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Preface

AUTOMATA 2014 is the 20th International Workshop on Cellular Automata and
Discrete Complex Systems and continues a series of events established in 1995.
AUTOMATA is an annual workshop and aims of the workshop are:

– To establish and maintain a permanent, international, multidisciplinary forum for
the collaboration of researchers in the field of Cellular Automata (CA) and Discrete
Complex Systems (DCS).

– To provide a platform for presenting and discussing new ideas and results.
– To support the development of theory and applications of CA and DCS (e.g.

parallel computing, physics, biology, social sciences, and others) as long as fun-
damental aspects and their relations are concerned.

– To identify and study within an inter- and multidisciplinary context, the important
fundamental aspects, concepts, notions, and problems concerning CA and DCS.

AUTOMATA 2014, held in Himeji, Japan, from July 7 to 9, 2014, is the result of
cooperation of the institutions of the members of the Organizing Committee, i.e.,
Hiroshima University, the National Institute of Information and Communications
Technology (NICT), Osaka Electro-Communication University, and University of
Hyogo, Himeji.

The volume contains papers for three invited talks and ten accepted papers of
AUTOMATA 2014. We thank all authors for their contributions. We are grateful to all
members of the Program Committee for selecting the accepted papers.

We would also like to express our sincere thanks to the invited speakers, Jarkko
Kari, University of Turku (Finland), Satoshi Murata, Tohoku University (Japan), and
Martin Kutrib, Universität Gießen (Germany), for presenting their works.

We are indebted to all participants for making this workshop a successful and
fruitful meeting.

Finally, the organization of AUTOMATA 2014 was made possible, thanks to
financial and technical support of Osaka Electro-Communication University, Univer-
sity of Hyogo in Himeji, the city of Himeji, the Himeji Convention & Visitors Bureau,
the Support Center for Advanced Telecommunications Technology Research (SCAT),
and the Society of Instrument and Control Engineers (SICE).

March 2015 Teijiro Isokawa
Katsunobu Imai

Nobuyuki Matsui
Ferdinand Peper
Hiroshi Umeo
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On a Cellular Automaton and Powers of 3/2

Jarkko Kari

Department of Mathematics and Statistics, University of Turku, 20014, Finland
jkari@utu.fi

In this talk we begin with a question asked by Stanislaw Ulam about generating all
patterns from a single finite seed [4, p. 30]. The problem is to design a cellular automaton
rule and an initial configuration with all but finitely many cells in null states such that in
the evolution that follows all finite patterns over the state alphabet will appear.

We use two simple facts to design such a rule [2]: (i) the powers of a number
n written in base b contain all finite digit sequences if n is not a rational power of b, and
(ii) the multiplication of numbers by n in base b is a cellular automaton if all prime
factors of n also divide b. Smallest such example is the cellular automaton F×3 that
multiplies by n = 3 in base b = 6. The existence of this simple solution raises other
interesting questions to investigate:

– Do there exist analogous universal pattern generators also in two- and higher
dimensional cellular spaces?

– Does there exist a solution with fewer than six states? In particular: is there a
universal pattern generator over the binary alphabet?

– Does there exist a solution that generates all patterns at all positions?

A candidate to solve the last problem is obtained by combining F×3 with a suitable
right shift. This suggests the automaton F×3/2 that multiplies numbers in base 6 by
constant 3/2. Whether it is able to generate all patterns everywhere depends on some
difficult open problems in number theory. Namely, for such universal pattern generation
to happen one needs an integerm such that the fractional parts ofm(3/2)i are dense in the
interval [0, 1]. Also Mahler’s problem on Z-numbers [3] can be rephrased in terms of
F×3/2. Finally, by adding a new state to represent a floating radix point, we modify F×3 to
simulate the Collatz-function on base 6 representations of positive integers [1].

References

1. Kari, J.: Cellular automata, the collatz conjecture and powers of 3/2. In: Yen, H.-C., Ibarra,
O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 40–49. Springer, Heidelberg (2012)

2. Kari, J.: Universal pattern generation by cellular automata. Theoret. Comput. Sci. 429,
180–184 (2012)

3. Mahler, K.: An unsolved problem on the powers of 3/2. J. Aust. Math. Soc. 8, 313–321 (1968)
4. Ulam, S.: A Collection of Mathematical Problems. Interscience, New York (1960)



Introduction to Molecular Robotics:
Computation to Control Chemical Systems

Satoshi Murata

Department of Bioengineering and Robotics, Graduate School of Engineering,
Tohoku University

Abstract. Molecular robotics is an emerging area of research aiming at building robots made of
components such as sensors, computers, and actuators, which are all implemented as molecular
devices. The molecular robot is supposed to react autonomously to its environment by receiving
chemical/physical signals and decides behavior by molecular computation [1–3].

Firstly, I would like to introduce some basic principles of molecular computation based on
hybridization reactions of DNA molecules. Various computational methods ranging from signal
amplification, logic operation to reaction-diffusion-like computation have been proposed so far, will
be implemented as computational components for the molecular robots. Despite extensive efforts,
however, systems having all three functions (sensing, computation, and actuation) are still difficult to
realize, because integrating different chemical components in the same spatio-temporal space causes
a lot of undesired spurious interactions among them. How to integrate chemical devices into a
consistent network is the central issue of molecular robotics indeed. I think new architectures are
necessary to cope with this intrinsic difficulty. Proposed models of computation for molecular robots
such as single-molecular computing, computing in liposomes and computing in gel will be
introduced to show the current level of research in this field.

References

1. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new
paradigm for artifacts. New Gener. Comput. 31, 27–45 (2013)

2. Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots with
sensors and intelligence. Acc. Chem. Res., ACS 47(6), 1681–1690 (2014)

3. Molecular Robotics Project: Grant-in-Aid for Scientific Research on Innovative Areas.
MEXT, Japan (2012–2016). http://www.molecular-robotics.org/en/
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Complexity of One-Way Cellular Automata

Martin Kutrib

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. Among the different types of cellular automata the onedimensional one-way variant
with fixed boundary conditions is one of the simplest. Here we consider these devices as
massively parallel computing model. The formal investigations of their properties and capacities
began in the sixties. Though a lot of results have been found over the years, there are still several
open problems. The survey addresses the basic hierarchy of induced language classes. Aspects of
computational complexity are discussed in connection with classical complexity theory. Hard
open problems give rise to consider one-way cellular automata also from the structural
complexity point of view. Adding (limited) nondeterminism to the model yields structurally more
complex and computationally more powerful devices. Finally, the capabilities of one-way
cellular automata to time-compute functions are considered. This means that given an input of
length n a distinguished cell has to enter a distinguished state exactly after f(n) time steps. We
present some selected results on these topics and want to draw attention to the overall picture and
to some of the main ideas involved.
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Complexity of One-Way Cellular Automata

Martin Kutrib(B)

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. Among the different types of cellular automata the one-
dimensional one-way variant with fixed boundary conditions is one of the
simplest. Here we consider these devices as massively parallel computing
model. The formal investigations of their properties and capacities began
in the sixties. Though a lot of results have been found over the years,
there are still several open problems. The survey addresses the basic hier-
archy of induced language classes. Aspects of computational complexity
are discussed in connection with classical complexity theory. Hard open
problems give rise to consider one-way cellular automata also from the
structural complexity point of view. Adding (limited) nondeterminism to
the model yields structurally more complex and computationally more
powerful devices. Finally, the capabilities of one-way cellular automata to
time-compute functions are considered. This means that given an input
of length n a distinguished cell has to enter a distinguished state exactly
after f(n) time steps. We present some selected results on these topics
and want to draw attention to the overall picture and to some of the
main ideas involved.

1 Introduction

The advantages of homogeneous arrays of interacting processing elements are
simplicity and uniformity. It turned out that a large array of not very powerful
elements operating in parallel can be programmed to be very powerful. One of
the simplest types of such systems are cellular automata, whose homogeneously
interconnected finite automata (the cells) work synchronously at discrete time
steps obeying one common transition function. Cellular automata have exten-
sively been investigated from different points of view. Here we consider them
as massively parallel computing model. Instances of problems to solve can be
encoded as strings of symbols which are the data supplied to the devices. If (one
piece of) the answer to the problems is binary, the set of possible inputs is split
into two sets associated with the binary outcome. From this point of view, the
computational capabilities of cellular automata are studied in terms of string
acceptance, that is, the determination to which of the two sets a given string
belongs. These investigations are with respect to and with the methods of lan-
guage theory.

The object of the survey is one of the simplest and best studied types of cellu-
lar language acceptors, so-called one-way cellular automata (OCA). The formal
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-18812-6 1



4 M. Kutrib

investigations of their properties and computational capacity began in the six-
ties. Over the decades a lot of results have been explored, but there are still some
basic unanswered questions. The presented survey is, of course, far from being
complete. We have been motivated in choosing topics based on our knowledge
and interest.

The survey addresses the basic hierarchy of induced language classes.
It turned out that only little is known about the properness of inclusions in
the time hierarchy ranging from real time to unrestricted, that is, exponential
time. Surprisingly, the only inclusions known to be strict are between real time
and linear time. This might be one of the reasons why there is a particular
interest in these fast computations.

Aspects of computational complexity are discussed in connection with
sequential computational complexity. The open problems of cellular automata
classes are related to hard open problems of the classical theory. This gives rise
to consider cellular automata also from the structural complexity point of view.
Adding (limited) nondeterminism to the model yields structurally more complex
and computationally more powerful devices, that are related to the deterministic
classes.

An important concept for constructing cellular automata algorithms are sig-
nals. Since signals can encode and propagate information through the array,
their realizability can show us the computation power and the limitations of
the model. Moreover, we can regard signals as a higher programming concept
which allows modularization techniques at algorithm design. For one-way infor-
mation flow the capability of OCA to time-compute functions f is considered.
This means that given an input of length n a distinguished cell has to enter a
distinguished state exactly after f(n) time steps.

2 One-Way Cellular Language Acceptors

We denote the set of non-negative integers by N. In general, we write 2S for
the powerset of a set S. Let A denote a finite set of letters. Then we write A∗

for the set of all finite words (strings) built with letters from A. The empty
word is denoted by λ, the reversal of a word w by wR, and for the length of w
we write |w|. For the number of occurrences of a subword x in w we use the
notation |w|x. A subset of A∗ is called a language over A. We use ⊆ for set
inclusion and ⊂ for strict set inclusion. For a function f : N → N we denote
its i-fold composition by f [i], i ≥ 1. In order to avoid technical overloading in
writing, two languages L and L′ are considered to be equal, if they differ at
most by the empty word, that is, L \ {λ} = L′ \ {λ}. Throughout the article two
devices are said to be equivalent if and only if they accept the same language.

A (non)deterministic one-way cellular automaton is a linear array of identical
(non)deterministic finite state machines, sometimes called cells, that are identi-
fied by positive integers. Except for the rightmost cell each one is connected to
its nearest neighbor to the right. The state transition depends on the current
state of a cell itself and the current state of its neighbor, where the rightmost cell
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receives information associated with a boundary symbol on its free input line.
The state changes take place simultaneously at discrete time steps. The input
mode for cellular automata is called parallel. One can suppose that all cells fetch
their input symbol during a pre-initial step.

Definition 1. A nondeterministic one-way cellular automaton (NOCA) M is a
system 〈S, F,A, #, δ〉, where S is the finite, nonempty set of cell states, F ⊆ S is
the set of accepting states, A ⊆ S is the nonempty set of input symbols, # /∈ S
is the permanent boundary symbol, and δ : S × (S ∪ {#}) → (2S \ ∅) is the local
transition function.

A configuration of M at time t ≥ 0 is a mapping ct : {1, 2, . . . , n} → S, for
n ≥ 1, that assigns a state to each cell. The computation starts at time 0 in a so-
called initial configuration, which is defined by the input w = a1a2 · · · an ∈ A+.
We set c0(i) = ai, for 1 ≤ i ≤ n. Successor configurations are computed accord-
ing to the global transition function Δ. Let ct, t ≥ 0, be a configuration with
n ≥ 1, then its successor ct+1 is defined as follows:

ct+1 = Δ(ct) ⇐⇒
{

ct+1(i) ∈ δ(ct(i), ct(i + 1)), i ∈ {1, 2, . . . , n − 1}
ct+1(n) ∈ δ(ct(n), #)

Thus, Δ is induced by δ.

· · ·a1 a2 a3 an #

Fig. 1. A one-way cellular automaton.

An NOCA is deterministic if δ(s1, s2) is a singleton for all s1, s2 ∈ S ∪ {#}.
Deterministic cellular automata are denoted by OCA (Fig. 1).

An input w is accepted by an NOCA M if at some time step during its
course of computation the leftmost cell, that is cell 1, enters an accepting state.
The language accepted by M is denoted by L(M). Let t : N → N be a mapping.
If all w ∈ L(M) are accepted with at most t(|w|) time steps, then M is said
to be of time complexity t (cf. [20] for a discussion of this general treatment of
time complexity functions). In particular, an input w is accepted if the leftmost
cell enters an accepting state at some time i ≤ t(|w|). Subsequent states of the
leftmost cell are not relevant.

In general, the family of languages accepted by some device X with time com-
plexity t is denoted by Lt(X). The index is omitted for arbitrary time. Actually,
arbitrary time is exponential time due to the space bound. If t is the identity
function n, acceptance is said to be in real time and we write Lrt(X). The linear-
time languages Llt(X) are defined according to Llt(X) =

⋃
k∈Q, k≥1 Lk·n(X).

