
Computational Complexity of the Avalanche
Problem on One Dimensional Kadanoff

Sandpiles

Enrico Formenti1, Kévin Perrot1,2,3(B), and Éric Rémila4

1 Laboratoire I3S (UMR 6070 - CNRS), Université Nice Sophia Antipolis,
2000 Route des Lucioles, BP 121, F-06903 Sophia Antipolis Cedex, France

enrico.formenti@unice.fr
2 Université de Lyon - LIP (UMR 5668 - CNRS - ENS de Lyon - Université Lyon 1),

46 allé d’Italie, 69364 Lyon Cedex 7, France
3 Universidad de Chile - DII - DIM - CMM (UMR 2807 - CNRS),

2120 Blanco Encalada, Santiago, Chile
kperrot@dim.uchile.cl

4 Université de Lyon - GATE LSE (UMR 5824 - CNRS - Université Lyon 2) ,
Site stéphanois, 6 Rue Basse des Rives, 42 023 Saint-etienne Cedex 2, France

eric.remila@univ-st-etienne.fr

Abstract. In this paper we prove that the general avalanche problem
AP is in NC for the Kadanoff sandpile model in one dimension, answer-
ing an open problem of [2]. Thus adding one more item to the (slowly)
growing list of dimension sensitive problems since in higher dimensions
the problem is P-complete (for monotone sandpiles).

Keywords: Sandpile models · Discrete dynamical systems · Computa-
tional complexity · Dimension sensitive problems

1 Introduction

This paper is about cubic sand grains moving around on nicely packed columns
in one dimension (the physical sandpile is two dimensional, but the support of
sand columns is one dimensional). The Kadanoff Sandpile Model is a discrete
dynamical system describing the evolution of sand grains. Grains move according
to the repeated application of a simple local rule until reaching a fixed point.

We focus on the avalanche problem (AP), namely the problem of deciding if
adding a single grain of sand in the first column of a sandpile given as an input
causes a series of topples which hit some position (also given as a parameter).

This is an interesting problem from several points of view. First of all, it is
dimension sensitive. Indeed, it is proved to be P-complete for sandpiles in dimen-
sion 2 or higher [2] and we proved it in NC1 in this paper. Roughly speaking
the problem is highly parallelisable in dimension 1 but not in higher dimensions
(unless P=NC, of course). Second, an efficient solution to this problem could
be useful for practical applications. Indeed, one can use sandpile models for
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 21–30, 2015.
DOI: 10.1007/978-3-319-18812-6 2

22 E. Formenti et al.

implementing load schedulers in parallel computers [9]. In this context, answer-
ing to AP helps in forecasting the number of supplementary processors that are
needed to satisfy one more load which is submitted to the system.

The paper is structured as follows. Next section introduces the basic notions
and results about Kadanoff sandpiles. Section 3 gives the formal statement of
AP and recalls known results about it. In Sect. 4, main lemma and notions
that are necessary for the proof of the main result are introduced and proved.
Section 5 contains the main result. Section 6 draws our conclusions and give some
perspectives.

2 Kadanoff Sandpile Model

p <

Fig. 1. Transition rule
with parameter p = 3.

We present the definition of the model in dimension
one. A configuration is a decreasing sequence of inte-
gers h = ωh1, h2, . . . , h

ω
n , where hi is the number of

stacked grains (height) on column i, and such that
all the heights on the left of h1 equal h1, and on the
right of hn equal hn. Note that all the configurations
we consider are finite. According to a fixed parameter
p, the transition rule is the following: if the difference
of heights between two columns i and i + 1 is strictly
greater than p, then p grains can fall from column i and one of them land on
each of the p adjacent columns on the right (see Fig. 1).

A more uniform and convenient representation of a configuration uses slopes.
The slope at i is the height difference si = hi − hi+1. The transition rule thus
becomes: if si > p, then

si−1 �→ si−1 + p
si �→ si − (p + 1)
si+p �→ si+p + 1.

|h| = |s| = n − 1 is the length of the configuration, and the slope of an index i
such that i < 1 or n − 1 < i equals 0. The transition rule may be applied using
different update policies (sequential, parallel, etc.), however we know from [8]
that for any initial configuration, the orbit graph is a lattice, hence the stable
configuration reached is unique and independent of the update policy. When,
from the configuration s to s′, the rule is applied on column i, we say that i is
fired and we denote s

i→ s′ or simply s → s′.

