
Language Recognition by Reversible Partitioned
Cellular Automata

Kenichi Morita(B)

Hiroshima University, Higashi-Hiroshima 739–8527, Japan
km@hiroshima-u.ac.jp

Abstract. We investigate the language accepting capability of one-
dimensional reversible partitioned cellular automata (RPCAs). It is well
known that bounded cellular automata (CAs) are equivalent to deter-
ministic linear-bounded automata (DLBAs) in their language accepting
capability. Here, we prove RPCAs are also equivalent to them by show-
ing a construction method of an RPCA that simulates a given DLBA.
Thus, the reversibility constraint does not decrease the ability of PCAs.

1 Introduction

One-dimensional cellular automata (CAs) as language acceptors have been exten-
sively studied until now, and fast recognition algorithms as well as their proper-
ties have been investigated (see, e.g., a survey [1]). Smith [8] showed deterministic
CAs whose space is bounded by the input length are equivalent to deterministic
linear-bounded automata (DLBA) in their accepting capability if computing time
is not bounded. On the other hand, Kutrib and Malcher [2] studied reversible CA
acceptors, and derived basic properties of real-time ones.

In this paper, we study how the constraint of reversibility affects the accepting
capability of bounded CAs in the case computing time is not bounded. For this
purpose, we consider the following two sub-problems. The first one is how a
DLBA is converted into an equivalent reversible DLBA (RDLBA). The second
one is how an RDLBA is simulated by a reversible bounded CA. For the first
problem, Lange, McKenzie and Tapp [3] showed that a DLBA can be simulated
by an RDLBA. However, their method is complex, and it is difficult to give
a practical procedure of conversion. Here, we give a much simpler conversion
method based on the one shown in [6]. For the second problem, we use the
framework of a deterministic partitioned cellular automaton (PCA), since it
makes design of reversible CAs easier. In [4,7], it is shown that a reversible Turing
machine (RTM) is simulated by a reversible PCA (RPCA). However, there, the
configuration size of the RPCA was not bounded, and thus a new technique
is required to simulate an RDLBA in a bounded RPCA. Here, we propose a
formulation of an RPCA acceptor, and give a conversion method of an RDLBA
into an RPCA that simulates the former in the cellular space whose working
space is always bounded by the input length plus 2. By above, any given DLBA
can be converted into an RPCA acceptor that simulates the former. Hence, the
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 106–120, 2015.
DOI: 10.1007/978-3-319-18812-6 9

Language Recognition by Reversible Partitioned Cellular Automata 107

language accepting capability of bounded PCAs does not decrease, even if the
reversibility constraint is added.

2 Reversible Partitioned Cellular Automaton (RPCA)

Definition 1. A 1-dimensional 3-neighbor deterministic partitioned cellular
automaton (PCA) as an acceptor of a language is defined by P = ((L,C,R),
f, (#,#,#), rs, Σ,A). Here, L,C,and R are nonempty finite sets of states of left,
center, and right parts of a cell, and thus the state set of a cell is Q = L×C×R.
A mapping f : Q → Q is a local function, (#,#,#) ∈ Q is a quiescent state
that satisfies f(#,#,#) = (#,#,#), rs ∈ R is a start state, Σ ⊂ C is an input
alphabet, and A ⊂ L is a set of accepting states.

Let pL : Q → L be the projection such that pL(l, c, r) = l for all (l, c, r) ∈ Q. The
projections pC : Q → C and pR : Q → R are also defined similarly. Let Conf(Q)
be the set of all configurations over Q, i.e., Conf(Q) = {α | α : Z → Q}, where
Z is the set of all integers. The global function F : Conf(Q) → Conf(Q) of P
induced by f is defined as the one that satisfies the following:

∀α ∈ Conf(Q),∀x ∈ Z (F (α)(x) = f(pL(α(x + 1)), pC(α(x)), pR(α(x − 1)))).

Let F t denote the operation of applying F repeatedly t times (t = 0, 1, . . .).
In a PCA P , the next state of each cell is determined by the present state

of the left part of the right-neighboring cell, the center part of this cell, and the
right part of the left-neighboring cell. Note that a state in L (R, respectively)
can be regarded as a “signal” to the left-neighboring (right-neighboring) cell. An
equation f(l, c, r) = (l′, c′, r′), where (l, c, r), (l′, c′, r′) ∈ Q, is called a rule of P .

Definition 2. Let P = ((L,C,R), f, (#,#,#), rs, Σ,A,N) be a PCA. P is
called locally reversible iff the local function f is injective, and called globally
reversible iff the global function F induced by f is injective.

Proposition 1. [7] Any PCA P is locally reversible iff it is globally reversible.

As stated in Proposition 1, local and global reversibility are equivalent in PCAs.
Hence, in the following, we shall design a locally reversible PCA to obtain a
globally reversible one, and it is simply called a reversible PCA (RPCA).

In the following, we assume a PCA (or RPCA) P satisfies the condition
(P1) below so that the number of non-quiescent cells does not exceeds n + 2
throughout a computation process, where n is the length of an input.

(P1) If a cell of P is in the state # in the center part, then it bounces any
signal l (r, respectively) from the right (left), and sends back a signal
r′ (l′) to the right (left): ∀ l ∈ L, ∃ r′ ∈ R (f(l, #,#) = (#,#, r′)) and
∀ r∈R, ∃ l′ ∈L (f(#,#, r) = (l′,#,#)).

108 K. Morita

−1 0 1 2 · · n n + 1 n + 2

t = 0 # # # # # rs # a1 # # a2 # · · · · · · # an # # # # # # #

...
t = t1 # # # # # r0 l1 c1 r1 l2 c2 r2 · · · · · · ln cn rn ln+1 # # # # #

Fig. 1. An initial configuration αw (t = 0) of a PCA with an input w = a1a2 · · · an,
and an accepting configuration (t = t1) where pL(F

t1(αw)(1)) = l1 ∈ A.

Definition 3. Let P = ((L,C,R), f, (#,#,#), rs, Σ,A,N) be aPCA,and w =
a1a2 · · · an ∈ Σn (n = 1, 2, . . .) be an input word. The configuration αw defined
below is called an initial configuration of P with w.