Example 2. The unary language {a2n | n ≥ 1} is accepted by some OCA with
time complexity t(n) = n + log(n).
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The basic idea of the construction is to generate a binary counter in the right-
most cell with one step delay (cf. Fig. 2). The counter moves to the left whereby
the cells passed through are counted. The length of the counter is increased
when necessary. In addition, cells which are passed through by the counter have
to check whether all bits are 1. In this case the value of the counter is 2n −1, for
some n ≥ 1. Due to the delayed generation this indicates a correct input length
and the cell enters the final state. Clearly, the desired time complexity is obeyed.
A formal construction can be found in [19]. �

t

n

a a a a a a a a a a a a a a a a #

a a e #

a a +
1 e #

a a •
0 + e #

a a +
1 1 + e #

a a •
0

+
1 e + e #

a a +
1

•
0 + e + e #

a a •
0 0 1 + e + e #

a a +
1 1 1 e + e + e #

a a •
0

+
1 1 e e + e + e #

a a +
1

•
0

+
1 e e + e + e #

a a •
0 0

•
0 + e e + e + e #

a a +
1 1 0 1 + e e + e + e #

a a •
0

+
1 0 1 e + e e + e + e #

a a +
1

•
0 0 1 e e + e e + e + e #

a •
0 0 1 1 e e + e e + e + e #

+
1 1 1 1 e e + e e + e + e #

+
1 1 1 e e + e e + e + e #

+
1 1 e e + e e + e + e #

+
1 e e + e e + e + e #

+ e e + e e + e + e #

Fig. 2. Space-time diagram of an OCA accepting an input from the unary language
{a2n | n ≥ 1} in n+log(n) time. The arrows mark the moving counter, whose digits are
0, 1, or •

0
. The latter is a 0 reporting a carry-over. A +

1
indicates that, so far, the cell

has been passed through by 1 only.

The non-regular unary language {a2n | n ≥ 1} of Example 2 cannot be accepted
by any OCA with time complexity t(n) ∈ o(n + log(n)) [19,25]. So, the example
is optimal with respect to the time complexity. Moreover, it shows the proper
inclusion Lrt(OCA) ⊂ Lrt+log(OCA).
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3 A Basic Hierarchy

The computational capacity of different types of cellular automata is a natural
and well-investigated field. The relations between basic language families are
depicted in Fig. 3.

Fig. 3. A basic hierarchy of one-way
cellular automata language families.
Solid arrows indicate proper inclusions,
dashed arrows indicate inclusions that
are not known to be proper.

The weakest class at the bottom
of the hierarchy is given by cellular
automata with only one-way informa-
tion flow and a time constraint at the
limit to trivial computations, that is, real
time. As mentioned before, it is known
that the family Lrt(OCA) is properly
included in Lrt+log(OCA) [18]. The lat-
ter is in turn a proper sub-family of
the linear-time OCA languages. This
proper inclusion follows from results
in [8,32]. Unfortunately, beyond linear
time none of the levels of the hier-
archy is separated. To emphasize this
fact even more, the class at the top
of the hierarchy is defined by nonde-
terministic one-way cellular automata
without time limit, that is, exponen-
tial time due to the space bound. Since
for nondeterministic devices the ques-
tion whether one-way information flow
is weaker than two-way information flow
has been solved negatively in [10], the
family L (NOCA) is equal to the com-

plexity class NSPACE(n), that is, the context-sensitive languages. By 1G-OCA
one-way cellular automata with limited nondeterminism are denoted. Basically,
in such devices all cells are allowed to perform just one nondeterministic step
at the very beginning of the computation. A more detailed discussion of this
topic follows in Sect. 5 below. However, the family Lrt(1G-OCA) fits very well
into the hierarchy [2,3]. While the inclusion Lrt(1G-OCA) ⊆ Lrt(NOCA) fol-
lows for structural reasons, the inclusion Lrt(1G-OCA) ⊆ L (OCA) follows from
the equality L (1G-OCA) = L (OCA). Moreover, the computing power of real-
time OCA is, in fact, strictly increased by adding one nondeterministic step.
This result can be strengthened, whereby the strictness of the inclusion is lost:
Llt(OCA) ⊆ Lrt(1G-OCA).

4 Between Real Time and Linear Time

The levels of the basic hierarchy of language families accepted by several types
of one-way cellular automata are separated up to linear time only. Beyond linear
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time the edge of knowledge about the properness of inclusions has been crossed.
This section is devoted to a more closer look at several aspects, in particular,
in the range between real time and linear time.

Speed-Up. Helpful tools in connection with time complexities are speed-up theo-
rems. Strong results are obtained in [13,14], where the parallel language families
are characterized by certain types of customized sequential machines. In partic-
ular, it is possible to speed up the time beyond real time linearly. Therefore,
linear-time computations can be sped up close to real time, but from above it is
known that real time cannot be achieved in general.

Theorem. Let M be an OCA with time complexity rt + r(n), where r : N → N

is a mapping and rt denotes real time. Then for all k ≥ 1 an equivalent OCA
with time complexity rt + � r(n)

k � can effectively be constructed.

The next example shows that any constant beyond real time can be omitted.

Example 3. Let k0 ≥ 1 and M be an OCA with time complexity rt + k0. Then
there is an equivalent real-time OCA M ′. It suffices to set k = k0 + 1 and to
apply Theorem 4 in order to obtain rt + �k0

k � = rt + � k0
k0+1� = rt for the time

complexity of M ′. �

Next, a linear-time computation is sped up close to real time.

Example 4. Let k0 ≥ 1 and M be an OCA with time complexity rt + k0 · rt.
Then for all rational numbers ε > 0 there is an equivalent OCA M ′ with time
complexity �(1+ε) ·rt�. We set k =

⌈
k0
ε

⌉
and apply Theorem 4 in order to obtain

rt +
⌊

k0·rt
�k0/ε�

⌋
≤ rt +

⌊
k0·rt
k0/ε

⌋
= rt + �ε · rt� = �(1 + ε) · rt�. �

Unary Languages. Already in [25] is has been shown that any unary real-time
OCA language is regular. As mentioned before, language {a2n | n ≥ 1} of Exam-
ple 2 is a witness for the proper inclusion Lrt(OCA) ⊂ Lrt+log(OCA) [18].

Disproving Real-Time Recognizability. Until 1995 the regularity of unary real-
time OCA languages was the only source to show that a language does not
belong to Lrt(OCA). Then, in [27,28] a method based on equivalence classes
has been developed. Basically, an equivalence relation can be defined such that
the number of equivalence classes distinguishable by real-time OCA is bounded:

Theorem. Let L ⊆ A∗ be a language and X ⊆ A∗ and Y ⊆ A∗ be two sets of
words. Two words w ∈ A∗ and w′ ∈ A∗ are (L,X, Y )-equivalent if and only if
xwy ∈ L ⇐⇒ xw′y ∈ L, for all x ∈ X and y ∈ Y .

The upper bound for the number of equivalence classes which can be distin-
guished by some real-time OCA is as follows.
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Theorem. Let L ⊆ A∗ be a real-time OCA language and X = Am1 , Y = Am2 be
two sets of words for positive integers m1 and m2. Then there exists a constant
p ≥ 1 such that the number N of (L,X, Y )-equivalence classes is bounded by
N ≤ p|X|p(m2+1)|Y |.

In order to apply that method to a witness language L, one has to determine such
an equivalence relation so that the number of equivalence classes induced by L
exceeds the number of equivalence classes distinguishable by any real-time OCA.

Example 5. Consider the linear context-free language

L = {anbn | n ≥ 1} ∪ {anbvabn | n ≥ 1, v ∈ {a, b}∗}.

By applying the equivalence relation method, in [28] it has been shown that the
two-linear concatenation L · L is not accepted by any real-time OCA. �

The next tool which allows us to show that languages do not belong to the family
Lrt(OCA) is based on pumping arguments for cyclic strings [23]:

Theorem. Let L be a real-time OCA language. Then there exists a constant
p ≥ 1 such that any pair of a word w and an integer k that meets the condition
wk ∈ L and k > p|w| implies that there is some 1 ≤ q ≤ p|w| such that wk+jq ∈ L,
for all j ≥ 0.

Example 6. The language L = {a2n | n ≥ 1} is not accepted by any real-time
OCA.

Contrarily assume there is a real-time OCA accepting L. Then we set w = a,
k = 2p and derive that a2p+q as well as a2p+2q belong to L. If 2p + q is not a
power of two, we obtain a contradiction. So, let 2p + q = 2p+r, for some r ≥ 1.
We derive 2p+r < 2p+r + q = 2p+r + 2p+r − 2p = 2p+r+1 − 2p < 2p+r+1, and
conclude that 2p+2q is strictly in between two consecutive powers of two. Hence,
a2p+2q does not belong to L. �

An Infinite Proper Hierarchy of Language Families. So far, there is one language
family known to be in between the real-time and linear-time OCA languages. In
fact, there is an infinite proper hierarchy of families in this range [17]. For the
proof it is necessary to control the lengths of words with respect to some internal
substructures. The following notion of constructibility expresses the idea that the
length of a word relative to the length of a subword should be computable. To this
end, a function f : N → N is said to be OCA-constructible, if there exist an λ-free
homomorphism h and a language L ∈ Lrt(OCA) such that h(L) = {af(n)−nbn |
n ≥ 1}. At a glance this notion of constructibility might look somehow unusual
or restrictive. But λ-free homomorphisms are very powerful so that the family
of (in this sense) constructible functions is very rich. Examples and the next
theorem are presented in [17].

Theorem. Let r1, r2 : N → N be two increasing functions. If r2 · log(r2) ∈ o(r1)
and r−1

1 is OCA-constructible, then Lrt+r2(OCA) ⊂ Lrt+r1(OCA).
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Example 7. Let 0 ≤ p < q ≤ 1 be two rational numbers. Clearly, np · log(np) is
of order o(nq). Moreover, the inverse of nq is OCA-constructible. Thus, we have
the strict inclusion Lrt+np(OCA) ⊂ Lrt+nq (OCA). �

Example 8. Let i < j be two positive integers, then log[j](n) · log[j+1](n) is of
order o(log[i](n)). Since the inverse of log[i](n) is OCA-constructible, we obtain
the strict inclusion Lrt+log[j](OCA) ⊂ Lrt+log[i](OCA). �

Beyond Real Time? We conclude this section with an open problem: Does the
copy language {ww | w ∈ {a, b}∗ } belong to Lrt(OCA)?

5 Limited Nondeterminism

Before we turn to discuss the basic hierarchy beyond linear time, we take a closer
look at the role played by the family Lrt(1G-OCA) based on limited nondeter-
minism. Why is there no corresponding linear-time family in the hierarchy? How
about more than one nondeterministic step?

Traditionally, nondeterministic devices have been viewed as having as many
nondeterministic guesses as time steps. The studies of this concept of unlimited
nondeterminism led, for example, to the famous open LBA-problem or the
unsolved question whether or not P equals NP. In order to gain further under-
standing of the nature of nondeterminism, in [11,16] it has been viewed as an addi-
tional limited resource at the disposal of time or space bounded computations.

Exemplarily, here we consider one-way cellular automata with time-bounded
nondeterminism, that is, the number of nondeterministic state transitions is a
limited resource which depends on the length of the input (see [21] for further
details, variants, and references). In order to distinguish between deterministic
and nondeterministic steps a deterministic as well as a nondeterministic transi-
tion function is provided. Let k ≥ 0 be an integer. The global transition induced
is such that the cells of a kG-OCA perform initially k nondeterministic transi-
tions that are followed by only deterministic transitions.

Guess Reduction. A result obtained in [3] shows that k + 1 guesses per cell
are not better than k guesses. Moreover, it allows to reduce the number of
nondeterministic transitions by a constant as long as one remains.

Theorem. Let k ≥ 1 be an integer. Then Lt(kG-OCA) = Lt(1G-OCA), for
all time complexities t : N → N.

The idea of the guess reduction is shown in Fig. 4. Basically, in its first nondeter-
ministic step the 1G-OCA simulates the first step of the kG-OCA and, addition-
ally, k − 1 further nondeterministic steps of the kG-OCA for all possible pairs of
states, that is, k − 1 finite mappings from S × (S ∪{#}) to S. These mappings are
stored in additional registers. The deterministic transition of the 1G-OCA applies
these mappings to the current situations, thus, simulating further guesses of the
kG-OCA. Afterwards it simulates the deterministic transition of the kG-OCA.
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2G-OCA

t = 0 s1 s2 s3

t = 1 s1 s2

t = 2 s1

1G-OCA

s1 s2 s3

f1 ∈ SS×(S∪{#})

s1

f2 ∈ SS×(S∪{#})

s2

s1 = f1(s1, s2)

Fig. 4. Idea of the guess reduction. SS×(S∪{#}) denotes the set of mappings from S ×
(S ∪ {#}) to S.

In general, the number of nondeterministic transitions cannot be reduced
to 0. It will turn out that Lrt(OCA) = Lrt(0G-OCA) is a proper subfamily of
Lrt(1G-OCA).

Speed-Up. From above it is known that deterministic OCA can be sped-up from
(rt + r(n))-time to (rt + � r(n)

k �)-time. Thus, linear-time is close to but not real-
time. For kG-OCA a stronger result has been obtained in [3]. It says that real-
time is as powerful as linear-time.

Theorem. Let i, k ≥ 1 be integers. Then Li·t(kG-OCA) = Lt(kG-OCA), for
all time complexities t : N → N with t(n) ≥ n.

Due to the guess reduction, it is sufficient to show the speed-up for 1G-OCA.
The technique used for the construction is referred to as packing-and-checking.
The basic idea is to guess the input in a packed form on the left of the array. The
verification of the guess can then be done by a deterministic OCA in real time.
Figure 5 shows the situation after a correct guess in the first step. Subsequently,
the simulation of the given 1G-OCA takes place on the compressed input on the
third track. Due to the compression, each i of the original steps can be simulated
in one step.

Besides the simulation on the third track, the simulating 1G-OCA has to
verify whether the initial guesses were correct. To this end, two tasks are per-
formed. The first task is to check whether all blocks on the second track, and
whether the leftmost blocks on the second and third track are identical.