Notation 1. We denote ωsi (resp. sω
i) to say that all the slopes on the left

(resp. right) of column i are equal to si.

Notation 2. For any a, b ∈ Z with a ≤ b, let [[a, b]] = [a, b] ∩ N and [[a, b) =
[a, b) ∩ N. Finally, s[[a,b]] denotes the subsequence (sa, sa+1, . . . , sb).

A configuration s represented as a sequence of slopes is monotone if si ≥ 0 for all
i ∈ [[1, |s|). A configuration is stable if all its columns are stable, i.e., si ≤ p for

Computational Complexity of the Avalanche Problem 23

all i ∈ [[1, |s|). A stable monotone configuration is therefore a finite configuration
s of the form

ω0, s1, s2, . . . , sn−1, 0ω

Let gSM(n) be the set of all stable monotone configurations of length n
(note that in [2], the authors added the restrictive condition si > 0 for all i,
whereas we let si ≥ 0 for all i and add the letter g standing for general). Finally,
Let gSM =

⋃
n∈N

gSM(n).

3 Avalanche Problem AP

An avalanche is informally the process triggered by a single grain addition on
column 1 (a formal definition is given at the beginning of Sect. 4). The size of an
avalanche may be very small, or quite long, and is sensible to the tiniest change
on the configuration. We are interested in the computational complexity of
avalanches.

Avalanche Problem AP
A parameter p ∈ N, with p ≥ 1, is fixed.
Instance: a configuration s ∈ gSM

a column k ∈ (|s|, |s| + p]]
Question: does adding a grain on column 1 trigger a grain addition

on column k?

For a fixed parameter p, the size of the input is in Θ(|s|). Thanks to the
convergence, the answer to this question is well defined and independent of the
chosen update strategy.

Let us give some examples. For p = 2, consider the instance

ω0, 2, 0, 2, 1, 1, 2, 1, 0, 2, 0ω ,

where the slope of column 1 is underlined. The question is “does adding a grain
on column 1 increases the slope of column k equal to 10 or 11?” And the answer
is negative in both cases. Here is a sequential evolution:

ω0,3, 0, 2, 1, 1, 2, 1, 0, 2, 0ω → ω0, 2, 0, 0, 3, 1, 1, 2, 1, 0, 2, 0ω

→ ω0, 2, 0, 2, 0, 1, 2, 2, 1, 0, 2, 0ω

For p = 3, consider the instance 0ω, 3, 0, 2, 3, 1, 3, 1, 0ω . We have to decide if
column k equal to 8, 9 or 10 ends up with a strictly positive slope after a grain is
added on column 1. The answer is positive, positive and negative, respectively.
Here is a sequential evolution:

ω0,4, 0, 2, 3, 1, 3, 1, 0ω → ω0, 3, 0, 0, 2, 4, 1, 3, 1,ω 0
→ ω0, 3, 0, 0, 5, 0, 1, 3, 2, 0ω → ω0, 3, 0, 3, 1, 0, 1, 4, 2, 0ω

→ ω0, 3, 0, 3, 1, 0, 4, 0, 2, 0, 1, 0ω → ω0, 3, 0, 3, 1, 3, 0, 0, 2, 1, 1, 0ω

Known results on the dimension sensitive complexity of AP are the followings.

