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Abstract. Real-time one-way cellular automata (OCA) are investigated
towards their ability to perform reversible computations with regard to
formal language recognition. It turns out that the standard model with
fixed boundary conditions is quite weak in terms of reversible informa-
tion processing, since it is shown that in this case exactly the regular
languages can be accepted reversibly. We then study a modest extension
which allows that information may flow circularly from the leftmost cell
into the rightmost cell. It is shown that this extension does not increase
the computational power in the general case, but does increase it for
reversible computations. On the other hand, the model is less power-
ful than real-time reversible two-way cellular automata. Additionally, we
obtain that the corresponding language class is closed under Boolean
operations, and we prove the undecidability of several decidability ques-
tions. Finally, it is shown that the reversibility of an arbitrary real-time
circular one-way cellular automaton is undecidable as well.

Keywords: Reversibility · One-way cellular automata · Language
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1 Introduction

Computational devices that are able to perform reversible computations have
gained a lot of interest in the last years. The main property of reversible com-
putations is that every configuration has a unique successor configuration as
well as a unique predecessor configuration. Thus, in reversible computations no
information is lost which is an appealing property from a physical point of view,
because it has been observed that a loss of information results in heat dissipa-
tion [15]. Bennett [3] was the first who studied reversibility in computational
devices, namely, in Turing machines. His fundamental result is that every Tur-
ing machine can be transformed into an equivalent reversible Turing machine.
Thus, every recursively enumerable language can be processed in such a way
that no information is lost. Less powerful classes with regard to the Chomsky
hierarchy are the regular languages, which are accepted, for example, by deter-
ministic finite automata (DFA), and the deterministic context-free languages,
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which are accepted, for example, by deterministic pushdown automata (DPDA).
Reversible DFA are introduced in [2] and it is known [19] that there are regular
languages for which no reversible DFA exists. This means that there are com-
putations performed by DFA in which a loss of information cannot be avoided.
Similar results are obtained for reversible DPDA in [13]. Recently, reversibility
is also studied for multi-head finite automata. Morita shows in [18] that every
multi-head finite automaton can be transformed into an equivalent reversible
multi-head finite automaton under the condition of two-way motion of the mul-
tiple heads. In case of one-way motion, it is shown in [14] that the reversible
variant is less powerful.

For cellular automata, injectivity of the global transition function is equiva-
lent to the reversibility of the automaton. It is shown in [1] that global reversibil-
ity is decidable for one-dimensional cellular automata, whereas the problem
is undecidable for higher dimensions [7]. For a detailed discussion we refer to
the survey given in [17]. Additional information about some aspects of cellular
automata may be found in [8]. All these results concern unbounded configu-
rations. Moreover, in order to obtain a reversible device the neighborhood as
well as the time complexity may be increased. In [5] it is shown that the neigh-
borhood of a reverse CA is at most n − 1 when the given reversible CA has
n states. In connection with the ability to accept formal languages under real-
time conditions, reversibility has been studied in [11,12] for real-time two-way
cellular automata and real-time two-way iterative arrays with fixed boundary
conditions. Cellular language acceptors are working on finite configurations with
fixed boundary conditions (see, for example, [10]) and, thus, these devices cannot
be reversible in the classical sense. Their number of different configurations is
bounded. So, the system will run into loops that are reversible only if the initial
configuration is reached again. In contrast to the traditional notion of reversibil-
ity, cellular language acceptors are considered that are reversible on the core of
computation, that is, from initial configuration to the configuration given by the
time complexity. This point of view is rather different from the traditional notion
of reversibility since only configurations are considered that are reachable from
initial configurations. At first glance, such a setting should simplify matters. But
quite the contrary, we prove that real-time reversibility is undecidable.