#

a b c d e f g h i j k l

abc def ghi jkl abc def ghi jkl abc def ghi jkl

abc def ghi jkl

Fig. 5. Packing-and-checking: Configuration after a first step with correct guesses. The
input is kept on the first track. It appears in i-fold compressed and repeated form with
center markers on the second track. The leftmost block is additionally written on the
third track.
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Since L = {w$w | w ∈ A+, $ /∈ A } is a real-time OCA language (see [20]),
each two neighboring blocks can simulate an acceptor for L. If all these acceptors
accept, the blocks on the second track are identical. The comparison of the second
and third track can be done by a simple signal.

The second task is to check whether the content of the rightmost block and,
thus, the contents of all blocks is in fact the compressed input. Figure 6 shows
the principal idea. The content of the rightmost block is moved two cells to the
left in each three time steps. In parallel, a mark on single symbols in the block
is moved from right to left in every time step. Finally, in every time step the
marked symbol is compared with the original input. If all comparisons match
the block has correctly been guessed.

a b c d e f g h i j k l

abc def ghi
!

jkl
#

abc def ghi
!

jkl
#

abc def ghi
!
jkl

#

abc def

!
ghi jkl

#

abc def

!
ghi jkl

#

abc def

!
ghi jkl

#

abc

!

def ghi jkl
#

abc

!

def ghi jkl
#

abc

!

def ghi jkl
#

!

abc def ghi jkl
#

!

abc def ghi jkl
#

!

abc def ghi jkl
#

Fig. 6. Packing-and-checking: Comparing the compressed with the original input.

Relations to Other Types of Automata. Here we turn to adjust the family
Lrt(1G-OCA) in the basic hierarchy.

For structural reasons we have the inclusion Llt(OCA) ⊆ Llt(1G-OCA). The
strong speed-up results revealed Lrt(1G-OCA) = Llt(1G-OCA) and, thus, the
next theorem follows.

Theorem. The family Llt(OCA) is included in Lrt(1G-OCA).

Again structural reasons yield the inclusion Lrt(1G-OCA) ⊆ Lrt(NOCA). The
proof of the remaining inclusion Lrt(1G-OCA) ⊆ L (OCA) is more involved.
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In [12] the equivalence of OCA and a restricted online single-tape Turing machine
has been shown. This characterization is utilized for the construction [3]. In
particular, it shows that the increase of computing power gained in adding one
nondeterministic transition to real-time OCA cannot be achieved in general,
that is, for automata without time limits. On the other hand, one can avoid the
nondeterministic transition without reducing the computing power.

Theorem. The family Lrt(1G-OCA) is included in Lrt(NOCA) as well as in
L (OCA).

6 Relations to Computational Complexity

Here we consider the part of the basic hierarchy beyond linear-time OCA
languages, where none of the inclusions is known to be proper. This fact is
astonishing at a first glance, since deterministic linear time is in opposite to
nondeterministic exponential time. However, in the following open problems con-
cerning the properness of the inclusions are related to hard open problems of the
classical complexity theory. In particular, we consider the chain of inclusions

Llt(OCA) ⊆ Lrt(1G-OCA) ⊆ L (OCA) ⊆ L (CA) ⊆ L (NOCA)

where CA denotes two-way cellular automata, that is, each cell is connected to
its immediate neighbor to the right as well as to its immediate neighbor to the
left. The inclusion L (OCA) ⊆ L (CA) follows for structural reasons and the
inclusion L (CA) ⊆ L (NOCA) for structural reasons and the know equality
L (NOCA) = L (NCA) [10].

A straightforward observation is that a Turing machine sweeping back and
forth over the nonempty part of the tape can simulate a cellular automaton.
For example, a t(n)-time bounded (N)OCA is simulated by a (non)deterministic
Turing machine in n · t(n) time. The space bound of cellular automata even
reveals, for example, Lrt(N(O)CA) ⊆ NSPACE-TIME(n, n2). Together with the
famous result NSPACE-TIME(s(n), t(n)) ⊆ DSPACE(O(s(n) · log(t(n)))) of [24]
this implies immediately Lrt(N(O)CA) ⊆ DSPACE(O(n · log(n))).

In [26] the Turing machine simulation by cellular automata has been shown.

Theorem. The family L (CA) is identical with the deterministic context-
sensitive languages, that is,L (CA) = DSPACE(n). Similarly,L (N(O)CA) equals
the family of context-sensitive languages, that is, L (N(O)CA) = NSPACE(n).

Why is it so hard to (dis)prove the strictness of the inclusions?

L (CA) versus L (NOCA). At the right end of the chain we directly derive
L (CA) = L (NOCA) if and only if DSPACE(n) = NSPACE(n). So, solving the
properness of the inclusion would solve the famous open LBA-problem.

L (OCA) versus L (CA). Concerning the next inclusion L (OCA) ⊆ L (CA),
in [7] it has been shown that the complexity class ATIME(O(n)) of linear-time
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alternating Turing machine languages is a subset of L (OCA). In turn, the inclu-
sion NSPACE(

√
n) ⊆ ATIME(O(n)) is well known. Thus, we have the inclu-

sion NSPACE(
√

n) ⊆ L (OCA) and, on the other hand, L (CA) = DSPACE(n).
So, showing the properness of the inclusion in question would improve Savitch’s
famous result NSPACE(s(n)) ⊆ DSPACE(s(n)2) [24].

Lrt(1G-OCA) versus L (OCA). The family L (OCA) is still very powerful. It
contains the context-free languages and a PSPACE-complete language [7,12].
Since we have Lrt(1G-OCA) ⊆ NSPACE − TIME(n, n2) ⊆ NP, showing the
equality Lrt(1G-OCA) = L (OCA) would imply NP = PSPACE.

Llt(OCA) versus Lrt(1G-OCA). Real-time 1G-CA can simulate nondeterminis-
tic real-time multitape Turing machines. To this end, basically, the leftmost cell
simulates the state control of the Turing machine as well as the top of some finite
number of stacks that are simulated by the other cells in real time [19]. Nondeter-
ministic real-time multitape Turing machines define the so-called quasi-real-time
languages [1], that include an NP-complete language. Moreover, Lrt(1G-CA) is
equal to Lrt(1G-OCA) [3] and Llt(OCA) ⊆ DSPACE − TIME(n, n2) ⊆ P. So,
showing the equality Llt(OCA) = Lrt(1G-OCA) would imply P = NP.

7 Time-Computable Functions

So far, the complexity of cellular automata has been considered from the for-
mal language point of view. Now we turn to a slightly different approach. The
capability of OCA to time-compute functions is considered. That means, given
an input of length n and a function f , a distinguished (the leftmost) cell has to
enter am accepting state exactly after f(n) time steps (see [6] for details on the
following examples and results).

Definition 9. A function f : N → N, f(n) ≥ 1, is OCA-time-computable if
and only if there exists an OCA with unary input alphabet A = {�} that accepts
any non-empty input w exactly at time �f(|w|)�.

The family of all OCA-time-computable functions is denoted C (OCA).

Example 10. For all bases b ≥ 2, the function f(n) = n + logb(n) belongs to the
family C (OCA).

The idea of the construction for b = 2 is depicted in Fig. 7. At initial time
the OCA generates a signal in the rightmost cell (which can identify itself). The
signal moves to the left and strikes out each other cell passed through. Moreover,
in the first cell which is not struck out it generates a new signal. This one is one
time step delayed and behaves as the first one. It proceeds to the left and strikes
out each other non struck out cell. If it passes through a cell which will not be
struck out it generates again a new signal which behaves identical and so on.
The unique signal which does not find any cell to strike out sets the left border
cell into a final state for the first time.
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The number s(n) of signals on input length n is s(n) = �1 + log2(n)�. Since
the first signal arrives at the left border at time n and every new signal is delayed
by one time step, the total computation time and, hence, f(n) is n + �log2(n)�.�

n

1 2 3 4 · · · 20

t 0
1
2
3

...

20

24

Fig. 7. OCA-time-computation of the function f(n) = n+ log2(n); n = 20, f(n) = 24.

Next we explore the structure of C (OCA) in more detail. While all constants
and linear functions belong to C (OCA), the world below the identity is sparse.

Constants and Linear Functions. Let k ≥ 1 be an integer. Then the functions
f(n) = k and f(n) = k · n belong to C (OCA).

All OCA-time-computable functions below the identity are ultimately con-
stant.

Roots. Functions involving roots have to be greater than the identity. The fol-
lowing result has been shown in [22] for k ≥ 2, and in [29] for k = 1 in terms of
signals for two-way unbounded CA. However, the constructions use only leftward
signals such that they can easily be adapted.

Let k ≥ 1 be an integer. Then the function f(n) = k · n +
√

n belongs to the
family C (OCA).

Logarithms. Example 10 already shows that the functions f(n) = n + logb(n)
belong to the family C (OCA), for all b ≥ 2.

Furthermore, for all bases b1 ≥ 2 and b2 ≥ 2 it is known that the function
f(n) = 2 · n + logb1(logb2(n)) for n ≥ b2, and f(n) = 2 · n otherwise belongs to
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C (OCA). Here the factor 2 is necessary, since there is another gap between the
identity and n + log(n): Let f(n) ≥ n be an OCA-time-computable function so
that for all bases b ≥ 2, f(n) �≥ n+�logb(n)�. Then there exists a constant k ≥ 0
such that f(n) = n + k for infinitely many n ≥ 1.

Polynomials. The polynomials form a wide class of important and interest-
ing functions. The problem whether the precise functions nk are OCA-time-
computable is open. However, functions in the order of magnitude of polynomials
are known to belong to C (OCA).

Let k ≥ 1 be an integer. Then there exists a function f(n) ∈ Θ(nk) that
belongs to the family C (OCA).

Exponential Functions. Similarly as for the polynomials, it is open whether
the precise functions kn are OCA-time-computable. But after adding n more
time steps, the functions do belong to C (OCA): Let k ≥ 1 be an integer. Then
the function kn + n belongs to the family C (OCA).

Superexponential Functions. As we have seen the constant functions form a
lower bound of the range of OCA-time-computable functions. The exponential
functions form an upper bound:

If f belongs to C (OCA) then there exists an integer k ≥ 1 such that
limn→∞

f(n)
kn = 0.

For example, the function f(n) = 22
n

is not OCA-time-computable since the
series { 22

n

kn }n≥1 is unbounded for all k ≥ 1. Similarly, the factorial function n!
does not belong to C (OCA).

constant-time

real-time

real+o(logarithmic)-time

real+logarithmic-time

linear-time

polynomial-time

exponential-time

superexponential-time

(OCA)

Fig. 8. Structure of the family C (OCA).
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The structure of the family C (OCA) is depicted in Fig. 8.
More details and further results on the family of OCA-time-computable func-

tions can be found in [6]. For example, several closure properties are derived
that – in the positive case – can be used to construct new OCA-time-computable
functions from given ones. Additionally, C (OCA) is characterized in terms of
formal languages. That is, f(n) ≥ n belongs to C (OCA) if and only if Lf =
{ anbf(n)−n | n ≥ 1 } belongs to Lrt(OCA).

The time-computation at some points is concerned with the concepts of sig-
nals and time-constructibility. Further results on these topics can be found, for
example, in [4–6,9,15,30,31].
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46 allé d’Italie, 69364 Lyon Cedex 7, France
3 Universidad de Chile - DII - DIM - CMM (UMR 2807 - CNRS),

2120 Blanco Encalada, Santiago, Chile
kperrot@dim.uchile.cl
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Abstract. In this paper we prove that the general avalanche problem
AP is in NC for the Kadanoff sandpile model in one dimension, answer-
ing an open problem of [2]. Thus adding one more item to the (slowly)
growing list of dimension sensitive problems since in higher dimensions
the problem is P-complete (for monotone sandpiles).

Keywords: Sandpile models · Discrete dynamical systems · Computa-
tional complexity · Dimension sensitive problems

1 Introduction

This paper is about cubic sand grains moving around on nicely packed columns
in one dimension (the physical sandpile is two dimensional, but the support of
sand columns is one dimensional). The Kadanoff Sandpile Model is a discrete
dynamical system describing the evolution of sand grains. Grains move according
to the repeated application of a simple local rule until reaching a fixed point.

We focus on the avalanche problem (AP), namely the problem of deciding if
adding a single grain of sand in the first column of a sandpile given as an input
causes a series of topples which hit some position (also given as a parameter).

This is an interesting problem from several points of view. First of all, it is
dimension sensitive. Indeed, it is proved to be P-complete for sandpiles in dimen-
sion 2 or higher [2] and we proved it in NC1 in this paper. Roughly speaking
the problem is highly parallelisable in dimension 1 but not in higher dimensions
(unless P=NC, of course). Second, an efficient solution to this problem could
be useful for practical applications. Indeed, one can use sandpile models for
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 21–30, 2015.
DOI: 10.1007/978-3-319-18812-6 2



22 E. Formenti et al.

implementing load schedulers in parallel computers [9]. In this context, answer-
ing to AP helps in forecasting the number of supplementary processors that are
needed to satisfy one more load which is submitted to the system.

The paper is structured as follows. Next section introduces the basic notions
and results about Kadanoff sandpiles. Section 3 gives the formal statement of
AP and recalls known results about it. In Sect. 4, main lemma and notions
that are necessary for the proof of the main result are introduced and proved.
Section 5 contains the main result. Section 6 draws our conclusions and give some
perspectives.

2 Kadanoff Sandpile Model

p <

Fig. 1. Transition rule
with parameter p = 3.

We present the definition of the model in dimension
one. A configuration is a decreasing sequence of inte-
gers h = ωh1, h2, . . . , h

ω
n , where hi is the number of

stacked grains (height) on column i, and such that
all the heights on the left of h1 equal h1, and on the
right of hn equal hn. Note that all the configurations
we consider are finite. According to a fixed parameter
p, the transition rule is the following: if the difference
of heights between two columns i and i + 1 is strictly
greater than p, then p grains can fall from column i and one of them land on
each of the p adjacent columns on the right (see Fig. 1).

