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Preface of DD22 Book of Proceedings

This volume contains the proceedings of the 22nd International Conference on
Domain Decomposition Methods, which was hosted by the Institute for Com-
putational Science (ICS) at the Universita della Svizzera italiana (USI), Lugano,
Switzerland, September 16-20, 2013.

Background of the Conference Series

The International Conference on Domain Decomposition Methods has been held in
fourteen countries throughout Asia, Europe, and North America, beginning in Paris
in 1987. Held annually for the first fourteen meetings, it has been spaced out since
DD15 at roughly 18-month intervals. A complete list of the past meetings appears
below. The twenty-second International Conference on Domain Decomposition
Methods was the first one held in Switzerland and it took place in the Italian
speaking part of Switzerland in Lugano.

The main technical content of the DD conference series has always been
mathematical, but the principal motivation was and is to make efficient use of
distributed memory computers for complex applications arising in science and
engineering. As we approach the dawn of exascale computing, where we will
command 10'® floating point operations per second, clearly efficient and mathe-
matically well-founded methods for the solution of large-scale systems become
more and more important—as does their sound realization in the framework of
modern HPC architectures. In fact, the massive parallelism, which makes exascale
computing possible, requires the development of new solutions methods, which are
capable of efficiently exploiting this large number of cores as well as the connected
hierarchies for memory access. Ongoing developments such as parallelization in
time, asynchronous iterative methods, or nonlinear domain decomposition methods
show that this massive parallelism does not only demand for new solution and
discretization methods, but also allows to foster the development of new approaches.
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The progress obtained in domain decomposition techniques during the last
decades has led to a broadening of the conference program in terms of methods
and applications. Multi-physics, nonlinear problems, and space-time decomposition
methods are more prominent these days than they have been previously. Domain
decomposition has always been an active and vivid field, and this conference series
is representing well the highly active and fast advancing scientific community
behind it. This is also due to the fact that there is basically no alternative to domain
decomposition methods as a general approach for massively parallel simulations at
a large scale. Thus, with growing scale and growing hardware capabilities, also the
methods can—and have to—improve.

However, even if domain decomposition methods are motivated historically by
the need for efficient simulation tools for large scale applications, there are also
many interesting aspects of domain decomposition, which are not necessarily moti-
vated by the need for massive parallelism. Examples are the choice of transmission
conditions between sub-domains, new coupling strategies, or the principal handling
of interface conditions in problem classes such as fluid structure interaction or
contact problems in elasticity.

While research in domain decomposition methods is presented at numerous
venues, the International Conference on Domain Decomposition Methods is the
only regularly occurring international forum dedicated to interdisciplinary tech-
nical interactions between theoreticians and practitioners working in the develop-
ment, analysis, software implementation, and application of domain decomposition
methods.

The list of previous Domain Decomposition Conferences is the following:

Paris, France, January 7-9, 1987

Los Angeles, USA, January 14-16, 1988
Houston, USA, March 20-22, 1989

Moscow, USSR, May 21-25, 1990

Norfolk, USA, May 6-8, 1991

Como, Italy, June 15-19, 1992

University Park, Pennsylvania, USA, October 27-30, 1993
Beijing, China, May 16-19, 1995

Ullensvang, Norway, June 3-8, 1996

Boulder, USA, August 10-14, 1997

. Greenwich, UK, July 20-24, 1998

. Chiba, Japan, October 25-29, 1999

. Lyon, France, October 9—12, 2000

. Cocoyoc, Mexico, January 6-11, 2002

. Berlin, Germany, July 21-25, 2003

. New York, USA, January 12-15, 2005

. St. Wolfgang-Strobl, Austria, July 37, 2006

. Jerusalem, Israel, January 12—17, 2008

. Zhangjiajie, China, August 17-22, 2009

. San Diego, California, USA, February 7-11, 2011

NN B LD =
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21. Rennes, France, June 25-29, 2012
22. Lugano, Switzerland, September 16-20, 2013

International Scientific Committee on Domain
Decomposition Methods

» Petter Bjgrstad, University of Bergen, Norway

* Susanne Brenner, Louisiana State University, USA
¢ Xijao-Chuan Cai, CU Boulder, USA

e Martin Gander, University of Geneva, Switzerland
* Roland Glowinski, University of Houston, USA

* Laurence Halpern, University Paris 13, France

* Ronald Hoppe, Universities of Augsburg, Germany, and Houston, USA
* David Keyes, KAUST, Saudi Arabia

* Hyea Hyun Kim, Kyung Hee University, Korea

* Axel Klawonn, Universitit zu Kéln, Germany

» Ralf Kornhuber, Freie Universitit Berlin, Germany
e Ulrich Langer, University of Linz, Austria

¢ Alfio Quarteroni, EPFL, Switzerland

¢ Olof Widlund, Courant Institute, USA

¢ Jinchao Xu, Penn State, USA

* Jun Zou, Chinese University of Hong Kong

About the Twenty-Second Conference

The twenty-second International Conference on Domain Decomposition Methods
had 172 participants from over 24 countries. It was the first one to be held in
Switzerland. It was hosted by the Institute of Computational Science (ICS) at USIL.
The ICS was founded in 2009 towards realizing the vision of USI to become a new
scientific and educational node for computational science in Switzerland. ICS has
since then grown into a place with strong competences in mathematical modeling,
numerical simulation, and high-performance computing. Research areas range from
numerical simulation in science, medicine, and engineering, through computational
time series analysis and computational shape analysis, to computational cardiology
and the (multi-scale) simulation of physical and biological systems and processes.
As in previous meetings, DD22 featured a well-balanced mixture of established
and new topics, such as the manifold theory of Schwarz methods, isogeometric
analysis, discontinuous Galerkin methods, exploitation of modern HPC architec-
tures, and industrial applications. From the conference program, it is evident that
the growing capabilities in terms of theory and available hardware allow for
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increasingly complex nonlinear and multi-physics simulations, confirming the huge
potential and flexibility of the domain decomposition idea.

The conference, which was organized over an entire week, featured presentations
of three different types: The conference contained

* 14 invited presentations, fostering also younger scientists and their scientific
development, selected by the International Scientific Committee,

* a poster session, which also gave rise to intense discussions with the mostly
younger presenting scientists,

* 13 minisymposia, arranged around a special topic,

* 14 sessions of contributed talks.

The present proceedings volume contains a selection of 66 papers, split into 5
plenary papers, 35 minisymposia papers, and 26 contributed papers.

Sponsoring Organizations

* Swiss National Science Foundation

¢ Nvidia

* Fondazione Cardiocentro Ticino

* Swiss Mathematical Society

* Swiss National Supercomputing Centre

¢ CRUS via the PhD school FOMICS Foundations of Mathematics and Informatics
for Computer Simulations in Science and Engineering located at ICS/USI.

Local Organizing Committee Members

* Rolf Krause (ICS/USI Lugano; Chair)
* Thomas Dickopf (ICS/USI Lugano)

¢ Martin Gander (U Gengve)

e Ralf Hiptmair (ETH Ziirich)

¢ LucaF. Pavarino (U Milano)

¢ Alfio Quarteroni (EPF Lausanne)

* William Sawyer (CSCS Lugano)

e Olaf Schenk (ICS/USI Lugano)

The organizing committee would like to thank USI staff for their invaluable
support and the sponsors for the financial support.
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Research Activity in Domain Decomposition According to
DD22 and Its Proceedings

The conference and the proceedings contain three parts: the plenary presentations,
the minisymposia presentations, and the contributed talks.

Plenary Presentations

The plenary presentations of the conference have been dealing with established
topics in Domain Decomposition as well as with new approaches, including Domain
Decomposition for multiphysics problems and nonlinear problems.

Nonlinear FETI-DP methods. Oliver Rheinbach (TU Freiberg, Germany)
Domain decomposition methods for high-order discontinuous Galerkin dis-
cretizations. Paola F. Antonietti (MOX Milano, Italy)

Numerical treatment of tensors and new discretisation paradigms. Wolfgang
Hackbusch (MPI Leipzig, Germany)

Domain decomposition methods in isogeometric analysis. Lourenco Beirdo da
Veiga (University of Milano, Italy)

Auxiliary space multigrid based on domain decomposition. Johannes Kraus
(RICAM Linz, Austria)

Domain decomposition in nonlinear function spaces. Oliver Sander (RWTH
Aachen, Germany)

Numerical solution of PDE eigenvalue problems in acoustic field computation.
Volker Mehrmann (TU Berlin, Germany)

Applications of the Voronoi implicit interface method to domain decomposition.
James A. Sethian (UC Berkeley, USA)

Robin-Neumann explicit schemes in fluid-structure interaction problems. Marina
Vidrascu (INRIA Le Chesnay, France)

An assembled inexact Schur-complement preconditioner. Joachim Schoberl (TU
Wien, Austria)

Local simplification of Darcy’s equations with pressure dependent permeability.
Christine Bernardi (LJLL Paris, France)

BDDC deluxe domain decomposition algorithms. Olof B. Widlund (NYU, USA)
Coupling Stokes and Darcy equations: modeling and numerical methods. Marco
Discacciati (UPC Barcelona, Spain)

Robust discretization and iterative methods for multi-physics systems. Jinchao
Xu (Penn State University, USA)
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Minisymposia

There were 13 minisymposia organized within DD22:

1. Advances in FETI-DP and BDDC methods (Axel Klawonn, Olof B. Widlund)

This minisymposium focuses on recent developments of the closely related
families of BDDC and FETI-DP domain decomposition algorithms. These
algorithms have proven very effective in a variety of applications. Talks are
offered on applications to nonlinear problems, discontinuous Galerkin methods,
mixed finite elements for the Stokes equations with continuous pressures, and
on adaptive coarse spaces based on the solution of suitable eigenvalue prob-
lems. Recently, there has also been considerable activity in the development
of a new variant of BDDC, which is due to Clark Dohrmann. Among the
applications of these new ideas are algorithms for H(div) in 3D and for new
special discontinuous approximations of H(curl) problems in 2D.

2. Achieving scalability in domain decomposition methods: advances in coarse
spaces and alternatives (Felix Kwok, Kevin Santugini)

With the increasing availability of massively parallel machines, scalability
becomes a crucial factor in the design of domain decomposition algorithms.
To be scalable, an iterative algorithm must have a convergence rate that does
not depend on the number of subdomains. This precludes methods in which
subdomains send information only to their direct neighbors, since they cannot
converge in fewer iterations than the diameter of the connectivity graph of the
decomposition. A traditional way of introducing long-range communication is
to add a coarse space component; there are also other methods inspired by
multilevel decompositions and interpolation. Speakers present their work on
either innovative coarse spaces or new alternatives to coarse spaces.

3. Non-overlapping discretization methods and how to achieve the DDM-
paradigm (Ismael Herrera, Luis Miguel de La Cruz)

The DDM-paradigm is to obtain the global solution by solving local prob-
lems exclusively. The introduction of non-overlapping DDMs represented an
important step towards achieving this paradigm. However, in non-overlapping
DDMs, the interface-nodes are shared by two or more subdomains of the
coarse-mesh. In this minisymposium, we present the non-overlapping dis-
cretization methods, which use systems of nodes with the property that each
node belongs to one and only one subdomain of the coarse mesh. Then, it
is explained how using non-overlapping discretization methods the DDM-
paradigm can be achieved.

4. Solution techniques for discontinuous Galerkin methods (Blanca Ayuso de
Dios, Susanne Brenner)

Based on the discontinuous finite element spaces, DG methods are extremely
versatile and have many attractive features: local conservation properties;
flexibility in designing hp-adaptivity strategies, and built-in parallelism. DG
methods can deal robustly with PDEs of almost any kind. However, their use
in many real applications is still limited by the larger number of degrees-of-
freedom required compared with other classical discretization methods. The



Preface of DD22 Book of Proceedings xi

aim of this minisymposium is to bring together experts in the field to discuss
and identify the most relevant aspects of the state of the art for DG methods,
including design, theoretical analysis, and issues related to the implementation
and applications of the various solution techniques.

5. Solvers for isogeometric analysis and applications (Lourengo Beirdo da Veiga,
Luca F. Pavarino, Simone Scacchi)

Isogeometric analysis (IGA) is a novel and fast developing technology for
the numerical solution of PDEs, that integrates CAD geometric parametrization
and finite element analysis. Since its introduction in 2005 by T.J.R. Hughes and
co-workers, IGA is having a strong impact on the engineering and scientific
computing community, producing a large amount of journal publications and
developing advanced computer codes. In recent years, researchers in this
quickly growing field have started to focus on the design and analysis of effi-
cient solvers for IGA discrete systems, and in particular of multilevel domain
decomposition methods yielding parallel and scalable preconditioners. The
high (global) regularity and polynomial degree of the NURBS spaces employed
in IGA discretizations introduce both new difficulties and opportunities for
the construction and analysis of novel solution techniques. The aim of the
minisymposium is to bring together researchers in both fields of IGA and
domain decomposition methods, focusing on the latest developments and on
the new research pathways and applications.

6. Efficient solvers for heterogeneous nonlinear problems (Juan Galvis, Lisandro
Dalcin, Nathan Collier, Victor Calo)

Multiple scales and nonlinearities are present in many applications, such as
porous media and material sciences. Heterogeneities and disparity in media
properties make it difficult to design robust preconditioning techniques and
coarse multiscale approximations. Certainly, the presence of nonlinearities or
many possible (properly parametrized) scenarios make this task even more
challenging. In particular, the design and analysis of iterative solvers with good
convergence properties with respect to physical parameters and nonlinearities is
important for applications. A main interest of this minisymposium is to develop
techniques and algorithms to approach efficiently heterogeneous and nonlinear
problems such as Richard’s equation for heterogeneous porous media and other
nonlinear models. In this session, we bring together experts working on domain
decomposition methods for multiscale and nonlinear problems.

7. Domain decomposition techniques in practical flow applications (Menno
Genseberger, Mart Borsboom)

Last decade’s domain decomposition techniques have been incorporated in
large computer codes for real-life applications. By bringing together some of
them, this minisymposium aims to (1) illustrate the importance of domain
decomposition (for modeling flexibility, parallel performance, etc.) in the appli-
cation field and (2) highlight the applied domain decomposition techniques, to
discuss these approaches and, reconsider or further improve them. Application
area is restricted to hydrodynamics to have a good basis for further discussion.
The presentations consider domain decomposition techniques in large computer
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codes being used worldwide for shallow water flow in coastal areas, lakes,
rivers, ocean flow, and climate modeling.

. Domain decomposition methods in implementations (Christian Engwer, Guido

Kanschat)

Domain decomposition and subspace correction methods are tools with
potential for high impact on practical applications. They yield efficient solvers
for high performance simulations of multi-physics applications or multi-scale
problems, way beyond the realm of currently available theoretical analysis.
They are in particular suitable for generic implementations in tool-boxes
and programming libraries, since they replicate structures existing on the
whole computational domain on subdomains, and their mathematical structure
coincides with parallel implementation. Thus, it is possible to implement
these methods in a way that their optimal performance can be evaluated for
the provable problems, but application of the very same code structures to
more advanced problems is straightforward. We bring together experts on the
development of software frameworks for high performance computing and on
challenging applications to discuss possible approaches for generic implemen-
tations as well as demands posed by advanced applications and performance
results. By incorporating improved domain decomposition algorithms into
high-level frameworks, they can be made readily accessible to a wide audience
without particular knowledge of their technical details. The talks focus on
different challenges in the context of domain decomposition methods, e.g.,
multi-physics simulations, construction of preconditioners or generic parallel
simulations, and discuss how such topics can be incorporated into a general
purpose framework and made available to the application level.

Parallel multigrid methods (Karsten Kahl, Matthias Bolten)

Modern simulation codes must solve extremely large systems of equations—
up to billions of equations. Hence, there is an acute need for scalable parallel
linear solvers, i.e., algorithms for which the time to solution (or number of
iterations) remains constant as both problem size and number of processors
increase. Multigrid (MG), known to be an optimal serial algorithm, is often
scalable when implemented on a parallel computer. However, newly emerging
many-core architectures present several new challenges that must be addressed
if these methods are to be competitive on such computing platforms. Here, we
discuss new techniques for parallelizing MG solvers for various problems.

10. Efficient solvers for frequency domain wave problems (Victorita Dolean,

Martin J. Gander, Ivan Graham)

In this minisymposium, we explore iterative methods for frequency domain
wave problems such as the Helmholtz and Maxwell equations. Driven by
important technological applications, considerable recent progress in this topic
aims towards obtaining a wavenumber robust efficient scalable solver, accom-
panied by a rigorous analysis. The minisymposium discusses several areas
of recent progress including sweeping and source transfer preconditioners,
techniques based on the principle of limited absorption, and new advances in
optimized Schwarz methods.
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11.

12.

13.

Domain decomposition methods for environmental modeling (Florian Lemarié,
Antoine Rousseau)

Many applications in geophysical fluid dynamics and natural hazards pre-
diction require the development of domain decomposition methods (DDMs)
either to optimally use the increasing computational power or to accurately
simulate multi-physics phenomena. Due to the complexity of such numerical
codes, additional constraints arise in the design of the numerical methods as,
for example, in space-time discretizations, subgrid scale parameterizations,
physical/numerical interfaces, etc. In this context, a compromise between
efficient numerical methods and their according constraints imposed by the
target applications must be found. The aim of this minisymposium is to bring
together theoretical and applied scientists working on realistic environmental
simulations. Work presented explores a range of applications from hydrologi-
cal, oceanic, and atmospheric modeling to earthquake dynamics.

Efficient solvers (Sébastien Loisel)

Solving large problems is a core interest in domain decomposition. In order
to be useful, an algorithm should be efficient—whether from high paralleliza-
tion, ease of implementation, or low floating point operation counts. One may
improve the efficiency of algorithms by carefully choosing artificial interface
boundary conditions (Dirichlet, Neumann, or Robin); this choice then impacts
the design and implementation of algorithms. A further issue is the physical
nature of the problem (e.g., elliptic or parabolic, with possible heterogeneities).
In this minisymposium, we discuss algorithms related to the optimized Schwarz
and FETI methods and consider especially their performance advantages.
Space-time parallel methods (Daniel Ruprecht, Robert Speck)

The number of cores in modern supercomputers increases rapidly, requiring
new inherently parallel algorithms in order to actually harness their computa-
tional capacities. This fact leads to increasing need for methods that provide
levels of concurrency in addition to already ubiquitous spatial parallelization.
For time-dependent problems, algorithms that replace classical serial time-
stepping with typically iterative approaches more amenable to parallelization
have been demonstrated to be promising. The minisymposium features four
talks on recent methodological and application-related developments for three
different methods: Parareal, revisionist deferred corrections (RIDC), and the
parallel full approximation scheme in space and time (PFASST).

Contributed Presentations

The contributed talks have been distributed over 14 different sessions:

1.
2.
3.
4.

Helmbholtz equation
Implementation strategies
Flow and porous media
Adaptivity in HPC simulations
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Additive Schwarz methods
Optimized Schwarz methods
Parallelization in time
Maxwell’s equation

9. Inverse problems
10. Preconditioners and solvers
11. Non-matching meshes
12. Multiphysics problems
13. Parallelization in time
14. FETI and BDD methods

PN
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Multigrid Algorithms for High Order
Discontinuous Galerkin Methods

Paola F. Antonietti, Marco Sarti, and Marco Verani

1 Introduction

In the framework of multigrid solvers for Discontinuous Galerkin (DG) schemes,
the first contributions are due to [10, 16]. In [16] a V-cycle preconditioner for a
Symmetric Interior Penalty (SIP) discretization of an elliptic problem is analyzed.
They prove that the condition number of the preconditioned system is uniformly
bounded with respect to the mesh size and the number of levels. In [10] V-cycle,
F-cycle and W-cycle multigrid schemes for SIP discretizations are presented and
analyzed, employing the additive theory developed in [8, 9]. A uniform bound for
the error propagation operator is shown provided the number of smoothing steps
is large enough. All the previously cited works focus on low order, i.e., linear, DG
approximations. With regard to high order DG discretizations, - and p-multigrid
schemes are successfully employed for the numerical solution of many different
kinds of problems, see e.g. [6, 14, 20-22, 24], even if only few theoretical results
are available that show the convergence properties of the underlying algorithms.
In the context of fast solution techniques for high order DG methods, we mention
[1, 11, 12], see also [3] were a substructuring preconditioner is analyzed for an
hp domain decomposition method with interior penalty mortaring. Recently, in
[2] a convergence analysis of W-cycle h- and p-multigrid algorithms for a wide
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class of high order DG schemes is provided. More precisely, it is shown that, if
a Richardson smoother is employed, the W-cycle algorithms converge uniformly
with respect the granularity of the underlying mesh and the number of levels; but
the contraction factor of the scheme deteriorates when increasing the polynomial
order. As a further development of the results contained in [2], the aim of this
paper is to investigate the performance of - and p-multigrid algorithms for high
order DG methods, considering a wide class of smoothers and addressing both
two- and three-dimensional test cases. The paper is organized as follows. In Sect. 2
we briefly introduce the model problem and its DG discretization. The A- and p-
multigrid methods are described in Sect. 3. The numerical experiments are presented
in Sect. 4, where the W-cycle schemes are tested on two- and three-dimensional
problems.

2 Model Problem and DG Methods

Given an open, bounded polygonal/polyhedral domain §2 and a given function
f € L*(R2), we consider the weak formulation of the Poisson problem with
homogeneous boundary conditions: find u € H}(£2) such that

(Vu,Vv)g = (f.v)e Yv € HY(2), (D)

where (-, ) denotes the standard L? product. We consider a sequence of discontin-
uous finite dimensional spaces Vi, k = 1, ..., K, defined as

Vi={vel*(2):vlpeM(T) YTeT) k=1,... K,

where MP* is a suitable space of polynomials of degree p; > 1 and 7y is a partition
of £2 with granularity /. The sequence of spaces Vj is generated with two different
approaches, depending on whether we are interested in /- or p-multigrid algorithms.
In the A-multigrid algorithm, we fix the polynomial approximation degree py = p
for all k = 1,...,K, and the spaces V are associated to a sequence of nested
partitions {7},—; _x obtained from successive uniform refinements of an initial
(coarse) shape regular and quasi-uniform partition 77, cf. Fig. 1 (left). In p-multigrid

Level k o i Ph
J' hg_1 Pr—

1
Level kK — 1 #

Fig. 1 Sample of the space V) and V;_; in the h- (left) and p- (right) multigrid schemes
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schemes, the grid is kept fixed on all the levels and from the level & to the level k— 1
the polynomial degree is lowered down, i.e., pr—; < py forany k = 2,... K, cf.
Fig. 1 (right). Notice that, with such a construction the spaces V; are nested, i.e.,
Vi € V, € ... C Vg. For the sake of simplicity, we will also suppose that the
polynomial degrees p; satisfy the following local bounded variation among levels:
there exists a constant C > 0 such that p; < Cpy—j,foranyk =2,...,K.

For any level k, we denote by F; and F? the sets of interior and boundary faces
of T, respectively, set F, = F} U FP, and define the lifting operators

Re(x).me ==Y (x.{ahr Vae[Vid' k=1.... K.
FeF;

La@).me ==Y . IDr VrelVidl k=1...K
FeF]

where the jump and average trace operators are defined as in [5].
We next define the DG bilinear forms Ai(+,*) : Vi x Vi > R, k=1,...,K, as

Acw.v) = (Vw + Re([w]) + Le(B - [w]). Vv + Ri([v]) + Li(B - [v])) 2
— ORe([wD- Re([v]e + Y (x[wl. [vDr ()

FeF;,

where, for a constant o > 0, the stabilization function oy, is defined as

Olkpi
diam(T)

2
(2792

FeF,
min {diam(7t), diam(7~)} €7

FeFl, or=

oklr =

T+ being the two neighboring elements sharing the face F € Fl.For 6 = 1and
B = 0, the bilinear form (3) correspond to the SIP method [4], whereas for 6 = 1
and B a uniformly bounded (and possibly null) vector in R? we obtain the LDG
bilinear form [13].

We are interested in solving the following problem on the finest level K:

find ux € Vg such that .AK(MK, UK) = (f, UK)Q Vvg € Vg, 3)

with a W-cycle multigrid method. Fixing a basis for Vg, Eq. (3) is equivalent to the
following linear system of equations

AKMK = FK, (4)

where Ag and Fk are the matrix representations of the bilinear form Ak (-, -) and of
the right hand side in (3), respectively, and where, with a slight abuse of notation,
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we used to the same symbol to denote both a function in the finite element space Vg
and the vector of its expansion coefficients in a given basis.

It can be shown that the bilinear form Ak(-, -) defined in (3) is continuous and
coercive with respect to the following (mesh-dependent) DG norm

1/2
olbex = Y IVOlZg + D llog > o112 . 5)

TeTk FeFk

and that the following error estimates are satisfied, cf. [18, 23, 25] for example.

Theorem 1 Let u be the exact solution of problem (1) such that u € H*T'(Tx),
s > 1, and let ux € Vi be the DG solution of problem (3). Then,

min(pg,s)
K

|lu —ugllp.x < —px—u/z lleell s+ (7505 (6)
K

with . = 0 whenever a continuous interpolant can be built, cf. [25], or the projector
of [15] can be employed and . = 1 otherwise.

3  W-Cycle k- and p-Multigrid Algorithms

As usual in the multigrid framework, we will employ a recursive algorithm to
describe the multigrid scheme. To this aim, we define on each level k the problem

Az = by,

where Ay is the matrix representation of the bilinear form (3), and z, by are vectors
of dimension dim(Vy). The first ingredient to build a multigrid algorithm are the
intergrid transfer operators, which we denoted by R,’i_l (prolongation from V;_; to
Vi) and by R’,j_l (restriction from Vj to Vi;—;). Given we are considering nested
spaces, we can simply take R,’i_l as the classical embedding operator and R’,j_l as
its adjoint with respect to the L? scalar product. The second ingredient is a suitable
smoother, which we denote by B;. Denoting by u,(co) € Vj the initial guess, and by
my and m; the number of pre- and post-smoothing steps, respectively, the W-cycle
multigrid algorithm u;, = MGy (k, by, u,(co), my, my) is defined recursively as shown
in Algorithm 1. We then employ Algorithm 1 to solve the linear system (4), i.e.,

ug = MGy (K, bg, Mfy(o),mhmz)-

Notice that if the spaces Vj are associated to a sequence of grids 7; with variable
mesh size and the polynomial degree is kept fixed on all the levels we obtain the
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Algorithm 1 u; = MGy (k, by, u,io), my, my)

if k=1 then > Solution on the coarsest level
Solve Akuk = bk

else
for{=1,...,m do > Pre-smoothing

Set B, = By, if £ is odd and B, = B! if £ is even.
{4 —1 =5— {—1
! =" + B (b — A V)

end for

Set ry—1 = Rf_l (b — Aku,((m‘) ); > Restriction of the residual
Set u,(gl =0;

Call gg—; = MGy (k— 1, r—1, u,(gl, my, ny); > Recursion

Call €r—1 = MGV\;(]C — 1, Fr—1, Ek—ls my, mz);
Set u,(cmlJrl) = u,({"”) + R err;
for{ =m +2,...,m +my+ 1do > Post-smoothing
Set B, = By, if £ is odd and B, = B! if £ is even.
! =" + B (b — A V)
end for
Setu, =u
end if

(m1+ma+1)
k £

W-cycle h-multigrid scheme, whereas if the mesh is kept fixed and the polynomial
degree is lower down from one level to a coarser one we then have a W-cycle p-
multigrid algorithm.

We next introduce the following operator P’,j_l Vi = Vi

Ak_l(Pﬁ_lv,w) = Ak(v,Ri_lw) Yv € Vi,w € Vi,
and the following discrete norm
|||v|||%’k = (A, V) = Ar(v,v) Yv €V,

The error propagation operator associated to the W-cycle multigrid scheme is given
by

0 k=1,

Exmmv =13 ., k 2 k—1 i
Gl (I, — R, (I — E2 PAYGM Y k> 1,

—l,ml,mz)

where [ is the identity operator, and Gy = I — Bk_lAk, cf. [7, 17]. The following
result, which is proved in [2], state that, whenever a Richardson smoother is
employed, the W-cycle algorithms converge uniformly with respect to the granu-
larity of the underlying mesh and the number of levels, provided the number of
smoothing steps is chosen sufficiently large, but the contraction factor of the scheme
deteriorates when increasing the approximation order.
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Theorem 2 For any k, let By be the Richardson smoother, i.e., By = Aply, where
Ay is an upper bound for the maximum eigenvalue of Ay. Then, there exist a constant
Cw > 0 and an integer my that are independent of the mesh size, but dependent on
the polynomial degree, such that

24+p
Pr

(I +m)V2(1 +m

NEkm m vl < Cw mlvllie YoeVi, k=2,....K,
2)

provided my + my > my = my(py).

4 Numerical Results

In this section we test the performance of the W-cycle /- and p-multigrid schemes in
both two- and three-dimensional test cases and with different choices of smoothers.
We compute the convergence factor as

p = exp (i In IIrNIIz)

N ol )
with N denoting the iteration counts needed to achieve convergence up to a relative
tolerance of 10™® and ry and r, denoting the final and initial computed residuals,
respectively. Throughout the section we have employed an equal number of pre- and
post-smoothing steps, i.e., m; = m, = m, and we have set the penalty parameter
oy appearing in the definition of the DG bilinear form as oy = 10, for any level
k=1,...,K.

We first consider a two-dimensional example with 2 = (0,1)> and focus
on the performance of the A-multigrid algorithm. To this aim, we fix a coarse
(triangular/Cartesian) grid 7; with granularity #; = 0.25 and consider a sequence of
nested grids Ty, k = 2, ..., K, obtained from successive uniform refinements of 7;.
In Table 1 we report the computed convergence factors as a function of the number
of smoothing steps m and the number of levels K, fixing the polynomial degree
pr = p = 1,2 for all the levels k = 1,..., K. The results reported in Table 1 have
been obtained with the SIP method on structured triangular grids and with the LDG
scheme on Cartesian grids, and employing a Richardson smoother. The symbol
“-” means that the maximum number of 1000 iterations has been reached without
achieving the desired tolerance. We have repeated the same set of experiments
employing p = 3,4, and the same behavior as been observed; for brevity these
results have been omitted. As expected from Theorem 2, the convergence factor
is independent of the number of levels K, decreases when m increases, and the
performance of the algorithm deteriorates as p grows up.

We next fix the number of pre- and post-smoothing steps m = 6, and investigate
how the performance of the A-multigrid algorithm depends on the polynomial
degree, always employing a Richardson smoother. Table 2 shows the computed
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Table 1 2D test case, SIP and LDG methods, A-multigrid scheme

SIP, triangular grids LDG, cartesian grids
K=2 |K=3 |K=4 |K=5 |K=2 |K=3 |K=4 |K=5
p=1

m=2 0.77 0.78 0.78 0.78 - - - -

m=4 0.60 0.62 0.62 0.62 0.86 0.88 0.87 0.87

m=10 |0.38 0.40 0.40 0.39 0.74 0.76 0.76 0.75
p=2

m=2 0.93 0.94 0.93 0.78 0.96 0.96 0.96 0.96

m=4 0.87 0.88 0.88 0.62 0.93 0.93 0.93 0.92

m=10 0.76 0.77 0.77 0.39 0.88 0.88 0.88 0.87

Convergence factor as a function of the number of levels K, the polynomial approximation degree
p, and the number of smoothing steps m. Richardson smoother

Table 2 2D test case, SIP and LDG methods, A-multigrid scheme

SIP, triangular grids LDG, cartesian grids

K=2 K=3 K=4 K=2 K=3 K=4
p=1 0.50 0.51 0.50 0.81 0.82 0.82
p=2 0.83 0.84 0.84 0.91 0.91 0.91
p=3 0.91 0.92 0.91 0.94 0.94 0.93
p=4 0.95 0.94 0.93 0.96 0.95 0.95
p=>5 0.96 0.95 0.94 0.97 0.95 0.96
p=2©6 0.95 0.96 0.96 0.98 0.96 0.97

Convergence factor as a function of the number of levels K and the polynomial approximation
order p. Richardson smoother (m = 6)

convergence factors as a function of the polynomial degree p = 1,2,...,6 and
the number of levels K = 2, 3, 4, for both the SIP and LDG methods. We observe
that, as predicted by Theorem 2, the performance of the A-multigrid algorithm are
independent of the number of levels but deteriorates as p increases.

We next test the performance of the A-multigrid scheme employing different
smoothers as the Gauss-Seidel smoother of [16], an (elementwise) block Gauss-
Seidel smoother and the polynomial smoother proposed in [19]. In Table 3 we
report the computed convergence factors as a function of the number of pre-
and post-smoothing steps m = 2,4, 10, the number of levels K = 2,3,4 and
the polynomial approximation degree p = 1,2,3,4. These results have been
obtained with the SIP method and employing triangular grids. In all the cases
the performance of the A-multigrid algorithm seems to be fairly independent of
the number of levels. Moreover, as expected, the convergence factor decreases
as the number of smoothing steps increases, but still deteriorates as p grows
up (even if the dependence of the convergence factor on p seems to be weaker
than for the Richardson smoother). Moreover, all the smoothers outperform the
Richardson smoother and the polynomial smoother seems to provide the best
convergence factors. The extension of the convergence analysis presented in [2] to
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Table 3 2D test case, SIP method (triangular grids), ~-multigrid scheme
p=1 p=2 p=3 p=4
K — 2 3 4 2 3 4 2 3 4 2 3 4
Gauss-Seidel smoother
m=2 1055 056 |0.56 [0.80 [0.80 |0.80 |0.88 |0.87 [0.86 [0.92 092 |0.93
m=4 1040 1041 |041 |0.68 |0.68 |0.68 |0.79 |0.78 |0.77 |0.86 |0.86 |0.86
m=10 |[0.20 [0.21 |0.21 |0.44 |0.44 0.44 0.61 059 /0.58 |0.71 |0.71 |0.70
Block Gauss-Seidel smoother
m=2 1055 056 [0.56 [0.71 |0.72 |0.72 |0.82 |0.82 |0.82 |0.84 |0.84 |0.84
m=4 1040 042 (041 |0.54 |0.56 |0.55 [0.70 |0.70 |0.70 |0.73 |0.73 |0.73
m=10 (020 /021 |0.21 |[0.27 |0.31 |0.29 |0.47 |0.47 |0.46 |0.51 |0.50 |0.50
Polynomial smoother
m=2 ]030 [031 (031 |0.68 |0.69 [0.68 [0.80 0.80 [0.78 |0.89 |0.88 |0.87
m=4 |0.17 [0.17 |0.17 |0.50 [0.50 |0.49 |0.66 |0.65 |0.63 |0.80 [0.79 |0.78
m=10 [0.07 /0.07 |0.06 [0.21 |0.21 |0.21 |0.40 |0.38 |0.37 |0.60 |0.59 |0.59
Convergence factors as a function of the number of levels K, the polynomial approximation

degree p, and the number of smoothing steps m. Gauss-Seidel, block Gauss-Seidel and polynomial
smoothers

Table 4 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, cartesian grid

K=2 K=3 K=4 K=2 K=3 K=4
m=2 0.91 0.91 0.94 0.95 0.95 0.97
m=4 0.85 0.85 0.90 0.88 0.89 0.92
m =10 0.78 0.77 0.80 0.86 0.86 0.89

Convergence factor as a function of the number of levels K and the number of smoothing steps m.
Richardson smoother, px = 5

h-multigrid algorithms based on these (more effective) smoothers is currently under
investigation.

We next turn our attention to the performance of the p-multigrid scheme. To
this aim, we fix the finest computational level K, the mesh T and the polynomial
approximation degree px > K employed therein. Then, for each level k, we set
pk—1 =pr—1, k=K, K—1,...,2.In Table 4 we report the computed convergence
factors obtained with px = 5 and varying the number of smoothing steps m and
the number of levels K. The results reported in Table 4 have been obtained with
the LDG and SIP methods and employing a Richardson smoother. Next, we fix
the number of smoothing steps m = 6 and vary the polynomial approximation
degree px employed on the finest level. The results obtained with the SIP method
and employing the Richardson smoother are reported in Table 5. From the results
reported in Table 4 and in Table 5, we can conclude that the p-multigrid scheme
seems to be asymptotically uniform with respect to the number of levels (notice that
in this case the ratio py/pi—1 is not constant from one level to the other), and that, as
expected, the performance of the algorithm improves as m increases. We finally
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Table 5 2D test case, SIP and LDG methods, p-multigrid scheme

SIP, triangular grid LDG, Cartesian grid

K=2 K=3 K=4 K=2 K=3 K=4
pxk =2 0.62 - - 0.83 - -
pk =3 0.77 0.77 - 0.89 0.90 -
pxk =4 0.79 0.80 0.86 0.86 0.89 0.90
pk =5 0.83 0.82 0.87 0.89 0.89 0.92
pk =06 0.86 0.86 0.86 0.91 0.91 0.90

Convergence factor as a function of the number of levels K and the polynomial degree pg.
Richardson smoother (m = 6)

Table 6 2D test case, SIP method (triangular grid), p-multigrid scheme

Pk =2 |pxk =3 pxk =4 Pk =5 Pk =06
K — 2 2 3 2 3 4 2 3 4 2 3 4
m=2 0.76 0.79 /0.79 |0.84 | 0.84 |0.85 [0.85 |0.85 |0.85 |0.88 |0.87 |0.86
m=4 0.60 0.66 |0.66 |0.73 |0.73 |0.73 |0.75 |0.75 |0.75 |0.79 |0.78 |0.77
m=6 048 0.57 10.56 |0.63 |0.63 |0.63 |0.67 |0.67 |0.67 |0.71 |0.71 |0.70
m =10 |0.34 0.44 /044 |0.49 1049 1049 |0.56 |0.56 |0.56 |0.59 |0.58 |0.58

Convergence factor as a function of the number of levels K, the polynomial degree pg, and the
number of smoothing steps m. Gauss-Seidel smoother

address the performance of the p-multigrid method when employing a different
smoother. For this set of experiments we have considered the SIP formulation
and tested the Gauss-Seidel smoother. The results reported in Table 6 show the
computed convergence factors as a function of the number of levels K, the number
of smoothing steps m and the polynomial degree px employed on the finest level.
The computed convergence factor seems to be fairly insensitive to the number of
levels employed in the algorithm and it improves as the number of pre- and post-
smoothing steps increases (notice that, no restriction on the minimum number of
smoothing steps seems to be needed in this case). Nevertheless, the convergence
factor still depends on the polynomial degree even if such a dependence seems to be
weaker than that observed employing the Richardson smoother (cf. Table 5). Finally,
comparing these results with the ones reported in Table 5 it is clear that, as for
the /- multigrid algorithm, the Gauss-Seidel smoother outperforms the Richardson
smoother.

We next present some three-dimensional numerical experiments. We have
employed an A-multigrid scheme to solve the linear system of equations arising
from the SIP discretization of model problem (1) posed on £2 = (0, 1)*. We employ
a sequence of tetrahedral meshed obtained by successive uniform refinements of an
initial coarse grid with granularity h; = 0.25. As before, we fix p; = p for all
the levels k = 1,2,...,K and consider the Richardson, the Gauss-Seidel and the
symmetric Gauss-Seidel smoothers. The computed convergence factors varying the
number of levels K, the number of pre-and post-smoothing steps m as well as the
polynomial degree p are reported in Table 7. We observe that the performance of
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Table 7 3D test case, SIP method (tetrahedral grids), A-multigrid scheme

p=1 p=2 p=3
K=2 |K=3 |K=4 |K=2 |K=3 |K=4 | K=2 |K=3
Richardson smoother

m=2 0.57 0.55 0.53 0.82 0.81 0.80 0.90 0.90
m=4 0.71 0.71 0.69 0.91 0.90 0.90 0.95 0.95
m=10 |0.46 0.44 0.41 0.79 0.78 0.77 0.88 0.88

Gauss-Seidel smoother

m=2 0.57 0.55 0.53 0.82 0.81 0.79 0.89 0.89
m=4 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80
m=10 10.13 0.15 0.12 0.43 0.41 0.40 0.61 0.60

Symmetric Gauss-Seidel smoother

m=2 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80
m=4 0.17 0.19 0.16 0.50 0.48 0.46 0.67 0.66
m=10 |0.05 0.08 0.07 0.22 0.22 0.20 0.41 0.39
Convergence factors as a function of the number of levels K, the polynomial approximation degree

p, and the number of smoothing steps m. Richardson, Gauss-Seidel, and symmetric Gauss-Seidel
smoothers

the h-multigrid schemes are completely analogous to the one observed in the two-
dimensional test case.
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BDDC Deluxe for Isogeometric Analysis

L. Beirao da Veiga, L.F. Pavarino, S. Scacchi, O.B. Widlund, and S. Zampini

1 Introduction

The main goal of this paper is to design, analyze, and test a BDDC (Balancing
Domain Decomposition by Constraints, see [12, 23]) preconditioner for Isogeo-
metric Analysis (IGA), based on a novel type of interface averaging, which we
will denote by deluxe scaling, with either full or reduced set of primal constraints.
IGA is an innovative numerical methodology, introduced in [17] and first analyzed
in [1], where the geometry description of the PDE domain is adopted from a
Computer Aided Design (CAD) parametrization usually based on Non-Uniform
Rational B-Splines (NURBS) and the same NURBS basis functions are also used as
the PDEs discrete basis, following an isoparametric paradigm; see the monograph
[10]. Recent works on IGA preconditioners have focused on overlapping Schwarz
preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping precondi-
tioners [4, 8, 20].
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Deluxe scaling was recently introduced by Dohrmann and Widlund in a study of
H(curl) problems; see [14, 15, 29] and also [25] for its application to problems in
H(div) and [21] for Reissner—Mindlin plates. In our previous work on isogeometric
BDDC [4], standard BDDC scalings were employed with averaging weights built
directly from sone representative values of the elliptic coefficients in each subdo-
main (p-scaling) or from the values of the diagonal elements of local and global
stiffness matrices (stiffness scaling). The novel deluxe scaling, originally developed
to deal with elliptic problems with more than one variable coefficient, is instead
based on solving local problems built from local Schur complements associated with
sets of what are known as the dual variables. This new scaling turns out to be much
more powerful than the standard p- and stiffness scalings in the present context, even
for scalar elliptic problems with one variable coefficient. A novel adaptive strategy
to select a reduced set of vertex primal constraints is also studied. The main result
of our h-analysis shows that the condition number of the resulting deluxe BDDC
preconditioner satisfies the same quasi-optimal polylogarithmic bound in the ratio
H /h of subdomain to element diameters, as in [4], and that this bound is independent
of the number of subdomains and jumps of the coefficients of the elliptic problem
across subdomain interfaces. Moreover, our preliminary 2D numerical experiments
with deluxe scaling show a remarkable improvement, in particular for increasing
polynomial degree p of the isogeometric elements. Numerical tests in 3D can be
found in [6].

2 Isogeometric Discretization of Scalar Elliptic Problems

We consider the model elliptic problem on a bounded and connected CAD domain
QCcRid=2,3,

—V-(pVu)=fin 2, u=0o0nds2, (1)

where p is a scalar field satisfying 0 < pin < p(x) < Pmax, VX € £2. For simplicity,
we describe our problem and preconditioner in the 2D single-patch case. Comments
on the 3D extension can be found at the end of Sect. 3, and comments on the multi-
patch extension can be found in [6]. We discretize (1) with IGA based on B-splines
and NURBS basis functions. The bivariate B-spline discrete space is defined by

Sy = span{By(E,m), i=1,....n,j=1,....m}, )
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where the bivariate B-spline basis functions B}(§,7) = N/ (§) M} (n) are defined
by tensor products of 1D B-splines functions Ny (£) and M () of degree p and g,
respectively (in our numerical experiments, we will only consider the case p = ¢).
Analogously, the NURBS space is the span of NURBS basis functions defined in
1D by

N ()i N (@),
Ri(§) := 7 . 3)
Yo Mo w)
with the weight function w(§) := Y i_| M (§)w; € S, and in 2D by
(S n) = M(S nwi; qu(g nwi; )
Zl 1 Zj 1 qu(s n)wiJ W(E, ’7) ’
where w(£,n) is the weight function and w;; = (C7)s the positive weights

associated with a n x m net of control points C;;. The d1screte space of NURBS
functions on the domain £2 is defined as the span of the push-forward of the NURBS
basis functions (4) (see, e.g., [17])

N, = span{RfJ’.qu_l, withi=1,...,n;j=1,...,m}, 5)

with F : 2 — 0 the geometrical map between parameter and physical spaces
defined by F(§.n) = 3" 3L, R;'(€.n)Ciy.

For simplicity, we will conmder the case with a Dirichlet boundary condition
imposed on all of d§2; we can then define the spline space in the parameter space
and the NURBS space in physical space, respectively, as

Vi =[Sy N HY () = [span{Bf(E.m). i=2....n—1,j=2,...m—1}],
= [NiNH(2)]* = [span{R}oF~", withi =2,....n—1;j=2,....,m—1}]".
The IGA formulation of problem (1) then reads:

Find u;, € V}, such that:
(6)

a(uh, Uh) =<f, vp > Yv € Vi,

with the bilinear form a(uy, v;) = / pVu,Vuydx.
Q2



18 L. Beirfio da Veiga et al.
3 BDDC Preconditioners

When using iterative substructuring methods, such as BDDC, we first reduce the
problem to one on the interface by implicitly eliminating the interior degrees of
freedom, a process known as static condensation; see, e.g., Toselli and Widlund [28,
Ch.4].

Knots and Subdomain Decomposition A decomposition is first built for the
underlying space of spline functions in the parametric space, and is then easily
extended to the NURBS space in the physical domain. From the full set of knots,
& = 0,....&4p+1 = 1}, we select a subset {§;,,k = 1,...,N + 1} of non-
repeated knots with &, = 0,§;,,, = 1. The interface knots are given by §;, for
k =2, .., N and they define a decomposition of the closure of the reference interval
into subdomains

1) =0.1] =( U }k), with & = (i £iy))-

k=1,..N

that we assume to have similar lengths Hy := diam(?k) ~ H.In more dimensions,
we just use tensor products. Thus, in two dimension, we define the subdomains by

I = s &) I = s Mjrgr)» Qu=ILxl, 1<k<N;,1<I<N,.
(7)

For simplicity, we reindex the subdomains using only one index to obtain the

decomposition of our domain £ = Uk=1..x 2;, into K = N;N, subdomains.
Throughout this paper, we assume that both the subdomains and elements defined
by the coarse and full sets of knot vectors are shape regular and with quasi-uniform
characteristic diameters H and h, respectively.

The Schur Complement System As in classical iterative substructuring, we

reduce the problem to one on the interface I' := (Uf=l 8.(2;()\8[} by static

condensation, i.e., by eliminating the interior degrees of freedom associated with the
basis functions with support in each subdomain. The resulting Schur complement
for [}k and its local interface I}, := 8f2k \ 982 will be denoted by S®. In the sequel,
we will use the following sets of indices:

Op={(i.)eN:2<i<n—12<j<m—1},
Or = {(i.j) € Og : supp(B};) N " # @}

We note that @ consists of indices associated with a “fat” interface that typically
consists of several layers of knots associated with the basis functions with support
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e EEEEEEE
.4

Fig. 1 Schematic illustration in index space of interface equivalence classes in 2D (left) and 3D
(right) parametric space with p = 3,k = 2: fat vertices, consisting of (k + 1) knots in 2D and
(k + 1) in 3D; fat edges (without vertices), consisting of (k + 1) “slim” edges in 2D and (k + 1)?
in 3D; fat faces (without vertices and edges), consisting of ¥ + 1 slim faces in 3D

intersecting two or more subdomains, see e.g. Fig. 1. The discrete interface and local
spaces are defined as

Vr o= span{Bl. (i.j) € Or}.  V{" = V) N HY(20). 8)

The space V), can be decomposed as @sz lV,(k) + ’H(\A/p), where # : Vi — Vi,
is the piece-wise discrete spline harmonic extension operator, which provides the
minimal energy extension of values given in Vr. The interface component of the
discrete solution satisfies the Schur complement reduced system

S(I/tp,vp) :<f, vr >, er (S ‘A/p, (9)

with a suitable right-hand side f and a Schur complement bilinear form defined
by s(wr,vr) := a(H(wr), H(vr)). For simplicity, in the sequel, we will drop the
subscript I" for functions in V. In matrix form, (9) is the Schur complement system

~

Srw =71, (10)

where Sr =Arr —AFIAI_IIAITWI, f =fr —AFIAI_IlfI, are obtained from the original
discrete problem by Gaussian elimination after reordering the spline basis functions
into sets of interior (subscript /) and interface (subscript I") basis functions. The
Schur complement system (10) is solved by a Preconditioned Conjugate Gradient
(PCQ) iteration, where S is never explicitly formed since the action of Sron a
vector is computed by solving Dirichlet problems for individual subdomains and
some sparse matrix-vector multiplies, which are also needed when working with the
local Schur complements required by the application of the BDDC preconditioner
defined below. The preconditioned Schur complement system solved by PCG is then

A~

ML Srw =M 7, (11)

BDDC BDDC
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where M| is the BDDC preconditioner, defined in (18) below using some restric-

tion and scaling operators associated with the following subspace decompositions.
Subspace Decompositions We split the local space V) defined in (8) into a
direct sum of its interior (I) and interface (I") subspaces, i.e.

Yo .= V,(k) [a) V}f‘), where

Vi = span{Bf. (i.j) € ©°}, VY = span{BlY. (i.j) € O},

iy’
which translate in the index sets
0 == {(i.j) € O : supp(BlY) C £},
oW = {(ij)eOr: supp(B/) N (082¢ N I}) # 0},

and we define the associated product spaces by

K K
]_[ Vo ve=T] v
k=1 k=1

The functions in V| are generally discontinuous (multi-valued) across I", while
our isogeometric approximations belong to Vi, the subspace of V of functions
continuous (single-valued) across I". We will select some interface basis functions
as primal (subscript IT), that will be made continuous across the interface and will
be subassembled between their supporting elements, and we will call dual (subscript
A) the remaining interface degrees of freedom that can be discontinuous across the
interface and which vanish at the primal degrees of freedom. This splitting allows
us to decompose each local interface space into primal and dual subspaces V}f‘) =

VI(-I;) &P v, and we can define the associated product spaces by

ﬁ (k) l—[ V(k)

We also need an intermediate subspace V- C Vp of partially continuous basis
functions

‘71" = VA @ ‘>17,

where the product space V4 has been defined above and Vpisa global subspace of
the selected primal variables.
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For two-dimensional problems, we will consider the primal space Vg consisting
of vertex basis functions with indices belonging to
Oc = {(i,j,k) € Or : supp(B/}") N C # @}. (12)

In order to define our preconditioners, we will need the following restriction and
interpolation operators represented by matrices with {0, 1} elements

RFAIVF—>VA, an:?r—)‘,\/n, kn:&r—)‘/}n

ROy oyl gLy ot p0 L0 (13)
A VA A B Va n A ¥r A

For any edge/face F, we will use the symbol Rz to denote a restriction matrix to

the (“fat”) set of degrees of freedom associated with F.

Deluxe Scaling We now apply to our isogeometric context the deluxe scaling
proposed in [14]. Let £2; be any subdomain in the partition, k = 1,2,...,K. We
will indicate by = the index set of all the £2;, j # k, that share an edge F with £2.
For regular quadrilateral subdomain partitions in two dimensions, the cardinality of
Ey is 4 (or less for boundary subdomains).

In BDDC, the average w := Epw of an element in w € \7p, is computed
separately for the sets of interface degrees of freedom of edge and face equivalence
classes. We define the deluxe scaling for the class of F with only two elements,
k,j, as for an edge in two dimensions. We define two principal minors, S(;) and Sg),
obtained from S® and S by removing all rows and columns which do not belong
to the degrees of freedom which are common to the (fat) boundaries of £2; and £2;.

Let w(]]_f) := Rrw®; the deluxe average across F is then defined as
| S
i = (S +52) (sPwf + sPw). (14)

If the Schur complements of an equivalence class have small dimensions, they can

N1
be computed explicitly, otherwise the action of S(]l_f) + Sg) can be computed by

solving a Dirichlet problem on the union of the relevant subdomains with a zero
right hand side in the interiors of the subdomains.

Each of the relevant equivalence classes, which involve the subdomain £2;, will
contribute to the values of w. Each of these contributions will belong to 17p, after
being extended by zero to I \ F; the resulting element is given by R;v"v . We then
add the contributions from the different equivalence classes to obtain

W= Epw=wng + »_ Rhwr. (15)
f
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Ep is a projection and its complementary projection is given by

Ppw:= (I — Ep)w =wa— Y Ry (16)
]_‘

With a small ab~use of notation in what follows,Awe Wil~1 consider Epw € Vp also as
an element of V-, by the obvious embedding Vy C V. In order to rewrite Ep in
matrix form, for each subdomain £2;, we define the block-diagonal scaling matrix

&) _ - (k) (k) (k)
DY = dlag(ijl,Dsz, . ’Dij)’
where ji,j2,...,jk € &) and the diagonal blocks are given by the deluxe scaling

N\ 1
D(;) = (Sg@ + Sg)) ng) . We can now extend the operators defined in (13) and

define the scaled local operators by Ry := DORY, RS, := RY, RS, and the
global scaled operator

Rp.r = the direct sum Ry ®K_ Rg‘?A, (17)

so that the averaging operator is Ep = Rrkg,r, where R := Ry e, R(Ak).

The BDDC Preconditioner We denote by A® the local stiffness matrix
restricted to subdomain £2;. By partitioning the local degrees of freedom into
those in the interior (I) and those on the interface (I"), as before, and by further
partitioning the latter into dual (A) and primal (IT) degrees of freedom, then A®
can be written as

= ) 40 4B
= | A App Apia

® A®T

AR — |:A11 Ary
K Ak) 4 (k)

A Ana A

R 4B @7
] Ay Axr Ang
(k) 4 (k)
ArrArr
Using the scaled restriction matrices defined in (13) and (17), the BDDC precondi-
tioner can be written as

M\ =R}, S:'Rpr,  where (18)

BDDC

W 4077

~_ ~ T A A 0 ~ _

57 =Rl Z[OR?][A&A%] [Rm] Rra + ®S7po". (19)
k=1 Al “1AA A

Here Sp77 is the BDDC coarse matrix and @ is a matrix mapping primal degrees of
freedom to interface variables, see e.g. [2, 22]. Our main theorem is the following
(see [6] for a proof and more complete details).
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Theorem 1 Consider the model problem (1) in two dimensions and let the primal
set be given by the subdomain corner set Vg defined in (12). Then the condition
number of the preconditioned operator is bounded by

cond(MEﬁchr) < C(1 + log(H/h))*,

with C > 0 independent of h, H and the jumps of the coefficient p.

Comments on the Three-Dimensional Case The choice of primal degrees of
freedom is fundamental for the construction of efficient BDDC preconditioners.
The space Vg is not sufficient to obtain scalable and fast preconditioners in three
dimensions. In three dimensions, we can define an additional index set associated
with fat edges

Op = {(i,j,k) € Or/Oc : supp(B//}") NE # @},

and enrich the primal space with averages computed for each slim edge parallel
to the subdomain edge (see Fig. 1). Three-dimensional numerical results (see [6])
show faster rates of convergence when considering such an enriched coarse space:
in particular, the addition of edge slim averages is sufficient to obtain quasi-
optimality and scalability as is the case with standard FEM discretizations. The
deluxe convergence rate for increasing p seems to be orders of magnitude better
than that of BDDC with stiffness scaling, but not as insensitive to p as in the 2D
results of Table 1 in the next section.