In this paper, we continue the research on real-time reversibility and inves-
tigate one-way cellular automata (OCA). For the definition of reversible OCA,
we first observe that information flow is from right to left in a forward compu-
tation and from left to right in a backward computation. Then, the following
problem may occur: intuitively, every information which has passed the left-
most cell cannot be reconstructed since the leftmost cell always gets the border
symbol from the left in the backward computation. Thus, such computations
will be in general irreversible. We will show that this intuition is in fact right
by proving that any real-time reversible OCA accepts a regular language. To
obtain a more powerful model, we will allow that information may additionally
flow circularly from the leftmost cell into the rightmost cell. It is shown that the
language class accepted by real-time OCA with this extension, called circular
OCA (COCA) is equivalent to the class accepted by classical real-time OCA.
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Thus, the computational power of the general models is not increased, but it
turns out that reversible COCA are more powerful than reversible OCA. First,
we can prove that the computational power of reversible COCA lies properly
in between reversible OCA and reversible two-way CA. Second, by a suitable
simulation of reversible linearly bounded Turing machines by real-time COCA
we obtain that emptiness and finiteness are undecidable for reversible real-time
COCA. This implies the undecidability of inclusion and equivalence as well.
Moreover, the problem of whether a given COCA is real-time reversible is also
undecidable. These results are in line with the results for real-time two-way CA
and real-time iterative arrays. Furthermore, we obtain also that the language
class accepted by real-time COCA is closed under Boolean operations.

2 Preliminaries and Definitions

We denote the set of non-negative integers by N. The reversal of a word w is
denoted by wR. For the length of w we write |w|. We write ⊆ for set inclusion,
and ⊂ for strict set inclusion. In order to avoid technical overloading in writing,
two languages L and L′ are considered to be equal, if they differ at most by the
empty word. Throughout the article two devices are said to be equivalent if and
only if they accept the same language.

A one-way cellular automaton is a linear array of identical deterministic finite
state machines, called cells, that are identified by natural numbers. In case of
fixed boundary condition, each but the rightmost cell is connected to its nearest
neighbor to the right. Cell 0 is in a distinguished permanent boundary state,
and the rightmost cell is connected to cell 0. In case of circular boundary condi-
tion, the boundary state is not necessarily permanent [20] (see Fig. 1). The state
transition depends on the current state of a cell itself and the current state of
its neighbor. The state changes take place simultaneously at discrete time steps.
The input mode for cellular automata is called parallel. One can suppose that
all cells fetch their input symbol during a pre-initial step.

Definition 1. A (circular) one-way cellular automaton ((C)OCA) is a system
〈S, F,A, #, δ〉, where S is the finite, nonempty set of cell states, F ⊆ S is the
set of accepting states, A ⊆ S is the nonempty set of input symbols, # ∈ S \ A
is the distinguished boundary state, and δ : S × S → S is the local transition
function.

A configuration of a (circular) one-way cellular automaton 〈S, F,A, #, δ〉 at time
t ≥ 0 is a mapping ct : {0, 1, 2, . . . , n} → S, for n ≥ 1, that assigns a state
to each cell. The operation starts at time 0 in a so-called initial configuration,
which is defined by the given input w = a1a2 · · · an ∈ A+. We set c0(i) = ai,
for 1 ≤ i ≤ n and c0(0) = #. Successor configurations are computed according
to the global transition function Δ. Let ct, t ≥ 0, be a configuration with n ≥ 1,
then the successor ct+1 of a one-way cellular automaton with fixed boundary
condition (OCA) is

ct+1 = Δ(ct) ⇐⇒
⎧
⎨

⎩

ct+1(0) = #

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {1, 2, . . . , n − 1}
ct+1(n) = δ(ct(n), ct(0))

.
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The successor ct+1 of a one-way cellular automaton with circular boundary con-
dition (COCA) is

ct+1 = Δ(ct) ⇐⇒
{

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {0, 1, . . . , n − 1}
ct+1(n) = δ(ct(n), ct(0)) .

In order to distinguish between the boundary conditions, we write circular one-
way cellular automaton for arrays with circular boundary conditions.

· · ·# a1 a2 a3 an

Fig. 1. A (circular) one-way cellular automaton.

An input w is accepted by a (circular) one-way cellular automaton if at some
time step during its course of computation the leftmost cell receiving an input
symbol, that is, cell 1, enters an accepting state. The language accepted by M is
denoted by L(M). Let t : N → N, t(n) ≥ n, be a mapping. If all w ∈ L(M) are
accepted with at most t(|w|) time steps, then M is said to be of time complexity t.

Observe that time complexities do not have to meet any further conditions.
This general treatment is made possible by the way of acceptance. An input w is
accepted if cell 1 enters an accepting state at some time i ≤ t(|w|). Subsequent
states of the cell are not relevant. However, in the sequel we are particularly inter-
ested in fast devices operating in real-time, that is, obeying the time complexity
t(n) = n. In general, the family of languages accepted by some device X with time
complexity t is denoted by Lt(X), where Lrt(X) is written for real time.

