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Abstract. Two dynamical systems are cycle equivalent if they are topo-
logically conjugate when restricted to their periodic points. In this paper,
we extend our earlier results on cycle equivalence of asynchronous finite
dynamical systems (FDSs) where the dependency graph may have a non-
trivial automorphism group. We give conditions for when two update
sequences π, π′ give cycle equivalent maps Fπ, Fπ′ , and we give improved
upper bounds for the number of distinct cycle equivalence classes that
can be generated by varying the update sequence. This paper contains a
brief review of necessary background results and illustrating examples,
and concludes with open questions and a conjecture.
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1 Introduction

When studying finite dynamical systems (FDSs) of the form

F = (F1, F2, . . . , Fn) : Kn −→ Kn , (1.1)

it is typically unrealistic to determine the entire phase space explicitly. Even
a moderately small value for n and binary state space K = {0, 1} leads to a
number of states that, at best, is challenging to handle computationally. Based
on this, reasoning about the dynamics of (1.1) in terms of the map structure
itself can often give more insight as outlined in the following.

To the map in (1.1) one may associate its dependency graph. Assuming states
are given as x = (x1, . . . , xn), the dependency graph has vertex set {1, 2, . . . , n},
and there is a directed edge from vertex j to vertex i if Fi : Kn −→ Kn depends
non-trivially on xj . Here, non-trivially means that there is some x ∈ Kn such
that F (x) �= F (x′) where x and x′ only differ in the jth coordinate. In general,
this graph is directed and it may contain loops.
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 70–82, 2015.
DOI: 10.1007/978-3-319-18812-6 6



Cycle Equivalence of Finite Dynamical Systems Containing Symmetries 71

The map F in (1.1) may also have a specific structure or may have been
constructed in a specific manner. One example of this is where F has resulted
through composition of maps that may only modify one of the states xv. Specif-
ically, we may have maps of the form Fv : Kn −→ Kn where

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x1, . . . , xn), xv+1, . . . , xn) (1.2)

and where F is given as

F = Fn ◦ Fn−1 ◦ · · · ◦ F1 .

In this case the map F has been constructed by sequentially (or asynchronously)
applying the maps Fi in the sequence (1, 2, . . . , n). In general one may consider
other composition sequences such as a permutation π of the vertex set. We would
like to know how the sequence π influences the dynamics of F , and we would
also like to compare the dynamics resulting from two different update sequences.
We will write Fπ instead of F whenever we have a map assembled through
composition of maps of the form Fi in (1.2) using the sequence π = π1π2 · · · πn.

As we illustrate in the background section, many aspects of the dynamics can
be analyzed directly in terms of the dependency graph or the update sequence.
These are examples of structure-to-function results. Rather than using brute-
force, exhaustive computations, we derive insight about the dynamics using the
structural properties of the map F in (1.1).

In this paper, we demonstrate how the dependency graph allows us to reason
about the long-term dynamics of the class of maps of the form Fπ as defined
above. These are sometimes called asynchronous automata networks [6], sequen-
tial dynamical systems [11], or asynchronous cellular automata.

Throughout, X is an undirected, loop-free graph with vertex set V = v[X]
(usually {1, . . . , n}) and edge set E = e[X]. For a vertex v of degree d(v), we let
n[v] denote its 1-neighborhood, which has size d(v)+1. The set of permutations
of V is denoted SX . An element of SX represents a total ordering of the vertices,
which we write as π = π1π2 · · · πn.

Each vertex v takes on a vertex state xv ∈ K where K is some finite set. The
global state is denoted by x = (xv) ∈ KV , and the v-local state is x[v] = (xv) ∈
Kn[v]. We will omit the qualifiers vertex, global and v-local when specifying
states if no ambiguity can arise.

Additionally, each vertex v is assigned a vertex function fv : Kn[v] −→ K
and an X-local function Fv : KV −→ KV given by

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x[v]), xv+1 . . . , xn) . (1.3)

Here, the vertex function fv updates the state xv from time t to time t+1 locally.
The reason for introducing X-local functions is that they can be composed.