24 E. Formenti et al.

– In dimension one: the restriction of AP to the set of configurations s satisfying
si > 0 for all i is known to be in NC1 [2]. The key simplification induced by
this restriction is the following: an avalanche goes forward if and only if it
encounters a slope of value p at distance at most p from the previous one, and
thus stops when there are p consecutive slopes strictly smaller than p. This
condition is not sufficient anymore when we allow slopes of value 0, as shown
for example by the instance ω0, 2, 0, 2, 2, 1, 2, 2, 0ω and p = 2:

ω0,3, 0, 2, 2, 1, 2, 2, 0ω → ω0, 2, 0, 0, 3, 2, 1, 2, 2, 0ω

→ ω0, 2, 0, 2, 0, 2, 2, 2, 2, 0ω

– In dimension two: there are two possible definitions of the model. One has
two directions of grain fall, and a configuration is a tabular of sand content
that is decreasing with respect to those two directions. In this model AP
is P-complete for all parameter p > 1 [2]. The second definition follows the
original model of Bak, Tang and Wiesenfeld [1], and it has been proved that
information cannot cross (under reasonable conditions) when p = 1, a strong
obstacle for a reduction to a P-complete circuit value problem [6].

– In dimension three or greater: sandpiles are capable of universal computa-
tion [7].

4 Avalanches, Peaks and Cols

This subsection partly intersects with the study presented in [11], but follows
a new and hopefully clearer formulation. For a configuration s ∈ gSM, an
avalanche is the process following a single grain addition on column 1, until
stabilization. We will consider avalanches according to the sequential update
policy, and prove that it is formed by the repetition (not necessarily alternated)
of the following two basic mechanisms:

– fire a column greater than all the previously fired columns;
– fire the immediate left neighbor of the last fired column.

An avalanche strategy for s is a sequence a = (a1, . . . , aT) of columns such that
s+

a1→ . . .
aT→ s′, where s+ denotes the configuration s ∈ gSM on which a grain

has been added on column 1, and s′ is stable. Such a strategy is not unique,
therefore we distinguish a particular one which we think is the simplest.

Definition 1. The avalanche for s is the minimal avalanche strategy for s
according to the lexicographic order, which means that at each step the leftmost
column is fired.

For example, let us consider p = 2 and the configuration s = ω0, 2, 2, 2, 2, 2, 0ω,
then (0, 2, 4, 1, 3) is an avalanche strategy, but the avalanche for s is (0, 2, 1, 3, 4)
and leads to the same final configuration thanks to the lattice structure of the
model [8].

Let us give two terms corresponding to the two basic mechanisms underlying
the avalanche process, and prove the above mentioned description.

Computational Complexity of the Avalanche Problem 25

– at is a peak ⇐⇒ at > max a[[1,t[[;
– at is a col ⇐⇒ at = at−1 − 1.

First, a simple Lemma.

Lemma 1. An avalanche fires at most once every column.

Proof. It is straightforward to notice that in order for a column to receive enough
units of slope to be fired twice, another column must have been fired twice before,
which leads to the impossibility of this situation when adding a single grain on
column 1 of a stable configuration. �

Now, the intended description.

Lemma 2. The avalanche of a configuration s ∈ gSM is a concatenation of
peaks and cols.

Proof. Let a = (a1, . . . , aT) be the avalanche for s. We prove the lemma by
induction on the avalanche size. The first fired column is necessarily a1 = 1,
and we take as a convention that max ∅ = 0 thus a1 is a peak. Suppose that
the result is true until time t, we’ll prove that at+1 is either a peak or a col. It
follows from Lemma 1 that at+1 �= at, and let us denote at−j with j ≥ 0 the
largest (rightmost) peak before time t+1. The induction hypothesis implies that
columns at to at−j − 1 are cols.

at . . . at−j+2
at−j+1= at−j+1 − 1

at−j

– If at+1 > at, by induction on i from 0 to j − 1, we have at+1 > at + i because
at + i has already been fired by hypothesis and a column cannot be fired
twice (Lemma 1). As a consequence at+1 ≥ at−j and for the same reason
at+1 > at−j , which was the greatest peak so far, therefore at+1 is also a peak.

– If at+1 < at, then, by contradiction, if at+1 �= at − 1 then the firing at at

does not influence the slope at at+1, and firing this latter after at contradicts
the minimality of the avalanche according the lexicographic order, because
column at+1 was already unstable at time t. Therefore, at+1 is a col. �

Interestingly, avalanches are local processes because they cannot fire a column
too far (neither on the left nor on the right) from the last fired column, as it is
proved in the following lemma.

