Right: Dirichlet kernel

Table 1 Values of the interface parameters and mean number of iterations over the two time steps
for the initial condition given by (9) (left) and by (10) (right)

�f =�s u0z given by (9) �f =�s u0z given by (10)

6684/618 24.5 1000/-1646 X

8000/�698 12.0 1983/663 9.5

9000/�1698 8.5 3000/�354 4.5

9586/�2284 8.5 5000/�2354 8.0

12000/-4698 10.0 7521/�4875 10.5

15000/-7698 13.5 10000/-7354 13.0

In bold the couples of �f and �s within the optimal range estimated by Theorem 1. X means that
no convergence has been achieved

the interface parameters used in the numerical simulations, some of them within the
range estimated by Theorem 1 and some of them outside such a range.

These numerical results show that the optimal value of q falls in both the
cases within the range estimated by Theorem 1 and that outside such a range the
convergence properties deteriorate. In particular, we observe that the performance
worsens faster going towards the left extreme of the optimal range. This could be
explained by looking at Figure 4, left, in [8], where it could be observed that the level
sets are denser for small values of �f and �s (that is of q), so that the performance is
more sensitive to small perturbation of q when q is small.

In conclusion, our results showed the effectiveness of the estimates provided in
[8] also when the dominant angular frequencies are different from zero.
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Ventcell Conditions with Mixed Formulations
for Flow in Porous Media

Thi Thao Phuong Hoang, Caroline Japhet, Michel Kern,
and Jean Roberts

1 Introduction

The Optimized Schwarz method has been introduced and analyzed over the
last decade, where the convergence speed of the Jacobi iteration is significantly
enhanced by using general transmission conditions on the interfaces together with
optimized parameters. In particular, Ventcell transmission conditions (see [3–6, 8–
10]) have been studied for the primal formulation with different numerical schemes
showing that the convergence of the Optimized Schwarz algorithm with Ventcell
conditions is improved over that with Robin conditions. Ventcell conditions are
second order differential conditions, see [12].

In this work, we study the Optimized Schwarz method with Ventcell conditions
in the context of mixed formulations, which is not as straightforward as in the
case of primal formulations and we have to introduce Lagrange multipliers on
the interfaces to handle tangential derivatives involved in those conditions. Two
dimensional numerical results for heterogeneous problems will be presented to
compare the performance of the Ventcell transmission conditions with that of the
Robin transmission conditions.
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2 A Model Problem and Domain Decomposition
with Ventcell Transmission Conditions

For an open, bounded domain ˝ � R
d .d D 2; 3/ with Lipschitz boundary @˝ ,

consider single phase flow in a porous medium written in mixed form:

div uuu D f in ˝;
KKK�1uuuCrp D 0 in ˝;

p D 0 on @˝;
(1)

where p is the pressure, uuu the Darcy velocity, f the source term and KKK a symmetric,
positive definite, time independent, hydraulic conductivity (or permeability) tensor.
For the sake of simplicity, we have imposed homogeneous Dirichlet condition on
the boundary, other types of boundary conditions can be treated similarly. The well-
posedness of problem (1) is well-known (see, e.g., [1, 2, 11]).

We consider a decomposition of˝ into two nonoverlapping subdomains,˝1 and
˝2, separated by an interface 
 :

˝1 \˝2 D ;I 
 D @˝1 \ @˝2 \˝; ˝ D ˝1 [˝2 [ 
:

Note that the same analysis can be extended to the case of many subdomains in
bands. For i D 1; 2, let nnni denote the unit, outward pointing, normal on @˝i, and
for any scalar, vector or tensor valued function  defined on ˝ , let  i denote the
restriction of  to ˝i. In order to write the Ventcell transmission conditions, we
use the notation r� and div� for the tangential gradient and divergence operators
on 
 respectively. We denote by KKKi;
 the tangential component of the trace of KKKi,
i D 1; 2; on 
 . A multidomain formulation equivalent to problem (1) is obtained by
solving in each subdomain the following problem

div uuui D f in ˝i;

KKK�1i uuui Crpi D 0 in ˝i;

pi D 0 on .@˝i \ @˝/ ;

for i D 1; 2; together with the transmission conditions

p1 D p2;
uuu1 � nnn1 C uuu2 � nnn2 D 0; on 
: (2)
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Under sufficient regularity, one may replace (2) by optimized Ventcell transmission
conditions, which were introduced and analyzed for primal formulations in [8, 9]:

�uuu1 � nnn1 C ˛1;2 p1 C ˇ1;2 div� .�KKK2;
 r�p1/ D �uuu2 � nnn1 C ˛1;2 p2C
ˇ1;2 div� .�KKK2;
r�p2/ on 
;

�uuu2 � nnn2 C ˛2;1 p2 C ˇ2;1 div� .�KKK1;
 r�p2/ D �uuu1 � nnn2 C ˛2;1 p1C
ˇ2;1 div� .�KKK1;
r�p1/ on 
;

(3)

where ˛i;j and ˇi;j; i D 1; 2; j D .3 � i/; are positive constants. The conditions (3)
are derived in such a way that they are equivalent to the original ones given in (2)
(cf. references above). These parameters are chosen to optimize the convergence
factor, see [3, 4, 8, 9].

3 A Multidomain Formulation in Mixed Form

In this section, we study Ventcell transmission conditions with mixed formulations.
In order to handle second order terms involved in (3), we introduce Lagrange
multipliers on the interface 
 : pi;
 ; i D 1; 2; representing the pressure trace pi on

 and a vector field uuu
;i WD �KKKj;
r�pi;
 ; i D 1; 2; j D .3� i/: We use the notation
uuu
;i instead of uuui;
 to insist that uuu
;i is not the tangential component of the trace of
uuui on the interface. In fact uuu
;i is used as an artificial tool for convergence purposes
(it does not have a particular physical meaning). We rewrite (3) defined on 
 as
follows, for i D 1; 2; j D .3� i/:

�uuui � nnni C ˛i;j pi;
 C ˇi;j div� uuu
;i D �uuuj � nnni C ˛i;j pj;


Cˇi;j div�
�
KKKj;
KKK�1i;
 uuu
;j

�
;

KKK�1j;
 uuu
;i Cr�pi;
 D 0:
(4)

The corresponding multidomain problem consists of solving in the subdomains the
problem, for i D 1; 2; j D .3 � i/:

div uuui D f in ˝i;

KKK�1i uuui Crpi D 0 in ˝i;

pi D 0 on .@˝i \ @˝/ ;
�uuui � nnni C ˛i;j pi;
 C ˇi;j div� uuu
;i D �uuuj � nnni C ˛i;j pj;


Cˇi;j div� .KKKj;
KKK�1i;
 uuu
;j/ on 
;
KKK�1j;
 uuu
;i Cr�pi;
 D 0 on 
;

pi;
 D 0 on @
:

(5)

This can be seen as a coupling problem between a d�dimensional PDE in the
subdomain ˝i and a .d � 1/-dimensional PDE on the interface 
 , and both PDEs
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are written in mixed form. Under a suitable regularity hypothesis the multidomain
problem (5) is equivalent to the monodomain problem (1). Details of the proof can
be found in [7, pp. 94–95].

3.1 Well-Posedness of the Ventcell Local Problem

For an open, bounded domain O � R
d .d D 2; 3/ with Lipschitz boundary

@O, consider the following elliptic problem written in mixed form with Ventcell
boundary conditions

div uuuO D fO in O;
KKK�1uuuO CrpO D 0 in O;

�uuuO � nnnC ˛p@O C ˇdiv� Quuu@O D f@O on @O;
QKKK�1@O Quuu@O Cr�p@O D 0 on @O;

(6)

where nnn is the unit, outward pointing, normal vector on @O, KKK.�/ 2 R
d2 and

QKKK@O.�/ 2 R
.d�1/2 are given, and ˛ and ˇ are positive constants.

In order to write the weak formulation of problem (6), we define the following
Hilbert spaces

M D ˚� D .�O; �@O/ 2 L2.O/ � L2.@O/
�
;

˙ D ˚vvv D .vvvO; Qvvv@O/ 2 L2.O/L2.O/L2.O/ � L2.@O/L2.@O/L2.@O/ W div vvvO 2 L2.O/ and

ˇdiv� Qvvv@O � vvvO � nnnj@O 2 L2.@O/
�
;

equipped with the norms

k�k2M D k�Ok2O C k�@Ok2@O;
kvvvk2˙ D kvvvOk2O C kdiv vvvOk2O C kQvvv@Ok2@O C kˇdiv Qvvv@O � vvvO � nnnj@Ok2@O;

where k � kO and k � k@O are the L2.O/ and L2.@O/-norms, respectively. We denote
by .�; �/O and .�; �/@O the inner products of L2.O/ and L2.@O/.

Next, define the following bilinear forms (recall that ˇ is a positive constant) on
˙ �˙ , ˙ �M and M �M respectively:

a.uuu;vvv/ D �KKK�1uuuO;vvvO
�
O C

�
ˇ QKKK�1@O Quuu@O; Qvvv@O

�

@O
;

b.uuu; �/ D .div uuuO; �O/O C
�
ˇdiv� Quuu@O � uuuO � nnnj@O; �@O

�
@O ;

c.p; �/ D .˛p@O; �@O/@O ;
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and the linear form defined on M by:

Lf .�/ D .fO; �O/O C .f@O; �@O/@O :

With these spaces and forms, the weak form of (6) can be written as follows:

Find .p;uuu/ 2 M �˙ such that

a.uuu;vvv/ � b.vvv; p/ D 0 8vvv 2 ˙;
�b.uuu; �/ � c.p; �/ D �Lf .�/ 8� 2 M:

(7)

Theorem 1 Assume that there exist positive constants K� and KC such that
&TKKK�1.�/& � K�j& j2, and jKKK.�/& j � KCj& j a.e. in O and 8& 2 R

d; and that

	T QKKK�1@O.�/	 � K�j	j2, and j QKKK@O.�/	j � KCj	j a.e. in @O and8	 2 R
d�1. If .fO; f@O/

is in M then there exists a unique solution .p;uuu/ 2 M �˙ of problem (7).

Proof The existence and uniqueness of the solution of (7) is a generalization of the
classical case (see [2, pp. 47–50]; [11, pp. 572–573]). See [7, pp. 96–98] for details
of the proof of Theorem 1.

3.2 An Interface Problem

In this subsection, we derive an interface problem associated with the multidomain
problem (5). With this aim, we define the Ventcell-to-Ventcell operator SVtV

i (note
that we have assumed sufficient regularity of the solution as in Sect. 2), which
depends on the parameters ˛i;j and ˇi;j, for i D 1; 2; and j D .3 � i/; as follows

SVtV
i W L2.
 / � L2.˝i/! L2.
 /

.#; f / 7�! SVtV
i .#; f / D �uuui � nnnjj
 C ˛j;i pi;
 C ˇj;i div� .KKKi;
KKK�1j;
 uuu
;i/;

where .pi;uuui; pi;
 ;uuu
;i/; i D 1; 2; is the solution of

div uuui D f in ˝i;

KKK�1i uuui Crpi D 0 in ˝i;

pi D 0 on .@˝i \ @˝/ ;
�uuui � nnni C ˛i;j pi;
 C ˇi;j div� uuu
;i D # on 
;

KKK�1j;
 uuu
;i Cr�pi;
 D 0 on 
;
pi;
 D 0 on @
:

(8)

The well-posedness of problem (8) is given by an extension of Theorem 1. The
interface problem, corresponding to the Ventcell transmission conditions (4), is
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defined by

#1 D SVtV
2 .#2; f /

#2 D SVtV
1 .#1; f /

on 
; (9)

or equivalently,

SVSVSV

�
#1
#2

�
D �V�V�V .f /; on 
; (10)

where

SVSVSV W L2.
 / � L2.
 / �! L2.
 / � L2.
 /�
#1

#2

�
7�!

�
#1 � SVtV

2 .#2; 0/

#2 � SVtV
1 .#1; 0/

�
;

and

�V�V�V W L2.
 / �! L2.
 / � L2.
 /

f 7�!
�
SVtV
2 .0; f /

SVtV
1 .0; f /

�
:

One can solve problem (10) iteratively using Jacobi iteration or a Krylov method
(e.g. GMRES, see for example [9]) the right hand side is computed (only once)
by solving problem (8) in each subdomain with # D 0; then for a given pair of
vectors .#1; #2/, the matrix vector product is obtained (at each iteration) by solving,
for i D 1; 2; subdomain problem (8) in ˝i with # D #i and with f D 0. If one
uses Jacobi iteration for solving (10), the resulting algorithm is equivalent to the
optimized Schwarz algorithm with Ventcell transmission conditions (see [4, 8]).

4 Numerical Results

We consider a domain˝ D .0; �/2 and its decomposition into two nonoverlapping
subdomains ˝1 D

�
0; �

2

� � .0; �/ and ˝2 D
�
�
2
; �
� � .0; �/. The permeability

is KKK D KIII isotropic and constant on each subdomain, where III is the 2D identity
matrix. We take K1 D 1=K and K2 D 1, where K D 1; 10 or 100. The exact
solution is p.x; y/ D cos.�x/ sin.�y/: For the spatial discretization, we use mixed
finite elements (with interface Lagrange multipliers) with the lowest order Raviart-
Thomas spaces on rectangles (see [2, 11]).
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Table 1 Number of iterations required to reach an error reduction of 10�6 in p and in uuu (in square
brackets) for different permeability ratios, and for different values of the discretization parameter h

K D 1 K D 10 K D 100

h Jacobi GMRES Jacobi GMRES Jacobi GMRES

�=50 15 Œ15� 10 Œ11� 11 Œ10� 9 Œ9� 7 Œ6� 7 Œ7�

�=100 17 Œ18� 11 Œ12� 11 Œ10� 9 Œ9� 7 Œ6� 7 Œ7�

�=200 21 Œ21� 13 Œ13� 11 Œ10� 9 Œ9� 7 Œ6� 7 Œ7�

�=400 25 Œ25� 14 Œ14� 11 Œ10� 10 Œ9� 7 Œ6� 8 Œ8�

�=800 29 Œ29� 15 Œ16� 13 Œ12� 10 Œ10� 7 Œ6� 8 Œ8�

Remark 1 In order to handle the discontinuous coefficients, we use the optimized,
weighted Ventcell parameters defined by

˛1;2 D K2˛; ˛2;1 D K1˛;

ˇ1;2 D K2ˇ; ˇ2;1 D K1ˇ:

The calculation of these parameters is done as in [3].

We first study the convergence behavior of the optimized Schwarz method with
the optimized weighted Ventcell parameters. To that purpose, we consider the error
equation, i.e. with f D 0 and homogeneous Dirichlet boundary conditions. We start
with a random initial guess on the interface and compute the error in the L2.˝/-
norm of the pressure p and of the velocity uuu. Table 1 gives the number of iterations
needed to reach an error reduction of 10�6 first in p and then in uuu (in square brackets)
as the mesh is refined. Both GMRES and Jacobi iterations are considered. For
homogeneous case .K D 1/, GMRES significantly improves the convergence speed
(by a factor of 2) and also the asymptotic results compared to the Jacobi iteration.
These results are consistent with those obtained with primal formulations in [4]
(where a finite difference scheme is used). As the ratio K increases, the number
of iterations is smaller and GMRES does not greatly accelerate the convergence
speed compared to Jacobi iterations. Also for large values of the contrast K, the
convergence rate of the algorithms with GMRES or Jacobi are almost independent
of the mesh size (since the optimized parameters play the role of a preconditioner).
This is also the case where a primal formulation and a finite volume method are
used (cf. [3]).

Next we verify the performance of the optimized parameters, computed by
numerically minimizing the continuous convergence factor. We take h D �=100, vary
˛ and ˇ, and compute the error in the velocity uuu after a fixed number of Jacobi
iterations for different permeability ratios. The results are shown in Fig. 1 for K D 1
(# iter D 20 iterations), K D 10 (# iter D 12 iterations) and K D 100 (# iter D 8

iterations) respectively. We see that, in all cases, the optimized weighted Ventcell
parameters (the red star) are located close to those giving the smallest error after the
same number of iterations.
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Fig. 1 Level curves for the error in the velocity (in logarithmic scale) after some fixed number of
Jacobi iterations for various values of the parameters ˛ and ˇ and for different permeability ratios
K. The red star shows the optimized parameters (Color figure online)
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Fig. 2 L2 error in the pressure p for K D 1 (top) and K D 100 (bottom): Jacobi (left) and GMRES
(right)
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Finally, we illustrate the improvement obtained using Ventcell transmission
conditions over the Robin conditions (i.e. ˇ D 0).

We consider the optimized 2-sided Robin parameters with ˛1;2 ¤ ˛2;1 and ˇ1;2 D
ˇ2;1 D 0. Figure 2 shows the error in the pressure versus the number of iterations
using Jacobi (on the left) and GMRES (on the right) for different diffusion ratios,
K D 1 and K D 100 respectively.

We see that for the homogeneous case (K D 1), with Jacobi iterations the
optimized weighted Ventcell converges significantly faster than the optimized 2-
sided Robin (by a factor of 2). As K increases, the optimized weighted Ventcell and
the optimized 2-sided Robin become comparable. With GMRES, the difference in
the convergence of the two types of optimized parameters becomes less significant,
especially for high diffusion ratios. These results are for a symmetric two subdomain
case with a conforming mesh, Ventcell transmission conditions may have a more
important effect on the convergence (compared with Robin transmission conditions)
when many subdomains and nonmatching grids are considered (cf. [10]).

Acknowledgement This work was supported by ANDRA, the French Agency for Nuclear Waste
Management.
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Mortar Methods with Optimized Transmission
Conditions for Advection-Diffusion Problems

Caroline Japhet and Yvon Maday

1 Introduction

In many practical applications in fluid dynamics, a very large range of scales
spanning many orders of magnitude are simultaneously present; one possibility to
perform an economical and accurate approximation of the solution is to use different
discretizations in different regions of the computational domain to match with the
physical scales. The mortar element method introduced in [3] allows such a use of
different discretizations in an optimal way in the sense that the error is bounded
by the sum of the subregion-by-subregion approximation errors without constraint
on the choice of the different discretizations. An extension to fluids is given in [1].
An alternative and simpler method, the New Interface Cement Equilibrated Mortar
(NICEM) method proposed in [6] and analyzed in [8] for an elliptic problem, allows
to optimally match Robin conditions on non-conforming grids. An extension to
Ventcel conditions is given in [9]. The main feature of this approach is that, on
each side of the interface, the jump of the Robin or Ventcel condition should be L2-
orthogonal to a well chosen finite element space on the interface (in that case there
is no master and slave sides, which makes the method simpler). Thus, it allows
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to combine different approximations in different subdomains in the framework of
optimized Schwarz algorithms which are based on optimized Robin or Ventcel
transmission conditions and lead to robust and fast algorithms (see [5, 7]).

In this paper we extend the NICEM method to advection-diffusion problems. For
simplicity we consider the case of Robin conditions.

We first introduce the problem at the continuous level: find u such that

	uCr � .aaau/� r � .�ru/ D f in ˝ (1)

u D 0 on @˝; (2)

where ˝ is a C1;1 (or convex polygon in 2D or polyhedron in 3D) domain of Rd,
d D 2 or 3, and f is given in L2.˝/. We consider a decomposition of ˝ into K

non-overlapping subdomains: ˝ D [K
kD1˝

k
, where ˝k; 1 � k � K are either

C1;1 or polygons in 2D or polyhedrons in 3D. We suppose that this decomposition
is geometrically conforming. Let nnnk be the outward normal from ˝k. Let 
 k;` WD
@˝k\@˝` denote the interface of two adjacent subdomains. An optimized Schwarz
algorithm with Robin transmission conditions for problem (1)–(2) is

	unC1
k Cr � .aaaunC1

k /� r � .�runC1
k / D f in ˝k

unC1
k D 0 on @˝k \ @˝

Bk;`.u
nC1
k / D Bk;`.un

`/ on 
 k;`

where .Bk;`/1	k;`	K;k 6D` is the Robin transmission operator on the interface between
subdomains˝k and ˝`: Bk;`' D �@nnn' � aaa�nnnk

2
' C ˛' with ˛ > 0 given. Following

the ideas in [6, 8], we need to introduce a new independent entity representing the
flux on the interface, in order to match the Robin conditions on non-conforming
grids, and thus the method is of Petrov Galerkin type.

In Sect. 2 we introduce the method at the continuous level. Then in Sect. 3, we
present the method in the non-conforming discrete case. The numerical analysis
is given in Sect. 4. In Sect. 5 we give the discrete algorithm. In Sect. 6 we show
simulations to illustrate the optimality of the method.

2 Definition of the Problem

The variational statement of problem (1)–(2) is: Find u 2 H1
0.˝/ such that

Z

˝

�
�ru � rv C .	C 1

2
r � aaa/uv C 1

2

�
.aaa � ru/v � .aaa � rv/u�

�
dx

D
Z

˝

fvdx; 8v 2 H1
0.˝/: (3)
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We suppose that � � �0 > 0 a.e. in˝ and 	C 1
2
r �aaa � 	0 > 0 a.e. in˝ . Therefore

problem (1)–(2) is coercive. We define the space H1�.˝k/ by

H1�.˝k/ D f' 2 H1.˝k/; ' D 0 over @˝ \ @˝kg:

In order to glue non-conforming grids with Robin conditions, denoting by v the
K-tuple .v1; : : : ; vK/, we introduce the following constrained space,

V D f.v; q/ 2
 

KY

kD1
H1�.˝k/

!
�
 

KY

kD1
H�1=2.@˝k/

!
;

vk D v` and qk D �q` over 
 k;`; 8k; `g:

The following result is an extension of Lemma 1 in [8]: problem (3) is equivalent to
the following one: Find .u; p/ 2 V such that

KX

kD1

Z

˝k

�
�ruk � rvk C .	C 1

2
r � aaa/ukvk C 1

2

�
.aaa � ruk/vk � .aaa � rvk/uk

��
dx

�
KX

kD1
H�1=2.@˝k/ < pk; vk >H1=2.@˝k/D

KX

kD1

Z

˝k
fkvkdx; 8v 2

KY

kD1
H1�.˝k/:

Being equivalent to the original problem, with pk D � @u
@nnnk
� aaa�nnnk

2
u over @˝k (recall

that f is assumed to be in L2.˝/ so that @u
@nnnk

actually belongs to H�1=2.@˝k/), this
problem is naturally well posed.

Let us describe the method in the non-conforming discrete case.

3 Non-conforming Discrete Formulation

We first introduce the discrete spaces. Each subdomain ˝k is provided with its

own mesh T k
h , such that ˝

k D [T2T k
h

T; 1 � k � K: For T 2 T k
h , let hT

be the diameter of T and h the discretization parameter: h D max1	k	K hk with
hk D maxT2T k

h
hT . We suppose that T k

h is uniformly regular and that the sets
belonging to the meshes are of simplicial type (triangles or tetrahedra). Let PM.T/
denote the space of all polynomials defined over T of total degree less than or
equal to M. The finite elements are of lagrangian type, of class C0. We define

on ˝k the spaces Yk
h D fvh;k 2 C0.˝k

/; vh;k jT 2 PM.T/; 8T 2 T k
h g and

Xk
h D fvh;k 2 Yk

h ; vh;k j@˝k\@˝ D 0g. The space of traces over each 
 k;` of elements

of Yk
h is denoted by Yk;`

h . With each interface 
 k;`, we associate a subspace QWk;`
h
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of Yk;`
h in the same spirit as in the mortar element method [3] in 2D or [2, 4] for a

P1-discretization in 3D.
More precisely, let T be the restriction to 
 k;` of the triangulation T k

h . In 2D,
T is one-dimensional with vertices xk;`

0 ; x
k;`
1 ; : : : ; x

k;`
n�1; xk;`

n and has two end points
xk;`
0 and xk;`

n . Then QWk;`
h is the subspace of Yk;`

h of elements that are polynomials of
degree � M � 1 over both Œxk;`

0 ; x
k;`
1 � and Œxk;`

n�1; xk;`
n �.

