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Abstract. We study two-dimensional rotation-symmetric number-
conserving cellular automata working on the von Neumann neighbor-
hood (RNCA). It is known that such automata with 4 states or less
are trivial, so we investigate the possible rules with 5 states. We give a
full characterization of these automata and show that they cannot be
strongly Turing universal. However, we give example of constructions
that allow to embed some boolean circuit elements in a 5-states RNCA.

1 Introduction

Cellular automata (CA) are widely studied deterministic, discrete and massively
parallel dynamical systems. They were introduced by J. von Neumann and S. Ulam
in the 1940s (published posthumously in 1966) to study self replicating sys-
tems [10].

Von Neumann developped a 29-states CA working on the “4 closest cells”
neighborhood (that would later be known as the “von Neumann neighborhood”)
capable of replicating patterns, and used it to describe the notion of computa-
tional universality. In 1968, E. Codd improved von Neumann’s construction by
devising an 8-states universal rotation-symmetric CA working on the same neigh-
borhood [3] and proving that 2-states von Neumann neighborhood CA could
not be strongly universal. In 1970, E. Banks proved the existence of a 4-states
strongly universal rotation-symmetric CA on von Neumann’s neighborhood and
a 2-states weakly universal one [1]. This search for small universal automata
was finally completed in 1987 when T. Serizawa published a 3-states strongly
universal CA on the von Neumann neighborhood [7].

Since their introduction, cellular automata have been broadly used as a model
for biological, chemical and physical processes. In 1969, K. Zuse was the first to pro-
pose the theory that physics is computation and that the universe could be seen as a
cellular automaton [11]. The notion of number conservation appeared as a result of
attempts to implement physical conservation laws (energy, mass, particles, etc.) in
cellular automata. It was first defined by K. Nagel and M. Schreckenberg to model
road traffic flow [6] and has since become an important subject of research in the
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cellular automata community as a natural example of global property enforced by
local conditions.

In the early 2000s, H. Fuks and N. Boccara [2], B. Durand et al. [4] and
A. Moreira [5] independently proved that number-conservation was a decidable
property by giving explicit characterizations of local transition rules of number-
conserving cellular automata (NCCA).

Imai et al. proved the existence of a weakly universal 29-states von Neumann
neighborhood rotation-symmetric NCCA and this result was later improved by
N. Tanimoto and K. Imai who managed to reduce the number of required states
to 14 by using an exact characterization of von Neumann neighborhood NCCA
[8]. From the same characterization, N. Tanimoto et al. proved that von Neumann
neighborhood rotation-symmetric NCCA with 4 states or less are all trivial [9].

In this article, we investigate the computational power of 5-states von
Neumann neighborhood rotation-symmetric NCCA. We obtain a precise descrip-
tion of the possible transition rules of such automata and prove that none of
them can be strongly universal as their evolution from a finite initial configu-
ration must be ultimately periodic. However, we show that they are capable of
some computation by exhibiting patterns that simulate the behavior of some
boolean circuit elements.

2 Definitions

In this article, we will only consider deterministic 2-dimensional cellular automata
working on the von Neumann neighborhood.

Definition 1 (Cellular Automaton). A 2-dimensional von Neumann neigh-
borhood cellular automaton (CA) is a triple A = (Q, f, q0) where

– Q is a finite set. The elements of Q are called states;
– f : Q5 → Q is a function called the local transition function of A;
– q0 ∈ Q is called the quiescent state and f(q0, q0, q0, q0, q0) = q0.

A 2-dimensional configuration over Q is a mapping C : Z2 → Q. The elements
of Z2 are called cells and for a cell c ∈ Z

2, we say that C(c) is the state of c in
the configuration C.

The set of all configurations over Q is denoted by

Conf(Q) = {c, c : Z2 → Q}
From the local transition function f , we define a global transition function

F : Conf(Q) → Conf(Q) obtained by replacing the state of each cell by the
result of f applied to the cell’s state and the states of its 4 closest neighbors1:
∀C ∈ Conf(Q),

F (C) =
{

Z
2 → Q

(x, y) �→ f(C(x, y),C(x, y + 1),C(x + 1, y),C(x, y − 1),C(x − 1, y))

1 This is the von Neumann neighborhood.
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As is commonly done in dynamical systems theory, we will use the same notation
for the cellular automaton and its global transition function. The image of a
configuration C by the global transition function of an automaton A will therefore
be denoted A(C).