Adaptive Choice of Reduced Sets of Primal Constraints In recent years, a
number of people have investigated different adaptive choices of primal constraints
in BDDC and FETI-DP methods, see e.g. [13, 18, 19, 24, 26, 27]. Most of these
works focus on the adaptive selection of 2D edge or 3D face constraints, i.e.
constraints associated with the interface between two subdomains, by solving
some generalized eigenproblems. It is less clear how to extend such techniques to
equivalence classes shared by more than two subdomains, such as 2D or 3D vertices
and 3D edges. Here, inspired by the techniques of [13], we propose an adaptive
selection of 2D primal vertices, driven by the desire to reduce the expensive fat
vertex primal constrains used in the standard or deluxe BDDC method.

Let £2; be any subdomain in the partition, k = 1,2,...,K and consider the
associated local Schur complement S®). Denote by F one of the equivalence classes
(a vertex, edge, or face) and partition the degrees of freedom local to §2; into F and
its complement 7. Then S® can be partitioned as

k) k)

s® — Srr SrF (20)

RN :
FIFOFF
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For each equivalence class F, define the new Schur complement
k) olk) ®) ™! k)
Srr=Srr=SrrSrrSrr @n

and define the generalize eigenvalue problem

SW v =8P 0. (22)
Given a threshold 8 > 1, we select the eigenvectors {v;, v2, ..., vy, } associated to

the eigenvalues of (22) greater than 6 and we perform a BDDC change of basis in
order to make these selected eigenvectors the primal variables.

4 Numerical Results

In this section, we report on numerical experiments with the isogeometric BDDC
deluxe preconditioner for two-dimensional elliptic model problems (1), discretized
with isogeometric NURBS spaces with a mesh size A, polynomial degree p and
regularity «. The domain is decomposed into K nonoverlapping subdomains of char-
acteristic size H, as described in Sec. 3. The discrete Schur-complement problems
are solved by the PCG method with the isogeometric BDDC preconditioner, with
a zero initial guess and a stopping criterion of a 10~® reduction of the Euclidean
norm of the PCG residual. In the tests, we study how the convergence rate of the
BDDC preconditioner depends on ki, K, p, k. The 2D tests have been performed with
a MATLAB code based on the GeoPDE:s library by De Falco et al. [11].

Scalability in K and Quasi-Optimality in H/ The condition number cond and
iteration counts n;; of the BDDC deluxe preconditioner are reported in the table of
Fig. 2 for a quarter-ring domain (shown on the left of the table), as a function of the
number of subdomains K and mesh size h, for fixed p = 3,k = 2 (top) or p =
5,k = 4 (bottom). The results show that the proposed preconditioner is scalable,
since moving along the diagonals of each table the condition number appears to be
bounded from above by a constant independent of K. The results for higher degree
p = 5 and regularity k = 4 are even better than those for the lower degree case. The
BDDC deluxe preconditioner appears to retain a very good performance in spite of
the increase of the polynomial degree p, a property that was not always satisfied
in [4]. To better understand this issue, we next study the BDDC performance for
increasing values of p.

Dependence on p In this test, we compare the BDDC deluxe performance as
a function of the polynomial degree p and the regularity k. We recall that our
theoretical work is only an /-analysis and does not cover the dependence of the
convergence rate on p and k. The domain considered is the quarter-ring discretized
with a mesh size h = 1/64 and K = 4 x 4 subdomains. The spline degree p
varies from 2 to 10 and the regularity is always maximal (¢« = p — 1) inside the
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h=1/16 h=1/32 h=1/64 h=1/128

K cond ny | cond ny | cond ny | cond ny

2x2 124 5 142 6 1.65 6 1.92 6

pD3 4 x4 2.02 8 268 10 | 346 11
kD2 8 x 8 239 10 | 329 12
16 X 16 2.64 11

2x2 1.19 5 1.35 6 1.55 6 1.78 6

pD5 4 x4 1.62 8 2.19 9 2.86 10
kD 4 8x 8 1.77 8 2,55 10
16 X 16 1.87 8

Fig. 2 BDDC deluxe preconditioner for a 2D quarter-ring domain (left): condition number cond
and iteration counts n; as a function of the number of subdomains K and mesh size h. Fixed
p =3,k =2(top), p =5,k = 4 (bottom)

Table 1 BDDC deluxe dependence on p in the 2D quarter-ring domain: condition number cond
and iteration counts nj as a function of the NURBS polynomial degree p. Fixed h = 1/64, K =
4 x4, k =p—1(top), k = 2 (bottom)

p 2 3 4 5 6 7 8 9 10
k=p—1 |Cond [3.22 |2.68 |241 2.19 |2.04 1.91 1.80 1.72 1.62

nj 10 10 9 9 9 8 8 8 9
k=2 Cond |- 247 (284 |3.16 |345 371 394 417 |4.36

nj - 10 11 11 11 12 12 12 12

subdomains, while at the subdomain interface is either maximal (k = p — 1, top) or
low (k = 2, bottom). The results in Table 1 show that for k = p — 1 the condition
numbers and iteration counts are bounded independently of the degree p and actually
improve slightly for increasing p, while for k = 2 the condition numbers show
a very modest sublinear growth with p, with associated iteration counts that are
practically constant. This is a remarkable property that is not shared by any other
nonoverlapping IGA preconditioner in the (current) literature.

Adaptive Choice of Vertex Primal Constraints Table 2 reports the results
with the proposed adaptive choice of primal constraints applied only to the vertex
constraints (the edge variables remain dual). We consider both an eigenvalue
threshold 6 = 2 leading to the minimal choice of N, = 1 primal vertex constraint
(that turns out to be the average of the fat vertex values) and a lower threshold
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0 = 1.5 leading to a richer choice of N, = 4 primal vertex constraints for each
subdomain vertex. In case of variable polynomial degree p, we also consider a very
low threshold 6 = 1.1 that leads to a richer choice of approximately N, = 2p primal
constraints for each subdomain vertex. The results in a) show that the BDDC deluxe
preconditioner is scalable, since cond and nj; appears to be bounded from above by
a constant independent of K, and the results in b) indicate that the preconditioner
is quasi-optimal, since cond and n; appears to grow polylogarithmically in H/h.
The results in ¢) show that the minimal choice N, = 1 does not perform well
for increasing p (there is no convergence for p = 6), while with the richer choice
corresponding to & = 1.1 we obtained only a mild performance degradation up to
p=6.
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Auxiliary Space Multigrid Method for Elliptic
Problems with Highly Varying Coefficients

Johannes Kraus and Maria Lymbery

1 Introduction

The robust preconditioning of linear systems of algebraic equations arising from
discretizations of partial differential equations (PDE) is a fastly developing area
of scientific research. In many applications these systems are very large, sparse
and therefore it is vital to construct (quasi-)optimal iterative methods that converge
independently of problem parameters.

The most established techniques to accomplish this objective are domain decom-
position (DD), see, e.g., [23, 28], and multigrid (MG)/algebraic multilevel iteration
(AMLI) methods, see, e.g., [10, 29, 30].

As demonstrated by Klawonn et al. [12], Toselli and Widlund [28], Graham et
al. [9], two-level DD methods can be proven to be robust for scalar elliptic PDE
with varying coefficient if the variations of the coefficient inside the coarse grid
cells are assumed to be bounded. A key tool in the classical analysis of overlapping
DD methods is the Poincaré inequality or its weighted analog as for problems with
highly varying coefficients. It is well-known that the weighted Poincaré inequality
holds only under certain conditions, e.g., in case of quasi-monotonic coefficients,
see [26]. The concept of quasi-monotonic coefficients has been further developed
in [25] for the convergence analysis of finite element tearing and interconnecting
(FETI) methods.
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Recently the robustness of DD methods has also been achieved for problems with
general coefficient variations using coarse spaces that are constructed by solving
local generalized eigenvalue problems, see, e.g., [5, 8, 27].

In view of computational complexity, MG methods have been known to be most
efficient as they have demonstrated optimality with respect to the problem size,
see [10, 30]. Their design, however, needs careful adaptation for problems with large
variations in the physical problem parameters. The AMLI framework contributes
in achieving this goal, e.g. by providing more general polynomial acceleration
techniques or Krylov cycles, see [1-3, 16].

The idea of integrating domain decomposition techniques into multigrid methods
can be found as early as in [18]. The method that is presented in the following
combines DD and MG techniques with those from auxiliary space preconditioning,
see [31]. It is related to substructuring methods like FETI, see [6], and balancing
domain decomposition (BDD) methods, see [19].

The most advanced of these methods, BDDC (BDD based on constraints),
see [4], and FETI-DP (FETI dual-primal), see [7], can be formulated and analyzed
in a common algebraic framework, see [20-22]. The BDDC method enforces
continuity across substructure interfaces by a certain averaging operator. The
additional constraints can be interpreted as subspace corrections where coarse basis
functions are subject to energy minimization. From this point of view the BDDC
method has a high degree of similarity with the present approach.

However, contrary to BDDC, the auxiliary space multigrid (ASMG) method
considered here naturally allows overlapping of subdomains and coarse degrees of
freedom (DOF) are associated in general not only with the interfaces of subdomains
but also with their interior. Moreover, the aim is to define a full multilevel method
by recursive application of a two-level method. In contrary to standard (variational)
multigrid algorithms coarse-grid correction is replaced by an auxiliary space
correction. The coarse-grid operator then appears as the exact Schur complement of
the auxiliary matrix and defines an additive approximation of the Schur complement
of the original system, see [14, 15].

The purpose of the present paper is to summarize the main steps of the
construction of the ASMG method recently proposed in [17] on a less technical level
(Sects. 2 and 4) and further to discuss its spectral properties and robustness with
respect to highly varying coefficients (Sect. 3). The latter issue is also illustrated by
numerical tests (Sect. 5).
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2 Auxiliary Space Two-Grid Preconditioner

Consider the linear system of algebraic equations
Au=f ey

obtained after a finite element (FE) discretization of a partial differential equation
(PDE) defined over a domain §2, where A denotes the global stiffness matrix and f
is a given right-hand side vector.

Consider a covering of £2 by n (overlapping) subdomains £2;, i.e., 2 = U—, 2;.
Assume that for each subdomain £2; there is a symmetric positive semi-definite
(SPSD) subdomain matrix A; and that A = Z?:l RiTAiRi where R; restricts a global
vector v € V = RY to the local space V; = R" related to §2;. In practice the
matrices A; are assembled from scaled element matrices where the scaling factors
account for the overlap of the subdomains. The DOF are split into two groups,
coarse and fine, and the matrices A and A; are partitioned accordingly into two-
by-two blocks, where the lower right blocks (with index 22) are associated with
coarse DOF, i.e.,

A A12:| |:Ai:11 Ai:12:| .
A= , A= , i=1,...,n.
|:A21 A Ajnl A

Introduce the following auxiliary domain decomposition matrix

Apqn Ap12R12
Azn Ar12Ro:

N
Il

' (2)
An:ll An:l2Rn:2

n
Ri,A121 RjyA201 ... R HAnn ZRngizzzRi:z

i=1

DeznotE: A“ = diag{A:11, ..., A1), Azz = An = Z?:l Rngi:ZZRi:Z, ie., A=

|:4“ 4121| . The matrices A € RV and A € RV*V are related via
Ay Ax

R, O

A = RAR” where R =
05

] R = [R{1 ...R,{l] . A = RiALRT
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Definition 1 ([15]) The additive Schur complement approxjmation (ASCA)of § =
Ay — A21A1_11A12 is defined as the Schur complement Q of A:

Q:=An —AyAjlAn = ZRgz(Ai:zz — Ai1AL A12)Ria 3)
i=1
Next define a surjective mapping [T : V — Vby
IT; = (RDRT)™'RD, 4)

where V = R¥ and D is a two-by-two block-diagonal SPD matrix.
The proposed auxiliary space two-grid preconditioner is defined by

B =M '+ U-MTACI-AM) (5)
where the operator M in (5) denotes an A-norm convergent smoother, i.e. I —
M7'A|4 < 1,and M = M(M + M" — A)~'M" is the corresponding symmetrized
smoother. The matrix C defines a fictitious (auxiliary) space preconditioner approx-
imating A and is given by

c'=mAT' ] (6)

Denote IT = (I — M~ TA)[T; = (I — M~TA)(RDRT)™'RD, then the precondi-
tioner (5) can also be presented as

B =M '+ mA'n’. )
The proposed auxiliary space two-grid method differs from the classical two-

grid methods in the replacement of the coarse grid correction step by a subspace
correction with iteration matrix  — C™'A.

3 Spectral Properties and Robustness

As it has been shown in [17] the condition number of the two-grid preconditioner
defined in (7) satisfies the estimate

K(B™'A) < (€ + em)(c+ )/,

where ps = Amax(A), cp7 is the constant in the estimate || ITv|3 < cn||€f||§ for all

¥ € V, and the constants ¢, ¢ and 7 are such that the following properties hold:

e(v.v) < pa(M 'v.v) <E{v.v) and M TAv|P < v,
PA
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Moreover, the ASCA defined in (3) is spectrally equivalent to S, i.e. Q >~ S:

Theorem 1 ([17]) Denote nj = RTHD where Il is defined as in (4) and D
is an arbitrary two-by-two block-diagonal SPD matrix for the same fine-coarse
partitioning of DOF as used in the construction of A.

Then (A™'w,u) < (MzA"' Mlu,u) < c(A™'w,u) Vu € V where ¢ := ||mp|3.
Hence,
1
z(SVz,Vz) < {Qv2,v2) < (Sva,v2) Vva. (®)
; . . ~ A 0
The upper bound in (8) is sharp, the lower bound is sharp for D = 07l

To verify that (Sv,,vo) < c¢(Qv,Vv,) is robust with respect to an arbitrary
variation of an elementwise constant coefficient «(x) = «, for all x € e and all
elements e, see (15), one has to consider all possible distributions of {c,} on the
finest mesh. However, in the following we will show that the worst condition number
(largest values of ¢) is obtained for a certain binary distribution of {c,} so it suffices
to study distributions of this type.

Let n, denote the number of elements e and consider first an arbitrary distribution
{a.} of a piecewise constant coefficient where o, € (0, 1] for all e. Further, let
A denote the global stiffness matrix corresponding to this distribution. Then there
exists a set of binary distributions {C; : i = 1,2,...,n.} withC; = {a; : j =
1,2, e, 0 = B, if j = i and o = 8 else} for some constants 0 < § < f,, <
1 such that A = )"} A; where A; is the global stiffness matrix corresponding to
the distribution C;. It is easy to see that if A is SPD then A; is SPD for all i. Now,
let S; denote the exact Schur complement of A; and S be the Schur complement of
A. Moreover, let Q; denote the ASCA corresponding to A;, i.e., Q; >~ S; where Q; is
the exact Schur complement of A,-, cf. (2).

Lemma 1 Using the above notation, assume that

1
—(Sv2,v2) =(Qv2.v2) = (Sva.v2) VVaandj=1....one. )
J

Further, denote cmax = MaXieqy,. n,11¢i} Then the following relations hold:

(Sv2,v2) < (Qva,v2) < (Sva,v2)  Vva. (10)

Cmax

Proof The right inequality in (10) follows directly from the energy minimization
property of Schur complements. In order to prove the left inequality we
assume that (10) is wrong. Then there exists a vector v, # 0 such that
viSv, > evIOvy > cmaxVIQOvs, the left inequality of which can also be
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written in the form miny, (

T o\ T .
miny, (:;) (Z]’.’;IAj) (:;) > ¢ ming, (2) (2}11;‘1) (:;) From the

latter inequality it follows that

T ne ne - T -
v A _ A ~ (Vv
! E A ! >c min | ! A ! Vv,
\p) — V2 — ¥ V2 A2
J=1 J=1

which is equivalent to

Ne T e
Vi Vi - T
A; >c v,0ivy  Vvy. (1
§ :(Vz) j (Vz) j§=l 20iV2 1

j=1

Then, since all matrices A; and Q; are SPSD, it follows from (11) that there exists at
least one index jo € {1, 2,...,n,} such that

T
Vi Vi T

Aj >cv,0j,v2 Vvi.
A\ A\

T
T _ . V] V] - T . o . . .
Hence v;S;,v2 = miny, Ajy > ¢V, Qj,v2 which is in contradiction
\F) \F) !

to (9) since ¢ > Cmax-

A crucial step in the application of the two-level preconditioner is the realization
of the operator I1;. We propose two different variants that correspond to the
following choices of D:

[1] D = diag(A);

(] D = blockdiag(A). The diagonal blocks are determined by the groups of
fine DOF related to different macro structures whereas D = diag(A) in rows
corresponding to coarse DOF.

In variant [I] the matrix RDR? is diagonal, which makes the application of ITj
notably simple and cost-efficient. In case of variant [II] the action of (RDRT)~!
can be implemented via an inner iterative method such as a preconditioned
conjugate gradient (PCG) method, which then for reasons of efficiency requires a
uniform preconditioner. A possible candidate is the one-level additive Schwarz (AS)
preconditioner which however has to be adapted in order to be robust with respect to
coefficient jumps. For this reason we study the scaled one-level AS preconditioner
Bas defined via

B = SRS™Y(SDS)'STIRTS (12)
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which can be applied to the scaled system with the matrix
Dy = SDS = SRDR'S,

where S = [diag(A)]~!/2, if the result is then rescaled. Let us further denote

D, = SDS and R, = SRS™" where S = [diag(A)]~"/2.

Then the following lemma holds:
Lemma 2 The condition number of the preconditioned system using the scaled one-
level AS preconditioner satisfies the estimate

K(Bx$Dy) < k(D). (13)
Proof First we show that Amin(B54Ds) > 1. Note that Dy = R,D,R” and

R,RT = SRS™'ST'RTS = [diag(A)]~'/?R [diag(A)]R" [diag(A)]~/? = I.

Consider next the matrix

RD,RT I _[R,O07[Ds I T[RT O
I RD7RT|LOR || ID|L0R

which is SPSD with an SPD pivot block D, = RxbsRZ. Consequently, its Schur
complement is an SPSD matrix, i.e.

R,D;'RT — (R,D,RT)™" > 0

which proves that A, (B;éDS) > 1.
On the other hand we have

Amax(BXéDs) = Amax(Rsbs_lliz-l)s)
= Amax(Ds*R.DT'RTD;?)
= 1/257 ~_1/2
= Armlx(DS R‘y DRD; )
= A'max(b;l)A'max(RZ“RSDSRzRS)
< Amax (D7) dmax (D5) Amax (RTR;) = 1(Dy)

which completes the proof.

Remark 1 For conforming FEM discretization of the second order scalar elliptic
PDE it is not difficult to show that K(Dx) is uniformly bounded with respect to
jumps of an elementwise constant coefficient. Furthermore, Dy is block-diagonal
with small-sized blocks and thus « (D;) is easily computable.
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4 Auxiliary Space Multigrid Method

Consider the exact block factorization of the sequence of auxiliary stiffness matrices
A where the superscript k = 0, 1,...,£ — 1 indicates the coarsening level:

AW T H0F® - AG+D . o®)

~ 0 —1

P _ r A0 _ Al

L iw e, [P =uk
—Ay Ay I oW

Let the algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid
(ASMG) preconditioner B® be defined by (see [17]):

O~ = g
(I —MOTTA®OY O FOT OO 0T g0

—w . [ AW O ._ 40
D" = wn |- BV =a07
By

In the nonlinear AMLI-cycle Bf,k+1) = Bf,k+1) [-] is a nonlinear mapping realized
by v iterations of a Krylov subspace method (e.g. the generalized conjugate gradient
(GCG) method), thus employing the coarse level preconditioner B*+1_ In [13] the
convergence of the multiplicative nonlinear AMLI has been first analyzed, while
Notay and Vassilevski [24], Vassilevski [30], and Hu et al. [11] have provided the
multigrid framework along with a comparative analysis.

We want to stress the fact that the presented construction provides a framework
for both linear and nonlinear AMLI cycle multigrid as well as classical multigrid
methods.

5 Numerical Results

Subject to numerical testing is the scalar elliptic boundary-value problem

— V- (k(x)Vu(x))

f(x) in £2, (14a)
0 on I (14b)

u
Here £2 is a polygonal domain in R?, f is a given function in L,(£2) and

k(x) = a(x)] = a.l. (15)
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Fig. 1 Inclusions resolved on different fine scales (meshes). (a) 16 X 16 mesh. (b) 64 X 64 mesh.
(¢) 512 X 512 mesh

(a) (b) (c)

"'.-'
;p.x

Upon the entire boundary of the domain Dirichlet boundary conditions have been
imposed as other boundary conditions would not qualitatively affect the numerical
results.

Piecewise bilinear functions have been used in the process of discretization
of (14) leading to the linear system of algebraic equations (1). A uniform mesh
consisting of NxN elements (squares) is considered where N = 242 g =1,...,7,
and the covering is assumed to consist of subdomains composed of 8 x 8 elements
that overlap with half of their width or height. The mesh hierarchy is such that the
coarsest mesh corresponds to £ = 1 and is composed of 2! 72 x 2112 = 64 elements
whereas the finest mesh is obtained by performing{—1 =1, ..., 6 steps of uniform
mesh refinement.

The vector of all zeros was chosen to be the right hand side f in (1) while the
outer iteration was initialized with a random vector. Three representative coefficient
configurations are considered (on the respective finest mesh, see Fig. 1):

[0] log-uniformly distributed coefficient o, = 107 where ¢, is constant on each
element e and p,uq € (0, q;

[1] inclusions with coefficient o, = 107 against a background as in [0] where «,
is constant on every inclusion ¢ and p,,q € (0, g, see Fig. 2a;

[2] stiff inclusions with coefficient o, = 107 against a background as in [0], see
Fig. 2b.

In Table 1 we compare the condition numbers
Kk(Ds) = k(SDS), k(BraDs) = k(SRS™2D™'S2RTS(SRDR'S)),
with that of the corresponding unscaled preconditioned system
«(RD™'RT(RDRT))
for the coefficient distribution [0] on three different meshes with mesh size h €

{1/16,1/32,1/64} and varying contrast g. The obtained numerical results are in
accordance with Lemma 2; They further show that the scaled one-level additive
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Fig. 2 Random and stiff inclusions against random background «, = 10/ . (a) Coefficient for
Problem (P1) on 512 X 512 mesh. (b) Coefficient for Problem (P2) on 512 X 512 mesh

Table 1 Condition numbers of AS-preconditioned systems versus « (Dy)
Unscaled AS method Scaled AS method | x(Dy)
1/16 1/32 1/64 1/16 |1/32 |1/64 |1/16 |1/32 |1/64

9.76 x 10' 9.47 x 10" |9.35x 10" |1.25 [1.26 |1.26 |4.73 |4.73 |4.73
2.25x 102 |3.69 x 10> |589x 10> |1.28 |1.27 [1.29 |4.73 |4.73 |4.73
6.93x 10% |2.42x 10° |3.70 x 10* [1.29 |1.32 |1.33 |4.73 |4.73 |4.73
1.93 x 10* | 1.97 x 10* [3.77 x 10* |1.33 |1.33 |1.33 |4.73 |4.73 |4.73
1.78 x 10° | 1.87 x 10° |2.16 x 10° | 1.32 |1.33 |1.33 |4.73 |4.73 |4.73
3.07x10° | 1.34 x 10° |2.15%x 10° [1.33 |1.33 |1.33 |4.73 |4.73 |4.73

AN N R W N =R

Schwarz method yields a uniform preconditioner whereas its unscaled analog
suffers from high-contrast coefficients.

Next, the numerical performance of the nonlinear (AMLI)-cycle ASMG method
(V-cycle and W-cycle) utilizing the preconditioner Bg is tested for:

(P1) Problem (14) with coefficient distributions [1] and variants [I] and [II] of IT.
Variant [II] is realized by ten inner PCG iterations with the scaled one-level
AS preconditioner.

(P2) Same as Problem (P1) but for coefficient distribution 2.

A comparison between variant [I] and variant [II] of the £-level V-cycle and W-
cycle is presented in Tables 2 and 3. Pre- and post-smoothing is performed by one
symmetric point Gauss-Seidel iteration on each level except the coarsest one where
all linear systems are solved directly.

The obtained results demonstrate that the choice of D and consequently of the
surjective mapping ITj affect the performance of the nonlinear AMLI-cycle ASMG
method crucially. As for variant [I] the number of ASMG iterations required to
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Table 2 Number of iterations for residual reduction by 10°

Problem (P1)
Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle
i (] i (]
q ¢ 21345, 6| 7|2|3|4|5/6/7|2|3/4|5|6| 72(3|4|5|6|7
1 4566 7| 8|5/5/6|6|7 8|4|5/5|5|5| 5|5|5|5|5|5]|5
2 5/5/6/6| 7| 8|5/5/6|6/7 8|5|5/5|5|5| 5|5|5|5|5|5]|5
3 5/6(6|/7| 7| 8|5/6/6|7/7 8|5|6/6|/6|6| 6 |5|5|5|5|5]|5
4 5/6(7/8, 8| 9/5/6/7|8/8/8|5|6/6|/6|/6| 65|6|6|6|61|6
5 5/7/7/8, 9| 9/5/6|7|8/8/8|5|6/6|6|7| 75|66 6|6]|6
6 5/7(8(9113 (15|57 /8|88 9|5|6/6|7|9/10 5|66 6|6 |6
Table 3 Number of iterations for residual reduction by 10°
Problem (P2)
Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle
(I (1] (1 (1]
q ¢ 2/3/4|5/ 6| 7(2|3|4|5/6|7|2|3 4|56 |7|2|3|4|5|6|7
1 5/5/6|(6| 7| 8|5|5|6|6|7/8|5|5/5|5/5|5|5|5|5|5|5]|5
2 5/5/6|(6| 7| 8|5|5|6|6|7/8|5|5|/5|/5/5|5|5|5|5|5|5]|5
3 5/5/6(6 7| 8|5|5|6|6|7/8|5/5/5/6/5|/6|5|5|5|5|5]|5
4 5/6/6(7| 7| 8|5|5|/6|7|8/8|5/5/6/6,6/6|5|6|5|5|5]|6
5 5/6(7(79|9(5/6|7|7|8/8|5/6/6/6/6/6|5|/6|6|6|6|6
6 5/6 (8|8 (12|13 |5|6|7|8/9/9|5/6/6/6 8 |9|5|/6|6|6|6|6

achieve the prescribed accuracy increases with the contrast, variant [II] shows full
robustness.
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A Nonlinear FETI-DP Method with an Inexact
Coarse Problem

Axel Klawonn, Martin Lanser, and Oliver Rheinbach

1 Introduction

We present a new nonoverlapping, nonlinear domain decomposition method with
an inexact solution of the coarse problem. The method can be seen as an inexact
reduced version of a recent nonlinear FETI-DP method [33].

In this method, the nonlinear problem is decomposed before linearization. This
is opposed to standard Newton-Krylov-Domain-Decomposition methods where the
decomposition is performed after linearization. Nonlinear FETI-DP methods were
introduced in [32, 33] as nonlinear versions of the well known family of FETI-DP
domain decomposition methods.

In domain decomposition methods of the FETI-DP [16, 17, 27, 29-31] and
BDDC type [9, 13, 34-36] the coarse spaces are constructed from partial assembly
of the finite elements. This has facilitated the extension of the scalability of
these methods, see, e.g., [26, 28, 37, 41, 43, 44]. Inexact FETI-DP methods were
introduced in [26] and their parallel scalability has been demonstrated in [29, 40].
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Nonlinear approaches to domain decomposition are not new but have attracted
recent interest as a strategy to localize computational work. Reduction of communi-
cation and synchronization is expected to be crucial to obtain good performance on
future supercomputers.

The nonlinear, overlapping ASPIN (Additive Schwarz Preconditioned Inexact
Newton) approach was introduced in [6]. See also [6, 7, 21, 22, 24, 25]. Nonlinear
domain decomposition as a coupling method has been used, e.g., in fluid-structure
interaction; see [10—12], or [18]; it has also been used for the coupling of multiphase
flow, see, e.g., [19, 20]. Nonlinear FETI-1 methods were introduced in [39],
nonlinear Neumann-Neumann methods, as a scalable solver approach, in [4].
Nonlinear Schwarz methods as a solver, i.e., not as a preconditioner, have already
been considered much earlier, see, e.g., [5, 14]. The solution of local nonlinear
problems can also be embedded into standard methods and has been denoted
nonlinear localization; see [8].

2 Nonlinear FETI-DP Formulation

Let £2;,i = 1,...,N, be a decomposition of the domain £2 C R, d = 2,3,
into nonoverlapping subdomains. Each subdomain is a union of finite elements.
We denote the associated local finite element spaces by W; and the product space

by W = W; x ... x Wy. We consider the minimization of a nonlinear energy
J: V' >R,

Ju) = 30, Jilw), (1)
where the J; : W; — R,i = 1,...,N are local energy functionals on the

subdomains £2;. For standard problems, such as nonlinear elasticity, discretized by
finite elements the global energy can be written as a sum of the local nonlinear
energies on the nonoverlapping subdomains; for details, see [33].

Letg;;,i=1,...,N,j=1,...,N, the nodal finite element basis functions for
the local finite element space W;. We write J/(;)(¢;;) in the form

Ji (i) (9iy) = (Ki(ui) — f7);

where K;(u;) depends on u; and f; is independent of u;.
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Let us define the nonlinear, discrete block operator K(u«) and the corresponding
block vectors u and f, i.e.,

Kl(ul) fl up
Ku) = : . f=1 1], and u:=| : |. 2)

Kn(uy) f]lv Uy

We then define the nonlinear, partially assembled operator K(ii) :=
RLK(Rpit),and the corresponding partially assembled right hand side f = RLf.
Here we use the FETI-DP partial assembly operator R}, that is also used to define
the coarse problem of standard (linear) FETI-DP methods; see, e.g., [27, 42] for the
notation. Let B be the standard FETI-DP jump operator, we can then introduce the
nonlinear FETI-DP master system [32, 33]

o T F_
§~(u)+B/\ f:O 3)
U =0.
The nonlinear FETI-DP methods Nonlinear-FETI-DP-1 (NL-1) and Nonlinear-
FETI-DP-2 (NL-2), see [32, 33], are also based on the master system (3).

We assume that, as a result of a sufficient number of primal constraints, the
operator K is continuously differentiable and locally invertible. We use Newton’s
method applied to (3) to obtain fast local convergence and a line search as
globalization strategy.

3 An Inexact Reduced Nonlinear FETI-DP Method

Newton’s method applied to (3) results in the linearized system

[Dk(a) BT} [Aﬁ} _ [12(:2) + BT\ —j}

B 0 AA Bu @

Following the standard FETI-DP approach, we partition Az into the primal
variables Aiiy and the dual variables Aiig, ie., A" = [ Aub Al ]. We then
obtain from (4) the system

(DK(@)gs (DK (@) B [ Aus (K(i))s + BEA — s
(DK(u)) g (DK(u))rim O A | = (K@) —fn : ()
Bp 0 0 A Bgug
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Assuming enough primal constraints such that (DK (i))pp is invertible, we then
eliminate of up and obtain a reduced system

[ San —(Dk(a))mj(Dk(a))gng} |:Ab~ln:|
~Bp(DK () 53 (DK (@), —Bp(DK (i) 53 Bf AN
6)
_ [(1%@)17 — fir — (DK ()15 (DK (i) 3 (K (&) + BjA —fg)}
Bpug — Bg(DK (it)) 3 (K (@))5 + BEA — f3)

which we write as A4,x, = F, using the same notation as in [26] for linear problems.
The Schur complement

Snn = (DK@@) i — (DK (1)) 5(DK (i0)) 53 (DK (i) 11 5 @)

is the coarse problem of the FETI-DP method. In this paper, we will apply a
preconditioned Krylov method to the block system (6), using the block-triangular
preconditioner

A1

A S 0

Brl = . - IZ? = ool 1 (8
—M™ Bp(DK (it) g (DK (t)) ;g S —M

cf. [26, 29], where the irFETI-DP method (inexact reduced FETI-DP) for linear
problems was introduced.
Here, M~ is one of the standard FETI-DP preconditioners. In this paper, we

always use the Dirichlet preconditioner [42]. Moreover, 5;17 is assumed to be
a good preconditioner for the coarse problem Sy777. Since the preconditioner (8)
is unsymmetric we have to use a Krylov space method suitable for unsymmetric
systems. In this paper we will use GMRES. The use of conjugate gradients requires
a symmetric reformulation.

In this nonlinear FETI-DP method the continuity of the solution is, in general,
not reached until convergence of the Newton method. This is different from FETI-
DP methods applied after Newton linearization where each Newton iterate is
continuous. This method is thus not identical to a standard Newton-Krylov FETI-DP
approach.

Note that the elimination of &7 from (6) leads to the Nonlinear-FETI-DP-1 (NL1)
Ipethod Fypi AA = d, introduced in [32, 33]. But this requires an exact solver for

Smm-

4 Initial Values for the Nonlinear FETI-DP Method

The convergence of Newton-type methods depends on a good initial value. We are
interested to find a suitable initial value #”) for the Newton iteration presented in
Sect. 3. This initial value has to be continuous in all primal variables ﬁg) but may
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be discontinuous in the dual variables ugo). Of course, it should provide a good local
approximation of the problem. We can obtain such an initial value #*) from solving
the nonlinear problem

K@@9) =f—B"AO 9

by some Newton type iteration for some given initial value A(?). In this paper we
set A( = 0. The solution of (9) requires the solution of local nonlinear subdomain
problems which are only coupled in the primal unknowns. This step thus requires
only communication in the primal variables and is otherwise completely parallel. It
may be seen as a nonlinear localization step.

Linearization of (9) results in

[ (D{Z(ﬁ))BB (D{Z('}))]Tw } [ up } _ [(K(”))B + BLA — fB:|
(DK(u)) g (DK(@))rrr | | DK@)g —fn |

A block elimination of up yields the symmetric system
Snnit = dn (10)

where Spy7 is defined as in (7). We solve (10) by a Krylov method using the
preconditioner 5’;,-,, see (8).

5 Numerical Results

In this section, we compare the standard Newton-Krylov approach, using either the
standard FETI-DP method or the irFETI-DP [26, 29] method as a solver, and the
new nonlinear domain decomposition approach, i.e., the irNonlinear-FETI-DP-1
approach. We have implemented the algorithm presented here using PETSc [1-
3]. For all inexact algorithms, the preconditioner Sn 1 for the coarse problem Sn I
is formed by applying one iteration of BoomerAMG [23]. BoomerAMG is part
of the Hypre library [15]. In all experiments we have used GMRES as a Krylov
method. The Newton method is always combined with a line search using the strong
Wolfe conditions; see [38]. For a minimization problem min,eg+J(x) and a descent
direction Ax the strong Wolfe conditions read J(x + t Ax) < J(x) + ¢t VI J(x) Ax
and |VTJ(x + t Ax) Ax| < ¢»|VTJ(x) Ax| with constants 0 < ¢; < ¢; < 1, and
where ¢ is the step length.

First, we apply all algorithms to a standard linear diffusion problem, see Table 1,
as a sanity check. For this linear problem, the initialization phase, see Sect. 4, is
omitted as it is not necessary. The test runs on 16—-1024 cores of a Cray XT6 show
almost identical numerical and parallel performance of the different algorithms and
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Table 1 Sanity check (irNonlinear-FETI-DP-1); Cray XT6: H/h = 256, standard linear Laplace,
Alg. A

N Max. | Max. | Krylov-time | Runtime
(=Cores) | Solver Krylov-It. | Factor. | cond. | It. (s) (s)
16 Newton-Krylov FETI-DP | 11 1 73 |11 |0.74 5.3
Newton-Krylov irFETI-DP | 11 1 73 |11 ]091 5.5
irNonlinear-FETI-DP-1 11 1 73 |11 0.92 5.4
64 Newton-Krylov FETI-DP | 22 1 81 |22 1.5 6.3
Newton-Krylov irFETI-DP | 22 1 80 |22 |20 6.7
irNonlinear-FETI-DP-1 21 1 82 |21 2.1 6.9
256 Newton-Krylov FETI-DP | 32 1 83 |32 |23 7.4
Newton-Krylov irFETI-DP | 30 1 81 |30 |32 8.3
irNonlinear-FETI-DP-1 30 1 83 |30 4.7 9.9
1024 Newton-Krylov FETI-DP | 32 1 84 |32 |25 8.8
Newton-Krylov irFETI-DP | 30 1 83 |30 |42 10.8
irNonlinear-FETI-DP-1 28 1 84 |28 |43 11.0

Table 2 Comparison a standard Newton-Krylov irFETI-DP approach with the nonlinear method;
Cray XT6: H/h = 80, A+ 4A,,p =4, Alg. A

NK-irFETI-DP irNL-FETI-DP-1
Runtime Krylov-time | Runtime Krylov-time
N (Cores) (s) Krylov-It. | (s) (s) Krylov-It. | (s)
64 (1) 92.3 92 23.6 90.5 19 5.5
256 (4) 126.5 88 314 107.0 20 7.2
1024 (16) 91.2 68 27.9 97.4 20 8.2
4096 (64) 111.8 67 30.2 100.9 20 9.1
16,384 (256) 113.7 67 28.5 102.5 20 8.5
65,536 (1024) | 130.9 65 32.0 110.5 20 9.9

implementations. This is expected since, for a linear problem, the Newton-Krylov-
irFETI-DP method and the irNonlinear-FETI-DP-1 method are equivalent. We do
see some increase in the total runtime, mainly due to an increase in the Krylov
iteration time. This increase is due to an inefficient parallel distribution of the
coarse problem. A redistribution would be necessary on this architecture but was
not performed here. In Table 2, we then perform a weak scaling test for a nonlinear
problem on the Cray XT6 at Universitit Duisburg-Essen using up to 1024 cores. We
have considered a nonlinear diffusion problem Au + 4A,u = f for p = 4, where
A is the standard Laplacian and A, is the p-Laplacian. The step length is chosen
according to a Wolfe rule. We have considered subdomains of quite small size, i.e.,
H/h = 80, but up to 65,536 subdomains.
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Table 3

i:Nonlinear-FETI-DP-1 on Inexact-reduced-nonlinear-FETI-DP (irNL-FETI-DP-1)

the MIRA Supercomputer N (=Cores) | Step Time (s) | Krylov-It.
(BG/P) Argonne National 16 Newton init 1: 5.2 0
Laboratory; A + 44,,p = 4, Newton init2: | 5.2 0
Hfh =128 Newton init 3: | 5.2 0
Newton init4: | 5.2 0
Newton full 1: | 7.3 9
64 Newton init 1: | 5.3 0
Newton init 2: | 5.2 0
Newton init 3: | 5.2 0
Newton init4: | 5.2 0
Newton full 1: | 8.2 17
256 Newton init 1: | 5.4 0
Newton init2: | 5.4 0
Newton init 3: | 5.4 0
Newton init4: | 5.4 0
Newton full 1: | 9.5 21
1024 Newton init 1: | 5.8 0
Newton init2: | 5.9 0
Newton init 3: | 5.8 0
Newton init4: | 5.9 0
Newton full 1: | 10.4 20
4096 Newton init 1: 7.6 0
Newton init 2: | 7.5 0
Newton init 3: | 7.5 0
Newton init4: | 7.5 0
Newton full 1: | 13.1 20

Alg. A.; joint work with B. Smith and S. Balay (Argonne
National Laboratory); uses only 4 out of 16 BG/Q cores.
“Newton Init” refers to a Newton step for solving (9)
whereas “Newton Full” refers to a Newton step for solving
(3). A single full Newton step is sufficient for this problem
after four steps to compute the initial value

We can see that the new method is competitive and significantly reduces the
number of Krylov iterations. As a result, the inexact reduced Nonlinear-FETI-DP-1
(irNL-1) method is slightly faster.

We then have performed a weak scalability test using 16-4096 processor cores of
the MIRA supercomputer at the Argonne National Laboratory, see Table 3. We can
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see that, for this problem, up to four Newton steps are performed in the initialization
phase, i.e., to solve (9). No Krylov iteration is necessary in this phase. A single
Newton iteration, using between 9 and 21 Krylov iterations, is sufficient to solve
the nonlinear problem (3) to the desired relative tolerance of 1e—9. The parallel
efficiency drops to 56 % from 16 to 4096 processor cores. This was an unexpected
result on the BG/Q architecture. Indeed, a performance bug in a parallel norm
computation that limited scalability was identified as a result of these experiments.

After eliminating the performance bug we finally have performed a similar weak
scalability test using 32—32,768 processor cores of the SuperMUC supercomputer
at the Leibniz-Rechenzentrum in Munich. The results are presented in Table 4. To
solve this problem eight Newton steps are performed in the initialization phase and
then a single full Newton step is sufficient to reach a tolerance of 1e—10. Overall, the
algorithm needs only between 26 and 34 Krylov iterations. The parallel scalability
seems satisfactory and we reach an efficiency of 74 % using 32,768 cores compared
to the baseline of 32 cores. Let us remark, that a non negligible amount of time
is spent in the MPI initialization called by PETSc in the first Newton step and we
expect to obtain even better results in the future.

Finally, in Table 5, we report on weak scalability for a problem of nonlinear
hyperelasticity on the SuperMUC supercomputer.

Table 4 irNonlinear-FETI-DP-1 on the SuperMUC supercomputer at Leibniz-Rechenzentrum in
Munich; A + 4A,,p = 4,Hx/hx = 768, Hy/hy = 384; the algorithm uses all 16 cores of the
node; “Newton Init” refers to a Newton step for solving (9) whereas “Newton Full” refers to a
Newton step for solving (3)

Inexact-reduced-nonlinear-FETI-DP (irNL-FETI-DP-1)

Nx x Ny = Newton steps | Krylov-time

N (=Cores) | d.o.f. Krylov-It. | init/full (s) Runtime (s) | Eff. (%)
32 9,443,329 26 8/1 4.19 112.5 100

128 37,761,025 31 8/1 5.07 117.8 96
512 151,019,521 |33 8/1 5.49 119.1 95
2048 604,028,929 |33 8/1 5.65 119.1 95
8192 2,416,017,409 | 34 8/1 6.01 127.9 88

32,768 9,663,873,025 |34 8/1 9.13 151.4 74
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6 Summary

The new nonlinear FETI-DP method combines the approaches from [26, 33] and
thus can be denoted inexact reduced Nonlinear-FETI-DP-1 (irNL1). An important
building block of this method is the solution of nonlinear problems on the subdo-
mains. Algorithmically, the same building blocks as standard FETI-DP methods
are used. If exact solvers are used as building blocks the new method shows
the same performance as the Nonlinear-FETI-DP-1 method [33]. If an efficient
preconditioner is used for the coarse problem then the scalability can be extended
substantially.
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Substructuring Methods in Nonlinear Function
Spaces

Oliver Sander

1 Spaces of Manifold-Valued Functions

Let £2 be a domain in R¢, and M a smooth, connected, finite-dimensional manifold
with positive injectivity radius. We assume M to be equipped with a metric g, which
induces an exponential map exp : TM — M, where TM is the tangent bundle of
M [7].

In this article we consider spaces' of functions v : 2 — M. We first define
functions of Sobolev smoothness.

Definition 1 Let: : M — R™ be an isometric embedding for some m € N, and let
k € Ny and p € N. Define

WP (2, M) = {v e WEP(R2,R™) : v(x) € 1(M) a.e.},
where W*?(£2,IR™) is the usual Sobolev space of m-component vector-valued
functions on £2.

Note that W*?(£2, M) does not have a linear structure. By the Sobolev embedding
theorem, it is a Banach manifold if kX > d/p [10].

'We use the word space in a topologist’s sense here, without implying the existence of a linear
structure.
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54 0. Sander

To formulate variational problems in such spaces we need to construct test
functions. Unlike in linear spaces, test function spaces for a function u : 2 — M
depend on u.

Definition 2 Let u € W*?(£2, M). A vector field along u is amap 1 : 2 — TM,
such that n(x) € T,xM for almost all x € £2.

More abstractly, vector fields along u are sections in a certain vector bundle. While
the concept of a vector bundle is standard (see, e.g. [7]), we state it here for
completeness.

Definition 3 Let E and B be two differentiable manifolds, and # : E — B
a surjective continuous map. The triple (E, i, B) is called a (continuous) vector
bundle if each fiber E, := 7~ '(x), x € B has an n-dimensional real vector space
structure, and the following triviality condition holds: For each x € B, there exists a
neighborhood U and a homeomorphism

¢ 7 Y (U) - UxR"
with the property that for everyy € U C B
¢lg,  Ey = {y} x R”

is a bijective linear map. Such a pair (¢, U) is called a bundle chart. A family (¢;, U;)
of bundle charts such that the U; cover B is called a bundle atlas.

In other words, vector bundles are spaces that locally look like products U x R”. We
call E the total space, B the base space, and n the bundle projection of the vector
bundle. The prototypical vector bundle is the tangent bundle (7M, 7, M) of a smooth
manifold M. In this case, the bundle projection 7 maps tangent vectors to their base
points.

Vector bundles allow to generalize the concept of a map between spaces. A vector
bundle section is an object s that locally is a map s|y : U — R".

Definition 4 Let (E, r, B) be a vector bundle. A (global) section of E is a map
s: B — E with m o5 = Idp.

In particular, a map w : 2 — R" can be interpreted as a section in the trivial bundle
(£2 x R", 7, £2). A section in the tangent bundle 7M of a smooth manifold M is a
vector field on M.

Let now N be another smooth manifold, f : B — N a continuous map, and
(E, ,N) a vector bundle over N. We pull back the bundle via f, to obtain a bundle
Sf*E over B, for which the fiber over x € B is Ey(y), the fiber over the image of x. The
following formal definition is given in [6, Def. 2.5.3].

Definition 5 Let f : B — N be a continuous map, and (E, 7z, N) a vector bundle
over N. The pulled back bundle f*E has as base space B, as total space E;, which is
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the subspace of all pairs (b, x) € B x E with f(b) = 7 (x), and as projection the map
(b,x) — b.

With these preliminaries we can interpret vector fields along a continuous
function as vector bundle sections. The proof of the following lemma follows
directly from the definitions.

Lemmal Let f : 2 — M be continuous. A vector field n in the sense of
Definition 2 is a section in the bundle f*TM.

So far, we have not mentioned the regularity of sections of vector bundles. The
following definition is given in [7].

Definition 6 Let (E, , B) be a vector bundle, and s : B — E a section of E with
compact support. We say that s is contained in the Sobolev space WX (E), if for any
bundle atlas with the property that on compact sets all coordinate changes and all
their derivatives are bounded, and for any bundle chart ¢ : E|y — U x R”" from
such an atlas, we have that ¢ o s|y is contained in W*? (U, R").

As a special case of this we can define vector fields of Sobolev smoothness along
a given continuous function f : £2 — M.

Definition 7 Let f : 2 — M be continuous, and 1 a vector field along f. We say
that 5 is of k, p-Sobolev smoothness, and we write n € ghkr , if it is a k, p-section in
the sense of Definition 6. ‘

Finally, we need a trace theorem for vector fields along a function. We restrict
our attention to k = 1, p = 2. The following is a special case of a result proved
in [5]. We denote by D(£2, E) the smooth sections in (E, 7, £2) and by D($2, E|r)
the smooth sections of the bundle restriction on I".

Lemma 2 Let 2 have a C* boundary, and let (E, 7, §2) be a vector bundle over
Q. Let I be a part of the boundary of 2, and suppose it is a submanifold of $2.
Then the pointwise restriction tr : D(§2, E) — D(I, E|) extends to a linear and
bounded operator from W' (E) onto W%’Z(Eh“), ie.,

trr W2(E) = WH2(E| ).

Moreover, trp has a linear and bounded right inverse, an extension operator Exg :
1
W22(E|r) — WI2(E).

For p # 2, p > 1 the trace operator still exists, but the traces are only contained
in certain spaces of Besov type [5]. Trace theorems for functions in W'?(£2, M)
also exist (see, e.g. [8, Chap. 1.12]), but in the following we only look at continuous
functions anyway.
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2 Substructuring Formulation of Variational Problems

We now consider variational problems in the space W!*(§2, M). Let a be a form on
WP (2, M) N C(§2, M), i.e., for each continuous u € W'?(£2, M), a[u] is a linear
map &!” — R. We look for zeros of such a form, subject to Dirichlet boundary
conditions on part of the boundary of §2. Since for that case we need the trace
theorem (Lemma 2) we restrict ourselves to p = 2 again. Let I'p be a subset of
positive d — 1-dimensional measure of d£2. For a function ug : I'p — M sufficiently
smooth define the space H), := {v € W'*(2,M) N C(2,M) : trr,v = uo},
and for each u € H}, define Z,; = {§ € &% : tr, n = 0}. We then look for a

function u € H}, such that
alul() =0  forallpe 5,7 (1)

Such problems occur, for example, as the optimality condition for minimization
problems for functionals J : W!?(£2, M) — R. In that case, «[u] is the differential
of J at u.

The weak problem (1) can be written as a coupled problem, consisting of two
subdomain problems and suitable coupling conditions. This is well-known for linear
problems in linear spaces ([11, Chap. 1.2]). We show that the argument used there
also holds for nonlinear function spaces.

Assume that §2 is partitioned in two nonoverlapping subdomains £2, and §2,, and
that the interface I' := 2, N 2, is a d — 1-dimensional Lipschitz manifold. We note
the following technical results, which follow directly from the corresponding results
for scalar-valued Sobolev spaces and Definition 1 (see also [8, Thm. 1.12.3]).

Lemma 3

1. Ifu € W' (2, M), then u|g, € W' (2, M) fori=1,2.

2. Let u; € W'Y (£2;, M) fori = 1,2 and ttr uy = trp uy. Then the function u :
2 — M defined by

u(x) ifxe 2

) = uy(x) ifxe 2,

is contained in W' (2, M).

Suppose that « is a linear form on W!#(§2, M). We assume that « is separable in
the sense that there are linear forms o; on W'? (£2;,M), i = 1,2, such that

2
alul() =Y ailulg)(nle)  forallue W'¥(2,M),n e &,". (2)
i=1

This holds in particular if « is defined as an integral over a local density.
For a formal statement of our substructuring result we need the following spaces.
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Definition 8 Let uy : I'p — M be a function of prescribed Dirichlet values, of
sufficient smoothness. Fori = 1, 2 set

H; := {v; € W"(2:.M) N C(2.. M) : vilrynae, = to}-

Fori = 1,2 and each v; : £2; — M continuous set

Vip 1= {m egl? . ni(x) = 0 € Ty,(9yM for almost all x € FD},

Vi

V0, = {ni € 8% 1 ni(x) =0 € TyM foralmostall x € I, U T},
Also, we define the interface space
A:={w: I — M such that trr v = w for some v € H,},

and the corresponding spaces of test functions on I”

1
=l1/2 . 7’2
&7 = by

[

for each continuous w € A.

Note that the ngl_ and E‘L/ 2 are linear spaces, whereas the H; and A are not.
Unlike in the linear case, the test function spaces are replaced by entire families of
spaces, parametrized by functions v; € H; and w € A, respectively.

Lemma 4 The weak problem (1) is equivalent to: Find u; € H;, i = 1, 2, such that

ailu](n) =0 VeV, i=12 3)
trruy =trr up 4
o[ (Exo, 1) = —ea[u2](Exg, 1) forall p € B2, )

. . . ~1/2
where Exg,, i = 1,2 is an extension operator from atrﬁ w 10 Vi
Note that the existence of the extension operators Exg; is ensured by Lemma 2.

Proof We follow the argumentin [11, Chap. 1.2], and show first that the substructur-
ing formulation is a consequence of (1). Let u be a solution of (1). Consequently, it
is an element of W12 (£2,M)NC($2,M), and by Lemma 3, the subdomain functions
u; := ulg,,i = 1,2 are in H; and H,, respectively. Equation (4) follows because u
is continuous. Also, (3) holds, because any test function v; € Vfui can be extended

by zero to a test function in = ;g Finally, for every u € Etlrﬁzul define

Exo, 1 in 24,
Expu :=
Exgo, u in §2,
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and note that Ex u € Ei,o- Therefore, Ex w is a valid test function for (1). Together
with the separability (2) of o we get

= a[u](Ex u) = ai[u1](Exg, u) + aa[uz](Exg, 1),

which is (5).
To show the other direction let u;, i = 1, 2, be a solution of (3)—(5), and define

51 in .Ql
U= )
U 1 .Qz.
Since u; = up on I' we can invoke Lemma 3 to obtain that u € WI*Z(Q,M);

additionally, u is continuous.
Let n € E!? be a test function at u. By Lemma 2 it has a trace p := trn with

e E&ﬁ. Then (n]e, — Exg, 1) € V;,.. With this we can compute

afu](n) = Za,[u,](nlg) (by separability (2))
=1

|
Mo T

[eilui] (1] 2; — Exe, 1) + ilui] (Bxe, 1) ] (by lin. of a;[u] ("))
1 —
ev?

iuj

ai[ui] ([Exg, p) (by (3))

|
'M"’

—_

Il
o

(by (5)).

Hence u solves (1).

3 Steklov-Poincaré Formulation

Following the standard substructuring approach we now write the coupled prob-
lem (3)—(5) as a single equation on an interface space. In our setting this interface
space is the nonlinear space A.

We first introduce the Steklov—Poincaré operators for the subdomain problems.
For each subdomain, these map Dirichlet values on I" to the Neumann traces of the
corresponding subdomain solutions on I". These Neumann traces are sections in a
certain dual bundle.
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Definition 9 Letu : 2 — M be continuous. For any Sobolev space ZX* of sections
in u*TM we call (uk”)* its dual i. e the set of all linear functionals L "k ? —> R

such that L(7) is finite forall n € E

We denote by (E%7)* the dlSJOlnt union of all spaces (£%7)* for all continuous u.

This concept allows to generalize the space (H 2(I"))* used for the Neumann traces
of linear problems.

Definition 10 We call S; the Dirichlet-to-Neumann map associated to the i-th
subdomain. That is, for any A € A we set S;A € ("'l/ 2)* to be such that

Sidlu] = «ilui] (Bxg, i) forall u € & "1/ %, (6)
where u; fulfills trj- u; = A and solves
oy ui] () forall n € VO

Remark 1 We assume here for simplicity that the S; are single-valued, i.e., that
for given Dirichlet data A the corresponding subdomain problems have unique
solutions.

Using the Steklov—Poincaré operators we can write the coupled problem (3)-(5)
as a problem on the interface space alone.

Lemma 5 The coupled problem (3)—(5) is equivalent to the Steklov—Poincaré
equation

SiA + SA =0. @)

Note that S1A and S»A are from the same linear space ("1/ )*. Hence the addition
is justified.

Proof Let A € A. Then the subdomain solutions u, u, used in the definition of
S; and S, solve the subdomain problems (3) by construction. Also, since they
both assume the same value A on I" they are continuous on the interface. Finally,
inserting (6) into (7) yields (5). Conversely, if uj,uy solve (3)—(5), then A :=
tr uy = trp up solves (7).