In 3D, we suppose that all the vertices of the boundary of 
 k;` are connected to
zero, one, or two vertices in the interior of 
 k;`. We denote by V , V0, @V the sets
of all the vertices of T , the vertices in the interior of 
 k;`, and the vertices on the
boundary of 
 k;` respectively. Let S.T / be the space of piecewise linear functions
with respect to T which are continuous on 
 k;` and vanish on its boundary. Then
S.T / D span f˚a W a 2 V0g where ˚a; a 2 V are the finite element basis functions.
For a 2 V , let �a WD fT 2 T W a 2 Tg denote the support of ˚a, Na WD fb 2
V0 W b 2 �ag, and N WD [a2@VNa. Let Tc be the set of triangles T 2 T which
have all their vertices on the boundary of 
 k;`. For T 2 Tc, we denote by cT the
only vertex of T that has no interior neighbor. Let Nc denote the vertices aT of N
which belong to a triangle adjacent to a triangle T 2 Tc. We introduce O̊a defined as
follows: O̊a WD ˚a; a 2 V0 n N ; O̊a WD ˚aC D P

b2@V\�a
Ab;a˚b; a 2 N n Nc,

and O̊a WD ˚aTC D
P

b2@V\�aT
Ab;aT˚b C ˚cT ; a D aT 2 Nc. The weights are

defined by : Ac;a C Ac;b D 1 and jT2;bjAc;a D jT2;ajAc;b, for all c 2 @V connected
to two interior nodes a and b, where T2;a (resp. T2;b) denote the adjacent triangle to
abc having a (resp. b) as a vertex and its two others vertices on @V . For all c 2 @V
connected to only one interior node a, the weights are Ac;a D 1 (see [4]). The space
QWk;`

h is then defined by QWk;`
h WD span f O̊a; a 2 V0g: Then QWk

h WD
Q
`; 
 k;` 6D; QWk;`

h .
We now define the discrete constrained space as follows:

Vh D f.uh; ph
/ 2

 
KY

kD1
Xk

h

!
�
 

KY

kD1
QWk

h

!
;

Z


 k;`
..; ph;k C ˛uh;k/ � .�ph;` C ˛uh;`// h;k;` D 0; 8 h;k;` 2 QWk;`

h ; 8k; `g:

The discrete problem is the following one: Find .uh; ph
/ 2 Vh such that

KX

kD1

Z

˝k

�
�ruh;k � rvh;k C .	C 1

2
r � aaa/uh;kvh;k

��
dx

C
KX

kD1

Z

˝k

�
1

2

�
.aaa � ruh;k/vh;k � .aaa � rvh;k/uh;k

��
dx

�
KX

kD1

Z

@˝k
ph;kvh;kds D

KX

kD1

Z

˝k
fkvh;kdx; 8vh D .vh;1; : : : vh;K/ 2

KY

kD1
Xk

h:

(4)
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4 Best Approximation Error

In this part we give best approximation results of .u; p/ by elements in

Vh (see [8]). We define for any p in
QK

kD1 L2.@˝k/ the norm kpk� 1
2 ;� D

.
PK

kD1
PK

`D1
`¤k

kpkk2
H

�

1
2

�

.
 k;`/

/
1
2 ; where k:k

H
�

1
2

�

.
 k;`/
stands for the dual norm of

H
1
2

00.

k;`/ (recall that H

1
2

00.

k;`/ is the interpolated space of index 1

2
between

H1
0.


k;`/ and L2.
 k;`/, see [10]).

Theorem 1 Let us assume that ˛h � c, for some small enough constant c. Then,
the discrete problem (4) has a unique solution .uh; ph

/ 2 Vh.

Assume that the solution u of (1)–(2) is in H2.˝/ \ H1
0.˝/, and uk D uj˝k 2

H2Cm.˝k/, with M� 1 � m � 0. Let pk;` D � @u
@nnnk
� aaa�nnnk

2
u on 
 k;`. Then, there exists

a constant c independent of h and ˛ such that

kuh � uk� C kph
� pk� 1

2 ;� � c.˛h2Cm C h1Cm/

KX

kD1
kukH2Cm.˝k/ (5)

C c.
hm

˛
C h1Cm/

KX

kD1

X

`

kpk;`k
H
1
2Cm

.
 k;`/
:

Moreover, if pk;` D � @u
@nnnk
� aaa�nnnk

2
u is in H

3
2Cm.
k;`/, with M � 1 � m � 0, then there

exists c independent of h and ˛ such that

kuh � uk� C kph
� pk� 1

2 ;� � c.˛h2Cm C h1Cm/

KX

kD1
kukH2Cm.˝k/ (6)

C c.
h1Cm

˛
C h2Cm/j log hj

KX

kD1

X

`

kpk;`k
H
3
2Cm.
 k;`/

5 Discrete Iterative Algorithm

The discrete algorithm to solve problem (4) is defined as follows: let .un
h;k; p

n
h;k/ 2

Xk
h � QWk

h be a discrete approximation of .u; p/ in ˝k at step n. Then, .unC1
h;k ; p

nC1
h;k / is

the solution in Xk
h � QWk

h of

Z

˝k

�
�runC1

h;k rvh;k C .	C 1

2
r � aaa/unC1

h;k vh;k C 1

2

�
.aaa � runC1

h;k /vh;k � .aaa � rvh;k/u
nC1
h;k

��
dx

�
Z

@˝k
pnC1

h;k vh;kds D
Z

˝k
fkvh;kdx; 8vh;k 2 Xk

h; (7)
Z


 k;`
. pnC1

h;k C ˛unC1
h;k / h;k;` D

Z


 k;`
.�pn

h;` C ˛un
h;`/ h;k;`; 8 h;k;` 2 QWk;`

h : (8)
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Using Lemma 2 in [8], we can prove the convergence of the iterative scheme

Theorem 2 Under the hypothesis of Theorem 1, the algorithm (7)–(8) is well posed
and converges in the sense that

lim
n�!1.ku

n
h;k � uh;kkH1.˝k/ C

X

`¤k

kpn
h;k;` � ph;k;`k

H
�

1
2

�

.
 k;`/
/ D 0; 1 � k � K:

6 Numerical Results

We consider a P1 finite element approximation. We study the numerical error
analysis for problem (4). We consider the initial problem with exact solution
u.x; y/ D x3y2 C sin.xy/, 	 D 1 and � D 0:01. The domain is the unit square
˝ D .0; 1/ � .0; 1/. We decompose ˝ into two non-overlapping subdomains with
meshes generated in an independent manner as shown on Fig. 1.

The subdomain problems are solved using a direct solver. To observe the
numerical error estimates for the discrete problem (4), one need to compute the
converged solution of the algorithm (7)–(8) regardless of the algorithm used to
compute it. Thus it is the solution at convergence of the algorithm (7)–(8) with a
stopping criterion on the residual (i.e. the jumps of Robin conditions) that must
be extremely small, e.g. smaller than 10�14. The Robin parameter ˛ is obtained
by minimizing the convergence factor (see [5, 7]). For cases 1 and 2 below, this
criterion is reached with an average of 40 and 45 iterations respectively (note that
with Ventcell conditions, the number of iterations is almost independent of h (see
[9]) and is 20 (case 1) and 26 (case 2). The error curves with Ventcell conditions are
almost the same as the one on Figs. 2 and 3). Note that the regularity of the normal
derivative of u along the interfaces enters most of the times in the frame of the error
estimate (6) that allows a larger range of choice for ˛, compatible with the above
chosen optimized choice.

Fig. 1 Non-conforming meshes: mesh 2 (on the left), and mesh 3 (on the right)
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Fig. 2 Case 1. Relative H1 error versus refinements for meshes 1–4
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Fig. 3 Case 2. Left: velocity field. Right: Relative H1 and L2 errors versus h for mesh 3

Case 1 In this test case we have considered a rotating velocity defined by:
aaa D .� sin.�.y � 1

2
// cos.�.x � 1

2
//; cos.�.y � 1

2
// sin.�.x � 1

2
///; and four

initial meshes: meshes 1–4 where meshes 2 and 3 are the nonconforming meshes
shown on Fig. 1, and mesh 1 (resp. mesh 4) is a conforming mesh obtained
as the union of the coarse (resp. fine) sub-meshes of meshes 2 and 3.Figure 2
shows the relative H1 error versus the number of refinement for these four
meshes, and the mesh size h versus the number of refinement, in logarithmic
scale. At each refinement, the mesh size is divided by two. The results of Fig. 2
show that the relative H1 error tends to zero at the same rate than the mesh
size, and this fits with the theoretical error estimates of Theorem 1. On the
other hand, we observe that the two curves corresponding to the non-conforming
meshes (meshes 2 and 3) are between the curves of the conforming meshes
(meshes 1 and 4). The relative H1 error for mesh 3 is smaller than the one
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corresponding to mesh 2, and this is because mesh 3 is more refined than mesh 2
in the subdomain where the solution steeply varies.

Case 2 We consider a velocity built up from sets of vortices such that their closest
neighbors rotate in the opposite directions [11], as shown on Fig. 3 (left): aaa D
0:32� .sin.4�x/ sin.4�y/; cos.4�y/ cos.4�x// :

On Fig. 3 (right) we plot the relative H1 error and the relative L2 error versus the
mesh size h, in logarithmic scale. We start from mesh 3 of Fig. 1 and then refine
successively each mesh by dividing the mesh size by two. The results show that the
relative H1 (resp. L2) error tends to zero at the same rate as the mesh size h (resp. h2).
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Augmented Lagrangian Domain Decomposition
Method for Bonded Structures

J. Koko and T. Sassi

1 Introduction

Domain decomposition methods are subject to a greater interest, due to obvious
implication for parallel computing. Non-overlapping methods are particularly well
suited for coupled problems through an interface as bonded structures (e.g. [4])
air/water flows (e.g. [2]), two-body contact problems (e.g. [6, 9]), etc. For these
coupled problems, the domain decomposition methods applied in a natural way,
since the sub-domains are already defined.

Two types of domain decomposition methods exist for bonded structures:
Lagrangian (dual) methods [1] and least-square methods [4, 7]. In Lagrangian
methods, the objective functional is the energy functional and the constraint is the
solution jump across the interface. In least-square methods, the original problem
is reformulated as a constrained minimization problem for which the objective
functional controls the solution jump across the interface. The constraints are the
partial differential equations stated in each sub-domain with suitable boundary
conditions. In a comparative study, Koko [8] shows that the least-square methods
solve twice as many linear systems than the dual methods. But both methods fail if
one of the subdomains allows rigid-body motions.
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The paper is organized as follows. In Sect. 2 we present the simplified model of
bonded structures. The Uzawa block relaxation domain decomposition algorithm is
described in Sect. 3. Some numerical experiments are carried out in Sect. 4.

2 Model Problem

We adopt the model problem described in [8]. To simplify, we present a model
problem with two subdomains. A generalization to more than two subdomains is
straightforward.

Consider a system of two isotropic elastic bodies each of which occupies, in the
reference configuration, a bounded domain˝i in R

2 (i D 1; 2) (Fig. 1). Both elastic
bodies are bonded along their common boundary S, assumed to be a nonempty
surface of positive measure. Hooke’s law is assumed for each elastic body, i.e.

� i
˛ˇ.ui/ D 2�i"˛ˇ.ui/C �itr.".ui//I2; ˛; ˇ D 1; 2;

where ".ui/ D .rui C ruT
i /=2, �i � 0 and �i > 0 denote Lamé constants. Let ui

be the displacement field of the body˝i. We set u D .u1; u2/ the displacement field
of the bonded structure and Œu� D .u1 � u2/jS the relative tangential displacement
along S. The simplified model of bonded structures we study in this paper can be
formulated as follows

� div� i.ui/ D fi in ˝i; (1)

ui D 0 on 
i D @˝i n S; (2)

� i.ui/ � ni D .�1/iKŒu� on S; (3)

where ni is the unit outward normal to˝i, and K is the second order bonding tensor
assumed to be symmetric and coercive with bounded coefficients. Equation (3) is
the transmission condition for u1 and u2. The domain decomposition algorithms
are (generally) parallel iterative procedures on (1)–(2) that tend to satisfy the
transmission condition (3).

Let us introduce the subspaces Vi D
˚
v 2 H1.˝i/I v D 0 on 
i

�
, V D V1 � V2

and the notations, for ui; vi 2 Vi

ai.ui; vi/ D
Z

˝i

� i.ui/".vi/ dx; (4)

Fig. 1 Bonded structure : ˝1

and ˝2 the sub-domains
(adherents), S the interface
(thin adhesive layer)

Ω1

Ω2

S
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.ui; vi/˝i D
Z

˝i

uivi dx and .ui; vi/
i D
Z


i

uivi d
i: (5)

With the above notations, the total potential energy of the simplified model of a
bonded structure we study is

F.v/ D J.v/C 1

2
.KŒv�; Œv�/S 8.v1; v2/ 2 V1 � V2 (6)

where

J.v/ D 1

2

2X

iD1
ai.vi; vi/ �

2X

iD1
.fi; vi/˝i :

The bonded structure problem can now be formulated as the following minimization
problem.

Find u 2 V such that

F.u/ � F.v/; 8v 2 V: (7)

The functional J is convex and coercive (see, e.g. [3]) on V . Since K is symmetric
and coercive, it follows that F is convex and coercive on V . Consequently, the
minimization problem (7) has a unique solution.

In the method proposed by Bresch and Koko [1], the objective functional is the
energy functional and the constraint is the solution jump across the interface. With
the use of the Lagrangian functional, the resulting domain decomposition algorithm
is of Uzawa type, precisely its conjugate gradient version. In the method proposed in
[4, 7], the original problem is reformulated as a constrained minimization problem
for which the objective functional controls the solution jump across the interface.
The constraints are the partial differential equations stated in each sub-domain with
suitable boundary conditions. Both methods fail if one of the subdomain allows
rigid-body motions.

3 Augmented Lagrangian Domain Decomposition

Let us introduce the auxiliary interface unknowns qi D vijS so that the energy
functional (6) becomes

F.v; q/ D J.v/C 1

2
.KŒq�; Œq�/S 8.v; q/ 2 V � H;

where H D L2.S/2. We then replace the unconstrained minimization problem (7) by
the following (equivalent) constrained minimization problem
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Find .u; p/ 2 V � H such that

F.u; p/ � F.v; q/ 8.v; q/ 2 V � H; (8)

ui D pi on S; i D 1; 2: (9)

With (8)–(9), we associate the augmented Lagrangian functional

Lr.v; qI�/ D F.v; q/C
2X

iD1

�
.�i; vi � qi/S C r

2
k vi � qi k2L2.S/

�
I (10)

where r > 0 is the penalty parameter. The saddle-point problem for the augmented
Lagrangian functional is

Find .u; p; �/ 2 V � H � H such that:

Lr.u; p; �/ � Lr.u; p; �/ � Lr.v; q; �/ 8.v; q; �/ 2 V � H � H (11)

The functional Lr is Gâteaux-differentiable on V �H �H, then the solution of (11)
is characterized by the saddle-point (Euler-Lagrange) equations of the primal and
dual problems as follows

Find .u; p; �/ 2 V � H � H such that

@Lr

@u
.u; p; �/ � v D 0; 8v 2 V; (12)

@Lr

@p
.u; p; �/ � q D 0; 8q 2 H (13)

@Lr

@�
.u; p; �/ � � D 0; 8� 2 H: (14)

Subdomain problems in u are uncoupled if the multipliers � and the coordination
variable p are known. We can use this property through a Uzawa algorithm
associated with a block relaxation method.

Uzawa block/relaxation methods have been used in nonlinear mechanics for
operator-splitting methods (see e.g. [5]). The idea is to minimize successively in
u and p, in block Gauss-Seidel fashion. Applying a Uzawa block relaxation method
to (12)–(14) we obtain the following algorithm, assuming p0 and �0

ukC1 D arg min
v

Lr.v; p
k; �k/; (15)

pkC1 D arg min
q

Lr.u
kC1; q; �k/; (16)

�kC1 D �k C r.ukC1 � pkC1/: (17)
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The minimization subproblem (15) is equivalent to the uncoupled subdomain
problems

ai.u
kC1
i ; vi/C r.ukC1

i ; vi/S D fi.vi/C .rpk
i � �k

i ; v/; 8vi 2 Vi; i D 1; 2 (18)

while (16) leads to the point-wise interface subproblem

.K C rI/pkC1
1 � KpkC1

2 D �k
1 C rukC1

1 ; (19)

�KpkC1
1 C .K C rI/pkC1

2 D �k
2 C rukC1

2 : (20)

Gathering the results above, we obtain the Uzawa block relaxation method
presented in Algorithm 1. We iterate until the relative error on .uk; pk/ becomes
sufficiently small.

Remark 1 The problem (18) always has a unique solution even without the Dirichlet
condition (2). This property is useful for solving problems allowing rigid body
motions.

Remark 2 Algorithm 1 is equivalent to the operator-splitting standard algorithm
ALG 2 described in, e.g. [5, Chap. 3], applied to the minimization problem (8)–(9).
Since F is convex and coercive and the constraints (9) are linear, the convergence of
Algorithm 1 is guaranteed by, e.g. [5, theorem 3.4].

The discrete version of Algorithm 1 is straightforward using the finite element
method (or the finite difference scheme). The only condition is the meshes compat-
ibility on S. Assuming that ˝ih is a triangulation of ˝i, the meshes are compatible
on S in the sense that N̋ 1h \ S D N̋ 2h \ S.

The uncoupled elasticity subproblems (18) lead to linear systems with symmetric
positive definite matrices. Since these matrices do not change during the iterative

Algorithm 1 Uzawa block relaxation algorithm for a bonded structure
Initialization. p0, �0 and r > 0 are given
Iteration k � 0. Compute successively ukC1, pkC1 and �kC1 as follows

1. Compute ukC1
i 2 Vi such that

ai.u
kC1
i ; vi/C r.ukC1

i ; vi/S D fi.vi/C .rpk
i � �k

i ; vi/S; 8vi 2 Vi; i D 1; 2:

2. Compute .pkC1
1 ; pkC1

2 / 2 H such that

.K C rI/pkC1
1 � KpkC1

2 D �k
1 C rukC1

1

�KpkC1
1 C .K C rI/pkC1

2 D �k
2 C rukC1

2

3. Update Lagrange multipliers: �kC1
i D �k

i C r.ukC1

ijS � pkC1
i /, i D 1; 2.
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process, a Cholesky factorization can be performed once and for all in the
initialization step. Then forward/backward substitutions are performed in the rest
of the iterative process. If a preconditioned iterative solver is used for solving (18),
an incomplete factorization is performed once and for all in the initialization step.

The (linear) interface subproblem (19)–(20) is solved point-wise. At each point
we have to invert a small size matrix (4�4 in 2D or 6�6 in 3D). We can therefore use
a semi-analytical solution for (19)–(20). Indeed, direct Gaussian elimination yields
to

pkC1
1 D .K2

r � I/�1K�1
�
Kr.�

k
1 C rukC1

1 /C �k
2 C rukC1

2

�

pkC1
2 D Krp

kC1
1 � K�1.�k

1 C rukC1
1 /;

where we have set Kr D IC rK�1. The size of K is 2� 2 in 2D and 3� 3 in 3D and
in many applications, K is a diagonal matrix.

4 Numerical Experiments

Algorithm 1 was implemented in MATLAB 7 on a Linux workstation with 2.67 GHz
clock frequency and 12 GB RAM. The test problem used is designed to illustrate the
numerical behavior of the algorithm more than to model actual bonded structures.
Setting z D .u; p/, the stopping criterion is

k zk � zk�1 kL2< 10
�6 k zk kL2 : (21)

We are interested in the bonded structure of Fig. 2, made from three isotropic
(linear) elastic bodies. The subdomains are ˝1 D .0; 20/ � .5; 10/ [ .0; 20/ �
.�10; 5/ and ˝2 D .0; 60/ � .�5; 5/. The interface is therefore S D .0; 20/ �
f5g[.0; 20/�f�5g. The material constants of the adherents are E1 D 5�104 MPA,
�1 D 0:3, E2 D 2:5 � 104 MPA and �2 D 0:3.

Ω1

S

σ2(u2) · n2 = −100n2

u1=0

Ω2S

u1=0
Ω1

Fig. 2 Geometry of the bonded structure, n2 D .1; 0/T
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Fig. 3 Deformed configuration and Von Mises effective stress (magnification factor 20)

Fig. 4 Number of iterations versus penalty parameter

The material constants of the adhesive layer are E� D 1800MPA, �� D 0:35,
Q� D 2.1� ��/=.1� 2��/

K D E�

2.1C ��/diag . Q�; 1/

Remark 3 Since the subproblem over ˝2 allows rigid body motions, pure
Lagrangian [1, 8] and least square methods [4, 7, 8] are not applicable.

The bonded structure is first modeled by a uniform mesh consisting of 2 � 121
nodes and 2 � 224 triangles (for ˝1) and 723 nodes and 1344 triangles for ˝2,
with 2 � 15 nodes on S. We use piecewise linear finite element spaces. Applying
Algorithm 1 with the penalty parameter r D 1500, (21) is satisfied after 27
iterations. Figure 3 shows the Von Mises effective stress distribution inside the tree-
body system.

Augmented Lagrangian type algorithms are very sensitive to the choice of the
penalty (or augmentation) parameter r. Figure 4 shows the number of iterations
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Table 1 Number of iterations versus interface mesh size with r D 1500, chosen independently of
the mesh size

Number of interface nodes 2�11 2�21 2�41 2�81 2�161

Number of iterations 27 27 27 27 27

versus the penalty parameter r. The optimal penalty value is r 	 1300. Choosing
smaller or larger values for r increases the number of iterations without improving
the final result.

To study the scalability of our algorithm, we report in Table 1 the iteration count
for different interface mesh sizes. We can notice that the iteration count is virtually
independent of interface mesh size, for the chosen number of subdomains.

5 Conclusion

We have studied a Uzawa block relaxation method for bonded structures. The
method is easy to implement and numerical experiments show that the number of
iterations is virtually independent of the mesh size for a fixed number of adherents.
Even though the domain decomposition method proposed converges for any r > 0,
choosing automatically the “optimal” value of the penalty parameter is still an open
question.

References

1. D. Bresch, J. Koko, An optimization-based domain decomposition method for nolinear wall
laws in coupled systems. Math. Models Methods Appl. Sci. 14, 1085–1101 (2004)

2. D. Bresch, J. Koko, Operator-splitting and Lagrange multiplier domain decomposition methods
for numerical simulation of two coupled Navier-Stokes fluids. Int. J. Appl. Math. Comput. Sci.
16, 101–113 (2006)

3. P.-G. Ciarlet, Mathematical Elasticity I: Three-Dimensional Elasticity (North-Holland, Amster-
dam, 1988)

4. G. Geymonat, F. Krasucki, D. Marini, M. Vidrascu, A domain decomposition method for bonded
structures. Math. Models Methods Appl. Sci. 8, 1387–1402 (1998)

5. R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-splitting Methods in Nonlinear
Mechanics (SIAM, Philadelphia, 1989)

6. J. Haslinger, R. Kucera, J. Riton, T. Sassi, A domain decomposition method for two-body
contact problems with Tresca friction. Adv. Comput. Math. 40, 65–90 (2014)

7. J. Koko, An optimization based domain decomposition method for a bonded structure. Math.
Models Methods Appl. Sci. 12, 857–870 (2002)

8. J. Koko, Convergence analysis of optimization-based domain decomposition methods for a
bonded structure. Appl. Numer. Math. 58, 69–87 (2008)

9. J. Koko, Uzawa block relaxation domain decomposition method for the two-body contact
problem with Tresca friction. Comput. Methods. Appl. Mech. Eng. 198, 420–431 (2008)



Hierarchical Preconditioners for High-Order
FEM

Sabine Le Borne

The finite element discretization of partial differential equations (PDEs) requires
the selection of suitable finite element spaces. While high-order finite elements
often lead to solutions of higher accuracy, their associated discrete linear systems
of equations are often more difficult to solve (and to set up) compared to those of
lower order elements.