Definition 2 (Finite Configurations). Given a cellular automaton A = (Q, f,
q0), we say that a configuration C ∈ Conf(Q) is finite if only a finite number of
cells are in a state other than q0 in C.

The rectangular bound of a finite configuration C is the smallest rectangle
containing all the non-quiescent cells of C. We call width and height of the
configuration C the width and height of its rectangular bound.

From the locality of the transition rule of the automaton and the fact that
f(q0, q0, q0, q0, q0) = q0 it is clear that the image by a CA of a finite configuration
C of dimensions (w×h) is also finite and of dimensions (w′ ×h′) with w′ ≤ w+2
and h′ ≤ h + 2.

Definition 3 (Rotation-Symmetry). A von Neumann neighborhood cellular
automaton A = (Q, f, q0) is said to be rotation-symmetric if its local transition
function f is invariant by rotation of a quarter cycle:

∀c, u, r, d, l ∈ Q, f(c, u, r, d, l) = f(c, r, d, l, u)

If the set of states of the automaton is a subset of Z, it is possible to quantify
the variations of state values between a configuration and its image. The notion
of number-conservation is inspired from physical conservation laws and states
that the total sum of all states on a configuration is conserved by the global
transition function.

Definition 4 (Number Conservation). A number-conserving cellular auto-
maton (NCCA) is a cellular automaton A = (Q, f, q0) such that Q ⊂ Z and for
any finite configuration C ∈ Conf(Q),

∑
c∈Z2

A(C)(c) − C(c) = 0

There are other commonly used definitions of number-conservation, some of
which apply to infinite configurations as well, but most of these definitions are
known to be equivalent [4].

In this article, we will be studying von Neumann neighborhood rotation-
symmetric number-conserving cellular automata. These will be denoted RNCA
from now on.

Definition 5 (Trivial Automaton). A cellular automaton A = (Q, f, q0) is
said to be trivial if for every configuration C ∈ Conf(Q), A(C) = C.

Definition 6 (Strong Turing Universality). A cellular automaton A is said
to be strongly Turing-universal if it can simulate any deterministic Turing machine
from a finite initial configuration.
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3 Characterization of 5-States RNCA

In this section, we consider 5-states RNCA. We use the characterization by
Tanimoto et al. [8] to show that all RNCA with less than 5 states are trivial and
describe precisely the possible local transition functions of 5-states RNCA.

Theorem 1 (Tanimoto et al. [8]). A rotation-symmetric von Neumann neigh-
borhood CA A = (Q, f, q0) with Q ⊂ Z is number-conserving if and only if
∃g, h : Q2 → Z, ∀c, u, r, d, l ∈ Q,

f(c, u, r, d, l) = c + g(c, u) + g(c, r) + g(c, d) + g(c, l)
+ h(u, r) + h(r, d) + h(d, l) + h(l, u)

g(c, u) = − g(u, c), h(u, r) = −h(r, u)

The function g represents direct transfers of value to the central cell from its
neighbors (along the horizontal and vertical directions). The function h corre-
sponds to indirect (diagonal) transfer between the neighbors of the central cell.
The functions g and h are called flow functions of the automaton A.

Remark: If A = (Q, f, q0) is a RNCA, the function g is uniquely defined by f
since for all states x, y ∈ Q,

f(x, y, y, y, y) = x + 4g(x, y) + 4h(y, y) = x + 4g(x, y)

As for the function h, for all states x, y, z, t ∈ Q the value of h(x, y) + h(y, z) +
h(z, t) + h(t, x) is uniquely defined but there are multiple functions matching
this condition as discussed in Subsect. 3.2.

3.1 Direct Flow

Lemma 1. For a RNCA A = (Q, f, q0) with flow functions g and h, if g ≡ 0
then A is trivial.