A more uniform and convenient representation of a configuration uses slopes.
The slope at i is the height difference si = hi − hi+1. The transition rule thus
becomes: if si > p, then

si−1 �→ si−1 + p
si �→ si − (p + 1)
si+p �→ si+p + 1.

|h| = |s| = n − 1 is the length of the configuration, and the slope of an index i
such that i < 1 or n − 1 < i equals 0. The transition rule may be applied using
different update policies (sequential, parallel, etc.), however we know from [8]
that for any initial configuration, the orbit graph is a lattice, hence the stable
configuration reached is unique and independent of the update policy. When,
from the configuration s to s′, the rule is applied on column i, we say that i is
fired and we denote s

i→ s′ or simply s → s′.

Notation 1. We denote ωsi (resp. sω
i ) to say that all the slopes on the left

(resp. right) of column i are equal to si.

Notation 2. For any a, b ∈ Z with a ≤ b, let [[a, b]] = [a, b] ∩ N and [[a, b) =
[a, b) ∩ N. Finally, s[[a,b]] denotes the subsequence (sa, sa+1, . . . , sb).

A configuration s represented as a sequence of slopes is monotone if si ≥ 0 for all
i ∈ [[1, |s|). A configuration is stable if all its columns are stable, i.e., si ≤ p for
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all i ∈ [[1, |s|). A stable monotone configuration is therefore a finite configuration
s of the form

ω0, s1, s2, . . . , sn−1, 0ω

Let gSM(n) be the set of all stable monotone configurations of length n
(note that in [2], the authors added the restrictive condition si > 0 for all i,
whereas we let si ≥ 0 for all i and add the letter g standing for general). Finally,
Let gSM =

⋃
n∈N gSM(n).

3 Avalanche Problem AP

An avalanche is informally the process triggered by a single grain addition on
column 1 (a formal definition is given at the beginning of Sect. 4). The size of an
avalanche may be very small, or quite long, and is sensible to the tiniest change
on the configuration. We are interested in the computational complexity of
avalanches.

Avalanche Problem AP
A parameter p ∈ N, with p ≥ 1, is fixed.
Instance: a configuration s ∈ gSM

a column k ∈ (|s|, |s| + p]]
Question: does adding a grain on column 1 trigger a grain addition

on column k?

For a fixed parameter p, the size of the input is in Θ(|s|). Thanks to the
convergence, the answer to this question is well defined and independent of the
chosen update strategy.

Let us give some examples. For p = 2, consider the instance

ω0, 2, 0, 2, 1, 1, 2, 1, 0, 2, 0ω ,

where the slope of column 1 is underlined. The question is “does adding a grain
on column 1 increases the slope of column k equal to 10 or 11?” And the answer
is negative in both cases. Here is a sequential evolution:

ω0,3, 0, 2, 1, 1, 2, 1, 0, 2, 0ω → ω0, 2, 0, 0, 3, 1, 1, 2, 1, 0, 2, 0ω

→ ω0, 2, 0, 2, 0, 1, 2, 2, 1, 0, 2, 0ω

For p = 3, consider the instance 0ω, 3, 0, 2, 3, 1, 3, 1, 0ω . We have to decide if
column k equal to 8, 9 or 10 ends up with a strictly positive slope after a grain is
added on column 1. The answer is positive, positive and negative, respectively.
Here is a sequential evolution:

ω0,4, 0, 2, 3, 1, 3, 1, 0ω → ω0, 3, 0, 0, 2, 4, 1, 3, 1,ω 0
→ ω0, 3, 0, 0, 5, 0, 1, 3, 2, 0ω → ω0, 3, 0, 3, 1, 0, 1, 4, 2, 0ω

→ ω0, 3, 0, 3, 1, 0, 4, 0, 2, 0, 1, 0ω → ω0, 3, 0, 3, 1, 3, 0, 0, 2, 1, 1, 0ω

Known results on the dimension sensitive complexity of AP are the followings.
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– In dimension one: the restriction of AP to the set of configurations s satisfying
si > 0 for all i is known to be in NC1 [2]. The key simplification induced by
this restriction is the following: an avalanche goes forward if and only if it
encounters a slope of value p at distance at most p from the previous one, and
thus stops when there are p consecutive slopes strictly smaller than p. This
condition is not sufficient anymore when we allow slopes of value 0, as shown
for example by the instance ω0, 2, 0, 2, 2, 1, 2, 2, 0ω and p = 2:

ω0,3, 0, 2, 2, 1, 2, 2, 0ω → ω0, 2, 0, 0, 3, 2, 1, 2, 2, 0ω

→ ω0, 2, 0, 2, 0, 2, 2, 2, 2, 0ω

– In dimension two: there are two possible definitions of the model. One has
two directions of grain fall, and a configuration is a tabular of sand content
that is decreasing with respect to those two directions. In this model AP
is P-complete for all parameter p > 1 [2]. The second definition follows the
original model of Bak, Tang and Wiesenfeld [1], and it has been proved that
information cannot cross (under reasonable conditions) when p = 1, a strong
obstacle for a reduction to a P-complete circuit value problem [6].

– In dimension three or greater: sandpiles are capable of universal computa-
tion [7].

4 Avalanches, Peaks and Cols

This subsection partly intersects with the study presented in [11], but follows
a new and hopefully clearer formulation. For a configuration s ∈ gSM, an
avalanche is the process following a single grain addition on column 1, until
stabilization. We will consider avalanches according to the sequential update
policy, and prove that it is formed by the repetition (not necessarily alternated)
of the following two basic mechanisms:

– fire a column greater than all the previously fired columns;
– fire the immediate left neighbor of the last fired column.

An avalanche strategy for s is a sequence a = (a1, . . . , aT ) of columns such that
s+

a1→ . . .
aT→ s′, where s+ denotes the configuration s ∈ gSM on which a grain

has been added on column 1, and s′ is stable. Such a strategy is not unique,
therefore we distinguish a particular one which we think is the simplest.

Definition 1. The avalanche for s is the minimal avalanche strategy for s
according to the lexicographic order, which means that at each step the leftmost
column is fired.

For example, let us consider p = 2 and the configuration s = ω0, 2, 2, 2, 2, 2, 0ω,
then (0, 2, 4, 1, 3) is an avalanche strategy, but the avalanche for s is (0, 2, 1, 3, 4)
and leads to the same final configuration thanks to the lattice structure of the
model [8].

Let us give two terms corresponding to the two basic mechanisms underlying
the avalanche process, and prove the above mentioned description.
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– at is a peak ⇐⇒ at > max a[[1,t[[;
– at is a col ⇐⇒ at = at−1 − 1.

First, a simple Lemma.

Lemma 1. An avalanche fires at most once every column.

Proof. It is straightforward to notice that in order for a column to receive enough
units of slope to be fired twice, another column must have been fired twice before,
which leads to the impossibility of this situation when adding a single grain on
column 1 of a stable configuration. �

Now, the intended description.

Lemma 2. The avalanche of a configuration s ∈ gSM is a concatenation of
peaks and cols.

Proof. Let a = (a1, . . . , aT ) be the avalanche for s. We prove the lemma by
induction on the avalanche size. The first fired column is necessarily a1 = 1,
and we take as a convention that max ∅ = 0 thus a1 is a peak. Suppose that
the result is true until time t, we’ll prove that at+1 is either a peak or a col. It
follows from Lemma 1 that at+1 �= at, and let us denote at−j with j ≥ 0 the
largest (rightmost) peak before time t+1. The induction hypothesis implies that
columns at to at−j − 1 are cols.

at . . . at−j+2
at−j+1= at−j+1 − 1

at−j

– If at+1 > at, by induction on i from 0 to j − 1, we have at+1 > at + i because
at + i has already been fired by hypothesis and a column cannot be fired
twice (Lemma 1). As a consequence at+1 ≥ at−j and for the same reason
at+1 > at−j , which was the greatest peak so far, therefore at+1 is also a peak.

– If at+1 < at, then, by contradiction, if at+1 �= at − 1 then the firing at at

does not influence the slope at at+1, and firing this latter after at contradicts
the minimality of the avalanche according the lexicographic order, because
column at+1 was already unstable at time t. Therefore, at+1 is a col. �

Interestingly, avalanches are local processes because they cannot fire a column
too far (neither on the left nor on the right) from the last fired column, as it is
proved in the following lemma.

Lemma 3. Let a be the avalanche of a configuration s ∈ gSM, q > 0 is a peak
of a implies that sq = p and there exists another peak q′ satisfying q−q′ ≤ p.
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Proof. Let t be such that q = at. By definition of peak, at time t column q could
only have received units of slope from columns on its left, that is, by Lemma 1 it
received at most 1 unit of slope from column q − p. Since it was stable on configu-
ration s, it has necessarily received this unique unit from column q−p and became
unstable thanks to it, which straightforwardly proves both claims. �

Note that the converse implication is false. Figure 2 illustrates the results of this
section.

Fig. 2. For p = 4, the arrow pictures the proceedings of an avalanche, which is a
concatenation of peaks and cols (Lemma 2) where two consecutive peaks are at distance
at most p (Lemma 3).

5 AP is in NC1 in dimension one

We consider that the input configuration is represented as a sequence of slopes,
since it is possible to efficiently transform a representation into another in parallel
(for a configuration of size n, it requires constant time on n parallel processors).
We consider the parameter p as a fixed constant, as it is part of the model
definition

Remark 1. In this paper, we consider the parameter p as a fixed constant which
is part of the model definition. Indeed, if p would have been part of the input,
which would therefore have size (|s| + 2) log p, then comparing the height of a
column to p (in order to know if the rule can be applied at this column) would
not take a constant time anymore. This implies many low level considerations
we want to avoid and inflate complexity.

We recall that NC=
⋃

k∈N PT/WK(logk n, nk), where PT/WK(f(n), g(n)) (Paral-
lel Time / WorK) is the class of decision problems solvable by a uniform family of
Boolean circuits with depth upper-bounded by f(n) and size (number of gates)
upper-bounded by g(n), which is more conveniently seen for our purpose as
solvable in time O(f(n)) on O(g(n)) parallel PRAM processors. We recall that
NC1=PT/WK(log n,R[n]) where R[n] denotes the set of polynomial functions.

As a consequence of Lemmas 2 and 3, the avalanche process is local. More-
over, if we cut the configuration into two parts, we can compute both parts of
the avalanche independently, provided a small amount of information linking the
two parts. This independency will be at the heart of our construction in order to
compute the avalanche efficiently in parallel. Let us have a closer look at how to
encode this “midway information”, which we call status (a notion named trace
has been defined in [12], which shares some of those ideas).



Computational Complexity of the Avalanche Problem 27

For a column i > p of a configuration s, the status at i of the avalanche a
for s is the boolean p-tuple (b0, . . . , bp−1) such that bj = 1 if column i − p + j
is fired within a, and 0 otherwise. For example, consider the avalanche of Fig. 2,
its status at column 8 (the column where the avalanche starts has index 1) is
(0, 1, 0, 1).

We claim that given a column i, the incomplete configuration s ∩ [[i, |s|) and
the status at i of the avalanche a for s, we can compute the avalanche on the
part of s that we have, that is, a ∩ [[i, |s|).

Note that in the proof of Theorem 1 we use only simple instances of Lemma 4,
but we still present it in a general form.

Lemma 4. Given

– a part s ∩ [[i, j) with i + p < j,
– the status at i of the avalanche a for s,

one can compute

– the avalanche on a ∩ [[i, j − p]],
– the status of a at j − p + 1,

in time O(j − i) on one processor.

i j−p j

in
status

in
slopes

status
out

Proof. We claim that given the status of the avalanche a at a column k, we
can find the smallest (leftmost) peak after column k, let us denote it by q =
min{q | q ≥ k and q is a peak}, and the part of a between k and q, i.e., a∩ [[k, q]].
This will be done in constant time thanks to Lemma 3: q − k < p so we have
to check a constant number of columns. The result then follows an induction
on the peaks within [[i, j): from the status at k (initialized for k = i), we find
the next peak q and compute a ∩ [[k, q]], append it to the previously computed
a ∩ [[i, k]], which also allows to construct the status at q + 1 in constant time.
And this process is repeated at most a linear number of times:

– either the avalanche stops at some time,
– or the greatest peak encountered is between j − p and j − 1,

and in both cases we can compute the intended objects by appending the pre-
viously computed parts of the avalanche (Lemma 2, recall that the status at
j − p + 1 tells wether columns between j − p + 1 − p and j − p are fired or not).



28 E. Formenti et al.

Knowing the status of a at k, let us explain how to compute the smallest
peak after column k, denoted q, and a ∩ [[k, q]]. Let (b0, . . . , bp−1) be the status
of a at k. From Lemma 3 the peak q has a value of slope equal to p in s and
is at distance smaller than p from k. We will now prove that it is very easy to
find q in constant time: q is the smallest column � such that 0 ≤ � − k < p, and
s� = p and b�−k = 1.

– Such an � is a peak: since b�−k = 1, column � − p is fired. When it is fired,
it gives one unit of slope to column � which can be fired since its slope is
initially equal to p and becomes p + 1. It cannot be a col, which would mean
that there is another peak q′′, greater, which is fired before �, but from Lemmas
2 and 3 this contradicts the minimality of the avalanche because when q′′ is
fired the column � is also firable (� − p has already been fired since it is at
distance strictly greater than p of q′′).

– The smallest peak greater or equal to k satisfies those three conditions: the
two first conditions are straightforward from Lemma 3. The last condition can
be proved by contradiction: suppose there is a peak q′′ such that bq′′−k = 0,
i.e., column q′′ − p is not fired in the avalanche, then q′′ still needs to receive
some units of slope to become unstable, which can only come from its left
neighbor q′′ + 1 thus this latter has to be fired before it, a contradiction.

As a consequence of the two above facts, the smallest such � is indeed the
intended peak q, and can be computed in constant time. There are O(j − i)
peaks within [[i, j), and each step of the induction needs a constant computation
time on one processor, thus the last part of the lemma holds. �

Thanks to Lemma 4 we can perform the computation efficiently in parallel
as follows.