We will present and compare preconditioners for these types of linear systems
of equations. More specifically, we will use hierarchical (H-) matrices to build
block H-LU preconditioners. H-matrices provide a powerful technique to compute
and store approximations to dense matrices in a data-sparse format. We distinguish
between blackbox H-LU preconditioners which factor the entire stiffness matrix
and hybrid methods in which only certain subblocks of the matrix are factored after
some problem-specific information has been exploited. We conclude with numerical
results.

1 Introduction

This contribution is concerned with preconditioning the linear systems of equations
arising in high-order finite element discretizations of PDEs [6, 11]. More specifi-
cally, we will introduce and analyse hybrid blackbox hierarchical matrix techniques
in which
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• only the stiffness matrix is given (which excludes lower order preconditioning);
• the preconditioner might use some knowledge on expected matrix properties (e.g.

sparsity structure) from the underlying problem.

The construction of efficient solution methods for these types of systems has
been a very active recent research field. Many solution approaches are based on
multigrid [9] and/or domain decomposition approaches [10], or try to construct
sparse preconditioners for the dense matrices [1]. Here, we pursue a different
approach in which we propose to use hierarchical matrix techniques to construct
efficient preconditioners for these systems.

This paper is organized as follows: In Sect. 2, we will introduce a model problem
and a particular type of high-order finite element discretization. While in this paper
we develop preconditioners for this particular setting, the intention is in future
work to extend these preconditioners to a wider range of PDEs and discretization
schemes. In Sect. 3, we introduce two preconditioning approaches. The first one is
blackbox, i.e., it only requires the (sparse) matrix as input and does not make any
assumptions on the origin of the matrix. The second approach also requires just the
matrix as input, but in addition it “knows” that it originates from some high-order
finite element discretization and incorporates this knowledge into the construction
of the preconditioner. In Sect. 4, we conclude with numerical results illustrating the
performance of the proposed preconditioning approaches.

2 High-Order Qp Finite Elements

The three-dimensional convection-diffusion equation

� �uC b � ru D f in ˝ D .0; 1/3; (1)

u D x2 C y2 C z2 on @˝ (2)

serves as our test problem. In particular, we consider a small viscosity � D 10�3
and a circular convection direction b.x; y; z/ D .0:5� y; x� 0:5; 0:0/T , resulting in
a convection-dominant problem.

We discretize this test problem using a finite element discretization with quadri-
lateral Qp finite elements. To this end, we use a “triangulation” of a (regularly
refined) quadrilateral grid (cubes), and then define the finite element space V D
Qp of continuous, piecewise polynomial elements of (at most) order p in each
coordinate direction. As a basis for this finite element space, we use Lagrange
(tensor) basis functions f�1; � � � ; �ng satisfying �i.xj/ D ıij. The finite element
discretization results in a linear system of equations Ax D b whose solution yields
the finite element approximation uh DP xi�i 2 V .

The following Fig. 1 illustrates the sparsity structures of matrices obtained for
linear (h D 1

16
), quadratic (h D 1

8
), fourth (h D 1

4
) and eighth (h D 1

2
) order basis

functions, all having size 3375 � 3375.
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Fig. 1 Sparsity structures using linear, quadratic, fourth and eighth order polynomials, resulting
in (on average) 24, 56, 186 and 850 nonzero entries per row, resp.

The advantage of high-order elements lies in their p’th order discretization error
ku � uhkH1 � hp (where k � kH1 denotes the usual Sobolev H1-norm), while their
disadvantages include the linear systems to be solved to be less sparse and in general
worse conditioned compared to those obtained using lower order elements.

In the following section, we introduce several block preconditioners and analyse
their performance as we increase the order of discretization.

3 Block-H-LU Factorizations

The following block preconditioners are constructed through a combination of a
row and column permutation of the (entire) matrix followed by an approximate LU
factorization, either of the entire matrix or only of the blocks on the diagonal to be
used in combination with a block Gauß-Seidel preconditioner.

3.1 Nested Dissection Based Block Structures

While high-order finite elements lead to less sparse matrices, they are usually still
“sparse enough” for the well-known nested dissection ordering: Based on the matrix
graph, the degrees of freedom are divided into three subsets D1;D2 and S. The two
subsets D1;D2 are disconnected in the sense that i 2 D1 and j 2 D2 implies aij D 0
for the respective matrix entry. The subset S, the so-called “separator” which is
preferably small (in the case of our three-dimensional model problem it is of order
O.n2=3/) consists of degrees of freedom with connections to both subsets D1 and D2.
We recursively apply this ordering strategy to the two subsets D1, D2. Figure 2 shows
the sparsity structures for the matrices of Fig. 1 after a nested dissection reordering.

The advantage of such a reordering prior to an (approximate) LU factorization
lies in the fact that an (exact) LU factorization preserves the two off-diagonal zero
blocks in the 1 � 2 and 2 � 1 block positions of the 3 � 3 block matrix. Therefore,
the LU factorizations of the first two (approximately equal sized) diagonal blocks
can be computed in parallel followed by the factorization of the last, smaller



562 S. Le Borne

Fig. 2 Sparsity structures using linear, quadratic, fourth and eighth order polynomials after a
nested dissection ordering

block corresponding to the separator. We make the following two observations with
respect to the polynomial order p of the underlying finite element space:

• The relative size of the separator is independent of the polynomial order p of
the finite element space (when using a Lagrange basis). This is important since
it is typically the factorization of this separator block that dominates the work
complexity of the factorization of the entire matrix.

• For larger p, the nested dissection “finds” the dense subblocks that correspond to
so-called “bubble” functions—these are basis functions with support in a single
element that can be eliminated without additional fill-in into the stiffness matrix.

The next step is the computation of an approximate LU-factorization in the
hierarchical (H-) matrix format. Hierarchical matrices have been introduced more
than a decade ago [8]. They are based on a blockwise low rank approximation of off-
diagonal matrix blocks. The efficient storage (of the rectangular matrix factors) of
these low rank blocks reduces the storage complexity as well as the computational
complexity for most matrix operations to almost optimal order (up to powers of
logarithmic factors). For general details, we refer to the comprehensive lecture
notes [5], and for nested dissection based H-LU factorization that is used in the
numerical results in Sect. 4 to [7]. Without going into the details of H-matrices,
here we only exploit the fact that the accuracy of H-LU factorizations can be
controlled adaptively through a parameter ıH. As ıH ! 0, the H-LU factors
converge toward the exact LU factors, although at the expense of increasing storage
and computational costs.

3.2 Degree of Freedom Type Based Block Structures

We now propose to begin with an ordering of the degrees of freedom according
to their association with vertices (V), edges (E), faces (F) or (the interior of) cells
(C). Since we use a structured grid, this ordering can be obtained directly from the
sparsity pattern without access to the grid geometry (through the number of nonzero
entries per matrix row). Figure 3 shows the resulting reordered sparsity structures
for the matrices of Fig. 1. The matrices still include the (Dirichlet) boundary vertices
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Fig. 3 Sparsity structures for linear, quadratic, fourth and eighth order polynomials after a
reordering based on the types of degree of freedom (vertex, edge, face, cell or boundary)

(resulting in the last block on the diagonal of equal size for all four matrices, here
about one third of the total number of matrix rows due to the small problem size)
which will be eliminated before the iterative solution for the true degrees of freedom.

Besides this last block of boundary vertices, the matrices for quadratic, fourth
and eighth degree polynomials have an additional common structure of four blocks
on the diagonal according to their vertex, edge, face and (interior) cell degrees
of freedom. The block corresponding to the (interior) cell degrees of freedom
is the easiest one to recognize since it is of block diagonal structure, and its
relative size, as well as the size of the dense blocks on the diagonal, increases
with the increase in polynomial order. In theory, this block can also be eliminated
without creating any additional fill-in in the remaining matrix. This process is called
“static condensation” which is known to be sometimes ill-conditioned. For smaller
polynomial order p, this can also be done in practice, but for high order p, the
computational costs of such an elimination increase substantially and may dominate
the overall computational costs for the solution of the linear system.

The resulting block structure can be used for Jacobi or Gauß-Seidel block
preconditioners. These preconditioners require (approximate) solvers for the matrix
blocks on the diagonal for which we will again use H-LU factorizations. In
particular, we will compute H-LU factorizations for the two diagonal blocks in the
matrices (3) and (4).

No static condensation:
0

BB@

AVV

AEE AEF AEC

AFE AFF AFC

ACE ACF ACC

1

CCA ;

0

BB@

AVV AVE

AEV AEE

AFF AFC

ACF ACC

1

CCA ; (3)

After static condensation of interior cell (C) degrees of freedom:
0

@
AVV

AEE AEF

AFE AFF

1

A ;

0

@
AVV AVE

AEV AEE

AFF

1

A : (4)
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The bars above the blocks after static condensation indicate that the matrix entries
will have changed after static condensation while the sparsity pattern is the same as
before. The H-LU factorizations of the blocks on the diagonal will once more be
preceded by a nested dissection ordering (within these subblocks) as described in
the previous subsection.

4 Numerical Results and Conclusions

In this section, we will provide a small selection of numerical results for the various
preconditioners that have been introduced in Sects. 3.1 and 3.2. All tests were
performed on a DELL Latitude E6530 laptop (2.60 GHz, 16 GB). The discrete linear
systems have been produced by the software package deal.II [2, 3], and we use the
H-arithmetic of the HLib package [4].

As an iterative solver, we use a preconditioned BiCGStab method, and we
stop the iteration once the residual is reduced by a factor of 10�6, i.e., when
krkk2 � 10�6kr0k2 D 10�6kbk2 since we use the starting vector x0 D 0. In
Table 1, we show numerical results for linear finite elements: As we increase the
level of grid refinement, the number of degrees of freedom (dofs) increases by a
factor of approximately 8. A comparable factor of increase can be observed in the
storage and set-up times of the H-LU factorizations which have been performed for
a relative accuracy of ıH 2 f0:1; 0:01g. The convergence rates of the preconditioned
BiCGStab method deteriorate only modestly as the problem size increases, i.e., we
obtain a robust solution method (the BiCGStab time for the problem size on level 7
for the higher H-accuracy ıH D 0:01 is slowed down by swapping and hence put
into parentheses).

Table 2 shows respective results for finite element spaces using polynomial
degrees p D 4; 6 and 9. We had to use higher accuracies for the H-LU factorizations
(now ıH 2 f10�1; 10�2g for p D 4; 6 and even ıH 2 f10�4; 10�5g for p D 9) in
order to obtain convergence in the BiCGStab iteration, which is no surprise in view
of the worse conditioning of the matrices for high-order elements. Once more, for
an “accurate enough” H-LU factorization as a preconditioner, we obtain an almost
optimal iterative method.

Table 1 H-LU: time (s) and storage (MB), linear elements

Dofs 3375 29 � 103 250 � 103 2 � 106 3375 29 � 103 250 � 103 2 � 106
Level 4 5 6 7 4 5 6 7

H-accuracy ıH D 0:1 H-accuracy ıH D 0:01

Storage (MB) 7.1 100 969 8611 10 151 1556 13,749

Set-up time (s) 0.3 6.6 91 796 0.7 17 271 2494

BiCGStab steps 5 7 10 23 2 3 4 4

Time (s) 0.0 0.2 3.2 67.5 0.0 0.1 1.7 (30.0)
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Table 2 H-LU: time (s) and storage (MB), polynomial degrees 4, 6, and 9

Level 3 4 2 3 1 2

H-acc Degree 4 Degree 6 H-acc Degree 9

Storage (MB)

10�1 117 1201 32 376 10�4 33 485

10�2 181 1977 61 733 10�5 36 543

Stiffness matrix 82 654 82 654 90 716

H-acc Set-up time (s)

10�1 10.3 130 1.6 30.8 10�4 3.5 110

10�2 31 438 5.7 123 10�5 3.7 142

H-acc BiCGStab (steps/time)

10�1 22/1.0 20/9.3 div div 10�4 4/0.1 8/1.7

10�2 3/0.2 4/2.7 8/0.2 10/2.9 10�5 2/0.04 3/0.7

Table 3 H-LU: time (s) and
storage (MB), polynomial
degree 4,� 250,000 dofs Prec

0

BBBB@

vv ve vf vc

ev ee ef ec

fv fe ff fc

cv ce cf cc

1

CCCCA

0

BBBB@

vv

ee ef ec

fe ff fc

ce cf cc

1

CCCCA

0

BBBB@

vv ve

ev ee

ff fc

cf cc

1

CCCCA

0

BBBB@

vv

ee

ff fc

cf cc

1

CCCCA

H-acc Storage (MB)

10�1 1201 1184 1008 1001

10�2 1977 1902 1516 1486

H-acc Set-up time (s)

10�1 129 123 72 70

10�2 438 393 215 207

H-acc BiCGStab (steps/time)

10�1 20/9.3 26/12.0 56/22.9 59/24.1

10�2 4/2.7 8/5.2 47/25.6 49/26.2

Table 3 shows a comparison of the preconditioners introduced in Sect. 3.1 versus
those of Sect. 3.2, here shown for elements of polynomial degree 4 on a level-4 grid,
resulting in a total of about 250,000 dofs. As we “drop” certain off-diagonal blocks
from the matrix before its factorization, the required storage and set-up times are
reduced. The preconditioned BiCGStab iteration now requires additional steps and
hence more time, but the savings in set-up time appear to be more significant than
the disadvantage in iteration time (as long as we still have a convergent method).

Finally, in Table 4 we show results where the matrix size has been reduced
by eliminating the “bubble” dofs through static condensation before the system is
solved iteratively. For fourth order polynomials on a level-4 grid (about 250,000
dofs before static condensation), the “naive” static condensation took 120 s, which
is significantly more than the savings obtained through now solving a smaller system
so that it is not recommended unless a more efficient implementation of static
condensation can be found.
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Table 4 BiCGStab:
steps/time for method “static
condensation” (top) and
method “no static
condensation” (bottom), “br”
denotes a BiCGStab
breakdown

Prec

0

B@
vv ve vf

ev ee ef

fv fe ff

1

CA

0

B@
vv

ee ef

fe ff

1

CA

0

B@
vv ve

ev ee

ff

1

CA

0

B@
vv

ee

ff

1

CA

10�1 17/4.8 19/5.2 49/br 53/12.6

10�2 4/1.9 8/3.5 42/15.6 44/15.7

Prec

0

BBBB@

vv ve vf vc

ev ee ef ec

fv fe ff fc

cv ce cf cc

1

CCCCA

0

BBBB@

vv

ee ef ec

fe ff fc

ce cf cc

1

CCCCA

0

BBBB@

vv ve

ev ee

ff fc

cf cc

1

CCCCA

0

BBBB@

vv

ee

ff fc

cf cc

1

CCCCA

10�1 20/9.3 26/12.0 56/22.9 59/24.1

10�2 4/2.7 8/5.2 47/25.6 49/26.2
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A Domain Decomposition Method Based
on Augmented Lagrangian with an Optimized
Penalty Parameter

Chang-Ock Lee and Eun-Hee Park

1 A Non-overlapping DDM with a Penalty Parameter

A non-overlapping domain decomposition method based on augmented Lagrangian
with a penalty term was introduced in the previous works by the authors [6, 7], which
is a variant of the FETI-DP method. In this paper we present a further study focusing
on the case of small penalty parameters in terms of condition number estimate and
practical efficiency. The full analysis of the proposed method can be found in [8].

Throughout the paper, we denote by �A
min and �A

max the minimum eigenvalue and
the maximum eigenvalue of a matrix A, respectively. To avoid the proliferation
of constants, we will use A . B and A & B to represent the statements that
A � (constant)B and A � (constant)B, respectively, where the positive constant is
independent of the mesh size, the subdomain size, and the number of subdomains.
The statement A 	 B is equivalent to A . B and A & B.

We first review the non-overlapping domain decomposition method with a
penalty term in the previous works. Then, we state how we can enhance this method
in terms of a better choice of a penalty parameter.
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We consider the following Poisson model problem with the homogeneous
Dirichlet boundary condition

�u D f in ˝;

u D 0 on @˝;
(1)

where ˝ is a bounded polygonal domain in R
2 and f is a given function in

L2.˝/. Let Th denote a quasi-uniform triangulation on ˝ and OXh the space of the
conforming P1 elements associated with Th. We are concerned with a discretized
variational problem of (1) as follows: find uh 2 OXh such that

a.uh; vh/ D . f ; vh/ 8vh 2 OXh; (2)

where

a.uh; vh/ D
Z

˝

ruh � rvh dx; . f ; vh/ D
Z

˝

fvh dx:

We start with recalling an iterative solver of (2) in [6, 7], which is a non-
overlapping domain decomposition algorithm based on an augmented Lagrangian.
We decompose˝ into non-overlapping subdomains f˝jgJjD1 as open sets, where the
boundary @˝j is aligned with Th and the diameter of ˝j is Hj. On each subdomain,
the triangulation Tj is the triangulation of ˝j inherited from Th and matching grids
are taken on the boundaries of neighboring subdomains across the interface 
 . Here
the interface 
 is the union of the common interfaces among all subdomains, i.e.,

 D Sj<k 
jk, where 
jk denotes the common interface of two adjacent subdomains
˝j and˝k.

Based on the non-overlapping subdomain decomposition, a partitioned problem
is obtained as follows:

min
v2QJ

jD1 X
j
h

0

@1
2

JX

jD1

Z

˝j

jrvj2 dx � . f ; v/

1

A (3a)

subject to vj D vk on 
jk for j < k; (3b)

where Xj
h is the restriction of OXh on a subdomain˝j. To make a localized minimiza-

tion problem recover the original solution of (2), the continuity constraint (3b) needs
to be satisfied on the interface 
 in an appropriate manner (e.g. [2–5]).

The FETI-DP method, one of the most advanced non-overlapping domain
decomposition algorithms, imposes the continuity differently at vertices and the
remaining interface nodes except vertices in terms of the choice of finite elements.
The continuity at vertices is enforced strongly in a manner that subdomains sharing
a vertex have the common value at the vertex while the continuity on the interface
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except vertices is enforced weakly by introducing Lagrange multipliers. Hence the
FETI-DP method starts with the saddle-point problem

L.uh; �h/ D max
�h2RM

min
vh2Xc

h

L.vh; �h/; (4)

where a Lagrangian functional L is defined on Xc
h � R

M as

L.v; �/ D 1

2

JX

jD1

Z

˝j

jrvj2 dx � . f ; v/C hBv; �i:

Here, Xc
h denotes the subspace of

QJ
jD1 Xj

h obtained by enforcing the vertex
continuity, B is a signed Boolean matrix which plays a role in making values
defined individually on the interface pointwise-matched, M represents the number
of constraints used for imposing the pointwise matching on the interface and h�; �i is
the Euclidean inner product in R

M .
In [9], for the FETI-DP method accompanied by the Dirichlet preconditioner

it is well-known that the condition number of the resulting dual problem from (4)
grows asymptotically as O.1C ln.H=h//2, where H is the subdomain size and h is
the mesh size. It shows that the convergence slows down only due to the increase of
H=h, where .H=h/2 are the local problem size. Due to such a scalable property of
the FETI-DP method, there seems to be nothing to improve as a parallel algorithm
only if parallel machines with infinitely many CPUs or cores are available. But,
keeping in mind that most of ordinary users have limited computing resources, the
condition number growth with respect to the increase of H=h is unsatisfactory. In
this view, Lee and Park [6, 7] proposed a dual iterative substructuring method with
a penalty term which plays a key role in enhancing the convergence to the extent of
the constant condition number bound independent of both H and h. A penalty term
	J is considered, which consists of a positive penalty parameter 	 and a measure
of the jump on the interface. The addition of a penalty term 	J to the Lagrangian L
yields a saddle-point problem for an augmented Lagrangian functional L	 such as

L	.uh; �h/ D max
�h2RM

min
vh2Xc

h

L	.vh; �h/; (5)

where

L	.v; �/ D L.v; �/C 1

2
	J .v; v/:

Here the penalty term J is a bilinear form on Xc
h � Xc

h defined as

J .u; v/ D 1

h

X

j<k

Z


jk

.uj � uk/.vj � vk/ ds;
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where h D maxjD1;��� ;J hj with the mesh size hj of Tj.
The problem (5) is expressed in the algebraic form

2

4
A˘˘ A˘ 0

AT
˘ A BT



0 B 0

3

5

2

4
u˘
u
�

3

5 D
2

4
f˘
f
0

3

5 ;

where � indicates the Lagrange multipliers introduced for imposing the continuity
constraint across the interface, ˘ the degrees of freedom associated with both the
interior nodes and the subdomain corners, and  the remaining part of the degrees
of freedom on the interface. The matrix J results from the penalty term J , which is
written as

J D BT
DMB; (6)

where DM is the block diagonal matrix with a diagonal block 1
h Me. Here Me is the

1-D mass matrix on each edge. Eliminating u˘ and u successively, we have a dual
system

F	� D d	 (7)

where

F	 D BS�1	 BT
; d	 D BS�1	 . f � AT

˘A�1˘˘ f˘/

with

S	 D SC 	J D .A � AT
˘A�1˘˘A˘/C 	J: (8)

For the proposed dual iterative substructuring method which results in the dual
problem (7), we are concerned with two key properties: one is the convergence of
the primal solution uh of the saddle-point problem (5) from which (7) is originated,
to the exact weak solution of (1) and the other is the condition number of F	
which determines the convergence rate of dual iterations on (7). In this context,
we now discuss the choice of a penalty parameter in the proposed dual iterative
substructuring method.

Let us first look over what effect the choice of the penalty parameter has on
the convergence of the finite element solution to the weak solution of (1). In finite
element formulations based on penalty methods for (3) (cf. [1, 2]), the choice of a
sufficiently large penalty parameter is required for the stability of a concerning finite
element formulation, which is necessary for the convergence of the finite element
solution to the exact weak solution of (1). On the other hand, the penalty parameter
	 plays a different role in the saddle-point formulation (5) based on an augmented
Lagrangian functional because Lagrange multipliers as well as a penalty term are



A DDM Based on Augmented Lagrangian with an Optimized Penalty Parameter 571

introduced to enforce the continuity across the interface. More precisely, such a role
difference was confirmed in [6] by the fact that the primal solution uh of the saddle-
point problem (5) is exactly equal to the finite element solution of (2) regardless of
the choice of 	. Hence there is no need to consider a right choice of 	 in the aspect
of the convergence of a finite element solution to the solution of (1).

Let us next discuss the choice of the penalty parameter in terms of the condition
number of F	. The convergence study for dual iterations in [6, 7] shows that the dual
system (7) has a constant condition number bound independent of H and h where a
sufficiently large penalty parameter is taken. On the contrary, we have observed
through numerical results that there might be an estimated parameter 	� < 10

with which the proposed dual iterative algorithm is almost optimal in terms of its
condition number. Based on such observation, we shall focus on the case of small
penalty parameters throughout the following sections.

2 Condition Number Estimate

In this section, we find the relationship between the standard FETI-DP operator and
the proposed dual operator in algebraic form. Based on the relationship, we carry
out convergence analysis in terms of the condition number of the dual system F	
without size limitation of the penalty parameter. As results, it is confirmed why a
fast convergence of the dual iteration is attained even if a small 	 is taken.

We first have the following condition number estimate of the concerned dual
system based on a key relationship between two matrices F	 and F, where F is the
standard FETI-DP operator as F D BS�1BT

.