4 Nonlinear Preconditioned Richardson Iteration

The natural algorithm for the Steklov—Poincaré interface equation (7) is the precon-
ditioned Richardson iteration. Depending on the preconditioner, various different
domain decomposition algorithms result, which we will describe below.
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Let k € N and A* € A be an iterate of the interface variable. Following [3], we
write one iteration of the preconditioned Richardson iteration in three steps:

1. Compute residual o* € (EAI,{Z)* by
of = 851AF + $08
2. Get correction v* € & ;,{ 2 by preconditioning the negative residual
vk = P;kl (—o").
3. Do a damped geodesic update

A = expyi wv,
where ® € (0,00) is a parameter, and the map exp,: is to be understood
pointwise.

The preconditioner P is a vector bundle morphism from Z'/2 to (£'/2)*, that
is, a mapping from 52 to (Z£'/2)* such that 7(Pv) = mv forall v € 52,
and such that for each A € A the induced map from & ll/ % to (& ll/ 2)* is linear. It
maps infinitesimal corrections to generalized stresses. We additionally require that
each P« be invertible. Consequently, its inverse P;kl maps generalized stresses to
corrections.

The update step 3 needs to use the exponential map to apply the correction
v* (which is a vector field along A%) to the current iterate AX. The correction is
multiplied with a positive damping factor w. More generally, this factor can be
replaced by a linear map w* from the tangent space Ell,{ ? onto itself. If M is a linear

space the exponential map degenerates to the addition of its argument to A,

Remark 2 The two subdomain solves needed for Step 1 of the Richardson iteration
can be performed in parallel. Since Step 1 is by far the most costly part this
parallelization leads to considerable performance gains.

To construct preconditioners we introduce the derivatives of the Steklov—
Poincaré operators. For S; : A — (&'/%)* we interpret the derivative ata A € A as

a linear map S/(1) from Exl/z to (E;/z)*.

Remark 3 This interpretation is most easily understood if we assume for a second
that the space A is smooth enough to form a Banach manifold. We can then write
vector fields as elements of the tangent bundle 7A. The Steklov—Poincaré operator
S; becomes amap S; : A — T* A, and its derivative at A € A is the linear map S :
T) A — Ts, Ty A. Since T} A is a linear space we can identify T, Ty A with T A,
and therefore interpret S;(A) as a linear map from T A to T} A. This corresponds to

a map from EAI/Z to (EAI/Z)* if A is not sufficiently smooth.
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We now describe various preconditioners and the algorithms that result from
them.

* Dirichlet—-Neumann Preconditioner: The simplest choice for a preconditioner is
the inverse of the linearized Steklov—Poincaré operator of one of the subprob-
lems. We define the Dirichlet—-Neumann preconditioner as

PDN,k = S/l [A.k]
With this choice, the damped preconditioned Richardson iteration reads
M = expp(@Ppy 4 (—0%)) = expye [w(STAD T (=S1A* — $:49)].

Using instead the second subdomain for preconditioning we define the
Neumann-Dirichlet preconditioner

PND,k = S/z[/\k]

*  Neumann—Neumann Preconditioner: We can generalize the above construction
by allowing arbitrary convex combinations of the Dirichlet-Neumann and
Neumann-Dirichlet preconditioners. Let y;, y, be two non-negative real numbers
with y; + y» > 0. Then

PRys = viSIMD T+ (S (8)

is the Neumann—-Neumann preconditioner. When M is a linear space and the
equation to be solved is linear, then the Richardson iteration together with the
preconditioner (8) reduces to the usual Neumann—Neumann iterative scheme.

* Robin Preconditioner: Finally, we generalize the Robin—Robin method. Let again
y1 and y, be two non-negative coefficients such that y; 4y, > 0. Further, let F be
a vector bundle morphism from Z'/2 to (£'/?)* that is invertible on each fiber.
For each A* € A, Fy is a linear map from E;k/z to (Ell,{z)*. We then define the
Robin—Robin preconditioner

PRrri := [y1Fa + ST FE [v2Fax + S5(A)].

V2

For the linear finite-dimensional case, the identity map can be chosen for F.
In that case the equivalence of this preconditioner to the Robin—Robin iterative
method has been shown in [4].



62 O. Sander
5 Numerical Results

We demonstrate the performance of the Richardson iteration with a numerical
example. Consider a hyperelastic Cosserat shell. Configurations of such a shell are
pairs of functions (¢, R) : 2 — R3 x SO(3), where 2 is a two-dimensional domain,
and SO(3) is the set of orthogonal 3 x 3-matrices R with detR = 1. For x € 2 we
interpret ¢(x) € R as the position of a point of the shell midsurface, and R3(x) € R?
(the third column of R(x) € SO(3)) as a transverse direction. The remaining two
orthonormal vectors R; and R, describe an in-plane rotation (Fig. 1). This choice of
kinematics allows to model size-effects and microstructure. We use a hyperelastic
material with the energy functional proposed by Neff [9, Chap. 7]. For this energy,
existence and partial regularity of minimizers have been shown [9], but no further
analytical results are available.

As an example problem we use a rectangular strip of dimensions 10 mm x 1 mm.
The thickness parameter is set to 0.05mm. Both the displacement ¢ and the
orientation R are clamped at one of the short ends. At the other short end we
prescribe a time-dependent Dirichlet boundary condition to the midsurface position
¢ and rotations R, which describes a uniform rotation from O to 4w about the
long central axis of the strip. The positions and rotations at the long sides are
left free. This makes the strip coil up. Note that we need the hyperelastic shell
energy with the nonlinear membrane term proposed in Chap.7 of [9] for this to
work, because it is a finite strain example. The resulting model is quasi-static, i.e.,
it does not contain inertia terms. Time enters only through the time-dependence of
the boundary conditions, which is necessary to obtain the coiling behavior.

For the material parameters we choose the Lamé constants © = 3.8462 -
10°N/mm?, A = 2.7149 - 10° N/mm?, and the Cosserat couple modulus . =
ON/mmz. The internal length scale is set to L, = 0.1 mm, and the curvature
exponent is p = 1 (see [9] for details on these parameters).

We divide the domain into two subdomains of dimensions 5mm x 1 mm,
and the time interval in 20 uniform time steps. For each time step we solve
the spatial problem with a nonlinear Richardson iteration and the Neumann-—
Neumann preconditioner of Sect.4, with y; = y, = % The subdomain problems

Fig. 1 Cosserat shell
configurations consist of the
deformation field ¢ of the
mid-surface, and an
orientation field R which can
be interpreted as a field of
three orthogonal director
vectors
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Fig. 2 Twisted elastic strip at rotation angles 0, z 7, 2
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Fig. 3 Left: Convergence rates as a function of time for the Richardson damping parameter @ =
0.1, and different grid resolutions. Right: Convergence rates averaged over time, for several grid
resolutions and values of

are discretized using first-order geodesic finite elements [12] on a uniform grid
with quadrilateral elements, and the resulting nonlinear algebraic minimization
problems are solved using a Riemannian trust-region algorithm [1, 12]. The linear
preconditioner problems are solved using a CG method. The code was implemented
on top of the DUNE libraries [2].

Figure 2 shows several snapshots from the evolution of the strip. One can see
how the strip coils up following the rotation prescribed to the boundary.

To assess the convergence speed of the substructuring method we monitor the
traces A* defined on the interface I' = {5} x [0, 1]. We estimate the convergence
rate of the Neumann—Neumann solver at iteration k by p* := |[v¥|/|[v¥~!||, where
v~ and v* are two consecutive corrections produced by the Richardson iteration.
For the norm ||-|| we use the Sobolev norm H'(I",R* x R*), using the canonical
embedding of SO(3) into the quaternions to embed tangent vectors of SO(3) into R*.
This norm is well-defined for discrete functions. We let the domain decomposition
algorithm iterate until the H'-norm of the correction drops below 1073, The overall
convergence rate for one time step is then determined by taking the geometric
average over the p*.

We measure the rates as a function of the grid resolution and of the Richardson
damping parameter . One observes immediately that a rather small value for w is
needed to make the algorithm converge. Figure 3, left, shows the convergence rates
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for o = 0.1 and four different grids as a function of time. Grid resolutions range
from 10x 1 to 80x8, created by uniform refinement. We see that the convergence rate
is rather independent of the time step and of the grid resolution, with the exception
of the coarsest grid, for which convergence rates ameliorate over time.

To get a better idea of the dependence of the convergence speed on the damping
parameter w we therefore average the rates over time and plot the results in Fig. 3,
right. We observe that the optimal w decreases and the optimal convergence rate
increases as the grid is refined. This matches what is known for the linear case. A
more detailed study of the behavior at vanishing mesh sizes, along with a proof of
convergence, however, has to be left for future work.
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Robin-Neumann Schemes for Incompressible
Fluid-Structure Interaction

Miguel A. Fernandez, Mikel Landajuela, Jimmy Mullaert,
and Marina Vidrascu

1 Introduction

Mathematical problems involving the coupling of an incompressible viscous flow
with an elastic structure appear in a large variety of engineering fields (see, e.g.,
[14, 17, 19-21]). This problem is considered here within a heterogenous domain
decomposition framework, with the aim of using independent well-suited solvers
for the fluid and the solid. One of the main difficulties that have to be faced under
this approach is that the coupling can be very stiff. In particular, traditional Dirichlet-
Neumann explicit coupling methods, which solve for the fluid (Dirichlet) and for the
solid (Neumann) only once per time-step, are unconditionally unstable whenever the
amount of added-mass effect in the system is large (see, e.g., [5, 12]). Typically this
happens when the fluid and solid densities are close and the fluid domain is slender,
as in hemodynamical applications. This explains, in part, the tremendous amount
of work devoted over the last decade to the development of alternative coupling
paradigms (see, e.g., [7] for a review).

In this paper we will review several explicit coupling procedures recently
reported in the literature and present some new developments (Sect. 3.2). The com-
mon feature of these methods is that they are based on Robin-Neumann transmission
conditions, whose nature depends on the thin- or thick-walled character of the
structure (see Fig. 1).
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Fig. 1 Fluid-structure

configurations for a thin- 0
(left) and a thick-walled
structure (right) \ \
f ) f 2
Q Q

2 Problem Formulation

For the sake of simplicity we consider a low Reynolds regime and assume that the
interface undergoes infinitesimal displacements. The fluid is described by the Stokes
equations, in a fixed domain 2F c R? (d = 2, 3), and the structure by the linear
(possibly damped) membrane equations written in the (d — 1)-manifold £2° = X,
which is also the fluid-structure interface (see Fig. 1 (left)).

The coupled model problem reads therefore as follows: find the fluid velocity
u: 2 xRt — RY, the fluid pressure p : 2 x RT — R, the solid displacement
d: X xRt — R? and the solid velocity d : ¥ x RT — R? such that

pu—V-op) =0 in QF

) (1)
V-u=0 in £,
u=d on X,
p“ea,d +1Ld+Ld=—0 (u,p)n on X, 2)

d=09d on X.

This system has to be complemented with appropriate initial and (external) bound-
ary conditions, which will be omitted in the following since they are not relevant
for the discussion. The symbols p' and p* denote, respectively, the fluid and solid
densities, € is the solid thickness and n stands for the unit normal vector on

052!, The fluid Cauchy-stress tensor is given by o (u, p) &f —pl + 2pe(u), with

e(u) . % (Vu + VuT) and where u denotes the fluid dynamic viscosity. Finally, the
surface differential operators L® and L" describe the membrane elastic and viscous

behavior, respectively.

Remark 1 In two spatial dimensions and for the geometrical configuration of
Fig. 1 (left) an example of solid elastic operator is given by where d = [0,d,]”
and cg,c; > 0 are material dependent parameters. A widely used form of the
solid viscous operator is L'd = ap'ed + BL°d, where o, f > 0 are given
parameters. In artery wall modeling, the zeroth-order term, apsed, describes the
dissipative behavior of external tissues (see [19]), whereas the differential term,
,BLed, corresponds to the Kelvin-Voigt model (see, e.g., [15, 22]).
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Remark 2 Though simplified, problem (1)—(2) preserves some of the major numer-
ical difficulties that arise in incompressible fluid-structure interaction.

3 Explicit Coupling Schemes

This section is devoted to the numerical approximation of the coupled problem (1)—
(2). In the succeeding text, the symbol t > 0 denotes the time-step size, ?, def nt,

forn € N, and d0.x" o (x” — x”_l) /T the first order backward difference in time.
In addition, the superscript * is used to indicate zeroth- (i.e., without), first-order or
second-order extrapolation from the previous time-steps, namely, x* = 0 if r = 0,
x* = x"lifr = land x* = 2x"~!—x""2 if r = 2, where r denotes the extrapolation
order.

The methods discussed in this review paper are explicit coupling schemes,
in the sense that they enable a decoupled time-marching of the fluid and the
solid. Traditional Dirichlet-Neumann explicit coupling procedures, as reported in
Algorithm 1, are known to be unconditionally unstable, whenever the amount of
added-mass effect in the system is large (see, e.g., [5]). Stability in explicit coupling
for incompressible fluid-structure interaction demands a different treatment of the
interface coupling conditions (2); 5.

A stable explicit coupling alternative is given by the Robin-Robin methods
introduced in [3, 4], which build on a Nitsche treatment of the interface coupling.
A salient feature of these methods is that they do not depend on the thin- or thick-
walled nature of the solid. Unfortunately, the explicit treatment of the Nitsche’s
penalty induces a deterioration of the accuracy, which demands restrictive CFL
constraints, unless correction iterations with suitable extrapolations are performed
(see [4]). Numerical evidence suggests that optimal first-order accuracy can be

Algorithm 1 Dirichet-Neumann Explicit Coupling Scheme

Forn > 1:

1. Fluid step: find " : 2 x Rt — R and p" : 2 x RT — R such that
pldu" —V o, p) =0 in
V-u"=0 in £F
w=d"" on X
2. Solid step: findd" : ¥ x RT — R¢ such that
pseaft.ln +Ld"+Ld =—0o @",p")n on X,

Jn=81d" on X.
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achieved by using a non-symmetric penalty-free formulation (see [4, Section 4.3]).
The rigorous stability analysis of the resulting schemes remains, however, an open
problem.

3.1 Robin-Neumann Schemes

The key difficulty is hence the derivation of alternative splitting methods which
guarantee stability without compromising accuracy. The Robin-Neumann methods
proposed in [8, 10] achieve this purpose. The fundamental ingredient in the
derivation of these schemes is the interface Robin consistency featured by the
continuous problem (1)—(2). Indeed, from (2); » it follows that

o(u.pn+ p'edu =—-Ld—L'd on X, 3)

which can be viewed as a Robin-like boundary condition for the fluid. Hence,
instead of performing the fluid solid time splitting in terms of (2);, as in Algo-
rithm 1, we consider (3) and (2),. The resulting schemes are detailed in Algorithm 2.

Algorithm 2 completely uncouples the fluid and solid time-marchings. This is
achieved via the explicit Robin condition (4); derived from (3). Note that only
the solid inertial effects are implicitly treated in (4)3, this is enough to guarantee
added-mass free stability. It is also worth noting that, from (5);, the explicit Robin
condition (4)3 can be reformulated as

S

ple

S
. P€

o@",p")n+ —u (dn_l + card*) +o@*,p’)n on X.

Algorithm 2 Robin-Neumann Explicit Coupling Schemes (from [10]).

Forn>r+1:

1. Fluid step: find " : 2 x Rt — R and p" : 2 x RT — R such that
olu" —V o, p) =0 in £F
V-u"=0 in £F

)
o@",p")n + Pew = L4 —a* —1'd" on %
T T
2. Solid step: findd”" : ¥ x RT — R¥ such that
pseaft:ln +Ld"+L'd = —o@W",p")n on X,
. (%)
d=0d,d" on X.
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The advantage of this new expression is its intrinsic character, in the sense that it
avoids extrapolations of the solid viscoelastic terms within the fluid solver.

Remark 3 1t should be noted that the implicit treatment of the solid-damping term
LY in (4), as advocated in [2, 13, 18], yields a coupling scheme which is not explicit:
it is semi-implicit. Moreover, the resulting solution procedure is not partitioned
either, since the solid viscous contribution L" has to be integrated within the fluid
solver.

Theoretical results on the stability and accuracy of Algorithm 2 have been
reported in [8, 10]. A fundamental ingredient in the analysis is the fact that
Algorithm 2 can be viewed as a fully implicit scheme with the following perturbed
kinematic constraint

w =d' + ;Te L@ —ar) + (@ -dH] on = ©)
The stability and the accuracy of Algorithm 2 are hence driven by the impact of this
perturbation (i.e., the last term of (6)) on the stability and accuracy of the underlying
implicit coupling scheme. Unconditional energy stability can be proved for r = 0
and r = 1. The scheme with » = 2 is energy stable under a CFL-like condition.
As regards accuracy, the error analysis shows that the splitting error induced by the
kinematic perturbation (6) scales as O(tzr_l). Thus, Algorithm 2 with r = 1 or
r = 2 yields an overall optimal first-order time-accuracy O(7) in the energy-norm,

while a sub-optimal time convergence rate (’)(r%) is expected for the scheme with
r=0.

Remark 4 In the particular case of an undamped thin-walled solid (i.e., L' = 0),
Algorithm 2 with r = 0 yields the splitting scheme reported in [13], which is known
to deliver very poor accuracy (see [8, 10] and the example below).

We conclude this section with a numerical illustration based on the balloon-like
example proposed in [16, Section 7.1] and using a non-linear version of (1)—(2). This
type of problems involving fully enclosed fluids cannot be solved using Algorithm 1
(or iterative variants) due to the constraint enforced by the fluid incompressibility
on the interface solid velocity (unless it is directly prescribed in the solid solver,
see [16]). Figure 2 (left) presents some snapshots of the fluid velocity magnitude
in the deformed configuration obtained with a non-linear version of Algorithm 2
(r = 1and © = 0.05). The fluid equations are discretized in space with Q; /Q; finite
elements and a SUPG/PSPG stabilized formulation. Quadrilateral MITC4 (locking-
free) shell elements are considered for the structure (see, e.g., [6]). For comparison
purposes, Fig. 2 (right) shows the maximal displacement magnitude on the interface
obtained with Algorithm 2 and the implicit coupling scheme. Algorithm 2 with r =
1 or r = 2 provides numerical solutions close to the implicit scheme. The superior
accuracy of the variant with r = 2, induced by the second-order extrapolation in (4),
is clearly noticeable. On the contrary, Algorithm 2 with r = 0 (see Remark 4) yields
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Fig. 2 Left: Snapshots of the fluid velocity magnitude in the deformed configuration at t = 0.15,
7.5, 15 (Algorithm 2 with r = 1 and t = 0.05). Right: Comparison of the solid displacements vs.
time obtained with Algorithm 2 and the implicit scheme (7 = 0.05)

an extremely poor approximation. This is a clear indication of the O(r%)-loss in the
accuracy of the scheme predicted by the error analysis.

3.2 Second-Order Accuracy

So far no explicit stable second-order time-accurate scheme is known for general
fluid-structure interaction. For purely elastic thin-structures, some attempts have
been presented in [18] by combining a Strang operator splitting approach with the
ideas reported in [13]. Though the accuracy of the splitting is improved, second-
order time-accuracy is still not achieved.

In this section we show how the Robin-Neumann explicit coupling paradigm of
Sect. 3.1 can be adapted to deliver second-order time-accuracy. This is achieved
by combining a Crank-Nicholson time-stepping in both the fluid and the solid
subproblems, with an enhanced time-discretization of (3) based on either second-
order extrapolation or defect-correction iterations. It is worth noting that this
strategy for enhancing accuracy might lead to stability problems when applied to
other explicit coupling paradigms (see, e.g., [4]).

The resulting schemes are displayed in Algorithm 3, where K > 0 denotes the
number of correction iterations and x"~ 3% & (x”*k +x”_1) /2 stands for the midpoint

between the previous value x"~! and the k-stage corrected one x"*.
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Algorithm 3 Second-Order Robin-Neumann Schemes
Forn>0ifr=0,1o0rforn>1ifr =2:

1. Extrapolation: a’ =d, d"'o =d.
2. Fork=1,...,. K+ 1:

a. Fluid step: Find #™* : 2f x RT™ — R? and p"~2* : 2 x R* — R such that

I

(w*t—u—") -V -a(u"_%’k,p"_%’k) =0 in £F

1 .
V.-u—2k=0 in £F

S S
o(u”_%‘k,p"_%’k)n + ey = P! + Ledm ik 4 va'ln_%"k_l on X.
T T

b. Solid step: Find d"™* : ¥ x Rt — R such that

S .n, n— 1 n—1, 1 1
PE@ —d ™Y+ a3+ 1d" " = —e@ ¢ p~n on 3,
T

1

d = l(d""‘ —a " on X
T

. 1 1 . K+ 1
3. Solution update: u" = u"X+1, p" P = p" 5'K+1, & =d*t g =4 .

Similarly to Algorithm 2, Algorithm 3 with K = 0 can be regarded as
interface kinematic perturbations of an underlying second-order implicit scheme.
Hence, in order to achieve overall second-order time-accuracy, two approaches are
investigated:

1. r = 1 and K > 0: Recall that the consistency errors induced by the kinematic
perturbations with r = 1 scale as O(t). Thus, after K > 0 defect-corrections the
perturbation of the kinematic constraint scales as O(zX*!). Hence, in order to
retrieve second-order time-accuracy K = 1 will be enough.

2. r =2 and K = 0 (genuine explicit scheme): Since the consistency error induced
with r = 2 scales as O(z?), no defect-correction is needed.

To give some insight into the stability properties of Algorithm 3, we consider a
simplification of the model problem (1)-(2) at hand (see, e.g., [1, 5]). Specifically,
we take 2' = [0, L] x [0,R] C R?, ¥ = {y = R}, the solid operators of Remark 1
and pu = 0 (potential fluid). In this framework the following proposition holds.

Proposition 1 Take K = 0 (no defect-correction) in Algorithm 3 and write

d; = Zio:ld;iqbi where we consider the orthonormal basis on L}(X) given
o0
by {q&i(x) = /2/Lsin (irrx/L)}' v Under the problem setting described in the

previous paragraph, we have:

L Ifr=0o0rr=1 |d,|] — 0 Vie{l,...,o0}.
" n—>+o00
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2.0fr=2|dy;| — Owithi€{l,..., 00} provided
© n—>+o00

4} (-2pip" + €p®) 4
T

€ps
4eiep®(b; + dit)(4a; + d;it°> + 4tb;) — 4d,-rei2 @

4a;b; + 4blt + 4d;biT* + >0,

— 16ep°t(b; + dit)*(aiep® + 2bijuip't) > 0,

where a; = ,ui,of + E,OS,bi = ,Bclki + O{E,()S,di = ¢o + clki,ei = 4-(1,‘6,0S +

t(biep® + 2dijuip't) and p; = A = 222 are the eigenvalues with

L
in lanh(%) ’ 2

respect to ¢; of the Neumann-to-Dirichlet map and 0., operators.

Proposition 1 establishes that whenever the Fourier series expansion of d;f
is truncated (i.e., whenever the spatial discretization is fixed) the solution of
Algorithm 3 with K = 0, under the above assumptions, is unconditionally stable
with zeroth- and first-order extrapolations. For » = 2, the conditions (7) might be
too restrictive since they do not explicitly take into account the effect of the spatial
discretization step 4.

In order to numerically illustrate the accuracy and stability of Algorithm 3,
we consider the two-dimensional example of [10]. To provide evidence on the
O(h+ t?) convergence behavior for the first and second order extrapolated variants,
Fig.3 (left) reports the time-convergence history, with 4 = 107!/4 fixed, of the
solid displacement at time ¢t = 0.015, in the relative elastic energy-norm, obtained
with Algorithm 3 and a fully implicit second-order scheme. The reference solution
has been generated using the implicit scheme with 7 = 107 and the same A. The
h-uniformity is guaranteed by Fig. 3 (right) were we have refined both in time and
space according 1 = O(t?). The reference solution has been now obtained with
t=10%andh =3 x 107,

—>¢—— implicit 2nd order
———— RN-CN (r=0 &K=0)
——O—— RN-CN (r=1 &K=0)
)
)

°

3

3
T

RN-CN (r=2 & K=0)
——O—— RN-CN (r=1 & K=1
,,,,,,,, slope 1 P slope 1
—————— slope 2 - —————- slope2

solid displacement elastic energy error

solid displacement elastic energy error

0.00001 0.0001 0.001 0.0001 0.001
time-step size time-step size

Fig. 3 Left: displacement convergence history in time with # = 10! /4 fixed. Right: displace-
ment convergence history in time with & = O(z?)
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3.3 Coupling with Thick-Walled Structures

In this section we briefly describe the extension of the Robin-Neumann explicit
coupling paradigm of Algorithm 2 to the case of the coupling with thick-walled
structures (see Fig. 1 (right)). Thus, in the coupled problem (1)—(2), the relations (2)
are replaced by the linear elastodynamics equations

0°0d+apd—V-M(dd) =0 in
: (®)
d=20dd in £°
together with the kinematic and kinetic coupling conditions
u=d on X,
: ©))
nmd,dyn*=—0c(u,pjn on X.

Here, the symbol r* stands for the unit normal vector on d£2°, the solid stress tensor

is given by 11 (d, d) o n(d) + pr(d), where 7 (d) &f 2X18(d) + A2(V -d)I and A,

A, denote the Lamé coefficients. Damping effects in the solid are thus modeled via
the Rayleigh-like term ap’d — BV - m (d).

The fundamental ingredient in the derivation of the schemes described in the
previous sections is the interface Robin consistency (3) featured by the continuous
problem (1)—(2). Unfortunately, this property is not shared by the coupled prob-
lem (1), (8) and (9), since the inertial term in (8) is distributed on the whole solid
domain £2° and X' # £2°. The following generalized interface Robin consistency
can however be recovered after discretization in space, using a lumped-mass
approximation in the structure (see [11]):

o(u,p)n + p°Bpdu = p'Bydd — I (d.dn* on X. (10)

Note that, instead of the usual identity operator, the interface condition (10) involves
the discrete interface operator By, which consistently accounts for the solid inertial
effects within the fluid. In fact, at the algebraic level, this operator is given by the
interface entries of the solid lumped-mass matrix. Instead of formulating the time
splitting in terms of (9), we consider (10) and (9),. This yields the following Robin-
Neumann splitting of (9):

pS

o",p")n + —Byu" = ﬁBh (dn_l + tB,d*) — @ .d)m,
T T (11)

o@.d) =—o@" p'n.

The analysis reported in [11] shows that the splitting (11) preserves the energy
stability of the original Robin-Neumann explicit coupling paradigm (Algorithm 2).
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Fig. 4 Left: Snapshots of the fluid velocity magnitude in the deformed configurations at = 0.15,
7.5, 15 (generalized Robin-Neumann explicit coupling (11) with »r = 1 and t = 0.025). Right:
Comparison of the solid displacements vs. time obtained with the generalized Robin-Neumann
explicit coupling (11) and the implicit scheme (z = 0.025)

Numerical evidence indicates, however, that their optimal (first-order) accuracy
is not preserved. Indeed, the order of the kinematic perturbation induced by
the splitting (11) is expected to be (’)(rzr_l/h%). Interestingly, the factor Wz
is intrinsically related to the thick-walled character of the structure, through the
non-uniformity of the discrete viscoelastic operator, and not to the mass lumping
approximation (see [9]).

We conclude this section by considering the balloon-like example of Sect. 3.1
but, this time, involving a thick-walled structure. In Fig.4 (left) we have reported
some snapshots of the fluid velocity magnitude and of the deformed configurations
obtained with the generalized Robin-Neumann splitting (11) with r = 1 and 7 =
0.025. A comparison of the different variants with the implicit schemes is given in
Fig. 4 (right). Note that spurious oscillations are visible for the explicit coupling with
r = 2. This is consistent with the fact that stability conditions are expected to be
more restrictive in the case of the coupling with thick-walled structures. Considering
that the value of 7 is twice smaller than in Sect. 3.1, the poor accuracy of the explicit
scheme with r = 0 is even more striking. For r = 1 and » = 2 we obtain practically
the same results as in Sect. 3.1. This is a clear indication of the h™2 perturbation
introduced by the splitting: the time-step length must be reduced to achieve a similar
level of accuracy as in the thin-walled case.

4 Conclusion

We have discussed a class of explicit coupling schemes for incompressible fluid-
structure interaction. The key ingredient in the derivation of the methods is the
notion of interface Robin consistency which depends on the thin- or thick-walled
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character of the structure. In the case of the coupling with a thin-walled structure,
energy stability and optimal first-order accuracy are retrieved without any restriction
on the discretization parameters. Besides, under this structure regime, two promising
extensions which deliver second-order time-accuracy have been presented. The
main issue regarding thick-walled structures is accuracy, since the perturbation
induced by the splitting is not uniform with respect to the spatial discretization step
h. It is worth noting, however, that the scheme with first-order extrapolation yields
convergence under a standard hyperbolic-condition without the need of correction
iterations.
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Optimal Finite Element Methods for Interface
Problems

Jinchao Xu and Shuo Zhang

1 Introduction

There are many physical problems such as multiphase flows and fluid-structure
interactions whose solutions are piecewise smooth but may have discontinuity
across some curved interfaces. The direct application of standard finite element
method may not perform well. In this paper, we study some special finite element
methods for this type of problems. For simplicity of exposition, we consider the case
that there is only one interface which is smooth. Let £2, £2; C R? be two bounded
domains with £2; C £2. We assume that I" = 0£2; is sufficiently smooth, and
I' N 92 = @. To be focused on the influence of I", we assume 2 = (—1, 1)2.
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To be specific, we consider the homogeneous boundary value problems of the
diffusion equation —div(a¢Vu) = f, and the Stokes equation —div(eVuy — pl) = f

with the incompressibility condition divy = 0. In both of the equations, « represents

a piecewise smooth function, namely o € (C*°(£2;) & C*(£2;)) \ C(£2), such that
0 < oy < a < a; for two constants o) and «, and £2, = £2 \ £2;.

Because of the discontinuity of the coefficient «, the solutions lose their
smoothness near the interface. Accuracy would be lost if we use general uniform
grids for discretisation. A way to remedy the accuracy of approximation is to use
interface-fitted/resolved grids. This way, the non-smoothness of the solution can be
restricted to a “narrow” subdomain with respect to the grid near the interface, and
the approximation error due to the non-smoothness can thus be dominated.

In [10] (English translation: [12]), the following error estimate was obtained:

lu — wrllo. + hlu—us|1.@ < Cllogh|"*h?|uly.0,u0, (D

where u; is the nodal interpolation of u to the linear element space. Here and after,
we use [W|m.@ ue, or [Wllmn.e ue, to denote [w, o, + [Wln.e, or [[W]|m.e, +Wlne,,
respectively, for w € H™(2, U £2y) := {v € L*(2) : v|g, € H™($2;), i = 1,2},
with m € {0, 1, 2}. See [6] for a same result. A sharper estimate was given in [3]:

lu—urllo.e + hlu—url1.o < Ch*|ul2.0,ue,- ()

The interface-fitting assumption in the works above can be loosened slightly
to that the interface I' is “O(h?)-resolved by the mesh”, see [8], and the shape-
regularity restriction of the grid can be loosened to maximal-angle-bounded grids,
see [7]. The optimal approximation accuracy of linear element space can also be
proved on these grids.

We refer to [7] for an algorithm to generate an interface-fitted grid from a
shape-regular grid which is not interface-fitted. (c.f. Fig. 1.) The algorithm is easy
to implement and the generated grid is maximal-angle-bounded. With the linear
element functions constructed thereon, the piecewise smooth functions can be
approximated optimally and economically.

In this paper, we discuss the linear element schemes for the diffusion equa-
tion and the Stokes equation with discontinuous coefficients on interface-fitted
maximal-angle-bounded grids. We will consider the conforming (c.f. also [7])
and nonconforming linear element schemes for the diffusion equation, and the
P; — Py element pair for the Stokes equation. Thanks to the above approximation
results, the optimal accuracy of conforming linear element discretisation for the
diffusion equation is straightforwardly obtained. When the nonconforming element
dicretization is considered, the issue of consistency error needs to be addressed.
Because of the irregularity of the grid, the traditional technique by trace theorem
and scaling argument cannot be applied easily. In this paper, we use the relationship
between the nonconforming linear element space and the lowest-order Raviart-
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Fig. 1 Left: interface-unfitted mesh; Right: interface-fitted mesh

Thomas (R-T for short) element space suggested by Acosta and Durdn [1], and
obtain the optimal accuracy of the consistency error. As to the incompressible Stokes
problem, we have that the P; — Py pair satisfies the inf-sup condition, and prove that
it has optimal accuracy.

Then we discuss the optimal multigrid solver for the generated linear system.
Particularly, we consider the special grid that is generated from a uniform grid
with the algorithm of [7]. As the underlying grid is obtained by refining an original
uniform structured grid, the finite element space thereon is different from the one
on the original grid only near the interface. We use the original grid (finite element
space thereon) as a coarse grid (subspace, respectively), with some smoothing
operations added near the interface, to formulate a nested geometrical multigrid
method. We take the conforming linear element system, which is less complicated,
for a demonstration, and show the optimality of the formulated multigrid method.

Through the paper, we make use of this notation. Without bringing in ambiguity,
we use || for the measure of subdomains, especially the area of a 2D manifold or the
length of a 1D manifold. We use “” for a tensor, and a bold letter for a unit vector

(direction). In the paper, “K” will always denote a triangular cell, unless special
indication. When the triangulation 7}, is considered, we denote H"(7,) := {w €
L*(2) :wlxg € H"(K), VK € T;},m=0,1,2.

The remaining of the paper is organised as follows. In Sect. 2, we collect
some existing and new estimation results on interpolation operators, especially for
piecewise smooth functions on interface-fitted and maximal-angle-bounded grids.
In Sects. 3 and 4, we discuss the optimal finite element methods for the interface
problems of the diffusion equation and of the Stokes equation, respectively. In
Sect. 5, we give an optimal multigrid method for the conforming linear element
scheme for diffusion equation. Finally, in Sect. 6, some concluding remarks are
given.
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2 Error Estimates of Interpolation Operators

2.1 Element-Wise Smooth Function on Interface-Fitted Grid

As a foundation of the technical analysis, we will show that on interface-fitted grids,
functions in H"(£2, U £2,) can be approximated well by functions that are piecewise
smooth with respect to the grids. We begin with a sharpened embedding result for
the Sobolev space. Here and after, denote w, := {x € £ : dist(x,I") < n}.

Lemma 1 There exists a constant C, depending on §2 and I" only, such that it holds
forw € H'(§2, U £2,) that

W15, < CHlWIE 2,u0,-
The proof of Lemma 1 follows from Theorem 1.1 of [2] directly, and we omit it
here. We also refer to [3, 8] for similar results.

Lemma 2 Let T, be an interface-fitted grid of $2, with h the biggest diameter of
K € Tp. Then there exists a constant C depending on §2 and I" only, such that these
inequalities hold:

1. givenw € H'(£21 U §2,), there exists aw € H'(Ty), such that

~ 112 2 2 ~ 12 2 2 2 .
D Wl g < CUWli g, + W 0, Iw =150 < CRP(IWIE g, + W 0,);
K€771

2. givenw € H*(£21 U £2,), there exists w € H?(Ty,), such that

~ 112 2 2 ~ 112 ~ 112
DRk < CUwl3g, + w30, Y Aw =l kng, + Iw =Wl kne,)
KeT, KeT,

< O (Iwll3.g, + IIWl3.g,):

moreover, if w € H' (2) N H*(£2, U £2,), thenw = won I';
3. givenw € (H' (22, U £2,))* N H(div; 2), there exists w € H'(T,) N H(div; 2),

such thatw-n=w-non I, and

~n2 2 2 ~ 12 2 2 2
D wl < Cwlig, + 1wl o). Y. (w—wl§x < CRA(IwIT g, + Wl .g,)-
KeT;, KeT,

Proof We only prove the third item. The others can be found in [3].

First of all, given K € 7Ty, since 7}, is interface fitted, K does not has vertices
in different subdomains simultaneously. Besides, by approximation theory, there
exists a constant Cy, depending on I" and £2, such that if K has a vertex in £2;, then
(KN 23-) C wcype-
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Now given w € (H (2, u 522))2, by extension theorem, there exist wi, w, €
H'(£2)?, such that (wi—w)|, = 0,and [lwill1.e < Cllwl.2,. C depending on 2 and
I" only. Then we define w by w|x = wj|k, if K has a vertex in £2;. Here, without loss

of generality, we assume the vertices of K are not all on I". By the analysis above,
~ =12 112 2
w—w =0, on§2\ wc. Therefore, [lw —wlg o = lw—wl5,,,, <3Uwl5,,, +

11130, + 2113, )- Further, by Lemma 1, =213 o < C2[wl o, with

C depending on " and £2.
Besides, that w € (H'(£2; U £2))> N H(div; £2) implies [w - n] vanishes along

I', this further implies that w - n, wi - n and w» - n are the same along the interface,
thus w-n = w - n along I". Here and after, we use [-] to denote the jump between

different sides. This finishes the proof.

2.2 Interpolation Error for Piecewise Smooth Functions

Let 7, be a grid on £2. Denote Q) the piecewise constant space on 7y, VhCR the
linear Crouzeix-Raviart element space, namely ViR = {w), € L*(2) : wylx €
Pi(K), YK € T, fe[[whﬂ = 0, on any interior edge e}, V, the continuous
piecewise linear function space, and Vi! the lowest order Raviart-Thomas element
space, namely VKT = {w, € (L*(R))° : wilx € (Po)> ® xPo. [Iwi] -m =

0, on any interior edge e}. Associated with the local interpolations, we have these
globally defined interpolations. Denote by P2 the L? projection operator to Qy,, by
I, the interpolation operator to Vj, by I7, hCR the interpolation operator to VSR, and
by IT}T the interpolation operator to VRT. It is evident that V, [T Rw = P)Vw, and
divITRTw = Pldivw.

Lemma 3 Let T, be an interface-fitted grid of §2, with h the biggest size of the
elements. With constants Cy and Cs depending on the maximal angle of the grid,
while Cy not, we have:

1. letw € H'(2, U £2), then ||W—P2W||0,.Q < Cihlw|.eue,:
2. letu € H(2) N H*(£2, U 2,), then infR|u —vphip < lu— Lo <

thV}(,:
Cahllull2.0,ua,;
3. letw € (H'(£2) U £22))> N H(div; 2), then |w — TR w|lo.0 < C3h||w|1.2,u2,-

Proof We only prove the third item, and the first one is similar. We refer to, e.g., [7]
for the second item.
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We begin with a stability result. Let K be a triangle, with e, e, and e3 its edges.
On K, it holds for i = 1,2,3 that [, IT[{"w -n., = [, w-n,,. Direct calculation

leads to that IIH;E{TWIIOK < 16|K| Z (/ nel)zé: |e]|2 . Now, given w €
JFi
(H'(£21 U £2,))> N H(div; 2), by Lemma 2, there exists w € H'(T;,)* N H(div; £2),

such that w-m = w-non I', Y per (W]}« < C(Iwli3 o, + Wl g,), and [lw —

wlig.o < CRA(IwlT o, + lwlf ,)- By triangle inequality,

Iw—IT wlo.e < llw—wlo.e+IW—ITX Wlo.e+IT W—IT wlo. := L+L+15.

3)
For I3, we only have to estimate ITR"w — ITR'w on such K that K N I # .

Without loss of generality, we choose K = [Py, Py, P;], such that Py € £2, and
K N 2, # @, particularly, I goes through K from P; to P,, c.f. Fig. 2. Denote
e =[P, P;]andK’ = K\ £2,. Then [,(w—w)-n, = [, V-(W—w)— [, (W—w)-n.,

where ¢ = 0K’ \ e thus ¢ C I'. Note that (W — w) - ny = 0 on ¢, and thus
LG =w) 0, = [0 V- (8 —w) < |K'|2V - (5 =)o Thus,

IK'|

IR (i < hz
111, (w — )”OK gk K|

IV - % = wgxr < BV - (0 = w)IG
< hi xIV-(w— W)HOanaz
Further, [[ITX"(% — W5 o < Yker ChgllV - (0 — W)”%,analz < CH*||V -

@~ W, , < C(WwI g,ue,). Then by (3), we have [w — TR wlog <

Fig. 2 Illustration of a cell Py
K, and the edge e = PP,
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Cihlwlieue, + Chllwlhieue, + Chllwlieue, < Chlwlieue,, where C;

depends on the maximal angle of the triangulation (c.f. [1]). This finishes the proof.

3 Optimal Linear Element Methods for Diffusion Equation

We consider the boundary-interface value problem:

—V - (x(x)Vu) = f, in £2,
u=0,onds, 4)
[u] =0, [«Vu-n] =0,onTr,

where n is the normal direction of I". The variational formulation of the above
problem is: Find u € H}(£2) such that

a(u,v) = (f,v), Yv € H)(£2), 6)

Wherea(u,v)z/ a(x)Vu - Vo, and (f,v):/fv.

Evidently, give?l the coefficient o, the energy norm of the boundary value
problem is equivalent to the H' norm (or piecewise H' norm for nonconforming
element space). In the sequel, we focus ourselves on the analysis of the H' norm.

In this section and Sect. 4, we assume 7, is an interface-fitted triangulation of
£2, with h the biggest diameter of all K € 7,. We consider the case 7y, is one in a
maximal-angle-bounded family.

3.1 A Conforming Linear Element Method

Let Vi =V, N Hé (£2). The finite element problem is to find uy, € Vj0, such that
a(up, vp) = (f,vn), Y uu € Vip. (6)
Let u be the solution of (5), then by Cea lemma, it is straightforward that

lu—upl10 < C inf |u—vp|1e < Chlullague,-
v E€Vio

We also refer to [3, 7, 8] for related discussions.
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3.2 A Nonconforming Linear Element Method

Let V,%R C VhCR consist of the C-R element functions that vanish at the midpoints of
the boundary edges. Then the C-R element scheme of the boundary value problem
is to find uy, € V,%R, such that

(@Vhun, Vo) = (f,vn), Vo € Vit ©)

Here V), denotes the piecewise gradient.

Theorem 1 Let u and uy, be the solutions of (5) and (7), respectively. Assume u €
H*(£2, U §25) N H'(82). Then it holds with a constant C independent of h that

Vi —up)llo.e < Ch(||ullz.eue, + I fllo.)- (3)
Proof Firstly, recall the Strang lemma and we have, with | - |1, = || Vi - [lo.2>

O[VI/[ VW — W
lu—uplyp S inf |u—vp|l1p+ sup ( . Vwy) = (f h).
Uh GV’%( wpE V}%z |Wh | 1.h

©))

By Lemma 3, we have to estimate the consistency error, which is (c.f. also [1])

(@Vu, Viwp) = (f, wn) = (@Vu—IT aVu, Vwy) — (=diva Vu+divITIR o« Vi, wy) := 1-11.
(10)

By Lemma 3, |lI| = |(f + P)divaVu,wy)| = |(f — PYf,wi)| = |(f,wn —
Pdwi)| < Chllfllo.e|wn|in Besides, as aVu € (H'(£2) U £2,))> N H(div; 2),
1] < |laVu — IR (@Vu)|o.e || Vawnllo.e < ChlleVulli g,ue, Wl Substituting
all above into (9) finishes the proof.

4 The P! — P° Element Method for Stokes Interface Problem

4.1 Model Problem and Finite Element Discretization

Now we consider the system of Stokes equation,
—div(aeVu — pld) =f,ing2,
divy = 0, in £2,
(11
u=0,0nad8,

[u] = 0. [(@Vu—pld)-n] =0, onT.
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Here Id € R>? is the identity. The variational formulation is to find (u,p) €

(HY(£2))? x L3(£2), such that

(@Vu, V) — (pld, Vo) = (£,v). Y v € (HY(2))2,

(g,divu) =0, Vg e L3(R). (12)

Let O be the space of piecewise constant with zero average, then the finite
element problem is to find (uy, pr) € (V,%R 2 x Qp, such that

(«Vaun, Vaun) — (Pald, Vivp) = (f.vn), Y v, € (V2.

) (13)
(qn Vi up) =0, Y g, € O

It is well known that, by the commutative property and the inf-sup
condition of the model problem (12), the discrete inf-sup condition follows as
(qn- diviun)
sup ——————— > C, forg;, € Q. Note that the constant does not depend
viewery llgnllo.gllvnllin

on the triangulation.

4.2 Accuracy Analysis

Theorem 2 Let (u,p) and (up, pn) be the solutions of (12) and (13), respectively.
Assume u € (H*(£2, U §22) N H}(£2))%, and p € H'(21 U £2,) N L3(2). Then it

holds with a constant C independent of h that

lu—unlin + P = pallo.e < Ch(l|ull2.2,ue, + IPleue, + Iflloe). (14)

Proof We start with this fundamental estimate [4]:

lu—uplip+1lp—prlloe S inf_ |u—vu|in+ inf [p—aqnlloe
Vne(Vg)? an€0n

(«Vu —pld, V) — (f, wn)

+ sup |w |
Whe(vﬁ§)2 Whil,h
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By Lemma 3, we only have to estimate the consistency error. Since aVu — pld €

(H(div; 2) N (H'(£2,U£2,))?)?, we can use the same technique as that of Theorem 1
and obtain

[(@Vu—pld, Vws) = (f, wi)| < Ch(llaVu—pld|1.eue, + Ifllo.c)lwalis  (15)

Summing all above finishes the proof.

5 A Two-Level Geometric Multigrid Method

In this section, we consider the optimal solver of the finite element problem (6).
Define Ah . VhO — VhO by (Ahwh, Uh) = ah(wh, Uh), for any wy, v, € VhO- In this
section, 7~71 is a uniform grid with multilevel structure, and 7}, is an interface-fitted
grid generated from 7~71 by local operations near the interface by the algorithm in
[7]. (See Fig. 1 for E(left) and Ty (right).) Particularly, Ty is shape regular, and 7,
is maximal-angle-bounded. Let j\/h and M be the sets of vertices of 7, and 7}“
respectively. Denote N := N}, \ N,

5.1 Theory of Successive Subspace Correction Method

In this section we give some general result of the successive subspace correction
method of solving on a linear vector space V with inner product (-, -) the equation
(Au,v) = (f,v), where A : V — V is a symmetric positive definite operator. The
presentation follows closely to [5, 11, 14, 15].

We decompose the space V = Z{:o Vi as the summation of subspaces V; C V.
We do not assume the summation is a direct sum. The original problem associates
sub-problems in each V; with smaller size which are relatively easier to solve. We
use the following operators, fori = 0,1,...,J:

e Q;:V — V,; the projection in the inner product (-, -);

e [;: V; = V the natural inclusion which is often called prolongation;
e P;:V — V, the projection in the inner product (-, )4 = (A-,);

e A;:V; — V;the restriction of A to the subspace V;;

* R;:V;— V;an approximation of Ai_l (often known as smoother);

o T,: V>V, T, = RiQiA = RiAiPi.

It is easy to verify Q;A = A;P; and Q; = I! with (I'u, v;) := (u, I;v;). The operator
1! is often called restriction. If R; = A;', then we have an exact local solver and
T; = P;. With slightly abused notation, we still use 7; to denote the restriction
Tily, : Vi— Viand T7' = (Ti|y) ™' 1 Vi > V.



Optimal Finite Element Methods for Interface Problems 87

The Successive Subspace Correction (SSC) method performs the correction
in every subspace in a successive way. In operator form, it reads, given some

approximation solution u*,

00 = dkF o =0T R LRI — AVY),i = 0,... J, T =TT (16)

and the corresponding error equation is

J J
w— = [H(l _ IiRiI;A):| (u—ub) = |:1_[(1 — T,-):| (u— ub). (17)

i=0 i=0

Here we assume there is a built-in ordering from i = 0 to J. The multiplicative
multigrid method for finite element systems is a special SSC method with subspaces
constructed by finite element functions on multilevel grids. For the convergence, we
have this fundamental estimate.

Lemma 4 (X-Z identity for SSC) Ifthereisap < 1, suchthat ||I-T;||a, < p, i =
0,...,J, then it holds that

1
)| =1——, (18)
C1
where
J
cl = SUP Z(T l(vt + T*Wl) Vi + T Wl)As (19)
lolla=1 Y7, ()Uz—vi 0
with w; = sz v, and T; = T; + T} — T*T;, T the adjoint operator of T; with

respect to (-, ) 4.

Remark 1 1f we perform a two-level method, and particularly, we perform an exact
solver on a subspace V), then we have ¢; = SUP||v||A=1(||POU||/24 + |lv — I'[hv||1-(171)
where Py : V — Vyand I, : V — V| are the projection operators with respect to
(-,)4 and (-, -)er, respectively, and R = R, + Ri — RIAR;.

5.2 An Optimal Multigrid Method for (6)

Let \70 C Vj,, be space of nodal basis functions that vanish on j\~/h Then V, =
Vh @ Vh, where Vh is the linear element space on E Let] h be the nodal interpolation
on Vh Then (I — Ih)Vh V and IV, = V,,. Let A, and AC be the restrictions of Ay,
on VhO = Vh N Vyo and Ve, respectlvely
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Lemma 5 It holds for w, € Vg that ||thh||;\h < Allwalla,, with A a constant
independent of h.

Proof When h is sufficiently small, for any p € Nj, there exists a segment e with
p being one of its ends, such that e is an edge of T and Tj, simultaneously, and
thus I,w, = wy, on e. Therefore, by the standard technique alike to the stability of
Scott-Zhang operator [9] and a Scott-Zhang type operator [5], we have |ihwh|1,9 <
C|wi|1. with C depending on the shape regularity of 7}, only. This finishes the
proof.

Let 1~€h : Vho — Vho be approximately an inverse of Ah. We have this two-level
successive subspace correction method (Algorithm 1).

Algorithm 1 Implement this iterative procedure until converge:

1. do subspace correction on Vho with an inexact solver Rh;
2. do subspace correction on Vi with an exact solver (A5) ™.

Obviously, Algorithm 1 defines an iterative method for solving Apu; = fj. Let
Ph and Oy, be the projection operator onto VC and Vjo with respect to a(-,-) and
(-, -), respectively. Denote by By, the iterator of the method. Then the error contract
operator on Vg is [ — ByAp, = (I — P D — RthAh)

Theorem 3 Assume that ||I — RhAh”Ah < p < 1. Then Algorithm 1 is uniformly

convergent with respect to the mesh size with

A

[ — By} < ———.
[ Al 2+

Proof By the X-Z identity for the successive subspace correction method, (c.f., e.g.,
[14]) we have

1
2 _
”I_BhAh”Ah =1- a,
with
cL = sup (||i)13vh||/2ah __inf ((Rt + R, — R AR (v — ),

V€ Vo, llvnlla, =1 ThEVS vn—Tn €V,

(v — &) )).
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Since ||[I— RhAhHA, < p < 1, wehave ||[I—(R! +Rj,— iefAhieh)uAh ||1 iefAhnA, 11—
RAh”Ah < ,0 and thus Amdx((R Ah + RhAh —R AthAh)

(R, + Ry, — RtAth)_ (v = Bp), (v — )
((R An + RuAy — RLAWR,AR) ™ (vn — Bn), An(vi — Tn))
Sl Gl Ty A (vp — Tp)).

Since evidently ||P2vh||A,l < |vnlla,, we have ¢ < sup a1+
v €V, llonlla, =1
1
R inf lvn — vh||i,). Then by Lemma 5, we have ¢; < 1 + =,
l_p UhEVh vp— UhGVh ' P

and finally obtain || — BhAhIIAh S p2+A

When 7y, is a shape-regular grid with a geometrical multilevel structure, then
a geometric multigrid process can be implemented on Vio, and the approximate
inverse R;, of A;, can be chosen to be the iterator of V-cycle multigrid method. The
assumption of Theorem 3 holds (see [11, 13, 14]).

5.3 Numerical Examples

To test the numerical methods, we consider the following example. Let the interface
I' be a circle centered at the origin with radius ry. Let the exact solution be u(x) =
u(r) = 2r* + |r* — r}|, where r = dist(x, 0). Moreover, we choose a(x) = 1 if
r > ro and o(x) = 3if r < rp, and the right hand side can be computed accordingly.
Hereafter we set ry = 0.6.

We implement Algorithm 1, with V(1, 1) cycle geometric multigrid based on the
original unfitted grid playing as the coarse grid corrector. We record the numerical
results in Table 1. In these examples, the initial guess is 0, and the stopping criterion
is the 2 norm of the relative residual being smaller than 10~'°. From Table 1, we
can see that the multigrid method converges uniformly with respect to the mesh size,
which confirms our theoretical results.

Table 1 Numerical h =4 [p=5 [p=6 [2=7 [p=8 [o—9 [p—10

performance of Algorithm 1 ;
#iter |14 |13 |13 |13 |13 |13 |13
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6 Concluding Remarks

In this paper, we discussed the optimal finite element method for the interface
boundary value problem of the diffusion equation and the Stokes equation. We
proved that the linear Crouzeix-Raviart element schemes provide optimal accuracy
with respect to the mesh size for the two interface boundary value problems on grids
that are interface-fitted and maximal-angle-bounded.

Given a uniform grid, an interface-fitted and maximal-angle-bounded grid can be
generated by some local operations close to the interface. On the grids generated that
way, we discussed the optimal multigrid method of the discrete linear systems. We
took the conforming linear element system, the theory of which is less complicated,
for a demonstration, and show that by the methodology of using the original grid as
a coarse grid and reinforcing the smoothing effect near the interface, we obtain an
optimal multigrid method.

Some other optimal finite element methods and their optimal multigrid solvers
for interface boundary value problems will be discussed in the future works.

Acknowledgement The authors would like to thank Dr. Xiaozhe Hu for his help on the numerical
examples.
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BDDC Deluxe Domain Decomposition

Olof B. Widlund and Clark R. Dohrmann

1 Introduction

We will consider BDDC domain decomposition algorithms for finite element
approximations of a variety of elliptic problems. The BDDC (Balancing Domain
Decomposition by Constraints) algorithms were introduced by Dohrmann [5],
following the introduction of FETI-DP by Farhat et al. [9]. These two families are
closely related algorithmically and have a common theory. The design of a BDDC
algorithm involves the choice of a set of primal degrees of freedom and the choice
of an averaging operator, which restores the continuity of the approximate solution
across the interface between the subdomains into which the domain of the given
problem has been partitioned. We will also refer to these operators as scalings.

This paper principally address the latter choice. All our efforts aim at developing
effective preconditioners for the stiffness matrices. These approximate inverses are
then combined with the conjugate gradient method. We are primarily interested
in hard problems with very many subdomains and to obtain convergence rates
independent of that number and with rates that deteriorate slowly with the size of
the subdomain problems. Our bounds can often be made independent of jumps in
the coefficients between subdomains and our numerical results indicate that our new
BDDC deluxe algorithm is quite promising and robust.

Among our applications are problems formulated in H(curl), H(div), and for
Reissner-Mindlin plates. We have worked mostly with the lowest order finite
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element methods for self-adjoint elliptic problems but we have also helped develop
solvers for isogeometric analysis. After introducing the general ideas, we will focus
on our recent work on three-dimensional problems in H(curl), see [7], since other
applications are discussed in other papers of this volume or elsewhere; cf. [1-
4,8, 12-14].