αw(x) =

⎧
⎨

⎩

(#,#, rs) if x = 0
(#, ax,#) if 1 ≤ x ≤ n
(#,#,#) if x < 0 or x > n

We sayw is accepted by P if ∃ t1 > 0 (pL(F t1(αw)(1)) ∈ A). The language
accepted by P is: L(P) = {w ∈ Σ∗ | ∃ t1> 0 (pL(F t1(αw)(1)) ∈ A)}.

An initial configuration and an accepting configuration are illustrated in
Fig. 1. Here, we assume an infinite array of cells. But, since the condition (P1)
holds, only n+2 cells are used in a computation. In the case of usual CA acceptors
border cells at the positions 0 and n+1 do not change their states (see [1]). But,
in PCA acceptors, the right part of the left border cell, and the left part of the
right border cell may change their states.

3 Reversible Linear-Bounded Automaton (RLBA)

Lange, McKenzie and Tapp [3] showed that the complexity class of deterministic
space S(n) is equal to that of reversible space S(n). From this, we obtain equiv-
alence of a deterministic linear-bounded automaton (DLBA) and a reversible
DLBA (RDLBA) by letting S(n) = n. But, their method is complex, and it is
difficult to get a concrete description of the RDLBA. Here, we show a simpler
method of converting a DLBA into an RDLBA based on the method in [6].

In this paper, a linear-bounded automaton (LBA) is defined as a 2-track
LBA shown in Fig. 2 rather than a standard 1-track LBA, because in the proof of
Lemma 2, which gives a method of converting an irreversible LBA to a reversible
one, it is required that an input word is kept unchanged throughout its com-
putation. It is easy to see a 2-track LBA can simulate a 1-track LBA, and vice
versa by a straightforward method, and thus they are equivalent.

Definition 4. A 2-track linear-bounded automaton (LBA) consists of a finite-
state control, a read-write head, and a tape with an input track and a storage

Language Recognition by Reversible Partitioned Cellular Automata 109

Input track (read-only)a1 a2 an

q Finite-state control

Storage track (read/write)b1 b2

· · · · · ·
· · bm # · · #

Fig. 2. A 2-track linear-bounded automaton (LBA).

track (Fig. 2). It is defined by M = (Q,Σ, Γ, δ,�,�,#, q0, A,N). Q is a non-
empty finite set of states, Σ is a nonempty finite set of input symbols for the
input track, and Γ is a nonempty finite set of storage symbols for the storage
track. �and �are left and right endmarkers of each track of the tape such that
{�,�} ∩ (Σ ∪ Γ) = ∅, and # ∈ Γ is a blank symbol for the storage track.
q0 (∈ Q) is the initial state, and A (⊂ Q) and N (⊂ Q)are sets of accepting and
non-accepting states that satisfy A ∩ N = ∅. δ is a subset of (Q × ((Σ×Γ 2 ∪
{[�, [�,�]], [�, [�,�]]}) ∪ {−1, 0,+1}) × Q) that determines the transition rela-
tion on M ’ s configurations. Here, −1, 0, and +1 stand for left-shift, no-shift,
and right-shift of the head, respectively. In what follows, we also use − and +
instead of −1 and +1 for simplicity. Note that only reading is permitted on the
input track, while both reading and writing are allowed on the storage track.

Each element r = [p, x, q] ∈ δ is called a rule of M in the triple form, where
x = [a, [b, c]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]} or x = d ∈ {−, 0,+}. A rule of
the form [p, [a, [b, c]], q] is called a read-write rule, and means if M is in the state
p and reads an input symbol a and a storage symbol b, then rewrites the latter
to c, and enters the state q. Here, � and � should not be rewritten to any other
symbol. A rule of the form [p, d, q] is called a shift rule, and means if M is in the
state p, then shifts the head to the direction d, and enters the state q.

Let q ∈ Q, w ∈ Σ∗, v ∈ Γ ∗ such that |v| = |w|, and h ∈ {0, 1, . . . , |w| +
1}. Then, [�w�,�v�, q, h] is called a computational configuration (or simply a
configuration) of M with an input w. It means that the contents of the input
track and the storage track are w and v, the finite-state control is in the state
q, and the head position is h, where the position of � is 0.

Let S be a set of symbols. A partial function s : S+ ×N → S is defined
as follows, where N is the set of all non-negative integers. If x = x0x1 · · · xn−1

(xi ∈ S), then s(x, j) = xj for 0 ≤ j < n, and s(x, j) is undefined for j ≥ n.
Hence, s(x, j) gives the j-th symbol of x, where the leftmost symbol is the 0-th.

The transition relation |−−
M

between a pair of configurations [�w�,�v�, q, h]
and [�w�,�v′�, q′, h′] is defined as follows.

[�w�,�v�, q, h] |−−
M

[�w�,�v′�, q′, h′] iff (1) or (2) holds.

(1) [q, [s(�w�, h), [s(�v�, h), s(�v′�, h′)]], q′] ∈ δ ∧ h′ = h ∧
∀j (0 ≤ j ≤ |v| + 1 ∧ j = h ⇒ s(�v′�, j) = s(�v�, j))

(2) [q, h′−h, q′] ∈ δ ∧ v′ = v

110 K. Morita

The reflexive and transitive closure, and the transitive closure of the relation |−−
M

is denoted by |−−
M

∗ and |−−
M

+ , respectively. A configuration [�w�,�#|w|�, q0, 0] is
called an initial configuration with an input w ∈ Σ∗. A configuration C is called
a halting configuration if there is no configuration C ′ such that C |−−

M
C ′.

We say w ∈ Σ∗ is accepted by M if [�w�,�#|w|�, q0, 0] |−−
M

∗ [�w�,�v�, q, h]
for some q ∈ A, v ∈ Γ |w|, and h ∈ {0, 1, . . . , |w| + 1}. The language accepted by
M is the set of all words accepted by M , and denoted by L(M).

L(M) = {w ∈ Σ∗ | [�w�,�#|w|�, q0, 0] |−−
M

∗ [�w�,�v�, q, h] for some
q ∈ A, v ∈ Γ |w|, and h ∈ {0, 1, . . . , |w| + 1} }

The set N of non-accepting states is not used in the definition of acceptance.
But, it is convenient to specify it for the later construction of reversible LBAs.