Theorem 1 For any 	 > 0, the condition number �.F/ is estimated as

�.F	/ � CF;DM

	C CF;DM

�.F/C 	

	C CF;DM

�.DM/; (9)

where CF;DM D .�F
max�

DM
min/
�1.

Remark 1 Theorem 1 shows the change of �.F	/ with respect to a choice of 	 as
well as the connection of �.F	/ with �.F/. In particular, �.F	) becomes close to
�.F/ as 	 decreases to zero. In addition, it follows from (9) that

�.F	/ � �.DM/C CF;DM .�.F/� �.DM//

	C CF;DM

; (10)

which implies that the result shown in Fig. 1 in [6] is in agreement with (10) when
�.F/ > �.DM/.
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Then the extreme eigenvalues of matrices F and DM can be estimated as

�
DM
min & 1; �DM

max . 1

�F
min & 1; �F

max . max
jD1;��� ;J

�
Hj

hj

�
1C ln

Hj

hj

��
;

which imply that

�.DM/ . 1

�.F/ . max
jD1;��� ;J

�
Hj

hj

�
1C ln

Hj

hj

��
:

Hence it is noted that either �.F/ � �.DM/ or �.F/ > �.DM/ holds according to
the size of H=h. First, in the case of small H=h such that

�.F/ � �.DM/;

it follows from Theorem 1 that, for any 	 > 0,

�.F	/ � �.DM/ . 1: (11)

Next, in the following theorem we will see the case of large H=h such that

�.F/ > �.DM/:

Using the estimated extreme eigenvalues of DM and F, we can characterize
bounds of the condition number of the concerned dual system as follows.

Theorem 2 For any H=h such that

�.F/ > �.DM/;

there is a positive constant Copt independent of H and h such that

�.F	/ < �.DM/C Copt for any 	 � Copt;

where Copt 	 1.

Remark 2 The convergence studies in [6, 7] for a dual iterative substructuring
method with a penalty term were limited to the case when a sufficiently large
penalty parameter 	 is used. The estimate (11) and Theorem 2 show why a faster
convergence of the dual iteration in the proposed method is attained in comparison
with the FETI-DP method even if a relatively small 	 is taken while Theorem 1 for
a large 	 is identical to the previous results in [6, 7].
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Remark 3 Due to length limitation, this paper is focused on the convergence
analysis for the case of small penalty parameters in 2-D. More works for 3-D
extension and computational issues such as the preconditioning of the subdomain
problems can be found [8].

3 Numerical Results

In this section, computational results are presented, which are in agreement with the
theoretical bound estimated in Sect. 2. We consider the model problem (1) with the
exact solution

u.x; y/ D
�

y.1� y/ sin.�x/ in 2-D
sin.�x/ sin.�y/z.1 � z/ in 3-D

for ˝ D .0; 1/d; d D 2; 3. We use the conjugate gradient method with a constant
initial guess .�0 
 1/. The stop criterion is the relative reduction of the initial
residual by a chosen TOL

krkk2
kr0k2 � TOL;

where rk is the dual residual error on the kth CG iteration and TOL D 10�8. Here,
discretization parameters h, H, and J are used, which stand for the mesh size, the
subdomain size, and the number of subdomains, respectively. Through numerical
tests, ˝ in 2-D is decomposed into J square subdomains with J D 1=H � 1=H.
Each subdomain is partitioned into 2 � H=h � H=h uniform triangular elements.
In 3-D, ˝ is decomposed into J cubic subdomains with J D 1=H � 1=H �
1=H while each subdomain is partitioned into H=h � H=h � H=h uniform cubic
elements.

In Table 1 for the two-dimensional problem, the condition numbers of the dual
system are presented in the cases with 	 in Œ0; 10�. In addition, for comparison with
the case with a large 	, the result for 	 D 106 is presented. For each 	 > 0,
the condition number �.F	/ is bounded by a constant even if H=h increases. In
Table 1, any penalty parameter chosen in .1=2; 10/ improves the condition number
regardless of the increase of H=h. In addition, the condition numbers for the case
with 	 2 .1=2; 10/ are less than that for the case with a large 	. According to the
condition number and the iteration count, 	 D 2 is regarded as an optimal one.
Table 2 for 3-D shows similar results in 2-D; 	 D 1 seems to be optimal as H=h
increases.
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Table 1 Condition number of F	 for a small 	 where J D 4� 4 in 2-D
H
h D 4 H

h D 8 H
h D 16 H

h D 32

	 �.F	/ Iter. # �.F	/ Iter. # �.F	/ Iter. # �.F	/ Iter. #

0 7:2033 14 2.2901eC1 23 5.9558eC1 33 1.4707eC2 48

0.2 3:7811 12 5:6829 15 6:4744 18 6:7436 19

0.4 2:6637 10 3:3617 13 3:5166 13 3:6410 14

0.6 2:0733 9 2:3969 10 2:5127 11 2:5753 12

0.8 1:6990 8 1:9367 9 1:9974 10 2:0247 10

1 1:5030 7 1:6468 8 1:6801 9 1:6957 9

2 1:1304 5 1:1067 5 1:1053 5 1:1050 5

4 1:3353 6 1:4469 7 1:4625 8 1:4477 8

6 1:5050 7 1:7008 9 1:7470 9 1:7378 9

8 1:6130 7 1:8691 9 1:9404 10 1:9387 10

10 1:6875 7 1:9945 10 2:0799 11 2:0868 11

106 2:0938 3 2:7170 7 2:9243 13 2:9771 14

Table 2 Condition number of F	 for a small 	 where J D 4� 4� 4 in 3-D
H
h D 4 H

h D 8 H
h D 16 H

h D 32

	 �.F	/ Iter. # �.F	/ Iter. # �.F	/ Iter. # �.F	/ Iter. #

0 8.1805eC1 73 3.0183eC2 107 1.1892eC3 153 4.6946eC3 218

0.2 6:9551 22 6:8882 22 6:7708 21 6:6486 21

0.4 4:4201 18 4:6965 18 4:8197 18 4:8325 17

0.6 3:8658 16 4:3214 16 4:4810 17 4:4959 16

0.8 3:5613 15 4:0772 16 4:2515 16 4:2834 16

1 3:3611 15 3:9076 15 4:0901 15 4:1292 15

2 3:1992 14 4:0118 16 4:3020 16 4:3345 16

4 3:6343 15 4:8935 17 5:3381 18 5:4422 19

6 3:8905 15 5:4275 17 5:9726 19 6:1152 20

8 4:0564 15 5:7842 18 6:4011 20 6:5659 21

10 4:1740 15 6:0390 19 6:7099 21 6:8890 21

106 4:8585 7 7:5658 14 8:5609 16 8:8699 18
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Dual Schur Method in Time for Nonlinear ODE

P. Linel and D. Tromeur-Dervout

1 Introduction

We developed parallel time domain decomposition methods to solve systems of
linear ordinary differential equations (ODEs) based on the Aitken-Schwarz [5] or
primal Schur complement domain decomposition methods [4]. The methods require
the transformation of the initial value problem in time defined on �0;T� into a time
boundary values problem. Let f .t; y.t// be a function belonging to C 1.RC;Rd/ and
consider the Cauchy problem for the first order ODE:

n
Py D f .t; y.t//; t 2�0;T�; y.0/ D ˛ 2 R

d: (1)

The time interval Œ0;T� is split into p time slices S.i/ D ŒTCi�1;T�i �, with TC0 D 0

and T�p D T�. The difficulty is to match the solutions yi.t/ defined on S.i/ at the

boundaries TCi�1 and T�i . Most of time domain decomposition methods are shooting
methods [1] where the jumps yi.T�i / � yiC1.TCi / are corrected by a sequential
process which is propagated in the forward direction (i.e. the correction on the time
slice S.i�1/ is needed to compute the correction on time slice S.i/). Our approach
consists in breaking the sequentiality of the update of each time slice initial value.
To this end, we transform the initial value problem (IVP) into a boundary values
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problem (BVP) leading to a second order ODE:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Ry.t/ D g.t; y.t/; Py.t// defD @f

@t
.t; y.t//C Py.t/ @f

@y
.t; y.t//; t 2�0;TŒ;

y.0/ D ˛;
Py.T/ D ˇ defD f .T; y.T//

(2a)

(2b)

(2c)

Then classical domain decomposition methods apply such as the multiplicative
Schwarz method with no overlapping time slices and Dirichlet-Neumann transmis-
sion conditions (T.C.) for linear system of ODE (or PDE [6]). As proved in [5] the
convergence/divergence of the error at the boundaries of this Schwarz time DDM
can be accelerated by the Aitken technique to the right solution when f .t; y.t// is
linear. Nevertheless, the difficulty in solving Eq. (2) is that ˇ is not given by the
original IVP. In [7] when f .t; y.t// is nonlinear with respect of y.t/ and scalar, we
proposed to replace the end boundary condition (2c) by imposing, if f .T; y.T// ¤ 0,
the invariant flux condition for t D T:

.f .T; y.T//�1 Py.T/ D 1: (3a)

We also showed that the right T.C. between time slices must involve the nonlinear
flux condition .f .T�i ; y.T�i //�1 Pyi.T�i / D .f .TCiC1; y.T

C
iC1//�1 PyiC1.TCiC1/. In this

case, we showed that the behavior of the Schwarz method with an appropriate
nonlinear change of variable � is linear. Then, it is possible to apply the Aitken
acceleration by using � if it is known. To overcome the lack of knowledge of �,
we propose in this paper to replace the Schwarz method by a Schur complement
method.

In Sect. 2, we recall some results on the existence and uniqueness of the proposed
BVP. Section 3 gives the dual Schur complement method intimely related to the
Newton step solving. The choice of T.C. to define the time slice function is discussed
there. Some numerical results are given in Sect. 4 before the conclusion.

2 Existence and Uniqueness of the BVP Solution

The problem (2) with d D 1 is a particular case of the more general problem:

8
ˆ̂<

ˆ̂:

Ry D g.t; y; Py/; a � t � b;

a0 y.a/� a1 Py.a/ D ˛; ja0j C ja1j ¤ 0;
b0 y.b/C b1 Py.b/ D ˇ; jb0j C jb1j ¤ 0:

(4a)

(4b)

(4c)
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Keller [3] has established the existence and uniqueness of a solution to problem (4)
under the hypotheses of monotonicity and upper bound on the partial derivatives of
g in the theorem that follows:

Theorem 1 (H.B. Keller) Let g.t; y; Py/ have continuous derivatives which satisfy:

@g.t; y.t/; Py.t//
@y

> 0; j@g.t; y.t/; Py.t//
@Py j � M; (5)

for some M � 0, a � t � b and all continuously differentiable functions y.t/. Let
the constants ai; bi satisfy:

ai � 0; bi � 0; i D 0; 1I a0 C b0 > 0: (6)

then a unique solution of (4a)–(4c) exists for each .˛; ˇ/.

3 Dual Schur Complement Time DDM

3.1 BVP Discretizing and It Solution

Problem (2a), (2b), (3a), is discretized using a Störmer-Verlet implicit scheme [2]
with NgC1 regular time steps witht D T=Ng over the time interval Œ0;T�. Solving
it requires to find the zero of the function F.u/ W RNg ! R

Ng with uj ' u.tj/,
tj D .j� 1/t and defined as:

F.u/ D
0

@
u0 � ˛
ujC1 � 2uj C uj�1 �t2g.tj; uj/; j D 1; : : : ;Ng � 1
f�1.tNg ; uNg/B.uNg/� 1

1

A (7)

where g.t; u/
defD @f

@t
.t; u/C f .t; u/

@f

@u
.t; u/, and B.uNg/ corresponds to the discretiz-

ing of Pu.T/ as:

B.uNg/ D
3uNg � 4uNg�1 C uNg�2

2t
' Pu.T/C O.t2/

B.uNg/ D
11uNg � 18uNg�1 C 9uNg�2 � 2uNg�3

6t
' Pu.T/CO.t3/

(8a)

(8b)

We applied the Newton method to find the zero of function F.u/. Starting from an
initial guess, it writes if jjF.um/jj > � for the .mC 1/-th iteration:

hm D �.ruF.um//�1F.um/; umC1 D um C hm: (9)



580 P. Linel and D. Tromeur-Dervout

Let us notice that the Newton method is sensitive to the initial solution. One can
consider to search the initial solution by performing a few Newton iterations on
different coarse levels of time grid discretizing. The approximate solution obtained
on a previous coarse grid gives the initial guess solution for the next time grid after
interpolating. There is no Courant-Friedrich-Lax stability condition because we use
an implicit Störmer-Verlet scheme.

3.2 Dual Schur Complement in Time Formulation

For the time domain decomposition, we split the time interval Œ0;T� in p slices
S.i/; i D 1; : : : ; p and we denote by u.i/ the solution on the i-th time slice S.i/.
For the sake of simplicity and without loss of generality we set all the time
slices to have the same size and use N C 1 regular time steps on each such that

S.i/ D Œt.i/0 ; t.i/N �
defD Œ.i � 1/Nt; iNt� (then the total number of time steps on Œ0;T�

is Ng C 1 D p � N C 1). Here, the main idea consists in finding the zero of the
local function Fi defined on the time slice S.i/ under the continuity constraint of the
solution at the time slices boundaries. Two strategies can be applied to define the
transmission conditions (T.C.) of the local function Fi.u.i//:

1. The first strategy S1 considers the original function F and split its components at
the time slices boundaries in two parts. Each one corresponds to the contribution
of the solution components belonging to the time slice under consideration (10b)
at j D 0 for S.i/; i D 2; : : : ; p and (12b) at j D N for S.i/; i D 1; : : : ; p � 1.

2. The second strategy S2 considers the T.C. corresponding to the nonlinear
flux (10c) at j D 0 for S.i/; i D 2; : : : ; p and (12c) at j D N for S.i/; i D
1; : : : ; p � 1.

8
ˆ̂̂
<̂

ˆ̂̂
:̂

.F1.u//0 D u0 � ˛

S1 W .Fi.u//0 D u1 � u0 � 1
2
t2g.t.i/0 ; u0/; i D 2; : : : ; p

S2 W .Fi.u//0 D f�1.t.i/0 ; u0/B.u0/; i D 2; : : : ; p

(10a)

(10b)

(10c)

8
<

:
.Fi.u//j D ujC1 � 2uj C uj�1 �t2g.t.i/j ; uj/;

j D 1; : : : ;N � 1; i D 1; : : : ; p
(11a)

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

.Fp.u//N D f�1.t.p/N ; u/B.uN/� 1

S1 W .Fi.u//N D �uN C uN�1 � 1
2
t2g.t.i/N ; uN/; i D 2; : : : ; p � 1

S2 W .Fi.u//N D f�1.t.i/N ; uN/B.uN/; i D 2; : : : ; p � 1

(12a)

(12b)

(12c)
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Then, we use the Newton method on each time slices S.i/ and introduce the Lagrange
multipliers �i; i D 1; : : : ; p � 1 to ensure the continuity of the solution between
the time slices (adding this Lagrange multiplier to (10b) [respectively (10c)] and
subtracting it to (12b) [respectively (12c)]). It writes:

h.i/;m D u.i/;mC1 � u.i/;m D �.rFi.u
.i/;m//�1.F.u.i/;m/C .�i�1; 0; : : : ; 0;��i/

t

„ ƒ‚ …
2RNC1

/

(13)

with the constraints

u.i/;m0 C h.i/;m0 D u.i�1/;mN C h.i�1/;mN ; i D 2; : : : ; p (14)

Let us give the computing details. Introducing the Jacobian matrix J.i/ correspond-
ing to rFi.u.i/;m/, the index I for the unknowns Œ1; : : : ;N � 1� and E for the
unknowns 0;N, the linearized system of the Newton step writes after a permutation
of unknowns:

 
J.i/II J.i/I


J.i/
 I J.i/
 


! 
h.i/I

h.i/E

!
D
 

b.i/I

b.i/E

!
C
�
0

�i

�
(15)

where

.�i; b
.i/
I ; b

.i/
E / D

8
ˆ̂<

ˆ̂:

.��1;�.F1.u.1/;m/0;:::;N�1;�.F1.u.1/;m/N/ i D 1

.

�
�i�1
��i

�
;�.Fi.u.i/;m/1;:::;N�1;�.Fi.u.i/;m/Œ0;N�/ i ¤ f1; pg

�p�1;�.Fp.u.p/;m/1;:::;N ;�.Fp.u.p/;m/0/ i D p

if h.i/E is known then the first line of system (15) gives:

h.i/I D .J.i/II /
�1.b.i/E � J.i/I
 h.i/E / (16)

Reporting h.i/I in the second line of system (15), we obtain:

S.i/
 h.i/E
defD .J.i/
 
 � J.i/
 I.J

.i/
II /
�1J.i/I
 /h

.i/
E D .b.i/E � .J.i/II /

�1b.i/I /C�i (17)

If�i is known then h.i/E can be computed. To compute�i, we impose the continuity
of the solution among the time slices:

 
u.i/0 C h.i/0
u.i/N C h.i/N

!
D
 

u.i�1/N C h.i�1/N

u.iC1/0 C h.iC1/0

!
(18)
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h.i/0
h.i/N

!
D
 NS.i/
;00 NS.i/
;0NNS.i/
;N0 NS.i/
;NN

! 
g.i/0 C �i�1
g.i/N � �i

!
defD NS.i/


 
g.i/0 C �i�1
g.i/N � �i

!
(19)

where

NS.1/
;N
defD .S.1/
 /

�1;
 NS.i/
;00 NS.i/
;0NNS.i/
;N0 NS.i/
;NN

!
defD .S.i/
 /

�1; i D 2; : : : ; p � 1; NS.p/
;0
defD .S.p/
 /

�1:

We obtain the Lagrange multipliers tridiagonal system (20) of the form
M.�1; : : : ; �p�1/t D .b.1/
 ; : : : ; b

.p�1/

 /t that links all the time slices and allows

the instantaneous propagation of the information between all the time slices:

8
<̂

:̂

�.NS.1/
;N C NS.2/
;00/�1 CNS.2/
;0N�2 D b.1/
NS.i�1/
;N0 �i�2 �.NS.i�1/
;NN C NS.i/
;00/�i�1 CNS.i/
;0N�i D b.i�1/
 ; i D 3; : : : ; p � 1
NS.p�1/
;N0 �p�2 �.NS.p�1/
;NN C NS.p/
;0/�p�1 D b.p�1/


(20)

with

b.1/
 D u.2/0 � u.1/N � S.1/
;Ng.1/N C S.2/
;00g
.2/
0 C S.2/
;0Ng.2/N

b.i�1/
 D u.i/0 � u.i�1/N � NS.i�1/
;N0 g.i�1/0 � NS.i�1/
;NNg.i�1/N C NS.i/
;00g.i/0
C NS.i/
;0Ng.i/N ; i D 3; : : : ; p � 1;

b.p�1/
 D u.p/0 � u.p�1/N � NS.p�1/
;N0 g.p�1/0 � NS.p�1/
;NN g.p�1/N C NS.p/
;0g.p/0

4 Numerical Results of the Schur Time DDM

We tested our Schur time DDM on the IVP (1) with f .t; y/ D 1 C y3.t/ leading to
g.t; y; Py/ D Py.t/.3y2.t//. The number of time steps is Ng D 2000 over Œ0; 1� and
˛ D 1.The monotonicity hypothesis of Theorem 1 is satisfied because y.t/ is an
increasing function on Œ0; 1� and ˛ > 0. The upper bound hypothesis is satisfied on
interval Œ0; b� for b taken sufficiently small, because f .t; y/ is continuous in y. The
initial guess is computed using two Newton iterations on each of the two coarse
grids of 20 and 200 time steps respectively. The initial jjFjj2 is then around 10�2.
Let us notice that Newton’s method on the coarsest time mesh does not converge to
the solution of the problem. Table 1 shows that both strategies for T.C. (10b) (12b)
or (10c) (12c) work well until the number ten of time slices. The first strategy
seems to be more robust until p D 100 time slices. For p D 50 and p D 100

time slices the method does not reach the convergence criterion and oscillates with
jjFjj2 around 10�5. These oscillations are mainly due to the local Schur complement
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Table 1 Number of Newton iterations #it, with respect to the number of time slices p, required to
reach log10.jjf jj2/ < �7 and log10.jjf jj2/ < �6 and with the two discretizing of B.u/

Ng D 2000 T.C. : (10b) (12b), B(u) : (8b)

p 1 2 4 8 10 25 50 100

#it 5 5 5 5 5(6) 5 (6) 5 5

log10.jjFjj2/ �13.02 �7.56 �7.55 �7.55 �7.49 �7.59 �7.52 �7.55

log10.jjhjj2/ �5.42 �6.33 �6.31 �6.28 �5.41 �5.94 �6.19 �6.18

log10.min.�2.NS.i/
 /// – – 0.96 1.15 1.24 1.75 4.00 2.78

log10.max.�2.NS.i/
 /// – – 1.40 2.35 2.65 3.85 5.65 5.65

log10.min.�2.M/// – 0 1.31 2.75 3.14 4.58 3.99 6.50

log10.max.�2.M// – 0 1.64 3.05 3.45 4.89 4.00 6.82

Ng D 2000 T.C. : (10c) (12c), B(u) : (8a)

p 1 2 4 8 10 25 50 100

#it 5 5 5 5 5 5 9 �(8)

log10.jjFjj2/ �12.66 �10.62 �10.62 �9.73 �10.00 �8.37 �7.12 �6.04

log10.jjhjj2/ �7.29 �7.30 �7.11 �7.05 �6.97 �6.58 6.06 �5.47

log10.min.�2.NS.i/
 /// – – 3.05 3.25 3.30 3.62 5.97 4.52

log10.max.�2.NS.i/
 /// – – 5.70 6.23 7.31 8.29 10.68 10.68

log10.min.�2.M/// – 0 1.97 2.82 3.12 4.31 5.95 6.03

log10.max.�2.M// – 0 3.38 3.87 4.73 5.78 7.19 8.45

Ng D 2000 T.C. : (10c) (12c), B(u) : (8b)

p 1 2 4 8 10 25 50 100

#it 5 6 6 6 6 15 – –

log10.jjFjj2/ �13.02 �10.96 �9.67 �8.31 �8.60 �7.48 �6.76 �5.59

log10.jjhjj2/ �5.42 �8.11 �7.83 �7.52 �7.87 �5.97 �4.11 �3.56

log10.min.�2.NS.i/
 /// – – 2.75 3.12 3.21 3.62 5.55 4.54

log10.max.�2.NS.i/
 /// – – 6.35 6.52 7.08 9.05 11.08 11.08

log10.min.�2.M/// – 0 1.73 2.47 3.24 4.45 5.59 6.23

log10.max.�2.M// – 0 3.34 3.39 4.23 6.09 7.85 8.85

log10.min=max.�2.NS.i/
 /// [respectively log10.min=max.�2.M//] refers to the minimum or maxi-
mum value of the condition number of the local Schur complement for the time slices 2 to p � 1
(respectively of the Lagrange multipliers system) over the Newton iterations

of the time slices 2 to p � 1 where its condition number maximum value, over all
the Newton iterations, reaches around 1011 for some time slices. Even with this local
bad condition numbers, the condition number for the Lagrange multipliers system is
around 109 (symbol � in row #it means no convergence and (8) means the iteration
number among 21 iterations where the minimum values of jjFjj2 and jjhjj2 have
been reached).