A vertex function fv is symmetric if any permutation of the input vector does
not change the function. Common examples of symmetric functions include log-
ical AND, OR, XOR, and their negations. A slightly weaker condition is being
outer symmetric, which means that fv is symmetric in the arguments corre-
sponding to the states of the d(v) neighbors of v in X. A sequence (gi)n

i=1 of
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symmetric functions, where gk : Ki −→ K, induces a sequence of vertex func-
tions (fv)v on X by setting fv = gd(v)+1. Outer symmetric functions also can
induce vertex functions, though slighly more care is needed in the notation.

Let (Fv)v∈V be a sequence of X-local functions and π ∈ SX . The asynchro-
nous finite dynamical system map Fπ : Kn −→ Kn is given by

Fπ = Fπ(n) ◦ Fπ(n−1) ◦ · · · ◦ Fπ(1) .

In other words, the map Fπ is constructed by applying the vertex functions
fv in the sequence given by π. The map Fπ is sometimes called a sequential
dynamical system or an asynchronous automata network. If the vertex functions
are induced we also say that the map Fπ is induced.

A sequence of local functions (Fv)v∈V defines a (directed) dependency graph.
However, for the questions we want to address, it is advantageous to use the
undirected, simple, loop-free graph X. From the dependency graph, one may
always construct the graph X by omitting loops and converting every directed
edge into an undirected edge while eliminating multiple edges.

0

14

23

Fig. 1. The graph Wheel4 from Example 1.

Example 1. Let X ′ = Circ4, the circle graph on 4 vertices, and let X = Wheel4 =
X ′ ⊕ 0 be the graph obtained form X ′ as the vertex join of X ′ and 0, as shown
in Fig. 1. In this case n[1] = (0, 1, 2, 4) whereas n[0] = (0, 1, 2, 3, 4). We assign
each vertex a state in K = F2 = {0, 1} and let the vertex functions be induced
by the logical NOR functions

norm : Km −→ K , norm(x1, . . . , xm) =
m∏

i=1

(1 + xi) .

In other words, norm returns 1 if and only if all its arguments are 0. As an
example, the X-local function F1 : K5 −→ K5 is here defined by

F1(x0, x1, x2, x3, x4) = (x0,nor4(x[1]), x2, x3, x4) .

If we use the permutation π = (0, 1, 2, 3, 4) we get the composed map

Fπ = F4 ◦ F3 ◦ F2 ◦ F1 ◦ F0 ,

which in particular means that Fπ(0, 0, 0, 0, 0) = (1, 0, 0, 0, 0). If we instead use
the sequence π′ = (1, 0, 2, 3, 4), we get Fπ′(0, 0, 0, 0, 0) = (0, 1, 0, 1, 0), illustrat-
ing the fact that the choice of sequence affects the dynamics. For comparison,
note that using a parallel update scheme the state (0, 0, 0, 0, 0) maps to the state
(1, 1, 1, 1, 1).
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2 Equivalence of Maps of the Form Fπ

In this section we review the notions of functional equivalence, dynamical equiv-
alence and cycle equivalence along with condensed versions of the key results.
These are all needed for our consideration of how symmetries of X govern results
on cycle equivalence.

2.1 Functional Equivalence

Functional equivalence is simply equality of functions. Every permutation π =
π1π2 · · · πn of the vertices of X canonically determines a partial order on X, or
equivalently, an acyclic orientation Oπ of X (under a slight absuse of notation,
we will use both of these terms interchangeably). Specifically, orient edge {i, j}
as (i, j) if i appears before j in π. This defines a mapping

SX −→ Acyc(X) , π �−→ Oπ .

where Acyc(X) is the set of acyclic orientations of X. The fibers of this map
define an equivalence relation ∼α on SX , and it is easily seen that π ∼α π′ if and
only if both are linear extensions of the same O ∈ Acyc(X). Since any two linear
extensions of the same finite poset differ by a sequence of transposing adjacent
incomparable elements, the following result is immediate.

Proposition 1. Let (Fv)v∈V be a sequence of X-local functions and π, π′ ∈ SX .
If Oπ = Oπ′ then Fπ = Fπ′ .

Thus, α(X) := |Acyc(X)| is an upper bound for the number of distinct maps Fπ,
where π ∈ SX . For certain classes functions, such as when each vertex function
is a nor-function, this bound is known to be sharp [1].