2 BDDC, Finite Element Meshes, and Equivalence Classes

The BDDC algorithms work with decompositions of the domain §2 of the elliptic
problem into non-overlapping subdomains §2;, each often with tens of thousands of
degrees of freedom. In-between the subdomains is the interface I", which does not
cut through any elements. The local interface of £2; is defined by I'; := 942, \ 952.

For nodal finite element methods, most nodes are typically interior to individual
subdomains while the others belong to several subdomain interfaces or to the
boundary of the given region. We partition the nodes on I' into equivalence
classes determined by the set of indices of the local interfaces I to which they
belong. In three dimensions, we have equivalence classes of face nodes, associated
with two local interfaces, and classes of edge nodes and subdomain vertex nodes
typically associated with more than two. For H(curl) and Nédélec (edge) elements,
there are only equivalence classes of element edges for subdomain faces and for
subdomain edges. For H(div) and Raviart-Thomas elements, we only have degrees
of freedom for element faces and the only equivalence classes are associated with
the subdomain faces. These equivalence classes play a central role in the design,
analysis, and programming of domain decomposition methods.

These preconditioners are constructed using partially subassembled stiffness
matrices built from the subdomain stiffness matrices A of the subdomains 2, 0=
1,..., N. We will first consider nodal finite element problems. The nodes of £2; U I;
are divided into those in the interior (/) and those on the interface (7). The interface
set is further divided into a primal set (/1) and a dual set (A).

We can then represent the subdomain stiffness matrix, of £2;, as

O 4@ 4@
o = [ b it A
i _ i i i
S WA
l l l
AHI AHA AHH

This matrix represents the stiffness contributed by §2;. Throughout the iteration, we
enforce continuity of the primal variables, as in the given finite element model,
but allow multiple values of the dual variables when working with a partially
subassembled model as in Fig. 1. Partially subassembling the subdomain matrices
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Fig. 1 Torn 2D scalar elliptic
problem; primal variables at
subdomain vertices only

and noting that the matrix A 1 18 assembled from the submatrices A%) 7> We obtain
[N (1)
Ay Al Al
1) 4 (1)
Ay Apa A

M) 4N 4N
AII AI A AI 7
W) A(N) 4N
A Al A AA A All

1) 4(1) N) 4 N) %
il AI'[A Am AHA A,

This partially subassembled stiffness matrix of this alternative finite element model
is an important component of the BDDC preconditioners. The primal variables
provide a necessary, global component of the preconditioners and they make the
partially assembled matrix invertible.

Solving a linear system with the matrix A is much cheaper than when using the
fully assembled model but results in multiple values of the dual interface variables.
When using BDDC, we therefore restore the continuity of the original finite element
problem by averaging across the interface. When using FETI-DP, we instead employ
Lagrange multipliers.

For scalar second order elliptic equations in the plane, as in Fig. 1, the approach
outlined yields a condition number bound of C(1 + log(H/h))?, where H/h :=
max;(H;/h;) with H; the diameter of £2; and A; that of the smallest of the elements
of £2;. These results can be made independent of jumps in the coefficients, if
the interface averages are chosen carefully, but for three dimensions the primal
set of variables should include averages (and possibly first moments) of the
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displacements over subdomain edges (and possibly subdomain faces) to obtain
competitive algorithms. After introducing primal variables of this type, we can
change the variables to allow us to represent the partially subassembled system
matrix as above.

We note that parallel, public domain BDDC software, developed by Zampini
[17], is available. We also note that Farhat, Pierson, et al. and Klawonn and
Rheinbach have been pioneers in developing FETI-DP software for elasticity
problems.

The BDDC and FETI-DP algorithms can be described in terms of three product
spaces of finite element functions/vectors defined by their interface nodal values:

WFCWFCWF.

Wr: no constraints; Wp: continuity at every pointon I Wp: common values of the
primal variables. After eliminating the interior variables, we can write the resulting
subdomain Schur complements as

(@) o) () () () -
S0 .— [ Saa San | ._ [Aaa Aan | _ [ Aa (A(i)) ! (A(i) A )
: S(l) S(l) : A(l) A(l) A(l) 1 1A “7IT ) -
oA =M oA “+mnn Il

By partially subassembling the S, we obtain S.

Let us denote the BDDC averaging operator, which maps W into Wr, by
Ep. In each BDDC iteration, we first compute the residual of the fully assembled
Schur complement equation. We then apply Eg to obtain a right-hand side for the
partially subassembled linear system. We solve this system and then apply Ep. In
the conventional BDDC algorithms the averaging across the interface is done point-
wise and that leads to non-zero residuals at the nodes next to I". In each iteration,
subdomain Dirichlet solves are then used to eliminate them, but in the deluxe
variant this step is not needed. The iteration is accelerated by using a preconditioned
conjugate gradient method.

The core of any theory for BDDC algorithms is the norm of the average operator
Ep. By an algebraic argument known, for FETI-DP, since the publication of [11,
Proof of Theorem 1], we have

Kk(M~'A) < |Epls,
which then provides an upper bound for the number of iterations required of the

preconditioned conjugate gradient method; for details on the BDDC case, see, e.g.,
[1]. Here M~ represents the action of the preconditioner.
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3 The New Algorithmic Idea

When designing a BDDC algorithm, we have to choose an effective set of primal
constraints and also a good recipe for the averaging across the interface. Traditional
averaging recipes were found not to work uniformly well for three dimensional
problems in H(curl); see [6]. This is directly related to the fact that there are two
material parameters. An alternative was found and will be outlined in this section.
It has also proven to be very robust for H(div) problems, see [14], and for Reissner-
Mindlin plates, see [12].

We note that experimentally, the condition numbers are often quite small.
For Reissner-Mindlin plates, in Lee’s experiments, they are < 4 while without
preconditioning the condition numbers can exceed 10'' for very thin plates with
the parameter 1 = 107>. The results in the H(div)-study are quite similar and
experiments with the deluxe version of BDDC for isogeometric analysis show
considerable improvement over older variants.

Across a subdomain face F C I', common to two subdomains §2; and £2;, the
deluxe Ep is defined in terms of two Schur complements, which are principal minors
of S@ and S¥), respectively:

N O BN (PN (O RN () -
Sp’ = App —Ap Ay A, k=1].
The face contribution of the deluxe averaging operator is then defined by
wvp == (Epw)r = (S + SP) T (SPw + 59w,

This action of this component of Ep can be implemented by solving a Dirichlet
problem on §2; U FF U £2;. This local problem is larger than those of the conventional
BDDC algorithms, and we are currently exploring the effects of using cheaper,
inexact solvers for these subproblems.

Similar formulas can also be written down for subdomain edges and other
equivalence classes of interface variables. The operator E}, is assembled from these
components.

We will now show that the analysis of BDDC deluxe can be reduced to bounds
for individual subdomains. Arbitrary jumps in two coefficients can then often be
well accommodated. We also note that the analysis of traditional BDDC algorithms
requires an extension theorem; the deluxe version does not.

Instead of estimating (REwr)"SORLwr, where the restriction operator Ry maps
the values on I" onto those on F, we will work with the norm of R;(wg) — Wp).
Thus, instead of estimating the norm of Ep, we will estimate the norm of I — Ep;
a bound on the norm of Ep will, as we previously have noted, give a bound on the
condition number.

We easily find that

w —ivp = (P + S 'SP wi —wd).
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By some more algebra and noting that RpSVR? = 5\, we find that

REWY — wp) SO RE(wY — ) =
(W;f) ))TS(]) (S(l) + S(I)) IS(l) (S(l) + S(l)) IS(]) (W(l) 2))

We now add the corresponding expression for the subdomain £2; and, after a
simplification, find that this sum can be written as

W? — T (SO 4 §O=1)1 (3,0 _ 0y
We then find that, for any element w7 in the primal space,
REWY — )T SORLWY —wr) 4+ (REWY — i) SOREWY — wr)
< 20wy — RFWH)TS? W —Rewr) +2w¥ — Rpwm)TSY WY — Rpwnr).

Each of the two terms on the right hand side are local to only one subdomain.

For the subdomain faces, what now remains is to estimate, after a suitable shift
wiz, W — Rew) TSP () — Rpwnr) by w®” $Oyw® This is routine for H'(£2;)
using standard estimates in the domain decomposition literature such as a face
lemma [16, Lemma 4.24] in which we estimate the energy of the extension of the
face values by zero to the rest of I; with that of the minimal energy extension.
A factor of C(1 + log(H/h))? results. For H'(£2;), all these estimates have been
available for 20 years. But for H(div) and H(curl), new tools have been required.

Similar estimates are required for subdomain edges. Let Rg be the restriction
matrix which maps the values on I" onto those on a subdomain edge E. If this edge
is common to three subdomains §2;, £2;, and £2;, the edge average wr is defined by

g = (89 4 59 + 59 (SO 4 SOu 1 5O,
Here Sg) = RES(i)Rg, etc. We can show that,
(REWY —we)T SO RE(wWY —w) <
300 S +3/40)" P w4 3/40w) S Wl
Other bounds, e.g., with a shift with an element of the primal space, can also be
developed, but the one given here has proven of use in our work on problems in

H(curl). We can also develop similar bounds for any edge, common to more than
three subdomains, using the same kinds of arguments.
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4 H(curl) Problems in Three Dimensions

Consider the variational problem: Find u € Hy(curl; £2) such that
a(u,v)o = (f,v)e Vv e Hy(curl; £2),

where u x n = 0 on 92 and where
a(u,v)e :=/[onxu-va+,3u-v]dx, £, v)e ::/f-vdx.
2 Q

Here, a(x) > 0 and B(x) strictly positive. For coefficients constant in each
subdomain, we have

N
a, V) =Y ((Vxu.V xv)g + Bi(u,v)g).
i=1

In our work, there are two relevant finite element spaces, namely Wfl;ﬂ of the
lowest order triangular Nédeléc elements and Wg;ad of the standard piecewise linear,
continuous elements, on the same triangulation.

The space of Nédélec finite element functions, Wflgﬂ, can be represented as the
range of an interpolation operator IT" which is well defined, for sufficiently smooth

elements of w € H(curl, £2), by

1
" (w) := Y A(WN, where Xo(w) := e / W - t.ds.
el Je

Here t, is a unit vector in the direction of the element edge e and N, the standard
Nédélec basis function.

We have been able to build on the work by Toselli [15]. Thus, for Nédélec
elements, the use of the basis based on {N, } results in a poor result since the coupling
between the subdomain faces and edges is far too strong. Following Toselli, we
change the variables associated with the subdomain edges using a constant along
each subdomain edge and the gradient of the standard Wgr"ad basis functions for all
the interior nodes of the subdomain edges. After this change of variables, a quite
stable decomposition can be found.

Domain decomposition theory always involves establishing the stability of a
decomposition; in our context, a new auxiliary result is then needed:

Lemma 1 Let F be a face of a polyhedral subdomain S2;. Further, let fop €
W:;ad(.Qi) have vanishing nodal values everywhere in §2; except on OF. There then

exists a gir € Wf;rl(.Qi) such that A,(gir) = A.(Vfsr) for all element edges in the
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interior of the face F, A.(gir) = 0 for all other element edges on 052, and

”giF“LZ(_Q) = C((l + IOg(H /h ))“faF“LZ(ap) + HZHVfBF tE)F||L2(3F))

”V X giF”LZ(_Q,.) =< C(l + 10g(H,/h,))||Vf3F : taF”LZ(BF)'

For a proof of this result, see [7, Lemma 3.5]. We also use several standard auxiliary
results for Wg’ﬁad as collected in [16, Subsection 4.6].
A key to our work is also a result by Hiptmair and Xu [10, Lemma 5.1]:

Lemma 2 For any polyhedral subdomain 2, and any u;, € Zirl(‘Qi)’ there exist
W, e (W (20))% pn € W (82), and q, € W' (£2,), such that

gra gra CUri

w, =(q; + Hhi(‘I’i) + Vpi,
”Vpi'liz“?i) =< C(”wl”§2(g) + HZZHV X wi”iZ(Qi))s
”hi_lqi“iZ(Ql.) + ||\I’i||[-]1(_Q) = C”V X wl”Lz(Qi)‘

We note that these bounds are local and that the result has been established for
polyhedra which are not necessarily convex.

This result is essential to Hiptmair and Xu’s work on algebraic multigrid
algorithms for H(curl) in which AMG Poisson solvers are used.

In contrast to earlier results on domain decomposition algorithms for H(curl),
we do not have to rely on any trace theorem in our proof.

Toselli primarily advocates the use of two primal variables for each subdomain
edge: the average and first moment and so do we. We have improved Toselli’s
condition number bound from

Cmax(1 + 'B;—é[?)(l + log(Hi/h))*

to an estimate, with the best possible power of (1 + log(H;/h;):

. 2 B:H? 2
Cmax min((H;/h;)*, (1 + T))(l + log(H;/hy))”.

i
We have fewer restrictions on the coefficients than Toselli; our constant C is
independent of the o; and f;.

So far, we have not mastered the case where 24 1s large. We note that for H(div),
one simple primal space works well in all cases; not so for H(curl).
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5 Numerical Results

Numerical results are presented in this section, which confirm the theory and
demonstrate that in certain cases, the deluxe BDDC algorithm is much more robust
than older BDDC variants. In our tables iter and cond denote the number of
iterations and the estimated condition numbers obtained using a relative tolerance of
1078 of the £,-norm of the residual as a stopping criterion. The subdomain problems
are discretized using the lowest order hexahedral edge elements, for which our
theory is equally valid.

In the first example, a unit cube is subdivided into N3 smaller cubes, which
are each subdivided into 64 = 43 elements. Table 1 illustrates that the rate of
convergence is independent of the number of subdomains.

In the next set of experiments, we study the behavior of our algorithm for
increasing values of H/h, the number of elements across each subdomain. We note
a much more rapid growth of the condition number for the mass-dominated cases,
i.e., with ,B,Hi2 >> o, represented by the first column of Table 2.

In our final table, Table 3, we consider a case of a three-dimensional checker-
board arrangement of the material parameters with o; = 10*, B; = 1072 for the
red subdomains and o; = 102, Bi = 1 for the black. We indeed find a considerable
improvement for the deluxe variant over two standard scalings. In the final columns,

Table 1 Results for unit cube decomposed into smaller cubical subdomains with H/h = 4

a=10"* a =102 a=1 a = 10? o = 10*
Ny Iter Cond Tter Cond Iter Cond Tter Cond Iter Cond
2 9 2.49 8 1.59 10 1.99 10 2.03 10 2.03
4 12 2.36 10 1.79 14 2.63 15 2.70 16 2.70
6 11 2.12 12 2.07 15 2.81 16 2.88 17 2.88
8 11 2.02 13 2.25 15 2.87 16 2.95 17 2.95

10 11 1.97 13 2.35 16 291 17 2.98 18 2.98
12 11 1.92 14 2.44 16 2.93 17 2.99 18 2.99

The material properties are constant with ¢; = « and ; = 1

Table 2 Results for unit cube decomposed into 27 smaller cubical subdomains

a=10"" a=10"2 oa=1 a =102 a=10*
H/h Iter |Cond Iter |Cond Iter |Cond Iter |Cond Iter | Cond
4 12 2.74 9 1.63 13 2.41 13 2.47 14 2.47
6 15 4.51 12 2.15 14 2.93 15 3.01 16 3.01
8 19 6.89 14 2.70 16 3.34 17 3.44 18 3.44

10 22 9.98 15 3.22 17 3.69 18 3.79 19 3.79
12 24 13.8 16 3.69 17 3.98 19 4.09 20 4.10
14 28 18.3 17 4.13 18 4.24 19 4.36 21 4.36
16 30 23.5 18 4.55 19 4.47 20 4.60 22 4.60

The material properties are constant with ¢; = @ and 8; = 1
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Table 3 Results for unit cube decomposed into 27 smaller cubical subdomains with a checker-
board arrangement of material properties

Stiffness scaling Cardinality scaling Deluxe scaling e-deluxe scaling
H/h Iter Cond Iter Cond Iter Cond Iter Cond
4 50 272 80 156 6 1.06 6 1.06
6 67 342 100 207 7 1.20 7 1.20
8 78 398 117 247 8 1.33 8 1.33
10 87 445 128 281 9 1.45 9 1.45
12 95 486 140 310 10 1.55 10 1.55
14 102 522 151 336 10 1.63 10 1.63
16 109 554 160 360 11 1.71 11 1.71

marked e-deluxe, results of replacing the solver over pairs of subdomains with a
common face, by a solver over only a thin neighborhood of the face, which just
includes the element edges next to the face, are given.
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A Stochastic Domain Decomposition Method
for Time Dependent Mesh Generation

Alexander Bihlo and Ronald D. Haynes

1 Introduction

We are interested in PDE based mesh generation. The mesh is computed as the
solution of a mesh PDE which is coupled to the physical PDE of interest. In [3] we
proposed a stochastic domain decomposition (SDD) method to find adaptive meshes
for steady state problems by solving a linear elliptic mesh generator. The SDD
approach, as originally formulated in [1], relies on a numerical evaluation of the
probabilistic form of the exact solution of the linear elliptic boundary value problem.
Monte-Carlo simulations are used to evaluate this probabilistic form only at the sub-
domain interfaces. These interface approximations can be computed independently
and are then used as Dirichlet boundary conditions for the deterministic sub-
domain solves. It is generally not necessary to solve the mesh PDEs with high
accuracy. Only a good quality mesh, one that allows an accurate representation of
the physical PDE, is required. This lower accuracy requirement makes the proposed
SDD method computationally more attractive, reducing the number of Monte-Carlo
simulations required.

Grid adaptation by an SDD approach does generate interesting issues in its own
right. Grid quality should be monitored during the interface solves to give a suitable
stopping criteria for the stochastic portion of the algorithm. Such a stopping criteria
can be readily implemented by checking the mesh quality (as measured e.g. through
mesh smoothness, alignment or equidistribution, see [5]) after every nth Monte-
Carlo simulation. If the mesh quality is below a threshold, the additive nature of
expected value computations allows one to resume the Monte-Carlo simulations
and hence improve the mesh generation.
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As mentioned, in [3] only the steady grid generation problem was considered.
Of course, in practice, the problem of grid generation is coupled with the process
of solving the system of physical, often time dependent, PDEs. It is this latter issue
that we begin to explore in this paper.

We are interested in time dependent PDEs whose solutions evolve on disparate
space and time scales. The solution behaviour lends itself to the use of time
dependent meshes which automatically adapt and evolve to efficiently resolve the
solution features. The generation of these time dependent grids can be done either
by statically applying an elliptic mesh generator using the physical solution obtained
at the previous time step or by employing a time relaxation of the static mesh PDE
resulting in a parabolic moving mesh PDE, as in [5]. The extension of the SDD
approach to (linear) parabolic mesh generators is possible due to the existence of a
stochastic representation of the exact solution of such linear parabolic problems. For
the sake of illustration, we will work with the time-relaxed form of the Winslow-
Crowley variable diffusion mesh generation method, first described in [9].

2  Winslow’s Method

The equipotential method of mesh generation in 2D, as described in [4], found the
mesh lines in the physical co-ordinates x and y as the level curves of the potentials
& and 7 satisfying Laplace’s equations

V3 =0, V3n =0, (1)

and appropriate boundary conditions which ensure grid lines lie along the boundary
of the domain. Here derivatives are with respect to the physical co-ordinates. The
mesh transformation, x(£, n) and y(§, n), in the physical domain £2,, can be found
by (inverse) interpolation of the solution of (1) onto a (say) uniform (&, ) grid.
In practice, the inversion to the physical co-ordinates is not necessary. Instead
one could transform the physical PDE of interest to the computational co-ordinate
system.

Winslow [10] generalized (1) by adding a diffusion coefficient w(x, y) depending
on the gradient or other aspects of the solution. This gives the linear elliptic mesh
generator

V-wVE)=0 and V-wVnp) =0. 2)
The function w(x, y), known as a mesh density function, characterizes regions where

additional mesh resolution is needed and in general depends on the solution of the
physical PDE. We assume w and 1/w are strictly positive, bounded C>-functions.
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Here we assume the solution of the physical PDE is time dependent and hence the
mesh density function is changing with time, w = w(t, x, y). One could still use (2)
to solve the mesh transformation at each time ¢. For time dependent PDEs this would
result a system of differential-algebraic equations for the physical solution and the
mesh. Instead, we choose to relax (2) to obtain a parabolic linear mesh generator of
the form

1 1
& = f(vw- VE+wV) and 7, = T(VW' Vi + wVZp). 3)

This gives a mesh PDE which depends explicitly on the mesh speed and provides
a degree of temporal smoothing for the mesh. In fact one can show the difference
between the solution of (3) and the solution of (2) goes to zero as T — 0, see [5]. In
the following, we set T = 1.

Below we only work with prescribed functions for w. In practice, however, the
monitor function would be linked to the solution of a physical PDE. For example,

one could use an arc-length type function p = /1 + a(u2 + u%) and choose w =

1/p. We also note that our algorithm uses an interpolated form of w instead of
the analytic expression. In practice, this is necessary since u is only known on the
current grid as we alternately solve the mesh and physical PDE:s.

3 Linear Parabolic Differential Equations and Stochastic
Domain Decomposition

The system of mesh PDEs (3) is of the form

&=1L& n =Ln, 4)

where £(¢, x, y) and 7(z, x, y) are the computational coordinates defined over [0, 7] x
£2,. In system (4), L is a linear elliptic operator of the form

L - +b 0
=ajoa— i
]axinj BXL'

with continuous coefficient matrix a(t,x,y) = (a;)(t,x,y), i,j € {1,2}, and drift
vector b = (by,by)T(t,x,y). Here we employ the summation convention over
repeated indices. System (4) is accompanied by smooth boundary and initial condi-
tions gla.Qp :f(tv-xvy)s r’|3.Qp = g(t,x,y), S(O,x,y) = %‘O(xvy)s and n(osxsy) =
Mo (x,y).

The solution of such linear parabolic problems can be described using the tools
of stochastic calculus [2, 7]. Provided that £ and 5 are C'-functions in ¢ and C?
in (x,y), the point-wise solution of system (4) at (z,x,y) € [0,T] x £2, is given
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probabilistically as
§(t.x,y)=E [éo(x(f))l[zmp»]] +E [f(f — Tog2, X(faxzp))l[zagl,«]] : &)

where the process X(1) = (x(¢),y(r))T satisfies, in the ito sense, the stochastic
differential equation (SDE)

dX (1) = b(t, X(0)dt + o (¢, X(£))dW(2).

The relation between o and (ay) is given through

1
Eo(l, x,y)o(t,x, y)T =a(t, x,y)

for all (¢, x,y) € [0, T] x £2;. The solution for 1(t, x, y) is completely analogous.

In (4), the E[-] denotes the expected value, Tog, is the time when the stochastic
path starting at (x, y) first hits the boundary of the physical domain £2,, W is two-
dimensional Brownian motion and 1 is the indicator function. See [7] for a proper
definition of the required probability space.

The time dependent mesh generator (3) is a special case of the general form (4)
with

a(t,x,y) =wh, bi(t,x,y) =wy, ba(t,x,y) =w,, (6)

where I, is the 2 x 2 identity matrix.

For our two dimensional mesh generator we choose the initial conditions £(r =
0,x,y) = &(x,y) = xand n(t = 0,x,y) = no(x,y) =y, corresponding to an initial
uniform mesh, and the static boundary conditions £(¢,x;,y) = 0, £(t,x.,y) = 1,
n(t,x,y) = 0 and n(t, x,y,) = 1. This ensures we use the standard computational
domain 2. = [0, 1] x [0, 1] and the rectangular physical domain 2, = [x, x;] x
[y1, yu]. The remaining boundary conditions for £(¢, x, y1), £(¢, x, yu), n(¢, x1, y) and
n(t, x;,y) are determined by solving the 1D version of (2) along the boundaries.
Collectively, we use f and g to denote these boundary conditions for £ and 7 as in
Eq. (5).

Hence we have to solve the SDE

dX (1) = Vwdr + v2wdW(2), (7a)

for the single path X(r). The stochastic form of the exact solution of Eq. (3) for £ is
then obtained by evaluating

£(.2,9) = B [80X(D gy -1 | + B [ X(@02,)Lirig, <0 |- (7b)

The point-wise solution for 7(¢, x, y) is obtained in an analogous fashion.
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In principle, the probabilistic solution (7) allows one to determine the compu-
tational coordinates & and 7 at each point in the space-time domain [0, 7] x £2,,.
However, this is prohibitively expensive (unless a sufficiently large number of
compute cores is available). A more efficient approach is to evaluate the solution (7)
only at points along artificially imposed interfaces. These solutions serve as
boundary values for the DD implementation. Moreover, one can reduce the number
of stochastic solves along the interfaces even further as described at the end of the
next section, cf. [2].

In the mesh generation context it is not possible to obtain the solution of (5) at all
times, as the solution of the mesh PDE is coupled to the physical solution. That is,
rather than solving (5) for a time ¢ € [0, T}, it is generally only possible to use this
stochastic solution to advance the solution of (4) over one single time step from #*
to #"T1. In this case, & and 1o should be interpreted as the values of £ and 7 at time
" and the monitor function, w, is given at either #* or 1 and remains constant over
the time step.

4 The Numerical Method

Stochastic Solver and Domain Decomposition The use of the stochastic solu-
tion (5) for the time-relaxed Winslow mesh generator with parameters (6) is
straightforward. We solve (7a) using the classical Euler-Maruyama scheme, i.e.
we employ linear time-stepping. An alternative would be to use exponential time-
stepping as advocated e.g. in [1, 3, 6]. In our tests, linear time-stepping gives
sufficient accuracy. The components of the Brownian motion dW() are computed
as /At N(0, 1), where A'(0, 1) is a normally distributed random number with mean
zero and variance one [7].

The time dependent weight only becomes available at each time step (due to
a possible coupling with a physical PDE). Hence we are only able to employ
formula (7b) to integrate over a single time step, i.e. from #* to "*!. Over this
time step, the weight function is evaluated at #* and held constant, i.e. we have
w'(x,y) = w(f",x,y) in (7a). Accordingly, & in Eq.(7b) is to be interpreted as
&} = E(r", x,y), i.e. the values of the computational coordinates at the current time
". Moreover, the boundary functions f and g are updated at each time step to reflect
changes in the physical solution.

We then numerically integrate the SDE (7a) from #* to "', The drift vector
b = Vw is required everywhere along the path of the stochastic process X(#) but
is only available directly at the grid points of the domain. Bilinear interpolation is
used to obtain the values of b in between these grid points. The quantity Vw is
approximated using finite differences.

In the DD context, the stochastic solution is only required at a selection of points,
(x%, y4), which live on the interfaces between sub-domains. One time step At is split
into several smaller sub-time steps in order to numerically integrate the SDE (7a)
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from 1" to "', We found this splitting of At into sub-time steps necessary to
determine, with sufficient accuracy, whether the stochastic processes has left the
domain 2, during At. This is not unlike the M* approach for mesh generation
discussed in [5]. At each sub-time step, a boundary test is performed to determine
whether the stochastic process has left the domain £2,,. If this is the case, the process
contributes via the second term in Eq. (7b) to the approximation of & (¢!, xi, yt). If
the stochastic process did not leave the domain until #"*! is reached, it contributes
to the first term in the approximation of & (#"*!, xi, yt) in Eq. (7b). The computation
of n("*1,x¢,yt) is handled analogously. The expected values are then replaced by
arithmetic means. Note, it is not desirable to make At itself smaller, as this would
degrade the efficiency of the (deterministic) implicit sub-domain solver, which is
described below.

Deterministic Sub-domain Solver The values of £ and 7 along the sub-domain
interfaces serve as boundary conditions for the sub-domain solver. The sub-domain
solver we employ is an implicit finite-difference discretization of Eq. (3). The matrix
system is solved using an LU-factorization.

Parallelization and Further Speed-up It is well-known that Monte-Carlo tech-
niques converge rather slowly [8] and are usually most competitive for problems in
high dimensions. The use of the stochastic solution to obtain the interface values for
a DD solution, however, is considerably more efficient and provides a fully parallel
grid generation algorithm. Moreover, the DD method requires no iteration. The
stochastic solutions on the interfaces can be determined at each point separately
and each Monte-Carlo simulation is independent. Additionally, each sub-domain
solution could potentially be assigned to a single processor once the interface
solutions are obtained, yielding excellent scalability. Due to the fully parallel nature
of the algorithm, the method is also fault tolerant. This renders the method suitable
for an implementation on massively parallel computing architectures, cf. [1-3].

A further source of improvement stems from the fact that £ and 1 do not
have to be computed at all grid points along the interfaces. As proposed in [1]
it may be sufficient to use the stochastic solution only at few points on the
interface and recover the solution at the remaining interface points using inter-
polation. In [3] we have used a relatively simple optimal placement strategy
to determine the most important locations on the interface where the stochastic
solution should be computed. We use the same strategy in the present algo-
rithm, i.e. the stochastic solution is computed near the maxima and minima of
w, and w,, along the horizontal interfaces and w, and w,, along the vertical
interfaces.
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5 Numerical Results

We present an example for our SDD method to generate an adaptive (moving) mesh
for the weight function w = 1/p, where

LR B 2 L B, S
(x 572 cos( m)) + (y 572 sin( m‘)) 100

We choose the parameters @ = 10 and 8 = —50 used in [5]. Both the physical and
computational domains are the unit square. The grid we generate has 41 x 41 nodes
and is divided into four sub-domains. On the interfaces we determine the stochastic
solution at the key points using the optimal placement strategy mentioned in the
previous section. Piecewise cubic Hermite interpolation is used to determine the
remaining interface points. We integrate (3) up to t = 0.75 using At = 0.001.
Each time step is split into 20 sub-time steps while solving the SDE (7a) and N =
10000 Monte-Carlo simulations are used to estimate the expected value in (7b). The
resulting meshes at ¢t = 0.25, t = 0.5, and r = 0.75 are depicted in Fig. 1.

The method is able to produce smooth meshes over the physical domain that
adapt well to the time-dependent monitor function. No explicit smoothing was
applied to the final meshes in this example. In general we have found sub-domain
smoothing to be a way to further reduce the number of Monte-Carlo simulations
needed in the probabilistic expression (7b), see [3].

p:l—i—aexp(ﬂ

6 Conclusion

In this paper we have proposed a new stochastic domain decomposition method for
the construction of adaptive moving meshes suitable for time-dependent problems.
The method is fully parallelizable as the values of the computational coordinates &
and 71 on the single sub-domains can be determined without information exchange
from neighboring sub-domains and all the interface values can be computed
independently.

Future refinements include the use of exponential time-stepping to solve the
SDE (7a). More generally, more sophisticated boundary tests could better determine
the first exit time of a stochastic process. This will allow using larger time steps in
the solution of (7a) thus making the method more efficient. An alternate approach
to generate time dependent meshes is to apply the SDD method from [3] to the
sequence of elliptic problems which result from discretizing (2) in time.
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Fig. 1 Top to bottom: Meshes obtained from the parabolic mesh generator (3) using the SDD
method at r = 0.25, ¢t = 0.5, and t = 0.75. Left: Meshes over the physical domain. Right: Meshes
over the computational domain obtained from the former using natural neighbor interpolation.
Thick line: Sub-domain interfaces. Circles: Points where the mesh is obtained using the stochastic
solution (7)
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Some Geometric and Algebraic Aspects
of Domain Decomposition Methods

D.S. Butyugin, Y.L. Gurieva, V.P. Ilin, and D.V. Perevozkin

1 Introduction

The DDMs include a variety of geometric, algebraic, and functional aspects which
are aimed at a high performance solution of large-size problems on post-petaflop
computers.

Numerous works and Internet sites are devoted to this problem: monographs,
papers, conference proceedings, programs, etc. [2, 10]. The issues that are of most
interest from the practical point of view are the requirements on high resolution of
the numerical approaches to solving multi-dimensional interdisciplinary boundary
value problems described by systems of partial differential equations (PDEs) or
the corresponding variational statements in the computational domains with com-
plicated piecewise smooth boundaries and contrasting material properties of their
subdomains. Approximation of such problems by finite-volume or finite-element
methods on nonstructured grids results in very large systems of linear algebraic
equations (SLAEs) with 10%-10'° unknowns with ill-conditioned or nondefinite
sparse matrices with complicated portrait structures.

The solution of the SLAE:s is a weak point of modern computing, and the DDMs
are the main tool providing scalable parallelism on multi-processor and multi-core
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systems. The goal of this paper is to experimentally investigate several approaches to
automatic construction of balancing grid subdomains and to parallel solution of the
resulting SLAE using the parametrized width of subdomain overlapping, different
internal boundary conditions, aggregation techniques, see, for example, [9]. The
results of a comparative analysis of the efficiency of various approaches for the
model problems are presented. The computations were carried out with the Krylov
library [1].

2 Grid Domain Decomposition Without Separator Nodes

Let the matrix of the SLAE Au = f be split into P subsystems:

P
(Au)p = Appltp + ZAP"IMCI =f, p=1,...,P, A= {aiJ-} S %N’N, (1)

9=1
qF=p

A:{Ap,qet%’NP'Nq}, uz{uPE%NP}, fz{ﬁé%M’}, p.gq=1,...,P.

Assume that SLAE (1) is a system of grid equations approximating a multi-
dimensional boundary value problem for a differential equation, so that the com-
ponents of the vectors u, f correspond to a grid point, the total number of nodes

P
in the grid computational domain 2" = | .Q;’ being equal to N. The block
p=1
decomposition of the matrix and vectors corresponds to the partitioning of £2” into
P non-overlapping subdomains .Q['f, each consisting of N, nodes, N1 +...+N, = N.
The decomposition of £2” does not use separator nodes, i.e., the boundaries of the
subdomains do not pass through the grid nodes.
The process of system (1) solving can be parallelized by the additive Schwarz
method:

P
Applty, = o = ZAM”Z_l = 37»_1' ()
g

The above matrix-algebraic representation of the structure of SLAE (1) can be
extended by introducing a graph describing the same problem. Each ith grid node
(or the ith row of the matrix A) can be associated with a vertex v; of a graph G, and
the mesh edge connecting the nodes i and j € 22", can be associated with the edge
of the graph G = (V,E),V ={v; i = 1,...,N}, E = {(vi,v)) |aij # 0,i,j =

1,...,N}.
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Define an extended subdomain 5_2;‘ D .Q[il with overlapping, whose breadth is
defined in terms of the number of layers, or fronts, of the grid nodes.

Let I po € .Q;’ denote a set of internal near-boundary nodes i.e., nodes P; € .Qp,
in which one of the neighbors does not lie in 2" (P; ¢ 2, j € w;, j # ). In I,
define a subset of nodes Fpoq in which the neighboring nodes belong to the adjacent
subdomain .Q ,q € Wy, where @), is a set of numbers of the subdomains adjacent to

$2). Thus, FO U I}, and the subsets I, may intersect, i.e. they can contain
€x,
near-boundary noglespwith neighbors from different subdomains.

Let Fl denote a set of nodes adjacent to the nodes from I’ po but not belonging
to 27 and I); and let I} be a set of nodes adjacent to the nodes from I’} but not
belongmg to the union F pl U [2;‘, etc. These sets will be called the first external
layer (front) of nodes, the second layer etc., respectively. The resulting collection
ofnodes 27 = !\ J I} ...\ I* will be called the extended pth grid subdomain,
and A, the extenswn breadth. The case A = 0 actually means the decomposition of
the domain £2" into subdomains without intersections () = £2).

The set FPA € QPA presents internal near-boundary nodes of the extended
subdomain QPA, and FPA“, a set of external near-boundary nodes. Thus the
geometric boundary of £2;' runs between I/ and I2*'. Similarly to I,
the set F 4 can be partitioned into subsets of near-boundary nodes FPA =

pq1 ur, pqz U A whose neighboring nodes are located, respectively, in

the subdomains 951,92’2, e .Q;’ (here m,, denotes the number of subdomains
mp
that intersect .Qp ,and q1,q>, ..., Gm, are the numbers of these subdomains).

Consider iterative process (2) for the equation corresponding to the ith near-
boundary node in .QI','. Some of the neighbors belong to other subdomains £2”, ¢ # p

but do not belong to £2}':

(a,, + 6; Za,d)u + Z a,,u =fi+ Za,J(H Uy ! 14;’_1). 3)

/¢~Qp Jegp J¢Qp

Here 6; € [0, 1] are parameters, corresponding for 6; = 0 or §; = 1 to the
Dirichlet or Neumann boundary conditions, and for 0 < 6; < 1, to the Robin
condition. o o

Introduce matrices A,, € #"Vr, A, , € %" for Eq.(3). Then the iterative
process can be transformed to the form

Appt p f ZAM”n lzgz L 4

q#p

In the above discussion, we have considered the extension of the subdomain
[2;‘ towards its outer side. The same procedures are performed for the neighboring
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subdomains, which results in the construction of fronts inside .QI','. These procedures
can be implemented at the grid layers (fronts) in the extension of the neighboring
subdomains .Q;’, q #p.

Formula (4) does not describe the iterative process exactly since Ni+... +Np >
N. The vector u" can be determined by partitioning the unit:

u; = Z ﬂql-(ﬁz,.)i, Z Ng: = 1, (5)

gi€w; gi€w;

where @; is a set of the extended subdomains S_Z(’;i including the node P;. Particular,
but important, cases in (5) are 7, = 1 for P; € ]! and n,, = 0 for P; # ).

An alternative approach is to use iterations “in traces”. Let 1:}, =T pA ur pA“
define the trace of the extended subdomain Qh for ; #£ 0,P; € FPA, and I, =
I'ZDA“, for §; = 0. We can write I}, = | J I, ,, Where L,,=oL,N .Q(’; From (2) we
have

i, = 1’[7 ZAI”IM : (6)

q#p

Here the matrices A, p are assumed to be non-singular, Ap q € NS4 and i i, =

{u;; P; € 1'}, ¢ € RV N,7 4 being the number of nodes in 1'}, 7
If uj, — u, for n — oo, iterations (6) provide the solution of the preconditioned
SLAE

Au=f, feRr, Aea"". (7)

Multiplying Eq. (6) by A 4p and denoting quu = AP glly = vy, € BN, we
obtain the algebraic system “in traces”:

P
T a1 1 A-l7F . =
Vop + AgpAr ) Z Vpg = AgpA ) oo P=1.....P; q € &), ®)

9=1
9Fp

P P

The degree of freedom of this SLAE is N = > N, = > Np,q < N.
p=1 p=1gew

Iterative solution of Eq.(8) can be implemented by a Krylov methgd. To speed

up the iterative DDM process, various approaches, for example, deflation, coarse

grid correction, and smoothed aggregation can be used. We consider the SLAE

reduction procedure based on an interpolation principle, under the assumption of

smooth behavior of the solution to be sought for in each subdomain.
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Define a prolongation matrix W/ = {w,} € Z""*, where the vectors (columns)
w),, have nonzero (unit) entries corresponding to the subdomain £2, only. Then A=
WTAW € %P* presents the global aggregation matrix, and B = WA—'WT is, in
a sense, an aggregating preconditioning matrix. For simplicity, we consider non-
overlapping subdomains. In this case, the matrix in (7) has a simple form A = BjA,
where Bj is the block Jacobi preconditioner [9].

DDM-exploiting iterative processes can be constructed in various ways. We use
a simple one, namely, the FGMRES [9] with dynamic preconditioner B,: B, = B4
forn=km+1,k=0,1,..., and B, = B; otherwise. The stopping criteria of this
process are

1] < 117 = Aul| < elI]ll. ¢ < 1. orn < nl,. ©

Subdomain SLAEs are solved by either the direct solver PARDISO [5] or the
iterative BiCGStab method [9].

In the latter case of a two-level iterative algorithm, various approaches can be
chosen for defining the internal stopping criteria &' < &° and n'___, similarly to (9).

max?>

3 Parallel Implementation of Algorithms

The major question in high-performance implementation of DDMs is automatic
construction of balancing grid subdomains, based, for instance, on CSR format of
the original SLAE. This problem is solved by the graph partitioning approach in two
stages. First, we define P subdomains " p = 1,..., P, without intersections. Then

extended subdomains Q['f with a given breadth A of overlapping are constructed on
the basis of the following algorithm.

The non-overlapping grid subdomains .Q['f are formulated as subgraphs
G,(V,, E,) with possibly small diameters containing approximately equal numbers
of vertices N, ~ N/P. In practice, the task consists in transforming the original
CSR format to the CSR,, formats for P subdomains, which should be distributed
among the corresponding MPI processes.

The graph partitioning is a multi-level aggregation procedure of the sequential
macrographs GO(VO EO®) = (GO E))y, 1 = 0.1....L,p = 1.....P.
Here L and P; are the number of levels and the number of macrovertices at the /th
level, respectively, whose macro-vertices include several vertices of a lower level.
If GO(V©, E©®) denotes the original grid graph, the first aggregation step can be
described by the following pseudocode (breadth-first search [7]):
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i=1,while {ueV|Cu)=0}#0
pick any v from {u € V| C(u) = 0}
Q:={v}, n=0
while (n < Ry, and Q # @)
v <« 0, Cw):=i
0« (Adj(v) N{ueV|Cu) =0\ Q
n=n+ W)
end while
i=i+1
end while

Here C(u) and W(u) are the color and weight (integers) of the vertex u,
respectively, with the initial values C(#) = 0, W(u) = 1, Adj(v) is a set of vertices
adjacent to u, and Q is the queue type data structure. Later, C () presents the number
of a subdomain (macrovertex) containing the vertex (grid point) u, and W(u) is
the resulting number of nodes in the subdomain (W(u) < ny,,). This algorithm is
repeated for the levels / =1, ..., L.

Parallel implementation of DDM-FGMRES is performed using hybrid program-
ming with MPI processes on distributed memory for subdomains and OpenMP tools
for each of the multi-core processors with shared memory.

4 Numerical Experiments

We present the results of some numerical experiments on solving a model Dirichlet
boundary value problem for the 2D and the 3D Laplace equation in the unit
computational domain £2 = [0, 1], d = 2, 3, which is approximated by a standard
(2d+1)-point finite difference scheme on a square mesh (which is cubic in 3D) with
the degree of freedom N = N¢, for different values of N,. The stopping criteria for
FGMRES without restarts were ¢ = 1077 and n¢,,, = co. The exact solution and
initial guess for the iterations were taken equal to unit and zero, respectively. All
the experiments were carried out on the NKS-30T cluster [6] with standard double-
precision arithmetic.

Table 1 shows the efficiency of the proposed algorithm for automatic construction
of 3D balancing grid subdomains for P = 1, 8§, 16, 32, 64. The subdomain SLAEs
were solved either by the direct method PARDISO from Intel MKL or by the pre-
conditioned BiCGStab method (Eisenstadt modification of incomplete factorization
[4]) with the parameters &' = 0.1, n, = 5 (these values are nearly optimal for
the given problem data). Note that the PARDISO was run with 12 threads, whereas
the BiCGStab was implemented without any parallelization. In Table 1, the upper
and lower figures in each line correspond to grids with 128% and 2563 unknowns,
respectively, and the left and right figures in each column present the numbers of
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Table 1 Comparative analysis of DDM without overlapping for direct and iterative subdomain
solvers, 8 = 0, N = 1283,256°

P

Method 1 8 16 32 64

Direct 1 885 53 30.1 75 20.4 108 12.6 130 18.1
- - 72 332 102 212 142 138 169 189

Iterative 18 64.9 68 20.5 92 125 103 13.0 197 11.9
18 606 99 296 132 203 197 139 262 115

Table 2 Numbers of
external iterations for solving
SLAEs with aggregation
preconditioning

m

82 |50 |46 |41 |42 |46

128 132 |62 |53 |52 |57 |58
143 |70 |54 |51 |53 |53

256> | 193 |60 |72 |61 |62 |68

external iterations and execution time in seconds. In this case, the DDM parameters
A = 6 = 0 were used.

Table 2 presents the number of iterations for the aggregation approach for the
same model SLAEs with the exact solution # = 1000 4+ x + y and initial guess
u® = 0. The aggregation preconditioner was used once every m steps (with m = 10
as an optimal value). Note that the behavior is also observed for different numbers of
subdomains, whereas the results are given here for P = 16 and 32 (upper and lower
cell values, respectively). The case m = 0 means solving without aggregation.

In the other experiments, 2D problems were solved on square meshes with
N = 128,256, and P = 4, 16, 64 equal square subdomains. The systems in the
subdomains were solved by the PARDISO, and the external iterations were carried
out by the iterative BICGStab method “in traces”.

Table 3 presents the iterative process versus the overlapping value A. The cells
present the same data as in Table 1 for # = 0, and N = 1282,256 (upper and
lower lines in each row, respectively). We see that the number of iterations decreases
monotonically with increasing A, but for the run time there is some minimum for a
sufficiently small value A < 4.

Table 4 contains the number of iterations versus 6 values. The left and right cell
values correspond to N = 128% and N = 2562, respectively. No overlapping takes
place,i.e. A = 0.

These results demonstrate that the constant parameter 6 is appropriate only for
a sufficiently small P. The experiments have also shown that for the overlapping
decomposition (A > 0) it is better to take 6 = 0.
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Table 3 Numerical results for different overlapping values A, § = 0, N = 1282, 256

A
P 0 1 2 3 4 5
4 18 1.75 11 1.45 9 1.37 7 1.26 7 1.26 6 1.20
27 6.85 16 4.37 12 3.51 10 3.02 9 282 8 2.49
16 32 1.42 18 1.18 14 1.19 12 1.09 11 0.89 9 0.79
41 3.85 24 2.83 20 2.20 17 1.80 14 1.38 14 1.66
64 43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86
60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66
Table 4 Number of 0
g%ﬁ‘s’?zf‘i%‘;“\;?f}fﬂapp‘ng P 0 0.5 0.6 0.7 0.9975
different 6, N = 1282, 2562 4 18 27 16 26 16 24 14 23 10 12

5

16 32 41 28 40 27 39 27 40 31 75
64 43 60 42 56 40 55 41 55 93 86

Conclusions

Our preliminary numerical results show that the DDMs considered have reasonable
efficiency. However, there are too many approaches needing systematic experimen-
tal investigation to construct high-performance code. This concerns, in particular,
the application of various optimized Schwarz methods [3, 8] with different values
of parameter 6 and coarse grid correction for overlapping or non-overlapping
DDM. Of course, the problem of creating an adapted environment for robust SLAE
solvers on modern supercomputers requires coordinated efforts of algebraists and
programmers.
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Isogeometric Overlapping Additive Schwarz
Solvers for the Bidomain System

Lara Antonella Charawi

1 Introduction

The electrical activity of the heart is a complex phenomenon strictly related to its
physiology, fiber structure and anatomy.

At the cellular level the cell membrane separates both the intra- and extracellular
environments consisting of a dilute aqueous solution of dissolved salts dissociated
into ions. Differences in ion concentrations on opposite sides of the membrane
lead to a voltage called the transmembrane potential, vy, defined as the difference
between the intra- and extracellular potentials, (1; and ug). The bioelectric activity
of a cardiac cell is described by the time course of vy, the so called action potential.
At the tissue level the most complete mathematical model of cardiac electrophysi-
ology is the Bidomain model, consisting of a degenerate reaction-diffusion system
of a parabolic and an elliptic partial differential equation modelling vy, and ug of
the anisotropic cardiac tissue, coupled nonlinearly with a membrane model. The
multiscale nature of the Bidomain models yields very high computational costs
for its numerical resolution. The starting point for a spatial discretization is a
geometrical representation that encompasses the required anatomical and structural
details, and that is also suitable for computational studies. Detailed models were
proposed based on structured grids with cubic Hermite interpolation functions,
which enable a smooth representation of ventricular geometry with relatively few
elements, see e.g. [14]. In this study we used an alternative approach based on
Isogeometric Analysis (IGA), a novel method for the discretization of partial
differential equations introduced in [7]. This method adopts the same spline or
Non-Uniform Rational B-spline (NURBS) basis functions used to design domain
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geometries in CAD to construct both trial and test spaces in the discrete variational
formulation of the differential problem, and provides a higher control on the
regularity of the discrete space. The IGA discretization of the Bidomain model in
space and semi-implicit IMEX) finite differences in time lead to the resolution at
each time step of a large and very ill-conditioned linear system. Since the iteration
matrix is symmetric semidefinite, it is natural to use the preconditioned conjugate
gradient method.

We have developed and analyzed an overlapping additive Schwarz preconditioner
for the isogeometric discretization of the cardiac Bidomain model. We have proved
that the resulting solver is scalable and optimal in the ratio of subdomain/overlap
size. Several tests confirm the theoretical bound on three-dimensional NURBS
domains. We note that Isogeometric overlapping Schwarz preconditioners were
first introduced in [2] for scalar elliptic problems, while multilevel Schwarz
preconditioners for FEM discretizations of the Bidomain system were studied in
[10].

2 The Bidomain Model

The macroscopic Bidomain representation of cardiac tissue volume is obtained by
considering the superposition of two anisotropic continuous media the intra- (/) and
extra- (E) cellular media, coexisting at every point of the tissue and separated by a
distributed continuous cellular membrane; see [12] for a derivation of the Bidomain
model from homogenization of cellular model. The cardiac tissue consists of an
arrangement of fibers that rotate counterclockwise from epi- to endocardium, and
that have a laminar organization modeled as a set of muscle sheets running radially
from epi- to endocardium, see [8]. The anisotropy of the intra- and extracellular
media is described by the orthotropic conductivity tensors D;(x) and Dg(x), see e.g.
[4]. We denote by 2 the bounded physical region occupied by the cardiac tissue and
introduce a parabolic-elliptic formulation of the Bidomain system. Given an extra-
cellular applied stimulus per unit volume prp, we seek the transmembrane and the
extracellular potentials, vy, and ug, respectively, and the gating variable w satisfying
the system

Cm%)_?d —div(D;V(vy + ug)) + Lipn(vm, w) = 0 on 2 x (0,T)
_dlv((D] + DE)VME) — le(D]VUM) = IfPP on Q X (O’ T) (1)
& — R(vy,w) =0 on 2 x (0,7T)

with insulating boundary conditions, suitable initial conditions on vy, ug and w,
while ¢,, is the membrane capacitance per unit volume. The non-linear reaction term
ILion, the ionic current of the membrane per unit volume, and the ODE system for
the gating variables are given by the chosen ionic membrane model. Here we will
consider the (LR1) membrane model by Luo and Rudy [9]. The system uniquely



Isogeometric Overlapping Additive Schwarz Solvers for the Bidomain System 129

determines vy, while ug is defined only up to a same additive time-dependent
constant, chosen by imposing |, ouedx =0.

3 Discretization and Numerical Methods

Isogeometric Space Discretization In the three-dimensional case, our domain
£2, representing the left ventricle, is modeled by a family of truncated ellipsoids.
According to the isoparametric approach we discretized the Bidomain system (1)
with IGA based on NURBS basis functions, see e.g. [5]. NURBS functions are built
from B-spline functions.

In what follows, let d > 2 be the dimension of the physical domain of interest.
For any ¢ = 1,...,d, we introduce the open knot vector, a set of non decreasing
real numbers &, = {0 = &1.4.&.a,-..,En+p+1.0 = 1}, where p is the order of
the B-spline and n, is the number of basis functions necessary to describe it. Given
the knot vector, it is possible to define univariate B-spline basis functions, ij (&),

the tensor product spline space living in the parametric domain is

V.= SPan{Bﬁ...i,,s ip=1,...,n4,1 <a <d}.
Given w;, _;, the weights associated to C;, _;,, a mesh of control points, we can define
the NURBS basis function on the parametric domain

Bl E)0ia

R’ . = ,
) =~
with w(§) := ZZ‘Z:" BZ...id &) wiy iy
Since the single patch domain 2 is a NURBS region, we define a geometrical
mapF: (0,1)? — 2 as

FE) =) ...> R . (&)Ci .

i1=1 ig=1

and the physical space V as the span of the pushforward of the NURBS basis
functions

V= span{Rflm oF iy =1,....n4, 1 <a<d.

id
A semidiscrete problem of (1) is obtained by applying a standard Galerkin proce-
dure. We denote by M the mass matrix, by A; g the symmetric stiffness matrices
associated to the intra- and extra anisotropic conductivity tensors, respectively.
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Time Discretization The time discretization is performed by a decoupled semi-
implicit method consisting of the two following steps:

— Given v}, uj and w" at the previous step n, we first solve the ODEs system for the
gating and ionic concentration variables. Since the membrane model employed
is the LR1, the ODE integration approach is based on the Rush-Larsen method,
see [13].

— Once computed w"™°, a semi-implicit scheme is applied to the reaction-diffusion
part, see [1], i.e., by using the implicit Euler method for the diffusion term, while
the nonlinear reaction term I;,, is treated explicitly. As a consequence at each
time step we need to solve the linear system

Cm n+1 Cm n . n n+1

n+1

1
A A+ Ag [\t |

imposing 1”Mug"™" = 0. Due to the ill-conditioning of the iteration matrix
and the large number of unknowns required by realistic simulations of cardiac
excitation in three-dimensional domains, a scalable and efficient preconditioner
is required.

We recall that the linear system (2) is equivalent to the elliptic variational
problem: given f € L*(£2),

find u € U such that  apig,(u,2) = (f,2n) Yz = [zm. z£] € U,

where U .=V x \7, with V := {lug eV : f_Q ug = 0}, while for the definition and
the properties of the bilinear form a4, see [11].

4 Overlapping Schwarz Preconditioners

In this section, we construct an isogeometric overlapping additive Schwarz precon-
ditioner for the Bidomain system, using the general framework developed in [2] for
a model elliptic problem, and in [10] for the Bidomain system discretized using
FEM.

Fora = 1,...,d, we define a decomposition of the reference interval i selecting
from the open knot vector &, a subset of N, 4+ 1 nonrepeated interface knots
Gigosma = 1,... Ny + 1[0 = 0, &y 1, = 1}. Thus, the closure of I can
be decomposed into N, intervals IAmu,a = (&, > &ipy 41.0)> assuming that they have
a similar diameter on order H. For each of the interface knots there exists at least
one index s, o such that2 < s, o < n, — 1 and so that the support of the basis
function Bfmw . intersects both IAmu_l,a and IAmw o
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Let r be an integer counting the basis functions shared by adjacent subdomains.
We are able to define N, subspaces {V,,, « }vaz —, forming an overlapping decompo-

sition of the B-spline univariate space, V, as
Ving.a := span{Bﬁa(gﬂsmwa —r <j < Smyt1a+r} mg=1,...,Ny.
We build the coarse space \Afo,a from the partition of 1. Let

EO,O( = {%‘l,o{s ey Ep,as Eil,av giz,av ceey %‘i}v‘y—],as Ei}va ) giNu+1,as ey giNu+1,+1,a}

]
Now . . .
an open knot vector and let {B?;,},_} be the corresponding No, basis functions,
then the coarse space is

\Afo,a =span{B’;y, i=1...Nog}.

In more than one dimension, we proceed by using tensor product. Let N := ]_[[ll Ng,
form = 1,..., N the local and the coarse subspaces are then

Vo = Vooomy = span{B;

Smg =T S la < Smet1 + 7 @ =1,....d};
Vo :=span{B’;, i, o =1...Nog, ¢ =1,....d}.
The decomposition of the NURBS space V and therefore of U in the physical

domain is trivial: "
U, =V, xV,and Uy := Vy x V, with

We are now able to construct a two-level overlapping Additive Schwarz method for
the Bidomain system (2). We remark that Uy C U, whereas U, is not a subset of U,
m = 1,...,N. We define therefore the interpolation operators I, : U,, — U as

1
given u = (UM, ME) € Um, ImI/l = (Im’MM,Im’EM) = (UM, Ug — m/ ME),
2

whereas Iy @ Uy — U is simply the embedding operator. We define the local
projectors operators T, : U — U,, form =0,...,N by

abido(ri‘m"h U) = abido(“a Imv) Yv e Um
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Defining T,, = L, T,, the 2-level Overlapping Additive Schwarz (OAS) operator is
then

N
TOAS = T() + ZTW’

m=1

We have the following result about the convergence rate bound, see [3].