Nevertheless the right T.C. are (10c) (12c) as shown in [7] and illustrated by the
following results for f .t; y/ D p

y.t/C 2 on Œ0; 3� with ˛ D 0:5. The initial guess
is computed with 2 (respectively 1) Newton iterations on the coarsest (respectively
intermediate) time grid leading to jjFjj2 ' 10�4. Table 2 shows that T.C. (10b) (12b)
do not lead to convergence, excepted for p D 2where the interface system is reduced
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Table 2 Number of Newton iterations #it, with respect to the number of time slices p, required to
reach log10.jjFjj2/ < �6 and log10.jjhjj2/ < �5 and with the discretizing of B.u/ in O.t2/

Ng D 2000 T.C. : (10b) (12b), B(u) : (8a)

p 1 2 4 8 10 25 50 100

#it 3 3 – – – – – –

log10.jjFjj2/ �13.02 �10.51 – – – – – –

log10.jjhjj2/ �7.43 �7.85 – – – – – –

Ng D 2000 T.C. : (10c) (12c), B(u) : (8a)

p 1 2 4 8 10 25 50 100

#it 3 3 3 3 3 3 3 10

log10.jjFjj2/ �12.84 �10.58 �9.89 �8.96 �8.26 �6.00 �6.06 �6.06

log10.jjhjj2/ �7.43 �8.46 �7.05 �7.22 �6.10 �5.37 �5.27 �5.60

log10.min.�2.NS.i/
 /// – – 4.98 5.25 5.25 5.28 6.33 5.90

log10.max.�2.NS.i/
 /// – – 5.88 6.58 7.55 8.70 8.66 8.66

log10.min.�2.M/// – 0 1.67 2.25 2.55 4.49 6.36 4.65

log10.max.�2.M// – 0 2.27 2.84 3.84 5.19 7.96 5.91

log10.min=max.�2.NS.i/
 /// (respectively log10.min=max.�2.M//) refers to the minimum or maxi-
mum of the condition number of the local Schur complement of the time slices 2 to p � 1
(respectively of the Lagrange multipliers system) over the Newton iterations

to one point. This lack of convergence is due to local Jacobian matrices that become
singular because g.t; y/ is constant. However, T.C. (10c) (12c) lead to convergence
in the same number of Newton iterations as for one time domain except for p D 100,
where the condition number of local Schur complements increases.

5 Conclusions

We have extended the time domain decomposition that transforms the IVP into a
BVP in order to introduce a Dual Schur complement inside the Newton method.
This allows the Newton iterative solution to satisfy the continuity constraints at
the time slices boundaries. Nevertheless, in this nonlinear framework the right
transmission conditions for defining the local functions on time slices are those
involving the flux even if the number of time slices that can be used reaches a limit
due to the bad condition number of the local Schur complements.
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Additive Average Schwarz Method
for a Crouzeix-Raviart Finite Volume Element
Discretization of Elliptic Problems

Atle Loneland, Leszek Marcinkowski, and Talal Rahman

1 Introduction

In this paper we introduce an additive Schwarz method for a Crouzeix-Raviart
Finite Volume Element (CRFVE) discretization of a second order elliptic problem
with discontinuous coefficients, where the discontinuities are inside subdomains
and across and along subdomain boundaries. For recent work addressing domain
decomposition methods for such problems, cf. [7, 14] and references therein.
Depending on the distribution of the coefficient in the model problem, the param-
eters describing the GMRES convergence rate of the proposed method depend
linearly or quadratically on the mesh parameters H=h.

The CRFVE method was first introduced by Chatzipantelidis [4] and investigated
further in [10].

Additive Schwarz Methods (ASM) for solving elliptic problems discretized by
the finite element method have been studied thoroughly, cf. [13, 15], but ASMs for
conforming FVE discretization have only been consider in [5, 16]. For the CR finite
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element discretization, there exists several results for second order elliptic problems;
cf. [1, 8, 9, 12]. In the CRFVE case, ASMs have not been studied.

2 Discrete Problem

We consider the following elliptic boundary value problem

� r � .˛.x/ru/ D f in ˝; (1)

u D 0 on @˝;

where˝ is a bounded convex domain in R
2 and f 2 L2.˝/. The coefficient ˛.x/ >

a0 > 0 has the property ˛ 2 W1;1.Dj/with respect to a nonoverlapping partitioning
of ˝ into open, connected Lipschitz polytopes D WD fDj W j D 1; : : : ; ng such
that N̋ D Sn

jD1 NDj: We assume that the restriction of the coefficient ˛ to Dj has
the property j˛j1;1;Dj � C for all j D 1; : : : ; n, i.e., we assume that locally the
coefficient is smooth and not too much varying. For simplicity of presentation we
require that ˛ � 1. This last property can always be achieved by scaling (1).

3 The CRFVE Method

In this section we present the Crouzeix-Raviart finite element (CRFE) and finite
volume (CRFVE) discretizations of a model second order elliptic problem with
discontinuous coefficients inside and across prescribed substructures boundaries.

We assume that there exists another nonoverlapping partitioning of˝ into open,
connected Lipschitz polytopes ˝i such that ˝ D SN

iD1 ˝ i : We also assume that
these subdomains form a coarse triangulation of the domain which is shape regular
as in [2]. We define the sets of Crouzeix-Raviart (CR) nodal points ˝CR

h , @˝CR
h ,

˝CR
ih and @˝CR

ih as the midpoints of edges of elements in Th corresponding to ˝ ,
@˝ , ˝i and @˝i, respectively.

Now we introduce a quasi-uniform triangulation Th of ˝ consisting of closed
triangle elements such that N̋ D S

K2Th
K. Let hK be the diameter of K and define

h D maxK2Th hK as the largest diameter of the triangles K 2 Th. We assume that the
triangulation is defined in such way that @K’s are aligned with @Dj’s. This implies
that the coefficient ˛.x/ has the property that ˛ 2 W1;1.K/ for all K 2 Th.

Using this triangulation Th we may now introduce a dual mesh T �h with elements
called control volumes. Let zK be an interior point of K 2 Th, we connect it with
straight lines to the vertices of K such that K is partitioned into three subtriangles,
Ke for each edge e 2 @K\˝ interior to˝ . Denote this new finer triangulation of˝
by QTh. With each edge e we associate a corresponding control volume be consisting
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Fig. 1 The control volume be

for an edge e which is the
common edge to the triangles
KCe and K�e. Here me is the
midpoint of e, ne normal unit
vector to e, zKCe and zK�e are
the interior points of the
triangles KCe and K�e which
share the edge e

of the two subtriangles of QTh which have e as an common edge, cf Fig. 1. Define
T �h D fbe W e 2 Ein

h g to be the set of all such control volumes, where Ein
h is the set of

all interior edges of the elements in Th.
Let Vh be the nonconforming CR finite element space defined on the triangulation

Th,

Vh D Vh.˝/ WD fu 2 L2.˝/ W vjK 2 P1; K 2 Th v.m/ D 0 m 2 @˝CR
h g;

and let V�h be its dual control volume space

V�h D V�h .˝/ WD fu 2 L2.˝/ W vjbe 2 P0; be 2 T�h v.m/ D 0 m 2 @˝CR
h g:

Obviously, V�h D spanf�e.x/ W e 2 Ein
h g, where f�eg are the characteristic functions

of the control volumes fbeg. Now, let I�h W Vh ! V�h be the standard interpolation
operator, i.e.

I�h u D
X

e2Ein
h

u.me/�e:

We may then define the CRFVE approximation uh of (1) as the solution to the
following problem: Find uh 2 Vh such that

ah.uh; I
�
h v/ D

�
f ; I�h v

�
; v 2 Vh (2)

where the bilinear form is defined as

ah.u; v/ D �
X

e2Ein
h

v.me/

Z

@be

˛.x/ru � n ds u 2 Vh; v 2 V�h :

where n is the outward unit normal vector of the control volume be.
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The corresponding CR finite element bilinear form is defined as: a.u; v/ DP
K2Th

R
K ˛.x/ru � rv dx; and we define the energy norm induced by a.�; �/ as

k � ka D
p

a.�; �/: (3)

4 The GMRES Method

The linear system of equations which arises from problem (2) is in general
nonsymmetric. We may solve such a system using a preconditioned GMRES
method; cf. [6, 11]. This method has proven to be quite powerful for a large class
of nonsymmetric problems. The theory originally developed for L2.˝/ in [6] can
easily be extended to an arbitrary Hilbert space; see [3].

In this paper, we use GMRES to solve the linear system of equations

Tuh D g; (4)

where T is a nonsymmetric, nonsingular operator, g 2 Vh is the right hand side and
uh 2 Vh is the solution vector. The formulation of T will be given in the next section.

The main idea of the GMRES method is to solve a least square problem in each
iteration, i.e. at step m we approximate the exact solution uh D T�1g by a vector
um 2 Km which minimizes the a-norm (energy norm) of the residual, cf. (3), where
Km is the m-th Krylov subspace defined as Km D span

˚
r0;Tr0; � � �Tm�1r0

�
and

r0 D g � Tu0: In other words, zm solves

min
z2Km

kg � T.u0 C z/ka:

Thus, the m-th iterate is um D u0 C zm.
The convergence rate of the GMRES method is usually expressed in terms of the

following two parameters

cp D inf
u¤0

a.Tu; u/

kuk2a
and Cp D sup

u¤0
kTuka

kuka
:

The decrease of the norm of the residual in a single step is described in the next
theorem.

Theorem 1 (Eisenstat-Elman, Schultz) If cp > 0, then the GMRES method
converges and after m steps, the norm of the residual is bounded by

krmka �
 
1 � c2p

C2
p

!m=2

kr0ka; (5)

where rm D g � Tum.
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5 An Additive Average Method

In this section we introduce the additive Schwarz method for the discrete prob-
lem (2) and provide bounds on the convergence rate, both for the cases of symmetric
and nonsymmetric preconditioners.

5.1 Decomposition of Vh.˝/

We decompose the original space into

Vh.˝/ D V0.˝/C V1.˝/C � � � C VN.˝/; (6)

where for i D 1; : : : ;N we have defined Vi.˝/ as the restriction of Vh.˝/ to˝i with
functions vanishing on @˝CR

ih and as well as on the other subdomains. The coarse
space V0.˝/ is defined as the range of the interpolation operator IA. For u 2 Vh.˝/,
we let IAu 2 Vh.˝/ be defined as

IAu WD
(

u.x/; x 2 @˝CR
ih

Nui; x 2 ˝CR
ih

i D 1; : : : ;N; (7)

where

Nui WD 1

ni

X

x2@˝CR
ih

u.x/: (8)

Here ni is the number of nodal points of @˝CR
ih .

We also assume that Th.˝i/ inherits the shape regular and quasi-uniform
triangulation for each ˝i with mesh parameters hi and Hi D diam.˝i/. The layer
along @˝i consisting of unions of triangles K 2 T .˝i/ which touch @˝i is denoted
as ˝ı

i . Corresponding to each layer we define the maximum and minimum values
of the coefficient ˛ as

˛i WD sup
x2 N̋ ıi

˛.x/ and ˛i WD inf
x2 N̋ ıi

˛.x/;

respectively.
For i D 0; : : : ;N we define the two types of projection like operators T.k/i WVh !

Vi.˝/, k D 1; 2 as

a.T.1/i u; v/ D ah.u; I
�
h v/ 8v 2 Vi.˝/; (9)
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for the symmetric preconditioner, and

ah.T
.2/
i u; v/ D ah.u; I

�
h v/ 8v 2 Vi.˝/; (10)

for the non-symmetric preconditioner. Each of these problems have a unique
solution. We now introduce

T.k/A WD T.k/0 C T.k/1 C � � � C T.k/N ; k D 1; 2; (11)

which allow us to replace the original problem, respectively for k D 1 and k D 2,
by the equation

T.k/A u D g.k/; (12)

where g.k/ D PN
iD0 gi and g.k/i D T.k/i u. Note that g.k/i may be computed without

knowing the solution u of (2).

Theorem 2 There exists h0 > 0 such that for all h < h0, k D 1; 2; and u 2 Vh

kT.k/uka � Ckuka;

a.T.k/u; u/ � c max
i

˛i

˛i

�
Hi

hi

��2
a.u; u/;

where C; c are positive constants independent of ˛, ˛i
˛i

, hi and Hi for i D 1; : : : ;N:
For certain distributions of ˛ we may improve the estimate.

Proposition 1 There exists h0 > 0 such that for all h < h0, u 2 Vh and ˛i � ˛.x/
in ˝i n˝ı

i

kT.k/uka � Ckuka;

a.T.k/u; u/ � c max
i

˛i

˛i

�
Hi

hi

��1
a.u; u/ 8u 2 Vh;

where C; c are positive constants independent of ˛, ˛i
˛i

, hi and Hi for i D 1; : : : ;N:

6 Numerical Results

In this section we present some preliminary numerical results for the proposed
method with the symmetric preconditioner, i.e. for k D 1 in (12). All experiments
are done for problem (1) on a unit square domain ˝ D .0; 1/2. The coefficient ˛ is
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Table 1 Number of iterations until convergence for the solution of (1) for different values of ˛1 in
the distributions of the coefficient ˛ given in Fig. 2a, b

˛1 1e0 1e1 1e2 1e3 1e4 1e5 1e6

Problem 1 40 40 40 40 40 40 40

Problem 2 40 66 108 177 233 276 316

Fig. 2 Distributions of ˛ corresponding to Problem 1 and Problem 2

equal to 2C sin.100�x/ sin.100�y/ except for the areas marked with red where ˛
equals ˛1.2C sin.100�x/ sin.100�y//. The right hand side is chosen as f D 1.

The numerical solution is found by using the Generalized minimal residual
method (GMRES). We run the method until the l2 norm of the residual is reduced
by a factor 106, i.e., as soon as krik2=kr0k2 � 10�6. For each of the problems under
consideration the number of iterations until convergence for different values of ˛1
are shown in Table 1.

The numerical results from our two examples shows that the performance of the
method agrees with the theory. If the inclusions are in the interior of the subdomains
the method is completely insensitive to any discontinuities in the coefficient, while
if the inclusions are on the subdomain layer the method depends strongly on the
jumps in the coefficient.
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Schwarz Methods for a Crouzeix-Raviart Finite
Volume Discretization of Elliptic Problems

Leszek Marcinkowski, Atle Loneland, and Talal Rahman

1 Introduction

In this paper, we present two variants of the Additive Schwarz Method (ASM) for
a Crouzeix-Raviart finite volume (CRFV) discretization of the second order elliptic
problem with discontinuous coefficients, where the discontinuities are only across
subdomain boundaries. The resulting system, which is nonsymmetric, is solved
using the preconditioned GMRES iteration, where in one variant of the ASM the
preconditioner is symmetric while in the other variant it is nonsymmetric. The
proposed methods are almost optimal, in the sense that the convergence of the
GMRES iteration, in the both cases, depend only poly-logarithmically on the mesh
parameters.

In the CRFV method, the equations are discretized on a mesh which is dual to
a primal mesh where the nonconforming Crouzeix-Raviart finite element space is
defined, it is the space in which we seek for an approximation of the solution, cf.
[4].

There are many results concerning Additive Schwarz Methods (ASM) for solving
symmetric systems, those arising from the finite element discretization of second
order elliptic problems, cf. e.g. [12], but only a few papers that consider the FV
discretization using the standard finite element space, cf. [5, 13]. There is also a
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number of results focused on iterative methods for the CR finite element for second
order problems; cf. [1, 9, 11].

The purpose of this paper is to construct two parallel algorithms based on the
edge based discrete space decomposition in the abstract Schwarz scheme. The
algorithms are very similar in application.

We present almost optimal estimates for the convergence of the GMRES iteration
applied to the preconditioned system, showing that the minimum eigenvalue of the
preconditioned operator in the estimate, grows like .1Clog.H=h//�2, where H is the
maximal diameter of the subdomains and h is the fine mesh size parameter. Some
preliminary results of numerical tests are also presented.

2 Discrete Problem

In this section we present the Crouzeix-Raviart finite element (CRFE) and finite
volume (CRFV) discretizations of a model second order elliptic problem with
discontinuous coefficients across prescribed substructures boundaries.

Let˝ be a polygonal domain in the plane. We assume that there exists a partition
of˝ into disjoint polygonal subdomains˝k such that˝ D SN

kD1 ˝k with˝k\˝ l

being an empty set, an edge or a vertex (crosspoint). We also assume that these
subdomains form a coarse triangulation of the domain which is shape regular as in
[2]. We introduce a global interface 
 D S

i @˝i n @˝ which plays an important
role in our study.

Our model differential problem is to find u� such that

� rA.x/ru�.x/ D f .x/ x 2 ˝ (1)

u�.s/ D 0 s 2 @˝;

where A.x/ is the symmetric coefficients matrix.
The standard variational (weak) formulation is to find u� 2 H1

0.˝/ such that
a.u�; v/ D R

˝
fv dx for all v 2 H1

0.˝/, where f 2 L2.˝/, and a.u; v/ DPN
kD1

R
˝k
ruTA.x/rv dx: We assume that the restriction of the symmetric coeffi-

cients matrices to ˝k: Ak D Aj˝k is in W1;1.˝k/ and bounded and positive definite,
i.e.

9˛k > 0 8x 2 ˝k 8� 2 R
2 �T A.x/� � ˛kj�j2; (2)

9Mk > 0 8x 2 ˝k 8�; � 2 R
2 �TA.x/� � Mkj�jj�j: (3)

Here j�j D p
�T� . We can always scale the matrix functions A in such a way that

all ˛k � 1. Thus we assume that the restriction of the coefficient matrices to ˝k:
Ak D Aj˝k is in W1;1.˝k/ with the following bounds: kAkkW1;1.˝k/ � C, and
Mk � Ce˛k, i.e. we assume that the coefficient matrix locally is smooth, isotropic
and not too much varying.
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We assume that there exists a sequence of quasiuniform triangulations: Th D
Th.˝/ D f�g, of ˝ such that any element � of Th is contained in only one
subdomain, as a consequence any subdomain ˝k inherits a sequence of local
triangulations: Th.˝k/ D f�g��˝k;�2Th .

Let h D max�2Th.˝/ diam.�/ be the mesh size parameter of the triangulation. We
introduce the following sets of Crouzeix-Raviart (CR) nodal points or nodes: let
˝CR

h ; @˝CR
h ;˝CR

k;h ; @˝
CR
k;h , 
 CR

h , and 
 CR
kl;h be the midpoints of edges of elements in

Th which are on ˝; @˝;˝k; @˝k, 
 , and 
kl, respectively. Here 
kl is an interface,
an open edge, which is shared by the two subdomains, ˝k and ˝l. Note that

 CR

h D S

kl�
 


CR
kl;h : Now we define a dual triangulation T�h to the initial one. For

an edge e of an element not on @˝ i.e. being the common edge of two elements �1
and �2 i.e. e D @�1\@�2 we introduce two triangles: Vk � �k obtained by connecting
the ends of e to the centroid (barycenter) of �k for k D 1; 2. Then, let the control
volume be D V1 [ e [ V2, cf. Fig. 1. For an edge of an element � contained in @˝
let the control volume be the triangle V obtained analogously i.e. by connecting the
ends of e with the centroid of � . Then let T�h D fbege2Eh , where Eh is the set of all
edges of elements in Th.

Next we introduce two discrete spaces contained in L2.˝/:

Vh WD fv 2 L2.˝/ W vj� 2 P1; � 2 Th v.m/ D 0 m 2 @˝CR
h g;

V�h WD fv 2 L2.˝/ W vjbe 2 P0; be 2 T�h v.m/ D 0 m 2 @˝CR
h g:

The first space is the classical nonconforming Crouzeix-Raviart finite element
space, cf. Fig. 2, and the second space is the space of piecewise constant functions
which are zero on the boundary of the domain.

Let f�mgm2˝CR
h

be the standard CR nodal basis of Vh and f mgm2˝CR
h

be the
standard basis of V�h consisting of characteristic functions of the control volumes.

Fig. 1 The control volume be

for an edge e which is the
common edge to the triangles
�1 and �2

V2

be

V1
τ2τ1

Fig. 2 Edge midpoint
corresponding to the degrees
of freedom of the
nonconforming
Crouzeix-Raviart element
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We also introduce two interpolation operators, Ih and I�h , defined for any function
that has properly defined and unique values at each midpoint m 2 ˝CR

h :

Ih.u/ D
X

m2˝CR
h

u.m/�m; I�h .u/ D
X

m2˝CR
h

u.m/ m:

Note that IhI�h u D u for any u 2 Vh and I�h Ihu D u for any u 2 V�h . We also define
a nonsymmetric in general bilinear form ah W Vh � V�h ! R:

aCRFV
h .u; v/ D �

X

e2Ein
h

v.me/

Z

@be

nTA.s/ru ds; (4)

where n is a normal unit vector outer to @be, me is the median (midpoint) of the edge
e and Ein

h � Eh is the set of all interior edges, i.e. those which are not on @˝ .
Then our discrete CRFV problem is to find u� 2 Vh such that:

aFV
h .u�; v/ D f .I�h v/ 8v 2 Vh (5)

for aFV
h .u; v/ WD aCRFV

h .u; I�h v/. In general the problem is nonsymmetric unless the
coefficients matrix is a piecewise constant matrix over Th. One can prove that there
exists h0 > 0 such that for all h � h0 the form aFV

h .u; v/ is positive definite over Vh.
Thus this problem has a unique solution. Some error estimates are also proven, cf.
[7] or [4] in the case of the smooth coefficients.

3 Additive Schwarz Method

In this section, we construct our ASM based on the abstract framework for additive
Schwarz methods, see [12].

First we introduce the local spaces being the restriction of Vh to ˝k and its
subspace with discrete CR zero boundary conditions:

Wk WD fvj˝k
W v 2 Vhg; Wk;0 WD fv 2 Wk W w.m/ D 0 m 2 @˝CR

k;h g � Wk:

Let Pk W Wk ! Wk;0 be the orthogonal projection onto Wk;0 in terms of the local
bilinear form: aFE

k;h.u; v/ D
P

�2Th.˝k/

R
�
ruTArv dx; i.e.

aFE
k;h.Pku; v/ D aFE

k;h.u; v/ 8v 2 Wk;0:

Then Hku D u � Pku will be the discrete harmonic part of u 2 Wk. If u D Hku then
we say that u 2 Wk is discrete harmonic. A function u 2 Vh is discrete harmonic
if its all restrictions to subdomains are discrete harmonic i.e. uj˝k D Hkuj˝k for
k D 1; : : : ;N. We also define an edge function �
kl 2 Vh as a discrete harmonic
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function such that it is equal to one at CR nodes interior to 
kl and zero at all other
CR nodes on the interface.

We now define the decomposition of Vh. Let V0 D Span.�
kl /
kl�
 be the coarse
space, Vkl be the edge space associated with the interface 
kl formed by discrete
harmonic functions that are zero at each x 2 
 CR

h n 
 CR
kl;h . Finally let Vk be the space

Wk;0 extended by zero to all remaining subdomains. Thus we have the following
decomposition: Vh D V0 CP
kl�
 Vkl CPN

kD1 Vk: Note that this is a direct sum
and that the subspace V0 CP
kl�
 Vkl is aFE

h .u; v/ D
P

k aFE
k;h.u; v/ orthogonal toPN

kD1 Vk. Now we define the first type of projection like operators: the coarse and
the local operators, Tsym

k W Vh ! Vk, as

aFE
h .T

sym
k u; v/ D aFV

h .u; v/ 8v 2 Vk; k D 0; 1; : : : ;N;

the edge related operators, Tsym
kl W Vh ! Vkl, as

aFE
h .T

sym
kl u; v/ D aFV

h .u; v/ 8v 2 Vkl; 
kl � 
:

Note that Tsym
k u can be computed by solving a symmetric local discrete CRFE

Dirichlet problem and then extended by zero to the other subdomains.
The second type of operators is based solely on the nonsymmetric bilinear form

aFV
h .u; v/. We define the coarse and the local operators, Tnsym

k W Vh ! Vk, as

aFV
h .Tnsym

k u; v/ D aFV
h .u; v/ 8v 2 Vk; k D 0; 1; : : : ;N;

and the edge related operators, Tnsym
kl W Vh ! Vkl, as

aFV
h .Tnsym

kl u; v/ D aFV
h .u; v/ 8v 2 Vkl; 
kl � 
:

We define the two ASM operators as follows:

Ttype WD
X


kl�

Ttype

kl C
NX

kD0
Ttype

k ;

where the super-index type is either sym or nsym. We can replace our discrete CRFV
equation (5) by the following system:

Ttypeu�h D gtype; (6)

where gtype D gtype
0 CP
kl�
 gtype

kl C
PN

kD1 gtype
k , gtype

0 D Ttype
0 u�h , gtype

kl D Ttype
kl u�h

gtype
k D Ttype

k u�h , and type 2 fsym; nsymg .
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We apply the GMRES method in the inner product aFE
h .u; v/, to the new

system (6), and get the the following estimate (see [6] for the case of standard l2
inner product, and [3] for the general case):

kg � Ttypeujka �
�
1 � ˛

2
min

˛2max

�j=2

kg � Ttypeu0ka: (7)

where ˛min D minu2Vhnf0g
aFE

h .Ttypeu;u/
kuk2a and ˛max D maxu2Vhnf0g

kTtypeuka
kuka

, kvka WDq
aFE

h .v; v/, and Ttype is either Tsym or Tnsym.
Next, we present the main theoretical result of this paper, namely an estimate

of the convergence rate of the GMRES method, which is the same for both
preconditioned systems (6). The proof of this theorem is an extension of the proof
in [10] to the case of CRFV and will be published in [8].