It is well-known that the quantity α(X) satisfies the deletion-contraction
recurrence

α(X) = α(X\e) + α(X/e) ,

for any edge e of X. Here, X \e is the graph X with the edge e deleted, X/e
is the graph X with e contracted. As such, α(X) = TX(2, 0), where TX is the
Tutte polynomial of X (see [14]).

Example 2. We continue Example 1 using the graph X = Wheel4. The two
update sequences π = (0, 2, 4, 1, 3) and π′ = (0, 4, 2, 3, 1) give identical maps Fπ

and Fπ′ since Oπ = Oπ′ . Both acyclic orientations orient the edges of X as (0, 1),
(0, 2), (0, 3), (0, 4), (4, 1), (2, 1), (2, 3), and (4, 3).

Using the deletion/contraction recursion above, one obtains α(X) = 78. In other
words, for this graph and a fixed sequence (Fv)v of X-local functions, there are at
most 78 distinct composed maps of the form Fπ. If all vertex functions are nor-
functions, this bound is sharp, and the 78 corresponding compositions are indeed
distinct.
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2.2 Dynamical Equivalence

Two finite dynamical systems φ, ψ : Kn −→ Kn are dynamically equivalent
(or topologically conjugate in the discrete topology) if there is a bijection
h : Kn −→ Kn such that

ψ ◦ h = h ◦ φ . (2.1)

This is equivalent to saying that the phase spaces Γ (φ) and Γ (ψ) are isomorphic
as directed graphs.

The automorphism group of X, denoted by Aut(X), acts on Acyc(X) by

O
γ�−→ γO , (γO)({v, w}) = γ

(
O

({γ−1(v), γ−1(w)})) , (2.2)

where γ(v, w) = (γ(v), γ(w)). Let ᾱ(X) denote the number of orbits under this
action. In [11], the bijection

Fix(γ) −→ Acyc(〈γ〉 \ X) (2.3)

is established. Here 〈γ〉\X is the orbit graph of X and the cyclic group 〈γ〉. This
is the multi-graph whose vertices (resp. edges) are the orbits of the action of 〈γ〉
on V (resp. E). An edge (orbit) connects the vertex orbits corresponding to any
of its edges. Note that the orbit graph may have loops and parallel edges. The
orbit graph 〈(13)(24)〉 \ Wheel4 is illustrated in Fig. 2.

{2,4} {1,3}

{0}

Fig. 2. The orbit graph 〈(13)(24)〉 \ Wheel4.

Combining (2.3) with Burnside’s Lemma, one obtains

ᾱ(X) =
1

|Aut(X)|
∑

γ∈Aut(X)

|Fix(γ)| =
1

|Aut(X)|
∑

γ∈Aut(X)

α(〈γ〉 \ X) . (2.4)

The computation of ᾱ(X) is simplified by the fact that the orbit graph often
contains loops and therefore has no acyclic orientations.

Any σ ∈ SX defines a canonical mapping R
n → R

n by permuting the coor-
dinates:

σ : (x1, . . . , xn) �−→ (xσ−1(1), . . . , xσ−1(n)) .

A sequence of vertex functions (fv)v∈V is Aut(X)-invariant if either of the fol-
lowing two equivalent conditions hold:
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• fv = fγ(v) for all γ ∈ Aut(X);
• γ ◦ Fv ◦ γ−1 = Fγ(v) for every v and all γ ∈ Aut(X).

Note that vertex functions induced by a set of symmetric or outer-symmetric
functions (gi)n

i=1 are always Aut(X)-invariant.

Theorem 1. For any sequence (fv)v∈V of Aut(X)-invariant vertex functions,
the maps Fπ and Fγπ are dynamically equivalent, and ᾱ(X) is an upper bound
for the number of such maps, up to dynamical equivalence.

We conjecture that this upper bound is sharp, but so far, this has only been
shown for a few graph classes.

Example 3. We continue our running example with X = Wheel4, whose auto-
morphism group is Aut(X) ∼= D4, the symmetry group of the square:

Aut(X) = {id, (1234), (13)(24), (1432), (14)(23), (12)(34), (13), (24)} . (2.5)

Taking γ = (1234) and π = (0, 1, 2, 3, 4) we have γπ = (0, 2, 3, 4, 1). With nor-
functions at each vertex, the conditions in Theorem 1 are satisfied and we con-
clude that two update sequences π and π′ = γπ yield dynamically equivalent
maps Fπ and Fπ′ .