Now we turn to cellular automata that are reversible on the core of compu-
tation, that is, from initial configuration to the configuration given by the time
complexity. Consequently, we call them t-time reversible if the time complexity t
is obeyed. One can imagine that the devices are switched off or reset after the
computation. In this way only configurations are considered that are reachable
from initial configurations. However, since the predecessor of such a configura-
tion is unique, there cannot be an unreachable configuration as predecessor of
a reachable one. Basically, reversibility is meant with respect to the possibility
of stepping the computation back and forth. So, there must exist a reverse local
transition function. Due to the domain S2 and the range S, obviously, the local
transition function cannot be injective in general. However, for reverse compu-
tation steps we may utilize the information which is available for the cells. In
particular, the flow of information is reversed as well, and each cell receives the
state of its left neighbor (the left neighbor of cell 0 is cell n).

For some mapping t : N → N let M = 〈S, F,A, #, δ〉 be a t-time ((C)OCA).
Then M is said to be t reversible (REV-(C)OCA), if there exists a reverse local
transition function δR : S×S → S so that ΔR(Δ(ci)) = ci, for all configurations ci
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of M , 0 ≤ i ≤ t(n) − 1. The global transition functions Δ and ΔR are induced by
δ and δR, respectively. For distinctness, we denote 〈S, F,A, #, δR〉 by MR.

In order to clarify the notation we give an example.

Example 2. Language L = { anbm | m ≥ n ≥ 1 } is accepted by a real-time
REV-COCA. For the construction we consider that each cell is divided into four
tracks. Track 1 is used to store the original input permanently. Tracks 2 and 3
are used to shift input blocks of b’s to the left. Here, every cell initially carrying
an a (a-cell) uses both tracks, first track 3 and then track 2, to shift the input
with speed 1/2. The #-cell and the remaining b-cells shift b’s with speed 1 to the
left using track 3 only. Using the circular structure of a COCA, any information
shifted beyond the leftmost cell is stored step by step in the rightmost part of
the COCA. Finally, track 4 is used to check the correct format and that there
have been more b’s than a’s in the input. The latter check can be performed by
every a-cell testing at the right time whether it is carrying a b on track 3. Only
in this case an accepting state is entered.

Let us now argue why the automaton constructed accepts L. Assume that
the input is anbn. Since a-cells shift with speed 1/2 and b-cells shift with speed 1,
the first b at cell n + 1 enters track 3 of the first a at cell 1 at time 2n − 1. More
generally, the ith b at cell n+ i enters track 3 of the ith a at cell i at time 2n− i.
Thus, it is possible for the signal started on track 4 of cell 2n at time 1 which
reaches cell i at time 2n − i + 1 to check whether every cell i carries a b on its
track 3 at time 2n− i. If the input is anbm with n ≤ m, the behavior is identical
and an accepting state is entered if n ≥ 1. If the input is anbm with n > m, then
there is no b on track 3 of cell 1 at time m + n and the input is not accepted. If
the input is not of the form a+b+, this can be detected by the check on track 4
and the entering of an accepting state is avoided. Nevertheless, the shifting and
checking is continued.

To show that the automaton constructed is reversible we first note that the
shifting of b’s is reversible, since every b is shifted at every time step and the
speed of shifting is uniquely determined by the original input stored on track 1.
By the circular structure of the automaton, also no information is lost. Moreover,
the actions on track 1 are reversible since its contents are never changing. The
check of the correct format on track 4 can be done reversibly by simulating a
deterministic finite automaton. Details are given in the proof of Theorem4. For
the remaining check we send a signal with maximum speed to the left started
in the rightmost cell and enter an accepting state every time when the check on
track 3 is successful. This can clearly be done reversibly.