Theorem 1 There exists h0 > 0 such that for all h < h0 and u 2 Vh

kTtypeuka � Ckuka; aFE.Ttypeu; u/ � c

�
1C log

�
H

h

���2
kuk2a

where Ttype is either Tsym or Tnsym, C and c are positive constants independent of h,
H D maxkD1;:::;N diam.˝k/, and the magnitudes of ˛k and Mk, but they depend on
Mk
˛k
� Ce, cf. (2)–(3).

This theorem together with (7) gives as an estimate of the rate of convergence
of the GMRES iteration for the two cases showing that the rates slow down very
slowly—poly-logarithmically.

4 Numerical Results

In this section, we present some preliminary numerical results for the proposed
method. All experiments are done for the symmetric preconditioner, that is for
Tsym, but we expect a similar performance for Tnsym. In all cases ˝ is a unit square
domain. The coefficient A is equal to 2C sin.100�x/ sin.100�y/, except for areas
(subdomains) marked with red where A equals ˛1.2C sin.100�x/ sin.100�y// with
˛1 being a parameter (cf. Fig. 3 and Table 1). The right hand side is chosen as f D 1.
The numerical solution is found by using the generalized minimal residual method
(GMRES) (Fig. 4).

For the paper, we consider two test problems as shown in Fig. 3. We run the
method until the l2 norm of the residual is reduced by a factor of 106, that is when
krik2=kr0k2 � 10�6. Number of iterations, for the problems under consideration,
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Fig. 3 Test problems (a) 1 and (b) 2. Regions (subdomains) marked with red are where A depends
on ˛1. Fine mesh consists of 48 � 48 rectangular blocks, while coarse mesh consists of 4 � 4
rectangular subdomains

Table 1 Number of GMRES iterations until convergence for the solution of (5), with different
values of ˛1 describing the coefficient A in the red regions, cf. Fig. 3a, b

˛1 1e0 1e1 1e2 1e3 1e4 1e5 1e6

Problem 1 18 26 26 27 27 27 28

Problem 2 18 21 22 22 22 23 24
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Fig. 4 Relative residual norms for GMRES minimizing the A-norm for different values of ˛1. (a)
Problem 1. (b) Problem 2

for different values of ˛1, are shown in Table 1. The results show that the methods
are robust for the present distribution of the coefficients, and supports our theory.
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Preconditioning of the Reduced System
Associated with the Restricted Additive Schwarz
Method

François Pacull and Damien Tromeur-Dervout

It is of interest to solve large scale sparse linear systems on distributed computers,
using Krylov subspace methods along with domain decomposition methods. If accu-
rate subdomain solutions are used, the restricted additive Schwarz preconditioner
allows a reduction to the interface via the Schur complement, which leads to an
unpreconditioned reduced operator for the interface unknowns. Our purpose is to
form a preconditioner for this interface operator by approximating it as a low-rank
correction of the identity matrix. To this end, we use a sequence of orthogonal
vectors and their image under the interface operator, which are both available after
some iterations of the generalized minimal residual method.

The framework of study is purely algebraic and general real sparse nonsymmetric
and indefinite matrices are considered. The linear system to solve is:

Au D f (1)

with A 2 R
n�n, u 2 R

n and f 2 R
n.

Next, we set up the classical notations and terminologies from the algebraic
Schwarz literature.
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1 Notations

We denote by V D f1; � � � ; ng the set of vertices and by E the set of edges of the
connectivity graph of A: G 
 G.A/ D .V ; E/. In the present work, we assume that
the structure of A is not too far from being symmetric, which is common for matrices
issued from partial differential equations. For this reason, edges from E are made of
unordered pairs of vertices from V , and the graph G is said to be unoriented: given
two vertices i and j from V , the edge .i; j/ belongs to E if and only if Ai;j ¤ 0 or
Aj;i ¤ 0.

Given a subset S � V , the induced subgraph GjS consists of the vertices S and
the edges E jS D

˚
.i; j/ 2 E = .i; j/ 2 S2

� � E .
Two vertices are said to be adjacent if they share an edge in E . Given a subset

S � V , the adjacent set adj.S/ contains all the vertices that are adjacent to at least
one vertex of S, but which do not belong to S.

This allows the definition of overlapping and non-overlapping partitions of V , as
used by the algebraic Schwarz preconditioners.

A set P0 D fVi;0g16i6p of subsets Vi;0 � V is called a non-overlapping partition
of V if:

– no element of P0 is empty,
– the elements of P0 are pairwise disjoint,
– the union of the elements of P0 is equal to V .

A set P D fVi;g16i6p of subsets Vi; � V is called an overlapping partition of V
associated with the non-overlapping partition P0 if, for 1 6 i 6 p:

– Vi;0 is a subset of Vi;,
– each vertex from the overlap subset Vi; n Vi;0 is connected to at least one vertex

of Vi;0 within the subgraph GjVi; .

By connected, it is meant that there exists a path made of successive adjacent
vertices.

The parts or subsets of the partitions are referred to as subdomains. The
techniques for partitioning a graph and growing subdomains from P0 to P are
beyond the scope of this paper. Let us only say that a common strategy for
partitioning a graph is to minimize the number of edges that straddle across the non-
overlapping subdomains, while creating p equal size subsets. Also, a basic technique
to get an overlapping partition is to add the adjacent vertices of each subdomain:
Vi; D Vi;0 [ adj .Vi;0/. This is what is used for all the computations presented
hereafter. Note that this process could be performed recursively in order to further
extend the overlap: Vi;  Vi; [ adj .Vi;/.

While all the notations and definitions given above allow the description of the
Restricted Additive Schwarz (RAS) preconditioner, another subset of vertices is
required in order to study the reduction of the unknowns: VE

0 , the external interface
vertices (we follow the terminology of [6]) of P0, which is the union of the p
subdomain adjacency sets: VE

0 D [p
iD1adj .Vi;0/ :
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Fig. 1 Example of a connectivity graph (left); non-overlapping partition with two subdomains
(middle); external interface vertices of the non-overlapping partition (right)

All the other vertices are referred to as the irrelevant vertices (see [1]): V I
0 D

V n VE
0 . A simple example of a non-overlapping partition, with marked external

interface vertices, is shown on Fig. 1.
If ni;0 D jVi;0j, for 1 6 i 6 p, we denote by Ri;0 2 R

ni;0�n the restriction operator
fromR

n onto the subspace associated with Vi;0. Similarly, if ni; D jVi;j, we denote
by Ri; 2 R

ni;�n the restriction operator from R
n onto the subspace associated with

Vi;. The special restriction operator QRi; is defined as follows: QRi; D Ri;RT
i;0Ri;0.

If nE
0 D jVE

0 j and nI
0 
 n � nE

0 , we denote respectively by RE
0 2 R

nE
0�n and

RI
0 2 R

nI
0�n the restriction operators from R

n onto the subspaces associated with VE
0

and V I
0.

Also, the diagonal operator II
0 stands for RI

0

T
RI
0. Note that the transpose of

the restriction operators are the corresponding prolongation operators. Finally, the
subdomain operators, assumed to be non-singular, are denoted by: Ai; D Ri;ART

i;.
Despite the fact that the methods related to the reduction to the interface are

well-known in the community, we are not aware of a detailed description of this
reduction in the right RAS preconditioning case: the next section provides this. We
refer to [5] for the left RAS preconditioning case. Anyhow, convergence behaviors
are alike when setting the preconditioner either on the left or the right side of A, for
Krylov subspace methods, since M�1 A and AM�1 are similar operators.

2 Reduction to the Interface of the Right Preconditioned
System

The preconditioned operator writes, by definition (see [2]):

AM�1 D A
pX

iD1
QRT

i;A�1i;Ri;

Let us start by stating the following proposition.
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Proposition 1 For any overlapping partitioning P associated with the disjoint
subsets P0, we have:

II
0AM�1 D II

0

The proof is rather lengthy compared to this paper format. Because it only involves
classical algebra, it is left to the reader.

If we come back to the system (1), the right preconditioned version is the
following:

AM�1 Ou D f ; u D M�1 Ou

By introducing a global permutation matrix PT
0 D ŒRI

0

T
RE
0

T
�, which reorders the

unknowns such that those from the external interface of the non-overlapping parti-
tion VE

0 are second, and by permuting this latter system, we get: P0AM�1 PT
0P0 Ou D

P0f .
We denote respectively by Ox0 D RI

0 Ou and Oy0 D RE
0 Ou the irrelevant and external

interface unknowns. Proposition 1 yields:

"
I 0

RE
0AM�1 RI

0

T
RE
0AM�1 RE

0

T

#� Ox0
Oy0
�
D
�

RI
0f

RE
0 f

�
(2)

Let G denote the operator I � RE
0AM�1 RE

0

T
. With Ox0 D RI

0f and h standing for
RE
0

�
I � AM�1 II

0

�
f , Eq. (2) can be reduced to the following system:

.I �G/ Oy0 D h (3)

In order to solve the unpreconditioned system (3) with the Generalized Minimal
RESidual (GMRES) method, given an initial guess Oy.0/0 D Oyinit

0 , the evaluation of the
initial residual is needed:

r0 D h � .I � G/ y.0/0 D RE
0

�
f � AM�1

�
RE
0

T Oyinit
0 C II

0 f
��

(4)

Then, in the GMRES outer loop, the following matrix-vector product is required:
w  .I � G/ vj D RE

0AM�1 RE
0

T
vj. This implies solving local problems on each

Vi; subdomain with a right-hand side that is not zero-valued only in Vi; \ VE
0 .
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Fig. 2 GMRES solvers for the global (left) and the interface (right) unknowns

Finally, once the iterative method converged to Oy.1/0 , the solution of the system
(1) is recovered as follows:

u.1/ D M�1 Ou.1/ D M�1
�

RE
0

T Oy.1/0 C II
0f
�

The algorithm is described on the right of Fig. 2. At each iteration, we can
monitor the global system’s residual norm from the interface residual norm. Using
Proposition 1, it is easy to check that:

k f � AM�1
�

RE
0

T Oy0 C II
0 f
�
k2 D kh � .I �G/Oy0k2

If solving the interface system instead of the global one represents only a
slight modification of the GMRES algorithm (described on the left of Fig. 2), the
advantage lies in the size of the system, nE

0 against n, and thus the floating point
operation count and memory usage of the GMRES method. The difference between
the respective convergence behaviors is not significant, as shown on an example in
Fig. 3. Indeed, we can see from Eq. (2) that the spectrum of AM�1 is equal to the
spectrum of I � G augmented with nI

0 one-valued eigenvalues.
The next section is devoted to the preconditioning applied to the reduced

system (3).
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Fig. 3 Full GMRES
convergence of the global and
interface systems. The
GT01R matrix and RHS from
the UF sparse matrix
collection [3] is used, with a
zero initial guess. From left to
right, the domain is divided
into two, four and eight parts.
The number of primary
unknowns is 7980, while the
number of interface
unknowns is 420, 1260, and
2940 respectively from left to
right
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3 Preconditioning the Reduced System

The main difficulty with the preconditioning of I �G is that G is rather dense, as
shown with an example in Table 1.

The cost of an approximate inverse approach appears to be prohibitive regarding
computational time and memory. Our motivation is to only use the matrix-vector
product .I �G/v in order to build the preconditioning strategy (Fig. 4).

If we have a set Vq of q orthonormal vectors of size nE
0 , we can approach G

using the orthogonal projection matrix VqVT
q : QG 
 VqVT

q GVqVT
q . If we note Wq

the image of Vq under G, and OG 
 VT
q GVq D VT

q Wq 2 R
q�q, we get by

Woodbury matrix identity:

.I � QG/
�1 D I � Vq.I � OG�1 /�1VT

q D I C Vq..I � OG/
�1 � I/VT

q (5)

D I C Vq..I � VT
q Wq/

�1 � I/VT
q (6)

As we can see on Fig. 2, we already have an orthonormal basis Vq D Œ1; � � � ; vq� after
q iterations of the GMRES algorithm. Also, the image of each vector of Vq under
.I � G/ is computed on line 5 of the algorithm on the right side. Thus we need to
store theses images Wq D .I�G/Vq in order to build the preconditioner (6) and use
it subsequently. Some results of this strategy are shown on Fig. 5: in this approach,
the preconditioner is build first and then kept throughout the GMRES process. On
the whole, we observe a trade-off between the number of GMRES iterations used
to build the preconditioner q and those saved thanks to the preconditioning. If we
note mconv the number of GMRES iterations required to reach a given tolerance, we
observe that qC mconv remains constant for all values of q.
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Table 1 Density percentage
of matrices A and G

Matrix A G

Number of parts p N.A. 2 4 8

Size 7980 420 1260 2940

Density (%) 0.68 66.06 51.10 25.72

The GT01R matrix and RHS from the UF sparse
matrix collection [3] is used

Fig. 4 GMRES(q) solver for the interface unknowns with a variable left preconditioner

Indeed, this interface preconditioner appears to be a cheap and efficient way to
avoid stagnation when restarting by keeping some of the most recent convergence
information. This is why we tested it on the GMRES(q) technique. At each restart, a
new preconditioner is built using the just computed Vq basis. This preconditioner
is only used for the subsequent q GMRES iterations. The left-preconditioned
GMRES(q) algorithm for the interface unknowns is described on Fig. 4.

Some results are shown on Fig. 6: this preconditioned restarted GMRES method
appears to be robust, while avoiding the growth of memory and orthogonalization
time of the full GMRES approach.

Actually, by plugging the equality I� OG D VT
q .I�G/Vq into Eq. (5), it appears

that this preconditioner is related to the preconditioner by deflation from [4], but
with a fixed-size approximate invariant subspace that is fully renewed at each restart.
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Fig. 5 Full GMRES convergence of the interface system preconditioned on the right side. The
GT01R matrix and RHS from the UF sparse matrix collection [3] is used. The initial guess is the
outcome of the preconditioner building process. The domain is divided into eight parts. The value
of q, the size of the approximation space for QG, ranges from 0 (right) to 110 (left)
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GMRES(20) and a left-preconditioned GMRES(20). The GT01R matrix and RHS from the UF
sparse matrix collection [3] is used. The domain is divided into four parts
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4 Conclusion

At first, we saw that if accurate subdomain solutions are employed, the right
RAS preconditioned system can be reduced to a system of interface equations.
The interface unknowns are located at the external interface vertices of the non-
overlapping partition. Then, our purpose was to approximate the reduced interface
operator as a low-rank correction of the identity matrix, using a sequence of Arnoldi
vectors and their image. As might be expected, it is observed that the total cost of
the linear solver regarding the number of applications of the Schwarz preconditioner
remains approximately constant: what is gained by using an unvarying interface
preconditioner is counterbalanced with its building cost. However, this technique
becomes beneficial when the restarted variant of the Krylov subspace method is used
along with a new interface preconditioner at each restart. A link with the deflation
preconditioner was also presented.
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Decoupled Schemes for Free Flow and Porous
Medium Systems

Iryna Rybak and Jim Magiera

A comparison study of different decoupled schemes for the evolutionary
Stokes/Darcy problem is carried out. Stability and error estimates of a mass
conservative multiple-time-step algorithm are provided under a time step restriction
which depends on the physical parameters of the flow system and the ratio
between the time steps applied in the free flow and porous medium domains.
Numerical results are presented and the advantage of multirate time integration is
demonstrated.

1 Introduction

Modeling coupled porous medium and free flow systems is of interest for a wide
spectrum of industrial and environmental applications. Physical processes in these
systems evolve on different scales in space and time that require different models
for each flow domain and an accurate treatment of transitions between them at the
interface. In the free flow region, the Navier–Stokes or Stokes equations are typically
applied to describe momentum conservation while Darcy’s law is used in the porous
medium. To couple these flow models, which are of different orders, the Beavers–
Joseph–Saffman condition [1, 11] is usually applied together with restrictions that
arise due to mass conservation and balance of normal forces across the interface.

Over the last decade, work has been carried out mainly for stationary flow
systems aimed at providing rigorous problem formulations and numerical methods
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for solving such coupled flow problems [3–5, 9]. Recent advances in coupling
techniques for nonstationary flow problems are presented in [2, 6–8], where the
same time step is used in both domains.

Since the free flow velocity is usually much higher than the velocity of fluids
through porous media, it is reasonable to apply a multiple-time-step technique: to
compute fast/slow solutions using a small/large time step. First results on multirate
time integration for the coupled Stokes/Darcy problem are presented in [10, 12].
Multiple-time-stepping pays off for single-fluid-phase systems when the free flow
domain is smaller than the porous medium (modelling karst aquifers, flows in
fractured porous media, flows in blood vessels and biological tissues) and it is
especially efficient when a second fluid phase is present in the subsurface and the
porous medium model is nonlinear and expensive (overland flow interactions with
unsaturated groundwater aquifers).

The overall goal of this work is to investigate different multiple-time-step
techniques for solving coupled free flow and porous medium flow problems.

2 Flow System Description

The system of interest includes a free flow region ˝ff, containing a single fluid
phase, and a porous medium layer ˝pm, which contains a fluid and a solid phase
(Fig. 1, left). At the macroscale, the system is described as two different continuum
flow domains separated by the interface 
 (Fig. 1, right).

We deal with isothermal processes and consider the same incompressible fluid in
both flow domains. The mass conservation equation reads

r�v D 0 in ˝ff � .0;T�: (1)

porous medium

free flow

−solid phase

−fluid phase

porous mediumΩpm

free flowΩff

fluid-porous interfaceΓ

n

Fig. 1 Schematic representation of the coupled free flow and porous medium flow system
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Considering laminar flows and neglecting the inertia term, the momentum balance
in the free flow domain reduces to the Stokes equation

�
@v
@t
� r�T.v; p/� �g D 0 in ˝ff � .0;T�; (2)

where � is the density, v is the velocity, p is the pressure, g is the gravitational
acceleration, T.v; p/ D 2�D .v/� pI is the stress tensor, � is the viscosity, D .v/ D
1
2

�
rvC .rv/

T
�

is the strain tensor, and I is the identity tensor.

Fluid flows through the porous medium are usually described by Darcy’s law
v D ���1K .rp � �g/, which, together with the mass conservation equation for
compressible soils, yields the porous medium flow formulation

ˇ
@p

@t
� r�

�
K
�
.rp � �g/

�
D 0 in ˝pm � .0;T�; (3)

where K is the intrinsic permeability tensor and ˇ is the soil compressibility.
The mass conservation across the interface reads

vff�n D vpm�n on 
 � .0;T�; (4)

and the balance of normal forces is given by

� n�T .vff; pff/ �n D ppm on 
 � .0;T�: (5)

The Beavers–Joseph–Saffman interface condition can be written as follows

vff��i C 2˛�1BJ

p
Kn�D .vff/ ��i D 0; i D 1; : : : ; d � 1 on 
 � .0;T�; (6)

where n and � are the unit normal and tangential vectors to the interface (Fig. 1),
˛BJ > 0 is the Beavers–Joseph parameter, and d is the number of space dimensions.

Problem (1)–(6) is subject to initial and boundary conditions at the external
boundary of the coupled domain.

3 Decoupled Schemes

Multiphysics problems can be solved using the monolithic approach when the
systems of linear algebraical equations resulting from the discretization of two
models are assembled together with the interface conditions into one matrix, or
applying partitioning techniques when each subdomain is treated separately.

For nonstationary problems where the processes run on different time scales,
different time steps can be applied in each subdomain. Typically, fluid velocity in
the free flow domain is much higher than through the porous medium, therefore it is
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Fig. 2 Stokes–Darcy (left) and Darcy–Stokes (right) decoupled multistep schemes

Algorithm 1 (Stokes–Darcy)
for k D 0 to M � 1 do

for m D mk to mkC1 � 1 do

�
vmC1

h � vm
h

t
C Aff

�
vmC1

h ; pmC1
h

�
C Affpm

�
vmC1

h ; pmC1
h ; '

mk
h

�
D fmC1

ff

end for

ˇ
'

mkC1

h � 'mk
h

T
C Apm

�
'

mkC1

h

�C Apmff

�
v

mkC1

h ; '
mkC1

h

� D f
mkC1
pm

end for

Algorithm 2 (Darcy–Stokes)
for k D 0 to M � 1 do

ˇ
'

mkC1

h � 'mk
h

T
C Apm

�
'

mkC1

h

�CApmff

�
vmk

h ; '
mkC1

h

� D f
mkC1
pm

for m D mk to mkC1 � 1 do

�
vmC1

h � vm
h

t
C Aff

�
vmC1

h ; pmC1
h

�
C Affpm

�
vmC1

h ; pmC1
h ; '

mkC1

h

�
D fmC1

ff

end for
end for

reasonable to compute free flow solutions on a fine time mesh and porous medium
solutions on a coarse time mesh. Different decoupled schemes can be developed:
first the free flow problem is solved and then the porous medium one (Fig. 2, left),
or vice versa (Fig. 2, right).

In Algorithms 1–3, Aff and Apm are the space discretization operators for the
free flow problem (1)–(2) and the porous medium problem (3), Affpm is responsible
for the coupling conditions (5)–(6), Apmff stands for the interface condition (4),
' is the porous medium pressure, mk and m are indices for the coarse and fine
time grids, r is the ratio between the large and small time steps T D rt. In
both domains, uniform rectangular meshes matching at the interface are considered
and second order finite volume schemes [13, Chap. 4.4, 6.3] are applied. We will
compare Algorithms 1–3 numerically and provide stability and error estimates for
the most accurate Algorithm 1.
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Algorithm 3 (Stokes–Darcy, averaged velocity, [12])
for k D 0 to M � 1 do

for m D mk to mkC1 � 1 do

�
vmC1

h � vm
h

t
C Aff

�
vmC1

h ; pmC1
h

�
C Affpm

�
vmC1

h ; pmC1
h ; '

mk
h

�
D fmC1

ff

end for

ˇ
'

mkC1

h � 'mk
h

T
C Apm

�
'

mkC1

h

�C Apmff

0

@1
r

mkC1�1X

mDmk

vm
h ; '

mkC1

h

1

AD f
mkC1
pm

end for

4 Stability and Error Estimates

In this section, we provide the long time stability and the a priori error estimates
for the multiple-time-step scheme (Algorithm 1) in case of homogeneous Dirichlet
boundary conditions. The proofs can be found in [10].