Theorem 1 Under the assumptions that the parametric mesh is quasi-uniform and
the overlap index r is bounded from above by a fixed constant, the condition number
of the preconditioner operator Toas is bounded by

H
k(Toas) < C (1 + E) , 3)
where § := h(2r + 2) is the overlap parameter and C is a constant independent of
h,H, N and § but not of p and the regularity k.

5 Numerical Results

Numerical results presented in this section refer to the 3D Bidomain problem on
a portion of the truncated ellipsoid, representing a simplified ventricular geometry.
The IGA discretization with mesh size 4 and polynomial degree p and regularity
k is carried out by in MATLAB, using the library GeoPDEs [6]. The domain is
decomposed in N overlapping subdomains of characteristic size H and overlap index
r.

Table 1 shows the scalability of the 2-level OAS preconditioner for a 3D NURBS
domain decomposed into an increasing number of subdomains, such that their size

Table 1 OAS preconditioner in 3D ellipsoidal domain. Scalability test: iteration counts (it.),
condition number x and extreme eigenvalues (A, and A,,;,,) as a function of the number of
subdomains N for fixed H/h = 4 for unpreconditioned (Unpc.), l-level and 2-level OAS
preconditioners. p = 3,k =2and r =0, 1

2-level OAS
Unpc. 1-level OAS r=20 r=1
N it. |k it. |k = Ama)r/)kmin it. |k = Ama)r/)kmin it. Kk = Ama)r/)kmin

2x2x1[175/4.98e3/ 21| 65=4.0/6.09¢e—2| 12| 11.07=4.74/4.12e—1| 6 | 5.24 = 5.00/0.95
3 x 3 x2|185/4.44e3| 44| 331=8.0/2.41e—2| 22| 32.13=8.60/2.72e—1|9 | 10.87 = 9.21/0.85
4 x4 x 3206/ 6.32e3| 61| 627=8.0/1.27e—2| 23| 31.90=8.63/2.73e—1| 8 | 9.00 = 9.31/1.03
5x 5% 4|247| 8.89e3| 78| 1020=8.0/7.84e—3| 23| 32.09=8.64/2.69¢e—1| 8 | 10.39 = 9.20/0.89
6 x 6 x5/297| 1.20e4| 94| 1507=8.0/5.31e—3| 23| 31.60=8.64/2.27e—1|7 | 9.16 = 6.95/1.32
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Fig. 1 2-Level OAS 45
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are fixed % =4,p =3,k =2andr = 0, 1. The simulation is run for 30 time steps,
1.5ms, and the condition number is estimated using the usual Lanczos’ method.
As expected the 1-level preconditioner (without coarse problem) has a condition
number growing with N, and the performances of the 2-level OAS improve when
increasing the overlap size. Additional results, forp = 3,2 and k = p—1, are plotted
in Fig. 1, and confirm that the condition number, k, of the 2-level preconditioned
problem grows linearly with the increasing ratio %’, as predicted by (3) using
minimal overlap (r = 0).

Finally, Fig.2 compares the variation of the condition number and iteration
count during a complete heartbeat (300 ms) by using 1- and 2-level OAS solvers
or unpreconditioned Conjugate Gradient. These variations are strictly related to
the time step size (Af), that changes according to the adaptive strategy described
in [4], following the different phases of a ventricular action potential. In this test
the number of the subdomains is 6 x 6 x 5 and the ratio % = 4. We can note
that the depolarization is the most intense computationally phase, nevertheless OAS
solvers keep the condition number quite uniform for all the duration of the cycle.

As expected, the 2-level greatly improves the conditioning of the problem.
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Fig. 2 Complete heart beat. (a), (b) Variation of the time step size following the phases of a
ventricular action potential. (¢), (d) Time course of k (upper panels) and iteration count (lower
panels) during a heartbeat: comparison between unpreconditioned operator (¢) and 1- and 2-level
OAS().N=6x6x5=4p=3k=2andr=0
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On the Minimal Shift in the Shifted Laplacian
Preconditioner for Multigrid to Work

Pierre-Henri Cocquet and Martin J. Gander

1 Introduction

Multigrid is an excellent iterative solver for discretized elliptic problems with
diffusive nature, see [12] and the references therein. It is natural that substantial
research was devoted to extend the multigrid method for solving the Helmholtz
equation

—Au—Ku=f inf (1)

with the same efficiency, but it turned out that this is a very difficult task. Textbooks
mention that there are substantial difficulties, see [3, p. 72], [11, p. 212], [12, p.
400], and also the review [7] for why in general iterative methods have difficulties
when applied to the Helmholtz equation (1).

Motivated by the early proposition in [2] to use the Laplacian to precondition
the Helmholtz equation, the shifted Laplacian has been advocated over the past
decade as a way of making multigrid work for the indefinite Helmholtz equation,
see [1, 4-6, 10] and references therein. The idea is to shift the wave number into
the complex plane to obtain a good preconditioner for a Krylov method when
solving (1). The hope is that due to the shift, it becomes possible to use standard
multigrid to invert the preconditioner, and if the shift is not too big, it is still an
effective preconditioner for the Helmholtz equation with a real wave number. This
implies however two conflicting requirements: the shift should be not too large for
the shifted preconditioner to be a good preconditioner, and it should be large enough
for multigrid to work. It was already indicated in [7] that it is not possible to satisfy
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both these requirements, see also [4]. It was then rigorously proved in [9] that the
preconditioner is effective, i.e. iteration numbers stay bounded independently of the
wave number k if the shift is at most of the size of the wavenumber. We prove here
rigorously for a one dimensional model problem that if the complex shift is less
than the size of the wavenumber squared, multigrid will not work. It is therefore
not possible to solve the shifted Laplace preconditioner with multigrid in the regime
where it is a good preconditioner. We also show that if the complex shift is of the
size of the wave number squared and the constant is large enough, then multigrid
will solve the preconditioner independently of the wave number k. For a different
shift idea as a dispersion correction, where the shift is real and one obtains in one
dimension a multigrid solver with standard components that solves the original
Helmbholtz problem (1) independently of the wave number, see [8].

2 Model Problem and Discretization

To study the shifted Laplacian preconditioner for the Helmholtz equation (1) in 1d,
we consider the 1d shifted Helmholtz equation

—u"(x) — (K + ie)u(x) = f(x) xin (0, 1) ()

with homogeneous Dirichlet boundary conditions u(0) = u(l) = 0. We dis-
cretize (2) using a standard 3-point centered finite difference approximation on a
uniform mesh with » interior grid points and mesh size 7 = 1/(n+ 1) to get a linear
system Ayu = f with system matrix

. .
Ay = ﬁtnd]ag(—l, 2— (k2 + ls)hz, —1). 3)

It is this system matrix which is used as a preconditioner for solving (1), and
therefore following the idea of the shifted Laplacian preconditioner, systems with
this matrix have to be solved effectively using multigrid. We analyze here in detail
a two grid method: we use a Jacobi smoother,

Uyt =Wy, + a)D_l(f—Ahum),

where D = diag(A), and w is a relaxation parameter, which we choose here based
on the optimal choice of the case without relaxation, see [8], to be
2 — (k* +ie)h?
W= .
3— (k2 + ig)h?



On the Minimal Shift in the Shifted Laplacian Preconditioner for Multigrid to Work 139

For the coarse correction, we assume n to be a power of two minus one, and use the
extension operator based on interpolation,

e RUWFDXNFD) N = (n4+1)/2 -1,

and for the restriction I/ = %(1 Z)T, with the coarse grid matrix obtained by Galerkin
projection, Ay := IfAhIZ. The resulting two grid operator with v; pre-smoothing
and v, post-smoothing steps is then of the form

= (I — oD 'AY (I — LA TP A (I — wD ™' Ay, 4)

Using the subspaces
span{v?, v!}, span{vh,v/_} ..., span{vl, vi.,}, span{vi } %)
defined by the eigenfunctions of Aj, given by Vf.‘ = [sinjlmh]j_,,j=1,...,n,0ne
can block diagonalize the two grid operator (4), see [8]. The action of T on these

one- and two-dimensional subspaces is represented by the block diagonal matrix
diag(Tl, o Ty, TN+1) with

w1 I Y v
g 0 — G CGSiam 0; 0 V14vy
Tl 0o ) 2/1"] 4./)»" 0o ’ TN+1 - UN+1 ’ (6)
i’ ‘j j/ i
’ GSiam 1= !

h . jmh 2cos(jh
where ¢; = cos% 5= sinE, j=1,....,N,0; := 1 —o(l — 3= fli’;g’_’;))hz)
j=1,...,n,and

4 imh

A= }?sinz%—(k2+is), j=1,....n, %)
4 /1

PLES ﬁsmzj——(kz—i-zs) i=1,....N, (8)

are the eigenvalues of A, and Ay, withj/ := N + 1 —j denoting the complementary
mode index. To prove convergence of the two grid method, one has to prove that the
spectral radius of 7} is smaller than one for all j = 1,..., N + 1, since this implies
that the spectral radius of the two grid operator T is less than one. We will show
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in the next section that if the shift is not large enough, the spectral radius of T will
actually be bigger than one, and hence the two grid method can not be convergent.

3 Analysis

We first study the case of a shift ¢ = Ck*™, 0 < § < 2. The following
theorem shows that with such a shift, it is not possible to obtain robust multigrid
convergence, because for any small mesh parameter /4, there exists a wavenumber
of the Helmholtz equation for which the two grid method diverges.

Theorem 1 (Divergence with Too Small Shift) Assume that we are performing
v = v| + v, smoothing steps and that ¢ = Ck*~ for 2 > § > 0. Then, for h small
enough, there exists a wavenumber k(h) such that the spectral radius of the two grid

method satisfies
392 \" 1
o0 = (5g) +o (i)

and hence the two grid method diverges for this mesh size and wavenumber.

Proof Denoting by u; the eigenvalues of the iteration operator 7 we have

p(T) = |l j=1.---.n.

Using the block diagonal form of the two-grid iteration matrix we have obtained
in (6), we have in particular

p(T) = loy 2| = |1 — 0" = |un+1]",

with

1
V@ =) + Rk

|un+1] == )

We now wish to find the maximum of |uy+1| as a function of the wavenumber k.

Taking a derivative with respect to k, we obtain

2h*(C*K28h? — 2C°k2h? — 2k» 212 + 6k)
(C2k4h4 + hAkA28 — pf2+28p2 9k25)2 ’

(| w1 ()} = 2!

and hence the maximum is reached at k(h) satisfying

C*3(8 — 2)h* — 26321 4 6k* = 0. (10
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Since this equation can not be solved in closed form, we compute an asymptotic
expansion of k(%) for small mesh size #. We make the Ansatz

k(h) = % +0(%)

and obtain for 4 small enough the expansions

28
k(h)z— 0y (hlz) k(h)? = %-}-O(hlzs)

Substituting the above expressions into the equation (10) satisfied by k() and
considering only the leading order terms, we find

1 26+2 28 1
5 (60872 = 208) +0 (5 ) =0,

and therefore
0y = \/3 .

and one can check that this is indeed asymptotically a maximum. We now replace
the asymptotic expansion of k(%) into the expression for |py+1(k(h))| given in (9).
Since k(h)h = /3 + o (1), a Taylor expansion shows that

1 3%/2 1
) 2 it B = — e = S 0 (ﬁ) ,

which gives the result.

Remark 1 In our proof, we only gave the first term of the asymptotic expansion of
k(h), since this was sufficient to obtain divergence. One could however compute the
asymptotic expansion also to any order without additional difficulties.

Now we study the case ¢ = Ck*. Substituting this value into the blocks (6) of
the block diagonal representation, we notice that the matrices become homogeneous
functions of the product kh. One can therefore study the spectral radius directly as
a function of kh > 0 and ¢; € (0, 1), using trigonometric formulas to replace the
dependency on s;. We show in Fig. 1 on the left for vi = 1, v, = 0 the maximum
over all kh of the spectral radius of the matrix T as a function of C for ¢ = Ck>. We
clearly see that for C small, multigrid does not converge. For C larger however,
we get convergence. The value C* where the spectral radius equals one can be
computed, it is C* = 0.3850. We show on the right in Fig. 1 the spectrum of the
blocks 7j, represented as a continuous function of ¢; € (0, 1) and kh for C = C*,
and one can clearly see where the maximum value one is reached.
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p for e=Ck?

0 02 04 06 08 1 12 14 16 18 2
C

Fig. 1 Maximum over kk of the spectral radius of the two grid operator for shift & = Ck? as a
function of C on the left, and for C = 0.3850 the spectrum as a function of k% and c; on the right

Remark 2 The value C* is larger than the limiting value C = 1/3 found from the
limiting case as § goes to zero in Theorem 1 for which divergence can be guaranteed.
This is because Theorem 1 only provides a lower bound for which divergence can
be guaranteed. As we see from the sharper analysis above, divergence even set in a
bit earlier.

Remark 3 From Fig.1 on the left, we also see that making C very large will
eventually not lead to further improvement, the curve has an asymptote which one
can compute to be at 1/3. Hence, the best contraction factor one can achieve with
the two grid method applied to the shifted Helmholtz equation with shift ¢ = Ck?
for C large in our example is 1/3. Note also that the two grid convergence is uniform
in k as soon as C > C*.

4 Numerical Experiments

We present in this section several numerical illustrations of Theorem 1 and our
additional estimate for the shift ¢ = Ck>. We assume that the source term in the
shifted Helmholtz equation (2) is f = 0 giving # = 0 as the unique solution. We use
for our simulations the parameters

1 V3

n=>511, h=—, =—, v=1,

512 h
so that we are in the regime of Theorem 1 where divergence should be observed
if the shift is not sufficient. We perform twenty iterations of the two grid method

applied to the shifted problem, starting with a random initial guess.
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Fig. 2 Relative error versus iteration index for C = 0.45 and various values of § = 0.2

We first illustrate the result of Theorem 1. We choose C = 0.45 in the shift ¢ =
Ck*=%. Figure 2 shows the relative error of the two-grid scheme versus the number
of iterations for various values of §. We see that the two grid method converges for
8 = 0, but diverges for all other values § > 0. For the value of # = 1/512 in our
experiment, and the constant C = 0.45, we see that the two grid method would still
converge for a very small, but positive value of §. This is not in disagreement with
Theorem 1, which only makes a statement for # small enough.

We next show an experiment to illustrate that even with the shift ¢ = Ck2,
the constant still needs to be bigger than C* = 0.3850 for the two grid method
to converge, see also Remark 2. In Fig.3 we show the relative error versus the
iteration index for various values of C in this case. We observe that for C < C* the
multigrid method does not converge, the shift is not enough. For C > C* however
the multigrid method converges, and convergence gets faster as C increases, as
expected. There is however a limit, as we have seen in Remark 3, the contraction
factor of the two grid method will not be better than 1/3.

5 Conclusions

We have analyzed for the shifted Helmholtz operator how large a shift of the form
& = Ck*7 has to be to obtain a uniformly convergent two grid method. We
have proved for a one dimensional model problem that uniform convergence in the
wavenumber k is not possible if § > 0. For § = 0, we have shown that if the constant
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Fig. 3 Relative error versus iteration index for § = 0 and various values of C

C > C* = 0.3850, then uniform convergence in the wavenumber k can be achieved.
Our results are for the particular case of a one dimensional problem with a second
order finite difference discretization, using a Galerkin coarse grid correction with
full weighting and a Jacobi smoother with particular relaxation parameter. Using a
different relaxation parameter, for example w = 2/3, leads to slightly worse results
in this case, e.g. C* becomes approximately 0.75 instead of 0.3850. Our analysis
can be generalized, for example to higher dimensions, or other discretizations.
There is therefore indeed a big gap in the requirements for using the shifted
Laplacian as a preconditioner when solving discretized Helmholtz problems: for
multigrid to invert the preconditioner efficiently, the shift needs to be O(k?), but
to prove that the preconditioner is effective, the shift needed to be at most O(k),
see [9], where numerical experiments also indicate that this estimate is sharp. Any
compromise with the shift, i.e. using a shift of O(k*) with & € (1, 2), will therefore
lead to a preconditioner which is outside the requirements one would like to impose.
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Multitrace Formulations and
Dirichlet-Neumann Algorithms

Victorita Dolean and Martin J. Gander

1 Introduction

Multitrace formulations (MTF) for boundary integral equations (BIE) were
developed over the last few years in [1, 2, 4] for the simulation of electromagnetic
problems in piecewise constant media, see also [3] for associated boundary integral
methods. The MTFs are naturally adapted to the developments of new block
preconditioners, as indicated in [5], but very little is known so far about such
associated iterative solvers. The goal of our presentation is to give an elementary
introduction to MTFs, and also to establish a natural connection with the more
classical Dirichlet-Neumann algorithms that are well understood in the domain
decomposition literature, see for example [6, 7]. We present for a model problem a
convergence analysis for a naturally arising block iterative method associated with
the MTF, and also first numerical results to illustrate what performance one can
expect from such an iterative solver.
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2 One-Dimensional Example

In this section we introduce the Calderon projectors and the multitrace formulation
for the one dimensional model problem

Au = u"(x) — du(x) =0, a>0. (1)
The family of bounded solutions of (1) on the domains 2% = R¥ is given by
u(x) = Ce™®, where C = u(0). We say that the solution spaces of the operator A
on R* are given by

7% = {u e X(2)|u(x) = Ce™, C e R} = Re T,

Note that any us € Z7 satisfies the relation ', (0) = £au+(0) and thus the space
of all possible Cauchy data of the solutions of (1) on R* is given by

VE = {(g0. 1) = C(1. £a), C € B} = R(ila) .

Definition 1 (Calderon Projectors) Let p= : Z* — V¥ be the operator that
associates to any solution of Au = 0 on R¥ its pair of traces (u(0),u'(0)). Let
K* : R? — Z* be the operator that associates to any pair (fo, ;) € R? the quantity
K*(ho,h) = cxeT™®, where u(x) = cye™ + c_e™® is the unique solution of (1)
with Cauchy data (ho, hy),

Au = 0, u(0) = ho and ' (0) = h;. (2)
Calderon projectors are defined as the projections P* : R — V*, such that

Pt = ,ojE oK%,

The expressions of P* for our model problem can be computed explicitly. The
solution of (2) is

1 1
u(x) = —(ahy + hy)e™ + —(aho — hy)e™™,
2a 2a

and thus K= (ho, hy) = 5-(aho F hi)eT* and

s (ahoy F hy) gl
Pﬂ:h,h = + K:I: h,h :(2a(a0 1 ):>P:|::|: 2 zai|'
(ho. h1) := (p™ o K=)(ho, h1) =1 (ahy F )

H
NI
=,
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Remark 1 From the previous construction we see that the Calderon projector is
unique. When working with subdomains, it is however more convenient to introduce
normal derivatives at interfaces, instead of «’(0), and we thus define the Calderon
projectors for normal derivatives with the modified sign

} ; 3)

Definition 2 (Cauchy Traces) Following the notations in [4], we denote by

£ . [ w0)
T u = (:Fu’(O)) “)

]P)i(l’l(),hl) = Pi(l’lO, :Fhl) = Pt =P = |:

SIS
SN

and we will use PT in what follows.

the Cauchy trace (Dirichlet and Neumann) on the boundary {x = 0} of a solution u
of the equation Au = 0 posed on the half space R*.

Suppose now we have a decomposition of R into two subdomains £2; = §2~ and
2, = 271 and we want to solve Eq. (1) by an iterative algorithm involving Dirichlet
and Neumann traces on the interface {x = 0}. Let T}, be the trace operators as
defined in (4) (T; = T~ and T, = T7) for the subdomains £21,, and P, the
corresponding Calderon projectors as defined in (3) (P; = P~ and P, = P*) .

Definition 3 (Multitrace Formulation) The multitrace formulation from [4]
states that the pairs (T;u;);=1» are traces of the solution defined on £2; if they
verify the relations

10

(P] —I)'I['lul — 01 ('I['lul — (O _I)Tzuz)
10

Py = DThus — 02 (Tzuz - (O _q ) Twl) =0,

where 0}, are some relaxation parameters.

0,
&)

We see that a natural iterative method (also introduced in [5]) for (5) starts with
some initial guesses (uio, v?),-: 12 for the traces, and computes forn = 1,2,... the
new trace pairs from the relations

n n n—1
(D)o ()= (5)
vy vy )
n n n—1
P> =1 (uﬁ) -0 (uﬁ) = -0, ( uln_l) .
v v —U

(6)
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By introducing the expressions of IP;, we can rewrite the iteration in the form

1 1 -
@ +hH L ] —ous!
1 —
5 —(o1+3) vl _ | o™ o
—(02 + %) % M; —Uzu'll_l
3 —(o2+ %) ] \v3 o !
or when solving for the new iterates
u'l u’l’_l ui!
i[O AT v -4 vt ®)
ul A O uy! uy b |’
v} vyt vyt
where
gz [+l = i=12
200+ 1) a —(1+20)] T

The convergence factor of (60) is therefore given by the spectral radius of the iteration
matrix A, whose eigenvalues are

ray =2 22 ©)
o1+ 1 o+ 1 oy + 1 o+ 1

We see that the convergence factor is independent of a and thus only depends on
the relaxation parameters o;. If we suppose by symmetry that oy = o0, =: o,

the convergence factor becomes p(A) and we show a plot of

[
oFI°
p(A) as a function of o in Fig.1. We see that the algorithm diverges for

o < —%, stagnates for 0 = —1 and converges for 0 > —%. For 0 = 0,

the convergence factor vanishes, liut a closer look at the iteration formula (7)
shows that the matrix is then singular and thus the algorithm is no longer well
defined for this value. On the other hand, the associated iteration (8) is still
well defined, the latter being equivalent to (7) only for ¢ # 0. Overall, we see
that algorithm (7) converges rapidly when the relaxation parameter is chosen

close to 0.
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Fig. 1 Convergence factor of 2
the iterative multitrace 1
formulation in 1d as function
of the relaxation parameter o
1.5 7
l -
0.5 1
0 “—— T T T T
-1 -0.5 0 0.5 1
s2
3 Two-Dimensional Example
Suppose we want to solve the Laplace equation
U + Uy, =0, in2 = R?, (10)
using the two subdomains £2; := R~ x R and £, := RT x R and a multitrace

formulation. To use our results from the previous section we take a Fourier transform
in the y variable,

Ly — K2 = 0.
We can now follow the reasoning of the previous section in Fourier space, replacing

a by |k|. Thus any given pair of boundary functions (fzo k), h (k)) can be projected
to become compatible boundary traces using the symbol of the Calderon projectors

We next express the Calderon projectors in terms of Dirichlet-to-Neumann (DtN)
and Neumann-to-Dirichlet (NtD) operators.



152 V. Dolean and M.J. Gander

Lemma 1 (Calderon Projectors and DtN Operators) Calderon projectors can
be written in terms of the local DtN and NtD operators as

o —
po—s| LND| iy (11)
2| DiN; 1

where DtN; associates to given Dirichlet data gy on the interface x = 0 the normal

derivative % of the solution u; in $2; and the NtD; associates to given Neumann data

g1 onthe intérface x = 0 the trace of the solution i;(0, k) on the same boundary.

Proof On §2;, we obtain explicitly the symbols of these operators from

. . on R _
i (x, k) = goel™ = a—xl|x=o = |k|go = DIN; = |k].

N N o iy n n N — 1
i (x. k) = 210, kyel, E|x=0 =g = 1 (0,k)|k| = g1 = NtDy = Tk

The corresponding symbols for the domain 2, are

g — 1
DiN, = |k|, NtD, = m

Inserting these expressions into (11) concludes the proof. O

We are ready now to establish the link between these algorithms and the classical
DtN iterations.

Theorem 1 (Link with the DtN Iterations) The iterative multitrace formulation
for the special choice 01 = 0, = —% computes simultaneously a Dirichlet-
Neumann iteration (u},vy) and a Neumann-Dirichlet iteration (v}, uy) without a
relaxation parameter.

Proof According to the results of Lemma 1, in two dimensions, iteration (6)

becomes
| =1=201 NiD i !
7 ~ A = —0] An—1 s
2 DtN, —1—-20 U? —U;
_ (12)
1 —1:\20'2 N[Dz 12’21 = o, ft’ll_l '
2| DN, —1-20, |\ D} —pp-1
We see that for the special choice 07 = 0, = —%, iteration (12) simplifies to
NiD, 07 = i, | NiDyoy = i, 13)
DiN,it} = 027", | DNyt = =71,
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From the symbols, we see that ]\7tl\),-_1 = D/t]\\f,-, and hence iteration (13) becomes

o) = DNy, ) 05 = DN,
W= —NtD\ 0571, | i = —NtD, 071,
which leads to the conclusion. O

In order to study the role of the relaxation parameters o;, we check first under which
conditions iteration (12), written explicitly as

-1-200 (:2’1‘) — ( ! )
2 nn 1 An—1 |~
|| —1—20, U -0}
-1-200 (ﬁg) _ ( ! )
2 nn 2 An—1 | >
k| —1—=20, | \ V3 -0

is well defined. This is the case if the matrices B; are invertible. Since det(B;) =
40,(0; + 1),the multitrace iteration is well defined if o; # {0, —1}. In this case (14)
is equivalent to

~ An—1 14201 ~n— 1 _

Up\ _ g1 (i _ 2(m+1)“2 2(0 +1)NtD1U

o | {)n—l - DtN —1 14+201 ~An—1 ’
1 2 u - 1)

2001+ 2

=
/N
> D
—= ==
N———

Il

|—

(14)

(o)

N
/N
[P~
NE ST
SN———

Il

|—

T P (15)
~ An— 02 ~An—
(”’5) = B;! (”rll 1) - (2(az+§)” X z+1)NtD2” )

sno | T sn—1 | T ~An—1 14205 An—1 | °

Y2 Ui T DN = 500

Algorithm (15) has the same convergence properties as (8), since we obtain the same
convergence factor independent of the Fourier variable k, which means convergence
is going to be mesh independent.

4 Numerical Results

We now show some numerical experiments for illustration purposes on our two-
dimensional model problem (10) on the domain §2 = (—1, 1) x (0, 1) decomposed
into the two subdomains §£2; = (—1,0) x (0,1) and §2, = (0,1) x (0,1). We
use standard five point finite differences for the discretization and simulate directly
the error equations corresponding to the algorithm (15) for different values of the
parameter o;. For 0; = —0.6, our analysis shows that the algorithm does not
converge, and we see how the error grows in the iteration in Fig. 2. For 0; = —0.5,
our analysis predicts stagnation, and this is also observed in Fig. 3. For o; = 0.1, we
obtain the predicted rapid convergence seen in Fig. 4. We finally show in Fig.5 on
the left how the error evolves in the maximum norm as the iteration progresses for
different values of o, and on the right the numerically estimated contraction factor,
which looks very similar to the predicted behavior shown in Fig. 1.
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Fig. 4 Evolution of the error for ¢ = 0.1 after 2 Iterations (left), 10 iterations (right)



Multitrace Formulations and Dirichlet-Neumann Algorithms 155
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Fig. 5 Error in the maximum norm as a function of the iteration number for different values of
o (left), and numerically measured contraction factor of the multitrace iteration as function of o

(right)

5 Conclusion

Using a simple model problem and two subdomains, we explained multitrace
formulations and a naturally associated iterative method of domain decomposition
type. Using the formalism of Dirichlet to Neumann operators, we showed that for a
particular choice of the relaxation parameter in the multitrace iteration, a combined
sequence of an unrelaxed Dirichlet-Neumann and Neumann-Dirichlet algorithm is
obtained. Our analysis also indicates good choices for the relaxation parameter in
the multitrace iteration, which was confirmed by numerical experiments.
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A Deluxe FETI-DP Method for Full DG
Discretization of Elliptic Problems

Maksymilian Dryja, Juan Galvis, and Marcus Sarkis

1 Introduction, Differential and Discrete Problems

In this paper we consider a boundary value problem for elliptic second order partial
differential equations with highly discontinuous coefficients in a 2D polygonal
region §2. The problem is discretized by a (full) DG method on triangular elements
using the space of piecewise linear functions. The goal of this paper is to study a
special version of FETI-DP preconditioner, called deluxe, for the resulting discrete
system of this discretization. The deluxe version for continuous FE discretization
is considered in [1], for standard FETI-DP methods for composite DG method, see
[4], for full DG, see [4], and for conforming FEM, see the book [5].

Now we discuss the continuous and discrete problems we take into consideration
for preconditioning.
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Differential Problem Find u*, € H}(52) such that
a(u*,v) =f(v) forallv € H)(R2), (1)

a(u,v) := YL, [o piVu-Vodx and f(v) := [, fvdx,
where the p; are positive constants and f € L*(£2).

We assume that 2 = Uf.\':lﬁi and the substructures £2; are disjoint shaped regular
polygonal subregions of diameter O(H;). We assume that the partition {.Qi}fvzl is
geometrically conforming, i.e., for all i and j with i # j, the intersection 952; N 952;
is either empty, a common corner or a common edge of £2; and £2;. For clarity we
stress that here and below the identifier edge means a curve of continuous intervals
and its two endpoints are called corners. The collection of these corners on d42; are
referred as the set of corners of £2;. Let us denote E;; := 3£2;M352; as an edge of 352;
and Ej; := 9£2; N 3£2; as an edge of 32;. Let us denote by J;;" the set of indices j
such that £2; has acommon edge Ej; with £2;. To take into account edges of £2; which
belong to the global boundary 052, let us introduce a set of indices T o torefer these
edges. The set of indices of all edges of £2; is denoted by J}I = Jf’;o U Jf’;a.

Discrete Problem Let us introduce a shape regular and quasiuniform triangulation
(with triangular elements) 7,’ on §2; and let h; represent its mesh size. The resulting
triangulation on £2 is matching across 0£2;. Let X;(£2;) = ]_[teni X; be the
product space of finite element (FE) spaces X; which consists of linear functions
on the element t belonging to 7,. We note that a function u; € X;(§2;) allows
discontinuities across elements of 7,. We also note that we do not assume that
functions in X;(§2;) vanish on 2. The global DG finite element space we consider
is defined by X(£2) = []/L, Xi(2) = X1(£21) X X2(£22) X -+ X Xy(2).

We define 5,’;’0 as the set of edges of the triangulation 7, which are inside £2;, and
by £, for j € J},, the set of edges of the triangulation 7,/ which are on E;;. An edge
e € & is shared by two elements denoted by 7+ and 7— of 7, with outward unit
normal vectors n and n™, respectively, and denote {Vu} = %(Vur + + Vu,_ ) and
[u] = ue,n™ 4+ u,_n~

The discrete problem we consider by the DG method is of the form: Find u* =
(¥ € X(£2) where uf € Xi(£2;), such that

ap(w*,v) =f(v) forallv = {v;}, € X(2), )

where the global bilinear from a;, and the right hand side f are assembled as

N N
ap(u,v) = Zaﬁ(u, v) and f(v) := Z/ fvidx.
i=1 =14
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Here, the local bilinear forms aﬁ, i=1,...,N, are defined as
a(u,v) = ai(ui, vi) + 50, (ui, vi) + poi(u, v) + 59 (u, v) + pyi(u, v) (3)
where a;, so; and po; are defined by,

ai(u;, v;) 1= Z /p,-Vu,- -V, dx,

T

teT;
S()J(I/li, Ul‘) = Zeeglil.() fe (pi{Vui} . [Ui] + pi{Vvi} . [Mi]) dS, and
po.i(u,v) = > egi.()f 82 [u;].[vi] ds. The corresponding forms over the local
) eccy € e

interface edges are given by

Saz(u U) Z Z/ (pl] ul v)‘h%%v( M))

J€T} ecgl!

th(” U) Z Z /18 Z” uj)(vi—vj) ds,
j€Tj; ecE)! Y

respectively. Here p; = 20;0;/(pi + pj), h. denotes the length of the edge e. When
je j;;,’o we set l;; = 2, when j € j}l’a we denote the boundary edges E;; C 352; by
E;y and set [;3 = 1, and on the artificial edge Ej;; = Ej; we set uy = 0 and vy = 0.
The partial derivative % denotes the outward normal derivative on 92; and § is the
penalty positive parameter.

The discrete formulation used here is convenient for our FETI-DP method. We
also mention that problem (2) has a unique solution for sufficiently large § and its
error bound is known, see for example, [3, 4].

2 Schur Complement Matrices and Harmonic Extensions

In this section, we describe the elimination of unknowns interior to the subdomains
required on the FETI-DP formulation for DG discretizations.
Let the set of degrees of freedom associated to subdomain £2; be defined by

.Ql/ =, U {uiEJIiJOEﬁ}

i.e., it is the union of £2; and the Ej,- C 082 such thatj € JISO. Define I} := 0£2;\082
and I := I} U {U, 7ivEjiy. We also introduce the sets

N N N
U W =1 = 2\ and 1= [ ] 1. 4)

i=1 i=1
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Let W;($2/) be the FE space of functions defined by nodal values on £2/

Wi(£2]) = Wi(£2;) x l—[ Wi(Ej). )

. 0.,i
€Ty

where W;(£2;) := X:(£2;) and W,-(Ej,-) is the trace of the DG space X;(£2;) on Ej,- C
382 for all j € J;°. A function u;, € W;(£2/) is defined by the nodal values on £2/,
i.e., by the nodal values on £2; and the nodal values on all adjacent faces Ej,- for all
j € ijI’O. Below, we denote u, by u; if it is not confused with functions of X;(£2;).
A function u; € W;(£2]) is represented as u; = {(u;);, {(Mi)j}jejli{.()}, where (u;); :=
g, (Wi restricted to £2;) and (i) == u; IE; (u; restricted to Ej,-). Here and below we
use the same notation to identify both DG functions and their vector representations.
Note that a}(-, -), see (3), is defined on W;(£2/) x W;(£2) with corresponding stiffness
matrix A} defined by

ai(ui, vi)) = (Al vi)  wi, v € Wi(82)), (6)

where (u;, v;) denotes the £, inner product of nodal values associated to the vector
space in consideration. We also represent u; € Wi(.Q{) as u; = (ujs, u;rv) where
u; v represents values of u; at nodal points on 1"i’ and u; ; at the interior nodal points
in [;, see (4). Hence, let us represent W;(§2/) as the vector spaces W;(I;) x W;(I7).
Using the representation u; = (u; s, u; ), the matrix A; can be represented as

A/ — ( A;,II At/',II” ) (7)

! Al Al ’
ir'1“Hr'r’

The Schur complement of A} with respect to u; r~ is of the form

S; = A;,I”F’ _A;,F’I(A;,Il)_lA;,II” ®)

and introduce the block diagonal matrix S’ = diag{S/}\_,.
Let us introduce the product space

N
w(2') = [ [wi),

i=1

i.e.,u € W(£2') means thatu = {u;}\_, where u; € W;(£2); see (5) for the definition
of Wi(£2]). Recall that we write (u;); = u;|g, (u; restricted to £2;) and (u;); = Ui,
(u; restricted to Eii)- Using the representation u; = (u;;, u; ) where u;; € Wi(l;)
and u; pr € W;(I'/) were used in (7), let us introduce the product space

N
W) = [ [wary)),

i=1
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ie., urr € W(I'') means that urr = {u; r/}Y_, where u;» € Wi(I'/). The space
W(I'") which was defined on I’ only, is also interpreted below as the subspace of
W($2') of functions which are discrete #-harmonic in the sense of a;(., .) in each i.

3 FETI-DP with Corner Constraints

We now design a FETI-DP method for solving (2). We follow the abstract approach
described in pages 160—167 in [5].
We introduce the nodal points associated to the corner unknowns by
V=V, U {Ujej,;“) 0Ej;} where V= {Ujej,;“) 0Ej;}.

We now consider the subspace W(£2') C W(£2') (and W(I"’) € W(I"’)) as the
space of functions which are continuous on all the V/ as follows.

Definition 1 (Subspaces W(£2') and W(I"')) We say that u = {u;}¥_, € W(£2') if
it is continuous at the corners Vl.’ , thatis, if for 1 < i < N we have

(u)i(x) = (u)i(x) at x € E; forall je J5°, and )
(u)j(x) = (w));(x) at x € IE;; forall je J5;°. (10)

Analogously we define W(I'').

Note that W(I'') € W(I"".) Let A be the stiffness matrix which is obtained by
assembling the matrices A} for 1 < i < N, from W(£2) to W(£2’). Note that the
matrix A is no longer block diagonal since there are couplings between variables
at the corners V; for 1 < i < N. We represent u € W(2') as u = (up, um,un)
where the subscript I refers to the interior degrees of freedom at nodal points / =
1_[?]:1 I;, the IT refers to the corners Vi’ forall 1 < i < N, and the A refers to the
remaining nodal points, i.e., the nodal points of I"i’ \Vi’ ,forall 1 < i < N. The
vector u = (uy, urr, up) € W(£2') is obtained from the vector u = {u;}_, € W(£2')
using Egs. (9) and (10), i.e., the continuity of u on Vi’ forall 1 <i < N. Using the
decomposition u = (uy, urr, up) € W(£2') we can partition;l as

_ Au Ain Aua

A=\ A Anm Af
/ / /

Anr Aam Ann

We note that the only couplings across subdomains are through the variables I7
where the matrix A is subassembled.
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A Schur complement of A with respect to the A-unknowns (eliminating the
I- and the IT-unknowns) is of the form

» l / -1 l
S:i=Appn — (A, ’An)(A” f*’”) (A'A). (11)

A Ann Afa

A vector u € W(I'") can uniquely be represented by u = (usz, up), therefore, we
can represent W(I'") = W (I'") x Wa (I'"), where Wz (I') refers to the IT-degrees
of freedom of W(I'’) while Wa (I"’) to the A-degrees of freedom of W(I""). The
vector space Wa (I"’) can be decomposed as

N
Wa(l") = [Wia(ry) (12)

i=1

where the local space W; a (I'/) refers to the degrees of freedom associated to the
nodes of I'/\V/ for 1 < i < N. Hence, a vector u € W(I'’) can be represented as
u = (u,up) with ug € Wr(I'') and up = {uia}Y_, € Wa(I'') where u; 5 €
W, a(I7/). Note that S, see (11), is defined on the vector space Wa (I").

In order to measure the jump of ua € Wa(I"’) across the A-nodes let us
introduce the space Wa (I") defined by

N
Wa(l) = [ [X(I\V),

i=1
where X;(I7\V)) is the restriction of X;(£2;) to I';\V;. To define the jumping matrix

Ba i Wa(l) — WA(F), letup = {W,A}?Ll € Wa(I'") and let v := Bau where
v={v} € Wa (') is defined by

vi = (uin)i — (ujn); on Ey, forall je J5°, (13)

where Ejj, is the set of interior nodal points on Ej;. The jumping matrix BA can be
written as

Ba = BY,BY,--- ,BY), (14)

where the rectangular matrix B(Al) consists of columns of Ba attributed to the (i)
components of functions of W; o (I'/) of the product space Wa (I'’), see (12). The
entries of the rectangular matrix consist of values of {0, 1, —1}. It is easy to see that
the Range Ba = WA (I'), so B is full rank.
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We can reformulate the problem (2) as the variational problem with constraints
in Wa (I"") space: Find u, € Wa(I'") such that

J()) = minJ(va) (15)

subjectto va € Wa(I'") with constraints BaAva = 0. Here J(va) := %(SUA, vA)—
(Za,vA) With S givenin (11) and g4 is easily obtained using the fact that it can be
represented as f = (f7,fnm,fr\mr). Note that S is symmetric and posmve definite
since A has these properties. Introducing Lagrange multipliers A € Wa (I'), the
problem (15) reduces to the saddle point problem of the form: Find uj, € Wa(I'')

and \* € Wa(I") such that

S'uz + BZA*

ga
16
BAM*A = 0. (16)

Hence, (16) reduces to
F\* =g (I7)

where F := BAS™'BY, and g := BAS™'ga.

3.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F, see (17). Let S’ be the Schur
complement of S, see (8), restricted to W; A(I7) C W;(I}), 1e taken S} on
functions in Wi(l"l.’ ) which vanish on V/. Let

1= diag{S] A}

In other words, S’ .. 1s obtained from S’ by deleting rows and columns corresponding
to nodal values at nodal points of V/ C I7.

Let us introduce diagonal scaling operators D(Ai) s Wia(l)) — Wia(I/), for
1 < i < N. They are based on partial Schur complements of S:', A used in [1] for
continuous FE discretization and this is know in the literature as the deluxe version
of FETI-DP preconditioner. We first introduce W a g, (/) as the space of u; €
Wi a(I'/) which vanish on 982; \ E;; and Ey; C 982 for k # j. Let S;’Aquj denote
the Schur complement of S/ A restricted to W; A, E;- In a similar way it is defined the

restricted Schur complement S’ AL The operator D( ? on E;j C 052; is defined as

D(L) (Sl A Ej + S/ A Ej; B Sj,A,E,‘," (18)
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Let Bpa = (BYDY ... BYDY)) and Pa := BL , Ba, which maps Wa(I"')
into itself. It can be checked straightforwardly that Pa ’preserves jumps in the sense
that BAPA = Ba and P2A = Pa.

In the FETI-DP method, the preconditioner M —1 is defined as follows:

M~ = BpaS\Bh 5 = ZB(”D(’)S’A(D(A"))T(B(A”)T.
i=1

Note that M~ is a block-diagonal matrix, and each block is invertible since S: A and

D(Ai) are invertible and B(Ai) is a full rank matrix. The following theorem holds.

Theorem 1 Forany A € Wa (") it holds that
H\2
(MA,A) < (FA,A) < C(1+10gﬁ) (MM, )

where log(%) = max)_, log(%"), C is a positive constant independent of h;, h;/h;,
H;, A and the jumps of p;.

The complete proof of Theorem 1 will be presented elsewhere.

Remark 2 The FETI-DP method is introduced for a composite DG discretization in
the 3-D case in [2]. In order to extend the deluxe scaling FETI-DP method for 3-D
DG discretizations, we need to introduce the averaging of the deluxe operators for
faces and edges. The face operators are introduced similarly as described as in (18)
by replacing edges E;; by faces Fj;. For the edge operators, consider for instance
that Ej; is an edge of £2; common to §2; and §2;. Let Ej; and Ey; be edges equal
to E; but belonging to §2; and §2, respectively. Let W 4 g, (I'/) be a subspace of

Wi.a(I) with nonzero data on Ej, Eji and Ey; only. Let S , Eu be the restriction
of S 4 to the space W; 4 ;. In the same way we introduce S; , gy and Sia [y FOr
the deluxe FETI-DP method with non-redundant Lagrange multlphers on edges see
[5], it is enough to define the edge averaging operators as follows:

(@) _
DA.E,'jk 1 (Sl A,Ejjk + S LA Ejik + Sk A Ekzj) / A Ejix> and
(i) 1o
Do = Siagy, +Siag, +Skan,) Sk,

In the 3-D case Bp a is modified by setting Bp o = (BADAB )"'BAaDA and
M~ = BpaS,B],, where Do = dlag{D(')} and D(') is a block diagonal
containing the averaging operators correspondmg to faces and edges defined above.
The operator Po = BLT), ABa preserves the jumps and is a projection.

Acknowledgement The authors thank the anonymous referee for his suggestions that helped to
improve the paper.
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Additive Schwarz Methods for DG
Discretization of Elliptic Problems
with Discontinuous Coefficient

Maksymilian Dryja and Piotr Krzyzanowski

1 Introduction

In this paper we consider a second order elliptic problem defined on a polygonal
region §2, where the diffusion coefficient is a discontinuous function. The problem
is discretized by a symmetric interior penalty discontinuous Galerkin (DG) finite
element method with triangular elements and piecewise linear functions. Our goal
is to design and analyze an additive Schwarz method (ASM), see the book by
Toselli and Widlund [11], for solving the resulting discrete problem with rate
of convergence independent of the jumps of the coefficient. The method is two-
level and without overlap of the substructures into which the original region §2 is
partitioned.

Usually, two level ASMs for discretizations on fine mesh of size 4 are being built
by introducing a partitioning of the domain into subdomains of size H > h, where
local solvers are applied in parallel. A global coarse problem is then typically based
on the same partitioning. This approach has been generalized for nonoverlapping
domain decomposition methods for DG discretizations by Feng and Karakashian
[10] and further extended by Antonietti and Ayuso [1] by allowing the coarse grid
with mesh size H to be a refinement of the original partitioning into subdomains
where the local solvers are applied.

The ASM discussed here is a generalization to non-constant diffusion coefficient
and very small subdomains of methods mentioned above and of those presented in
[7, 8]. Other recent works towards domain decomposition preconditioning of DG
discretizations of problems with strongly varying coefficients include [2, 4, 5]. In
this paper, local solvers act on subdomains which are equal to single elements of
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the fine mesh. By allowing single element subdomains we substantially increase
the level of parallelism of the method. Very small and cheap to solve local systems
come in huge quantities, which possibly can be an advantage on new multithreaded
processors. Moreover, small subdomains give more flexibility in assigning them
to processors in coarse grain parallel processing. The price to be paid for this in
some sense extreme parallelism is worse condition number of the preconditioned
system, which is of order O(H?/h*), where H and h are the coarse and the fine
mesh parameters, respectively. This bound is independent of the jumps of diffusion
coefficient if its variation inside substructures is bounded. Numerical experiments
confirm theoretical results.

The paper is organized as follows. In Sect.2, differential and discrete DG
problems are formulated. In Sect.3, ASM for solving the discrete problem is
designed and analyzed. Numerical experiments are presented in Sect. 4.

In the paper, for nonnegative scalars x, y, we shall write x < y if there exits a
positive constant C, independent of x, y and the mesh parameters /i, H, and of the
jumps of the diffusion coefficient p as well, such that x < Cy. If both x < y and
y < x, we shall write x >~ y.

2 Differential and Discrete DG Problems

Let us consider the following variational problem in a polygonal region £2:
Find u* € H}(£2) such that

a(u*vv) = (fs U).Qs v EHé(Q)v (1)
where

a(u,v)z/ngu-Vvdx, f.v)e :/va.

We assume that p € L°°($§2) and that there exist constants oy and «; such that
0 < ap < p < oy in £2. In addition we assume that f € L?(£2).

2.1 Discrete Problem

Let 7y be a subdivision of £2 into Ny disjoint open polygonal regions £2;, i =

Tn denote an affine, shape regular conforming triangulation (with triangles) of £2,
2 = U;<e77, ic, which is derived from 7Ty by some refinement procedure. Thus, each
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£2; is a union of certain elements from 7. The diameter of a triangle « € 7, will be
denoted by A, and the mesh parameter is # = max,e7; h.

In what follows we shall assume that p is piecewise constant (possibly with large
discontinuities) on 7y, so that p|_is constant on each k € 7j,.

By 5,? we denote the set of all common (internal) faces of elements in 7y, so that
e;j € & iff e = k; N k; is of positive measure. We will use symbol &, to denote the
set of all faces, that is those either in 5,? or on the boundary 952; for e € &,, we also
set |e| = diam(e). We shall assume local quasi-uniformity of the grid, i.e. if e; € &
is such that e;; = k; N «;j, then h; > h;.

For p € {0,1}, we denote by P,(«) the set of polynomials of degree not
greater than p on k. Then we define the finite element space V},, in which we will
approximate (1),

Vi = {v e [}(2) : v, € Pi(k), Yk € Th}. )

Note that the traces of the functions from V), are multi-valued on the interface 8,? .

We define the discrete problem as the symmetric interior penalty discontinuous
Galerkin method, see for example [9] or [6]:

Find u € V), such that

Ap(u, v) = (f,v)e, v eV, 3)

where

A, v) = Y (p Vi, Vo), + Y (y[ul, [o])e

k€T e€E)y

Y (([u], (V0L ) + {16Vl o) ).

e€Ey

and § > O is sufficiently large to ensure positive definiteness of Ax(-, -), and on
ejj = Ki n Kj

8 pipj

y = ool o1 + ) oVuy, = 0;0:Vu; + wip;Vu,, [u] = u;in; + ujn;,

with w; = p;/(pi + p;). Here, for any function ¢ we use the convention that ¢;
(resp.g;) refers to the value of ¢, (resp. ¢|,.) on e;;. The unit normal vector pointing
outward «; is denoted by n;. On the boundary of §2, we set {pVu}, = pVu and
[4] = un.

Let us introduce a simplified form

Di(u, v) = Y (pVu, Vo) + Y (y[ul, [v])..

KETh e€E)y
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Then it is well known that Dy (-, -) is spectrally equivalent to A, (-, -), i.e.

Ap(u, u) ~ Dy(u, u) Yu e V.

3 Additive Schwarz Methods

3.1 Additive Schwarz Method, Version I

Let Nj, be the number of elements in 7;,. We decompose V), as follows:

Nj
Vii=Vo + ZI: Vi
i=1
where
Vo={veV,:v, €Pylk)onk €Ty}
and

Vi={v e V,:v, =0forall « € Tj such that k # «;}. 4

Using the above decomposition we define local operators 7; : V, — V, i =
1,..., Ny, with inexact solver

Dh(TiI'h U) = Ah(uv U) AAVRS Viv

so that we solve for u; = T;u defined on k; € T}, such that

(,Ol‘ Vui, Vvi)l(,- + Z /)/I/lil)i = Ah(u, Ui) Vvi (S Vi,

eCok; V€

and set (Tiu)‘Kj = 0 forj # i. The coarse solve operator is Ty : V), — V; defined
analogously as

Dh(T()u, U()) = Ah(u, U()) VU() e V.

Note that on Vj, the approximate form Dy, (-, -) coincides with Ay (-, -) and simplifies
to

Di(uo, vo) = Y (y[uo]. [vol)e Vo, vo € Vo.

e€Ey
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Theorem 1 Let T = Ty + Y ', T;. Then
Ap(Tu, u) >~ Ap(u, u) Yu € V.

This means that the condition number of the resulting system is uniformly
bounded independently of /#, H and p. However, the method is not robust, because
dim Vy = N}, is very large. The proof of Theorem 1 will appear elsewhere.

3.2 Additive Schwarz Method, Version I1

Since version I described above suffers from the very large size of the coarse
space V) (based on edges of the fine triangulation 7, with averaged coefficients
on them), here we consider a coarse space which is set up on the edges of Ty, the
coarse partition. In this way the method regains high level of parallelism, as the
coarse problem now can in principle be solved on a single processor. Note that this
approach is similar to that of [10].

We decompose V), as follows:

Nj
Vi=Vo+ XI: Vi
i=1
where
Vo={veVy:v, €Po(82).i=1,....Ny}
and the 1(_)cal spaces_Vi, i =1,...,N;, remain as defined in (4). Now, the coarse

operator Ty : V;, — Vj is defined such that Tou = itp where
Dy(itg, v) = Ap(u, v) Vv € V.
In order to formulate the condition number result, we shall assume uniformly
bounded level of variation of the coefficient within subdomain: there exist positive
constants ¢ and C such that

C[)ifplgifcﬁiv izlv"'sNHv (5)

where
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Theorem 2 Let H; = diam($2;) and let T = To + Zf\,:”l T;. Under the above
assumptions,

B An(u, u) < Ap(Tu, u) < An(u, u)

H?
where B = max;—1,__ny1{ :

minKEﬁ,KC.Q,- h% .

Remark 1 Detailed proofs of Theorems 1 and 2 will be provided elsewhere due to
the page limits. Here we only briefly sketch the idea of the proof of Theorem 2.
We follow the abstract theory from the book by Toselli and Widlund [11]. Since the
local stability and strengthened Schwarz inequality assumptions are straightforward,
it remains to prove the existence of stable decomposition for any v € V. To this
end, we make use of the coarse space which makes it possible to extract subdomain
average from v and deal only with functions with zero average on each subdomain.
Applying Friedrichs inequality for discontinuous functions, [3], and making use
of (5) we prove the stability constant of the decomposition is of order .

4 Numerical Experiments

Let us choose the unit square as the domain £2 and for some prescribed integer M
divide it into Ny = 2M x 2M gmaller squares §2; (i = 1, ..., Ny) of equal size. This
decomposition of £2 is then further refined into a uniform triangulation 7, based
on a square 2" x 2™ grid (m > M) with each square split into two triangles of
identical shape. Hence, the fine mesh parameter is » = 27", while the coarse grid
parameter is H = 2~ . We discretize the problem (1) on the fine triangulation using
the method (3) with § = 7.

In the following tables we report the number of Preconditioned Conjugate
Gradient iterations for operator T (defined in Sect. 3.2) which are required to reduce
the initial Euclidean norm of the residual by a factor of 10° and (in parentheses) the
condition number estimate for 7. We consider two sets of test problems: with either
continuous or discontinuous coefficient p. We always choose a random vector for
the right hand side and a zero as the initial guess.

4.1 ASM Version II vs. “Standard ASM

First let us consider the performance of ASM version II against a more “standard”
ASM, see [8, Section 3.3], where the local solve is restricted not to a single element
of size h, but to a single subdomain £2; of size H. For the diffusion coefficient we
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Table 1 Dependence of the number of iterations and the condition number (in parentheses) on
H = 2"M and h = 27" for the method of Sect. 3.2

Fine (m) —
J Coarse (M) 4 5 6 7
4 29 (22) 39 (40) 59(1.1-10%) 96 (3.8 - 10%)
5 30 (23) 39 (40) 59 (1.1- 10%)
6 30 (23) 38 (40)
7 30 (23)

Table 2 Dependence of the number of iterations and the condition number (in parentheses) on
H = 27M and h = 27 for the method of [8, Sect. 3.3]

Fine (m) —
J Coarse (M) 4 5 6 7
4 27 (20) 35 (34) 46 (67) 62 (1.3-10%)
5 28 (20) 35(34) 46 (67)
6 28 (20) 35 (34)
7 28 (20)

take a continuous function, p(x) = xf + x% + 1. As it turns out from Tables 1
and 2, the condition number of the method considered in Sect. 3.2 indeed shows an
O((H/h)?) behavior, as predicted by Theorem 2, while methods which use local
solves on subdomains of diameter at least H (e.g. [8] or, similarly, [1, 10]) exhibit
more favorable O(H/h) dependence.

4.2 Discontinuous Coefficient

Next, let us consider p with discontinuities aligned with an auxiliary partitioning of
£2 into 4 x 4 squares. Precisely, we introduce a red—black checkerboard coloring of
this partitioning and set p = 1 in red regions, and the value of p; reported in Table 3
in black ones. In this way, our fine and coarse triangulations, withm = 7and M = 4,
will always be aligned with the discontinuities. Table 3 shows the independence of
the condition number on p; in this case.