Finally, we have to make sure that the original input is restored when going
from time 1 to time 0. This can be ensured by a suitable interpretation of the
input symbols. We identify symbol b with a state whose tracks 1 and 3 carry
symbol b while tracks 2 and 4 are empty. In this way, the input symbol b can be
used in later calculations and the need to restore them in the backward initial
step is not occurring. On the other hand, we have to differentiate between an
input symbol b and a state with b on its first track and empty track 3 which
may occur when a blank is shifted into the cell. To this end, the latter states
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# a a a b b b

# a a a b b b◦
b b b

# a a a b b◦ b◦
b
b b

# a a a b◦ b◦ b◦
b

b b
# a a a b◦ b◦ b◦

b b+
b

# a a a b◦ b◦ b◦
b+

b b
# a a a b◦ b◦ b◦

b+ b
b

# a a a a b b

# a a a a b b◦
b b

# a a a a b◦ b◦
b
b

# a a a a b◦ b◦
b+

b
# a a a a b◦ b◦

b+
b

# a a a a b◦ b◦
b

b
# a a a a b◦ b◦

b
b

# a b b b a b

# a b b b◦ a b◦
b b b b

# a b b◦ b◦ a b◦
b b+
b b

# a b◦ b◦ b a b◦
b

b b b
# a b◦ b b◦ a b

b
b b b
# a b b◦ b◦ a b

b b b b
# a b◦ b◦ b◦ a b

b
b b b

Fig. 2. Three example computations. A + denotes an accepting state, and a ◦ marks a
cell into which a blank has been shifted on the third track. A solid arrow denotes the
final check on the fourth track. If an error is encountered, the arrow is changed to a
dotted arrow. Additionally, the time step is kept by storing a permanent information
in the cell in which the error is encountered. This is depicted by the vertical dotted
arrow. This construction is reversible since it occurs at most once.

are marked with ◦. Altogether, we obtain that L can be accepted by a real-time
REV-COCA. Some example calculations to illustrate the construction are given
in Fig. 2. 
�

3 Computational Capacity of Reversible (C)OCA

The classical definition of one-way cellular automata is the non-circular variant.
However, for reversible real-time computations the slight generalization to cir-
cular cellular automata has a big impact. So, first we elaborate on this point.

Theorem 3. Any language accepted by a real-time REV-OCA is regular.

So, the condition to be reversible drastically reduces the computational capacity
of OCA to that of deterministic finite automata, that is, a single cell. On the
other hand, the next result says that every regular language can be accepted by
a reversible real-time OCA. This is in contrast to the fact that there are regular
languages that are not accepted by reversible DFA [2,19].

Theorem 4. The family of regular languages and the family Lrt(REV-OCA)
are equal.
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Proof. By the previous theorem it remains to be shown that every regular lan-
guage L can be accepted by some real-time REV-OCA. Since the regular lan-
guages are closed under reversal, LR is also regular. Let LR be accepted by a
DFA M with state set S, input alphabet A, initial state s0, set of accepting
states F , and transition function δ : S × A → S.

#

# a1 a2 · · · an−i an−i+1 · · · an−1 an

si · · · s2 s1

#

# a1 a2 · · · an−i an−i+1 · · · an−1 an

si+1 si · · · s2 s1

Fig. 3. Subsequent configurations of the REV-OCA M ′ in the proof of Theorem 4.

The idea for the simulation of L by a REV-OCA M ′ is first to divide its state
set into two tracks. Track 1 is used to store the input permanently, while track 2
is used to send a signal from the rightmost cell with maximum speed to the left.
The signal simulates the DFA M in such a way, that the state history is stored
permanently on track 2. More precisely, let the input of M ′ be a1a2 · · · an. At
time step 1, the rightmost cell n initiates the signal by calculating and storing
s1 = δ(s0, an) on track 2. In general, for 0 ≤ i ≤ n − 1, the signal reaches cell
n − i at time i + 1 and calculates and stores state si+1 = δ(si, an−i) on track 2
(see Fig. 3). The accepting states of M ′ are defined as those states having an
accepting state of M on track 2. Clearly, M ′ accepts L. Trivially, the permanent
storing of the input on track 1 is reversible. Moreover, since on track 2 the state
history of M is stored, also the signal is reversible. 
�
The previous results justify a slight generalization of reversible OCA. Moreover,
the next result shows that for real-time computations the slight generalization
to circular devices does not increase the computational capacity.

Theorem 5. The language families Lrt(OCA) and Lrt(COCA) are equal.