Theorem 1. For a fixed parameter p and in dimension one, AP is in NC1.

Proof. An input of AP is a configuration s ∈ gSM and a column k ∈ (|s|, |s|+p]].
Let k = |s| + κ with κ ∈ (0, p]].

The proof works in two stages: first, we compute for every position i the function
that associates to each status at i, the corresponding status at i + 1, which we
call “the function status at i → status at i + 1” (since status are elements of
{0, 1}p, the size of these functions is a constant). This can be done in constant
time on |s| parallel PRAM using Lemma 4; and in a second stage we compute
in parallel the function status at p + 1 → status at |s| + 1 using log|s| steps, by
pairwise composing the functions as illustrated in Fig. 3.

One of the processors can then finish the job in constant time by first com-
puting the status ḃ at p + 1, which can easily be done in constant time using
only (s1, . . . , sp+1) since either s1 is a peak or the avalanche stops, then either
sp+1 is a peak or the avalanche stops, and finally the cols within s1 and sp+1

are straightforwardly found thanks to Lemma 2. Then, it computes the status
b̈ = μ(ḃ) at |s| + 1, and answers yes if and only if b̈κ−1 = 1, because columns
on the right of |s| cannot be fired but can only receive grains from their left
neighbor at distance p, so does column k = |s| + κ.
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. . . i → i + 1 i + 1 → i + 2 i + 2 → i + 3 i + 3 → i + 4 i + 4 → i + 5 i + 5 → i + 6 i + 6 → i + 7 i + 7 → i + 8 . . .

i → i + 2 i + 2 → i + 4 i + 4 → i + 6 i + 6 → i + 8

step 1

i → i + 4 i + 4 → i + 8

step 2

i → i + 8

step 3

Fig. 3. Illustration of the parallel computation, each symbol x → y represents the
function status at x → status at y. Dashed on the top are the functions computed
during the first stage. Then, in log|s| steps (each of them uses a polynomial number of
parallel processors and a constant amount of time) we compose the circled functions
in order to compute the function pointed out with an arrow. This composition is
straightforwardly performed in constant time with the two processors: one of them
transmits its function to the other one (a function of constant size is transmitted in
constant time), and the latter composes two functions of constant size. . . in constant
time. We perform those computations such that the resulting function µ has type:
status at p + 1 → status at |s| + 1.

The complete procedure uses a logarithmic amount of time on a polyno-
mial number of parallel processors (the input has size Θ(|s|)), i.e., the decision
problem AP is in the complexity class NC1. �

6 Conclusion and Open Problem

In this paper we proved that AP is in NC1 in dimension 1 solving an open
question of [2]. Going in the direction of [3], one might ask what is the complexity
of AP when the constraint on monotonicity is relaxed. Clearly, by the results
of [3], the problem is in P, but is it complete?

Another possible generalisation concerns symmetric sandpiles (see [4,5,10],
for example). In this case, the lattice structure of the phase space is lost and
therefore we cannot exploit it in the solving algorithms. This would probably
direct the investigations towards non-deterministic computation and shift com-
plexity results from P-completeness to NP-completeness.

It also remains to classify the computational complexity of avalanches in
two dimensions when the parameter p equals 1 (that is, in the classical model
introduced by Bak et al. [1]). As it is exposed in [6], this question interestingly
emphasizes the links between NC, P-completeness, and information crossing.
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Abstract. We study two-dimensional rotation-symmetric number-
conserving cellular automata working on the von Neumann neighbor-
hood (RNCA). It is known that such automata with 4 states or less
are trivial, so we investigate the possible rules with 5 states. We give a
full characterization of these automata and show that they cannot be
strongly Turing universal. However, we give example of constructions
that allow to embed some boolean circuit elements in a 5-states RNCA.

1 Introduction

Cellular automata (CA) are widely studied deterministic, discrete and massively
parallel dynamical systems. They were introduced by J. von Neumann and S. Ulam
in the 1940s (published posthumously in 1966) to study self replicating sys-
tems [10].

Von Neumann developped a 29-states CA working on the “4 closest cells”
neighborhood (that would later be known as the “von Neumann neighborhood”)
capable of replicating patterns, and used it to describe the notion of computa-
tional universality. In 1968, E. Codd improved von Neumann’s construction by
devising an 8-states universal rotation-symmetric CA working on the same neigh-
borhood [3] and proving that 2-states von Neumann neighborhood CA could
not be strongly universal. In 1970, E. Banks proved the existence of a 4-states
strongly universal rotation-symmetric CA on von Neumann’s neighborhood and
a 2-states weakly universal one [1]. This search for small universal automata
was finally completed in 1987 when T. Serizawa published a 3-states strongly
universal CA on the von Neumann neighborhood [7].

Since their introduction, cellular automata have been broadly used as a model
for biological, chemical and physical processes. In 1969, K. Zuse was the first to pro-
pose the theory that physics is computation and that the universe could be seen as a
cellular automaton [11]. The notion of number conservation appeared as a result of
attempts to implement physical conservation laws (energy, mass, particles, etc.) in
cellular automata. It was first defined by K. Nagel and M. Schreckenberg to model
road traffic flow [6] and has since become an important subject of research in the

c© Springer International Publishing Switzerland 2015
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cellular automata community as a natural example of global property enforced by
local conditions.

In the early 2000s, H. Fuks and N. Boccara [2], B. Durand et al. [4] and
A. Moreira [5] independently proved that number-conservation was a decidable
property by giving explicit characterizations of local transition rules of number-
conserving cellular automata (NCCA).

Imai et al. proved the existence of a weakly universal 29-states von Neumann
neighborhood rotation-symmetric NCCA and this result was later improved by
N. Tanimoto and K. Imai who managed to reduce the number of required states
to 14 by using an exact characterization of von Neumann neighborhood NCCA
[8]. From the same characterization, N. Tanimoto et al. proved that von Neumann
neighborhood rotation-symmetric NCCA with 4 states or less are all trivial [9].

In this article, we investigate the computational power of 5-states von
Neumann neighborhood rotation-symmetric NCCA. We obtain a precise descrip-
tion of the possible transition rules of such automata and prove that none of
them can be strongly universal as their evolution from a finite initial configu-
ration must be ultimately periodic. However, we show that they are capable of
some computation by exhibiting patterns that simulate the behavior of some
boolean circuit elements.

2 Definitions

In this article, we will only consider deterministic 2-dimensional cellular automata
working on the von Neumann neighborhood.

Definition 1 (Cellular Automaton). A 2-dimensional von Neumann neigh-
borhood cellular automaton (CA) is a triple A = (Q, f, q0) where

– Q is a finite set. The elements of Q are called states;
– f : Q5 → Q is a function called the local transition function of A;
– q0 ∈ Q is called the quiescent state and f(q0, q0, q0, q0, q0) = q0.

A 2-dimensional configuration over Q is a mapping C : Z2 → Q. The elements
of Z2 are called cells and for a cell c ∈ Z

2, we say that C(c) is the state of c in
the configuration C.

The set of all configurations over Q is denoted by

Conf(Q) = {c, c : Z2 → Q}
From the local transition function f , we define a global transition function

F : Conf(Q) → Conf(Q) obtained by replacing the state of each cell by the
result of f applied to the cell’s state and the states of its 4 closest neighbors1:
∀C ∈ Conf(Q),

F (C) =
{

Z
2 → Q

(x, y) �→ f(C(x, y),C(x, y + 1),C(x + 1, y),C(x, y − 1),C(x − 1, y))

1 This is the von Neumann neighborhood.
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As is commonly done in dynamical systems theory, we will use the same notation
for the cellular automaton and its global transition function. The image of a
configuration C by the global transition function of an automaton A will therefore
be denoted A(C).

Definition 2 (Finite Configurations). Given a cellular automaton A = (Q, f,
q0), we say that a configuration C ∈ Conf(Q) is finite if only a finite number of
cells are in a state other than q0 in C.

The rectangular bound of a finite configuration C is the smallest rectangle
containing all the non-quiescent cells of C. We call width and height of the
configuration C the width and height of its rectangular bound.

From the locality of the transition rule of the automaton and the fact that
f(q0, q0, q0, q0, q0) = q0 it is clear that the image by a CA of a finite configuration
C of dimensions (w×h) is also finite and of dimensions (w′ ×h′) with w′ ≤ w+2
and h′ ≤ h + 2.

Definition 3 (Rotation-Symmetry). A von Neumann neighborhood cellular
automaton A = (Q, f, q0) is said to be rotation-symmetric if its local transition
function f is invariant by rotation of a quarter cycle:

∀c, u, r, d, l ∈ Q, f(c, u, r, d, l) = f(c, r, d, l, u)

If the set of states of the automaton is a subset of Z, it is possible to quantify
the variations of state values between a configuration and its image. The notion
of number-conservation is inspired from physical conservation laws and states
that the total sum of all states on a configuration is conserved by the global
transition function.

Definition 4 (Number Conservation). A number-conserving cellular auto-
maton (NCCA) is a cellular automaton A = (Q, f, q0) such that Q ⊂ Z and for
any finite configuration C ∈ Conf(Q),

∑
c∈Z2

A(C)(c) − C(c) = 0

There are other commonly used definitions of number-conservation, some of
which apply to infinite configurations as well, but most of these definitions are
known to be equivalent [4].

In this article, we will be studying von Neumann neighborhood rotation-
symmetric number-conserving cellular automata. These will be denoted RNCA
from now on.

Definition 5 (Trivial Automaton). A cellular automaton A = (Q, f, q0) is
said to be trivial if for every configuration C ∈ Conf(Q), A(C) = C.

Definition 6 (Strong Turing Universality). A cellular automaton A is said
to be strongly Turing-universal if it can simulate any deterministic Turing machine
from a finite initial configuration.
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3 Characterization of 5-States RNCA

In this section, we consider 5-states RNCA. We use the characterization by
Tanimoto et al. [8] to show that all RNCA with less than 5 states are trivial and
describe precisely the possible local transition functions of 5-states RNCA.

Theorem 1 (Tanimoto et al. [8]). A rotation-symmetric von Neumann neigh-
borhood CA A = (Q, f, q0) with Q ⊂ Z is number-conserving if and only if
∃g, h : Q2 → Z, ∀c, u, r, d, l ∈ Q,

f(c, u, r, d, l) = c + g(c, u) + g(c, r) + g(c, d) + g(c, l)
+ h(u, r) + h(r, d) + h(d, l) + h(l, u)

g(c, u) = − g(u, c), h(u, r) = −h(r, u)

The function g represents direct transfers of value to the central cell from its
neighbors (along the horizontal and vertical directions). The function h corre-
sponds to indirect (diagonal) transfer between the neighbors of the central cell.
The functions g and h are called flow functions of the automaton A.

Remark: If A = (Q, f, q0) is a RNCA, the function g is uniquely defined by f
since for all states x, y ∈ Q,

f(x, y, y, y, y) = x + 4g(x, y) + 4h(y, y) = x + 4g(x, y)

As for the function h, for all states x, y, z, t ∈ Q the value of h(x, y) + h(y, z) +
h(z, t) + h(t, x) is uniquely defined but there are multiple functions matching
this condition as discussed in Subsect. 3.2.

3.1 Direct Flow

Lemma 1. For a RNCA A = (Q, f, q0) with flow functions g and h, if g ≡ 0
then A is trivial.

Proof. We show that if the automaton is not trivial, it must have infinitely
many states. According to Theorem 1, if g ≡ 0, the local transition function of
the automaton is

f(c, u, r, d, l) = c + h(u, r) + h(r, d) + h(d, l) + h(l, u)

If A is not trivial, there exist states c, u, r, d, l ∈ Q and an integer δ 
= 0 such
that

f(c, u, r, d, l) = c + δ

so h(u, r) + h(r, d) + h(d, l) + h(l, u) = δ and for any state q ∈ Q,

f(q, u, r, d, l) = q + h(u, r) + h(r, d) + h(d, l) + h(l, u) = q + δ

This means that for any q ∈ Q, (q + δ) is also a state of A which is not possible
if Q is finite. ��
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Lemma 2. Let A = (Q, f, q0) be a RNCA with flow functions g and h. For any
two states a, b ∈ Q if we denote g(a, b) = α, then

{a, a + α, a + 2α, a + 3α, a + 4α, b, b − α, b − 2α, b − 3α, b − 4α} ⊆ Q

Proof. We know that

g(a, b) = −g(b, a) = α, g(a, a) = g(b, b) = 0,

h(a, b) = −h(b, a), h(a, a) = h(b, b) = 0

By Theorem 1, we have

f(a, a, a, a, b) = a + 3g(a, a) + g(a, b) + h(a, b) + h(b, a) + 2h(a, a)
= a + g(a, b) = a + α

Similarly, we get

f(a, a, a, b, b) = a + 2α, f(a, a, b, b, b) = a + 3α, f(a, b, b, b, b) = a + 4α,

f(b, b, b, b, a) = b − α, f(b, b, b, a, a) = b − 2α, f(b, b, a, a, a) = b − 3α,

f(b, a, a, a, a) = b − 4α ��

As a consequence of Lemmas 1 and 2, if a RNCA A = (Q, f, q0) with flow
functions g and h is not trivial, there exist two states a, b ∈ Q such that g(a, b) =
α > 0 and the set of states of the automaton contains 5 elements in arithmetic
progression from a of difference α. Since the 5 first elements of the arithmetic
progression from b of difference −α are also in Q, the only way for the CA to
have only 5 states is that

b = a + 4α

and

⎧⎨
⎩

g(a, b) = α
g(b, a) = −α
g(x, y) = 0 otherwise

3.2 Indirect Flow

Let us now consider the possibilities for h. The function h is slightly more com-
plex than g because it is only properly characterized on cycles: the exact value
of h(a, b) for two states has no meaning in terms of CA dynamics, the real
constraints are on the sums h(a, b)+h(b, c)+h(c, d)+h(d, a) for states a, b, c, d.