To determine the upper bound ᾱ(X), we compute the orbits graphs 〈γ〉 \ X
for γ ∈ Aut(X). Note that 〈id〉 \ X is always isomorphic to X while the orbit
graphs corresponding to γ ∈ {(1234), (1432), (13)(23), (12)(34)} have loops and
therefore no acyclic orientations. The orbit graphs resulting from γ ∈ {(13), (24)}
are isomorphic to the square with a diagonal which has 18 acyclic orientations.
This leaves γ = (13)(24), whose orbit graph 〈γ〉 \X is shown in Fig. 2 which has
6 acyclic orientations. Using (2.4), we obtain

ᾱ(X) = 1
8 (78 + 0 + 6 + 0 + 0 + 0 + 18 + 18) = 15 ,

which implies that there are at most 15 dynamically distinct maps Fπ over X
arising from a fixed sequence of Aut(X)-invariant functions.

2.3 Cycle Equivalence

Cycle equivalence is a coarsening of dynamical equivalence. In this case, we
only compare the periodic points of the maps. For a discrete dynamical system
F : Kn −→ Kn, let Per(F ) denote its periodic points and let Fix(F ) denote
its fixed points. Two dynamical systems φ : Kn

1 −→ Kn
1 and ψ : Kn

2 −→ Kn
2

are cycle equivalent if there is a bijection h : Per(φ) −→ Per(ψ) such that the
equation

ψ ◦ h = h ◦ φ

holds when restricted to Per(φ). When K is finite, it follows that φ and ψ are
cycle equivalent if their multi-sets of periodic orbits sizes are the same. It is clear
that functional and dynamical equivalence both imply cycle equivalence.
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Given an update sequence π = π1π2 · · · πn ∈ SX , define

shift(π) = π2π3 · · · πnπ1 , and reverse(π) = πnπn−1 · · · π1 .

The following theorem shows how shifts and reversals of the update sequence give
rise to cycle equivalent composed maps. One of these requires the functions to be
update sequence independent, which means that Per(Fπ), set-wise, is independent
of π ∈ SX . This perhaps peculiar requirement holds for 104 of the 256 elementary
cellular automata rules [7]. It is needed because it ensures that Fπ and Freverse(π)

are inverses when restricted to their periodic points.

Theorem 2 ([9]). For any set (fv)v∈V of vertex functions, the maps Fπ and
Fshift(π) are cycle equivalent. Moreover, if |K| = 2 and (fi)i∈V is update sequence
independent, then Fπ and Freverse(π) are cycle equivalent.

It is easy to extend this result from update sequences that are permutations to
general words over V .

On the level of acyclic orientations, transforming π into shift(π) corresponds
to converting π1 from a source in Oπ to a sink in Oshift(π). Such an operation
is called a flip, and it generates an equivalence relation on Acyc(X) called toric
equivalence and denoted by ∼κ. The equivalence classes are called toric posets.
The name is motivated from a bijection between the toric posets over X and the
chambers of the toric graphic (hyperplane) arrangement Ator(X) in the torus
R

V /ZV , analogous to the bijection between ordinary posets over X and the
chambers of the graphic arrangement A(X) in R

V (see [4]). Similarly, trans-
forming π into reverse(π) corresponds to reversing each edge orientation in Oπ

to obtain Oreverse(π) – we call this a reversal, and denote the equivalence relation
generated by flips and reversals by ∼δ. We let κ(X) and (resp. δ(X)) denote the
number of ∼κ-equivalence (resp. ∼δ-equivalence) classes.