Finally, we consider elementwise discontinuous coefficient, with p = 1 on odd
and p = p; on even-numbered triangles. Table 4 shows that in this case the coarse
space fails (a dash means the method did not converge in 600 iterations). This
confirms the importance of the assumption of mild variation of the coefficient (5).
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Table 3 Dependence of the number of iterations and the condition number (in parentheses) on
the discontinuity when the coefficient is constant inside subdomains

P1

10° 1072 1074 1076

Iter (cond) 134 (3.8-10%) 141 (3.7-10%) 161 (3.7-10%) 179 (3.8 -10%)
Red-black 4 x 4 distribution of p, aligned with domain decomposition. Fixed H/h = 8

Table 4 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity when the coefficient elementwise discontinuous

o1 100 1072 10~ 106

Tter (cond) 134 (3.8 - 10%) 435 (3.8 - 10°) —(3.1-10%) —@2.5-107)
Fixed H/h = 8

5 Conclusions

A nonoverlapping ASM for symmetric interior penalty DG discretization of second
order elliptic PDE with discontinuous coefficient has been presented, in which
a very large number of very small local problems is solved in parallel, together
with one coarse problem of moderate size. Under mild assumptions, the condition
number of the resulting system is O((H/h)?), independently of the jumps of the
coefficient.
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Algebraic Multigrid for Discontinuous Galerkin
Methods Using Local Transformations

Christian Engwer, Klaus Johannsen, and Andreas Niifling

1 Introduction

Discontinuous Galerkin methods are popular discretization methods for partial
differential equations for over a decade. For the resulting linear system, the need
arises for robust and efficient solvers. A geometric multigrid algorithm which
maintains the properties of the discretization along the grid hierarchy has been
presented in [6]. The grid transfer is based on an L?>-projection and an overlapping
element block smoother is applied on each level. For cases where the construction
of a geometric grid hierarchy is not feasible, certain classes of algebraic multigrid
methods have been developed. In [2], an iterative method has been proposed, based
on the splitting of the function space into two non-overlapping subspaces. On those
spaces, the problem can be solved more efficiently. Another approach has been
followed in [7]. There, an algebraic multigrid method has been presented which uses
a smoothed aggregation method to form the coarser grid levels. A combination of
both approaches has been developed in [4]. The algebraic multigrid being described
there uses a projection of the discontinuous space onto the conforming subspace of
linear elements. An agglomeration strategy is employed to create the smoother and
the coarse grid levels. This strategy drops the block structure of the linear system
and loses the information of the discontinuous Galerkin discretization on coarser
grid levels. In addition, it is not applicable to the Stokes equation since the inf-
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sup stability is lost on the first order conforming subspace due to the equal order
discretization of velocity and pressure.

The aim of this paper is to develop and evaluate an algebraic multigrid method for
discontinuous Galerkin discretizations, which preserves and uses the block structure
on each grid level and can be applied to different problems, including the Stokes
equation. We follow the general structure of the geometric multigrid of [6] but also
take ideas from [4] into account. The derivation of the method uses the Poisson
equation and includes comments on the differences for the Stokes equation when
applicable. The paper is structured as follows: Sect. 2 provides a short introduction
to the discretization of the Poisson equation and the resulting linear system. In
Sect. 3 the algebraic multigrid algorithm is presented, including the transfer between
different grid levels and the smoothing operator. The algorithm is evaluated in
Sect. 4 and finally a short conclusion is given.

2 Preliminaries

We describe our method using the discontinuous Galerkin discretization for the
Poisson equation, cf. [1]. Let T;(£2) := {£2,...,82y—1} define a triangulation
of the domain §2 with the size parameter # € R. The broken Sobolev space is
defined as V;, := {u € L*(2)|uj, € P(£2;)} for some polynomial spaces P(£2;).
The discontinuous Galerkin formulation of the Poisson equation with homogeneous
Dirichlet boundary conditions reads: find u;, € V), such that a.(uy, v) = f(v) holds
for all v € V), (cf. [1] for a derivation and definition of a.). The method parameter
is denoted by € and the penalty parameter by n € R. For each grid element §2;,
we assume there is a diffeomorphism p; : R" — R" with p,i(.Q) = £2;, mapping
local coordinates on a reference element §2 to global coordinates on §2. Next we
introduce local polynomial basis functions on the reference element:

¢ :R'" >R, ie{0,....N,—1} (1)

In order to simplify the description, we assume the same local basis on all
elements. Note that this restriction is not essential. Using the local to global
transformations, we define the basis function in global coordinates as ¢; x = ¢iou; '
Introducing a representation of u;, and v with respect to the global basis functions
in the discontinuous Galerkin formulation yields the linear system for the Poisson
equation:

Ax=b, A= (A
Ay = (af))y € RNV all = ac (¢, dix)

2
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Besides for the Poisson equation, we also construct the multigrid method for the
Stokes equation. We will not present its discontinuous Galerkin formulation here,
but refer to [8]. We block the degrees of freedom for pressure and velocity element
wise, which again yields a sparse block linear system.

3 Algorithm

3.1 General

The proposed algebraic multigrid method is a method to solve a linear sparse block
system Ax = b resulting from a discontinuous Galerkin discretization using only
geometric information on the finest grid level. The grid levels are numbered from
coarse to fine with O, ..., L, such that 0 denotes the coarsest grid level. By N; € N
we denote the number of elements on level /. We will mark matrices and vectors
with the level they are associated with. If the level index is missing, the matrix or
vector refers to the finest level, if not stated otherwise. On each grid level but L,
we assume there is a prolongation operator P! mapping a coefficient vector from
grid level [ to the next finer level [ + 1. The restriction R of a vector from level
[+ 1 to level  is accomplished using the transposed of the prolongation R’ := (P')’.
We compute the coarse grid matrices recursively from the finest matrix by applying
the Galerkin product A”™!' = R'™'A!P!=!. To reduce oscillating error frequencies,
we apply the smoother S’ on level /. Both, the prolongation and the smoother are
described in the remainder of this section.

3.2 Grid Transfer

The spaces on coarse levels are constructed recursively as subspaces of the space
at the next finer level using a semi coarsening approach. A semi coarsening can be
constructed based on a matching in the block matrix graph of the block matrix A.
The graph G(A) = (V(A), E(A)) consists of the nodes and the edges:

V() =1{0,....N.— 1}

(3)
EA) = {(i.j) € V(A) x V(A) 1 i <jAA; # 0}

Since the sparsity pattern of A is symmetric, G(A) is undirected. In the following,
when selecting edges for coarsening, we only consider strong edges E;(A) C E(A).
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We divide the edges into weak and strong ones, using the same criterion as in [4].
The strength of an edge (i, ) € E is defined as

_ lAgliliAgl

e \
LD = A @

An edge is called strong if its strength is greater than 8 times the maximum strength
among its neighbors, for a constant 8 € [0, 1]. The selection of disjoint strong edges
corresponds to finding a graph matching. A graph matching of strong edges is a
subset of E;(A) such that every node is part of at most one edge.

The transfer between two grid levels is constructed using so called shift matrices,
consisting of local basis transformations. For a pair of elements, we select the
polynomial basis of the first element to be the basis of the combined element and
embed the basis of the second element into the one of the first. The shift from [ to k
for two neighboring elements / and k is defined as

N Mk_ls'kz
Mk = (mf(])lj mg = (¢i,kv ¢j,k>L2(-Qk) (5)
Sui= i 5 = ik ey

These local shift matrices can be combined into a global sparse block matrix. Due to
the coupling of neighboring elements in the discontinuous Galerkin discretization,
the global shift matrix has the same sparsity pattern as the matrix A. The shift
matrices on coarser grid levels can be obtained from the next finer level by
successive shifting into neighboring elements.

Having selected a set of pairs to be coarsened, we can construct the prolongation
matrix which transfers a block coefficient vector from the coarse to the fine level.
For an element which has not been selected for coarsening, we keep its basis on
the coarse grid and therefore set the associated prolongation block to the identity
matrix. For each pair, we keep the basis of the first element and again set the block
to the identity matrix. The basis of the other element gets transferred into the basis
of the first using the local shift matrices described above. This approach yields the
prolongation as a sparse block matrix P! which can be defined as

Pl xey o) = (oo [, Spexe), - 0) (6)

for each selected pair (e, f). We define the corresponding restriction matrix as R! :=
(P)T. The domain £2! associated with an element i on level / is defined as the union
of all elements on the finest grid level which have been aggregated in element i.
Accordingly, the function space V/ on level / is spanned by the bases of the elements
of level /.
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3.3 Smoother

The smoother S’ should reduce oscillating components of the error on the current
level. As presented in [6], we use an additive and multiplicative Schwarz method
as a smoother. Let Vil C V! define a subspace of V' for each i € I' with an index
set I' to be defined later. For each subspace Vil,i € I', we solve al(ufc + cf(,i, v) =

f(v) Yv € V/forc,, € V.. The additive Schwarz method is then given by

Uy =+ 0" e ()

iell

with a damping parameter 8/ € R. In a similar way, the multiplicative Schwarz
method can be introduced, where the updates are computed and applied succes-
sively.

In [6] different types of patches have been evaluated in a geometric multigrid
setting. The results indicate that non-overlapping element block patches do not yield
arobust smoother. Overlapping vertex based patches, depicted in Fig. 1, show robust
smoothing behavior and are therefore used by the smoother in our method. It should
be pointed out, that the geometric information about vertices and their connection to
elements is only available at the finest level. We need to adopt this information along
the coarsening process. This is done, by keeping only those vertices from level [+ 1,
which have not become internal vertices between two elements. The connectivity
information between the remaining vertices and their adjoining elements on the
coarse level can be transferred from the fine level: a vertex on level [ is connected
to an element i on level [ if it was connected to an element on level / + 1 which
has been aggregated into i. The smoother is said to fulfill the smoothing property, if
[AL(S")" || < Cn(v) with a function n(v) — 0 for v — oo.

For the Poisson equation, we set I’ to be the index set of grid vertices on level /
in the algebraic sense. Vil is the linear subspace spanned by the degrees of freedom
associated with an element which is connected to the grid vertex i. The numerical
results in [6] indicate for the one dimensional problem using the NIPG method, that
the additive smoother fulfills the smoothing property with 1/v.

Fig. 1 Overlapping patches ~ ~— 77 7 717 7727~ —72 === === =72~ ™="1
for the Poisson equation (left) : : : : : : : : : :
and Stokes equation (right) F---—-—-"--1 - -1
| | | | | v v v |

| | | | | |

R ¢ L d -

| | v vp v |

| | |

@ | | @ . |

| | v v v |

- d__J |
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For the Stokes equation, in addition to the vertex based patches, we need to
take into account the saddle point structure of the problem. We adopt the idea of
the Vanka type smoother from [10], where, in a staggered grid context, a pressure
degree of freedom is combined with all coupling velocity degrees of freedom.
In addition we include the vertex based approach in order to construct a robust
smoother. Combining both approaches in the context of the discontinuous Galerkin
formulations, we set I' to be the index set of elements on level /. Vl.l is the linear
subspace spanned by the degrees of freedom associated with an element which
shares a grid vertex with element i (see Fig. 1). Based on experimental results, we
apply a different damping factor depending on the position of an element inside the
patch. Theoretic results from [9] and numerical experiments indicate that for Stokes
SIPG, the additive smoother fulfills the smoothing property with at least 1//v.

4 Evaluation

We implemented the algebraic multigrid method using the Distributed and Unified
Numerics Environment (DUNE) (see [3]), using the PDELab toolbox (see [5]) for
the PDE discretization. First, we apply our method to a two dimensional Poisson
problem with £ = [0, 1]*> on a structured grid with rectangular elements, in order
to reproduce the results given in [6] for a geometric multigrid method. As local
basis functions we use an orthogonalized Qy basis, with Oy := {(x,y) > x*y* :
oy, oy € N oy, 0y < k}. For the following tests, we set k := 2. We use a NIPG
discretization with different penalties and different sizes of the finest grid level. The
penalty ranges from 1073 to 10 and the fine grid size is increased by successive
uniform refinement starting with a size of 5 x 5. The convergence rate is measured

as
Idzoll2 ) ™
201[2
pi= , (8)
(||d10||2)

where d; denotes the defect in iteration i. We apply the additive method with
damping 6 = % and v = 4 pre- and post smoothing steps. The multiplicative
method is applied with & = 1 and v = 1. The results can be seen in the

second column of Fig.2. In this Figure and in the following, graphs with higher
convergence rates correspond to finer grid sizes. It can be observed, that the general
convergence behavior of the geometric method can be reproduced, while producing
better convergence rates for higher penalties.

In the next test, we apply our method to the SIPG discretization of the Poisson
equation. The test parameters are the same as in the previous test. The convergence
results can be seen in the third column of Fig.2. We observe similar convergence
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Fig. 2 Convergence rates for the Poisson equation, left: NIPG method using the geometric
multigrid from [6], center: NIPG method using our multigrid, right: SIPG method using our
multigrid, fop: additive smoother, bottom: multiplicative smoother

Table 1 Results for the Poisson equation using the NIPG method on unstructured tetrahedral
grids with the multigrid as a preconditioner for the BICGSTAB algorithm

Unit sphere Unit cube
Elements | 2104 | 8270 | 33,418 | 139,572 | 547,038 | 2406 | 9386 | 38,202 | 154,194 | 635,216
Levels 11 11 10 10 10 11 12 13 12 11
Iterations | 3 3 3 3 4 3 3 3 3 3

behavior as in the NIPG case. The method does not converge for a penalty less than
0o < 10, which corresponds to the theoretic findings in [1].

Next, we use the method as a preconditioner in a BICGSTAB solver for a second
order NIPG discretization on different unstructured grids. For different values of
h, we create triangulations of the unit sphere and unit cube using tetrahedral
elements. We use the multiplicative smoother and stop the iteration at a relative
defect reduction of 107!°, The results can be seen in Table 1.

Finally, we test for NIPG and SIPG discretizations of the Stokes equation on the
unit square. We choose the orthogonalized Q; basis for the velocity components
and an orthogonalized Py_; basis for the pressure, where Pi—; 1= {(x,y) > x%y® :
oy, 0y € Nyoy + oy < k — 1}. Again we use a structured grid with rectangular
elements, choose k = 2 and apply the method with different penalties and grid sizes.
We use the same damping parameters as before, but weight the velocity degrees
of freedom differently depending on their local patch position when applying an
update. The weight for the central element of a patch is set to % and the weight for
the outer elements is set to ﬁ, where m denotes the number of outer elements in
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Fig. 3 Convergence rates for the Stokes equation, left: NIPG method, right: SIPG method, top:
additive smoother, bottom: multiplicative smoother

the patch. Our method is used as a preconditioner for the BICGSTAB algorithm.
The results can be seen in Fig. 3. We observe increased convergence rates when
compared to the Poisson equation. In addition, we observe larger convergence rates
for finer grids and larger penalties.

5 Conclusion

We proposed an algebraic multigrid method for the discontinuous Galerkin dis-
cretization of the Poisson and Stokes problem. It shows good convergence rates
and is flexible enough to be applied to different types of problems, which are
not covered in this paper. Currently, one drawback of the method is its large
computational cost. This effort is dominated by the application of the overlapping
block smoother on the finest grid level. Reducing this effort by applying different
smoothing strategies has not yielded the desired convergence behavior so far. To
avoid increasing convergence rates for finer grids and higher penalties, one can
develop different local shift strategies. Instead of projecting into the local basis of
a single element, one can investigate the possibility to project into a common basis
on all aggregated elements. In order to get a better understanding of the smoother,
an investigation of the smoothing property might be worthwhile.
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Concepts for Flexible Parallel Multi-domain
Simulations

Christian Engwer and Steffen Miithing

1 Introduction

Domain Decomposition methods provide a flexible tool for developing multi-
physics simulations and coupling different discretization methods. In general,
multi-physics simulations will require the handling of non-matching grids. Domain
Decomposition methods like the Mortar method [3] enable us to simulate complex
applications like contact problems, mechanics of moving parts, or heterogeneous
coupling like surface-/groundwater flow.

As we will discuss, coupling unrelated parallel meshes poses significant practical
problems. To our knowledge only very few implementations exist: both the well-
known MpCCI library [7] and the SIERRA framework implement a parallel
rendezvous algorithm [8] based on intersection algorithms, but neither of them is
publicly available. An alternative approach can be based on radial basis functions,
see [5].

The DUNE framework [1] offers different strategies for Domain Decomposition
methods, which are available as DUNE extensions. One approach is to construct indi-
vidual meshes for each sub-domain and relate them afterwards, the alternative is to
create one mesh for the whole domain and define sub-domain meshes as appropriate
sub-meshes. In this paper we only discuss the first approach. In [6, 6] describe a new
algorithm that improves the complexity of matching unrelated meshes from O(n?) to
O(n), where n is the number of coupling elements. This algorithm is implemented in
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the DUNE GRID-GLUE [2] library. We discuss extensions of this library for handling
distributed meshes.

When using methods like Dirichlet-Neumann coupling in the parallel context the
user is forced to manage distributed data, as the necessary coupling information
is not available locally. We present an abstraction that hides this non-locality
and allows the user to implement his Domain Decomposition strategy in a clear
mathematical setting. By introducing two auxiliary Finite Element spaces on the
coupling interface we can reformulate the original domain decomposition algorithm
and hide all parallel data handling from the user. In a proof of concept we implement
these auxiliary spaces for the DUNE PDELAB library, where they are created in a
completely automatic fashion.

2 Relating Unrelated Meshes

In the following we only describe a non-overlapping scenario, although the pre-
sented techniques are applicable to more general settings.

We consider a domain £2 C RY. 2 is partitioned into two sub-domains §2y and
£2) which meet at an interface I". The domains are triangulated into meshes 7, and
71 which are independent and in general do not match at the interface. Each mesh
describes a set of entities, e.g. cells, faces, etc. We select a subset of entities which
covers the interface I, i.e. the patches Py, Pi; on these we impose the coupling
conditions.

In order to relate information on £2( and £2; one has to transfer data like approx-
imate solutions and evaluations of local residuals. We follow a mesh intersection
approach, requiring us to compute the intersections of all entities in Py with those
in P; (see Fig. 1). Based on the algorithm presented in [6] we identify pairs of
overlapping entities from both sides, for which we then compute entity clippings,
yielding a set of polyhedral intersections.

This algorithm is available as Dune: : GridGlue: :Merger within DUNE
GRID-GLUE; it is provided as a native implementation and as an interface to legacy
codes. Using a predicate m; the coupling patches are defined as P; = {y|y €

NN

70(90)771(91) P,CT; U2, I

Fig. 1 Intersecting the coupling patches P, and P; yields a set I of intersections, which can be
used to evaluate the coupling conditions
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Fig. 2 Left: intersections relate adjacent cells of unrelated grids. Right: geometric mappings
provided by an intersection

Ti N 082; A m;i(y)}. The computed intersections are modelled as the intersections in
the DUNE grid interface and exposed as Dune: : GridGlue: : Intersection,
which provides topological and geometrical information. In the sequential case
it gives access to the adjacent cells in the two grids 7y and 7;. To compute
coupling conditions, intersections provide a mapping from local coordinates to
global coordinates as well as mappings to the local coordinate systems of the
adjacent cells (see Fig. 2).

2.1 Coupling via Intersections

As a short example, let us consider a two-domain Poisson problem with Dirichlet-
Neumann coupling condition: Find uy and u; such that

—Au; =0 onf2;,i€0,1
u =g ataQi\F,iGO,l
(D
Up = Uy at I’

Vui-n=Vuy-n atl .

We follow the usual approach and introduce discrete trial and test spaces Vj,
Vi on §2p and £2,. In the simplest case this might be a conforming Lagrange
discretization. Testing with functions v; € V; and integration by parts yields the
problem in its weak formulation. On §2y we impose Dirichlet boundary conditions
along I', whereas Neumann boundary conditions are imposed along I" on £2;.
As the interface I' is in general non-conforming, we can employ a Clément
interpolation to interpolate the solution u; onto £2y. For given bases @y, @;, we
obtain a system matrix of the following form, where Cy and C; correspond to
Dirichlet and Neumann coupling blocks:

Ao Co uo _ bo
(CIAI).(MI)_(bI) @
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Algorithm 1 Classic Dirichlet-Neumann iteration
w9, u! = initial
while ! converged do
uy < Ay (bo — Cour)
up <= Ay (by — Coup)
end while

The matrix entries in the off-diagonal blocks are given by
G =—(Veingilr. O = -0, @.)r.

with @ o = 1/(1, q&é) r the weights of the Clément operator and ¢, € @,.

A straightforward approach to solving this problem iteratively is a fix point
iteration on the split problem. In order to better illustrate the differences to the
following parallel setting, we sketch this iteration in Algorithm 1.

2.2 Concepts of Parallel Mesh Coupling

Based on the previously introduced local grid matching algorithm we derive a par-
allel grid matching algorithm, see Algorithm 2. We extract the local part of the cou-
pling patches Py, P;, merge these and communicate the data in a ring. We retrieve
the neighboring patches and intersect them with our local patches. This yields the
set of all intersections of local entities, either in §2y or §2;, with any other entity,
including remote entities. This provides all topological and geometric information
required to evaluate the coupling conditions, but in general, as illustrated in Fig. 3,
we lack access to the data in the adjacent domain. We therefore assign a globally
unique ID to each intersection to provide parallel communication on the interfaces.
This communication is built upon the parallel IndexSets [4] of DUNE and allows
a gather/scatter mechanism to send and receive data across domain intersection
patches. In analogy to the parallel communication in the DUNE grid interface, the
user has to provide a Dat aHand1e object which implements the gather and scatter
operations. The communicated data depends on the chosen Domain Decomposition
method, thus the user is usually required to implement the data communication
himself. For high level frameworks this a very unsatisfactory situation.

For methods like Mortar or FETI-DP the problems are less immanent as we have
no direct coupling along the sub-domain faces. These methods introduce additional
degrees of freedom on the interface, the sub-domains couple only to the interface
and then the arising Schur-Complement system for the interface is solved.

Other methods like classic non-overlapping Schwarz methods or Dirichlet-
Neumann coupling directly couple the sub-domains and require explicit commu-
nication of remote data. The main difference is that in the latter case we cannot
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Algorithm 2 Parallel grid matching algorithm

parallel GridGlue
P
T ($20), T(£21)
mo, my
process [T [p € {0,...,P—1}]
Po = {yly € Tol, N 320 Amo(y)}
P ={yly € Til, N 32y Ami(y)}
I’ <— merge(Py, P1)
(Po. P1) < (Po, P1)
fori € [0,P—2)do
asend: (’/150,:/'51) — (p + D%P
arecv: (ﬁo,:ﬁl) — (p—1+P)%P
P < ryu merge(ﬁo, P1)
IP < I" U merge(Py, ’/ﬁl)
end for
end process
end parallel

> P: # of parallel processes
> Sub domain meshes
> Predicates for §2, and £2,

> Local coupling patches

> Set of intersection

> send to right neighbor

> receive from left neighbor
> merge remote patches

... with local patches

Fig. 3 When coupling distributed grids, neighboring cells of the remote mesh might not be
accessible locally, making it impossible to evaluate coupling conditions (numbers in circles denote

the process rank)

fully represent the local part of the Poincaré-Steklov operator on a single processor,

but only the local contributions.

3 Hiding Parallel Communication Using Auxiliary Spaces

We now describe a mathematical abstraction which allows implementations to hide
all communications from the user. We introduce additional function spaces V, and
Vs on the coupling interface I", see Fig. 4. The definition of these function spaces

is general; they can thus be constructed automatically as

Vi = {v e LX(IN) ‘ vl, € P(y).y €Lk = order(Vo)} 2 tr(Vp)

Vy = {v € LZ(F) ‘ vl, € P(y).y e Lk = order(Vl)} 2 tr(Vy),
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.

Fig. 4 Through the use of auxiliary spaces on the coupling interface I", direct access to non-local
cells of the neighboring domain is avoided (numbers in circles denote the process rank)

where Py denotes the space of polynomial functions up to degree k. V) and V,
are defined as discontinuous polynomial spaces on the interface, where V) is the
minimal DG space containing the trace spaces of V and V,; for V|, respectively. For
efficiency we choose L? orthonormal bases. Note that for order(Vy) = order(V;)
it follows that V) = V,. The arising structure of the global system is as follows,
although it is never assembled as a whole:

A() 0 Co’ 0 uo bo
—DyM; 0 0 Al o
0 oM,—D, | o] 0]
0 CA 0 A1 up bl

where M), M, denote the mass matrices of V;, V,; and C;, D, C,, D, are coupling
operators.

The auxiliary spaces V) and V,, eliminate the direct coupling between Ag and A;.
We split the original coupling operator C; to obtain the pair Cy, D, and proceed
analogously for Cy. As we have chosen L? orthonormal basis functions for V; and
Vs, the mass matrices reduce to the identity 1. Therefore the coupling operators
can be evaluated on the fly in an efficient fashion. All computations are completely
local and can be handled by a generic gather/scatter implementation. The relation
between C; and Cy, D, becomes obvious when eliminating A or o, respectively. We
use M, = 1 and obtain the classical coupled system as in (2)

Ay CoDg\ (uo) _ (Do
C,D) Ay up N b,
In analogy to Algorithm 1, we can solve the coupled parallel system using

Algorithm 3. As we recover the original DD method, it is also possible to use it
as a preconditioner in existing Krylov methods.
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Algorithm 3 Auxiliary space iterative algorithm
u’, u' = initial
while ! converged do

0 < D,y > implicit data communication

ug < Ay Yby — C,0) > parallel solver on £2

A < Djug > implicit data communication

U < Arl(bl —C,A) > parallel solver on £2;
end while

V() (CouplingGFS)

generated

Fig. 5 Sketch of the hierarchic construction of the global function space for a coupled problem.
DUNE PDELAB automatically generated the spaces V, and V,,

3.1 Implementation in DUNE PDELab

When implementing the Poisson example from Sect. 2.1 with the auxiliary spaces
approach, DUNE PDELAB transparently synthesizes the auxiliary spaces V, and
V. and represents the overall solution space V = V x V| x Vy x V, as a tree of
elementary function spaces (cf. Fig.5). Given a weak problem of the form u € U :
a(u,v) = b(v) Y v € V, DUNE PDELAB splits the (bi)linear forms into sums of
entity-local contributions ¢, ¢; and o, for cells, interior facets and boundary facets,
respectively, isolating the user from mesh and DOF handling. a(u, v) thus reads

a(u,v) = Y RE(ey.u.v) + Y Ri(eeu.v)+ Y Ri(ap.u.v). 3)

e€E), feFI(li) fEF}(,b)

RE, R and R® map the global spaces U and V to the element-local restrictions on the
cells adjacent to the current entity, leaving the user with the task of implementing
the local contributions ., o, and op,.

The coupling operators D;, Cy, D, and C, resemble the interior facet terms in
that they involve restricted function spaces with different supports, but differ in that
the restrictions do not belong to the same global space. Those terms consequently
require an extension of Eq. (3) with additional coupling terms on the interface I”
and the two sub-domains.

D, and D, form projection operators onto V) and V,;, whereas C, and C, mimic
the operators Cy and C. The first one behaves like a source on the interface, whereas
the second one is a direct adoption of the Clément operator. Given local bases
@) on y (with Vi|y = span(®))) the user has to implement the following local
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contributions to the global stiffness matrix:

WMDY D))= Y —(Voon.¢n), . (@] D)= Y (¢r.¢1), .

¢AE¢{ ¢1€¢ly
Po€P) pred!
1, _ 0 —
(@) = Y —(frde), . aTUBL O = D —wp (. Po)y -
bo€P) Po€d]
P1€0] Po €PF

which correspond to Dy, C;, D, and C,, respectively.

4 Conclusions

The DUNE GRID-GLUE library offers software infrastructure for the coupling of
unrelated grids. We presented recent extensions to DUNE GRID-GLUE to work in the
context of distributed meshes. Reconstructed geometrical and topological relations
between the grids are encapsulated as intersection objects. Although presented for
non-overlapping intersections, the parallel implementation also handles overlapping
and mixed-dimensional setups.

The coupling of distributed grids usually requires substantial changes to the
user code and explicit use of parallel communication. We discussed a concept to
reformulate the numerical scheme using auxiliary spaces on the coupling interface
I', which allows the implementation of domain decomposition methods in a
common framework that can hide the parallel communication from the user. This
reformulated coupling problem integrates nicely with the hierarchic function space
and operator concepts available in DUNE PDELAB.

The presented parallel mesh matching is available in the current version of
the DUNE GRID-GLUE library. A prototype implementation for DUNE PDELAB
is available, a more general implementation is under development. The code is
available under an open source license from the DUNE website http://www.dune-
project.org/.
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Domain Decomposition and Parallel Direct
Solvers as an Adaptive Multiscale Strategy
for Damage Simulation in Quasi-Brittle
Materials

Frank P.X. Everdij, Oriol Lloberas-Valls, Angelo Simone, Daniel J. Rixen,
and Lambertus J. Sluys

1 Introduction

Understanding failure processes of heterogeneous materials is an active research
field in computational mechanics. The failure analysis of quasi-brittle materials such
as concrete is a topic of particular interest in civil engineering. Failure in quasi-
brittle materials is characterized by the initial formation of cracks at a microscopic
level followed by their coalescence into macroscopic cracks leading to weakening
and fracture. Because the fracturing process of these materials occurs at different
length scales, care must be taken to provide an accurate description which accounts
for all the relevant mechanical processes while maintaining acceptable computation
costs. With this in mind, we propose a multiscale approach capable of switching
between different spatial discretizations and material representations depending on
the local mechanical behaviour.

In this contribution, we present a non-local damage finite element analysis of a
wedge-split test used to evaluate fracture properties in concrete-like materials. We
apply the classical FETI framework [7] to a non-linear gradient-enhanced damage
(GD) model [15] using both iterative and direct solvers to the interface problem as
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well as using a direct solver for the entire set of equations of the fully dual assembled
system.

2 Framework

2.1 Gradient-Enhanced Damage Model

The gradient-enhanced damage model by Peerlings et al. [15] is employed to
model concrete failure. The GD model is non-local: it consists of a coupled set
of differential equations involving the modified Helmholtz equation for the non-
local equivalent strain and the classical quasistatic equilibrium equations. Damage
evolution is highly non-linear, requiring the use of a loop control dividing the total
load into small steps with an iterative Newton-Raphson (NR) scheme for each step
to assure equilibrium.

The damage parameter @, which modifies the stress—strain relation according to

o=(1—-w)D’: e, (1)
varies from O for undamaged to 1 for fully damaged material. Its evolution,

0 K < Ko
w (k) = , 2
) 1 -9 (1—a(l—e e ) K>k @

is a function of the history parameter « which is defined as the maximum value ever
attained by the nonlocal equivalent strain. In the above equations, D¢ is the elasticity
fourth-order tensor, o is the second-order stress tensor, € is the second order strain
tensor, ko, & and f are parameters governing the shape of the damage evolution law.

The underlying damage formalism results in an asymmetric stiffness matrix. To
solve the set of equations, a solver supporting asymmetry, both in direct and iterative
approaches, is required.

2.2 Multiscale Domain Decomposition

The key to solving the discrete system of equations in a reasonable amount of
time is to use two different representations of the problem under examination. One
numerical model has a fine mesh with a detailed representation of the mesostructure
of the material. The other numerical model has a coarse mesh with homogenized
material properties which have been determined to approximate the response of the
‘fine’ model in the linear regime. Both numerical models have been decomposed
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into a fixed amount of domains. Each domain in the ‘fine’ model has a corresponding
domain in the ‘coarse’ model matching its shape.

The calculation starts with the ‘coarse’ numerical model for all domains. In each
step and for each domain, a check for the condition of onset of non-linearity is
performed. For every node, the non-local equivalent strain difference is calculated
from the displacement field of the current and two previous steps. Onset of non-
linearity occurs if for a single node the strain difference exceeds a chosen damage
initiation threshold value k3. The domains for which this condition is met are
subsequently replaced by domains with the fine scale mesh. To preserve continuity
of the displacements and forces, a boundary value problem is solved for each
replaced domain followed by a global relaxation step.

Computing the strain difference for the onset of the non-linearity condition is a
choice that should match the nature of the formation of non-linearities. For tensile
test calculations and the gradient-enhanced damage model, our current choice yields
satisfactory results [13].

2.3 Classical FETI Method

In order to solve the multiscale system with a mixture of coarse and fine meshes
for each domain, the classical FETI method [7] is used. Lagrange multipliers ensure
continuity of the solution field between interface nodes of adjacent domains. Linear
multipoint constraints and full-collocation are used for fine mesh interface nodes
which do not have a corresponding coarse mesh node on the adjoining domain [14].

Boundary conditions are also included by means of Lagrange multipliers, thus
implying that all domains in this framework are floating. This method is known as
the Total-FETI method [6]. Rigid body motion vectors are constructed to enforce
compatibility between domains. To solve the local equations for each domain, we
use QR factorization of the domain stiffness matrix which can be stored for later
use in computing the Lagrange multipliers by means of either the iterative or direct
solve of the global interface problem as shown in [12, 13].

3 Numerical Computation

3.1 Model

We use a two-dimensional model of a wedge split specimen for the quasistatic
damage simulation of the heterogeneous sample of concrete shown in Fig. 1.
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Fig. 1 Dimensions and domain decomposition of the wedge split model test. The interface is
represented in dark-grey

Fig. 2 Coarse (left) and fine (right) scale domain meshes. Coloring in the fine domain: aggregates
in black, cement matrix in grey and ITZ in light grey

For the multiscale framework we use two different meshes: a homogeneous
mesh consisting of quadrilateral elements with four integration points for the coarse
domains, and a heterogeneous mesh with triangular elements and one integration
point for fine scale domains. Both meshes are shown in Fig. 2. The fine-scale mesh
is representative of a typical concrete mesostructure which consists of spherical
aggregates, an interface transition zone (ITZ) surrounding the aggregates, and a
cementitious matrix material in which the aggregates are embedded. Because of
the independence of the individual domains, we are not restricted in mesh, element
and material choice per domain provided that the solution field is continuous across
the interface.

The parameters are listed in Table 1. Plane strain conditions are considered. The
Young’s modulus for the homogeneous coarse-scale mesh is an effective Young’s
modulus derived from the heterogeneous mesh. This is necessary for an accurate
material-averaged linear response in the coarse description of the model.
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Table 1 Material data

Material parameters Aggregates Matrix ITZ
E Young’s modulus (GPa) 35.0 30.0 20.0
v Poisson’s ratio -) 0.2 0.2 0.2
Eeq Non-local equivalent strain -) Mazars Mazars Mazars
Ko Damage initiation threshold | (-) dummy 8.5x 10— 5x107°
c Gradient parameter (mm?) |0.75 0.75 0.75
(k) | Damage evolution law =) Exponential | Exponential | Exponential
o Residual stress parameter -) 0.999 0.999 0.999
B Softening rate parameter =) 150 150 150

3.2 Software Framework and Solvers

The non-linear quasistatic calculation is performed by dividing the total applied
displacement into 200 load increments. In each load increment the non-linear GD
model is evaluated iteratively using an NR scheme with a convergence threshold of
1.0 x 107° for the relative error in energy. Usually 3—4 NR iterations are sufficient
for the solution to converge.

In the FETI calculations, all factorizations of the domain stiffness matrices are
being performed by SuiteSparseQR [4]. Solving the flexibility problem iteratively
requires projection to ensure positive semi-definiteness of the matrix, allowing the
iterative solvers to converge. Because of the asymmetry of the flexibility matrix,
only few iterative solvers like BICGStab by van der Vorst [20] and GMRES by Saad
and Schultz [17] are suitable. We chose BiCGStab with projection using openMP
for the product of the projected stiffness matrix and solution vector (Egs. (9)—(12)
in [12]).

Superlumped (SL), lumped (L) and Dirichlet (D) type preconditioners from [16]
are used to accelerate iterative convergence, as well as the multiplicity (m), stiffness
(k) and Dirichlet (s) scaling to augment the preconditioners.

The flexibility interface problem can also be solved directly, using openMP for
evaluating the flexibility matrix by distributing the domain contributions to the
sum over all available parallel cores, followed by a dense matrix solver such as
UMFPACK [3]. Even though this approach was discouraged in [7] because of the
large amounts of solutions required, we have performed this direct calculation since
it does provide an upper time limit for finding the Lagrange multipliers with an
iterative approach.

An alternative approach is the solution of the set of equations from which the

FETI method originates:
KB’ |[u f
o l0=6) <3>
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Because of the reduction in degrees of freedom, obtained by starting with all coarse
domains and a simplified model description, and only substituting domains with
fine, heterogeneous counterparts where it is needed, the full dual assembled matrix
is much smaller than the full numerical solution (FNS) and can be solved using
parallel direct solvers.

In this contribution we have selected a couple of solvers with the requirement of
being able to handle asymmetric cases: MUMPS by Amestoy et al. [1, 2], Pardiso
by Schenk et al. [18], PaSiX by Hénon et al. [9], WSMP by Gupta [8] and SuperLU
by Li [10], Li et al. [11], and Demmel et al. [5]. These solvers can also be applied
to obtain the FNS.

4 Results

The full numerical solution and the 34 domain FETI-direct calculations show iden-
tical damage patterns and displacements as shown in Fig. 3. However, none of the
iterative FETI calculations, regardless of preconditioner and scaling combination,
succeed in completing the calculation within the 1000 BiCGStab iteration limit.

Figure 4 shows a significant rise in BiCGStab iterations as the damage calculation
progresses. This indicates the inability of the iterative preconditioners and scalings
to deal with progressive damage evolution, possibly due to large differences in
material stiffness. In order to ascertain this assumption we study the number
of iterations for one linear elastic calculation with a domain decomposed mesh,
consisting of the 26 zoomed-in domains, by choosing three different load increments
i and their corresponding damage profiles w; from the FETI-direct calculation and
substituting the Young’s modulus £ by (1 — w;)E. This approach enables us to
observe the dependency of the damage evolution versus the number of iterative steps
needed for convergence.

From Table 2 we confirm that the iterations strongly depend on the damage
profile: the iterations increase dramatically upon progressively growing differences
in material stiffness. This is caused by the differences of orders of magnitudes in the

Pt % ';f‘ % .':?

Fig. 3 Comparison of final damage profile of FNS (right) and FETI-direct 34 domain
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Fig. 4 BiCGStab iteration trend per NR-iteration number. Refer to Sect. 3.2 for an explanation of
used preconditioner and scaling acronyms

Table 2 Linear elastic BICGStab iteration count as a function of damage profile for a given load
increment. Two different preconditioner/scaling results are shown

Load increment

Preconditioner + scaling 0 100 Final
Dirichlet + k scaling 16 233 1936
Lumped + k scaling 39 781 >5000

matrix entries. We therefore conclude that the standard preconditioners and scalings
fail to accelerate the BiCGStab iterative solver in situations of substantial damage.

Improving the preconditioners for these type of systems involves adapting new
techniques in combination with the damage model, for instance using eigenvalue
analysis in FETI-GenEO [19]. This is a challenging research topic because of the
asymmetric nature of the stiffness matrix in the GD model.

If we instead turn our attention to the parallel direct solvers for both the FNS
and full assembly of the FETI system, we see a favourable reduction of time and
used memory of the full assembly compared to the FNS for all solvers (Fig.5). The
reduction is not very large, as was expected since the used model system shows an
extensive damage pattern affecting 75 % of the domains. We are confident that for
larger 3D model systems undergoing damage the amount of zoomed in domains will
be much smaller and therefore more economic in terms of computation time.
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Fig. 5 Comparison of parallel direct solvers. Solid symbols denote FNS, outlined symbols denote
multiscale DD

5 Conclusions

The multiscale framework proposed by Lloberas-Valls et al. [13] in combination
with a classic FETI approach is shown to provide a reduction of degrees of freedom
necessary to efficiently simulate damage evolution in multiscale models of concrete-
like materials. By using parallel direct solvers the calculation can be done in less
time and memory than the FNS.

In the iterative FETI approach, a high iteration count of the iterative solver
is caused by the large differences in material stiffness along domain interface
boundaries because of damage evolution. This poses a challenge for existing
preconditioners and scalings. We nevertheless expect the iterative FETI to become
the most efficient algorithm for very large problems once suitable preconditioners
have been identified.
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Schwarz Methods for the Time-Parallel Solution
of Parabolic Control Problems

Martin J. Gander and Felix Kwok

1 Introduction

Suppose we are interested in the following distributed control problem: given a
system governed by the parabolic PDE y+.2’y = u on the time interval [0, 7] (where
y denotes the time derivative of y), we wish to choose the forcing term u = u(t) to
minimize the discrepancy between the trajectory and the desired state y = y(¢).
After semi-discretization in space, we obtain for a given choice of parameters
y,v > 0 the following minimization problem:

m'nlan 512t + LIy =512 + ”/Tn 12 di
in= [ |y—j Sy -3 = u
yu 2 Jo 2 2 Jo (1)

subject to y+ Ay = u, y(0) = yo,

where A is the matrix obtained by semi-discretization of the operator .. While the
PDE in (1) may resemble an initial-value problem, the minimization problem is in
fact a two-point boundary value problem in time, since the first-order optimality
conditions couple the PDE to an adjoint equation that is backwards in time and
contains a final condition, see Sect. 2. To solve such systems in parallel, one can
use multiple shooting methods, see [8] and references therein, or parareal-type
algorithms in a reduced Hessian formulation, see [4, 7]. A Schwarz preconditioner
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in time for such systems was presented in [1], where on each subinterval I; =
[T}, Tj11], one uses an initial condition for y from /;_; and a final condition for
the adjoint state A from /; 1. To the authors’ knowledge, no convergence analysis is
available for this method.

We study in this paper Schwarz methods for the time-parallel solution of (1).
We present a rigorous convergence analysis for the case of two subdomains,
which shows that the classical Schwarz method converges, even without overlap!
Reformulating the algorithm reveals that this is because imposing initial conditions
for y and final conditions on A is equivalent to using Robin transmission conditions
between time subdomains for y. Using well chosen linear combinations of y and A as
transmission conditions allows us to optimize the Robin conditions for performance,
and leads to much faster Schwarz methods, especially when the spatial operator has
eigenvalues close to zero. We illustrate our results with numerical experiments.

2 Schwarz Methods in Time

Using the Lagrange multiplier approach (see e.g. the historical review [6]), one can
derive the forward and adjoint problems to be

y+Ay=u  on(0,7), { A—ATA=y—-3  on(0,7),
MT) = —y((T) = $(T)).

y(0) = yo,

where the control u and adjoint state A are related by the algebraic equation A(7) =
vu(r) for all t € (0, T). Eliminating u, the above system can thus also be written as

HE e R ]

Suppose we wish to divide the time interval (0, T) into two subintervals I; = (0, B)

and I, = («,7) with < f in order to solve the two subdomain problems in
parallel. Then for any choice of parameters p,g > 0, we propose the following
parallel Schwarz algorithm: for k = 1,2,.. ., solve

ok -1 k

4 A v 2| O onl; = (0

IR Rl 1] R e IR
(3a)
Y1(0) = yo.

MB) +pyi(B) = A571(B) + ps ' (B).
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G AL e en
2
¥a(@) — gA5(@) =y (@) — gA (@),
A(T) = =y GAT) —3(T)).

(3b)

For p = g = 0, the transmission conditions reduce to the classical conditions from
[1]. To understand why we consider transmission conditions of this form, suppose
that A = AT € R"™™, 5o that A can be diagonalized as A = QDQ", with QTQ = I
and D = diag(dy, ..., d,). Then the ODE system in (3a) can be written as

-k - k
G wnmon

(0) = z,
th(B) + pZi(B) = ' (B) + p2 1 (B),

“)

where zf = Q"yf, uf = QTA} forj = 1,2 and z = Q"3, z0 = Q"yo. Thus, we
obtain m independent 2 x 2 systems of the form

(1) k (i).k _1M(1i),k =0, ﬂ(li),k

+ dlzl —V D).k _ (l) k "(l) (5)

—din

where z *and u(’) are the ith components of z’{ and ,u’f respectively, and d; is the
ith elgenvalue of A. By isolating ¢ from the first equation in (5) and substituting
into the second, we obtain the second-order ODE

E(Ii)’k - (di2 + v_l)z(li)’k =y~ 150, 6)
whereas the boundary conditions become

240) = 2(0), 2 + (d; + pv~H™* = AT 4 (d 4 p 5
1= 1=

Hence, once we eliminate the adjoint state, it becomes apparent that we are in fact
imposing a Robin transmission condition on the elliptic boundary value problem (6),
even with the classical Schwarz method p = ¢ = 0 from [1]. With the additional
parameter p and g, one can now optimize the convergence, as in optimized Schwarz
methods [5]. Boundary conditions of the form y — gA in (3b) can be explained
similarly; here, the minus sign is chosen so that the subdomain problem is well-
posed for g > 0 whenever A is symmetric semi-positive definite.
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Remark on Implementation Since we are primarily interested in the behavior of
the Schwarz method, we will regard solvers for the subdomain problems (3a) and
(3b) as black boxes. We emphasize however that final conditions of the form A + py
already appear when the objective function contains the target term £|y(T) —3(T) 12,
see (3b). Thus, existing solvers can be used as is or easily modified to handle the
optimized conditions, see [2] or [3].

3 Convergence Analysis

In this section, we assume A to be symmetric and semi-positive definite, so that (3a)—
(3b) can be diagonalized as in Sect. 2 with d; > 0. Moreover, since the problem is
linear, we can analyze the error equation, which means setting yo and y to zero and
studying how y]’.‘ and A;‘ converge to zero as k — oo. After diagonalization, the first
subdomain solution satisfies (6) with homogeneous initial condition:

@+ =0, M) =0 = @) = Alsinhin). ()

where 0; = (/d? +v~! > 0, and Af.‘ is a constant determined by the boundary

2% L (p+ vdi)z(li)’k|,=ﬂ = gDk Substituting the solution from (7)

(i).k
gll

v [a,- cosh(o;B)+(di+pv—1) sinh(a,-ﬂ)] :
subdomain I, = («,T) at iteration k + 1. The boundary data at t+ = « can be
written as

condition vz,

Next, we consider the

and isolating Aé‘ yields Af =

i),k

ROKFL = Ok g DK 0k (g

| _ = vag vqdi)z,

(4 019 cosh(o;) + (qdi — v~ Y sinh(o;a)
o; cosh(o;B) + (d; + pv~") sinh(0;8)
(3)

On the other hand, the ODE can be written as
L.L(zi),k+1 _ (d-2 + V—I)M(Zi),k+1 -0 onl, = (. T),
i).k+1 i).k+1 i),k+1 i),k+1 i
D) 4y Ty =0, ) - g () = WO

k+1 0),k+1 i),k+1
D = p P g

Since z, , the boundary conditions can be written as

Vit (¢)k+1(T)+(1 dy)u(z)k+l(T) 0. H(z)k+1(a) (d; +q)u(z)k+l() pDk+T
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The boundary condition at r = T gives
u = B o3y cosh(oi(T — 1) + (1 — dyy) sinh(oi(T — 1))] .

where BST! is a constant. The boundary condition at # = « allows us to determine
this constant (after some algebra) to be

b _ _plik

’ (0i(1 + gy)) cosh(0i(T — @)) + (di(1 = qy) + g+ v~'y) sinh(0i(T — o))

Note that the denominator does not vanish for any choice of g, y > 0: if we define
0, = tanh_l(di /0:), which is possible because 0 < d; < g, then we can write the
denominator as

oicosh(:) + d; sinh(-) 4+ gy (0; cosh(-) — d; sinh(-)) 4+ (g + v~'y) sinh(:)
= v Y2 [cosh(- + 6;) + gy cosh(- — ;)] + (g + v'y) sinh(-) > 0.

If we now let g@4+2 = 418y L p 0541 () we get

g(i),k+2

_ okt v~ 2 [pcosh(ai(T—p) +6;) —y cosh(o;(T—B)—6)] — (1—v ' py) sinh(0:(T—B))
- v~12[cosh(o;(T—a)+6;) + gy cosh(o;(T—a)—06;)]+ (g + v—1y) sinh(0;(T—a))

Substituting (8) into the above equations and taking absolute values, we obtain

Theorem 1 The parallel Schwarz method (3a)-(3b) converges whenever p < 1,
where

0,q cosh(o;a) + (gd; — v™") sinh(o;cr)
= max
P die(d)| o;cosh(o;B) + (d; + pv—") sinh(c; )

2 [pcosh(oi(T — B) + 6) — y cosh(oi(T — B) — )] — (1 — v™"py) sinh(0x(T — p)) | /2
v=1/2[cosh(0;(T — ) + 6;) + qy cosh(c;(T — o) — 6;)] + (g + v—'y) sinh(0;(T — o))

where the maximum is taken over all the set of eigenvalues of A.

To gain a better understanding of the convergence, let us assume that A = A7 is
positive semi-definite (so that d; > 0) and consider a few special cases.

Classical Transmission Conditions (p = ¢ = 0) Here the expression simplifies to

- sinh(o;a) v1/2sinh(0y(T — B)) + y cosh(o:(T — B) — 6;)
pr=m (cosh((f,ﬂ +6;) ysinh(o;(T — &) + v'/2cosh(o/(T — a) + 9,-)) '
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If y < /v, then p < 1 and the method converges; this is because
sinh(o;a) < cosh(o;) < cosh(o;8 + 6;)
and, since sinh(o;(T — B)) < cosh(o;(T — B) + 6;), we have

v!/2sinh(0;(T — B)) + y cosh(a;(T — B) — 6;)

IA

v!/2 sinh(0y(T — «)) + y cosh(0:(T — ) + 6;)

IA

y sinh(o;(T — ) + v'/2 cosh(0:(T — &) — 6).

However, it is possible for the method to diverge if y > v'/2, see Sect. 4. In the case
when y = 0, i.e., when the target state does not appear explicitly in the objective
function, it is possible to estimate the convergence factor directly. Here we have

) sinh(o;a) sinh(o;(T — B))
P M osh(0: + ;) cosh(ox(T — ) + 6;)

<1,

since @ < B. The term inside the maximum is a function of the eigenvalues d; via

o, = ,/dl.z +v~! and 6; = arctanh(d;/o;). It can be shown that this function is
decreasing with respect to d; on [0, 00), see also Fig. 1; thus, if dyi, > 0 is the
minimum eigenvalue of A and oy, and Oy, are the corresponding values, then one
can estimate p by

- ( exp(Omin(a + T — B)) )1/2 — o Omin(B—0) b
eXp(Umin(,B +7T- Ol) + 2emin) '

2.5 ————r——
p © Dirichlet
v Optimized
2 -=-=-Case A ||
——Case B

¢ --0--0--0-0--¢

o5 7V V¥
A e ol S R S
V-V~ v-_'_~v.

0 L L ol L L L
-2 1 0

10 10 10

-
L

Fig. 1 A comparison of contraction factors as a function of eigenvalues d; for classical
(p = ¢ = 0) and optimized transmission conditions (p and ¢ obtained by equioscillation)
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where we used the bounds sinh(x) < % exp(x) and cosh(x) > % exp(x), valid for all
x > 0. Thus, when the subdomains overlap, i.e., when § — «a > 0, the convergence
factor decreases exponentially with respect to the overlap size § — «. When there
is no overlap, i.e., when @ = B, it is still possible to bound p by estimating ¢~ min
since tanh(Opin) = dmin/Omin by definition, we get

eemin — e_emin 1 — e_zemin dmin dmin —20mi dmm
. . = T = —t 1— =e in | ] =+
eVmin 4 @™ Ymin 1 4 e~ “fmin Omin Omin

Omin

This implies

Omin + dmin (WHI,)T

Taking square roots, we obtain the following estimate:

-1
o~ 20min — Omin — @min v

Theorem 2 Suppose A is symmetric positive definite and y = 0. Then the parallel
Schwarz method (3a)—(3b) with classical transmission conditions (p = q = 0)
converges for all initial guesses with the estimate

e~ B—a)V@+v=T
<
P= V1+vd> +v1/2d

where B — a > 0 is the overlap size and d > 0 is the smallest eigenvalue of A.

Note that if A arises from a spatial discretization of a differential operator, then
the smallest eigenvalue of A typically does not vary much as the spatial grid is
refined. Thus, the convergence of the method is independent of the mesh parameter
h. However, if A is singular (d = 0) and there is no overlap, then convergence can
be very slow, see the example in Sect. 4.

Optimized Transmission Conditions, No Target State (y = 0) To accelerate
the convergence of the method when A is singular, let us consider choosing the
parameters p and g to be equal but non-zero. Then the convergence factor becomes

o;p cosh (o) + (pd; —v ") sinh(o;) _Poi cosh(0;(T—pB))+ pd; —1) sinh(0;,(T—p)) 172
" eA(A) o;cosh(o;8)+ (d;4+pv~") sinh(0;8) o, cosh(o;(T—w))+(p + d;) sinh(o;(T—))

A plot of the right-hand side as a function of d; for fixed p > 0 is shown in Fig. 1.
We see that as d; — oo, we have

. cosh(o;a + 6;) cosh(a;(T — B) + 6;) 12
p—>p- lim
di—oo \ cosh(o;8 + 6;) cosh(o:(T — «) + 6;)
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Thus, if no overlap is used, then the method converges only if 0 < p < 1. On the
other hand, for d; = 0, we have

pcosh(o;a) — v~"/2sinh(o;cx) ) v~12p cosh(o;(T — B)) — sinh(o;(T — B)) 172

pld; = 0) = cosh(o;8) + pv—1/2sinh(0;8) v—1/2cosh(0;(T — a)) + psinh(o:(T — a))

Thus, if we assume the eigenvalues of A can be anywhere in the interval [0, 00),
then the smallest convergence factor is obtained when |p(d; = 0)| = |p(d; — 00)],
i.e., by equioscillation.

4 Numerical Experiments

To understand how convergence depends on the different parameters, we consider
for each ODE two different test cases:

Case A: The time interval £2 = [0, 3] is subdivided into £2; = (0, 1), £2, = (1, 3)
(no overlap), and the objective function has no explicit target term (y = 0). The
regularization parameter is v = 1.

Case B:  The subdomains are £2; = (0,2.9) and §2, = (2.9, 3), and the objective
function has a target term with y = 10. The regularization parameter is still
v =1

For each test case, we plot in Fig. 1 the convergence factor p as a function of the
frequency d;, both for classical (p = g = 0) and optimized transmission conditions.
Based on the equioscillation criterion, we choose p = g = 0.37 for case A and
p = q = 0.55 for case B. We see that when classical conditions are used, the
method converges in case A for all frequencies, whereas in case B, the method only
converges when the lowest eigenvalue of the spatial operator is larger than about 2.
However, when optimized conditions are used, the parameters can be chosen so that
the method converges for all frequencies, and the spectral radius can be made much
smaller than in the classical case (0.37 versus about 0.9 for classical).

Next, we solve numerically the optimal control problem (1) with governing PDE
d;u = Oy and regularization parameters v = 1, y = 0. The problem is discretized
using the second-order Crank—Nicolson method with spatial and temporal mesh size
h = 1/32 and 1/64. The problem is then solved in parallel using two time windows
2 = (0,1) and £2, = (1, 3). Again we consider two cases: in the first case, we
use Dirichlet boundary conditions in space, which means the operator A in (1) has
lowest eigenvalue w2 ~ 9.87. From Fig. 2, we see that the method converges very
quickly with a rate that is indeed independent of /4 (see remark after Theorem 2).
The fast convergence can be explained by Fig. 1: the spectral radius curve beyond
the point d; = 9.87 is very close to zero, so the convergence is very quick indeed.