Lemma 3. Let a be the avalanche of a configuration s ∈ gSM, q > 0 is a peak
of a implies that sq = p and there exists another peak q′ satisfying q−q′ ≤ p.

26 E. Formenti et al.

Proof. Let t be such that q = at. By definition of peak, at time t column q could
only have received units of slope from columns on its left, that is, by Lemma 1 it
received at most 1 unit of slope from column q − p. Since it was stable on configu-
ration s, it has necessarily received this unique unit from column q−p and became
unstable thanks to it, which straightforwardly proves both claims. �

Note that the converse implication is false. Figure 2 illustrates the results of this
section.

Fig. 2. For p = 4, the arrow pictures the proceedings of an avalanche, which is a
concatenation of peaks and cols (Lemma 2) where two consecutive peaks are at distance
at most p (Lemma 3).

5 AP is in NC1 in dimension one

We consider that the input configuration is represented as a sequence of slopes,
since it is possible to efficiently transform a representation into another in parallel
(for a configuration of size n, it requires constant time on n parallel processors).
We consider the parameter p as a fixed constant, as it is part of the model
definition

Remark 1. In this paper, we consider the parameter p as a fixed constant which
is part of the model definition. Indeed, if p would have been part of the input,
which would therefore have size (|s| + 2) log p, then comparing the height of a
column to p (in order to know if the rule can be applied at this column) would
not take a constant time anymore. This implies many low level considerations
we want to avoid and inflate complexity.

We recall that NC=
⋃

k∈N
PT/WK(logk n, nk), where PT/WK(f(n), g(n)) (Paral-

lel Time / WorK) is the class of decision problems solvable by a uniform family of
Boolean circuits with depth upper-bounded by f(n) and size (number of gates)
upper-bounded by g(n), which is more conveniently seen for our purpose as
solvable in time O(f(n)) on O(g(n)) parallel PRAM processors. We recall that
NC1=PT/WK(log n,R[n]) where R[n] denotes the set of polynomial functions.

As a consequence of Lemmas 2 and 3, the avalanche process is local. More-
over, if we cut the configuration into two parts, we can compute both parts of
the avalanche independently, provided a small amount of information linking the
two parts. This independency will be at the heart of our construction in order to
compute the avalanche efficiently in parallel. Let us have a closer look at how to
encode this “midway information”, which we call status (a notion named trace
has been defined in [12], which shares some of those ideas).

Computational Complexity of the Avalanche Problem 27

For a column i > p of a configuration s, the status at i of the avalanche a
for s is the boolean p-tuple (b0, . . . , bp−1) such that bj = 1 if column i − p + j
is fired within a, and 0 otherwise. For example, consider the avalanche of Fig. 2,
its status at column 8 (the column where the avalanche starts has index 1) is
(0, 1, 0, 1).

We claim that given a column i, the incomplete configuration s ∩ [[i, |s|) and
the status at i of the avalanche a for s, we can compute the avalanche on the
part of s that we have, that is, a ∩ [[i, |s|).

Note that in the proof of Theorem 1 we use only simple instances of Lemma 4,
but we still present it in a general form.

Lemma 4. Given

– a part s ∩ [[i, j) with i + p < j,
– the status at i of the avalanche a for s,

one can compute

– the avalanche on a ∩ [[i, j − p]],
– the status of a at j − p + 1,

in time O(j − i) on one processor.

i j−p j

in
status

in
slopes

status
out

Proof. We claim that given the status of the avalanche a at a column k, we
can find the smallest (leftmost) peak after column k, let us denote it by q =
min{q | q ≥ k and q is a peak}, and the part of a between k and q, i.e., a∩ [[k, q]].
This will be done in constant time thanks to Lemma 3: q − k < p so we have
to check a constant number of columns. The result then follows an induction
on the peaks within [[i, j): from the status at k (initialized for k = i), we find
the next peak q and compute a ∩ [[k, q]], append it to the previously computed
a ∩ [[i, k]], which also allows to construct the status at q + 1 in constant time.
And this process is repeated at most a linear number of times:

– either the avalanche stops at some time,
– or the greatest peak encountered is between j − p and j − 1,

and in both cases we can compute the intended objects by appending the pre-
viously computed parts of the avalanche (Lemma 2, recall that the status at
j − p + 1 tells wether columns between j − p + 1 − p and j − p are fired or not).