Proof. We show that if the automaton is not trivial, it must have infinitely
many states. According to Theorem 1, if g ≡ 0, the local transition function of
the automaton is

f(c, u, r, d, l) = c + h(u, r) + h(r, d) + h(d, l) + h(l, u)

If A is not trivial, there exist states c, u, r, d, l ∈ Q and an integer δ 
= 0 such
that

f(c, u, r, d, l) = c + δ

so h(u, r) + h(r, d) + h(d, l) + h(l, u) = δ and for any state q ∈ Q,

f(q, u, r, d, l) = q + h(u, r) + h(r, d) + h(d, l) + h(l, u) = q + δ

This means that for any q ∈ Q, (q + δ) is also a state of A which is not possible
if Q is finite. ��
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Lemma 2. Let A = (Q, f, q0) be a RNCA with flow functions g and h. For any
two states a, b ∈ Q if we denote g(a, b) = α, then

{a, a + α, a + 2α, a + 3α, a + 4α, b, b − α, b − 2α, b − 3α, b − 4α} ⊆ Q

Proof. We know that

g(a, b) = −g(b, a) = α, g(a, a) = g(b, b) = 0,

h(a, b) = −h(b, a), h(a, a) = h(b, b) = 0

By Theorem 1, we have

f(a, a, a, a, b) = a + 3g(a, a) + g(a, b) + h(a, b) + h(b, a) + 2h(a, a)
= a + g(a, b) = a + α

Similarly, we get

f(a, a, a, b, b) = a + 2α, f(a, a, b, b, b) = a + 3α, f(a, b, b, b, b) = a + 4α,

f(b, b, b, b, a) = b − α, f(b, b, b, a, a) = b − 2α, f(b, b, a, a, a) = b − 3α,

f(b, a, a, a, a) = b − 4α ��

As a consequence of Lemmas 1 and 2, if a RNCA A = (Q, f, q0) with flow
functions g and h is not trivial, there exist two states a, b ∈ Q such that g(a, b) =
α > 0 and the set of states of the automaton contains 5 elements in arithmetic
progression from a of difference α. Since the 5 first elements of the arithmetic
progression from b of difference −α are also in Q, the only way for the CA to
have only 5 states is that

b = a + 4α

and

⎧⎨
⎩

g(a, b) = α
g(b, a) = −α
g(x, y) = 0 otherwise

3.2 Indirect Flow

Let us now consider the possibilities for h. The function h is slightly more com-
plex than g because it is only properly characterized on cycles: the exact value
of h(a, b) for two states has no meaning in terms of CA dynamics, the real
constraints are on the sums h(a, b)+h(b, c)+h(c, d)+h(d, a) for states a, b, c, d.

Definition 7. Given a finite set Q ⊆ Z and a function h : Q2 → Z such that
for all a, b ∈ Q, h(a, b) = −h(b, a), we define the cyclic extension h̃ of h as

h̃ :
{

Q∗ → Z

(q1, q2, . . . , qn) �→ h(q1, q2) + h(q2, q3) + . . . + h(qn−1, qn) + h(qn, q1)
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Note that although h̃ is entirely defined by h, different functions can have
the same cyclic extension. For instance if h′(x, y) = y − x + h(x, y) then h̃ = h̃′.
However, in Theorem 1 only the cyclic extension of h is actually used to define
the behavior of the automaton.

The function h̃ is entirely defined by its values on triples:
∀q1, q2, . . . , qn ∈ Q,

h̃(q1, q2, . . . , qn) = h(q1, q2) + . . . + h(qn, q1)
= h(q1, q2) + h(q2, q3) + h(q3, q1)

+ h(q1, q3) + h(q3, q4) + h(q4, q1)
+ . . .

+ h(q1, qn−1) + h(qn−1, qn) + h(qn, 1)

= h̃(q1, q2, q3) + h̃(q1, q3, q4) + . . . + h̃(q1, qn−1, qn)

Moreover, it is easy to check from the definition that h̃ is

– null on pairs: h̃(a, b) = 0;
– invariant by repetition of a state: h̃(a, a, q1, q2, . . . , qn) = h̃(a, q1, q2, . . . , qn);
– invariant by rotation: h̃(q1, q2, . . . , qn) = h̃(q2, q3, . . . , qn, q1);
– anti-symmetric: h̃(q1, q2, . . . , qn) = −h̃(qn, qn−1, . . . , q1).