Definition 5. An LBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N)is called a determin-
istic LBA (DLBA) iff the following determinism condition holds.

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ :
(r1 = r2 ∧ p = p′) ⇒ (x ∈ {−, 0,+} ∧ x′ ∈ {−, 0,+} ∧
∀ [a, [b, c]], [a′[b′, c′]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}
(x = [a, [b, c]] ∧ x′ = [a′, [b′, c′]] ⇒ [a, b] = [a′, b′]))

It means that for any two distinct rules r1 and r2 in δ, if the present states pand
p′ are the same, then they are both read-write rules, and the pairs of the input
symbols and the read storage symbols [a, b] and [a′, b′] are different.

Definition 6. An LBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) is called a reversible
LBA (RLBA) iff the following reversibility condition holds.

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ :
(r1 = r2 ∧ q = q′) ⇒ (x ∈ {−, 0,+} ∧ x′ ∈ {−, 0,+} ∧
∀ [a, [b, c]], [a′[b′, c′]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}
(x = [a, [b, c]] ∧ x′ = [a′, [b′, c′]] ⇒ [a, c] = [a′, c′]))

It means that for any two distinct rules r1 and r2 in δ, if the next states q and
q′ are the same, then they are both read-write rules and the pairs of the input
symbols and the written storage symbols [a, c] and [a′, c′] are different.

A rule [p, x, q] is called a deterministic rule (reversible rule, respectively), if there
is no rule [p′, x′, q′] such that the pair ([p, x, q], [p′, x′, q′]) violates the determin-
ism (reversibility) condition.

A reversible and deterministic LBA is denoted by RDLBA. In the following,
we consider only DLBAs and RDLBAs. From the definition, it is easily seen that
if M is deterministic, then for every configuration C of M there is at most one
configuration C ′ such that C |−−

M
C ′. Likewise, if M is reversible, then for every

configuration C of M there is at most one configuration C ′ such that C ′ |−−
M

C.
We define a computation graph GM,w = (V,E) of M with an input w ∈ Σ∗

as follows. Let Conf(M,w) be the set of all configurations of M with w, i.e.,

Language Recognition by Reversible Partitioned Cellular Automata 111

Conf(M,w) = {[�w�,�v�, q, h] | q ∈ Q ∧ v ∈ Γ |w| ∧ h ∈ {0, 1, . . . , |w| +
1} }. The set V (⊂ Conf(M,w)) of nodes is the smallest set that contains the
initial configuration [�w�,�#|w|�, q, h], and satisfies the following condition:
∀C1, C2 ∈ Conf(M,w) ((C1 ∈ V ∧ (C1 |−−

M
C2 ∨ C2 |−−

M
C1)) ⇒ C2 ∈ V).

Namely, V is the set of all configurations connected to the initial configuration,
and is finite. The set E of directed edges is: E = {(C1, C2) | C1, C2 ∈ V ∧ C1 |−−

M
C2}. If M is deterministic, then outdegree of each node in V is either 0 or 1,
where a node of outdegree 0 corresponds to a halting configuration. On the other
hand, if M is reversible, then indegree of each node in V is either 0 or 1.

In the following, we assume, without loss of generality, any given DLBA
M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) satisfies the following conditions (C1)–(C6)
for the later convenience. In fact, M is easily modified so that it satisfies them.

(C1) The initial state q0 does not appear as the third component of a rule in δ:
∀[q, x, q′] ∈ δ (q′ = q0).

(C2) M performs read-write and shift operations alternately. Hence, Q is written
as Q = Qrw ∪ Qsf for some Qrw and Qsf such that Qrw ∩ Qsf = ∅, and δ
satisfies the following condition:
∀ [p, x, q] ∈ δ

((x ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]} ⇒ p ∈ Qrw ∧ q ∈ Qsf) ∧
(x ∈ {−, 0,+} ⇒ p ∈ Qsf ∧ q ∈ Qrw))

We can easily modify M so that it satisfies the above condition by adding
new states to it. Each element of Qrw and Qsf is called a read-write state and
a shift state, respectively. We further assume q0 ∈ Qrw, and A ∪ N ⊂ Qsf ,
though each state in A ∪ N makes no further move as in (C3).

(C3) Every state in A ∪ N is a halting state in Qsf , and vice versa:
∀q ∈ Q (q ∈ A ∪ N ⇔ q ∈ Qsf ∧ ¬∃[q, x, q′] ∈ δ).

(C4) If M reads a left (right, respectively) endmarker, then in the next step the
shift direction of the head is to the right (left):
∀p, r ∈ Qrw, ∀q ∈ Qsf ,
∀[a, [b, c]] ∈ (Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}), ∀d ∈ {−, 0,+}

([p, [a, [b, c]], q], [q, d, r] ∈ δ ⇒ (a = � ⇒ b = c = � ∧ d = +) ∧
(a = � ⇒ b = c = � ∧ d = −))

Likewise, if M reads a left (right, respectively) endmarker, then in the
previous step the shift direction of the head is to the left (right):
∀p, r ∈ Qsf , ∀q ∈ Qrw,
∀[a, [b, c]] ∈ (Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}), ∀d ∈ {−, 0,+}

([r, d, q], [q, [a, [b, c]], p] ∈ δ ⇒ (a = � ⇒ b = c = � ∧ d = −) ∧
(a = � ⇒ b = c = � ∧ d = +))

(C5) Just after M starts to move, it confirms the storage track contains only
blank symbols #s. It is done by replacing the rule [q0, [�, [�,�]], q] by
[q0, [�,[�,�]], q0,1], [q0,1,+, q0,2], [q0,2, [a, [#,#]], q0,1],
[q0,2, [�,[�,�]], q0,3], [q0,3,−, q0,4], [q0,4, [a, [#,#]], q0,3], [q0,4, [�,[�,�]], q].

Here, q0,1, q0,2, q0,3, q0,4 are new states, and the rules [q0,2, [a, [#,#]], q0,1]
and [q0,4, [a, [#,#]], q0,3] are added for each a ∈ Σ. Note that there is only
one rule that has q0 as the first component since (C1) and (C2) hold.