28 E. Formenti et al.

Knowing the status of a at k, let us explain how to compute the smallest
peak after column k, denoted q, and a ∩ [[k, q]]. Let (b0, . . . , bp−1) be the status
of a at k. From Lemma 3 the peak q has a value of slope equal to p in s and
is at distance smaller than p from k. We will now prove that it is very easy to
find q in constant time: q is the smallest column � such that 0 ≤ � − k < p, and
s� = p and b�−k = 1.

– Such an � is a peak: since b�−k = 1, column � − p is fired. When it is fired,
it gives one unit of slope to column � which can be fired since its slope is
initially equal to p and becomes p + 1. It cannot be a col, which would mean
that there is another peak q′′, greater, which is fired before �, but from Lemmas
2 and 3 this contradicts the minimality of the avalanche because when q′′ is
fired the column � is also firable (� − p has already been fired since it is at
distance strictly greater than p of q′′).

– The smallest peak greater or equal to k satisfies those three conditions: the
two first conditions are straightforward from Lemma 3. The last condition can
be proved by contradiction: suppose there is a peak q′′ such that bq′′−k = 0,
i.e., column q′′ − p is not fired in the avalanche, then q′′ still needs to receive
some units of slope to become unstable, which can only come from its left
neighbor q′′ + 1 thus this latter has to be fired before it, a contradiction.

As a consequence of the two above facts, the smallest such � is indeed the
intended peak q, and can be computed in constant time. There are O(j − i)
peaks within [[i, j), and each step of the induction needs a constant computation
time on one processor, thus the last part of the lemma holds. �

Thanks to Lemma 4 we can perform the computation efficiently in parallel
as follows.

Theorem 1. For a fixed parameter p and in dimension one, AP is in NC1.

Proof. An input of AP is a configuration s ∈ gSM and a column k ∈ (|s|, |s|+p]].
Let k = |s| + κ with κ ∈ (0, p]].

The proof works in two stages: first, we compute for every position i the function
that associates to each status at i, the corresponding status at i + 1, which we
call “the function status at i → status at i + 1” (since status are elements of
{0, 1}p, the size of these functions is a constant). This can be done in constant
time on |s| parallel PRAM using Lemma 4; and in a second stage we compute
in parallel the function status at p + 1 → status at |s| + 1 using log|s| steps, by
pairwise composing the functions as illustrated in Fig. 3.

One of the processors can then finish the job in constant time by first com-
puting the status ḃ at p + 1, which can easily be done in constant time using
only (s1, . . . , sp+1) since either s1 is a peak or the avalanche stops, then either
sp+1 is a peak or the avalanche stops, and finally the cols within s1 and sp+1

are straightforwardly found thanks to Lemma 2. Then, it computes the status
b̈ = μ(ḃ) at |s| + 1, and answers yes if and only if b̈κ−1 = 1, because columns
on the right of |s| cannot be fired but can only receive grains from their left
neighbor at distance p, so does column k = |s| + κ.

Computational Complexity of the Avalanche Problem 29

. . . i → i + 1 i + 1 → i + 2 i + 2 → i + 3 i + 3 → i + 4 i + 4 → i + 5 i + 5 → i + 6 i + 6 → i + 7 i + 7 → i + 8 . . .

i → i + 2 i + 2 → i + 4 i + 4 → i + 6 i + 6 → i + 8

step 1

i → i + 4 i + 4 → i + 8

step 2

i → i + 8

step 3

Fig. 3. Illustration of the parallel computation, each symbol x → y represents the
function status at x → status at y. Dashed on the top are the functions computed
during the first stage. Then, in log|s| steps (each of them uses a polynomial number of
parallel processors and a constant amount of time) we compose the circled functions
in order to compute the function pointed out with an arrow. This composition is
straightforwardly performed in constant time with the two processors: one of them
transmits its function to the other one (a function of constant size is transmitted in
constant time), and the latter composes two functions of constant size. . . in constant
time. We perform those computations such that the resulting function µ has type:
status at p + 1 → status at |s| + 1.