Let P = v1v2, . . . , vk be a path in X and define the function νP : Acyc(X) −→
Z, where νP (OX) is the number of edges oriented as (vi, vi+1) (the “forward
edges”), minus the number of edges oriented as (vi+1, vi) (“backward edges”).
If P is a cycle then νP is preserved under flips, so νP extends to a map ν̄P : Acyc
(X)/∼κ−→ Z on toric posets over X. Two acyclic orientations are torically
equivalent if and only if νC(ω) = νC(ω′) for all cycles C in X. Moreover, ω ∼δ ω′′

if and only if νC(ω) = ±νC(ω′′). The δ-equivalence classes can be enumerated
from the toric equivalence classes, which satisfy a deletion-contraction recurrence
for any cycle edge e of X:

κ(X) = κ(X\e) + κ(X/e) = TX(1, 0) ,
δ(X) = �κ(X)/2� ,

(2.6)

We can now summarize our results on cycle equivalence for maps of the form Fπ.

Theorem 3 ([7,9,10]). Let K be a finite set, let (fi)v∈V be a fixed sequence
of vertex functions over X. If Oπ ∼κ Oπ′ then Fπ and Fπ′ are cycle equivalent.
If |K| = 2 and (fv)v∈V is update sequence independent, then Fπ and Fπ′ are
cycle equivalent if Oπ ∼δ Oπ′ .
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Theorem 3 provides an easy way to test if Fπ and Fπ′ are cycle equivalent:
first choose a cycle basis for X and then evaluate ν for Oπ and Oπ′ . If these
are identical then the two maps are cycle equivalent. If ν(Oπ) = ±ν(Oπ′), then
the maps are also cycle equivalent, provided the functions are update sequence
independent. Of course, since this is a sufficient condition, the two maps may
still be cycle equivalent if this condition fails to hold.

Example 4. Returning to our running example with X = Wheel4, we first see
that κ(X) = 14. To see this, one can either use the deletion/contraction recursion
relation (2.6) or resort to Proposition 3 (placed in the next section for the purpose
of exposition) using the vertex v = 0. As a consequence, there are at most 14
distinct long-term behaviors for any finite dynamical system of the form Fπ

over X assuming fixed functions (Fv)v∈V .

As a consequence of Proposition 3, we note that representative update sequences
for these 14 classes can be obtained as follows: first direct each edge {0, i} as
(0, i) where 1 ≤ i ≤ 4 and then orient the remaining edges so that the graph
is acyclic. There are 14 such acyclic orientations. The representative update
sequences result by choosing precisely one linear extension for each of these 14
acyclic orientations.

3 Main Results

The results presented above for cycle equivalence do not consider the effects of
symmetries in the graph X. Here we will complete the analysis through an exten-
sion of Theorem 1 from Sect. 2.2. As before, when considering graph symmetries,
we need to assume that the vertex functions are Aut(X)-invariant.

For γ ∈ Aut(X), linear extensions π of O and π′ of γO give dynamically
equivalent maps Fπ and Fπ′ . In the following, we will show that Aut(X) acts
on Acyc(X)/∼κ via γ[O] = [γO]. From this it follows that (i) linear extensions
of κ-classes on the same Aut(X)-orbit give cycle-equivalent maps, and (ii) the
number of cycle equivalence classes is bounded above by the number κ̄(X) of
orbits of the action of Aut(X) on Acyc(X)/∼κ. The same statement holds for
δ-classes and the corresponding number δ̄(X).

To start, we first observe that if v is a source (resp. sink) in the acyclic
orientation O then γ(v) is a source (resp. sink) in γO. Assume that v is a source
in O and let c = cv be the length one flip-sequence mapping O1 to O2. We have
a commutative diagram

O1 � γ
��

�

cv

��

γO1
�

cγ(v)

��

O2 �
γ

�� γO2

(3.1)

which can be verified by examining what happens to each edge {u,w}.
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Lemma 1. For ∼∈ { ∼κ, ∼δ}, the group Aut(X) acts on Acyc(X)/ ∼ by
γ[O] = [γO].

Proof. By vertically concatenating diagrams of the form (3.1), we see that the
mapping

Aut(X) × Acyc(X)/∼ −→ Acyc(X)/∼ , (γ, [O]) �−→ [γO]

is well-defined. It is a group action because the group Aut(X) acts on Acyc(X)
by γO = γ ◦ O ◦ γ−1; see for example [11].

Corollary 1. Let γ ∈ Aut(X). For any permutation π with Oπ ∈ [O] and π′

for which Oπ′ ∈ γ[O], the two maps Fπ and Fπ′ are cycle equivalent.