Let us now consider a 5-states non trivial RNCA A = (Q, f, q0) with flow func-
tions g and h. We have already shown that the states of the automaton are
Q = {a + iα | 0 ≤ i ≤ 4}. Without loss of generality we can renormalize the
states to Q = {0, 1, 2, 3, 4} (substracting a constant to all states and dividing by
a common factor does not affect the number conservation of the CA). We also
know that g(0, 4) = 1, g(4, 0) = −1 and for all other x, y ∈ Q, g(x, y) = 0.

First, let us consider x, y, z ∈ Q \ {0}. From Theorem 1, we have

f(4, x, x, y, z) = 4 + 2g(4, x) + g(4, y) + g(4, z) + h̃(x, x, y, z)

= 4 + h̃(x, y, z)

This means that (4 + h̃(x, y, z)) ∈ Q and since 4 is the largest element of Q,
we have h̃(x, y, z) ≤ 0. Because x, y and z could be any state other than 0, the
same reasoning gives h̃(z, y, x) = −h̃(x, y, z) ≤ 0 which implies h̃(x, y, z) = 0.

Similarly, for states x, y, z ∈ Q \ {4}, by considering f(0, x, x, y, z) we get
h̃(x, y, z) = 0.

So the only possible non-zero triples of h̃ are triples containing both 0 and
4. Because h̃(0, 0, 4) = h̃(0, 4) = 0, and h̃(4, 4, 0) = h̃(4, 0) = 0, the only possible
non-zero triples of h̃ are those including 0, 4 and a third different state.

Moreover, for x, y ∈ Q \ {0, 4}, we have

h̃(0, 4, x, y) = h(0, 4) + h(4, x) + h(x, y) + h(y, 0)
= h(0, 4) + h(4, x) + h(x, 0) + h(0, x) + h(x, y) + h(y, 0)

= h̃(0, 4, x) + h̃(0, x, y)

= h̃(0, 4, x)
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but also

h̃(0, 4, x, y) = h̃(4, x, y, 0)
= h(4, x) + h(x, y) + h(y, 0) + h(0, 4)
= h(4, x) + h(x, y) + h(y, 4) + h(4, y) + h(y, 0) + h(0, 4)

= h̃(4, x, y) + h̃(4, y, 0)

= h̃(4, y, 0) = h̃(0, 4, y)

So for x, y ∈ Q \ {0, 4}, h̃(0, 4, x) = h̃(0, 4, y). All that remains to do now is
consider what are the possible values for h̃(0, 4, 1). By considering

f(0, 0, 0, 4, 1) = 0 + g(0, 4) + h̃(0, 0, 4, 1)

= 1 + h̃(0, 4, 1)

we get that (1 + h̃(0, 4, 1)) ∈ Q so h̃(0, 4, 1) ≥ −1. Similarly, by considering
f(4, 0, 4, 4, 1) we get h̃(0, 4, 1) ≤ 1.

The value of h̃(0, 4, 1) fully defines h̃, as we know that the function is zero-
valued on all triples not containing 0 and 4 and all values on triples containing
0 and 4 can be obtained from h̃(0, 4, 1) by cycle, symmetry and replacing 1 with
any other state in Q \ {0, 4}. A possible function h that would correspond to
such an h̃ would be defined by

h(0, 4) = h̃(0, 4, 1)

h(4, 0) = −h̃(0, 4, 1)
h(x, y) = 0 otherwise

We have therefore proved the following result

Lemma 3. If A is a 5-states non-trivial RNCA, there exists a constant β ∈
{−1, 0, 1} such that A is equivalent (up to state renaming) to an RNCA with
states Q = {0, 1, 2, 3, 4} and flow functions g and h such that:

g(0, 4) = 1
g(4, 0) = −1
g(x, y) = 0 otherwise

h(0, 4) = β

h(4, 0) = −β

h(x, y) = 0 otherwise

Remark: Choosing β = 0 corresponds to h ≡ 0, which leads to a very simple CA
for which states 1, 2 and 3 are permanent (a cell in one of these states can never
change) and the state of a cell in state 0 (resp. 4) increases (resp. decreases) by
the number of its neighbors in state 4 (resp. 0).