112 K. Morita

We define the following functions to give the condition (C6) below: prev-rw :
Qrw → 2Qsf×{−,0,+}, prev-sf : Qsf × (Σ×Γ ∪{[�,�], [�,�]}) → 2Qrw×(Γ∪{�,�}),
degrw : Qrw → N, and degsf : Qsf × (Σ×Γ ∪ {[�,�], [�,�]}) → N as follows,
where Qrw and Qsf are the sets given in (C2).

prev-rw(q) = {[p, d] | p ∈ Qsf ∧ d ∈ {−, 0,+} ∧ [p, d, q] ∈ δ}
prev-sf(q, a, c) = {[p, b] | p ∈ Qrw ∧ b ∈ (Γ ∪ {�,�}) ∧ [p, [a, [b, c]], q] ∈ δ}

degrw(q) = |prev-rw(q)|
degsf(q, a, c) = |prev-sf(q, a, c)|

Assume M is in the configuration [�w�,�v�, q, h]. If q is a read-write state
(shift state, respectively), then degrw(q) (degsf(q, s(�w�, h), s(�v�, h))) gives
the total number of previous configurations of [�w�,�v�, q, h]. Each element
[p, d] ∈ prev-rw(q) ([p, b] ∈ prev-sf(q, s(�w�, h), s(�v�, h)), respectively) gives
a previous state and a shift direction (a previous state and a previous storage
symbol). If M is an RDLBA, then degrw(q) ≤ 1 and degsf(q, a, c) ≤ 1 hold for
any q ∈ Q, and (a, c) ∈ (Σ×Γ ∪ {[�,�], [�,�]}).

(C6) M satisfies degrw(q) ≤ 1 for all q ∈ Qrw. If otherwise, we modify M as
follows. If there is a pair of shift rules [p, d1, q] and [p′, d2, q] in δ, then add
a new state q′ in Q, remove [p′, d2, q] from δ, and add rules [p′, d2, q′] and
[q′, [a, [b, c]], r] for each [q, [a, [b, c]], r] ∈ δ. Hence, degsf(r, a, c) increases,
but degrw(q) decreases. Repeat this procedure until no such pair exits.

We first show Lemma 1 stating that an RDLBA always halts. It is proved in a
similar manner to the case of a reversible multi-head finite automaton [5].

Lemma 1. Let M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) be an RDLBA that satisfies
(C1). Then, it eventually halts for any input w ∈ Σ∗.

Proof. Let C0 |−−
M

C1 |−−
M

C2 |−−
M

· · · be a computation of M starting from the
initial configuration C0 = [�w�,�#|w|�, q0, 0] with an input w ∈ Σ∗. First, we
show M never loops for any w. Assume, on the contrary, it loops, i.e., there exists
a pair of integers (i, j) such that 0≤ i<j and Ci = Cj . Let (i0, j0) be the pair such
that i0 is the least integer among such (i, j)-pairs. By the condition (C1), there
is no configuration C−1 that satisfy C−1 |−−

M
C0. Hence, C0 = Ci0 = Cj0 , and

thus i0 > 0. Therefore Ci0−1 = Cj0−−1. But, since Ci0−1 |−−
M

Ci0 , Cj0−1 |−−
M

Cj0 ,
and Ci0 = Cj0 hold, it contradicts the assumption M is reversible. Therefore,
M never loops. On the other hand, the total number of configurations reachable
from C0 is bounded by |Q| · |Γ ||w| · (|w| + 2). Hence, M halts for any input w. ��
We now give a method of converting a DLBA to an RDLBA in Lemma 2.

Lemma 2. Let M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) be a DLBA. We can con-
struct an RDLBA M† = (Q†, Σ, Γ, δ†,�,�,#, q0, {q̂b0}, {qb0}) such that the fol-
lowing holds, and thus L(M†) = L(M).

∀w ∈ Σ∗ ((w ∈ L(M) ⇒ [�w�,�#|w|�, q0, 0] |−−
M†
+ [�w�,�#|w|�, q̂b0 , 0])∧

(w ∈ L(M) ⇒ [�w�,�#|w|�, q0, 0] |−−
M†
+ [�w�,�#|w|�, qb0 , 0]))

Language Recognition by Reversible Partitioned Cellular Automata 113

Proof. In our construction, M† traverses the computation graph GM,w from the
initial configuration of M with an input w to find an accepting one as shown
in Fig. 3. We assume M satisfies the conditions (C1)–(C6). We further assume
the sets Q, and Γ ∪ {�,�} are totally ordered, and the elements of the set
prev-sf(q, a, c) is sorted by these orders. Thus, we express it by an ordered list as
below. Note that since M satisfies (C6), |prev-rw(q)| ≤ 1 holds for all q ∈ Qrw.

prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]], where k = degsf(q, a, c)

Then, Q† = {q, q̂, qb, q̂b | q ∈ Q}, and δ† is defined as below.

δ† = δ1 ∪ · · · ∪ δ4 ∪ δ̂1 ∪ · · · ∪ δ̂4 ∪ δA ∪ δN

δ1 = { [qb, [a, [c, b1]], pb1], [p1, [a, [b1, b2]], pb2], [p2, [a, [b2, b3]], pb3], . . . ,
[pk−1, [a, [bk−1, bk]], pbk], [pk, [a, [bk, c]], q] |

q ∈ Qsf ∧ (a, c) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ degsf(q, a, c) ≥ 1
∧ prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]], where k = degsf(q, a, c) }

δ2 = { [qb,−d, pb], [p, d, q] | q ∈ Qrw ∧ prev-rw(q) = [[p, d]] }
δ3 = { [qb, [a, [c, c]], q] | q ∈ Qsf − (A ∪ N)

∧ (a, c) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ degsf(q, a, c) = 0 }
δ4 = { [q, [a, [b, b]], qb] | q ∈ Qrw − {q0}

∧ (a, b) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ ¬∃c∃p ([q, [a, [b, c]], p] ∈ δ) }
δ̂i = { [p̂, x, q̂] | [p, x, q] ∈ δi } (i = 1, . . . , 4)
δA = { [q, 0, q̂b] | q ∈ A } ∪ { [q̂, 0, qb] | q ∈ A }
δN = { [q, 0, qb] | q ∈ N } ∪ { [q̂, 0, q̂b] | q ∈ N }

Q† has four types of states. They are of the forms q, q̂, qb and q̂b. The states
without a superscript (i.e., q and q̂) are for forward computation, while those
with a superscript “b” (i.e., qb and q̂b) are for backward computation. The states
with “ˆ” (i.e., q̂ and q̂b) are the ones indicating that an accepting configuration
of M was found in the process of traversal, while those without “ˆ” (i.e., q and
qb) are for indicating no accepting configuration has been found so far.