Theorem 1 (Long Time Stability) Under the restriction

t � min

�
kmin�

2�.r � 1/2C2
;
2kmin�ˇ

rC

�
; (7)

Algorithm 1 is stable for t 2 Œ0;C1/ and the a priori estimate

�
vmM

h

2
L2.˝ff/

C ˇ 'mM
h

2
L2.˝pm/

C 2t
M�1X

kD0

mkC1�1X

mDmk

d�1X

jD1

Z




˛BJp
K

�
vmC1

h ��j
�2

� � kv0k2L2.˝ff/
C ˇ k'0k2L2.˝pm/

C k2min ˇ

2C
kr'0k2L2.˝pm/

Ct
C2
v

2�

M�1X

kD0

mkC1�1X

mDmk

fmC1
ff

2
L2.˝ff/

CT
C2
'�

kmin

M�1X

kD0

f
mkC1
pm

2
L2.˝pm/

is valid, where v0, '0 are the initial data, kmin is the minimal permeability and the
constants C; C; Cv; C' > 0 are independent of the solution and the discretization
parameters.

Theorem 2 (Convergence) Let condition (7) be satisfied, then the solution of
Algorithm 1 converges to the exact solution of problem (1)–(6) and the a priori

error estimate �
emM

v

2
L2.˝ff/

Cˇ
emM

'


2

L2.˝pm/
� QC �jhj4 CT2

�
holds true, where

ev and e' are the errors of the discrete free flow velocity and the porous medium

pressure, and the constant QC > 0 does not depend on the grid steps.
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5 Numerical Experiments

Consider ˝ff D Œ0; 1� � Œ1; 2�, ˝pm D Œ0; 1� � Œ0; 1�, 
 D .0; 1/ � f1g, and choose
model parameters � D 1, � D 1, ˇ D 1, ˛BJ D 1, K D I, g D 0. The exact solu-
tion u.x; y; t/ D � cos .�x/ sin .�y/ exp.t/, v.x; y; t/ D sin .�x/ cos .�y/ exp.t/,

p.x; y; t/ D y2

2
sin .�x/ exp.t/, '.x; y; t/ D y

2
sin .�x/ exp.t/ satisfies the interface

conditions (4)–(6).
Comparison of Algorithm 1, using the same time steps in both subdomains

and a larger time step in the porous medium, with the monolithic approach is
presented in Fig. 3. At each level of space grid refinement, the time step is reduced
by the factor of four starting with t D 10�2. The errors are defined as "v D
kv � vhkL2.˝ff/

= kvkL2.˝ff/
, and "' D k' � 'hkL2.˝pm/ = k'kL2.˝pm/. Numerical

results confirm second order convergence in space and first order in time for all
the schemes. The multistep algorithm is slightly less accurate due to a larger time
step applied in the porous medium domain.

Comparison of Algorithms 1–3 for the same parameters is presented in Fig. 4.
All methods demonstrate second order convergence in space and first order in time.
Algorithm 1 is more accurate than Algorithms 2–3.

We note that restriction (7) is fulfilled for this model problem. For realistic
applications this restriction is severe. However, numerical simulations show that
the multiple-time-step algorithm is stable and convergent even when this restriction
is not fulfilled [10, Sec. 6.2].

We also present numerical simulations for a realistic setup. Consider a coupled
domain of size 5m � 1:2m with the interface 
 D .0; 5m/ � f1mg. In the porous
medium, there are two inclusions Œ0; 2m� � Œ0:4m; 0:8m� and Œ2:5m; 3:5m� �
Œ0:1m; 0:8m�. The fluid is water with density � D 103



kg=m3

�
and dynamic

viscosity � D 10�3 ŒPa s�. The soil is isotropic with permeability k D 10�8


m2
�

except for the inclusions, where k1 D 10�6


m2
�

and k2 D 10�10


m2
�

(Fig. 5, top),
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Fig. 5 Initial and boundary conditions (top) and pressure (bottom) for the realistic setup

and compressibility ˇ D 10�4 Œ1=Pa�. The Beavers–Joseph coefficient is ˛BJ D 1.
Gravitational effects are neglected.

Initial and boundary conditions are prescribed in Fig. 5 (top), where the inflow
conditions in the free flow domain are defined as u D �

2 � 190.y� 1:1/2� �
.1 � cos.�t=2// Œm=s�, v D 0, the no-flow condition in the porous medium is
given by @p=@x D 0, and the outflow conditions in the free flow region are
@u=@x D 0; @v=@x D 0.

The following discretization parameters are used h D 10�2 Œm�, t D 10�3 Œs�,
and r D 10 except for the results presented in Fig. 6 (right), where r is varying.
Numerical simulation results for the pressure distribution in the coupled domain at
time t D 2:4 [s] are presented in Fig. 5 (bottom).

The finite volume method on staggered grids, used to discretize the free flow
and the porous medium problems, is locally mass conservative. The only place
where the mass can be lost is the interface 
 . Algorithm 1 is constructed in such
a way that guarantees no mass loss across 
 . However, Algorithms 2–3 are not
mass conservative. The overall mass loss through the interface is presented for all
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Fig. 6 Overall mass loss through the interface for Algorithms 1–3 (left). CPU time reduction for
Algorithm 1 at different time step ratios (right)

the algorithms in Fig. 6 (left). The ratio between the time steps is r D 10. The
mean mass loss Mi at each time step, where i D 1; 2; 3, for Algorithms 1–3 are
M1 D 3:5 � 10�14 Œkg�, M2 D 3:9 � 10�2 Œkg�, and M3 D 2:1 � 10�2 Œkg�.

To demonstrate the advantage of the multirate time integration approach we run
simulations for T D 7 Œs� and compare CPU times needed for computation of the
coupled problem using different ratios between the time steps applied in the free
flow and porous medium domains (Fig. 6, right). For simulations we use a direct
sparse solver and reuse factorizations between different time steps.

Many extensions to this work are possible: development of different time-
partitioning algorithms, using higher order schemes in time for the porous medium,
application of various space discretizations in both domains, considering two fluid
phases, and application of different flow models in the free flow and porous medium
domains.
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5. W. Jäger, A. Mikelić, Modeling effective interface laws for transport phenomena between
an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78,
489–508 (2009)



Decoupled Schemes for Free Flow and Porous Medium Systems 621

6. W. Layton, H. Tran, X. Xiong, Long time stability of four methods for splitting the evolutionary
Stokes–Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236,
3198–3217 (2012)

7. K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak, B. Wohlmuth, A coupling
concept for two-phase compositional porous-medium and single-phase compositional free
flow. Water Resour. Res. 47, W10522 (2011)

8. M. Mu, X. Zhu, Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math.
Comp. 79, 707–731 (2010)

9. B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer.
Anal. 42, 1959–1977 (2005)

10. I. Rybak, J. Magiera, A multiple-time-step technique for coupled free flow and porous medium
systems. J. Comput. Phys. 272, 327–342 (2014)

11. R. Saffman, On the boundary condition at the surface of a porous medium. Stud. Appl. Math.
50, 93–101 (1971)

12. L. Shan, H. Zheng, W. Layton, A decoupling method with different subdomain time steps
for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Eq. 29, 549–583
(2013)

13. H. Versteeg, W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite
Volume Method (Prentice Hall, New Jersey, 2007)



Schwarz Waveform Relaxation for a Class
of Non-dissipative Problems

Shu-Lin Wu

In this paper, we introduce the results for the Schwarz waveform relaxation (SWR)
algorithm applied to a class of non-dissipative reaction diffusion equations. Both the
Dirichlet and Robin transmission conditions (TCs) are considered. For the Dirichlet
TC, we consider the algorithm for the nonlinear problem @tu D �@xxuC f .u/, in the
case of many subdomains. For the Robin TC, we consider the linear problem @tu D
�@xxuC au with a � 0. We focus on the analysis of finding the optimal parameter
involved in the Robin TC. For small overlap size l D O.x/ andt D O.xr/with
r < 4

3
, we show that the equioscillation principle which works for a < 0 does not

hold for a � 0. We show numerical results to support our theoretical conclusions.

1 Introduction

We are concerned with the SWR algorithm to compute solutions u D u.x; t/ W
.0;L/ � .0;T/! R of the following problem

@tu D �@xxuC f .u/; .x; t/ 2 .0;L/ � .0;T/; (1)

where � > 0 and f 2 C
1.R/ denotes a function which in general depends

nonlinearly on u. For the case of two subdomains, Gander [3] proved that the
classical SWR algorithm converges linearly on unbounded time intervals, if f 0.u/
satisfies f 0.u/ <

�p
��=L

�2
. For the case f 0.u/ � 0, the analysis by Gander and
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Stuart [5] and Wu et al. [8] can be used to prove convergence for the classical SWR
algorithm in the case of N subdomains (N � 3). However, there are no results for
the case N � 3 and f 0.u/ < d with d > 0. In this paper, we show that the classical
SWR algorithm is convergent for N � 3, provided f 0.u/ � �

!�p��=L
�2

, where
!� 2 .0; 1/ depends on N.

For the purpose of fast convergence, one should use the Robin TC for the SWR
algorithm, instead of the Dirichlet TC. For the linear model problem

@tu D �@xxuC au; .x; t/ 2 R � .0;T/; (2)

a key step for the convergence analysis is to solve a special min-max problem, whose
solution corresponds to the best choice of the parameter p involved in the Robin
TC. For a < 0, the optimization procedure has been deeply analyzed by Gander
and Halpern [4] in the 1-D case, and by Bennequin et al. [1] in the 2-D case. Other
related work also requires a < 0; see, e.g., [6]. For the case a > 0, the existing
research always employs a variable transform, like v.x; t/ D e�� tu.x; t/, and then
the original equation is transformed to @tv D �@xxv C .a � �/v with negative
coefficient, a � � < 0. However, this trick is not advisable for practical computing.
Roughly speaking, for � large, we find numerically that even though maxj kvk

j �
vkL1.Œ0;T��˝j/ is very small, maxj kuk

j � ukL1.Œ0;T��˝j/ is still a huge quantity, where
j is the subdomain index, vk

j denotes the k-th iterate of the optimized SWR algorithm
applied to the transformed problem and uk

j is obtained from the inverse transform
uk

j D e� tvk
j (see Fig. 3).

The parameter obtained for the linear problem (2) serves the optimized SWR
algorithm for the nonlinear problem (1), by using the ‘linearization’ idea introduced
by Caetano et al. [2]. For the nonlinear problem (1) with f 0.u/ � 0, we first need
to know the optimal parameter for (2) with a � 0 and to the best of our knowledge
there are no results up to now. Here, we introduce our analysis of finding the best
parameter for the Robin TC in the case a � 0. We show that, for overlap size l D
O.x/ small and t D O.xr/, the equioscillation principle established recently
by Bennequin et al. [1] still holds, when r � 4

3
. But for r < 4

3
, this principle does

not hold.

2 Main Results

In this section, we present the main results about the classical and optimized SWR
algorithms. The concrete proof of the four propositions are given in our forthcoming
paper [7].
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2.1 Dirichlet Transmission Condition

The nonlinear IVP consists of the governing equation (1) and the initial and
boundary conditions

u.x; 0/ D u0.x/; x 2 Œ0;L�I u.0; t/ D g1.t/; u.L; t/ D g2.t/; t > 0: (3)

The domain Œ0;L� is decomposed into N subdomains: ˝j D Œ˛jL; ˇjL�; j D
1; 2; : : : ;N, where ˛1 D 0; ˇN D 1 and 0 < ˛jC1 < ˇj < 1 for j D 1; 2; : : : ;N � 1.
We assume that ˇj < ˛jC2 so that all the subdomains overlap but domains which are
not adjacent do not overlap. Then, the N-subdomain SWR algorithm with Dirichlet
TC for the IVP (1) and (3) is

(
@uk

j .x;t/

@t D �@2uk
j .x;t/

@x2
C f .uk

j .x; t//; .x; t/ 2 ˝j � R
C;

uk
j .˛jL; t/ D uk�1

j�1 .˛jL; t/; uk
j .ˇjL; t/ D uk�1

jC1.ˇjL; t/; t 2 R
C;

where k is the iteration index, uk
j .x; 0/ D u0.x/ for x 2 ˝j, ˛0 D ˇ0 D 0,

˛NC1 D ˇNC1 D 1, uk
0 D g1.t/ and uk

NC1 D g2.t/ for all k � 0. We assume
that the overlapping domains and the subdomains are all of the same sizes.

Proposition 1 Let l be the overlap size, N be the number of subdomains, � D l
L�

and ' D L�l
NL � . Then, suppose the function f in (1) satisfies f 0.u/ �

�p
��

L !�
�2

(8u 2 R), the classical SWR algorithm with N � 2 is convergent. Here, !� 2 .0; 1/
is the unique solution of r.!/ D 1 and r.!/ is defined by

r.!/ D minf1;N � 2g sin2 .�!/C sin2 .'!/C 2 cos
�
�
N

�
sin .�!/ sin .'!/

sin2 ..� C '/!/ :

2.2 Robin Transmission Condition

For the initial value problem (2) with a > 0, we decompose the spatial domain R

into two subdomains ˝1 D .�1; l� and ˝2 D Œ0;C1/, where l � 0. The SWR
algorithm with Robin TC is given by

(
@tuk

j D �@xxuk
j C auk

j ; x 2 ˝j;

.@x C .�1/3�jp/uk
j ..2 � j/l; t/ D .@x C .�1/3�jp/uk�1

3�j j..2 � j/l; t/;

where j D 1; 2, uk
j .x; 0/ D u0.x/, k is the iteration index and p is a free parameter.

Based on Laplace transform and maximum principle of analytic functions, we obtain
the following results.
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Proposition 2 (Overlapping Case l > 0) Let l > 0 and a � 0. Then, the best
performance of the SWR algorithm with Robin TC is obtained for p D popt D qopt

2l .
The argument qopt is solution of the min-max problem

min
q>0

max
y2Œy0;y1�

R.y; q/; with R.y; q/ D .y � q/2 C y2 C z20
.yC q/2 C y2 C z20

e�y; z0 D 2l
r

a

�
: (4)

where yj D 2l

r�p
a2 C .�=Œjt C .1� j/T�/2 � a

�
=.2�/, j D 0; 1. Define

qmin D
q
2y20 C z20, qmax D

q
2y21 C z20, R�.q/ D maxfR.y0; q/;R.y1; q/g, Qqmin D

max
n
q1.z0/; qmin;

q2min
2

o
, Qqmax D min

n
q2.z0/; qmax;

q2max
2

o
and

q� D

8
ˆ̂<

ˆ̂:

qmin; if R.y0; qmin/ � R.y1; qmin/;

qmax; if R.y1; qmax/ � R.y0; qmax/;

q�0; otherwise;

(5)

where q�0 2 .qmin; qmax/ is the unique root of R.y0; q/ D R.y1; q/, and q1.z0/ and
q2.z0/ are two different positive roots of the cubic polynomial S.q; z0/ D q3C4q2�
2q.2 � z20/C 8z20 for z0 2 .0; z�0 / with z�0 D 0:31920496942508. Then, the solution
of the min-max problem (4) is given by

qopt D
(

qmax; if R�.Qqmax/ < NR.Qqmax/;

q�0 ; if R�.Qqmax/ � NR.Qqmax/;
(6)

provided z0 < z�0 ; Qqmin < Qqmax; q� 2 ŒQqmin; Qqmax� and R�.q�/ < NR.q�/, where
q�0 2 Œq�; qmax� is the unique root of NR.q/ D R.y0; q/; otherwise qopt D q�. Here,

NR.q/ D R.Ny.q/; q/ and Ny.q/ D
q

2q�z20C
p�qS.q;z0/
2

.

Proposition 3 (Non-overlapping Case: l D 0) For l D 0 and a � 0, the best
parameter popt for the Robin TC is given by

popt D

8
ˆ̂<

ˆ̂:

q
z2min C a0; if R0.zmin;

q
z2min C a0/ � R0.zmax;

q
z2min C a0/;

p
z2max C a0; if R0.zmax;

p
z2max C a0/ � R0.zmin;

p
z2max C a0/;

p�0 ; otherwise;

(7)

where a0 D a
�

and p�0 is the unique root of R0.zmin; p/ D R0.zmax; p/.

Proposition 4 (Asymptotic Properties) Let t D Cxr with some positive
constants C and r. Then, for x small and fixed length of the time interval,
the convergence factor �Robin of the SWR algorithms with Robin TC satisfies the
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following asymptotic properties:

l D 0 W �Robin 	 1 �O.t
1
4 /I l D Clx W �Robin 	

(
1 �O.x

r
4 /; if r � 4

3
;

1 �O.x
1
3 /; otherwise:

For T sufficiently large and fixed x, we have the asymptotic properties:

�Robin 	

8
ˆ̂<

ˆ̂:

1 �O.T�1/; if l � 0 and a > 0;

1 �O.T� 1
6 /; if l > 0 and a D 0;

1 �O.T� 1
4 /; if l D 0 and a D 0:

Remark 1 For the initial value problem (2) with a < 0, the min-max problem
concerning the best choice of the parameter is

min
q>0

max
y2Œy0;y1�

R.y; q/; with R.y; q/ D .y � q/2 C y2 � y20
.yC q/2 C y2 � y20

e�y;

where y0 D 2l

r�p
a2 C .�=T/2 � a

�
=.2�/. We see that, this min-max problem

is different from the one given by (4). For a < 0, x small and t D O.xr/,
the solution qopt is determined by the equioscillation principle [4]; an illustration
is shown in Fig. 1 on the left. However, this principle does not always hold for the
case a � 0; in particular, we have shown that for t D O.xr/ with r < 4

3
, it does

not hold [7]. A concrete example is shown in Fig. 1 on the right, where we see that,
based on the optimal parameter qopt, the local maximum of the objective function R
defined by (4) is smaller than R.y0; qopt/.

Fig. 1 Left: illustration of the equioscillation principle for the case a < 0. Right: an example for
a � 0 and t D O.xr/ with r < 4

3
, where the equioscillation does not hold
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3 Numerical Results

We consider the following linear problem with homogeneous initial and boundary
conditions:

ut D uxx C auC t2 sin.xt/; .x; t/ 2 .0; 4/ � .0;T/; (8)

The Laplace operator @xx is treated by the centered finite difference scheme and then
the derived system of ODEs is solved by the backward Euler method.

Example 1 (Dirichlet Transmission Condition) For (8), we choose a > 0 and T D
60. Lett D 0:02,x D 0:01 and l D 2x (overlap size). Then, from Proposition 1
we know that the allowed maximal a is 0:5814 for N D 4 and 0:4312 for N D 16. In
Fig. 2, we show the measured error corresponding to several choices of a. By “error”
we denote here the discrete L1 norm in time and space of the difference between
the converged solution and the iterate. We see that when a tends to its allowed upper
bound, the SWR algorithm converges slowly.

Example 2 (Robin Transmission Condition) We now choose T D 5 for (8), and
t D x D 1

25
for the discretization parameters. For a > 0, by employing a

changed variables v.x; t/ D e�� tu.x; t/ the linear problem (8) can be transformed to
@tv D @xxv C .a � �/v C e�� tt2 sin.xt/ with homogeneous initial and boundary
conditions. Then, by choosing a large � we will have a � � < 0. The SWR
algorithm with negative coefficient a � � can converge very fast, while the error

maxj

e� tvk
j � uj

1;1 diminishes slowly. By letting l D 5x and a D 1:5, we

illustrate this point in Fig. 3 for � D 2 (left) and � D 3:5 (right).

We next investigated how close the parameter popt given by Proposition 1 is to
the best possible one for the numerical code. In Fig. 4 on the left (resp. right), we
computed the error after 5 (resp. 7) iterations by using various p for the algorithm in
the case of N D 2 (resp. N D 16) subdomains. We see that the theoretically optimal
choice popt predicts the optimal numerical choice very well.

Fig. 2 Measured error of the classical SWR algorithm for different choices of a
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Fig. 3 Measured diminishing rate of maxj kvk
j � vjk1;1 and maxj ke� tvk

j � ujk1;1, with two
choices of � : � D 2 (left) and � D 3:5 (right)

Fig. 4 Comparison of the numerical and analytical optimal parameter. Left: 2 subdomains and
l D 5x. Right: 16 subdomains and l D 4x

Fig. 5 Asymptotic behavior of the optimized SWR algorithm in the two subdomain case

The asymptotic behavior of the optimized SWR algorithm is shown in Fig. 5, and
we see that the results coincide with Proposition 4.
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4 Conclusions

The behavior of Schwarz waveform relaxation (SWR) is well understood for stable
time-dependent PDEs. Less is known when the PDEs are not stable. We have
introduced in this paper several results concerning the convergence behavior of the
SWR algorithm for a class of these unstable problems. The results for the Dirichlet
transmission condition can be regarded as an extension of the work by Gander [3],
Gander and Stuart [5] and Wu et al. [8]. The results for the Robin transmission
condition are extensions of the work by Gander and Halpern [4] and Bennequin et
al. [1]. The detailed proofs are given in our forthcoming paper [7].
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Optimized Schwarz Method with Two-Sided
Transmission Conditions in an Unsymmetric
Domain Decomposition

Martin J. Gander and Yingxiang Xu

1 Introduction

Domain decomposition (DD) methods are important techniques for designing par-
allel algorithms for solving partial differential equations. Since the decomposition
is often performed using automatic mesh partitioning tools, one can in general
not make any assumptions on the shape or physical size of the subdomains,
especially if local mesh refinement is used. In many of the popular domain
decomposition methods, neighboring subdomains are not using the same type of
boundary conditions, e.g. the Dirichlet-Neumann methods invented by Bjørstad and
Widlund [2], or the two-sided optimized Schwarz methods proposed in [3], and one
has to decide which subdomain uses which boundary condition. A similar question
also arises in mortar methods, see [1], where one has to decide on the master and
slave side at the interfaces. In [4], it was found that for optimized Schwarz methods,
the subdomain geometry and problem boundary conditions influence the optimized
Robin parameters for symmetrical finite domain decompositions, and in [5], it was
observed numerically that swapping the optimized two-sided Robin parameters can
accelerate the convergence for a circular domain decomposition.

We study in this paper two-sided optimized Schwarz methods for a model
decomposition into a larger and a smaller subdomain, to investigate which Robin
parameter should be used on which subdomain in order to get fast convergence.
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We consider the model problem

u� 	u D f in ˝; uj@˝ D 0; (1)

where ˝ D f.x; y/ 2 R
2j � a � x � bg is decomposed into two subdomains ˝ D

˝1[˝2, with˝1 D f.x; y/ 2 R
2j�a � x � Lg,˝2 D f.x; y/ 2 R

2j0 � x � bg, and
L � 0 is the overlap between subdomains, aC L < b. Note here in the y-direction,
the domain ˝ is still infinite, but this will not affect our theoretical findings, since
in numerical computations the Fourier frequency lies in between kmin and kmax, the
lowest and the highest frequencies involved in the computation, and we will use this
in our analysis.

We focus in this short paper on the parallel Schwarz method

un
1 � 	un

1 D f ; in ˝1;

un
1.�a; y/ D 0;

un
2 � 	un

2 D f ; in ˝2;

un
2.b; y/ D 0;

(2)

with two-sided Robin transmission conditions

.@x C p1/un
1.L; �/ D .@x C p1/un�1

2 .L; �/;
.@x � p2/un

2.0; �/ D .@x � p2/un�1
1 .0; �/; (3)

where p1, p2 are positive constants.