Since Aut(X) acts on Acyc(X)/∼κ and Acyc(X)/∼δ, we may use Burnside’s
Lemma to determine κ̄(X) and δ̄(X).

Proposition 2. Let X be a finite, undirected graph. Then

κ̄(X) =
1

|Aut(X)|
∑

γ∈Aut(X)

|Fix(γ)| , (3.2)

where Fix(γ) = {[O] | γ[O] = [O]}.
In this form it is, however, not easy to determine |Fix(γ)|. It would be desirable to
develop a result analogous to the orbit graph correspondence that what we have
when Aut(X) acts on Acyc(X) as in (2.4). The following results provide parts
of this [3,8].

Proposition 3. For any fixed vertex v of X, the set Acycv(X) ⊂ Acyc(X)
consisting of all acyclic orientations where v is the unique source, is a complete
set of toric equivalence class representatives.

For determining Fix(γ), this proposition has an immediate consequence if γ fixes
a vertex.

Corollary 2. Let φv : Acyc(X)/∼κ−→ Acycv(X) be the map that assigns to
[O] its unique element in Acycv(X). If γ ∈ Aut(X) fixes the vertex v ∈ V then
[O] ∈ Fix(γ) if and only if γφv([O]) = φv([O]).

Proof. For any v ∈ V the automorphic image of an element of Acycv(X) is also
an element of Acycv(X). If γ fixes v then it follows that γ fixes [O] if and only
if γ fixes φv([O]).

It follows that in this case one can derive a result analogous to the orbit graph
enumeration in (2.4), however, in this case one must take care to only consider
those acyclic orientations where v is the unique source.

The fact that the ν-function is a complete invariant for toric equivalence
offers an alternative approach:
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Proposition 4. Let X be a graph, let v ∈ v[X] and let C be a cycle basis for
X. Then

κ̄(X) =
1

|Acyc(X)|
∑

γ∈Aut(X)

N(γ)

where N(γ) = |{O ∈ Acycv(X) | νC(O) = νC(γO)}|.
Proof. This follows from the fact that ν evaluated on any cycle-basis is a com-
plete invariant for toric equivalence [12].

The following examples illustrates how Proposition 4 can be used to determine
κ̄(X) as well as δ̄(X). We also include the other graph measures mentioned
above.

Example 5. As a specific example, take X to be the double square graph as
illustrated in Fig. 3. Here

Aut(X) = {id, τ = (1, 6)(2, 5)(3, 4), σ = (1, 3)(4, 6), στ = (1, 4)(2, 5)(3, 6)},
(3.3)

leading to α(X) = 98, ᾱ(X) = 28, κ(X) = 9 and δ(X) = 5. Nine tori-
cally non-equivalent elements in Acyc2(X) are shown in Fig. 4. The letters in

1 2 3

6 5 4

Fig. 3. The graph of Example 5 with orientations for the fundamental cycles of the
cycle basis.

2 -2

0 -2

-2 -2

2 0

0 0

-2 0

2 2
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-2 2

(a)

(a)

(b)

(c)

(d)

(e)

(d)

(c)

(b)

Fig. 4. The transversal Acyc2(X) for κ-equivalence of the graph in Example 5.
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parentheses on the left show five δ-class representatives. The ν-values are indi-
cated inside each fundamental cycle of the chosen cycle basis.

Let (ν1, ν2) denote the value of ν on O. Then ν(τO) = (−ν1,−ν2), ν(σO) =
(ν2, ν1), and ν(τσO) = (−ν2,−ν1). From this we conclude that N(id) = 9,
N(τ) = 1, N(σ) = 3 and N(τσ) = 3. As a result we have κ̄(X) = (9 + 1 + 3 +
3)/4 = 4.

In the same manner we obtain δ̄(X) = 4. Specifically, we have |Fix(id)| = 5,
|Fix(τ)| = 5, and |Fix(σ)| = 3, |Fix(τσ)| = 3, leading to δ̄(X) = (5 + 5 + 3 +
3)/4 = 4.

Corollary 3. Let X be the graph in Example 5. Then there are at most four
cycle classes for maps of the form Norπ (each vertex function is a nor-function)
where π ∈ SX .