Proof. By definition, every OCA is a special case of a COCA. On the other hand,
let M be a real-time COCA and w ∈ L(M) be some accepted input. The states
passed through by cell 1 up to time |w| depend only on the states of cell 1 and 2
at time |w| − 1, the states of cells 1 to 3 at time |w| − 2, and so on until the
states of cells 1 to |w| at time 1, and the states of cells 1 to |w| and 0 at time 0.
Therefore, information sent by cell 1 to its left neighbor and further via cell |w|
towards cell 1 again can reach cell 1 not before time |w| + 1. Thus, it cannot
affect the overall computation result for real-time computations. 
�
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Since real-time OCA and real-time COCA characterize the same family of lan-
guages and the computational capacity of reversible OCA reduces to that of
deterministic finite automata, we now turn to investigate the computational
capacity of reversible real-time COCA. An immediate corollary is that the latter
are strictly more powerful than the former, since Example 2 provides a non-
regular language belonging to Lrt(REV-COCA). So we have:

Lemma 6. The family Lrt(REV-COCA) properly includes Lrt(REV-OCA).

Nextwe turn to compare real-time reversibleREV-COCAwith real-time reversible
two-way cellular automata (REV-CA). Basically, REV-CA are defined as
REV-OCA with the exception that now the flow of information is two-way, that
is, each cell is connected to its both nearest neighbors and the transition function
δ maps S × S × S to S.

Theorem 7. The family Lrt(REV-CA) properly includes Lrt(REV-COCA).

Proof. The inclusion follows for structural reasons. For the properness we use a
unary witness language. It is well known that the language L = { a2n | n ≥ 0 }
is not accepted by any real-time OCA (see, for example, [9,10]).

On the other hand, in [4] it is shown that L is accepted by some CA in real
time. The basic idea is depicted in Fig. 4. Initially a signal with speed 1/3 is sent
to the right. Additionally, a signal with speed 1 that bounces between the slow
signal and the leftmost cell is initiated. Now it is immediately verified that the
fast signal is in the leftmost cell exactly at time steps 2i, i ≥ 1. Finally it suffices
to send a signal from the rightmost cell to the left that accepts if and only if it
arrives at the leftmost cell together with the fast signal. These three signals can
be implemented in a reversible CA. 
�
So, we have the following three level hierarchy:

REG = Lrt(REV-OCA) ⊂ Lrt(REV-COCA) ⊂ Lrt(REV-CA)

4 Closure Properties

This section is devoted to the closures of Lrt(REV-COCA) under Boolean oper-
ations. A family of languages is said to be effectively closed under some operation
if the result of the operation can be constructed from the given language(s).

Theorem 8. The language family Lrt(REV-COCA) is effectively closed under
the Boolean operations complementation, union, and intersection.

Proof. The effective closure under union and intersection can be proved the
same way as for reversible real-time two-way CA [11]. The construction there
is based on the well-known two-track technique and a suitable interpretation of
accepting states. Both techniques do not require two-way communication and
apply to REV-OCA as well.



64 M. Kutrib et al.

t 0
1
2
3
4
...

8

...

16
...

20

Fig. 4. Signals in a two-way cellular automaton accepting { a2n | n ≥ 0 }.

The principal idea for the construction showing the closure under comple-
mentation is to interchange accepting and non-accepting states. To enable this
we have to make sure that the given REV-COCA accepts exactly at time step n
on an input of length n and never before. This can be achieved by adding a
copy S′ of the state set S and by modifying the local transition function such
that a state in S′ is entered when an accepting state in S would have been
entered. The transitions on S′ are defined analogously to those of S. In this
way, a cell remembers that it has entered an accepting state at some time step.
Additionally, in the first time step a signal is started in the rightmost cell which
moves with maximum speed to the left and makes any cell in some state from S′

accepting. In this way acceptance in cell 1 at time n is ensured and accepting
and non-accepting states can be interchanged. To guarantee the reversibility, we
must be able to restore the time step in which cell 1 enters a state from S′ for
the first time. To this end, a signal Z is started in the next time step in cell 0
initially marked with #. This signal is shifted to the right part of the input by
the circular structure of the automaton. Since only one such signal is started, we
obtain the reversibility of the construction. A schematic example computation
can be found in Fig. 5. 
�

5 Decidability Questions

To show undecidability results for real-time REV-COCA we reduce the problems
for deterministic one-tape one-head Turing machines whose space is limited by
the length of the input, so-called linear bounded automata. It is well known that,
for example, emptiness, finiteness, equivalence, regularity, and context-freeness
is undecidable for such devices (see, for example, [6]).
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t = 0 #

t = i +

t = n

Fig. 5. Schematic construction of the signals used in the proof of closure under com-
plementation. Cell 1 enters a state of S′ at time step i for the first time. Signal Z is
started at time step i + 1 in cell 0 and is depicted by a dotted arrow. The solid arrow
is the signal which arrives at real time in cell 1.