δ1, . . . , δ4 are the sets of rules for the states without “ˆ”, and δ̂1, . . . , δ̂4
are the ones of corresponding rules for the states with “ˆ”. δ1 and δ̂1 are for
searching the graph GM,w at a shift state of M . See, for example, the node
with a shift state q3 in Fig. 3 (a). By the rules in δ1 and δ̂1, the graph GM,w

is searched by the states of M† from q̂b3 to q̂b5 , from q̂5 to q̂b0 , from q0 to qb6 ,
and from q6 to q3. δ2 and δ̂2 are for searching GM,w at a read-write states of
M . For example, see the node with a read-write state q1 in Fig. 3 (a). By these
rules the graph is searched from q̂b1 to q̂b3 , and from q3 to q1. δ3 and δ̂3 are for
turning the direction of search from backward to forward in GM,w for a shift
state. See, for example, the node with the shift state q9 in Fig. 3 (a), where
the state of M† changes from q̂b9 to q̂9. δ4 and δ̂4 are for turning the direction
from forward to backward in for halting configuration with a read-write state.
There is no example of this type in Fig. 3. But, if the configuration with q2 were
such a one, then the state of M† changes from q2 to qb2 . δA (δN , respectively) is
for turning the search direction from forward to backward for accepting (non-
accepting) states. In addition, each rule in δA makes M† change the state from a
one without “ˆ” to the corresponding one with “ˆ”. Note that the sets of rules

114 K. Morita

{[q̂, 0, qb] | q ∈ A} ⊂ δA and {[q̂, 0, q̂b] | q ∈ N} ⊂ δN are not used to simulate M ,
but for keeping symmetry between the states with “ˆ” and those without “ˆ”.

We can verify M† is deterministic and reversible. For example, consider the
rules in δ1. Since prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]] (k = degsf(q, a, c) ≥ 1),
there are rules [p1, [a, [b1, c], q]], [p2, [a, [b2, c], q]], . . . , [pk, [a, [bk, c], q]] in δ of M .
First, [qb, [a, [c, b1]], pb1] ∈ δ1 is a deterministic rule, because it is the sole rule of
the form [qb, [a, [c, x]], yb] (for some x ∈ Γ ∪{�,�} and y ∈ Q) for the com-
bination (q, a, c). It is also a reversible rule, since [p1, [a, [b1, c], q]] ∈ δ is a
deterministic rule. Second, [pi, [a, [bi, bi+1]], pbi+1] ∈ δ1 (i = 1, . . . , k − 1) is
deterministic, since [pi, [a, [bi, c], q]] ∈ δ is deterministic. It is reversible, since
[pi+1, [a, [bi+1, c], q]] ∈ δ is deterministic. Third, [pk, [a, [bk, c]], q] ∈ δ1 is deter-
ministic, since [pk, [a, [bk, c], q]] ∈ δ is deterministic. It is also reversible, since it is
the sole rule of the form [x, [a, [y, c]], q] ∈ δ1 (for some x ∈ Q and y ∈ Γ∪{�,�})
for the combination (q, a, c). It is also easy to verify that other rules in δ† are
deterministic and reversible.

We can also verify that the constructed M† also satisfies the conditions (C1)–
(C6) except (C4) (since there are rules of the form [p, 0, q] in δA and δN). For
example, (C2) can be verified from the following fact: if q, q̂ ∈ Q†

rw (q, q̂ ∈ Q†
sf ,

respectively), then qb, q̂b ∈ Q†
sf (qb, q̂b ∈ Q†

rw).
Now, consider the case where M finally halts in a configuration Ch. Then

GM,w becomes a finite tree with the root Ch. Given the input w, M† starts
to search GM,w. As explained above, from each node, M† visits all of its child
nodes one after another, and thus M† will perform a depth-first search of a tree
(Fig. 3 (a)). Note that the search starts not from the root of the tree but from
the leaf node [�w�,�#|w|�, q0, 0]. Since each node of GM,w is identified by the
configuration of M of the form [�w�,�v�, q, h], it is easy for M† to keep it by
the configuration of M† itself.

If M† enters an accepting state of M , say qa, which is the root of the tree
while traversing the tree, then M† goes to the state q̂ba by a rule in δA, and
continues the depth-first search. After that, M† uses the states of the form q̂
and q̂b indicating that the input w should be accepted. M† will eventually reach
the initial configuration of M by its configuration [�w�,�#|w|�, q̂b0 , 0]. Thus,
M† halts and accepts the input.

If M† enters a halting state of M other than the accepting states, then by
a rule in δN ∪ δ4, and then by rules in δ1 ∪ δ2 ∪ δ3 it continues the depth-first
search without entering a state of the form q̂. Also in this case, M† will finally
reach the initial configuration of M by its configuration [�w�,�#|w|�, qb0 , 0].
Thus, M† halts and rejects the input.