This follows directly since nor-functions are symmetric and Boolean. There are
6! = 720 possible permutation update sequences for this graph. However, for this
class of functions, there are at most four distinct long-term behaviors. In our
opinion, this is a remarkable result.

Example 6. For the running example with X = Wheel4 we can use Corollary 2
to take advantage of the fact that this graph is the vertex join of 0 and Circ4
and that 0 has maximal degree. To determine Fix(γ) in Acyc(X)/∼κ, we can
now simply reason about the transversal Acyc0(X) and use the orbit graph
construction. For example, there are 2 elements of Acyc0(X) fixed under the
automorphism γ = (13)(24). Accounting for each γ ∈ Aut(X) using the order in
which they appear in (2.5) gives

κ̄(X) =
1
8
(14 + 0 + 2 + 0 + 0 + 0 + 4 + 4) = 3

which equals κ̄(Circ4).

The fact that κ̄(Circ4 ⊕ 0) = ᾱ(Circ4) clearly generalizes. We state this without
proof:

Proposition 5. If X = X ′ ⊕ v where X ′ has no vertex of maximal degree, then
κ̄(X) = ᾱ(X ′).

We include one more example illustrating the various graph measure for the
three-dimensional cube.

Example 7. Let X = Q3
2, the 3-dimensional binary hypercube, i.e., the cube.

Straightforward (but somewhat tedious) calculations show that

α(Q3
2) = 1862, κ(Q3

2) = 133, ᾱ(Q3
2) = 54, and κ̄(Q3

2) = δ̄(Q3
2) = 8.

Again, in the context of dynamical systems of the form Fπ induced by a sequence
of Aut(X)-invariant Boolean functions, this means that there are at most 8
distinct periodic orbit configurations for induced, symmetric permutation SDS
over Q3

2. This should be compared to the total number of permutation over SX

which is 8! = 40320.
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4 Summary

In this paper, we extended results on cycle equivalence for finite dynamical sys-
tems of the form Fπ. The results provide a sufficient condition for determining
when Fπ and Fπ′ are cycle equivalent when taking into account the symme-
tries of the graph. The restriction that the vertex functions be Aut(X)-invariant
functions is not as artificial as it may seem – it includes all symmetric and
outer-symmetric functions, which are very common in practice. We also derived
a bound for the number cycle-equivalence classes for such maps Fπ. As for the
measures α(X), ᾱ(X), κ(X) and δ(X), the conditions and enumerations do not
depend on the particular choice of functions – they are graph measures. This
means that we can reason about dynamics of maps Fπ using only the graph
structure. It is another example of mapping structure to dynamics rather than
performing brute-force phase space computations.

The structures we have covered above are relevant to other areas beyond
asynchronous finite dynamical systems. One example is in the study of Coxeter
groups and their Coxeter elements [2]. Let (W,S = {s1, . . . , sn}) be a Coxeter
system with (unlabeled) Coxeter graph X. It is well-known that there is a bijec-
tion between Acyc(X) and the set of Coxeter elements C(W ) = {cπ(n) · · · cπ(1) |
π ∈ SX}. Moreover, O ∼κ O′ if and only if the corresponding Coxeter elements
are conjugate [5,8]. It follows that α(X) = TX(2, 0) and κ(X) = TX(1, 0) enu-
merate the number of Coxeter elements and their conjugacy classes. Moreover,
it can be shown that κ̄(X) is an upper bound for the number of spectral class of
Coxeter elements, see for example [13]. We are not aware of any significance for
δ̄(X) in the context of Coxeter groups.

We close with two questions and a conjecture that we invite the reader to
explore further:

Question 1. Is it possible to compute δ̄(X) from κ̄(X) in a manner similar to
that of δ(X) = �κ(X)/2�? For which graphs are δ̄(X) and κ̄(X) the same?

Question 2. Is there a simpler way to determine κ̄ than the one in Proposition 4?
Is there a result involving νC(Acycv(X)) analogous to (2.4) with orbit graphs?

Conjecture 1. The bounds κ̄(X) and δ̄(X) are sharp. In other words, for any
graph X, there is a function sequence (Fv)v∈V such the that the number of cycle
classes of the maps Fπ equals κ̄(X) (resp. δ̄(X)).
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