Theorem 9. Emptiness is undecidable for real-time REV-COCA.

Proof. Let T be an arbitrary deterministic linear bounded automaton. In [16] it
has been shown that there is an equivalent reversible linear bounded automa-
ton T ′. Since T ′ works on limited space, we may assume that it is always halting.
Moreover, by maintaining a counter as mentioned in [16], the backward compu-
tations of T ′ can be made always halting in the initial configuration. Next, T ′

can be modified to T ′′ without affecting the reversibility so that it starts with
the head on the rightmost tape square and halts (in forward computations) and
accepts only if the head is on the leftmost tape square.

Let Q denote the state set, q0 the initial state, and I the input alphabet
of T ′′. From T ′′ a new reversible linear bounded automaton T̂ is constructed
as follows. In a first phase, T̂ simulates T ′′ from an initial configuration to a
halting configuration. For a second phase a copy Qb of the state set is used.
After halting, T̂ enters the copy of its current state. Now the states from Qb are
used to simulate the backward computation of T ′′ until the initial configuration
(with the copy of the initial state) is reached and the backward computation
halts.

Next we construct a REV-COCA M = 〈S, F,A, #, δ〉 that, to some extent,
simulates T̂ as follows. The input alphabet A is I ∪{$}, where $ is a new symbol.
Basically, M uses three tracks. The input is provided on the third track, while
the first and second one are initially empty.

The purpose of the third track is to simulate the tape of T̂ . The second track
is used to store the current state of T̂ , and the first track is used to mark cells.
Initially, every cell with an input symbol from I whose right neighbor carries
either $ or # marks itself on the first track. In addition, it writes the initial
state of T̂ on its second track. See Fig. 6 for an example of the initial and first
configuration.

Next, the simulation of T̂ starts, where the simulation of one step of T̂ takes
two steps of M . To this end, the content of the third track is circularly shifted
to the left at every other time step. Figure 7 shows how the transitions of T̂ are
simulated.
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#

#

#

$ · · · $ a1 · · · al $ · · · $ b1 · · · bm $ · · · $ c1 · · · cn

#

#

#

$ · · · $ a1 · · · al
q0

•

$ · · · $ b1 · · · bm
q0

•

$ · · · $ c1 · · · cn
q0

•

Fig. 6. Initial (top) and first (bottom) configuration of the REV-COCA M in the proof
of Theorem 9.

When the simulation of T̂ halts, that is, apart from the copy of its ini-
tial state, T̂ is in its initial configuration again, the marked cells delete their
mark and the state on their second track. The effect is that the original input
is restored though cyclically shifted. Therefore, the whole simulation process
repeats. Clearly, M is reversible since T̂ is.

It remains to be explained how an input is accepted. To this end, M is
extended by another, initially empty track that does not affect the behavior on
the other tracks. In the first time step the rightmost cell initiates a signal on that
track that moves to the left and simulates a deterministic finite automaton A. On
its way the state history is stored so that the whole process is again reversible.
Automaton A checks the structure of the input that has to be of the form
$+I+$+. Moreover, A enters an accepting state if and only if the structure is
correct, and exactly at the moment it arrives in a cell the forward simulation
of T̂ halts accepting. The accepting states of M are now defined to be those
states with an accepting state of A on the additional track.

Assume that T̂ and, thus, the given linear bounded automaton T accepts an
input. Then there exist appropriated numbers of $ to the left and to the right of
the input so that M accepts as well. On the other hand, if T̂ does not accept any
input, also M does not accept any input. So, if emptiness would be decidable
for real-time REV-COCA it would be decidable for linear bounded automata, a
contradiction. 
�
The reduction in the proof of the previous theorem shows even more:

Theorem 10. (In)finiteness is undecidable for real-time REV-COCA.