We can see M† halts either in the configuration [�w�, �#|w|�, q̂b0 , 0] or
[�w�,�#|w|�, qb0 , 0] by the following reasons. First, M† does not halt in a
state other than q̂b0 and qb0 , since δ† is so designed that M† continues the tra-
versal at any node of GM,w such that M ’s state is not q0. Second, M† does
not halt in a configuration [�w′�,�v�, q̂b0 , h] or [�w′�,�v�, qb0 , h] for some
w′ ∈ Σ∗ such that w′ = w, v ∈ Γ |w′| and h ∈ {0, . . . , |w′| + 1}, since input
symbols are not rewritten. Note that, if M rewrites input symbols, then GM,w

Language Recognition by Reversible Partitioned Cellular Automata 115

qa

q1 q2

q3 q4

q5 q0 q6 q7 q8

q9 q10 q11 q12

q0 qb6

qb10 q10

q6

q3

q1 qb2

qb4

qb7

qb11 q11

q7 qb8

qb12 q12

q8

q4

q2

qaq̂ba

q̂b1

q̂b3

q̂b5

q̂b9 q̂9

q̂5 q̂b0

q1 q2 q3

q4

q5

q6 q7 q8 q9

q0 q10q0

qb7 qb8 qb9

qb10 q10

q9

qb3qb2qb1

qb6

qb0

q6

q1

qb4

qb5 q5

q4

q2 q3

q8q7

(a) (b)

Fig. 3. Examples of computation graphs GM,w of an DLBA M . Each node represents
a configuration of M , though only a state of the finite-state control is written in a
circle. The node labeled by q0 represents the initial configuration of M . An RDLBA
M† traverses these graphs along thin arrows using its configurations, and finally halts.
(a) A case M halts in an accepting state qa. (b) A case M loops forever.

may have two or more initial configurations, and thus M† does not traverse
GM,w entirely even if it is a tree. Third, M† does not halt in a configuration
[�w�,�v�, q̂b0 , h] or [�w�,�v�, qb0 , h] for some v ∈ Γ |w| and h = 0. Since
the initial configuration of M is [�w�,�#|w|�, q0, 0], and (C1) holds, we can
assume there is no rule of the form [q0, [a, [b, c]], q] with [a, [b, c]] = [�, [�,�]] in
δ. Hence, [�w�,�v�, q0, h] with h = 0 is not a node of GM,w. Fourth, the case
that M† halts in [�w�,�v�, q̂b0 , 0] or [�w�,�v�, qb0 , 0] for some v = #|w| is
also inhibited. If it starts from [�w�,�v�, q0, 0] with v = #|w|, it halts in q0,2,
because of (C5). Hence, [�w�,�v�, q0, 0] with v = #|w| is not a node of GM,w.

Next, consider the case where M enters a loop. Then GM,w is not a tree, but
a finite graph (Fig. 3 (b)). In this case, since there is no accepting configuration
in GM,w, M† never reaches an accepting state of M no matter how M† visits the
nodes of GM,w (it may not visit all the nodes of GM,w). Thus, M† uses only the
states without “ˆ”. Since M satisfies the condition (C1), M† eventually halts
by Lemma 1. By the same argument as in the case GM,w is a tree, M† must halt
in the configuration [�w�,�#|w|�, qb0 , 0]. By above, the theorem holds. ��
Example 1. Consider a DLBA Mp that accepts all well-formed parentheses.

Mp = (Q, { (,) }, {#, x}, δ,�,�,#, q0, {qa}, {qr})
Q = {q0, q0,1, q0,2, q0,3, q0,4, q1, q2, q3, q4, q5, q6, qa, qr}
δ = { [q0, [�, [�,�]], q0,1], [q0,1,+, q0,2], [q0,2, [(, [#,#]], q0,1], [q0,2, [), [#,#]], q0,1],

[q0,2, [�, [�,�]], q0,3], [q0,3,−, q0,4], [q0,4, [(, [#,#]], q0,3], [q0,4, [), [#,#]], q0,3],
[q0,4, [�, [�,�]], q1], [q1,+, q2], [q2, [(, [#,#]], q1], [q2, [(, [x, x]], q1],
[q2, [), [x, x]], q1], [q2, [), [#, x]], q3], [q2, [�, [�,�]], q5], [q3,−, q4],
[q4, [(, [x, x]], q3], [q4, [), [x, x]], q3], [q4, [(, [#, x]], q1], [q4, [�, [�,�]], qr],
[q5,−, q6], [q6, [(, [x, x]], q5], [q6, [), [x, x]], q5], [q6, [(, [#,#]], qr],
[q6, [�, [�,�]], qa] }

116 K. Morita

If an input w ∈ { (,) }∗ is given, Mp first checks if the condition (C5) holds
by the states q0,1, q0,2, q0,3, and q0,4. Next, it scans the input to the right to
find the leftmost “)” using the states q1 and q2, and mark it by “x” on the
storage track. Then, it scans the input to the left to find the corresponding
“(”, and also mark it by “x” by the states q3 and q4. Mp repeats this pro-
cedure until all “)”s are marked. Note that already marked parentheses are
ignored. It finally checks if no unmatched parenthesis exists by the states q5 and
q6. Mp is irreversible, since the pairs ([q2, [(, [x, x]], q1], [q4, [(, [#, x]], q1]) and
([q2, [), [#, x]], q3], [q4, [), [x, x]], q3]) violate the condition of Definition 6. We can
see it satisfies (C1)–(C6). Examples of its computation are as below.

[�()�, �##�, q0, 0] |−−
Mp

29 [�()�, �xx�, qa, 0]

[�(() ())�, �######�, q0, 0] |−−
Mp

85 [�(() ())�, �xxxxxx�, qa, 0]

[�(() ()�, �#####�, q0, 0] |−−
Mp

55 [�(() ()�, �#xxxx�, qr, 1]

An RDLBA M†
p that simulates Mp obtained by the method in Lemma2 is:

M†
p = (Q†, { (,) }, {#, x}, δ†,�,�,#, q0, {q̂b0}, {qb0}),

where Q† = {q, q̂, qb, q̂b | q ∈ Q}. δ† has 152 rules, and is not described here.
Examples of computing processes of M†

p are as follows.

[�()�, �##�, q0, 0] |−−
M†

p

71 [�()�, �##�, q̂b0 , 0]

[�(() ())�, �######�, q0, 0] |−−
M†

p

739 [�(() ())�, �######�, q̂b0 , 0]

[�(() ()�, �#####�, q0, 0] |−−
M†

p

239 [�(() ()�, �#####�, qb0 , 0]

4 Simulating RDLBA by RPCA

Lemma 3. For any DLBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N), we can construct
an RPCA PM such that L(PM) = L(M).