Definition 7. Given a finite set Q ⊆ Z and a function h : Q2 → Z such that
for all a, b ∈ Q, h(a, b) = −h(b, a), we define the cyclic extension h̃ of h as

h̃ :
{

Q∗ → Z

(q1, q2, . . . , qn) �→ h(q1, q2) + h(q2, q3) + . . . + h(qn−1, qn) + h(qn, q1)
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Note that although h̃ is entirely defined by h, different functions can have
the same cyclic extension. For instance if h′(x, y) = y − x + h(x, y) then h̃ = h̃′.
However, in Theorem 1 only the cyclic extension of h is actually used to define
the behavior of the automaton.

The function h̃ is entirely defined by its values on triples:
∀q1, q2, . . . , qn ∈ Q,

h̃(q1, q2, . . . , qn) = h(q1, q2) + . . . + h(qn, q1)
= h(q1, q2) + h(q2, q3) + h(q3, q1)

+ h(q1, q3) + h(q3, q4) + h(q4, q1)
+ . . .

+ h(q1, qn−1) + h(qn−1, qn) + h(qn, 1)

= h̃(q1, q2, q3) + h̃(q1, q3, q4) + . . . + h̃(q1, qn−1, qn)

Moreover, it is easy to check from the definition that h̃ is

– null on pairs: h̃(a, b) = 0;
– invariant by repetition of a state: h̃(a, a, q1, q2, . . . , qn) = h̃(a, q1, q2, . . . , qn);
– invariant by rotation: h̃(q1, q2, . . . , qn) = h̃(q2, q3, . . . , qn, q1);
– anti-symmetric: h̃(q1, q2, . . . , qn) = −h̃(qn, qn−1, . . . , q1).

Let us now consider a 5-states non trivial RNCA A = (Q, f, q0) with flow func-
tions g and h. We have already shown that the states of the automaton are
Q = {a + iα | 0 ≤ i ≤ 4}. Without loss of generality we can renormalize the
states to Q = {0, 1, 2, 3, 4} (substracting a constant to all states and dividing by
a common factor does not affect the number conservation of the CA). We also
know that g(0, 4) = 1, g(4, 0) = −1 and for all other x, y ∈ Q, g(x, y) = 0.

First, let us consider x, y, z ∈ Q \ {0}. From Theorem 1, we have

f(4, x, x, y, z) = 4 + 2g(4, x) + g(4, y) + g(4, z) + h̃(x, x, y, z)

= 4 + h̃(x, y, z)

This means that (4 + h̃(x, y, z)) ∈ Q and since 4 is the largest element of Q,
we have h̃(x, y, z) ≤ 0. Because x, y and z could be any state other than 0, the
same reasoning gives h̃(z, y, x) = −h̃(x, y, z) ≤ 0 which implies h̃(x, y, z) = 0.

Similarly, for states x, y, z ∈ Q \ {4}, by considering f(0, x, x, y, z) we get
h̃(x, y, z) = 0.

So the only possible non-zero triples of h̃ are triples containing both 0 and
4. Because h̃(0, 0, 4) = h̃(0, 4) = 0, and h̃(4, 4, 0) = h̃(4, 0) = 0, the only possible
non-zero triples of h̃ are those including 0, 4 and a third different state.

Moreover, for x, y ∈ Q \ {0, 4}, we have

h̃(0, 4, x, y) = h(0, 4) + h(4, x) + h(x, y) + h(y, 0)
= h(0, 4) + h(4, x) + h(x, 0) + h(0, x) + h(x, y) + h(y, 0)

= h̃(0, 4, x) + h̃(0, x, y)

= h̃(0, 4, x)
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but also

h̃(0, 4, x, y) = h̃(4, x, y, 0)
= h(4, x) + h(x, y) + h(y, 0) + h(0, 4)
= h(4, x) + h(x, y) + h(y, 4) + h(4, y) + h(y, 0) + h(0, 4)

= h̃(4, x, y) + h̃(4, y, 0)

= h̃(4, y, 0) = h̃(0, 4, y)

So for x, y ∈ Q \ {0, 4}, h̃(0, 4, x) = h̃(0, 4, y). All that remains to do now is
consider what are the possible values for h̃(0, 4, 1). By considering

f(0, 0, 0, 4, 1) = 0 + g(0, 4) + h̃(0, 0, 4, 1)

= 1 + h̃(0, 4, 1)

we get that (1 + h̃(0, 4, 1)) ∈ Q so h̃(0, 4, 1) ≥ −1. Similarly, by considering
f(4, 0, 4, 4, 1) we get h̃(0, 4, 1) ≤ 1.

The value of h̃(0, 4, 1) fully defines h̃, as we know that the function is zero-
valued on all triples not containing 0 and 4 and all values on triples containing
0 and 4 can be obtained from h̃(0, 4, 1) by cycle, symmetry and replacing 1 with
any other state in Q \ {0, 4}. A possible function h that would correspond to
such an h̃ would be defined by

h(0, 4) = h̃(0, 4, 1)

h(4, 0) = −h̃(0, 4, 1)
h(x, y) = 0 otherwise

We have therefore proved the following result

Lemma 3. If A is a 5-states non-trivial RNCA, there exists a constant β ∈
{−1, 0, 1} such that A is equivalent (up to state renaming) to an RNCA with
states Q = {0, 1, 2, 3, 4} and flow functions g and h such that:

g(0, 4) = 1
g(4, 0) = −1
g(x, y) = 0 otherwise

h(0, 4) = β

h(4, 0) = −β

h(x, y) = 0 otherwise

Remark: Choosing β = 0 corresponds to h ≡ 0, which leads to a very simple CA
for which states 1, 2 and 3 are permanent (a cell in one of these states can never
change) and the state of a cell in state 0 (resp. 4) increases (resp. decreases) by
the number of its neighbors in state 4 (resp. 0).

Choosing β = 1 or β = −1 leads to two different RNCA that are mirror
images of each other.
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4 The Power of 5-States RNCA

In this section we use the characterization of 5-states RNCA from Lemma 3 to
investigate the computational power of such automata. We show that although
they cannot be strongly Turing universal, they can simulate some logical circuit
elements, indicating that they can perform some sorts of computations.

4.1 Strong Universality

Theorem 2. The evolution of a 5-states RNCA A from a finite configuration
C is ultimately periodic:

∃i, j ∈ N, i < j, Ai(C) = Aj(C)

Proof. Consider a non-trivial 5-states RNCA A. From Lemma 3 we can assume
that A = (Q, f, q0) with Q = {0, 1, 2, 3, 4} and consider that its flow functions
g and h satisfy the descriptions of the lemma. We show that starting from a
finite configuration C0, non-quiescent states cannot appear arbitrarily far in any
direction.

There are two cases to consider, depending on the choice of the quiescent
state q0. First if q0 ∈ Q \ {0, 4}, we show that non-quiescent states cannot
appear outside of the bounding rectangle of the starting configuration C0 (see
Fig. 1).

By induction, if at time t all cells outside of the rectangular bounds of C0 are
quiescent, then each of these cells has at least 3 neighbors in state q0. Since q0 
= 0
and q0 
= 4, for all x ∈ Q, g(q0, x) = h̃(q0, q0, q0, x) = 0, so f(q0, q0, q0, q0, x) = q0
and all cells outside of the rectangular bound of C0 remain in state q0 at time
(t + 1).

The second case is when q0 ∈ {0, 4}. Assume that q0 = 0 and let N0 be
the total sum of all the states in C0 (the argument for q0 = 4 is similar but we

Fig. 1. If q0 ∈ Q \ {0, 4}, cells outside of the rectangular bounds of the initial con-
figuration (represented in blue) remain in state q0 at all times (Color figure online).
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Fig. 2. Case study. If a cell is in the situation (a) where x is a non-quiescent state, in
order to change to state 0 one of the 3 cells on the right must change from state 0 to
a non-quiescent state.

consider the sum of (q0 −q) for all states q in C0). Since A is number conserving,
the total sum of all states in subsequent configurations of the automaton remains
equal to N0. Moreover, because all non-quiescent states are positive, the total
number of non-quiescent states on any configuration generated from C0 cannot
exceed N0.

If quiescent states appear arbitrarily far in one direction in the evolution of
A from C0, some cells must go from a non-quiescent state back to the quiescent
state 0 in order to keep the total number of non-quiescent states bounded. We
will now assume that the direction in which the non-quiescent states appear
arbitrarily far is left (it is enough to consider one direction since the automaton
is rotation-symmetric).

Assume that h(0, 4) ≥ 0 and consider the situation illustrated by part (a)
of Fig. 2: a cell in a non-quiescent state x with 4 cells in state 0 around it, 3
on its right side and one under (for the case h(0, 4) ≤ 0 we would consider the
symmetric situation with a quiescent cell on top of the cell in state x instead
of under it). Let us see how such a cell can change to state 0. There are two
possibilities, represented by parts (b) and (c) in Fig. 2. Either x = 4 and we can
use the function g to lower the state of the cell to 0 or the contribution of g on
the cell is 0 and only h̃ can lower the state of the cell, in which case only state
1 can be lowered to 0.

(b) If x = 4, then the cell on the right of the cell in state 4 will necessarily
change to a positive state. For this cell, the contribution from g will be positive
(at least 1 from the central cell) and the contribution from h will be 0 since
h̃(0, 4, 0, y) = 0 for all states y.

(c) If x = 1, then in order to change the state to 0, the contribution from
h̃ must be -1 since g(1, y) = 0 for all states y. We have previously chosen to
consider the case h(0, 4) ≥ 0. If h(0, 4) = 0, then the contribution from h is
0 and the state of the cell cannot change to 0. However if h(0, 4) = 1, then
the contribution from h̃ can be −1 only if the top neighbor is in state 4 and
the left neighbor is in a state y ∈ Q \ {0, 4} (as illustrated by Fig. 2). In that
case, h̃(4, 0, 0, y) = −1 and the cell changes to state 0. However, the cell on
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the top-right now has a neighbor in state 4, which means that for this cell the
contribution from g is at least 1. Moreover, the contribution from h̃ is at least
0, since h(0, 4) = 1 and so h̃(0, 4, x, y) ≥ 0 for all states x, y. This means that
the cell on the top-right of the considered cell changes to a positive state.

We have shown that if a cell in the situation illustrated by part (a) of Fig. 2
changes its state to 0, then at least one of the cells from the column right of the
considered cell changes from state 0 to a non-quiescent state. This means that as
new non-quiescent states appear towards the left, previous non-quiescent states
cannot be properly removed: in order to remove all non-quiescent states from a
given column, it is necessary to create new ones on the column at its right, so
as the non-quiescent states move towards the left, new ones appear towards the
right. Eventually, the total number of non-quiescent states will be greater than
N0 which contradicts number-conservation.

So we know that the evolution (Ai(C0))i∈N of a 5-states RNCA A from a finite
configuration C0 can only have non-quiescent states inside of a bounded area.
Because there are only finitely many such bounded configurations, eventually
the automaton must re-enter a previous configuration. ��
Corollary 1. There are no 5-states strongly Turing universal RNCA.

Proof. The evolution of a 5-states RNCA from a finite starting configuration
is ultimately periodic (Theorem 2) and therefore decidable. If such CA could
simulate a Turing machine then the halting problem and all other behavioral
problems on Turing machines would be decidable. ��

4.2 Simulation of Logical Circuits

Although the evolution of a 5-states RNCA from a finite configuration is ulti-
mately periodic, some non-trivial behaviors can still be observed. In particular, it
is possible to simulate some key elements of boolean circuits. In this section, we
consider the 5-states RNCA obtained by choosing β = 1 in the characterization
from Lemma 3.

Figures 3, 4 and 5 illustrate how to create a simple wire along which a signal
can travel. The wire is made of two layers of state 2 (red), and the signal is
represented by two cells in state 4 (yellow) that are “pushed” forward by a cell
in state 1 (blue). As the signal traverses the wire, the top layer of red states is
changed into blue and green states. These wires can therefore be traversed only
once, which is enough for simple boolean circuit simulation but not for being
used as a control circuit for a universal machine.

The wires can be split in two to duplicate a signal (Fig. 4). By changing the
second row of red cell into green states, the signal can be accelerated to move by
one cell at each time step (Fig. 5) which can be a convenient way to synchronize
signals.

As for logical gates, Figs. 6 and 7 illustrate how to implement an AND and a A
AND B gate. It is known that the A AND B gate alone is sufficient to simulate a NOT
and an OR gate so these elements would be sufficient for boolean operations [1].
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Fig. 3. A signal moving through a simple wire (Color figure online).

Fig. 4. A branching wire (Color figure online).

Note that the boolean value for 0 is simply represented by the absence of a
signal. Therefore, careful synchronisation is required when implementing multi-
ple input logical gates as the possible input signals must arrive at the same time
(but this can be done either by using the variable speed wires from Fig. 5 or by
artificially increasing the length of a wire with a detour).
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Fig. 5. By using state 3 (green) instead of state 2 (red) on some portions of the wire,
the signal moves at speed 1 instead of speed 1

2
(Color figure online).

Fig. 6. Logical AND gate (Color figure online).

Fig. 7. AANDB gate (Color figure online).

However, until now we have been unable to devise a wire crossing pattern
which is required for a full simulation of boolean circuits. Because of the destruc-
tive nature of signal propagation along a wire, wire crossing might prove impos-
sible to implement.
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2. Boccara, N., Fukś, H.: Number-conserving cellular automaton rules. Fundam.
Inform. 52(1–3), 1–13 (2002)

3. Codd, E.F.: Cellular Automata. ACM Monograph Series. Academic Press,
New York (1968)
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Abstract. We construct a one-dimensional reversible cellular automa-
ton that is computationally universal in a rather strong sense while being
highly non-sensitive to initial conditions as a dynamical system. The cel-
lular automaton has no sensitive subsystems. The construction is based
on a simulation of a reversible Turing machine, where a bouncing signal
activates the Turing machine to make single steps whenever the signal
passes over the machine.