Proof. If the real-time REV-COCA in the proof of Theorem9 accepts, the num-
bers of $ to the left and to the right of the input over I is not unique. The
simulation of T̂ can go through further rounds. By adjusting the number of $
appropriately, we can find further inputs accepted by M without changing the
input over I. Therefore, L(M) is finite if and only if L(T ) is empty. This implies
that neither finiteness nor infiniteness is decidable. 
�
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Fig. 7. Simulation of transitions of the linear bounded automaton. The initial situation
is depicted at the top row. The two subconfigurations of the left column show the sim-
ulation of a left move, that is, (q, aj) is mapped to (q′, left). Here the intermediate state
q′
q is used to indicate the following left move of the state. The two subconfigurations of

the center column show the simulation of a stay/write move, that is, (q, aj) is mapped
to (q′, a′

j), and the two subconfigurations of the right column show the simulation of
a right move, that is, (q, aj) is mapped to (q′, right). The part of the state controlling
the shift at every other step is omitted.

Theorem 11. Equivalence and, thus, inclusion are undecidable for real-time
REV-COCA.

Proof. A COCA that simply does nothing is trivially reversible and accepts the
empty language if the set of accepting states is empty. So, if equivalence would
be decidable, emptiness would be decidable as well.

Two COCA M1 and M2 are equivalent if and only if L(M1) ⊆ L(M2) and
L(M2) ⊆ L(M2). So, the decidability of inclusion would imply the decidability
of equivalence. 
�
Theorem 12. Let M be a real-time COCA. It is undecidable whether or not M
is real-time reversible.

Proof. Let M ′ be a real-time REV-COCA and F its set of accepting states.
We modify M ′ to a real-time COCA M in such a way that we first add a
new state g to the state set. Second, {g} is defined to be the set of accepting
states of M . Finally, the transition function is modified such that every cell
in M enters state g whenever the cell would enter some state from the set F .
Additionally, every cell in state g stays for the rest of the computation in this
state and propagates state g with maximum speed to the left. We claim that
the computation becomes irreversible whenever g is entered at least once. Let
cell i enter state g at time step t on input w. Then, the behavior of state g
destroys for the remaining time any information stored in cells 1, 2, . . . , i. Since
the information flow in M is from right to left only, there are infinitely many
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inputs of arbitrary length with suffix w such that at real time all cells to the left
of cell i are carrying only the information g. Then it is in particular not possible
to restore the input: the only way would be to store the input using the circular
structure. But since the inputs may be arbitrarily long, any information would
reach a g-cell from the right and the information is lost.

Next, we claim that M is reversible if and only if L(M ′) is empty. If M
is reversible, then any cell can never enter state g which implies that L(M) is
empty. Then, by the construction, M ′ never enters an accepting state and L(M ′)
is empty as well. On the other hand, if L(M ′) is empty, then M ′ never enters
an accepting state and M never enters state g. Thus, M behaves the same way
as M ′ and thus is reversible since M ′ is.

Now, we assume that the reversibility of a real-time COCA is decidable.
This implies that we can decide the reversibility of M and so we can decide the
emptiness of M ′. This is a contradiction to Theorem 9. 
�

6 Conclusion

Concerning the language recognition capacity of reversible cellular automata we
obtained the strict hierarchy

REG = Lrt(REV-OCA) ⊂ Lrt(REV-COCA) ⊂ Lrt(REV-CA).

Nevertheless, several questions remain unanswered. Exemplarily, we mention
the relation between reversible real-time COCA and general real-time OCA.
Can every language from Lrt(OCA) reversibly be accepted by some real-time
REV-COCA? In order to approach this problem, one can investigate counters.
Is there a reversible COCA that passes through kn different configurations on
inputs of length n? The languages Lk = { anbk

n | n ≥ 1 } belong to the fam-
ily Lrt(OCA). Moreover, it is known that all linear context-free languages are
accepted by real-time OCA. For example, to accept the mirror language without
center marker {w | w ∈ {a, b}∗, w = wR } a real-time OCA has to treat sev-
eral different positions as centers. Can this computation be done reversibly by a
REV-COCA?

The relations between Lrt(REV-COCA) and the family of languages
accepted by reversible as well as general iterative arrays, or between the fam-
ilies Llt(REV-COCA) and Lrt(REV-CA) are also promising fields for further
investigations.
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4. Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata.
Acta Inform. 21, 393–407 (1984)

5. Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular
automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 410–420. Springer, Heidelberg (2005)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Cambridge (1979)

7. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
System Sci. 48, 149–182 (1994)

8. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33
(2005)

9. Kutrib, M.: Cellular automata - a computational point of view. In: Bel-Enguix,
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