Proof. Let M† = (Q†, Σ, Γ, δ†,�,�,#, q0, {q̂b0}, {qb0}) be the RDLBA converted
from M by the method given in Lemma 2. Here, we design PM so that it simulates
M†. The simulation method is based on the one given in [4,7], but here PM

should be constructed so that it satisfies the condition (P1).
From the method shown in Lemma 2 it is easy to see that M† also satisfies the

condition (C2) as well as M . Let Q†
rw and Q†

sf be the sets of read-write states and
shift states, respectively, where Q† = Q†

rw ∪Q†
sf , and Q†

rw ∩Q†
sf = ∅. Let Q†

−, Q†
0,

and Q†
+, which are subsets of Q†

rw, be as follows: Q†
− = {q | ∃ p ([p,−, q] ∈

δ†)}, Q†
0 = {q | ∃ p ([p, 0, q] ∈ δ†)}, and Q†

+ = {q | ∃ p ([p,+, q] ∈ δ†)}. Since
M† satisfies the reversibility condition and (C1), Q†

−, Q†
0, and Q†

+ are mutually
disjoint, and (Q†

− ∪ Q†
0 ∪ Q†

+) ∩ {q0, q̂0} = ∅. Note that, here we assume there

Language Recognition by Reversible Partitioned Cellular Automata 117

is no “useless” state in Q of M that never appears as the third component of a
rule except q0. Thus, Q†

rw = Q†
− ∪ Q†

0 ∪ Q†
+ ∪ {q0, q̂0} holds.

PM is defined as follows.

PM = ((L,C,R), f, (#,#,#), rs, Σ, {l̂h})

L = Q†
− ∪ {#}

C = Σ ∪ Σ×(Γ − {#}) ∪ Σ×Γ ×(Q†
0 ∪ Q†

sf − {qb0 , q̂b0}) ∪ {#}
R = Q†

+ ∪ {#}
rs(∈ R) is the state such that ∃ p ([q0, [�, [�,�]], p], [p,+, rs] ∈ δ†).
l̂h(∈ L) is the state such that [l̂h, [�, [�,�]], q̂b0] ∈ δ†.

Note that rs is the state of M† that appears two steps after q0, and l̂h is the
state that appears just before q̂b0 .

The local function f : L×C×R → L×C×R is defined as follows. Here, the
notation [a, b] in (b), (d), (e) and (g) represents the combination of symbols as
it is, if b = #. But, [a,#] (i.e., in the case b = #) stands for the symbol a ∈ Σ.
This is only for simplifying the description of the local function f .

1. Rules of PM for the case a cell does not change its state.
(a) For each a ∈ (Σ ∪ Σ×(Γ − {#}) ∪ {#}), f(#, a,#) = (#, a,#).

2. Rules of PM for simulating shift rules of M†.
(b) For each p ∈ Q†

sf , q ∈ Q†
−, and (a, b) ∈ Σ×Γ ,

if [p,−, q] ∈ δ†, then f(#, [a, b, p],#) = (q, [a, b],#).
(c) For each p ∈ Q†

sf , q ∈ Q†
0, and (a, b) ∈ Σ×Γ ,

if [p, 0, q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, b, q],#).
(d) For each p ∈ Q†

sf , q ∈ Q†
+, and (a, b) ∈ Σ×Γ ,

if [p,+, q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, b], q).
3. Rules of PM for simulating read-write rules of M†.

(e) For each p ∈ Q†
−, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(p, [a, b],#) = (#, [a, c, q],#).

(f) For each p ∈ Q†
0, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, c, q],#).

(g) For each p ∈ Q†
+, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(#, [a, b], p) = (#, [a, c, q],#).

4. Rules of PM for simulating the movements of M† at the left and the right
endmarkers. Here, H† = A ∪ N ∪ Â ∪ N̂ , where Â = {q̂ | q ∈ A} and N̂ =
{q̂ | q ∈ N}. By the rules in (h) and (i) ((j) and (k), respectively), two (four)
steps of M†’s movements are simulated by one step of PM .
(h) For each p1 ∈ Q†

−, p2 ∈ Q†
sf − H†, and p3 ∈ Q†

+,
if [p1, [�, [�,�]], p2], [p2,+, p3] ∈ δ†, then f(p1,#,#) = (#,#, p3).

(i) For each p1 ∈ Q†
+, p2 ∈ Q†

sf − H†, and p3 ∈ Q†
−,

if [p1, [�, [�,�]], p2], [p2,−, p3] ∈ δ†, then f(#,#, p1) = (p3,#,#).
(j) For each p1 ∈ Q†

−, p2 ∈ H†, p3 ∈ Q†
0, p4 ∈ Q†

sf − H†, and p5 ∈ Q†
+,

if [p1, [�, [�,�]], p2], [p2, 0, p3], [p3, [�, [�,�]], p4], [p4,+, p5] ∈ δ†,
then f(p1,#,#) = (#,#, p5).

118 K. Morita

(k) For each p1 ∈ Q†
+, p2 ∈ H†, p3 ∈ Q†

0, p4 ∈ Q†
sf − H†, and p5 ∈ Q†

−,
if [p1, [�, [�,�]], p2], [p2, 0, p3], [p3, [�, [�,�]], p4], [p4,−, p5] ∈ δ†,
then f(#,#, p1) = (p5,#,#).

5. Rules of PM for the cases M† halts. Since the RPCA PM cannot halt, here we
set f to generate the signals q0 and q̂0 by the signals lh and l̂h. By these rules,
PM finally goes back to the initial configuration, and repeats its computation
indefinitely. However, note that, any PM necessarily goes back to the initial
configuration whatever the injection f is.
(l) f(l̂h,#,#) = (#,#, r̂s), and f(lh,#,#) = (#,#, rs).

Though f is defined only on a subset of L×C×R by (a)–(l), we can verify it
is injective on this set, since M† is reversible. From this partial function we can
easily make an injective total function f by appropriately determining undefined
values of f . Hence, PM is an RPCA.