Keywords: Reversible cellular automata · Reversible turing machine ·
Universality · Edge of chaos · Sensitivity

1 Introduction

Cellular automata (CA) are discrete dynamical systems and models of massively
parallel computation, and thus a convenient platform to study the relation-
ship between computation and dynamics. It is clear that too simple dynamics
(e.g., periodic systems) cannot support computation, while [7] suggests that too
chaotic systems cannot do it either. To study this phenomenon precisely one
needs to choose good definitions for “computational universality” and “chaos”.
For both concepts, a multitude of choices exist. For universality of discrete time
symbolic dynamical systems (such as cellular automata), Delvenne et al. pro-
pose a robust definition that does not depend on details of encoding inputs and
conditions of acceptance [3]. A central aspect of dynamical complexity, on the
other hand, is sensitivity to initial conditions. The most widely used definition
of chaos by Devaney [4] requires sensitivity, but also transitivity and denseness
of periodic points.

In [6] we proved that there are cellular automata that are Devaney-chaotic
and universal, answering a question posed in [3]. So the upper boundary of
Langton’s “edge of chaos”, the proper amount of sensitivity that can support
computational universality, is not below Devaney-chaos. It remains an interesting
question whether increasing sensitivity indeed eventually prevents computation:
it would be nice to know, for example, whether an expansive cellular automaton
can be universal in the sense of [3].
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In this paper we study the lower boundary of the “edge of chaos”. It is
trivial to construct a non-sensitive but universal cellular automaton: simply add
to any universal CA a new spreading state. The new state is a blocking word
that makes the system non-sensitive, but universality remains in configurations
that do not contain the spreading state. However, this construction is cheating
since the original (possibly sensitive) CA exists as a subsystem. In this paper
we construct a cellular automaton that is universal (even in the strongest sense
in [3]), and does not have any subsystems that are sensitive to initial conditions.
The automaton that we construct is reversible, as is the chaotic one that we
presented in [6].

The paper is organized as follows. In Sect. 2 we recall basic aspects of cellular
automata and reversible Turing machines, and define the concepts of universality
and sensitivity that we use. In Sect. 3 we describe our reversible cellular automa-
ton, and in Sect. 4 we prove that it has the claimed properties of universality
and non-existence of sensitive subsystems.

2 Definitions

2.1 Cellular Automata and Sensitivity to Initial Conditions

For a finite set S, the alphabet, we denote by S∗ the set of finite words over S,
and by SZ the set of bi-infinite words over S. Elements of x ∈ SZ are called
configurations and their indices i ∈ Z are cells. When writing down configura-
tions we mark the place between cells −1 and 0 by a dot, that is, a configuration
x ∈ SZ may be written as

. . . x−2x−1 . x0x1x2 . . .

For finite E ⊆ Z, elements of SE are finite patterns with domain E. We denote
by xE ∈ SE the restriction of configuration x on E and call it the pattern in x
on domain E. In particular, for i ≤ j the pattern x[i,j] = xixi+1 . . . xj is viewed
as a finite word of length j − i + 1.

The set SZ is equipped with the usual product topology, which makes it a
compact space. Each finite pattern p ∈ SE determines a cylinder {x ∈ SZ | xE =
p} that contains all configurations with pattern p on domain E. Cylinders are
clopen (closed and open) and they form a base of the topology. Clopen sets are
precisely the finite unions of cylinders. The shift function σ : SZ −→ SZ is the
automorphism defined by σ(x)i = xi+1 for all x ∈ SZ and i ∈ Z.

A cellular automaton (CA) is a function F : SZ −→ SZ that is continuous
and commutes with the shift σ. Equivalently, F is determined by a local rule
f : S2r+1 −→ S of some radius r as follows:

∀i ∈ Z : F (x)i = f(x[i−r,i+r]).

A bijective CA F : SZ −→ SZ is reversible: the inverse function F−1 is automat-
ically a CA as well.
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The pair (SZ, F ) is a dynamical system: a compact space SZ with a continuous
transformation F : SZ −→ SZ. A topologically closed X ⊆ SZ is said to be F -
invariant if F (X) ⊆ X, and we say that (X,F ) is then a subsystem of (SZ, F ).
If a topologically closed X ⊆ SZ is also shift-invariant then X is a subshift of
the full shift SZ.

Consider an arbitrary subsystem (X,F ) of (SZ, F ). The system is

– sensitive to initial conditions (or simply sensitive) if there exists a finite obser-
vation window W ⊆ Z such that

∀finiteE ⊆ Z,∀x ∈ X : ∃y ∈ X,∃n ∈ N : yE = xEandFn(y)W �= Fn(x)W .

In other words, any configuration x can be modified at arbitrarily distant cells
in such a way that eventually the change will be observed inside window W .

– transitive if for all cylinders U, V ⊆ SZ

U ∩ X �= ∅, V ∩ X �= ∅ =⇒ ∃n ∈ N : Fn(U) ∩ V ∩ X �= ∅.

Following [4], the system (X,F ) is Devaney-chaotic if it is sensitive, transitive
and the periodic points are dense. It is known that sensitivity is a weak condition
in the sense that it is implied by transitivity and denseness of periodic points [1].
In this paper we construct a CA that is not sensitive and does not have any
sensitive subsystems, and hence has no Devaney-chaotic subsystems.

2.2 Universality of Cellular Automata

Computational universality refers to a system’s ability to simulate arbitrary
effective processes. This idea needs to be precisely formalized before it can be
mathematically treated. It is reasonable to require that the dynamics of the
system “solves” some Σ0

1 -complete decision problem, meaning that the halting
problem of Turing machines can be many-one reduced to instances of the prob-
lem. Delvenne et al. in [3] introduced the following natural decision problem
to consider for a cellular automaton F : SZ −→ SZ (or more generally, on any
discrete time symbolic dynamical system):

(Trace) “Given a clopen partitioning C1, C2, . . . Ck of SZ and a regular
language L ⊆ {1, 2, . . . , k}∗, does there exist x ∈ SZ and n ∈ N

such that χ(x)χ(F (x)) . . . χ(Fn(x)) ∈ L ?”

The observation function χ is defined by χ(y) = i iff y ∈ Ci.

So the problem asks if a finite segment of the trace of some orbit with respect
to the clopen partitioning is in a given regular language. The CA F is universal
if the problem Trace is Σ0

1 -complete.
We actually consider the more restricted halting problem of dynamical sys-

tems, also defined in [3]:
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(Reach) “Given non-empty clopen sets C1, C2 ⊆ SZ, does there exist n ∈ N

such that Fn(C1) ∩ C2 �= ∅ ?”

It is clear that if the problem Reach is Σ0
1 -complete, so is Trace. Our universal

CA will be universal in the strong sense that Reach is Σ0
1 -complete. Note that

in a transitive system the problem Reach is trivial, so a Devaney-chaotic CA
can be universal only in the weaker sense given by Trace.

2.3 Reversible Turing Machines

A Turing machine (TM) is a triplet M = (Q,A, T ) where Q is a finite set of
states, A is a finite tape alphabet, and

T ⊆ (Q × {−1,+1} × Q) ∪ (Q × A × Q × A)

is a set of instructions. Elements of Q × {−1,+1} × Q and Q × A × Q × A are
called move instructions and write instructions, respectively. A configuration of
M is a triplet (q, i, t) ∈ Q×Z×AZ where q is the current state, i is the position
of the machine on the tape, and t is the content of the tape.

– A move instruction (q, δ, q′) ∈ T from state q to state q′ allows the machine
to convert configuration (q, i, t) into (q′, i + δ, t), for all i ∈ Z and all t ∈ AZ.

– A write instruction (q, a, q′, a′) ∈ T from q to q′ allows to change any (q, i, t)
into (q′, i, t′), provided t(i) = a, t′(i) = a′ and t(j) = t′(j) for all j �= i.

A single step transformation of a configuration c into c′ is denoted by c  c′. As
usual, ∗ is the reflexive and transitive closure of the relation .

The Turing machine is deterministic if for each configuration there is at most
one instruction applicable, so that  is a partial function. This property has an
easy to check characterization in terms of the instruction set T :

(q, δ1, q1), (q, δ2, q2) ∈ T =⇒ δ1 = δ2 and q1 = q2

(q, a, q1, a
′
1), (q, a, q2, a

′
2) ∈ T =⇒ q1 = q2 and a′

1 = a′
2

(q, δ, q′) ∈ T =⇒ ∀a, a′, q′′ : (q, a, q′′, a′) �∈ T.

Each instruction has an inverse, defined as follows:

– The inverse of a move instruction (q, δ, q′) is (q′,−δ, q), where we use the
notation −(−1) = +1 and −(+1) = −1.

– The inverse of a write instruction (q, a, q′, a′) is (q′, a′, q, a).

It is clear that the inverse always undoes the effect of the forward instruction,
and vice versa. We denote by T−1 the set of inverses of instructions in T , and
the TM M−1 = (Q,A, T−1) is the inverse TM of M = (Q,A, T ). If M−1 is
deterministic then M is reversible. In this work we only use deterministic and
reversible Turing machines (DRTM).

Deterministic reversible Turing machines are known to be able to simulate
arbitrary Turing machines [2]. A construction of a single tape universal DRTM
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M = (Q,A, T ) is given in [8]. This machine has specified initial and final states
i, f ∈ Q and a blank tape symbol B ∈ A, and there are no instructions in T
into state i or from state f . To each word w ∈ (A \ {B})∗ that does not contain
the symbol B we associate the initial tape content ιw = ∞B . wB∞ where w
is written on the otherwise blank tape starting at position 0. The universality
result of [8] states that the standard halting problem of Turing machines

(TMhalt) “For given w ∈ (A \ {B})∗, does (i, 0, ιw) ∗ (f, j, t) for some
j ∈ Z and t ∈ AZ ?”

is Σ0
1 -complete.
In this work we consider universality in the sense of Delvenne et al., and

for that purpose we need a DRTM universality variant where the tape content
outside the input word w is not known to be initially blank, and where the final
state appears in position 0 of the tape upon acceptance. So we associate to any
Turing machine with specified initial state q0 and final state qf the following
decision problem that is an adaptation of Reach from Sect. 2.2:

(TMreach) “For given w ∈ A∗, do there exist tape contents t, t′ ∈ AZ with
t[0,|w|−1] = w such that (q0, 0, t) ∗ (qf , 0, t′) ? ”

Lemma 1. There exists a DRTM U with specified initial and final states such
that TMreach is Σ0

1 -complete. There is no instruction in U into the initial
state q0.

Proof. Let M = (Q,A, T ) be the universal DRTM from [8] with initial and
final states i and f , and a blank tape symbol B. So there are no instructions
in T into state i or from f , and TMhalt is Σ0

1 -complete. Moreover, we may
assume that M is forced to execute a write instruction at odd time steps. This is
established by splitting each state q ∈ Q into two states q(1) and q(2), replacing
any original instruction from state q into state p by an analogous instruction
from state q(2) into state p(1), and by adding for all q ∈ Q and all a ∈ A the
tape check instruction (q(1), a, q(2), a).

We next construct a DRTM U with Σ0
1 -complete TMreach. The new state

set consists of Q and 18 additional states. The tape alphabet is A ∪ A′ ∪ {[, ]}
where A′ = {a′ | a ∈ A} is a disjoint copy of alphabet A. All instructions
in T are also instructions of U and, in addition, there are several instructions
to be executed before and after simulating M . The instructions are shown in
Fig. 1. In the figure, vertices represent states and edges are instructions. A move
instruction (q, δ, q′) is represented by a directed edge from q to q′ with label L or
R, corresponding to cases δ = −1 and δ = +1, respectively. A write instruction
(q, a, q′, a′) is given as a directed edge from q to q′ with label a/a′. The subgraph
corresponding to instructions of M is indicated as an oval with label M . It is
straightforward to verify that the given TM is deterministic and reversible. Note
how the marked versions a′ of letters a ∈ A are needed to guarantee reversibility.
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q
0
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a/a ( a A\{B})

a/a ( a A\{B})

Fig. 1. A deterministic, reversible Turing machine with Σ0
1 -complete decision problem

TMreach.

Considering the first 14 states, it is easy to see that state i will be reached
from initial configuration (q0, 0, t) if and only if the content t of the tape is

x[Bn . BwBBm]y

for some w ∈ (A \ {B})∗, some n,m ≥ 0, and arbitrary left- and right-infinite
words x and y. In this case, when entering state i the machine is in position 1
of the tape (hence reading the first letter of w) and the tape content is t as in
the beginning.

From state i only instructions of M can be executed until (if ever) state f
is reached. Note that M automatically stops if it accesses a boundary symbol
[ or ]. This is due to the property of M that it executes a write instruction at
odd time steps and hence can only continue on cells that contain an element of
A. It is then clear that state f is reached if and only if M reaches state f on
input ιw, and n and m are sufficiently large so that the accepting computation
by M fits between the boundary symbols.

Last four states of U guarantee that the final state qf will be seen in every
tape position between the boundary symbols, and in particular then, in position
0 as required. (Note that this last part is not actually necessary since the DRTM
M constructed in [8] has the property that the Turing machine halts at cell 0.)
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It is clear that the problem TMhalt for M many-one reduces to the problem
TMreach for U : instance w ∈ (A \ {B})∗ of TMhalt for M is equivalent to
instance BwB of TMreach for U . �

3 The Construction

In this section we present a construction of a reversible cellular automaton that
is universal in the sense that problem Reach is Σ0

1 -complete, but the automaton
and all its subsystems are non-sensitive. The cellular automaton has two tracks.
Track One is independent of Track Two and will be described first. This track
prevents sensitivity. Track Two simulates a reversible Turing machine as directed
by the activation signals it sees on Track One.