In the second case, we consider the same PDE, but with Neumann boundary con-
ditions in space. In this case, zero is an eigenvalue of the spatial operator, meaning
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Fig. 2 Convergence of algorithm (3a)—(3b) for different parameters and boundary conditions

we have to minimize the convergence factor over the whole interval d; € [0, co).
Here, the method with classical transmission conditions (p = g = 0) converges very
slowly, whereas convergence is much faster with optimized transmission conditions.
Again the convergence is independent of the spatial mesh size, as expected.

5 Conclusions

We have presented a first analysis of Schwarz methods in time for parabolic
control problems. We have shown that classical Schwarz methods already use Robin
type transmission conditions, and introduced a parameter which can be chosen to
obtain substantially faster convergence, especially when the spatial operator has
eigenvalues close to zero. We are currently working on error estimates for the many-
subdomain case and on higher order transmission conditions.
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On the Relation Between Optimized Schwarz
Methods and Source Transfer

Zhiming Chen, Martin J. Gander, and Hui Zhang

1 Introduction

Optimized Schwarz methods (OS) use Robin or higher order transmission condi-
tions instead of the classical Dirichlet ones. An optimal Schwarz method for a
general second-order elliptic problem and a decomposition into strips was presented
in [13]. Here optimality means that the method converges in a finite number of
steps, and this was achieved by replacing in the transmission conditions the higher
order operator by the subdomain exterior Dirichlet-to-Neumann (DtN) maps. It is
even possible to design an optimal Schwarz method that converges in two steps for
an arbitrary decomposition and an arbitrary partial differential equation (PDE), see
[6], but such algorithms are not practical, because the operators involved are highly
non-local. Substantial research was therefore devoted to approximate these optimal
transmission conditions, see for example the early reference [11], or the overview
[5] which coined the term “optimized Schwarz method”, and references therein.
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In particular for the Helmholtz equation, Gander et al. [9] presents optimized
second-order approximations of the DtN, Toselli [17] (improperly) and Schidle and
Zschiedrich [14] (properly) tried for the first time using perfectly matched layers
(PML, see [1]) to approximate the DtN in OS.

The DtN map arises also naturally in the analytic factorization of partial
differential operators. This has been identified by Gander and Nataf [7] with the
Schur complement occurring in the block LU factorization of block tridiagonal
matrices, which led to analytic incomplete LU (AILU) preconditioners. The AILU
preconditioners consist of one forward and one backward sweep corresponding to
block “L” and “U” solves. In particular, second-order differential approximations of
the DtN were studied by Gander and Nataf [8] for AILU for the Helmholtz equation.
The connection between the DtN and the block LU factorization was rediscovered
in [4], where a PML approximation of the DtN was used to improve the AILU
preconditioners, and this has quickly inspired more research: Stolk [16] showed
a “rapidly converging” domain decomposition method (DDM) based on sweeps,
Chen and Xiang [2, 3] presented and analyzed the source transfer DDM (STDDM),
and Geuzaine and Vion [10] proposed to use the sweeping process to accelerate
Jacobi-type optimized Schwarz methods. All these new algorithms use PML but
apparently in different formulations. In order to show their tight connection, we
present here the relation between STDDM and OS. Such close connections also
exist between OS and AILU, the sweeping preconditioner, and the method in [16],
but these results, as well as the corresponding discrete formulations will appear
elsewhere.

2 Algorithms and Equivalence

We consider a linear second order PDE of the form
Lu=fin§2, Bu=gonds2, (D)

where 2 could either be R?, or a truncated domain padded with PML, in which
case we consider the PML region as part of the domain. We decompose §2 into
either overlapping or non-overlapping strips (or slices in higher dimensions) called
subdomains £2;, j = 1,...,J, which are in turn decomposed into boundary layers
(overlaps) that are shared with neighboring subdomains, and non-shared interior,
ie. 2, = Iy Ul UT;, see Fig. 1 for examples.

We start by introducing the optimized Schwarz method of symmetric Gauss-
Seidel type (OS-SGS) for the strip decomposition we consider here, see also [12].
This method is based on subdomain solves that are performed first by sweeping
forward across the subdomains, and then backward, a technique often used in
the linear algebra community to render a Gauss-Seidel preconditioner symmetric.
We then rewrite the OS-SGS method in residual correction form, in order to show
how closely related it is to the STDDM from [2, 3]. All our formulations are at the
continuous level, but one can also develop the corresponding discrete variants.
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Fig. 1 Non-overlapping and overlapping domain decomposition into strips

In OS-SGS (see below), S;, S and 7j, 7' are tangential operators on the left
and right interfaces of §2; which need to ensure well-posedness of the subdomain
problems. Note that on [21 and £2; we did for simplicity not specify the modification
due to the physical boundary there. If 77 = 71, then v§"+l) = u(ln), because the
subdomain problems solved coincide, and so we need only to solve one of them.
Even if i # T, u, ™ is not necessary for iteration (n + 1), only to complete

iteration (n).

0OS-SGS (interface transmission form)

Forward sweep:  given (u 1)) _, on (2 )J_1 at iteration step (n — 1), solve
successively forj = 1,...,J — 1 the subdomam problems

Lo =f in g,
Bv(") =g on 382 N3,

(& + 8" - <")) — 0 on 32N 21, 2)
n n—1
(an + ﬂ(v( ) - ”](+1 ')=0 on 082; N 241
Backward sweep:  solve successively for j = J, ..., 1 the subdomain problems

Lu =f in 2,

Bu(") = g on 82 N 382,
(ai + 5~)(u(") (") ) =0 ond2; N Q2
(3n + ﬂ(u(") - ”;(n+)1) =0 on 82 N 2j41.

Definition 1 The Dirichlet to Neumann (DtN) map exterior to £2; is

DtN]‘.' :gp — gy = 0y, s.t. Lv =0, in 2\0;,
Bv =0, on d§2;N 3452,
v = gp, on 0£2;\052.

The optimal choice for the transmission conditions in the optimal Schwarz method
is to use the DtN, see [13]. We show here that it suffices to choose for the tangential
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operators S; and S; the DtN operators, independent of what one uses for 7; and 7,
to get an optimal result:

Theorem 1 If S; = S j = 1,...,J — 1 correspond to the DtN maps exterior
to $§2; restricted to 082; N §2;—1, and all the subdomain problems have a unique
solutlon then OS-SGS converges in one iteration for any initial guess. In particular,
convergence is independent of the number of subdomains.

This result can either be proved following the arguments in [13] using the error
equations, or by the approach in [6] at the discrete level or in [2] at the continuous
level to substitute exterior source terms with transmission data represented by
subdomain solutions. We omit the details here.

In optimized Schwarz methods, one replaces the DtN with an approximation, for
example an absorbing boundary condition, or a PML. For the latter, we define the
approximation DthL by

DthL cgp—>gv=20mw, st. Lv=0, in .QjL,
Bv =0, on 0£2;N s,
VvV = gp, On 8!2,\8{2,

where QL is the PML region exterior to §2; and L is chosen such that DtNL closely
approx1mates DtN; from Definition 1. We notice that if S; = DtNL the subdomam

problem (2) is equlvalent to solve one PDE in £2; U .QL with the Dirichlet and

Neumann traces v]( " ( ) continuous across E)QL N 982;.

OS-SGS in the mterface transmission form requlres the evaluation of operators
on data, such as (an + S)v /@17 which can be inconvenient, especially if S; is
complicated. This can be avoided if we solve for the corrections To this end, we
MON1C

J J

introduce in the forward sweep §v ;") = Y for some 7" ) " which has the

same Dirichlet and Neumann traces as vl(") on d§2;N$2;1 and u(lel) on 082, §2j11.
For example, following [2] (see also [15] at the dlscrete level) we mtroduce the
weighting functions o and f; such that

ad
% 0,05 = 1on 382 N $2;-1, a_njﬁj =0.p=1ond2N 2. )

Then, we can define the auxiliary function v(" Da

oV I(”)l +(1— ozj)wj(."_l), on [y,
5 = 3w, in J; “4)
J J?

B+ (1= o™ on T,
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(n=1)

where w; is an arbitrary function. One can verify that
9 ~(n n _ (n) ~(n n _
Bn J - an Vj—15 - lonag 0§21,
3 50D — 8, 0D ~(n n _ (n D
B_n, J - an, Uip1 > Y = Uiy On 982, OV 21,

which together with (2) imply

(3%11 + (S})(U](n) — ‘D;n_l)) = O on 391 n Q'—lv
2 i =0 iz g

Similar identities also hold for the backward sweep. Therefore, the OS-SGS
algorithm in interface transmission form can equivalently be written in the residual-
correction form (see below).

Remark 1 Usually one uses the subdomain iterates for defining 17; and u(" D

e.g. w(" b, uj(" Y in (4), thus gluing the subdomain solutions together to obtain a
global approx1mation. If the weighting functions {B;} for the gluing are the indicator
functions of the corresponding non-overlapping partition, we obtain the so called
restricted Schwarz methods; other choices give the same subdomain iterates but

only different global iterates.

>

OS-SGS (residual-correction form)

Forward sweep:  given (u ))J , on (£ )J , atiteration (n — 1), solve succes-
sively forj=1,...,J—1 the subdomam problems

Lo =f—£5"" in g2,
Bé’v(") =g—Bi"" ond2 N,

(n)
(Binj + S,)(SU]( ) =0 on 8.(2, N .Qj_l,
(3inj + 7})81)]-” =0 on 8.(2, N .Q]'.H,
each followed by letting v (n Vs v(") and setting 17(_"H asin (4).
Backward sweep:  solve successwely forj = J , 1 the subdomain problems

£8u(") =f- £~(") in £2;,

3814(") =g-— B"(") on 952 N 982,
(B;flj +S/)8 ](n) =0 on B.Qjﬂﬂj_l,
(3;31] + 7,-)81/!](") =0 on 8{2] n .Q]'.H,

each followed by setting u(") <~ u(") + (Su(") and setting ii; " - D asin (4).
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Theorem 2 The source transfer domain decomposition method defined in [2] is an
overlapping optimized Schwarz method of symmetric Gauss-Seidel type, with the
overlap covering half the subdomains, and using PML transmission conditions on
the left and right interfaces in the forward sweep and Dirichlet instead of PML
on the right interfaces in the backward sweep. In addition, the source terms are
consistently modified in the forward sweep.

Proof As we have seen for OS-SGS, the residual-correction form is equivalent to
the interface transmission form. The only difference of STDDM from the residual-
correction form of OS-SGS is that in the forward sweep the residual for 1 < j <
J — 1 in the overlap with the right neighbor is set to zero, see ALGORITHM 3.1
in [2]. This modification can also be interpreted as taking the boundary layer I as
part of the PML on the right of the subdomain so the physical subdomains become
effectively non-overlapping.
(n—1

To see the consistency of STDDM, we assume u; s equal to the exact solution

of the original problem in £2; for 1 < j < J and check whether uj(.") = uj(."_l) holds,
i.e. the exact solution is a fixed point of the iteration. We note that STDDM uses

wj(."_l) = uj(."_l) in (4). In this case, by the assumption on u\""" and u{"~"

can show 5" = """ and so the residual vanishes in £2; both for 0S-SGS
and STDDM. Therefore, the correction § vi") = vi") — f)Y'_l) must be zero because

§n) — 5in—l) — M(ln—l). By

, we

the sub-problem has a unique solution, which gives v
induction, we then show that u;") = ul(."_l) forl <j<J. O

3 Numerical Experiments

We solve the Helmholtz equation in rectangles discretized by QI finite elements.
For the free space and open cavity problems, the wave speed is constant, ¢ = 1,
and the point source is at (0.5177, 0.6177) while the Marmousi model problem has
a variable wave speed and the point source at (6100, 2200). PML are padded around
all the domains except for the open cavity problem, where homogeneous Neumann
conditions are imposed at the top and bottom. We use the same depth (counted
with mesh elements) of PML for the original domain and the subdomains since
already for a PML with two layers the dominating error is around the point source.
The PML complex stretching function we use is given by s(d) = m
where k = w/c is the wavenumber, d is the distance to the physical boundary
and L is the geometric depth of the PML. We use the same mesh size and element-
wise constant material coefficients in the physical and PML regions. We use a zero
initial guess for GMRES with relative residual (preconditioned) tolerance 107°. The
results are shown in Table 1 where “STDDM2” is the STDDM without changing
transmission from PML to Dirichlet in the backward sweep, “PMLh” represents OS-
SGS with two elements overlap and PML on all boundaries, “TO2h” (“TOOh”) is
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the OS-SGS with the Taylor second- (zero-) order transmission conditions and two
elements overlap. The optimized transmission conditions from [9] are also tested
with overlap and the results for the optimized condition of second-order are listed
(the original boundaries still use Taylor second-order conditions) under the name
“O2h”. The optimized condition of zero-order suffers from too many subdomains
and can not converge to the correct solution in all cases. We implemented all the
algorithms in the residual-correction form. We also tested the classical Schwarz
method of symmetric Gauss-Seidel type with Dirichlet transmission conditions
but the preconditioned system is very ill-conditioned so that the obtained solution
comprises a significant error even if the preconditioned residual is reduced by the
tolerance factor. The same failure happens in Table 1 indicated by middle bars. From
the table, we find that, for our particular test problems with open boundaries on both
left and right sides, STDDM?2 which uses always PML on both sides works better
than STDDM which changes to Dirichlet on the right side in the backward sweep.

Acknowledgements This work was supported by the Université de Geneéve. HZ thanks the
International Science and Technology Cooperation Program of China (2010DFA14700).
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Domain Decomposition in Shallow Lake
Modelling for Operational Forecasting
of Flooding

Menno Genseberger, Edwin Spee, and Lykle Voort

1 Introduction

The Netherlands is a highly urbanized area. In addition to flooding from the sea due
to storm surges and high water discharges from rivers, flooding from major lakes is
also a threat. Since 2011 there is a new system in operational use (24 h per day, 7
days per week), for the prediction of flooding at Lake IJssel, Lake Marken, and the
lakes bordering them. This system, RWsOS Meren [5] enables a real-time dynamic
forecasting of wind driven waves, water flow, wave runup, and overtopping at dikes.

At the moment the time horizon of forecasts with RWsOS Meren is 2 days ahead.
To enlarge this time horizon, medium-range global weather forecasts from ECMWF
[4] up to 15 days (two forecasts per day) and short-to-medium range forecasts of
extreme and localised weather events from COSMO-LEPS (limited area ensemble
prediction system) [3] up to 5.5 days (one forecast per day) will be used as input
for RWsOS Meren. In RWsOS Meren, only the two shallow-water models of the
lakes will be run with this input (and not the models for waves, wave runup, and
overtopping). ECMWEF and COSMO-LEPS use ensembles (51 and 16 ensemble
members, respectively). Therefore, also the two shallow-water models will be run

M. Genseberger (D<)
Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands

CWI, P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands
e-mail: Menno.Genseberger @deltares.nl

E. Spee
Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
e-mail: Edwin.Spee @deltares.nl

L. Voort
SURFsara, P.O. Box 94613, 1090 GP, Amsterdam, The Netherlands
e-mail: lykle.voort@surfsara.nl

© Springer International Publishing Switzerland 2016 227
T. Dickopf et al. (eds.), Domain Decomposition Methods in Science

and Engineering XXII, Lecture Notes in Computational Science

and Engineering 104, DOI 10.1007/978-3-319-18827-0_21


mailto:Menno.Genseberger@deltares.nl
mailto:Edwin.Spee@deltares.nl
mailto:lykle.voort@surfsara.nl

228 M. Genseberger et al.

in ensemble mode. As a consequence, for these models 204 runs with a simulation
period of 15 days and 32 runs with a simulation period of 5.5 days have to finish
within a reasonable time on a daily basis. This asks for a balance between low
computational times per ensemble member and the efficient use of the available
hardware (and energy) resources. In this paper we investigate how to manage this
on current hardware.

Here, the essential ingredient is the domain decomposition technique in the
shallow-water solver Simona [6, 10, 2] that we apply. The implementation of this
domain decomposition technique in Simona has the nice property that it enables
(sub)structuring, distribution, and minimizing the exchange of data in a practical and
efficient way. This is both on the high—modelling level (decomposition in physical
subdomains with absorbing boundary conditions), intermediate—numerical level
(parallel solver with minimized iteration count) and low—implementation level
(data distribution with minimized data exchange between different memory blocks).
A lower level inherits the gain in efficiency from a higher level. Therefore, most gain
is on the high level and on the lower levels some fine-tuning remains. However, gain
in efficiency on the high level will not always automatically be there and some effort
is needed. This will be illustrated here for the practical example of the shallow lake
models in RWsOS Meren.

The paper is organized as follows. First, the physical characteristics and the
shallow-water models of the lakes are described in Sect.2. Then, in Sect.3 we
apply domain decomposition in Simona for these models in two stages (automatic
partitioning in Sect. 3.1 and fine-tuning in Sect. 3.2). For this purpose, we investigate
the consequences for computational times and (parallel) efficiency by numerical
experiments.

2 Shallow Lake Modelling

The operational system RWsOS Meren [5] covers eight major lakes of the Nether-
lands: Lake IJssel (IJsselmeer in Dutch), Lake Marken (Markermeer), and six
smaller lakes at the borders (with Dutch names Ketelmeer, Vossemeer, Zwarte Meer,
IJmeer, Gooimeer, and Eemmeer), see Fig. 1. All lakes are quite shallow: depths are
in the order of several meters whereas horizontal dimensions are in the order of
kilometers. Ketelmeer, Vossemeer, and Zwarte Meer are in open connection with
Lake IJssel. IJmeer, Gooimeer, and Eemmeer are in open connection with Lake
Marken. Lake Marken is separated from Lake IJssel by a dike (“Houtribdijk’)
with two sluices. On the north, Lake IJssel is separated from the Wadden Sea by
a dike (“Afsluitdijk”) with two sluices. Most important driving force of the water
system is wind. However in specific situations, for instance after heavy rainfall,
river discharges are also important. Here, the largest contribution is from the river
IJssel that enters Ketelmeer. Furthermore, river Overijsselse Vecht enters Zwarte
Meer (via river Zwarte Water) and river Eem enters Eemmeer. The water level of
Lake IJssel is kept to a fixed level by draining off superfluous water via the two
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Fig. 1 Geographical domain with eight major lakes of the Netherlands. (Color figure online.)

sluices to the Wadden Sea. Lake Marken is also kept to a fixed water level, however
discharges through the sluices are much smaller.

For computing flow of water based on medium-range global and short-to-
medium range weather forecasts, the same two models will be used as in the current
operational system of RWsOS Meren. One is the shallow-water model for Lake
[Jssel including the smaller lakes Ketelmeer, Vossemeer, and Zwarte Meer and parts
of the rivers 1Jssel, Zwarte Water, and Overijsselse Vecht. The other is the shallow-
water model for Lake Marken including the smaller lakes IJmeer, Gooimeer, and
Eemmeer and the river Eem with its floodplain. For rivers 1Jssel and Overijsselse
Vecht boundary conditions are imposed through discharges. Close to the sluices on
the side of the Wadden Sea boundary conditions are imposed through water levels.
Here, both discharges and water levels are a combination of observed values and
predicted values (from neighbouring operational systems). Wind predictions (as
computed externally) are downscaled to the required sizes for the models of the
lakes.
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For the numerical solution of the shallow-water models Simona [6, 10, 2] is
being used. Simona applies a so-called alternating direction implicit (ADI) method
to integrate the shallow-water equations numerically in time, using an orthogonal
staggered grid with horizontal curvilinear coordinates. For this application, the
shallow-water models are depth averaged. The sizes of the horizontal computational
grids are 486 x 1983 and 430 x 614 for the shallow-water models of Lake IJssel and
Lake Marken, respectively. See Figs.2 and 4 for the corresponding geographical
lay-out. The grids are relatively fine in (the floodplain areas of) the rivers and coarse
in the larger lakes. For the shallow-water model of Lake IJssel this can be observed
by comparing the geographical lay-out with the memory lay-out in Fig. 2.

T

—— strip

Fig. 2 Geographical and memory lay-out of computational grid of shallow-water model for Lake
IJssel with automatic partitioning by domain decomposition. Middle bottom: geographical lay-
out of domain decomposed in 6 subdomains (in different colours and numbered from 1 to 6)
with stripwise partitioning, left: corresponding memory lay-out. Middle top: geographical lay-
out of domain decomposed in 6 subdomains (in different colours and numbered from 1 to 6)
with partitioning via orthogonal recursive bisection (ORB), right: corresponding memory lay-out.
(Color figure online.)
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Calibration and validation of the models was carried out for periods with
historical storms (including typical wind behavior, some also with high river
discharges). For this, measured values of discharges, waterlevels, rainfall, and
evaporation were used with some small corrections due to missing terms in the
water balance for the physical system.

Here we take a simulation period of 32 hours for both shallow-water models.
Note that computational times of Simona are almost not influenced by the physical
conditions in a given simulation period (storm or mild wind conditions and/or
high or low river discharges). To get the computational times for an ECMWF
(COSMO-LEPS) ensemble member with a simulation period of 15 (5.5) days the
computational time has to be multiplied with a factor 11.25 (4.125).

Domain decomposition will be used to have a good balance between com-
putational times and (parallel) efficiency for running ensembles with the two
shallow-water models.

3 Domain Decomposition

The domain decomposition technique in the current versions of Simona is based
on a nonoverlapping Schwarz method with optimized coupling at the subdomain
interfaces [2]. This approach has shown to yield excellent parallel performance for
practical flow problems from civil engineering. However, the two shallow-water
models have a complicated geometry and a relatively small number of computa-
tional grid points. Because of this, obtaining a good balance is not straightforward:
increasing the number of subdomains can lower computational times more but may
result in less efficient use of the available hardware (and energy) resources.

As we can not investigate all possibilities, we proceed with a pragmatic approach.
First, we analyse the parallel performance for two automatic partitioning methods
as a function of the number of computational cores in Sect. 3.1. Then, for a nearly
optimal number of subdomains from Sect. 3.1, we try to get efficient ensemble runs
with the models on current hardware by fine-tuning in Sect. 3.2.

3.1 Automatic Partitioning

Here we analyse the parallel performance of both shallow-water models by a
numerical experiment. For this we varied the number of subdomains from 1 to
16 for two automatic partitioning methods. Here, one subdomain is assigned to
one computational core. Both methods are based on domain decomposition of the
active computational grid points. One method makes a stripwise partitioning in
one direction of the domain. The other method decomposes the domain based on
orthogonal recursive bisection (ORB) [1].
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The numerical experiment was performed on the H4+ linux-cluster at Deltares
(nodes interconnected with Gigabit Ethernet, each node contains 1 Intel quad-
core 17-2600 processor “Sandy Bridge” ([7, Sect. 2.8.5.3]; [8, Sect. 2.8.4.1]),
3.4 GHz/core, hyperthreading off) with the 2011 version of Simona (compiled
with Intel Fortran 11 compiler and OpenMPI for Linux 64 bits platform). For
the distribution of the memory blocks (each block contains the unknowns in one
subdomain) over the nodes two options were considered: round-robin (memory
blocks are distributed alternated over the nodes) and compact (option tries to
position each memory block close to blocks of neighbouring subdomains).

Figure 2 (Fig.4) shows the corresponding geographical lay-out of the computa-
tional grid of the shallow-water model for Lake 1Jssel (Lake Marken) in case of 6
subdomains. The wall-clock time as a function of the number of computational cores
for this model is shown on the left (right) in Fig. 3. Reported wall-clock times are
averages of three measurements. For all cases the corresponding standard deviation
is less than 3 % of the average.

The speed up is not as ideal as linear (for that case lines will have a downward
slope of 45° in the double logarithmic figures: doubling the number of computa-
tional cores will half the wall-clock time). But, in general, from Fig.3 it can be
observed that for both models the wall-clock time can be reduced substantially for
decompositions in up to 6 subdomains. Based on this observation, we choose 6 as
the nearly optimal number of subdomains for both models.

Furthermore, one of the automatic partitioning methods does not clearly seem to
be more beneficial than the other (Fig. 3). This indicates the possibility to further
optimize the decomposition by inspecting the configurations in 6 subdomains of
both methods. That will be subject in Sect. 3.2. Overall, the memory option compact
improves the results of round-robin for more than four computational cores (i.e.
the cases that more nodes are used). This is as expected: for option compact more

Lake IJssel model with 486 x 1983 grid Lake Marken model with 430 x 614 grid

0.5

0.5

ORB, round-robin ORB, round-robin

— — — strip, round-robin — — = strip, round-robin
— — ORB, compact —— ORB, compact
strip, compact

strip, compact

o
IN)
a

025

0.125 0.125 |-

wall-clock time (hours)
wall-clock time (hours)

0.0625 : : : - 0.0625
computational cores computational cores

Fig. 3 Wall-clock time (in hours) for shallow-water model of Lake IJssel (left) and Lake Marken

(right) as a function of the number of computational cores. Shown are results for two automatic

partitioning methods: stripwise and ORB (orthogonal recursive bisection) and two options for

memory distribution: round-robin and compact. (Color figure online.)
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neighbouring subdomains are positioned inside the same node, therefore there is
less communication between nodes resulting in lower computational times.

3.2 Fine-Tuning

For the nearly optimal number of 6 subdomains for both models from Sect.3.1,
we try to get efficient ensemble runs with the models on current hardware by fine-
tuning.

We considered the following hardware at SURFsara:

* 2 socket L5640 node (2 Intel six-core Xeon L5640 processors “Westmere-EP”
[7, Sect. 2.8.5.2], 2.26 GHz/core) (Lisa),

e 2 socket 2650L node (2 Intel eight-core Xeon E5-2650L processors “Sandy
Bridge” ([7, Sect. 2.8.5.3]; [8, Sect 2.8.4.1]), 1.8 GHz/core) (Lisa),

* 2 socket 2695 v2 node (2 Intel twelve-core Xeon E5-2695 v2 processors “Ivy
Bridge” [9, Sect. 2.8.4], 2.4 GHz/core) (Cartesius).

Note that, with 6 subdomains, multiple runs (2 runs for a 2 socket L5640 or 2650L
node, 4 runs for a 2 socket 2695 v2 node) of the models fit in a single node. Instead
of using more than one node for a single run to lower computational times more
(like the numerical experiment in Sect. 3.1), for efficiency we will consider here the
use of a single node for multiple runs simultaneously. A 2013 version of Simona
compiled with Intel Fortran 13 and OpenMPI for Linux 64 bits platform was used.

First, we try to further optimize the decomposition in 6 subdomains by inspecting
the configurations of the two automatic partitioning methods from Sect. 3.1. For that
purpose we used the Visipart package of Simona. By comparing the geographical
lay-out of subdomains for the shallow-water model of Lake Marken for the two
automatic partitioning methods (left and middle picture) in Fig.4 one can see
that for the stripwise decomposition (left picture) there is a very long subdomain
interface and a part of a subdomain is quite thin. This has a negative effect on
the computational times. Relatively long subdomain interfaces require more data
communication. Very thin subdomains with widths of less than a dozen grid cells
affect the validity of the applied local optimized coupling in Simona. Therefore,
we used the results of the other automatic partitioning method, by ORB (middle
picture) as a basis for further optimization. The right picture of Fig. 4 illustrates the
resulting geographical lay-out of subdomains for the shallow-water model of Lake
Marken. In a similar way, the decomposition in 6 subdomains for the shallow-water
model of Lake IJssel has been optimized. This strategy for further optimization
is confirmed by the wall-clock times as shown in columns 2 (automatic stripwise
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Fig. 4 Geographical lay-out of computational grid of shallow water-model for Lake Marken with
partitioning by domain decomposition in 6 subdomains (in different colours and numbered from
1 to 6). Left: geographical lay-out of subdomains with automatic stripwise partitioning. Middle:
geographical lay-out of subdomains with automatic partitioning via orthogonal recursive bisection
(ORB). Right: geographical lay-out of subdomains with manual fine-tuning of the partitioning.
(Color figure online.)

partitioning), 3 (automatic partitioning with ORB), and 4 (fine-tuning of one of
the automatic partitionings) of Table 1 (Lake IJssel) and Table2 (Lake Marken).
Here, the reported wall-clock times are averages of three measurements and the
corresponding standard deviation is given after the = symbol.

Then, with the further optimized decomposition we ran two models simultane-
ously on one single 2 socket L5640 and 2650L node. Corresponding wall-clock
times are shown in column 5 of Table 1 (Lake IJssel) and Table 2 (Lake Marken).
By comparing these times with column 4 (same decomposition but only one model
run on the node) one can see there is some price to pay. We can relieve a part of this
pain by binding one of the runs to 6 successive cores of socket 1 and the other run
to 6 successive cores of socket 2 as shown in column 6 of both tables. Here data of
each model stays inside one socket and no communication is needed between the
sockets (this is somehow similar to the situation—with nodes instead of sockets—
for memory option compact from Sect. 3.1). On one single 2 socket 2695 v2 node
we were not able to run multiple models without binding. For this type of node we
observe from columns 4, 6, and 7 in the tables that they can be used efficiently for
running 4 models simultaneously.
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4 Conclusions

We studied how to run efficiently shallow-water models of an operational system for
prediction of flooding at the borders of the major Dutch lakes. Aim is to combine
the shallow-water models with short-to-medium weather ensemble forecasts to
enlarge the time horizon. This asks for a balance between low computational times
per ensemble member and the efficient use of the available resources on current
hardware. Here, the essential ingredient is the domain decomposition technique in
the applied shallow-water solver.

First, the parallel performance for two automatic partitioning methods of the
shallow-water models was analyzed. Although the models have a complicated
geometry and a relatively small number of computational grid points, the wall-clock
time can be reduced substantially for decompositions in up to 6 subdomains. Then,
for a nearly optimal partitioning, we tried to get efficient ensemble runs on current
hardware by fine-tuning. The resulting optimized decompositions show relatively
short internal interfaces between the subdomains (less communication needed) and
subdomains that are not too thin (very thin ones affect the validity of the locally
optimized domain decomposition coupling). Finally, multiple models can be run
simultaneously in an efficient way on one 2 socket node of current hardware by
binding the subdomains of each model to successive cores of one socket.
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Parallel Double Sweep Preconditioner for the
Optimized Schwarz Algorithm Applied to High
Frequency Helmholtz and Maxwell Equations

A. Vion and C. Geuzaine

1 Non-overlapping Optimized Schwarz Algorithm

We consider the optimized Schwarz algorithm for the Helmholtz and Maxwell
equations. The algorithm makes use of impedance boundary conditions on the
artificial interfaces; although overlapping variants of it exist, we focus on the
non-overlapping version, with a partition of the domain into N; subdomains
£21<i<n,, such that UQ[ = £ and with X = 5_2[ n Qj the common
boundary between two adjacent domains. An iteration of the algorithm for
Helmholtz (see e.g. [5] for the Maxwell formulation) is the solution of the
subproblems:

A+t =0 ing,

1
@, + S)ul™ = g on 3, o

with boundary conditions on the external boundaries inherited from the original
problem. The iteration completes with the update relations:

g;k+l) — _an¥§k+l) 4 Su}(kﬂ) on . o
=~ + 2500,

The algorithm can classically be accelerated by rewriting it in a compact form as a
fixed point iteration involving an iteration operator .A:

¥ = Ag® +b. 3
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(a) b

2 22 23 24 ‘

Fig. 1 Two topologies of a decomposed domain into non-overlapping subdomains, without
crosspoint: (a) “layered” decomposition; (b) “cyclic” decomposition around an object

Its solution g satisfies the linear system Fg = b, with F = Z — A and b the
right-hand side containing the contribution of the physical sources. Operator F
involves the solution of subproblems and the update of the interface quantities g;;;
as we will see in Sect. 2, it is non-symmetric, hence amenable to a GMRes iterative
solver. The optimal choice for the operator S used in the transmission conditions
is the Dirichlet-to-Neumann (DtN) map, as shown in [4]. It is a non-local operator,
hence difficult to manipulate in local discretization methods like the Finite Element
Method. The literature proposes different local approximations of it, among which
we choose a truncated rational approximation of order (2, 2) (see [1, 2]).

In order to circumvent the difficulties associated with the so-called crosspoints
(points that are at the intersection of more than two subdomains), we will consider
two kinds of decompositions that naturally avoid them: layered or 1d-like decompo-
sitions, and cyclic decompositions around an object. Figure 1 shows basic examples
of such decompositions.

2 Study of the Iteration Operator

Because the unknown g of the system can be regarded as a composite vector of
unknown functions g;, the iteration operator F can be written as a matrix F,
whose coefficients are operators acting on the interface functions. They take as
input a function defined on one side of a domain and transfer the information
over the domain, to the opposite interface, where a homogeneous transmission
condition is imposed. We will refer to them as transport operators. There are
two transport operators defined on the ith subdomain, that we denote by B{ and
Bl’.’, where the f and b indices refer to the forward or backward direction of
the transfer. This distinction is important for what follows, as we will see in
Sect. 3 that the convergence of the algorithm can be accelerated by propagating
information over longer distances, simultaneously in the forward and backward
directions.
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We will first consider the case where the “true” DtN map D is used as
transmission operator, leading to a perfectly non-reflecting boundary condition
that lets the wave freely propagate outside the domain, without reflection. The
effect of an imperfect transmission condition on the structure and the properties
of the operator will be considered in a second step. The matrix writes, with the
vector of unknown functions g = [g12. g21. g23....]” and a layered topology of the
decomposition (Fig. 1a):

1B -
7
7
B, I
Fp(Ny) = B | @)
. . a—
I
By 7

Even when the optimized Schwarz algorithm is used with the optimal choice
of transmission operator, its convergence is strongly impacted by the number
of subdomains Ny, and can become very slow for large numbers of domains.
This is classically understood as being caused by the local interactions of the
subdomains in the algorithm, that are able to exchange information only with
their direct neighbours at each iteration. There are situations, like in waveg-
uides, where the information needs to travel through all the domains before
the algorithm is able to build an acceptable solution everywhere. The situa-
tion is even worse if the information is distorted while being passed through
a non-ideal transmission condition. That intuitive explanation is supported by
the spectral properties of the iteration operator, that is defective (lacks a full
basis of eigenvectors, while still being invertible) in the case of exact DtN
map, which is known to cause slow convergence of Krylov solvers. With an
approximate DtN map D and large Ny, another source of poor convergence resides
in the fact that some of the eigenvalues get close to O for large N,, leading
to large condition numbers, while the operator can still be considered close to
defective.

3 Preconditioning Strategy for Convergence Acceleration

We start from the principle that a preconditioner should be a good approximation of
the inverse of the system to be solved, and observe that the inverse of the matrix of
the operator with exact DtN map can be easily obtained via a recurrence relation,
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for an arbitrary number of subdomains. Therefore, we design our preconditioner as
having the same structure as the inverse of the ideal operator (4) F5!, though using
an approximate DtN map. Its product with a vector can be obtained as a matrix-free
routine that performs a double sequence of subproblem solves, in the forward and
backward directions, hence the name “double sweep” preconditioner [7, 8]. This is
made possible by the fact that we can give an interpretation of the coefficients of
the inverse matrix, that are products of transport operators Bl?{f ’b}, as the transport of
information between distant subdomains. As the two sweeps are independent from
each other, they can be performed in parallel, as can be seen on the left diagram of
Fig. 3. Because we do not need to know the exact nature of the transport operators,
the strategy is exactly the same for Helmholtz and Maxwell problems.

The effect of the preconditioner on the spectrum of the preconditioned non-
ideal operator ]-"75}'51 is a strong clustering of the eigenvalues around (1, 0), which
ensures a good conditioning of the operator. That being so, the eigenvectors are
now well distinct from each other, which enables fast convergence of the modified
algorithm.

4 Parallelization of the Double Sweep

An important shortcoming of the double sweep preconditioner is its sequential
nature, that destroys the scalability of the algorithm on parallel computers: assigning
each subdomain to a separate CPU makes the preprocessing and the application
of the iteration operator fully parallel, but these CPUs will remain idle during
most of the application of the sweeps. An alternative strategy is to perform shorter
sweeps over smaller groups of subdomains, independently of the other groups, by
cutting the long sequence into smaller ones (Fig.2). This method still enables the
sharing of information over longer distances than a single domain, yet not over
the whole domain as before. The advantage is of course that the sweeps over each
group can be performed simultaneously, therefore partially restoring scalability.
Consequently, one can expect a degradation of the preconditioner performance
compared to the original version, since it approximates the inverse of the Schwarz
operator less accurately. The timeline of subdomains solves reported on Fig.3
highlights the improved level of parallelism when using 2 cuts (right) instead of
none (left).

A similar preconditioning strategy can be followed when the domain is decom-
posed as in Fig. 1b: introducing (at least) one cut in the cyclic decomposition allows
to use the double sweep preconditioner as is.
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Fig. 2 Partial sweeps cover non-overlapping groups of domains, separated by the dashed line. The
position of the cut inside the domain is not important as the first and last domains are not solved in
our sweeps, as shown by the arrows
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Fig. 3 Introducing 2 cuts in the double sweep preconditioner (right) enables parallel execution
of the partial sweeps, reducing the application time of the preconditioner without cuts (left). The
white diamonds indicate solves performed in the iteration operator; the black circles and squares
indicate solves in the forward and backward sweeps, respectively. These time lines were obtained
for the COBRA test case of Sect. 5, with 16 subdomains and cuts in subdomains 6 and 11

5 Numerical Results

We present results obtained on three different test geometries: a straight 3d
(parallelepipedic) waveguide, a 3d S-shaped cavity (the COBRA benchmark defined
by the JINA98 workgroup) and the open 2d scattering problem by a circular object
(Fig. 4). The first two are solved using a layered decomposition while the third uses
a cyclic decomposition. The COBRA is solved for both Helmholtz and Maxwell,
while the other two are solved for Helmholtz only. Earlier work [1, 7, 8] has
shown that without preconditioner, the iteration count for such problems typically
grows linearly with the number of domains, and that with the use of the double
sweep it becomes almost independent for layered decompositions, provided that the
approximation of the DtN map is sufficiently accurate.
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Fig. 4 Geometry and typical decomposition of the 3d cobra cavity (JINA98) and 2d scattering
(unit sound-soft disc with Sommerfeld ABC at radius = 5m) test cases. They differ by the
topology of the decomposition (layered vs. cyclic) and by the type of wave involved (guided vs.
free). The parallelepipedic waveguide (not pictured) has dimensions 0.91 m X 0.084m x 0.11 m,
comparable to the COBRA

Table 1 Straight waveguide (left) and COBRA (right) cases for Helmholtz with 32 subdomains,
k = 314.16 (relative residual decrease by 10™*)

#cPUl2 (4 |6 [8 |14 [22 #cPU 2 4 le6 [8 |14 |22
N, o 1] 2/ 3] 6/10 N, o 1| 2] 37 6 10
NS T s 6 810 16|24 N | 116 | 153 | 174 | 188 | 241 | 308
% 1230 (138 128 [110 (112 |96 T | 5336 3519 2784 2068 | 1687 | 1232
N 62 NI 1766

T 1992 [496 [331 (248 (142 (91 TOP [12,256 | 6128 | 4086 |3064 | 1751 [1115

sol sol

Tables 1, 2, and 3 summarize the number of iterations required by each
algorithm to converge to the prescribed tolerance, together with an estimation of
the normalized times required for the completion of the algorithm. Provided that at
least 2 CPUs are alloted per group of domains, the time required for the application
of the standard Schwarz operator and the double sweep preconditioner with N,
subdomains, N, cuts and Cy,, CPUs (assumed evenly distributed between the groups
of subdomains) are approximately given, in the case of a layered decomposition by:

N,
Tsch = C_dTp and Tyw(N,) = ’7

tot

T,

P

Ng—N.—2
N.+1

with T}, the solution time for one subproblem (supposed identical for all subdo-
mains). Note that Ty, would be doubled if only one CPU is available to perform
the double sweep per group of domains. Slightly different estimations hold in the
case of the cyclic decomposition. The total solution times for the unpreconditioned
and double sweep algorithms are then T — TsqN," ) and T (N = (Tsen +

sol sol
T (NN
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Table 3 Scattejng test case #CPUl 2 50 |86 #CPU 2 52 86
for Helmholtz with 128 N T 26 23 ~ T 26l 23
subdomains, k =' 6.28 (left) f( - C(ds)

and k = 25.13 (right) Ny 24| 27| 31 Ny 20| 29| 37
(relative residual decrease by 7 [4584]189] 124 T [3820] 203|148

1079 NI |5 NP g5
T 3520 136| 82 TP | 5440|210/ 127

Tables 1, 2, and 3 show that in all cases the behaviour of the algorithm is
similar. The preconditioner strongly reduces the number of iterations, and thus
the number of overall linear system solves. Moreover, the parallel version of the
preconditioner makes it also an appealing proposition with respect to the overall
computational (wall-clock) time when the number of CPUs is smaller than the
number of subdomains, especially in the high frequency regime. For example, in the
challenging COBRA case for Maxwell, with 32 domains on 8 CPUs (3 cuts), with
k = 1007, the preconditioned version requires 135x(3242x(32—2-3)) = 11,610
system solves instead of >1000 x 32 and runs about 3 times faster than the standard
algorithm.

6 Conclusion

We have presented a double sweep preconditioning strategy for the optimized
Schwarz algorithm and a variant of it that performs the double sweeps in parallel on
groups of subdomains, rather than over all subdomains. Numerical results highlight
the potential of the approach for both Helmholtz and Maxwell in the high frequency
regime.
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A Multiscale Domain Decomposition Method
for Flow and Transport Problems

Victor Ginting and Bradley McCaskill

1 Background

It has been widely recognized that one of the major challenges in the simulation
of flow and transport problems is finding the numerical solution of the pressure
equation [2]. Typically we seek to find the pressure solution, p, such that

-V . (kVp)=f inf2

P =Dp on F D (1)

—kVp-n=gn only,
where k represents the positive elliptic coefficient, and f represents a forcing
function. The associated Dirichlet, and Neumann boundary conditions are given by
pp and gy respectively. The corresponding variational formulation is to find p, with
(p — pp) € V, that satisfies

a(p,v) =L(w) Vv eV, 2)

where V = {v € H'(£2) : v = 0 on Ip}, and

alp,v) = /QkVp-Vv dx, and {(v) = /va dx—/r gnv dl 3)
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Assuming sufficient regularity of the data, the Lax-Milgram Theorem guarantees
a unique solution of (3). The chief difficulty in approximating p stems from the
heterogeneity of k, which can occur in multiple scales. This heterogeneity directly
dictates the degree of the mesh resolution on which the approximate solution is
found. In turn this results in a very high dimensional algebraic system which must
be solved.

With the advances of parallel computing, domain decomposition as a general
framework has gained a stronger role in efficiently finding accurate solutions to
problems of this type. In this paper, we propose an iterative procedure for solving (3)
that relies on a one-time preprocessing step where a set of independent subdomain
problems are computed. This preprocessing step yields a set of so called multiscale
basis functions with which the global solution is represented. Continuity of the
solution at the interface is established by imposing Robin Transmission conditions
on each subdomain interface. This imposition is accomplished in an iterative
manner. In the following section we describe an iterative domain decomposition
technique that serves as the backbone for our proposed procedure.

2 A Domain Decomposition with Robin Transmission
Conditions

We decompose the domain £2 into a set of non-overlapping subdomains {.Qj}jl.v;“l,

and construct a local problem on each subdomain. For ease of notation we define
N, to be the set of indices for subdomains that share an edge with £2,,,. For example,
Ny = {L,r,b, 1} is associated with the subdomain presented in Fig. 1. Each local
problem is supplied with a boundary condition that allows for the continuity of the
solution and its flux at each subdomain interface to be maintained. In particular, for
each n € N,,, we impose

- kvpm *Cn — VmnPm = mn ON me (4)

Fig. 1 An internal
rectangular subdomain £2,,,,
and its neighbouring
subdomains {£2,} [y = 09, NOY,
T, = 08, N 09,
1ﬂmb = 8Qm n 091)

Lo = 09, NOY,
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where y,,, is a positive constant, e,, represents the exterior unit normal respective
to subdomain £2,,, I, = 08, N 082,, and the value of g,, comes from the
neighbouring subdomain £2,,, expressed as

8mn = kVpu - €y — YumPn ON Ly (5)

To establish the iterative procedure, it is assumed that g, is known, namely, from
the previous iteration level. The resulting local variational formulation is to find
Pm € H'(£2,,) such that

an(PusW) + Y ban(Pw) = LaW) + D rn(w) Yw € H'(2,),  (6)
neN, neNy,

where

am(v,w) =/ kVv-Vwdx, by,(v,w) =/ Vi VW dl,
2

m mn

Lu(w) = /mew dx, rmw) = —/ gmnw dl.

mn

We use (6) to develop an iterative technique for approximating (2) whose algorithm
is presented in Algorithm 1. At the practical level, this iteration does converge to the
true solution [3-5], but it requires that we calculate a new local solution on every
subdomain for each step of the iteration. Depending on the initial guess, and the
number of subdomains, this can greatly exceed the computational time required to
solve the problem with traditional methods.

Algorithm 1
L(l)) Nga

Set initial guess for {pm’ },,—,

for it = 1 until convergence do
Construct g,(,';t,,_l), foralln € N,,,m=1,...,Ng
Solve (6) to get pﬁ’;’) form=1,..., Ny

end for

3 Incorporation of Multiscale Basis Functions

To alleviate the aforementioned burden of calculation, our strategy is to form a
preprocessing step aimed at collecting the finescale heterogeneity information on
each subdomain. This information is stored in the so called subdomain multiscale



252 V. Ginting and B. McCaskill

basis functions. Here our motivation is to find an approximate solution to (6) that is
expressed as a linear combination of these multiscale basis functions.

For each n € N, we decompose I}, into a union of nonoverlapping segments
{Ijnn}fi”l, and denote by {Zmn}km” the associated vertices. For simplicity we assume
uniformity of these segments as they relate to neighbouring subdomains.

We set

kinn

&mn = ngﬂ(zfnn)(P)inn’ (8)

i=0

where {¢! }k””b is the usual “hat” nodal basis function corresponding to {zmn}k”’"
expressed in a parametric form associated with I,,. Examples of these ‘“hat”
functions are presented in Fig. 2. For our approximate solution we construct a new
variational formulation. Find p,, € H'(£2,,), satisfying

an@us W)+ Y bonBw) = La) + D Fnw) Yw € H'(2,),  9)

neN, neNy,

where

kn"'l
1) = =5 / B, dl. 10)

With this formulation, the same iteration as in Algorithm 1 could have been done.
It is worth noting that there are two sources of error that are committed when
conducting the iteration based on (9). The first error is shared by the iteration
using (6), namely resulting from the fact that in practice only a finite number of
iterations are used. The second error stems from the replacement of g, by gy,
i.e., an approximation error. There is a nonlinear interaction between these two
error components. We expect, however, that at the asymptotic level of systematic

~ — N —

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Zmt Pt Fmt Fmt it Pt Fmt Fmt Zmt Pt Fmt Fmt Zmt Pt Fmt Fmt

Qm Qm Qm Qm

0 1 12 3
mt mt C)mt mt

Fig. 2 Example of “hat” functions associated with an edge I},,. On edges I, I}, I}y the value
of these functions is zero
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refinement (k,, — oo and convergence is reached), p = Z]mvi | Pm1g,, should
converge to p. What is more important is that the formulation (9) provides a
building block for the construction of subdomain multiscale basis functions as part
of the preprocessing step. The approximate solution on each subdomain is then
represented using these basis functions.
To each I;,,, we associate a set of multiscale basis functions {1//,’;”1}?2”0, where
i € H'(£2,) is the solution to the variational formulation

AW W) + Y b (Ve W) = 75, (W) Yw € H' (). (11)
n€Ny,

The linear functional in (11) is given by

row) = — /F ¢! wdl (12)

mn

When f # 0, we compute an extra multiscale basis function @m € H'(£2,) that
satisfies

an (W W) + Y by w) = Lu(w) Yw € H' (2,). (13)
Vle./\/;n
On each subdomain we set V,, = span{ ,’;m,i =1, kyn,n € Ny, @m} and seek
ﬁm € Vm, i'e'7
kmrt
i)m = wm + Z Zainn%lnn ~ Pm- (14)
neN,, i=0

An approximation of the global solution is now recaptured by determining the values
of each &, = [, ..., akm] that induce the continuity condition outlined in (4),

and imposed in (6). Thus, for each ¢; associated with an interface edge I3, we
require

Kinn

Zot:;m/ ¢,';m¢>,';mdl=/ By AL ¥ i =0+ ke + 1. (15)
j:() an

mn

Here we note that this continuity condition yields a linear system governing o,,),.
The associated matrix is tridiagonal and of dimension k,,, + 1. At a practical level
the calculation of g,,, can be performed using p,, the multiscale representation of p,,.
The iterative procedure presented in Algorithm 1, is now modified to be an iteration
governing each «,,,. The modified iteration is presented in Algorithm 2.
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Algorithm 2
Calculate {y! Y foralln € Ny, m=1,...,Nyg
Set initial guess 133 foralln e N,,,m=1,...,Nyg

for it = 1 until convergence do
Calculate gvf,';’,,_l), foralln € N,,,m=1,...,Ng
Solve for ai,';’,,), satisfying (15) foralln € N,,,m = 1,..., Ny
Setpd m=1,...,Nyg

end for

4 Numerical Examples

In this section we present two studies. First, we present a convergence study of
our method when applied to a problem with a known solution. We then apply our
method to a single phase flow model, and compare the results with traditional meth-
ods. To calculate the multiscale basis functions, we use the traditional continuous
Galerkin FEM to solve (11) and (13).

4.1 Convergence Study

We first explore the behaviour of the approximate solution in terms of the dis-
cretization parameters. In particular, it is interesting to study the interaction between
the subdomain and the segment configuration. The former determines how many
local problems are created while the latter determines the number of multiscale
basis functions to represent a particular local problem. The subdomain size is
denoted by H and the segment size is denoted by h. The interplay between the
two parameters reflects a choice of balancing the accuracy and efficiency of the
approximate solution.

For this purpose, we choose a problem with a known solution. The problem
is posed in (0, 1)2 with a zero Neumann condition on x, = 0,1 and a Dirichlet
condition on x; = 0, 1. We assume that f = 0 and k(x) = a;(x;)az(x;), where a;
and a, are

ai(x;) = [0.25 — 0.999(x; — x;%) sin(11.27x;)] "
a>(x2) = [0.25 — 0.999(x, — x»%) cos(5.27x2)] !,

yielding kmax/kmin ~ 2 X 10%. Comparison of the effect that various segment
and subdomain configurations have on the accuracy of the resulting approximate
solution are presented in Table 1. In this example, the finescale solution is found on
a grid of 256 x 256 rectangles (i.e., h = 1/256) and this finescale mesh is the base
for the configuration of / after H is determined.
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Table 1 Comparison of the L,-norm, H;-norm of the approximate solution found using various
segment lengths, and subdomain sizes

L, H,
h H = 0.250 H =0.125 H = 0.250 H=0.125
h 0.000217 0.000217 0.02070 0.02070
2h 0.000217 0.000218 0.02074 0.02079
4h 0.000223 0.000241 0.02137 0.02201
8h 0.000252 0.000485 0.03068 0.03559
16h 0.001159 0.002538 0.08002 0.10412
We note that when 7 = & the resulting solution has exactly the same error

estimates as solutions found with the traditional Galerkin FEM on the fine mesh.
For a fixed H, the errors of the proposed method stay relatively unchanged as % is
increased. This can be taken as a potential advantage of the proposed method; lower
dimensional V,, can still produce a relatively accurate numerical solution. This of
course reduces the number of multiscale basis functions which must be calculated.
Furthermore, results in Table 1 indicate that the errors seem to be less sensitive to
H. Traditionally, it has been established (see for example [4, 5]) that an increase
in subdomain interfaces (i.e., the finer H is) can potentially increase the number
of iterations needed for convergence to a desired tolerance. Thus, this indication
suggests that only fewer subdomains (i.e., less interfaces) are required to extract
accurate solutions, which results in fewer iterations for convergence. On the other
hand, this can potentially mean that the multiscale basis functions are governed by a
higher dimensional problem, which correlates to a higher computational load in the
preprocessing step. In the end, a problem dependent choice of H and h leads to an
optimized scenario of calculation.

4.2 Applications to Single Phase Flow

The mathematical model is
9;S + u - VA(S) = 0, with specified I.C. + B.C. and u = —k(x)Vp,

where S represents the saturation and V - u = 0, i.e., elliptic PDE governing the
pressure p. The boundary condition for p is the same as the one in the previous
subsection. The model is a typical one way coupling equation where the pressure
is first solved and the velocity u is constructed from it, which in turn is used as an
input in solving the transport equation. We applied the postprocessing technique [1]
to recover a locally conservative flux u -n on the finescale grid. Then a first order up-
winding scheme is used to determine the time evolved saturation value. The elliptic
coefficient that is used for this model is shown in Fig. 3. This elliptic coefficient



256 V. Ginting and B. McCaskill

Fig. 4 Comparison of saturation at r = 0.003 (top), t = 0.009 (bottom), all results use H = 0.25

is posed on 240 x 240 grid and has a ratio kpayx/kmin & 6.4 X 10%. In Fig. 4 we
show a visual comparison of the saturation solution at various time steps, for our
method and traditional methods. In Fig. 5 a plot of the relative difference between
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Fig. 5 Comparison of the L2-error of the saturation difference between our method and traditional
Galerkin FEM, for various choices of 4. In all cases, H = 0.25

the solution found with the proposed method and the solution found with traditional
methods is presented.

5 Conclusion

We have proposed an iterative multiscale domain decomposition method with
certain favourable properties. By incorporating the multiscale basis functions into
an iterative domain decomposition procedure we have reduced its computational
demand. The numerical examples suggest that our method is capable of recapturing
accurate solutions that are comparable to those found with traditional methods. In
the future we will extend the capability of the method to multiphase flow models.
We are also interested in conducting a rigorous convergence analysis of the proposed
method.
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An Optimized Schwarz Algorithm
for a Discontinuous Galerkin Method

Soheil Hajian

1 Introduction

It has been shown in [4] that block Jacobi iterates of a discretization obtained
from hybridizable discontinuous Galerkin methods (HDG) can be viewed as non-
overlapping Schwarz methods with Robin transmission condition. The Robin
parameter is exactly the penalty parameter pu of the HDG method. There is a
stability constraint on the penalty parameter and the usual choice of u results in
slow convergence of the Schwarz method. In this paper we show how to overcome
this problem without changing w. To fix ideas, we consider the model problem

(n—A)u=fin 2 C R?, |

u=0onds2, M
where £2 is a bounded polygon, 0 < 5 < 15 and f € L%*(£2). We then
consider a hybridizable interior penalty (IPH) discretization and develop domain
decomposition algorithms to solve the resulting linear system efficiently. For the
sake of brevity we consider the two-subdomain case in this paper.

Our paper is organized as follows: in Sect.2 we describe the IPH method. We
introduce a Schur complement system for the IPH discretization and review some
of its properties in Sect.3. In Sect.4 we introduce two iterative methods for the
Schur complement and present their convergence behavior. Finally we present some
numerical experiments in Sect. 5.
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2 Hybridizable Interior Penalty Method

IPH was first introduced in [2] and later studied as a member of the class of
hybridizable DG methods in [1]. We first establish some notation and then define
the IPH method in two different but equivalent forms. Let 7, = {K} be a shape-
regular and quasi-uniform triangulation of the domain £2. Let /g be the diameter of
an element of the triangulation and & = maxkeT;, hg. If e is an edge of an element,
we denote by 4, the length of that edge.