Choosing β = 1 or β = −1 leads to two different RNCA that are mirror
images of each other.



38 K. Imai et al.

4 The Power of 5-States RNCA

In this section we use the characterization of 5-states RNCA from Lemma 3 to
investigate the computational power of such automata. We show that although
they cannot be strongly Turing universal, they can simulate some logical circuit
elements, indicating that they can perform some sorts of computations.

4.1 Strong Universality

Theorem 2. The evolution of a 5-states RNCA A from a finite configuration
C is ultimately periodic:

∃i, j ∈ N, i < j, Ai(C) = Aj(C)

Proof. Consider a non-trivial 5-states RNCA A. From Lemma 3 we can assume
that A = (Q, f, q0) with Q = {0, 1, 2, 3, 4} and consider that its flow functions
g and h satisfy the descriptions of the lemma. We show that starting from a
finite configuration C0, non-quiescent states cannot appear arbitrarily far in any
direction.

There are two cases to consider, depending on the choice of the quiescent
state q0. First if q0 ∈ Q \ {0, 4}, we show that non-quiescent states cannot
appear outside of the bounding rectangle of the starting configuration C0 (see
Fig. 1).

By induction, if at time t all cells outside of the rectangular bounds of C0 are
quiescent, then each of these cells has at least 3 neighbors in state q0. Since q0 
= 0
and q0 
= 4, for all x ∈ Q, g(q0, x) = h̃(q0, q0, q0, x) = 0, so f(q0, q0, q0, q0, x) = q0
and all cells outside of the rectangular bound of C0 remain in state q0 at time
(t + 1).

The second case is when q0 ∈ {0, 4}. Assume that q0 = 0 and let N0 be
the total sum of all the states in C0 (the argument for q0 = 4 is similar but we

Fig. 1. If q0 ∈ Q \ {0, 4}, cells outside of the rectangular bounds of the initial con-
figuration (represented in blue) remain in state q0 at all times (Color figure online).
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Fig. 2. Case study. If a cell is in the situation (a) where x is a non-quiescent state, in
order to change to state 0 one of the 3 cells on the right must change from state 0 to
a non-quiescent state.

consider the sum of (q0 −q) for all states q in C0). Since A is number conserving,
the total sum of all states in subsequent configurations of the automaton remains
equal to N0. Moreover, because all non-quiescent states are positive, the total
number of non-quiescent states on any configuration generated from C0 cannot
exceed N0.

If quiescent states appear arbitrarily far in one direction in the evolution of
A from C0, some cells must go from a non-quiescent state back to the quiescent
state 0 in order to keep the total number of non-quiescent states bounded. We
will now assume that the direction in which the non-quiescent states appear
arbitrarily far is left (it is enough to consider one direction since the automaton
is rotation-symmetric).

Assume that h(0, 4) ≥ 0 and consider the situation illustrated by part (a)
of Fig. 2: a cell in a non-quiescent state x with 4 cells in state 0 around it, 3
on its right side and one under (for the case h(0, 4) ≤ 0 we would consider the
symmetric situation with a quiescent cell on top of the cell in state x instead
of under it). Let us see how such a cell can change to state 0. There are two
possibilities, represented by parts (b) and (c) in Fig. 2. Either x = 4 and we can
use the function g to lower the state of the cell to 0 or the contribution of g on
the cell is 0 and only h̃ can lower the state of the cell, in which case only state
1 can be lowered to 0.

(b) If x = 4, then the cell on the right of the cell in state 4 will necessarily
change to a positive state. For this cell, the contribution from g will be positive
(at least 1 from the central cell) and the contribution from h will be 0 since
h̃(0, 4, 0, y) = 0 for all states y.