The complete procedure uses a logarithmic amount of time on a polyno-
mial number of parallel processors (the input has size Θ(|s|)), i.e., the decision
problem AP is in the complexity class NC1. �

6 Conclusion and Open Problem

In this paper we proved that AP is in NC1 in dimension 1 solving an open
question of [2]. Going in the direction of [3], one might ask what is the complexity
of AP when the constraint on monotonicity is relaxed. Clearly, by the results
of [3], the problem is in P, but is it complete?

Another possible generalisation concerns symmetric sandpiles (see [4,5,10],
for example). In this case, the lattice structure of the phase space is lost and
therefore we cannot exploit it in the solving algorithms. This would probably
direct the investigations towards non-deterministic computation and shift com-
plexity results from P-completeness to NP-completeness.

It also remains to classify the computational complexity of avalanches in
two dimensions when the parameter p equals 1 (that is, in the classical model
introduced by Bak et al. [1]). As it is exposed in [6], this question interestingly
emphasizes the links between NC, P-completeness, and information crossing.

Acknowledgments. This work was partially supported by IXXI (Complex System
Institute, Lyon), ANR projects Subtile, Dynamite and QuasiCool (ANR-12-JS02-011-
01), Modmad Federation of U. St-Etienne, the French National Research Agency
project EMC (ANR-09-BLAN-0164), FONDECYT Grant 3140527, and Núcleo Milenio
Información y Coordinación en Redes (ACGO).

30 E. Formenti et al.

References

1. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the
1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

2. Formenti, E., Goles, E., Martin, B.: Computational complexity of avalanches in
the kadanoff sandpile model. Fundam. Inform. 115(1), 107–124 (2012)

3. Formenti, E., Masson, B.: On computing fixed points for generalized sand piles.
Int. J. on Unconventional Comput. 2(1), 13–25 (2005)

4. Formenti, E., Masson, B., Pisokas, T.: Advances in symmetric sandpiles. Fundam.
Inform. 76(1–2), 91–112 (2007)

5. Formenti, E., Van Pham, T., Phan, H.D., Tran, T.H.: Fixed point forms of the
parallel symmetric sandpile model. Theor. Comput. Sci. 322(2), 383–407 (2014)

6. Gajardo, A., Goles, E.: Crossing information in two-dimensional sandpiles. Theor.
Comput. Sci. 369(1–3), 463–469 (2006)

7. Goles, E., Margenstern, M.: Sand pile as a universal computer. Int. J. Mod. Phys.
C 7(2), 113–122 (1996)

8. Goles, E., Morvan, M., Phan, H.D.: The structure of a linear chip firing game and
related models. Theor. Comput. Sci. 270(1–2), 827–841 (2002)

9. Laredo, J.L.J., Bouvry, P., Guinand, F., Dorronsoro, B., Fernandes, C.: The sand-
pile scheduler. Cluster Comput. 17(2), 191–204 (2014)

10. Perrot, K., Phan, H.D., Van Pham, T.: On the set of fixed points of the parallel
symmetric sand pile model. Full Pap. AUTOMATA 2011, 17–28 (2011)

11. Perrot, K., Rémila, E.: Avalanche structure in the kadanoff sand pile model. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 427–439. Springer, Heidelberg (2011)

12. Perrot, K., Rémila, E.: Transduction on kadanoff sand pile model avalanches, appli-
cation to wave pattern emergence. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011.
LNCS, vol. 6907, pp. 508–519. Springer, Heidelberg (2011)

	Computational Complexity of the Avalanche Problem on One Dimensional Kadanoff Sandpiles
	1 Introduction
	2 Kadanoff Sandpile Model
	3 Avalanche Problem AP
	4 Avalanches, Peaks and Cols
	5 AP is in NC1 in dimension one
	6 Conclusion and Open Problem
	References