If an input w ∈ Σ∗ is given, PM starts its computation from the initial
configuration αw (in Definition 3). Then, PM simulates M† step by step by the
rules (b)–(g). Movements of M† at the left and right border cells are simulated
by (h)–(k). Hence, ∃ t1 > 0 (pL(F t1(αw)(1)) = l̂h) holds iff w ∈ L(M†). Thus,
L(PM) = L(M†) = L(M) is concluded. ��
Let L(A) denote the class of languages accepted by the class of acceptors A.
From Lemmas 2 and 3, and the fact that PCAs can be easily simulated by DLBAs
(since the condition (P1) is assumed), the following theorem is obtained.

Theorem 1. L(RPCA) = L(PCA) = L(RDLBA) = L(DLBA).

Example 2. Consider the DLBA Mp in Example 1. An RPCA PMp such that
L(PMp) = L(Mp) is given below. PMp simulates the RDLBA M†

p constructed by
the method shown in Lemma 3.

PMp = ((L,C,R), f, (#,#,#), q0,2, { (,) }, {q̂b0,1})

L = Q†
− ∪ {#}

C = { (,) } ∪ { (,) }×{x} ∪ { (,) }×{x,#}×(Q†
0 ∪ Q†

sf − {qb0 , q̂b0}) ∪ {#}
R = Q†

+ ∪ {#}

In M†
p , |Q†| = 52, |Q†

rw| = |Q†
sf | = 26, |Q†

−| = 10, |Q†
0| = 4, and |Q†

+| = 10.
Therefore, |L| = 11, |C| = 117, and |R| = 11. Hence, the number of states of a
cell, and that of rules of PMp are both 14157. However, the number of rules that
are actually used to simulate M†

p is only 203. Here, we omit to describe f , but
from Fig. 4 we can observe how the rules are applied.

Figure 4 shows an example of a computing process of PMp with the input
w = (). PMp accepts the input at time t = 56. Note that the initial state q0,
and the accepting state q̂b0 of M†

p do not appear in PMp , since a few steps of
M†

p at the left and right endmarkers are simulated by one step of PMp . From
t = 57 to 113, PM performs essentially the same computing process as the one
from t = 0 to 56, except that the states with “ˆ” and those without “ˆ” are
swapped. At time t = 114, PMp becomes the initial configuration again, and

Language Recognition by Reversible Partitioned Cellular Automata 119

t = 0 q0,2 ()

1
(
q0,1

)

2 (q0,2)

3 ()
q0,1

4 () q0,2

5 () q0,4

6 ()
q0,3

7 (q0,4)

8
(
q0,3

)

9 q0,4 ()

10 q2 ()

11 (
q1

)

12 (q2)

13 (
)
x
qb
4

14 ()
x qb

3

15 ()
x q4

16 ()
x
q3

17 (q4
)
x

18
(
x
q1

)
x

19 (
x q2

)
x

20 (
x

)
x
q1

21 (
x

)
x q2

22 (
x

)
x q6

23 (
x

)
x
q5

24 (
x q6

)
x

25
(
x
q5

)
x

26 q6
(
x

)
x

27 q̂b
5

(
x

)
x

28
(
x
q̂b
6

)
x

29 (
x q̂b

5
)
x

30 (
x

)
x
q̂b
6

31 (
x

)
x q̂b

5

32 (
x

)
x q̂b

1

33 (
x

)
x
q̂b
2

34 (
x q̂b

1
)
x

35
(
x
q̂b
2

)
x

36 q̂b
1

(
x

)
x

37 q̂b
0,3

(
x

)
x

38
(
x
q̂0,3

)
x

39 q̂0,4
(
x

)
x

40 q̂2
(
x

)
x

41
(
q̂b
4

)
x

42 (q̂b
3

)
x

43 ()
q̂b
2

44 (q̂b
1

)

45
(
q̂b
2

)

46 q̂b
1

()

47 q̂b
0,3

()

48
(
q̂b
0,4

)

49 (q̂b
0,3

)

50 (
)
q̂b
0,4

51 () q̂b
0,3

52 () q̂b
0,1

53 (
)
q̂b
0,2

54 (q̂b
0,1

)

55
(
q̂b
0,2

)

56 q̂b
0,1

()

57 q̂0,2 ()

...
114 q0,2 ()

Fig. 4. A computing process of RPCA PMp with the input w = (). It is accepted at
t = 56, since q̂b0,1 is an accepting state. Here, the state # is indicated by a blank.

120 K. Morita

repeats the computing process infinitely many times. Note that, even if the rules
of (l) in Lemma 3 are not included, PMp will eventually go back to the initial
configuration, since it is reversible and (P1) holds (in such a case, generally, after
a very large number of time steps).

5 Concluding Remarks

In this paper, we showed that the language accepting capability of PCAs is equal
to that of deterministic linear-bounded automata, even if reversibility constraint
is added (Theorem 1). This result is for the case computing time is not limited.
It is left for the future study to characterize the capability of RPCAs for the
case time is limited, e.g., in polynomial time, linear time, or real time.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
24500017.

References

1. Kutrib, M.: Cellular automata and language theory. In: Meyers, B. (ed.) Encyclope-
dia of Complexity and System Science, pp. 800–823. Springer-Verlag, Berlin (2009)

2. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular
automata. Inform. Comput. 206, 1142–1151 (2008)

3. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60, 354–367 (2000)

4. Morita, K.: Simulating reversible Turing machines and cyclic tag systems by one-
dimensional reversible cellular automata. Theoret. Comput. Sci. 412, 3856–3865
(2011)

5. Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informat-
icae 110(1–4), 241–254 (2011)

6. Morita, K.: A deterministic two-way multi-head finite automaton can be converted
into a reversible one with the same number of heads. In: Glück, R., Yokoyama, T.
(eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013)

7. Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. Trans. IEICE Jpn. E72, 758–762 (1989)

8. Smith III, A.: Real-time language recognition by one-dimensional cellular automata.
J. Comput. Syst. Sci. 6, 233–253 (1972)

	Language Recognition by Reversible Partitioned Cellular Automata
	1 Introduction
	2 Reversible Partitioned Cellular Automaton (RPCA)
	3 Reversible Linear-Bounded Automaton (RLBA)
	4 Simulating RDLBA by RPCA
	5 Concluding Remarks
	References