We denote by £ the set of interior edges, by £° the set of boundary edges and
all edges by £ := £% U £°. We introduce the broken Sobolev space H'(7;) =
I KeT, H!(K) where H'(K) is the Sobolev space in K € 7T;, and [ is a positive integer.
Therefore the element boundary traces of functions in H'(7;) belong to T(£) =
I KeT, L2(dK), where g € T(E) can be double-valued on £°, and is single-valued
on &9,

We also define two trace operators: let ¢ € T(E) and ¢ € [T(£)]?>. One =
dK; N 0K, we then define average {-} and jump [-] operators by

{g}=1a1+q). gl =qm + q2m, 2
{o}=1(1+02). [0l =010 +0;-m,
where n; is the unit outward normal of K; on e, g; := ¢qlyx., and 0; 1= 0 |yk.n,-
On 02 we set the average and jump operators to be {o} = o and [¢] = gn

respectively. Note that we do not need to specify {¢} and [o] on e € £? because it
is not needed in the formulation.

We define a finite-dimensional broken space on 7}, for the discrete approximation
Vi = {v eL}(2): vlg € Pi(K), VK € 771} , where IPx(K) is the space of polyno-
mials of degree < k in the simplex K € 7j,.

For the sake of simplicity we denote the volume and surface integrals by
(a,b)g = [yabforK € T, and (a,b), = [,abfore € £.

We now present IPH method in primal and hybridizable form. Let u, v € H>(T;),
then the IPH bilinear form of the model problem (1) is defined as

a(u.v) := (. v)g + (Vu. Vo), — ({Vu}. [v]) e — {Vo}. [ul)e

H51. ), — (L IVal. 1901) @

where € L?(€) is the penalty parameter. For a constant o > 0 we set (|, = ah !
We should mention that this scaling cannot be weakened due to stability constraints.
The IPH bilinear form is different from the classical IP only in the last term, i.e. the
last term is not present in the IP bilinear form. For a formal derivation of the bilinear
form (3) see [6], Section 1.2.2.

The IPH bilinear form is coercive over V;, provided o > 0 and sufficiently large,
that is we can show

a(v,v) > c||v||2DG, Yv €V,
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where 0 < ¢ < 1 is a constant independent of 4. Here the energy norm is defined as

lol3g == nllvl, + 1Vul% + Y welllvlIZ, Yo € Vi 4)

eel

The discrete problem can be stated as: find u, € Vj, such that

a(up,v) = (f,v)7,, Yv €V (5)

Since a(-, -) is coercive over Vj,, we can conclude that there exists a unique discrete
solution. Furthermore we can show that IPH has optimal approximation properties
provided a > 0 is sufficiently large; see [6].

We show now that one can write IPH in a hybridized form, such that static
condensation with respect to a single-valued unknown is possible. This is not the
case for most DG methods, e.g. classical IP. Let us decompose the domain into two
non-overlapping subdomains £2; and £2,. Denoting the interface by I" := £, N £2,,
we assume I” C £, i.e. the cut does not go through any element of the triangulation.
This results in a natural partitioning of 7, into 77 and 73; for an example see Fig. 1
(right).

This naturally allows us to introduce local spaces on 2| and §2, by

Vii = {v € L*(2) : vlger € P1(K)}, fori=1,2. (6)

Note that this domain decomposition setting implies V;, = Vj, 1 @ Vj,». We define on
the interface the space of broken single-valued functions by

. 2 .
Avi={p €12(I) : ¢l € Pi(0)}. 7
10* w !
—+— algorithm 1
-==-3¢---- algorithm 2
h=t
. |
S 10° ¢ E
=
5
2 =
[
S
g 10k ;
g
=]
=
10t : 0
| 10 100 0 !

Fig. 1 Convergence of the Schwarz algorithms (/eft), domain decomposition (right)
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For the sake of simplicity we denote the restriction of v € V}, on V},; by v;. Observe
that the trace of v; € Vj,; on I" belongs to Ay,.
Let (u,A), (v, ¢) € V, x A, and consider the symmetric bilinear form

2
a((w. ). v.@) =ar(.¢) + Y _ aiun vo) + ar (vi. 2) + air (. @), (8)

i=1

where ar (A, ¢) = 2(u A, @), air (v, ) 1= <§—f,; - Mviv¢>r and
ai(ui, vi) := n(ui, vi)7; + Vi, Vo), — ({Vaiy, [vil) g0 — ({V Ui}, [ui]) g0
4Ll [ol)go — 0Vl [V0i1) 9

(N v, -y
<3ni’v’>a.o,- <3ni’u’>a.o,- (i vidag:

The bilinear form a(-, -) is also coercive at the discrete level if ¢ > 0, independent
of & and sufficiently large:

a((v.9), (v,9) = c (V. @) as V(v @) € Vi x Ay, (10)

where c is independent of /2 and the HDG-norm is defined by

2
1, @) == Y nllvill; + IVl + mlllvil iz, - + wllvi— @7 (1)

i=1

Consider the following discrete problem: find (uy, A;,) € V), X Aj, such that

a((un, An), (v,9)) = (f,v) 7, V(v,@) € Vi X Ay, (12)

which has a unique solution since a(-, -) is coercive on V;, x A;. One can eliminate
the interface variable, A;, and obtain a variational problem in terms of u, only. It
turns out that this coincides with the variational problem (5); for a proof see [6].

Remark 1 By definition of the bilinear forms, each subproblem is imposing A
weakly as Dirichlet data along I" through a Nitsche penalization. This is an IPH
discretization of the continuous problem (n — A)w = fin £2;andw = A, on I".

3 Schur Complement System

We choose nodal basis functions for P;(K) and denote the space of coefficient
vectors with respect to nodal basis functions of V;, by V. If u;, € V;, we denote by u €
V its corresponding coefficient vector. The variational problem in (5) is equivalent
to the linear system Au = f. A is called the stiffness matrix. We decompose u into
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{u1,u,} where u; corresponds to coefficients of nodal basis functions in £2;. Then
we can arrange the entries of A and rewrite the linear system as

L))

= ) (13
[A21 Ay u 5 )
We use nodal basis functions for A;, and denote by A the corresponding coefficient
vector for A, € Ay. Then the variational form (12) can be written as

A Air | (m fi
Az Azr w | =1r,2] (14)
where A, = Al.. Note that the advantage of this formulation over (13) is that
subdomains are communicating through A and we can form a Schur complement
for a single-valued function, A;. To do so we define B; := A A7'A . and g :=

Z?:l A m;\i_l f;- Then the Schur complement system reads

2
SpA = (AF - Ziai)x —gr. (15)

i=1
We define u; := H;(A,) to be the discrete harmonic extension of A, € A,
into subdomain £2;, i.e. u; satisfies A;u; + A;rA = 0; that is we impose Aj as

Dirichlet data (weakly) on I" and solve inside §2;. The following result shows that an
application of B;A can be viewed as finding the harmonic extension, u; := H;(A;),
and then evaluating a “Robin-like trace” on the interface.

Proposition 1 Let A, € Ay, and define its harmonic extension by u; := H;(Ap).
Then ¢ BiA = <p,ui - %, <p> forall p € Ay,
it r
Proof Letu; := H;(A;). Then by definition of Ei and a;r (-, -) we have
q)TBiA = (pT;\mAi_lAiFA = —q;TAmui = <,uui gl’fl‘ , <p> for all ¢ € Ay,
which completes the proof, since A, = A o

One can estimate the eigenvalues of {B;}. They are useful in proving convergence
of Schwarz methods later on. The proofs are technical and beyond the scope of this
short paper. They can be found in [5].

Lemma 1 B is s.p.d. and there exists o > 0, sufficiently large, such that

~ h
conliolt <o Bip < (1-Coz) nliolF.

where 0 < cg < 1 and Cg > 0. Both constants are independent of h. Moreover
Ar —2B;iss.pd. fori=1,2.
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4 Schwarz Methods for the Schur Complement System

One approach in solving the linear system (13) is to use the block Jacobi method:
(1) _ Ay _ |4 _
Mu =Nu"” +f M= A ,N=M-—-A. (16)
2

Instead in this section we derive two Schwarz algorithms to solve the Schur
complement system where the first one is equivalent to (16) and slow while the
second one has much faster convergence.

Let us relax the constraint that A is single-valued. Let A, 1, A2 € Aj. Assume
An2 is known; that is we know u; € V5. Then we can split the Schur complement
system (15) and solve for A, 1, through (A[‘ —Bl)ll = ByA, +g.Lemma 1 ensures
that (A r —Bl) is invertible and we can obtain A ;. This suggests an iterative method
to find Ay.

Algorithm 1 (Block Jacobi) Let Azoi, /\(Og € Ay, be two arbitrary initial guesses.
Then forn = 1,2, ... solve (17) for { (")}

G =B = Bal ™ g, )
Ap—B)AY =B A" 4 g,

~ Note that at convergence we have A r(A; —A3) = 0 which implies A| = A, =
S;lg - since A is s.p.d. We show now that Algorithm 1 is equivalent to the block
Jacobi iteration (16). It suffices to prove this for f = 0 (g = 0).

Proposition 2 Let Azoi, A(O) be two random initial guesses. Set the initial guess of

the block Jacobi iteration (16) to be u(o) H,; ()L(O) ). Then u(n) H, ()LL"I) ) for all
n > 0, i.e. both methods produce the same iterates.

)

Proof We start by subdomain £2;. Set w(" 7—[,-()&;3 ). By Proposition 1, we

have ¢ TB;A! = <,uw;,”3 - 8n,W;,nL) ) </)> for all ¢ € Ajy. Then the first equation

in iteration (17) implies A;lnl) =(i-5 57 0n ) ;1"1) +(3-5 a,lz)wfln2 D Recall that

wil"f is the harmonic extension, hence 1t satisfies a,-(whl, vl) + air (v, A A ) =

(") and wflnz D We arrive at

exactly the first row of block Jacobi (16),i.e. A, w(") +A 2w(2" ! = 0. The proof for
£2, is similar. O

for all v; € Vj;1. Now we substitute A(" in terms of w,

Convergence of the block Jacobi (16) or equivalently Algorithm 1 can be proved
with the contraction factor p, < 1 — O(h). For details we refer the reader to [5].

The slow convergence of this algorithm is due to the fact that the transmission
condition is of Robin type with Robin parameter i = ah™!; see [4]. According to
optimized Schwarz theory the best choice is u = O(h~'/?); see [3]. We would like
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to emphasize that for IPH, one cannot change the scaling of u because of coercivity
and approximation property constraints.

The remedy is to split the Schur complement differently. We know from Lemma 1
that Ap — 2B, is s.p.d. Therefore assuming A, is known we can multiply the Schur
complement by (1 + p) where p is a constant and solve for A; such that

(Ar —(1+p)BDA = —(A; — (1 + P)B,)Ar + (1 + p)gr.

If 0 < p < 1 then the left hand side is still s.p.d. We use p to obtain a fast converging
solver. Note that for p = 0 we have Algorithm .

Algorithm 2 (Optimized Schwarz) Ler A\, A\) € Ay be two arbitrary initial
guesses and 0 < p < 1 be a constant. Then forn = 1,2, ... solve (18) for {AZ"L)}

(Gr =+ PB)AY = —(GAr (1 +PB)AT + (L4 pgr.
Ar—A+pBYAY = —(pA, — (1 +p)BPAV ™ + (1 + pg .

_ At convergence we have (1 — P)Ar(A; — Az) = 0 which implies A| = A, =
Sr7'g, if p # 1. An application of Proposition 1 and Remark 1 shows Algorithm 2
has a modified Robin parameter which we summarize in the next proposition.

Proposition 3 Algorithm 2 is the discrete version of the non-overlapping optimized
Schwarz method

Eu(ln+l) =f in 21, Eu(an) =f in §2;,
Blu(1"+l) = Blu(zn) onl, Bzu(an) = Bzu(ln) onT,

where L := (n — A), B; :== L + 0y, and Robin parameter [i := %u.
A heuristic approach in obtaining optimal p is to set the modified Robin
parameter to i = O(h~'/?) and solve for p. This results in p = v A

1++/h
rigorous proof at the discrete level in [5] gives same scaling and with this choice of

p the contraction factor of Algorithm 2 is bounded by p, < 1 — O(+/h).

5 Numerical Experiments

We consider (n— A)u = fin £2 and u = 0 on 952 where we setn = 1, 2 = (0, 1)?
and f such that the exact solution is u(x, y) = sin(wx) sin(2wx + 7) sin(27y) in £2.
We set the penalty parameter to 4 = 10k, !. We choose a non-straight interface as
in Fig. 1 (right). We measure the number of iterations necessary to reduce the error
l|u, — uil") llo to 1071° on a sequence of (quasi-uniform) unstructured meshes while
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the interface is fixed. As for the initial guess, we set DOFs of the initial guess using
arandom number generator; in Matlab given by rand (N_DOF) .

In Fig. 1 (left) we observe for Algorithm 1 that the number of iterations grows
like O(h™"). This is equivalent to p;, < 1 — O(h). For Algorithm 2 with the optimal
value of p we see that it grows like O(h~"/?) hence p;, < 1 — O(+/h). This is in

agreement with the results in Sect. 4. For more extensive numerical experiments see

[5].

6 Conclusions

It has been shown in [4] that for some DG methods one can obtain a fast converging
solver by just modifying the penalty parameter while for some other it is not possible,
e.g. IPH. We showed that it is possible to define an iterative method, Algorithm 2, for
IPH such that we obtain fast convergence without changing the penalty parameter.
We are now studying a multi-subdomain version of Algorithm 2 and the case of
higher polynomial degree, k > 1.
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On Full Multigrid Schemes for Isogeometric
Analysis

Clemens Hofreither and Walter Zulehner

1 Introduction

Isogeometric analysis (IGA), a numerical technique for the solution of partial
differential equations first proposed in [11], has attracted considerable research
attention in recent years. The use of spline spaces both for representation of the
geometry and for approximation of the solution affords the method several very
interesting features, such as the possibility to use exactly the geometry generated
by CAD systems, refinement without further communication with the CAD system,
the possibility of using high-continuity trial functions, the use of high-degree spaces
with comparatively few degrees of freedom, and more. We refer to [1, 11] as well
as the monograph [8] and the references therein for details on this method.

The efficient solution of the discretized systems arising in isogeometric analysis
has been the topic of several publications, among these, [2, 3, 5, 7, 9, 12]. In the
present paper, we investigate geometric full multigrid methods for IGA. It is known
[9] that geometric multigrid solvers for IGA possess h-independent convergence
rates for V-cycle iteration using standard smoothers. Our aim is to study more
closely the performance of the full multigrid (FMG) iteration strategy, especially
in dependence of the spline degree.
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2 Isogeometric Analysis

We construct, in every direction i = 1,...,d, a B-spline space of degree p; over
an open knot vector which spans the parameter interval (0, 1). Open means that the
first and last knots are repeated p; 4+ 1 times. We restrict ourselves to maximum
continuity, i.e., all knots in the interior are simple. For the definition of B-splines,
see, e.g., [8, 14, 15]. Taking the tensor product of the B-splines bases over all
directions i, we obtain a tensor product basis {B; : (0,1) — R}, To each of
its basis functions B;, we associate a control point (coefficient) C; € RY in such a
way that we obtain an invertible geometry mapping F = Zj CiB; : (0, ! — 2,
where 2 C R? is the computational domain. The isogeometric basis functions on
2 are givenby Bjo F! : 2 — Rg’ , and their span is the isogeometric trial space
on £2.

In practice, NURBS, i.e., rational versions of the B-spline basis functions,
are commonly used to represent the geometry. In this paper, we however restrict
ourselves to the case of B-splines for the sake of simplicity.

In the following, let V, C H}(£2) denote a tensor product spline space over £2 as
constructed above. An isogeometric method for the Poisson equation with Dirichlet
boundary conditions is given by the discrete variational problem: find u;, € V), such
that, for all v, € V),

/ Vu-Vudx =: a(uy, vy) = (F,vp) = /fvh dx —a(g,v),
2 2

where g € H'(£2) is a suitable extension of the Dirichlet data g. Here, u;, + g is the
approximation to the solution of the boundary value problem.

Essential boundary conditions require some care in isogeometric methods. In our
setting, we construct an approximation g; to g which lies in the spline space. Due to
the use of open knot vectors, the degrees of freedom (DoFs) can be cleanly separated
into boundary DoFs and interior DoFs. The values for the boundary DoFs of g, are
determined by solving a (d — 1)-dimensional Lagrange interpolation problem on
each face of the patch §2, where the Gréville points of the spline basis are chosen
as interpolation points. The interior DoFs of g, are set to zero. In the variational
setting, this corresponds to solving a problem with the approximate right-hand side

(Fiv) = /Q Fodx— a(gh.v). M

On the topic of essential boundary conditions in isogeometric analysis, we also refer
to [6, 13, 17].
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3 Geometric Multigrid Methods for IGA

In the following, we outline very briefly the construction of a geometric multigrid
scheme for IGA. We refer to the multigrid literature [4, 10, 16] for further details.

Starting from a coarse isogeometric mesh, inserting a new knot at the midpoint
of every non-empty knot span creates a “fine” spline space with a halved mesh
size which contains all functions of the original “coarse” spline space, yielding the
isogeometric analogue of uniform A-refinement.

Let Vy denote a coarse parametric spline space over (0, 1)¢ which is rich enough
to represent the geometry §2 exactly. With repeated uniform refinement steps, we
obtain a sequence of A-refined spline spaces Vi, V,,... The push-forward to the
geometry yields isogeometric spline spaces Vo, Vi, Vs, . ..

Let Vy C V), denote two successive spline spaces with the canonical embedding
P : Vg — V. One step of the two-grid iteration process is given by a pre-smoothing
step, the coarse-grid correction, and a post-smoothing step. Given a starting value
ug € Vj, the next iterate u; is thus obtained from

uD = uy + M7V (fy, — Apug),
u® = uV 4+ PAL'PT (fy, — Apu'V),

up = u® = u® 4+ MTT(f, — Au®).

Here, M is a suitable smoother for the fine-space stiffness matrix A,. Common
choices are the Richardson smoother (with M being a scalar multiple of identity), the
damped Jacobi smoother (M being a scaled diagonal of Aj), and the Gauss-Seidel
smoother (M being the lower triangular part of A,). A multigrid scheme is obtained
by considering a hierarchy of nested spline spaces and replacing the exact inverse
Ay in the above procedure recursively with the same procedure applied on the next
coarser space, until V) is reached, where an exact solver is used.

We set up a Poisson model problem, —Au = f, with pure Dirichlet boundary
conditions on the d-dimensional unit interval 2 = (0,1)?. We choose tensor
product B-spline basis functions defined on equidistant knot vectors with constant
spline degrees p; = ... = p; = p and maximum continuity. The geometry mapping
F is chosen as identity. The right-hand side f and the boundary conditions are chosen
according to the prescribed analytical solution u(x) = ]_[li1 sin(m (x; + 0.5)).

As a comparison point, we test the V-cycle iteration numbers. For this, we choose
arandom starting vector up and perform V-cycle iteration until the initial residual is
reduced by a factor of 10~ in the Euclidean norm. The resulting iteration numbers
are shown in Table 1. We point out that very similar numbers have been obtained in
[9]. In higher dimensions, in particular for d = 3, the number of iterations sees a
dramatic increase as the spline degree is raised.
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4 Full Multigrid for IGA

We set up a full multigrid (FMG) method in the usual way. That is, we start from the
exact coarse-grid solution ug = Ay 'fo € Vo and transfer it to the next higher level
by means of a full interpolation operator, u; = IO1 (uo). Here the solution is corrected
by one multigrid V-cycle with a suitable coarse-space right-hand side f;, and the
result is again interpolated to the next higher level by means of 112. This procedure
is continued until the finest space V is reached, where one final V-cycle is applied.
We found that two issues related to the treatment of Dirichlet boundary conditions
need attention.

First, we need a sequence of full interpolation operators If“ Vi = Vi
which transfer solutions, as opposed to mere corrections, to the next finer level
while maintaining a high order of accuracy. Dirichlet boundary conditions must be
carefully taken into account here. Recall that the approximation to the solution of the
boundary value problem on level i is given by u; + g;, where g; is a spline function
approximating the Dirichlet boundary data having non-zero coefficients only on
the boundary DoFs, whereas u; vanishes on the boundary DoFs since they were
eliminated from the linear system. Prolonging both contributions separately, we see
that P§+1u,~ € V4 still vanishes on the boundary DoFs. On the other hand, the
representation of g; in V;4| has non-zero contributions in some interior DoFs close
to the boundary. This situation is illustrated in the 1D setting in Fig. 1. Therefore,
the proper choice for the full interpolation operator is If‘H (u;) := Pf'Hui + ;’fH gi,
where by ;’ﬁ“ we mean the operator which prolongs the boundary function and
discards the boundary DoFs, keeping only the contributions to the interior DoFs.

The second issue is related to the choice of the coarse-space right-hand sides
fi»i = 1,...,£ — 1. The seemingly natural choice f; = (Pj:“)Tf,-H does not
take into account that the right-hand side vector f; stems from the approximated
linear functional (F},-) given in (1), where we have chosen a fine-grid spline
approximation g, for the Dirichlet data. This approximation by necessity depends
on the mesh level: the fine-grid Dirichlet functions must have better approximation
properties, but cannot be represented on coarser grids. We thus found it necessary
to assemble f; on every level separately.

. . i b
. . o 08 o )2 04 06 08

Fig. 1 Prolongation of boundary functions creates non-zero contributions to interior DoFs
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Table 2 Errors after one full multigrid cycle in 1D

p=1 p=2

N L-error Ratio N L-error Ratio
33 4.944858 - 10~ 4.76 34 3.722578 - 10~° 8.09
65 1.034253 - 10~ 4.78 66 4.646054 - 1077 8.01
129 2.231043 - 10— 4.64 130 5.808685 - 10~8 8.00
257 5.090763 - 10~° 4.38 258 7.263190 - 10~° 8.00
513 1.218115-107° 4.18 514 9.081029 - 10~1° 8.00
p=3 p=4

N L,-error Ratio N L,-error Ratio
35 6.536758 - 10~8 16.71 36 4.984064 - 10~° 34.42
67 3.966554 - 10~° 16.48 68 1.527129 - 10~10 32.64
131 2.439422 - 10710 16.26 132 4.754326 - 10712 32.12
259 1.512164 - 10~ 16.13 260 1.750396 - 10— 13 27.16
515 9.883776 - 10~13 15.30 516 9.712425 - 10~ 1.80

Table 3 Errors after one full multigrid cycle in 2D

p=1 p=2

N L,-error Ratio N L,-error Ratio
4225 1.76004 - 1074 4.20 4356 4.8427-1077 8.05
16,641 4.28888 - 107 4.10 16,900 6.0407 - 1078 8.02
66,049 1.05903 - 103 4.05 66,564 7.5446 - 10~° 8.01
263,169 2.63839-107° 4.01 264,196 9.4271 - 10710 8.00
1,050,625 6.59801 - 10~ 4.00 1,052,676 1.1782-10710 8.00
p=3 p=4

N L,-error Ratio N L,-error Ratio
4489 6.8025 - 10~ 17.47 4624 1.2380-10~° 28.05
17,161 3.8527-10710 17.66 17,424 6.1208 - 10~ 11 20.23
67,081 2.2387 - 10~ 17.21 67,600 3.6698 - 10712 16.68
265,225 1.3527-10712 16.55 266,256 2.4967 - 10713 14.70
1,054,729 2.6654 - 10713 5.07

With these issues taken care of, we apply a single FMG cycle using the Gauss-
Seidel smoother to the Poisson model problem introduced in Sect. 3 for different
values of the space dimension d, the spline degree p and the problem size N and
compute the resulting L,-error with respect to the exact solution. The errors are
presented in Tables 2, 3, and 4 for the 1D, 2D and 3D cases along with the error
ratio between successive refinement levels. (In some cases, the errors stagnate once
a threshold sufficiently close to the machine accuracy is reached due to rounding
errors.) From the approximation properties derived in [1], we would hope for an
error which asymptotically behaves like O(h”*!). We observe that this behavior is
achieved using a single FMG cycle for all tested spline degrees up to 4 in the 1D



On Full Multigrid Schemes for Isogeometric Analysis

Table 4 Errors after one full multigrid cycle in 3D

p=1

N L,-error

125 7.2738 - 1072
729 1.2829- 1072
4913 3.2797- 1073
35,937 7.9084 - 10~*
274,625 1.9521-10~*
p=3

N L,-error

343 4.5383-10~*
1331 5.4518 - 107
6859 3.4414-107°
42,875 1.8704 - 1077
300,763 1.0657 - 108

Table 5 Errors forp = 4
after one FMG cycle with v
pre- and postsmoothing steps

Ratio

5.67
391
4.15
4.05

Ratio
8.32

15.84
18.40
17.55

p=2
N

216
1000
5832
39,304
287,496
p=4
N

512
1728
8000
46,656
314,432

d=2,v=2
64

144

400

1296

4624

17,424
67,600
266,256
d=3,v=3
512

1728

8000

46,656

L,-error

3.0617- 1073
2.0613 - 10~
2.4836-107°
3.5042- 107
4.3712-1077

L,-error

1.1096 - 10—
2.5938 1077
3.1818-107°
1.9189- 1077
9.5155-107°

N | Ly-error

7.809885 -
4.964622 -
1.426569 -
3.616898 -
8.554892 -
2.027914 -
5.222339 -
1.010133 -

N | Ly-error

6.282724 -
3.377428 -
1.116225 -
-107° | 47.05

2.372285

273

Ratio

14.85
8.30
7.09
8.02

Ratio

4.28
8.15
16.58
20.17

Ratio

10=¢ | 15.75
1077 | 34.80
107° |39.44
1071 | 42.28
10712 |42.19
10714 | 38.83
10713 052
Ratio

107 | 18.60
10~7 |30.26

case, and for degrees up to 3 in the 2D and 3D cases. One possible measure to
restore the optimal convergence orders in the case p = 4 is to increase the number
of pre- and postsmoothing steps. In Table 5, we display the resulting errors with two
smoothing steps in 2D and with three smoothing steps in 3D.

We remark that the solution time using the FMG method was typically only a
small fraction of the time used to assemble the problems.
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Simulation of Cavity Flows by an Implicit
Domain Decomposition Algorithm
for the Lattice Boltzmann Equations

Jizu Huang, Chao Yang, and Xiao-Chuan Cai

1 Introduction

The 2D steady state lid-driven cavity flow problem is a benchmark problem to test
new numerical methods due to its simple geometry and interesting flow behaviors.
There are several mathematical models available for simulating this flow, such
as the Navier—Stokes (NS) equations and the Boltzmann equations among others.
For problems satisfying the continuum assumption, the Boltzmann model and the
NS model usually have the same solution in some sense, because the NS model
can be derived from the Boltzmann model. But for problems that don’t satisfy
the continuum assumption, the NS model fails to provide a physically meaningful
solution and the Boltzmann model can be viewed as a higher level model. In the past
two decades, numerical methods based on the Boltzmann model, such as the lattice
Boltzmann equations (LBEs) become increasingly popular [2, 10] in simulating
the 2D lid-driven cavity flow. There are extensive numerical experiments carried
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out with the LBEs [10, 13, 14]. However, all existing approaches are explicit or
semi-implicit and the time step size of these approaches is limited by the Courant—
Friedrichs-Lewy (CFL) condition, and the numerical solutions obtained by using
these methods are less accurate than those of the NS equations.

In this paper, we introduce a fully implicit and parallel Newton—Krylov—RAS
algorithm for the LBEs, which is unconditionally stable and the time step size
depends only on the accuracy requirement. The method is based on an inexact
Newton method whose Jacobian systems are solved with an overlapping RAS
preconditioned Krylov subspace method. To reduce the computational cost and
improve the scalability of the RAS preconditioner, a first-order discretization is
developed just for the preconditioner which is re-computed only once per time
step. We report accuracy results and scalability studies on fine meshes and on a
supercomputer with more than 10,000 processors.

2 Model Problem, Discretization, and Domain
Decomposition Preconditioning

In this paper, the LBEs [2] are considered

ofr
%(X,t}—i—%-?fﬁx,t}z@m a=0,1,---,8, xe2, te(0,7), (1)

where f,, is the particle distribution function, e, = (eq, €42) is the discrete particle
velocity, 6, is the collision operator, 2 = (0, 1)2 € R? is the computational
domain, and (0,7) is the time interval. The macroscopic density p and the
macroscopic velocity u = (uy, up) of the fluid are respectively induced from the
particle distribution function by

P = Zfocs u= %Zfaeoc- ()

The collision operator is defined as @, = —1(fy(x,1) — f9(x, 1)), where T =
cs_zv is the relaxation time of the fluid and ff‘f’ is the local equilibrium distribution

function (EDF) defined as

1 1 1
fleo = wa,o[l + e ut ﬂ(ea u)? — ?|u|2]- @)

Here v is the shear viscosity, ¢; = 1/+/3 is the sound speed, [u| = (u3 +u3)"/?, and
the discrete velocities are given by ey = (0,0), and e, = Ay (cos by, sin 6,), with
Ao = 1,0, = (@—Dx/2fora = 1,2, 3, 4and Ay = /2,0, = (@ —5)7/2+7/4
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fora = 5, 6, 7, 8. The weighting factors are defined as wy = 4/9, w, = 1/9 for
a=1,2,3 4andw, = 1/36fora =5, 6, 7, 8.

Assume (0, T) is divided into time intervals, where n is the time step index. A
fully implicit backward Euler scheme is used to discretize the temporal derivative.
Then we obtain a semi-discretized system for (1) as follows

fn+ 1 fn

+e,- \V/ n+1 — @n+l’ 4
e Ja o “)

where the time step size is Aty41 = fyt1 — fy, f1(X) & fo(x,1"), and OIF! ~
O (x, "T1). If ey # 0, we implement a family of fully implicit finite difference
schemes originally proposed in [10] for an explicit method to discretize the spatial
derivative gf We partition the domain §2 to a uniform N x N mesh with mesh size

= 1/(N — 1) and mesh points (xl,x’z),z,] = 0,1,...,N — 1. Let us define a
scheme g% | in the family as

o

;
Oxy, lm

e

: +(1—)£ k=12 1<i<N-2, (%)
0x;, lu k-

where 0 < € < 1 is a control parameter that determines how much upwinding is
added,

% — i+1 _ i—1
o < e ) el
and
[ Lk[z’fa(xi») A (X7 ) 4 fiy (a0 )] if 2<i<N-3,
e eak[fa( ) —f (i )] i i=lori=N—2.

Theoretically, the scheme is second-order in the interior of the domain and first-
order near the boundary, but for our test cases, the scheme is effectively second-

order. We also introduce a cheaper first-order upwinding scheme 3f°‘ = fak [fa (xd, )

—f (x’ Gk ] to construct an efficient preconditioner for the scheme 9).

The 1n1t1a1 condition is set to be the EDF, i.e. £, (x, 0) = £’ (x, 0). The boundary
conditions are obtained by a nonequilibrium extrapolation method [11]. Assume that
X, is a mesh point on the boundary of the domain, and x,;, is the nearest neighboring
mesh point of X, in the interior of the domain. According to the nonequilibrium
extrapolation method, the particle distribution function at X, is set to be

Fo(%p) = £D(xp) + [ for Rnp) — L1 (X)) ©6)
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After the discretization, a system of nonlinear algebraic equations

n+1 _

X X"
jn+l(Xn+l) — — +@"IX"thYy =0, n=0,1,... @)
n+1

is obtained and needs to be solved at each time step. Here ¥"*! is dependent on
the spatial discretization and the collision term. We employ a Newton—Krylov—
Schwarz (NKS) [6, 7] type algorithm to solve (7). At each Newton iteration, a
Jacobian system is analytically computed and approximately solved by using a
Krylov subspace method

Jn+lsn+l — _yn+l(xn+l)’ (8)

where the Jacobian matrix J"T! = (&1 (X"+!) and S"*! is the search direction
of the Newton method. A restarted GMRES (20) method is applied to approximately
solve the right-preconditioned system

Jn+l(Mn+l)—l(Mn+lsn+l) — —fn_H(Xn_H), (9)

where M"! is the restricted additive Schwarz (RAS) preconditioner defined in [5].
The initial guess for the Newton iteration is chosen as the final solution from the
previous time step.

3 Numerical Experiments

We implement the new algorithm described in the previous section based on PETSc
[1]. A steady state driven cavity flow in 2D is carefully studied in this section. The
numerical tests are carried out on a supercomputer Tianhe-2, which tops the Top-
500 list as of June, 2013. The computing nodes of Tianhe-2 are interconnected via a
proprietary high performance network. And there are two 12-core Intel Ivy Bridge
Xeon CPUs and 24 GB local memory in each node. In the numerical experiments
we use all 24 CPU cores in each node and assign one subdomain to each core.

In the 2D driven cavity flow problem, we assume the top boundary of the cavity
moves from right to left with a constant velocity Uy = —0.1 while the other three
boundaries are fixed. The initial condition of macroscopic variables p = 1.0 and
u = (0,0) in the cavity. The Reynolds number is defined as Re = UyH/v with
H = 1.0. In our simulations, Re is chosen to be 100, 1000, 3200, 5000, 7500, and
10,000.

Simulating this flow by solving the NS equations is a popular approach [8, 9, 12],
in which the presence of singularities at the corners is a well-known difficulty. At
the corners (0,1) and (1,1), the pressure and the vorticity are unbounded, and at
the corners (1,0) and (0,0) the second derivatives of the pressure and vorticity are
unbounded. To improve the accuracy of the solution at the corners, Deng et al. [8]
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Table 1 Re = 100, extrema of the velocity through the centerlines of the cavity

Reference N Ulmax | X2max | ¥2max | Xlmax | U2.min X1,min
Present 65 |0.2075 |0.4531 |0.1674 |0.7656 | —0.2471 |0.1875
Present 97 |0.2098 |0.4583 |0.1711 |0.7604 | —0.2492 |0.1875
Present 129 |0.2107 |0.4609 |0.1725 |0.7656 | —0.2500 | 0.1875
Present 161 |0.2111 |0.4562 |0.1733 | 0.7625 | —0.2504 |0.1875
Present 257 |0.2117 |0.4609 |0.1742 |0.7617 | —0.2510 | 0.1875
Botella and Peyret [3] 96 |0.2140 |0.4581 |0.1796 |0.7630 | —0.2538 |0.1896
Deng et al. [8] 64 02132 |- 0.1790 |- —0.2534 |-
Ghia et al. [9] 129 |0.2109 |0.4531 |0.1753 |0.7656 | —0.2453 |0.1953
Bruneau and Jouron [4] 129 |0.2106 |0.4531 |0.1786 |0.7656 | —0.2521 |0.1875

perform a Richardson extrapolation of solutions obtained by a finite volume method.
In [3], a spectral method is developed to remove the pollution of the singularities.
To check the accuracy of the discretization, we simulate the flow at Re = 100
with different mesh sizes. The maximum of u#; on the vertical line x; = 0.5 is
denoted as uj max and its location x; m,x. The minimum and maximum of u, on
the horizontal line x, = 0.5 are, respectively, denoted as uy min and us max; their
locations are, respectively, denoted as x| min and x| max. Table 1 shows the values of
these extremum and previously published results obtained by the NS equations. Our
results are in agreement with those of [4, 9], but less accurate than the results of
[3, 8]. In [4, 9], second-order schemes are used to solve the NS equations. In [3, 8],
higher order schemes are given to remove the pollution from the corner singularities.

The streamline contours for the cavity flow configurations with Re increasing
from 100 to 10,000 are shown in Fig. 1. We observe that the flow structures are
in good agreement with the benchmark results obtained by Ghia et al. [9]. These
plots show clearly the effect of Re on the flow pattern. For flows with Re < 1000,
only three vortices appear in the cavity; a primary one near the center and a pair
of secondary ones in the corners of the cavity. At Re = 3200, a third secondary
vortex is seen in the upper right corner. At Re = 5000, a tertiary vortex appears in
the lower left corner. Furthermore, another tertiary vortex appears in the lower right
corner as Re > 7500.

To show the parallel scalability of the implicit method, we consider a 4096 x 4096
uniform mesh. We use a fixed time step size At = 0.0244 and run the code for 10
time steps. We test two overlapping factors § = h,2h with different number of
processors. We compare the point-block LU subdomain solver and the point-block
ILU(!) solver. Here [ is the fill-in level for the incomplete LU factorization. The
point-block size is 9 x 9. We set the fill-in levels / = 0, 1, 2, 3. The numbers of linear
and nonlinear iterations are reported in Table 2. The number of linear iterations
grows slowly with the increase of the number of processors. Large overlap or larger
fill-in helps reduce the total number of linear iterations. The compute time of both
an explicit method [10] and the implicit method with different subdomain solvers is
shown in Fig. 2. The optimal compute time can be obtained with fill-in level / = 1,



280 J. Huang et al.

Fig. 1 Streamline patterns for the primary, secondary, and additional corner vortices. (a) Re =
100, 128 x 128 mesh. (b) Re = 1000, 128 x 128 mesh. (¢) Re = 3200, 256 X 256 mesh. (d)
Re = 5000, 512 x 512 mesh. (e) Re = 7500, 768 x 768 mesh. (f) Re = 10,000, 768 X 768 mesh
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Table 2 Test results using different overlapping factors and number of processors, 4096 x 4096
mesh (# of unknowns = 150,994,944), t, = 0, time step size At = 0.0244, CFL = 100,
Re = 3200, 10 time steps

Newton(avg.) GMRES/Newton
8§ |N, LU |ILU(0) | ILU(1) | ILU@2) |ILU@) | LU | ILU(O) | ILU(1) | ILU2) | ILU(3)
h 512 4.7 | 6.1 6 6 6 20.68 |26.62 |21.93 |21.95 |21.85
1024 |4.7 | 6.1 6 6 6 21.83 |27.21 |22.92 |22.98 |22.90
2048 |4.7 6.1 6 6 6 22.62 (27.93 |23.42 2352 |23.55
4096 |4.7 | 6.1 6 6 6 24.02 |28.82 |24.45 |24.63 |24.55
8192 4.7 |6.1 6 6 6 26.11 | 30.43 |25.73 |25.80 |25.73
16,384 | 4.7 | 6.1 6 6 6 27.60 | 32.08 |26.98 |27.07 |26.98
2h| 512 |6 |6.1 6 6 6 20.65 |26.16 |20.85 [20.67 |20.63
1024 |6 |6.1 6 6 6 21.78 126.82 |21.50 |21.60 |21.60
2048 |6 6.1 6 6 6 22.35|27.43 |22.03 |22.07 |22.12
4096 |6 6.1 6 6 6 23.85(28.10 |22.83 |22.97 |23.10
8192 |6 |6.1 6 6 6 25.47129.43 |23.78 |23.77 |23.78
16,384 |6 6.1 6 6 6 26.8530.97 [24.90 |24.68 |25.20

which is less than that of the explicit method. Excellent speedup is obtained from
512 processors to 16,384 processors. From the figure we see that ILU is faster in
terms of the total compute time than LU.

We also do some weak scaling tests of proposed implicit method with local
solvers (LU or ILU(1)). It is observed that the method does not reach the ideal
performance, because the number of GMRES iterations increases as more processor
cores are used. We believe that coarse level corrections in the additive Schwarz
preconditioner can improve the weak scaling performance of the fully implicit
solver and plan to study this issue in the future. But, due to the page limit, the
results are not given in the paper.

4 Conclusions

We developed a parallel, highly scalable fully implicit method for the LBEs. The
accuracy of the method is comparable with that of the NS equations. The fully
implicit method exhibits an excellent speedup with up to 150 million unknowns
on a supercomputer with up to 16,384 processors. Without the CFL limit, the fully
implicit method can be used with a suitable adaptive time stepping method that
increases the time step size as the solution approaches steady state. Because of the
page limit, the discussion related to adaptive time stepping and comparisons with
other methods will be presented in a separate report.

Acknowledgements The work was supported in part by NSFC grants 61170075 and 973 grant
2011CB309701.
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Fig. 2 Compute time and speedup comparison on a 4096 x 4096 mesh with 512, 1024, 2048, 4096,
8192, and 16,384 processors. Implicit method with different subdomain solvers: 10 time steps with
a fixed time step size At = 0.0244. Explicit method [10]: 20,000 time steps with a fixed CFL =
0.05 (a, ¢) 6 = h, compute time comparison (b, d) § = h, speedup curve
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Multiplicative Overlapping Schwarz Smoothers
for H%V-Conforming Discontinuous Galerkin
Methods for the Stokes Problem

Guido Kanschat and Youli Mao

1 Introduction

The efficient solution of the Stokes equations is an important step in the development
of fast flow solvers. The saddle point structure due to the divergence constraint
makes the solution process more complicated. Block preconditioners are often
employed, but their performance is limited by the inf-sup constant of the problem
and by the difficulty of finding a good preconditioner for the pressure Schur comple-
ment. This could be avoided, if the multigrid method operated on the divergence free
subspace directly. Recently in [8], we introduced and analyzed a multigrid method
with an additive overlapping Schwarz smoother. The main ingredients of our method
are a smoother which implicitly operates on the divergence free subspace and a
grid transfer operator from coarse to fine mesh which maps the coarse divergence
free subspace into the fine one. In this contribution here, we now employ the
multiplicative version of this Schwarz method and present numerical results for it.
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We consider discretizations of the Stokes equations with no-slip boundary
conditions

—Au+ Vp=f in £,
V-u =0 in £, (D
u=uf on 982,

on a bounded domain £2 C R? of dimension d = 2, 3. The natural solution spaces
for this problem are V = H}(£2; RY) for the velocity u and the space of mean value
free square integrable functions Q = L3(£2) for the pressure p. We point out that
other well-posed boundary conditions do not pose a problem.

In order to obtain a finite element discretization, we partition the domain £2 into
a hierarchy of meshes {T;},—... of parallelogram and parallelepiped cells in two
and three dimensions, respectively. By Iy we denote the set of all faces of the mesh
T,. The set I, is composed of the set of interior faces IE“Z and the set of all boundary
faces IF).

In order to discretize (1) on the mesh T, we choose discrete subspaces X, =
Vi x Qp, where Q; C Q. Following [6], we employ discrete subspaces V; of the
space HJV(£2), where

HY(2) = {v € L*(2:R)|V-v € L*(2)},
HV(2) = {ve H"(2)jvn=0 ondR}.

On each mesh cell T, we choose the Raviart-Thomas [9] space of degree k with
k > 1, mapped by the Piola transformation if necessary and denoted by V. We
point out that any pair of velocity spaces V; and pressure spaces Qy is admissible, if
the key relation

V-V =0 @)
holds. We obtain the finite element spaces

Ve ={v e H™(2)|VT € T¢ : vyr € Vr},

Or = {q € Li(2)|VT € Ty : qir € Or}.

1.1 Discontinuous Galerkin Discretization

While the fact that V; is a subspace of Hgiv(.Q) implies continuity of the normal
component of its functions across interfaces between cells, this is not true for
tangential components. Thus, V, ¢ H 1(£2;R%), and it cannot be used immediately
to discretize (1). We follow the example in for instance [6] and apply a DG
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formulation to the discretization of the elliptic operator. Here, we focus on the
interior penalty method [1]. Let 7} and 7, be two mesh cells with a joint face F,
and let u; and u, be the traces of a function u on F from 7T and T, respectively. On
this face F', we introduce the averaging operator

U + up
Q) = ——. 3)
Using the notation, that every integral form over a set of mesh cells or faces is the
sum of the integrals over all objects in the set, the interior penalty bilinear form

reads
ae(u,v) = (Vu, Vo), + 4 {or{u @ nj}, fv ® n}})F53
—2({Vu} n @ v}y —2 (VR @ ule 4)
+ 2 {(oru, v)F? — (0,u, U>]F2 — (0,v, u)F? .
The operator “®” denotes the Kronecker product of two vectors. We note that the
term 4{{u ® n}} : {v ® n}} actually denotes the product of the jumps of u# and v.

The discrete weak formulation of (1) reads now: find (u¢, p¢) € V¢ X Qg, such
that for all test functions vy € Vy and g, € Qg there holds

’% (Cﬁ) ’ (Z)) = aclue, v0) + (e, Vvo) = (qe, Vowe) = F (v, q0) = (Fv0).
5)

Discussion on the existence and uniqueness of such solutions can be found
for instance in [S]. Here, we summarize, that a,(.,.) is symmetric and, if oy, is
sufficiently large, it is positive definite. Thus, we can define a norm on V, by

|velly, = Vae(ve, ve). (6)

In order to obtain optimal convergence results, o, is chosen as o /h;, where hy,
is mesh size on the finest level L and & is a positive constant depending on the
polynomial degree. A key result in the convergence analysis of this discretization as
well as in the analysis of the additive Schwarz smoother is the inf-sup condition

. (qv VU)
inf sup ———————

>ye>0 @
VEVL yeQ, Hv” Ve “q”Qz

where y; = ¢ % = ¢+v/2¢~L and ¢ is a constant independent of the grid level £.
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2  Multigrid Method

In this section we define a V-cycle multigrid preconditioner %, for the operator .<7.
We define the action of the multigrid preconditioner %, : X, — X, recursively as
the multigrid V-cycle with m(£) > 1 pre- and post-smoothing steps. Let %, be a
suitable smoother. Let %, = .;zfo_l. For £ > 1, define the action of %, on a vector

Zi = (ft.8¢0) by
1. Pre-smoothing: begin with (uo, po) = (0, 0) and let

Ci) = (Z"‘l) + %, (ﬂ — ”"—1)) i=1,....m{), (8a)
i i—1 i—1
2. Coarse grid correction:
Cm(€)+l) _ (um(lf)) + gg{_l(ﬁ‘_l (ﬂ — ”m(l))) , (8b)
m(0)+1 Dim(t) m(€)
3. Post-smoothing:

Ci) = ci—l) + %, (fz — o “i—l)), i=m)+2,....2m) + 1
i i—1 i—1

(8¢

4. Assign:

2m(f)+1

We distinguish between the standard V-cycle with m(£) = m(L) and the variable
V-cycle with m(£) = m(L)2L=¢, where the number m(L) of smoothing steps on the
finest level is a free parameter. We refer to %, as the V-cycle preconditioner of <7 .

The itel‘ation
(P”k-f—l) — (p ) + %L (iL ﬂL (p )) ((/:)
k+1 k k

is the V-cycle iteration.

2.1 Overlapping Schwarz Smoothers

In this subsection, we define a class of smoothing operators %, based on a subspace
decomposition of the space X;. Let .4 be the set of vertices in the triangulation T,



Multiplicative Schwarz Smoothers for H4V-DG 289

and let Ty ,, be the set of cells in T, sharing the vertex v. They form a subdivision
of £2 with N overlapping subdomains (also called patches) which we denote by
{‘Ql,u}gzl-

The subspace X, = Vi, X Q¢ consists of the functions in X, with support in
£2¢.,,. Note that this implies homogeneous slip boundary conditions on 952 ,, for the
velocity subspace V; ,, and zero mean value on £2;,, for the pressure subspace Qy ,,.
The Ritz projection & ,, : Xy — Xy, is defined by the equation

(e G) () = (G)-G)) - v(G)exe o
14 qiv 14 qiv qev
Note that each cell belongs to no more than four (eight in 3D) patches Ty ,,, one for

each of its vertices.
‘We recall the additive Schwarz smoother

%a,@ =1 Z 'QZ(,U%_I
VEN

where 7 € (0, 1] is a scaling factor, %, is L*> symmetric and positive definite. In [8],
it was shown based on arguments from [2, 10], that this smoother yields a uniformly
convergent multigrid method if 7 is chosen appropriately.

Here, we use the symmetric multiplicative Schwarz smoother %, ¢ associated
with the spaces Xy ,,, defined by

Romy = (I — EN A"
S =(I=P1)..(I=Pun)... (I = P1).

We proved uniform convergence for the variable V-cycle iteration with the smoother
Hqe in [8] and showed its efficiency by numerical experiments. Since stan-
dard arguments from domain decomposition theory like stable decomposition and
strengthened Cauchy-Schwarz inequalities are used, we conjecture that the analysis
applies to the multiplicative version in the usual fashion. We note that the use of
the variable V-cycle is induced by the level dependence of the inf-sup condition (7).
Since optimality of this estimate has not been established, we study standard cycles
as well.

3 Numerical Results

We present numerical results for the multiplicative Schwarz method in various V-
cycle methods and different solvers in order to show that the contraction numbers are
not only bounded away from one, but are actually small enough to make this method
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Table 1 Number of m(l) = 21—+ m(l) = 1 m(l) =2

iterations ng to reduce the
residual by 10~ with the L |RT, |RT, |RTs |RT, |RT, |RTs |RT, RT, |RT;

variable V-cycle and the 3 15 5 5 5 5 5 3 3 3
standard V-cycle iteration 4 |6 6 7 6 6 7 5 5 5
with one and two pre- and 5 |6 6 6 6 6 7 5 5 6
post-smoothing steps 6 |5 5 6 6 6 7 5 5 6
7 |5 5 6 7 7 7 5 5 6
8 |5 5 6 7 7 7 6 6 6

Penalty parameter dependent of the finest level mesh size 2!~

very efficient. The following results were produced using the deal.Il library [3, 4]
and its multigrid capabilities [7].

The experimental setup for most of the tables is as follows: the domain is 2 =
1, 1]2, the coarsest mesh T consists of a single cell T = £2. The mesh T, on level
£ is obtained by dividing all cells in T,—, into four quadrilaterals by connecting the
edge midpoints. Thus, a mesh on level £ has 4° cells, and the length of their edges
is 2!7¢. The right hand side is f = (1, 1).

In Table 1, we first study convergence of the linear multigrid method (precon-
ditioned Richardson iteration) with the multiplicative Schwarz smoother using a
variable V-cycle algorithm on a square domain with no-slip boundary condition. The
penalty constant in the DG form (4) is chosen as 6 /hy, where 6 = (k + 1)(k + 2),
on the finest level L and all lower levels £. Results for pairs of RT}/Qy with orders
k between one and three are reported in the table which show the fast and uniform
convergence. On the right of this table, we keep the same experimental setup and
present iteration counts for the standard V-cycle algorithm with one and two pre-
and post-smoothing steps, respectively. Although not proven for this case, we still
observe uniform convergence results. We also see that the variable V-cycle with a
single smoothing step on the finest level is as fast as the standard V-cycle with two
smoothing steps, and thus the variable V-cycle is more efficient.

In Table 2, we test the variable and standard V-cycles with penalty parameters
depending on the mesh level ¢, namely &/h; (where ¢ is a positive constant
depending on the polynomial degree) in the DG form (4). This is the typical situation
when the operators are assembled independently on each grid level.

In Table 3, we provide results with GMRES solver and %, as preconditioner for
experimental setups as in Tables 1 and 2, respectively. The second to fourth columns
are results for the variable V-cycle with penalty parameter dependent of the finest
level mesh size. The fifth and seventh columns are the results for the standard V-
cycle with penalty parameter dependent of the finest level mesh size. The last three
columns are the results for the standard V-cycle with penalty parameter depend on
the mesh size of each level. From this table, we see that the GMRES method, as
expected, is faster in every case.
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Table 2 Penalty parameter Variable Standard

dependent on the mesh size of
ependent o the mesh stze o Level |RT, |RT, |RT; |RT, |RT, |RT;
each level

3 6 6 6 6 6

4 6 6 6 6 6 7
5 6 6 6 6 6 7
6 5 5 6 6 6 7
7 5 5 6 6 6 7
8 5 5 6 6 6 7

Number of iterations ng to reduce the residual
by 10~% with variable and standard V-cycle
iterations with m(L) = 1

Table 3 Number of

iterati to reduce th Variable Standard Noninherited

t

i;rfj;z?i;’sloo_ﬁ;evfifﬁ ¢ Level | RT, |RT, |RTs | RT) |RT> | RTs | RT, |RT, |RT;

GMRES solver and 3 2 |2 |2 |2 |2 |3 |3 |3

preconditioner %, ; variable 4 3 3 4 4 4 4 5 5 5

jand sFandard V—cycl'e with 5 5 5 5 5 5 5 5 5 5

inherited f.orms, Yanable 6 4 4 5 5 5 5 5 5 5

V-cycle with noninherited

forms 7 4 4 |5 5 |5 |5 |5 5 |5
8 5 4 5 5 5 5 5 5 5

One pre- and post-smoothing step on the finest level

Table 4 Three-dimensional Richardson | GMRES

domain Level |RT; |RT, |RT, |RT;
2 1 1 1 1
3 5 5 4 4
4 6 5 4 4
5 6 5 4 4

Number of iterations ng to reduce
the residual by 10~% with the vari-
able V-cycle algorithm with penalty
parameter dependent of the finest
level mesh size

In Table 4, we provide results in three dimensions for variable V-cycle methods
with the same penalty parameter as we choose in Table 1. We keep the similar
experimental setups: domain 2 = [—1, 1] and right hand side f = (1, 1,1). We
observe the similar fast and uniform convergence performance as in two dimensions.

We finish our experiments by applying our method to a non-simply connected
domain. We choose a square with a square hole, namely the domain 2 = [—1, 1] \
[—%, %] The coarse grid on level £ = 0 consists of the squares of the form [—1 +
I 1+ 22) x [-1+ %, -1 + 22| with 0 < i,j < 2, and with the index pair
(i,j) = (1,1) missing. We note that the Hodge decomposition in this case is more
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Table 5 Number of
iterations ng to reduce the
residual by 1078, different

Richardson | GMRES
Level |RT, |RT, |RT; |RT,

finite element orders and 2 6 6 4 4
solvers on the domain with 3 6 6 4 4
hole [—1, 1]*\ [=1/3,1/3] 4 6 |6 |4 |4
5 5 |5 4 |4
6 5 5 4 4
7 5 |5 4 |4

complicated due to the presence of a harmonic form. Nevertheless, the results with
the multiplicative Schwarz method in Table 5 exhibit the same performance we
observed in the simply connected case.

References

1. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J.
Numer. Anal. 19(4), 742-760 (1982)

2. D.N. Arnold, R.S. Falk, R. Winther, Preconditioning in H(div) and applications. Math.
Comput. 66(219), 957-984 (1997). ISSN 0025-5718. doi:10.1090/S0025-5718-97-00826-0

3. W. Bangerth, R. Hartmann, G. Kanschat, deal.Il — a general purpose object oriented finite
element library. ACM Trans. Math. Softw. 33(4) (2007). doi:10.1145/1268776.1268779

4. W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T.D.
Young, The deal.IT library, version 8.2. Arch. Numer. Softw. 3(100), 1-8 (2015)

5. B. Cockburn, G. Kanschat, D. Schotzau, C. Schwab, Local discontinuous Galerkin
methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319-343 (2002).
doi:10.1137/S0036142900380121.

6. B. Cockburn, G. Kanschat, D. Schotzau, A note on discontinuous Galerkin divergence-
free solutions of the Navier-Stokes equations. J. Sci. Comput. 31(1-2), 61-73 (2007).
doi:10.1007/s10915-006-9107-7

7. B. Janssen, G. Kanschat, Adaptive multilevel methods with local smoothing for H 1_and A=
conformin