2 Optimized Two-Sided Robin Transmission Conditions

Inserting a Fourier expansion of the iterates, un
i .x; y/ D

P1
kD�1 Oun

i .x; k/e
iky,

into (2) and iterating the solutions between subdomains through the transmission
condition (3), see for example [3], we obtain for each Fourier mode k the contraction
factor

�.k; 	;L; p1; p2; a; b/ D
p
	Ck2.1Ce�2

p
	Ck2.b�L//�p1.1�e�2

p
	Ck2.b�L//p

	Ck2.1Ce�2
p
	Ck2.aCL//Cp1.1�e�2

p
	Ck2.aCL//

�
p
	Ck2.1Ce�2

p
	Ck2a/�p2.1�e�2

p
	Ck2a/p

	Ck2.1Ce�2
p
	Ck2b/Cp2.1�e�2

p
	Ck2b/

� e�2
p
	Ck2L:

(4)

To obtain the fastest method for all relevant Fourier modes k, we have to solve the
optimization problem

min
p1;p2>0

�max.L; p1; p2/; (5)
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where �max.L; p1; p2/ WD maxkmin	k	kmax j�.k; 	;L; p1; p2; a; b/j and kmin, kmax are
estimates of the lowest and the highest frequencies involved in the computation. If
h is the mesh size along the interface, and the interface length is c, one can estimate
kmin D �=c and kmax D �=h, see [3].

Since the frequency k is involved in the contraction factor in a complicated
fashion, (5) can not be solved analytically. We show here a new idea, namely
to approximate � for large k asymptotically accurately in order to solve the
optimization problem (5). To this end, we introduce

�app.k; 	;L; p1; p2/ D
p
	C k2 � p1p
	C k2 C p1

�
p
	C k2 � p2p
	C k2 C p2

� e�2
p
	Ck2L; (6)

which is the contraction factor obtained by Gander [3] in the infinite, symmetric
domain decomposition analysis.

Theorem 1 (Approximation to the Contraction Factor) The difference between
the exact and approximate contraction factor satisfies the estimate

j�.k; 	;L; p1; p2; a; b/� �app.k; 	;L; p1; p2/j � 4e�2
p
	Ck2.aCL/: (7)

Proof The contraction factor � can be rewritten in the form

� D �appC .1��app/

�p
	Ck2�p2p
	Ck2Cp2

e�2
p
	Ck2b C

p
	Ck2�p1p
	Ck2Cp1

e�2
p
	Ck2.aCL/

�
; (8)

and the result then follows by the triangle inequality and using that �1 � �app � 1.
�

Theorem 1 shows that �app is a good approximation for k large, but not for k small.
We thus propose to only use the approximation for k large, and the exact � for k
small, in order to solve the min-max problem (5) asymptotically. We obtain the
following theorems, whose proofs are beyond the scope of this short paper, see our
forthcoming paper [6].

Theorem 2 (Optimized Parameters, Overlapping Case) With the overlap L > 0,
the parameters p�1 D G

4
5 L� 15 , p�2 D G

2
5 L� 3

5 solve asymptotically the equioscillation
equations

�.kmin; 	;L; p
�
1 ; p
�
2 ; a; b/ D ��app.Nk1; 	;L; p�1 ; p�2 / D �app.Nk2; 	;L; p�1 ; p�2 /; (9)

where G D G.kmin; 	; a; b/ WD
p
	Ck2min
2

1�e�2

p
	Ck2min.aCb/

.1�e�2

p
	Ck2mina

/.1�e�2

p
	Ck2minb

/

, and Nk1 D
G

3
5 L� 25 and Nk2 D G

1
5L� 4

5 are the locations of the interior maxima of �app.
Furthermore, p�1 , p�2 approximately solve the min-max problem (5) as L ! 0 with
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the error estimate

j�max.L; p
�
1 ; p
�
2 /� min

p1;p2>0
�max.L; p1; p2/j � 4e�2

p
	Ck21.aCL/; (10)

where k1 D cL� 1
5 , and c is some constant. The associated contraction factor is

�max.L; p
�
1 ; p
�
2 / D 1 � 4G

1
5 L

1
5 C O.L

2
5 /: (11)

Theorem 3 (Optimized Parameters, Nonoverlapping Case) When L D 0, the

parameters Np1 D 2
1
4 G

3
4 k

1
4
max, Np2 D 2

3
4 G

1
4 k

3
4
max solve asymptotically the equioscilla-

tion equations

�.kmin; 	; 0; Np1; Np2; a; b/ D ��app.Nk; 	; 0; Np1; Np2/ D �app.kmax; 	; 0; Np1; Np2/; (12)

where Nk D .2G/
1
2 k

1
2
max is the location of the interior maximum of �app. Furthermore,

Np1, Np2 solve approximately the min-max problem (5) as kmax ! 1 with the error
estimate

j�max.0; Np1; Np2/� min
p1;p2>0

�max.0; p1; p2/j � 4e�2
p
	Ck20a; (13)

where k0 D ck
1
4
max, and c is some constant. The associated contraction factor is

�max.0; Np1; Np2/ D 1 � 2 74 G
1
4 k
� 1
4

max C O.k
� 12
max/: (14)

3 Swapping the Robin Parameters

Theorems 2 and 3 do not allow us to see which Robin parameter of the two should
be used on which subdomain, swapping them leads to the same asymptotic results.
To see the influence of the domain size, we have to push the asymptotic analysis
further.

The Overlapping Case To get further insight, we compute one more term in the
asymptotic expansions of the equioscillation equations (9) both for the parameter
ordering given, and swapped. We obtain at the interior maximum points Nk1 and Nk2
the same result �max D 1 � 4G

1
5 L

1
5 C 8G

2
5L

2
5 C O.L

3
5 /, while at kmin

�.kmin; 	;L; p�1 ; p�2 ; a; b/ D 1 � 4G
1
5 L

1
5 C 8G

2
5 L

2
5 .1C d/C O.L

3
5 /; (15)

�.kmin; 	;L; p�2 ; p�1 ; a; b/ D 1 � 4G
1
5L

1
5 C 8G

2
5 L

2
5 .1 � d/C O.L

3
5 /; (16)
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where the additional term

d WD e�2
p
	Ck2mina � e�2

p
	Ck2minb

1 � e�2
p
	Ck2min.aCb/

(17)

appears. Hence, if d > 0, i.e. a < b, one should swap the parameters to get a uniform
contraction factor bounded by �max, since G > 0, and we get

Theorem 4 If a < b and L is small, swapping the transmission parameters p�1 and
p�2 improves the performance of the optimized Schwarz method (2), and the bigger
the value of d in (17) is, the larger the improvement becomes.

The natural next question is: from which overlap on should one swap the
transmission parameters to get better performance? Notice that j�j has the same
asymptotic expansions at Nk1 and Nk2 up to O.L

3
5 /. We should thus look for an L� > 0

such that when L < L�

j�.kmin; 	;L; p
�
2 ; p
�
1 ; a; b/j < j�.kmin; 	;L; p

�
1 ; p
�
2 ; a; b/j: (18)

Though it is hard to obtain an explicit expression of such an L�, the inequality (18)
can be used numerically as a necessary condition for judging when we should swap
the optimized transmission parameters. A sufficient condition can be obtained as
follows: if

p�1 >
q
	C k2min

1C e�2
p
	Ck2mina

1 � e�2
p
	Ck2mina

; (19)

then (4) implies �.kmin; 	;L; p�2 ; p�1 ; a; b/ > 0. Now using (8), we obtain
with a direct comparison after a short calculation �.kmin; 	;L; p�2 ; p�1 ; a; b/ <

�.kmin; 	;L; p�1 ; p�2 ; a; b/, which together with the positivity implies (18).
Solving (19) asymptotically yields

L <
1

16

q
	C k2min

.1 � e�2
p
	Ck2min.aCb//4.1 � e�2

p
	Ck2mina/

.1C e�2
p
	Ck2mina/5.1 � e�2

p
	Ck2minb/4

DW L�: (20)

Noting that GL� < 1, all the above mentioned asymptotic expansions converge, and
we arrive at

Theorem 5 For a < b, with an overlap L < L�, where L� is defined in (20), swap-
ping the transmission parameters p�1 and p�2 in the optimized Schwarz method (2)
improves the performance.

The Nonoverlapping Case We again compute one more term in the expansions
of the equioscillation equations (12), both for the parameter ordering given, and
swapped. We obtain as in the overlapping case at Nk and kmax the same result,
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1 � 2 74 G
1
4 k
� 14
max C 2 52 G

1
2 k
� 1
2

max C O.k
� 34
max/, while at kmin

�.kmin; 	; 0; Np1; Np2; a; b/ D 1 � 2 74 G
1
4 k
� 14
max C 2 52 G

1
2 k
� 1
2

max.1C d/C O.k
� 3
4

max/; (21)

�.kmin; 	; 0; Np2; Np1; a; b/ D 1 � 2 74 G
1
4 k
� 1
4

max C 2 52 G
1
2 k
� 1
2

max.1 � d/C O.k
� 34
max/; (22)

where the same term d from (17) appears. Hence, as in the overlapping case, if

j�.kmin; 	; 0; Np2; Np1; a; b/j < j�.kmin; 	; 0; Np1; Np2; a; b/j; (23)

swapping the transmission parameters in the optimized Schwarz method (2)

improves the performance. Solving Np1 >
q
	C k2min

1Ce�2

p
	Ck2mina

1�e�2

p
	Ck2mina

with kmax D �=h

gives an Nh D 2G3�. 1p
	Ck2min

1�e�2

p
	Ck2mina

1Ce�2

p
	Ck2mina

/4 such that for any h < Nh inequality (23)

holds, and we get

Theorem 6 If a < b and there is no overlap, and if h < Nh, swapping the
transmission parameters Np1 and Np2 of the optimized Schwarz method (2) improves
the performance.

4 Numerical Experiments

We consider the model problem (1), where 	 D 2, and the domain ˝ D .�a; b/ �
.0; 1/ is decomposed into˝1 D .�a;L/� .0; 1/,˝2 D .0; b/� .0; 1/, with a D 0:1,
and b D 0:5. We discretize (2) with the classical five-point finite difference scheme
on a uniform mesh with mesh parameter h, and simulate directly the error equations,
i.e. f D 0. The initial guesses on the interfaces are chosen randomly so that all
frequencies are present. We count the number of iterations required to reach an error
reduction of 1e � 6, and compare the results obtained with our parameters to those
obtained with parameters from the infinite domain decomposition analysis in [3],
denoted by the subscript “inf”. Table 1 shows the corresponding results, both for

Table 1 Number of iterations required by the various optimized Schwarz methods

h

L Transmission parameters 1/50 1/100 1/200 1/400 1/800

h p1 D p�

1 .p
�

2 /; p2 D p�

2 .p
�

1 / 6(9) 7(9) 8(9) 10(10) 12(11)

h p1 D p�

1;inf.p
�

2;inf/; p2 D p�

2;inf.p
�

1;inf/ 7(12) 8(15) 10(18) 11(18) 13(15)

0 p1 D Np1.Np2/; p2 D Np2.Np1/ 11(10) 14(12) 17(14) 19(16) 24(20)

0 p1 D Np1;inf.Np2;inf/; p2 D Np2;inf.Np1;inf/ 13(14) 16(14) 18(17) 22(20) 27(24)
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Fig. 1 Number of iterations required by the optimized Schwarz methods: overlapping case on the
left, nonoverlapping case on the right

Table 2 Error reduction of each optimized Schwarz method

L 2h 3h 4h 5h

p1 D p�

1 ; p2 D p�

2 1:5467e � 06 1:6942e � 07 1:6390e� 08 1:0579e � 08
p1 D p�

2 ; p2 D p�

1 1:4941e � 07 3:7717e � 08 3:4429e� 08 2:9584e � 08

the overlapping case, L D h, and the nonoverlapping case, L D 0, with the results
after parameter swapping in parentheses. In both cases, our parameters require
less iterations than those from the infinite domain decomposition analysis. For the
new parameters in the nonoverlapping case, the swapped transmission parameters
perform better, which is in agreement with Theorem 6, since all the mesh sizes
involved in this computation are less than Nh 	 0:0234. For the overlapping case,
we see that swapping for the larger mesh sizes is not advantageous, but as soon
as the mesh size becomes small, the swapped parameters catch up to give lower
iteration numbers. The situation is similar for the parameters from the infinite
domain decomposition analysis, but a more refined mesh would be required. We
also plot all the results in Fig. 1, on the left for the overlapping case and on the right
for the nonoverlapping case. We observe that each method performs as predicted
by the asymptotic analysis, except in the case of the infinite domain decomposition
analysis with overlap where a more refined mesh would be needed to reach the
asymptotic regime.

We next illustrate numerically that there is indeed a critical value L� so that when
the overlap L < L�, swapping the parameters can improve the performance, as
predicted by Theorem 5. Table 2 shows the error after 10 iterations of the optimized
Schwarz method with varying overlap and h D 1=800. We see that in this case L�
lies in between 3h and 4h.

To finally test how well our analysis predicts the optimal parameters to be used in
a numerical setting, we vary the parameters p1 and p2 with 51 equidistant samples of
each for a fixed problem with h D 1=200 and count for each parameter pair .p1; p2/
the number of iterations to reach a residual of 1e�6. In the left column of Fig. 2 we
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Fig. 2 Optimized parameters found by our analysis (asterisk), as well as by the infinite domain
decomposition analysis (circle), compared to the performance of other values of the parameters:
first row for the overlapping case, second row for the nonoverlapping case, with the parameters
before parameter swapping in the left column and after swapping in the right column

show a contour plot before transmission parameter swapping, the overlapping case
(on the top) and the nonoverlapping case (at the bottom), and in the right column
the corresponding contour plots with transmission parameters swapped. We see that
the transmission parameters obtained by our analysis (�) are always closer to the
numerical optimum than those from the infinite domain decomposition analysis (ı).
The left and right columns of Fig. 2 also show numerically that there exist at least
2 local minimizers and the swapped parameters are close to the one resulting in the
smaller contraction factor.

5 Conclusion

We have shown that when there are two different transmission conditions to be
imposed between subdomains, the geometry, in our case the size of the subdomain,
can indicate which subdomain should use which transmission condition. Using
asymptotic analysis for a two subdomain model problem, we developed a necessary
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and a sufficient condition on the overlap or mesh size for when transmission
conditions should be swapped between neighboring subdomains of different size
to get better performance. Numerical experiments confirm well our theoretical
findings. We also observed numerically that the min-max problem (5) has at least
two local minimizers, but a more refined pre-asymptotic study of this problem is
needed for a complete understanding of (5).
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A Domain Decomposition Approach
in the Electrocardiography Inverse Problem

Nejib Zemzemi

1 Introduction

The inverse problem in cardiac electrophysiology also known as electrocardiog-
raphy imaging (ECGI) is a new and a powerful diagnosis technique. It allows
the reconstruction of the electrical potential on the heart surface from electrical
potentials measured on the body surface. This non-invasive technology and other
similar techniques like the electroencephalography imaging interest more and more
medical industries. The success of these technology would be considered as a
breakthrough in the cardiac and brain diagnosis. However, in many cases the quality
of reconstructed electrical potential is not sufficiently accurate. The difficulty comes
from the fact that the inverse problem in cardiac electrophysiology is well known
as a mathematically ill-posed problem. Different methods based on Thikhnov
regularization [4] have been used in order to regularize the problem, but still the
reconstructed electrical potential is not sufficiently satisfactory. In this study we
present a domain decomposition approach to solve the inverse problem.

2 Methods

The domain decomposition method that will be presented in this paper is tested on
synthetical data. This data is generated by solving the forward problem of ECGs. In
the following paragraphs we will present first, the forward problem then the domain
decomposition method for solving the inverse problem.

N. Zemzemi (�)
INRIA Bordeaux Sud-Ouest, Carmen team, 200 Avenue de la Vieille Tour, 33405 Talence, France

Electrophysiology and Heart Modeling Institute (IHU LIRYC), Bordeaux, France
e-mail: nejib.zemzemi@inria.fr

© Springer International Publishing Switzerland 2016
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXII, Lecture Notes in Computational Science
and Engineering 104, DOI 10.1007/978-3-319-18827-0_66

641

mailto:nejib.zemzemi@inria.fr


642 N. Zemzemi

2.1 Forward Problem

The bidomain equations were used to simulate the electrical activity of the heart and
extracellular potentials in the whole body (see e.g. [8, 9, 11]). These equations in
the heart domain˝H are given by:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Am
�
Cm PVm C Iion.Vm;w/

�� div
�
� irVm

�

D div
�
� irue

�C Istim; in ˝H;

�div
�
.� i C � e/rue

� D div.� irVm/; in ˝H;

PwC g.Vm;w/ D 0; in ˝H;

� irVm � n D �� irue � n; on ˙:

(1)

The state variables Vm and ue stand for the transmembrane and the extra-cellular
potentials. Constants Am and Cm represent the rate of membrane surface per unit of
volume and the membrane capacitance, respectively. Istim and Iion are the stimulation
and the transmembrane ionic currents. The heart-torso interface is denoted by ˙ .
The intra- and extracellular (anisotropic) conductivity tensors, � i and � e, are given
by � i;e D � t

i;eI C .� l
i;e � � t

i;e/a ˝ a; where a is a unit vector parallel to the local
fibre direction and � l

i;e and � t
i;e are, respectively, the longitudinal and transverse

conductivities of the intra- and extra-cellular media. The field of variables w is a
vector containing different chemical concentrations and various gate variables. Its
time derivative is given by the vector of functions g.

The precise definition of g and Iion depend on the electrophysiological transmem-
brane ionic model. In the present work we make use of one of the biophysically
detailed human ventricular myocyte model [10]. The ion channels and transporters
have been modeled on the basis of the most recent experimental data from human
ventricular myocytes.

Figure 1 provides a geometrical representation of the domains considered to
compute extracellular potentials in the human body. In the torso domain ˝T, the
electrical potential uT is described by the Laplace equation.

(
div.� TruT/ D 0; in ˝T;

� TruT � nT D 0; on 
ext:
(2)

where � T stands for the torso conductivity tensor and nT is the outward unit normal
to the torso external boundary 
ext.
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ΩT

ΩH

Γext

Σ

Fig. 1 Two-dimensional geometrical description: heart domain ˝H, torso domain ˝T (extramy-
ocardial regions), heart-torso interface ˙ and torso external boundary 
ext

The heart-torso interface˙ is supposed to be a perfect conductor. Then we have
a continuity of current and potential between the extra-cellular myocardial region
and the torso region.

(
ue D uT; on ˙;

.� e C � i/rue � nT D � TruT � nT; on 
ext:
(3)

Other works [3, 6, 7] consider that the electrical current does not flow from the heart
to the torso by assuming that the heart is isolated from torso. This approximation
is appealing in terms of computational cost because it uncouples the Laplace
equation (2) in the torso from the bidomain equations in the heart (1), which allows
to reduce the size of the linear system to solve. It is even more appealing when the
interest is only on the ECG computation, in that case the ECG solution could be an
“off line” matrix vector multiplication after solving the bidomain equation, details
about computing the transfer matrix could be found in [12]. Although this approach
is very appealing in terms of computational cost, numerical evidence has shown
that it can compromise the accuracy of the ECG signals (see e.g. [2, 6, 8]). Thus,
in order to accurately compute ECGs we consider the state-of-the-art heart-torso
full coupled electrophysiological problem (1)–(3) representing the cardiac electrical
activity from the cell to the human body surface.
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2.2 Inverse Problem

The inverse problem in electrocardiography imaging (ECGI) is a technique that
allows to construct the electrical potential on the heart surface ˙ from data
measured on the body surface 
ext. We assume that the electrical potential is
governed by the diffusion equation in the torso as shown in the previous paragraph.
For a given potential data d measured on the body surface 
ext, the goal is to find
the extracellular heart potential ue on the heart boundary˙ such that the electrical
potential in the torso domain uT satisfies

8
ˆ̂<

ˆ̂:

div.� TruT/ D 0; in ˝T;

uT D d and � TruT:n D 0; on 
ext;

uT D ue; on˙:

(4)

In order to find uT and the flux � TruT:n on the boundary ˙ we propose to
decompose the problem into two auxiliary problems based on a mirror like boundary
conditions in a fictitious domain as shown in Fig. 2. We consider�˝T (respectively,
�
ext) as the image of ˝T (respectively, 
ext) through the interface boundary ˙ .
Then, we propose to define two functions u and v as follows,

8
ˆ̂<

ˆ̂:

div.� Tru D 0; in ˝T;

u D d; on 
ext;

� Tru:n D �� Trv:n; on˙:

(5)

The function v is defined in the fictitious domain that we denoted �˝T as shown
in Fig. 2.

Fig. 2 Two-dimensional geometrical description of the physical torso domain ˝T and its image
.�˝T/ through the boundary ˙ . The arrows on the interface ˙ show the opposite fluxes
� Tr u:n D �� Tr v:n
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8
ˆ̂<

ˆ̂:

div.� Trv/ D 0; in �˝T;

� Trv:n D 0; on � 
ext;

v D u; on ˙:

(6)

In order to solve the coupled problem (5)–(6), we use the domain decomposition
technique. For a given initial guess u0 D 0, we compute the incomplete boundary
condition following the Algorithm 1.

Algorithm 1
for i D first time step to last time step do

u0 D 0; on 
ext.
load the known boundary data uT.ti/=
ext

load the known boundary flux � Tr uT.ti/=
ext :n
error = 2 x tolerance.
while error > tolerance) do

Set vkC1 D uk on ˙
compute vkC1 in �˝T

Set � Tr ukC1:n D �� Tr vkC1:n on ˙
compute ukC1 in˝T

compute error and relative error: norm( ukC1 � uk)
end while
save uT.ti/=˙ D ukC1

=˙

end for

The domain decomposition algorithm described in Algorithm 1 is accelerated
using Aitken algorithm [5]. At the end of the while loop we have that vkC1 D ukC1
up to the defined tolerance and � TrukC1:n D �� TrvkC1:n on˙ . If we define NvkC1
as the symmetrical image of vkC1 through the interface˙ , we obtain � TrukC1:n D
� Tr NvkC1:n and ukC1 D NvkC1 on ˙ . Following [1, 13], this allows us to conclude
that ukC1 D NvkC1 in the whole torso domain ˝T. Consequently, ukC1 satisfies both
Dirichlet and Neumann boundary conditions on the external boundary 
ext and the
Laplace equation in the torso domain, which solves the inverse problem.

3 Numerical Results

In order to test the domain decomposition approach for solving the inverse problem
in electrocardiography, we generate synthetical data. We conducted numerical
simulations solving the forward problem. We use the finite element LifeV1 library
for the numerical implementation of the method. For the sake of simplicity, we
perform simulations on the volumes between three concentric spheres. The volume

1www.lifev.org.

www.lifev.org
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Fig. 3 Top (respectively, bottom): snapshots of numerical solution of the forward (respectively,
inverse) problem at times 5, 10 and 25 ms (from left to right). The unit in the color bar is mV

between the small and the medium sphere represents the heart domain and the
volume between the medium and the large spheres represents the torso. We show
the torso potential in Fig. 3. The epicardium ˙ is given by the internal sphere in
Fig. 3 while the body surface 
ext is given by the external sphere in the same figure.
In Fig. 3 (top) we show the forward problem solution at times 5, 10 and 25 ms (from
left to right). We extract the electrical potential at the boundary 
ext and we use it
as an input for the inverse problem after adding 10 % of white noise. We show the
solution of the inverse problem in Fig. 3 (bottom). The three panels represent the
inverse problem solution at times 5, 10 and 25 ms (from left to right). We observe
that the space distribution of the electrical wave is well captured mainly in the
internal sphere. This allows to construct the activation times on the heart surface
with a good accuracy.

4 Conclusion

In this paper we presented a domain decomposition approach to solve the inverse
problem in electrocardiography. The problem was formulated using a mirror-like
boundary conditions at the heart torso interface, where we have continuity of
potential and opposite fluxes. The preliminary results presented in this work show
the capability of this method to capture the spatial distribution of the electrical wave.
In particular the wave front is well captured even with a relatively high level of
noise. In future work we will test this method on clinical data including CT-scans of
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real geometry of the torso and measurements of the electrical potential on the body
surface.
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