(c) If x = 1, then in order to change the state to 0, the contribution from
h̃ must be -1 since g(1, y) = 0 for all states y. We have previously chosen to
consider the case h(0, 4) ≥ 0. If h(0, 4) = 0, then the contribution from h is
0 and the state of the cell cannot change to 0. However if h(0, 4) = 1, then
the contribution from h̃ can be −1 only if the top neighbor is in state 4 and
the left neighbor is in a state y ∈ Q \ {0, 4} (as illustrated by Fig. 2). In that
case, h̃(4, 0, 0, y) = −1 and the cell changes to state 0. However, the cell on
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the top-right now has a neighbor in state 4, which means that for this cell the
contribution from g is at least 1. Moreover, the contribution from h̃ is at least
0, since h(0, 4) = 1 and so h̃(0, 4, x, y) ≥ 0 for all states x, y. This means that
the cell on the top-right of the considered cell changes to a positive state.

We have shown that if a cell in the situation illustrated by part (a) of Fig. 2
changes its state to 0, then at least one of the cells from the column right of the
considered cell changes from state 0 to a non-quiescent state. This means that as
new non-quiescent states appear towards the left, previous non-quiescent states
cannot be properly removed: in order to remove all non-quiescent states from a
given column, it is necessary to create new ones on the column at its right, so
as the non-quiescent states move towards the left, new ones appear towards the
right. Eventually, the total number of non-quiescent states will be greater than
N0 which contradicts number-conservation.

So we know that the evolution (Ai(C0))i∈N of a 5-states RNCA A from a finite
configuration C0 can only have non-quiescent states inside of a bounded area.
Because there are only finitely many such bounded configurations, eventually
the automaton must re-enter a previous configuration. ��
Corollary 1. There are no 5-states strongly Turing universal RNCA.

Proof. The evolution of a 5-states RNCA from a finite starting configuration
is ultimately periodic (Theorem 2) and therefore decidable. If such CA could
simulate a Turing machine then the halting problem and all other behavioral
problems on Turing machines would be decidable. ��

4.2 Simulation of Logical Circuits

Although the evolution of a 5-states RNCA from a finite configuration is ulti-
mately periodic, some non-trivial behaviors can still be observed. In particular, it
is possible to simulate some key elements of boolean circuits. In this section, we
consider the 5-states RNCA obtained by choosing β = 1 in the characterization
from Lemma 3.

Figures 3, 4 and 5 illustrate how to create a simple wire along which a signal
can travel. The wire is made of two layers of state 2 (red), and the signal is
represented by two cells in state 4 (yellow) that are “pushed” forward by a cell
in state 1 (blue). As the signal traverses the wire, the top layer of red states is
changed into blue and green states. These wires can therefore be traversed only
once, which is enough for simple boolean circuit simulation but not for being
used as a control circuit for a universal machine.

The wires can be split in two to duplicate a signal (Fig. 4). By changing the
second row of red cell into green states, the signal can be accelerated to move by
one cell at each time step (Fig. 5) which can be a convenient way to synchronize
signals.

As for logical gates, Figs. 6 and 7 illustrate how to implement an AND and a A
AND B gate. It is known that the A AND B gate alone is sufficient to simulate a NOT
and an OR gate so these elements would be sufficient for boolean operations [1].
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Fig. 3. A signal moving through a simple wire (Color figure online).

Fig. 4. A branching wire (Color figure online).

Note that the boolean value for 0 is simply represented by the absence of a
signal. Therefore, careful synchronisation is required when implementing multi-
ple input logical gates as the possible input signals must arrive at the same time
(but this can be done either by using the variable speed wires from Fig. 5 or by
artificially increasing the length of a wire with a detour).
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Fig. 5. By using state 3 (green) instead of state 2 (red) on some portions of the wire,
the signal moves at speed 1 instead of speed 1

2
(Color figure online).

Fig. 6. Logical AND gate (Color figure online).

Fig. 7. AANDB gate (Color figure online).

However, until now we have been unable to devise a wire crossing pattern
which is required for a full simulation of boolean circuits. Because of the destruc-
tive nature of signal propagation along a wire, wire crossing might prove impos-
sible to implement.
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