3.1 Track One

This track is a radius-3 reversible cellular automaton with four states
. States and are the left and right aether symbols,

while and are left and right signals that under normal circumstances
(when surrounded by left and right aether on the left and right, respectively)
proceed one position per time step to the direction of the arrow. All two-letter
words except

are walls. Walls remain stationary: a cell that is part of a wall never changes
its state, and therefore also remains part of the wall forever. A radius-3 local
rule allows a cell to determine all wall cells within distance 2. Segments between
walls are of four possible forms

where, as usual, ∗ indicates an arbitrarily long repetition.
The dynamics of an arrow that is not part of a wall is as follows.

– If the arrow is next to a wall then it stays put:

Here, and in the following, indicates a cell that belongs to a wall.
– Otherwise, if there is a wall at distance two in front of the arrow then the

arrow flips its direction:

– Otherwise (i.e., the two cells in front of the arrow and the first cell behind it
are not wall cells) the arrow moves one position:

Figure 2 shows a sample space-time diagram of Track One. It is easy to see that
the CA is reversible. Walls are never created or destroyed. All configurationsare
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Fig. 2. A sample space-time diagram of Track One. Time increases down. From the

second time step onward, symbol is used to indicate cells that are part of a wall.

made of segments separated by walls. Each segment is either unchanged forever,
or contains a single arrow that bounces between the walls.

3.2 Track Two

Track Two simulates the universal DRTM U provided by Lemma 1. The standard
technique of identifying a computation zone using left and right markers is used
to prevent several TM heads interfering with each other. Whenever the TM head
bumps into the end of its zone (or sees a wall on Track One), the simulation is
reversed and the machine starts retracing its computation backwards in time.
The construction is similar to the one used in the proof of Theorem 12 in [5].
A new aspect is that the TM makes a step only when passed over by an active
signal on Track One.

More precisely, let U = (Q,A, T ) be a DRTM with initial and final states q0
and qf whose TMreach-problem is Σ0

1 -complete. There is no instruction in T
into state q0.

Track Two uses a radius-3 local rule. The state set is S2 = L ∪ C ∪ R where

L = A × {→},
C = A × Q × {↑, ↓},
R = A × {←}.

A state (a, q, ↓) ∈ C represents a TM tape cell that contains symbol a and
is scanned by the TM in state q running forward in time, while (a, q, ↑) ∈ C
is the same situation except that the TM is running backward in time. States
(a,→) ∈ L and (a,←) ∈ R are tape positions with symbol a that are to the
left and to the right of the TM head, respectively. (So the arrow points to the
direction where the TM head is to be found.)

We define walls on Track Two analogously to Track One. All length two
words except ones that belong to LL, LC, CR or RR are walls on Track Two.
We consider walls of both tracks, so a cell is a wall cell if it is part of a wall
on either track. Any cell that is part of a wall does not change its Track Two
content in any way, so it remains in the wall forever. It is clear that a cell can



52 J. Kari

determine locally (within radius-1) if it is part of a wall. Analogously to Track
One, segments on Track Two between consecutive walls contain words of the
languages L∗, R∗ and L∗CR∗.

Cell i contains an active TM head if

1 it has a signal or on Track One,
2 It has a TM head on Track Two (i.e., belongs to C), and
3 there is no wall within radius-1 of the cell on either track.

An active TM head swaps its Track Two state from (a, q, ↓) to (a, q, ↑) in the
following cases:

– There is no instruction (q, δ, q′) or (q, a, q′, a′) in T that U could execute, or
– There is in T a move instruction (q, δ, q′) but the new position i + δ is next to

a wall (on either track), where i is the current position of the active TM head.

Analogously, state (a, q, ↑) becomes (a, q, ↓) in symmetric cases using the inverse
instruction set T−1 in place of T . In other words, the machine simply reverses
time if there is no applicable instruction or if the machine would move to a
position next to a wall.

Otherwise, an active TM head executes on Track Two the unique applicable
instruction in T or T−1, in the cases of state (a, q, ↓) or (a, q, ↑), respectively.
Note that in the case of a move instruction this involves updating the neighboring
cell also. In no other cases is Track Two state changed.

Note that the TM head “bounces” from walls in an analogous manner as the
signals on Track One: The head never moves next to a wall, and instead changes
the direction of time and starts tracing its steps backwards. It is clear that this
construction guarantees reversibility.

The two tracks together constitute the CA F : SZ −→ SZ with state set
S = S1 × S2. We denote by π1 : SZ −→ SZ

1 and π2 : SZ −→ SZ
2 the projections of

configurations on the tracks. Based on the discussions above, the CA F has the
following properties:

– F is reversible and has radius-3 local rule,
– Track One operates independently of Track Two, that is, there is a CA F1 :

SZ
1 −→ SZ

1 such that π1 ◦ F = F1 ◦ π1,
– Track Two is changed only at positions having an activation signal within

radius-1 on Track One.

4 Main Properties of the CA

In this section we show that the reversible CA constructed in Sect. 3 has the
required properties.

Theorem 1. The reversible CA F : SZ −→ SZ

(a) is universal in the sense that the decision problem Reach is Σ0
1 -complete,

and
(b) has no sensitive subsystems.

The proofs of (a) and (b) are presented in Sects. 4.1–4.2.
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4.1 Universality

We prove that Reach is Σ0
1 -complete for CA F by many-one reducing TMreach

for TM U . Let w = a0a1 . . . an−1 be an arbitrary instance of TMreach for U .
An equivalent instance of Reach for F is the pair

C1 = {x ∈ SZ | π2(x)[0,n−1] = (a0, q0, ↓)(a1,←)(a2,←) . . . (an−1,←)},
C2 = {y ∈ SZ | π2(y)0 = (a, qf , ↓) for some a ∈ A }

of effectively formed clopen sets C1, C2 ⊆ SZ.

(=⇒) If w is a positive instance of TMreach then there exist t, t′ ∈ AZ such
that t[0,n−1] = w and (q0, 0, t) ∗ (qf , 0, t′) by U . Machine U can read only a
finite number of tape positions before reaching the accepting configuration so
for some m ∈ N, all intermediate configurations (q, i, t′′) have |i| < m. Consider
the configuration x ∈ SZ with

where all are, for example, equal to to cause walls on Track One. We
have x ∈ C1. From initial configuration x, the CA has the following behavior:
on Track One a single signal bounces between positions −(m − 1) and m − 1.
Each time the signal crosses the TM head on Track Two, one step of U is
simulated. This happens repeatedly as long as the TM head remains in the
interval [−(m − 1),m − 1]. We then eventually have F i(x) ∈ C2, so the instance
C1, C2 is positive for Reach.

(⇐=) Conversely, suppose C1, C2 is a positive instance of Reach for U . There
is then x ∈ C1 such that F i(x) ∈ C2 for some i ∈ N. Let t ∈ AZ be the
tape content expressed in x, that is, π2(x)j = (t[j], . . . ) for all j. The only
way to change the Track Two state (t[0], q0, ↓) into some (a, qf , ↓) in cell 0 is
by repeatedly simulating U on Track Two. Note that the simulation cannot
change the time direction before reaching state qf , since otherwise U−1 would
be simulated, retracing the computation back to the initial state q0. As there
are no instructions in U−1 from state q0, the time direction would be swapped
again, leading to a periodic behavior that never leads to state qf . We conclude
that (q0, 0, t) ∗ (qf , 0, t′) by U . As t[0,|w|−1] = w, word w is a positive instance
of TMreach.

4.2 Sensitive Subsystems Do Not Exist

Let us prove next that CA F has no sensitive subsystems. Recall that a subsys-
tem is any topologically closed X ⊆ SZ that satisfies F (X) ⊆ X. Note that we
do not require the subsystem to be a subshift, as it does not need to be shift-
invariant. The proof is based on properties of Track One: the only fact about
Track Two that we need is that the content of Track Two is only changed in the
vicinity of a signal on Track One.
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For the sake of argument, suppose there is a subsystem X on which F is
sensitive to initial conditions. There is then a finite observation window W such
that for any x ∈ X and any finite E ⊆ Z there exists y ∈ X such that xE = yE
but Fn(x)W �= Fn(y)W for some n ≥ 0. Notice that this directly implies that

• for all x ∈ X, the first track π1(x) does not have wall states both to the right
and to the left of window W .

This is because the walls are blocking words: future states between the walls are
not influenced by any states outside the walls.

Let us consider the following two cases:

(1) There is a finite window W such that all Track One walls of all x ∈ X are
inside W . We can choose this W to be also an observation window for the
definition of sensitivity.

(2) For arbitrarily large k, there are x ∈ X with a Track One wall in some
position i satisfying |i| > k.

Case (1): Let x ∈ X have the maximum number of Track One arrows outside
W , among all x ∈ X. This number is 0,1 or 2 since the segments outside W do
not contain a wall. Let E = [a, b] be a finite segment that contains the radius-3
neighborhood of W and all the positions where x has arrows on Track One. (We
include the radius-3 neighborhood because the local rule of F uses radius 3.)
There are then uniform aethers in π1(x) to the left and to the right of E.

If y ∈ X and yE = xE then necessarily π1(y) = π1(x). Since Track One
operates independently of the content of Track Two, for all n ≥ 0 we have
π1(Fn(y)) = π1(Fn(x)). Both boundaries of E are crossed by a Track One signal
at most once, and in such a case the signal moves out from E. Consequently,
only three cells on each boundary can be updated differently in x and y, and it
follows that Fn(y)W = Fn(x)W for all n ∈ N. This contradicts sensitivity (and
means that x is an equicontinuity point).

Case (2): Let x ∈ X be such that π1(x) has a wall in position i to the right of W
but no wall in any position to the left of W . (The other case is symmetric.) Note
that property (•) excludes the possibility of walls on both sides of W . As in case
(1) we assume that x has the maximal number of Track One arrows to the left of
W . Let E = [a, b] be a finite segment that contains the radius-3 neighborhood of
the sensitivity window W , position i and the possible position left of W where
x has an arrow on Track One. If y ∈ X satisfies yE = xE then π1(y) cannot
contain a wall in any position < a by property (•). We then have that π1(y) and
π1(x) are identical at all cells ≤ b. As there is a wall in cell i, we clearly have also
for all n ∈ N that π1(Fn(y))(−∞,i] = π1(Fn(x))(−∞,i]. As in case (1), a signal
crosses the left boundary of E at most once (moving out of E), so at most three
leftmost cells of E can be affected by the states to the left of E. The wall at
position i prevents any influence on W by states on the right of E. We see that
Fn(y)W = Fn(x)W for all n ∈ N. �
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Abstract. Real-time one-way cellular automata (OCA) are investigated
towards their ability to perform reversible computations with regard to
formal language recognition. It turns out that the standard model with
fixed boundary conditions is quite weak in terms of reversible informa-
tion processing, since it is shown that in this case exactly the regular
languages can be accepted reversibly. We then study a modest extension
which allows that information may flow circularly from the leftmost cell
into the rightmost cell. It is shown that this extension does not increase
the computational power in the general case, but does increase it for
reversible computations. On the other hand, the model is less power-
ful than real-time reversible two-way cellular automata. Additionally, we
obtain that the corresponding language class is closed under Boolean
operations, and we prove the undecidability of several decidability ques-
tions. Finally, it is shown that the reversibility of an arbitrary real-time
circular one-way cellular automaton is undecidable as well.

Keywords: Reversibility · One-way cellular automata · Language
recognition · Closure properties · Decidability

1 Introduction

Computational devices that are able to perform reversible computations have
gained a lot of interest in the last years. The main property of reversible com-
putations is that every configuration has a unique successor configuration as
well as a unique predecessor configuration. Thus, in reversible computations no
information is lost which is an appealing property from a physical point of view,
because it has been observed that a loss of information results in heat dissipa-
tion [15]. Bennett [3] was the first who studied reversibility in computational
devices, namely, in Turing machines. His fundamental result is that every Tur-
ing machine can be transformed into an equivalent reversible Turing machine.
Thus, every recursively enumerable language can be processed in such a way
that no information is lost. Less powerful classes with regard to the Chomsky
hierarchy are the regular languages, which are accepted, for example, by deter-
ministic finite automata (DFA), and the deterministic context-free languages,
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which are accepted, for example, by deterministic pushdown automata (DPDA).
Reversible DFA are introduced in [2] and it is known [19] that there are regular
languages for which no reversible DFA exists. This means that there are com-
putations performed by DFA in which a loss of information cannot be avoided.
Similar results are obtained for reversible DPDA in [13]. Recently, reversibility
is also studied for multi-head finite automata. Morita shows in [18] that every
multi-head finite automaton can be transformed into an equivalent reversible
multi-head finite automaton under the condition of two-way motion of the mul-
tiple heads. In case of one-way motion, it is shown in [14] that the reversible
variant is less powerful.

For cellular automata, injectivity of the global transition function is equiva-
lent to the reversibility of the automaton. It is shown in [1] that global reversibil-
ity is decidable for one-dimensional cellular automata, whereas the problem
is undecidable for higher dimensions [7]. For a detailed discussion we refer to
the survey given in [17]. Additional information about some aspects of cellular
automata may be found in [8]. All these results concern unbounded configu-
rations. Moreover, in order to obtain a reversible device the neighborhood as
well as the time complexity may be increased. In [5] it is shown that the neigh-
borhood of a reverse CA is at most n − 1 when the given reversible CA has
n states. In connection with the ability to accept formal languages under real-
time conditions, reversibility has been studied in [11,12] for real-time two-way
cellular automata and real-time two-way iterative arrays with fixed boundary
conditions. Cellular language acceptors are working on finite configurations with
fixed boundary conditions (see, for example, [10]) and, thus, these devices cannot
be reversible in the classical sense. Their number of different configurations is
bounded. So, the system will run into loops that are reversible only if the initial
configuration is reached again. In contrast to the traditional notion of reversibil-
ity, cellular language acceptors are considered that are reversible on the core of
computation, that is, from initial configuration to the configuration given by the
time complexity. This point of view is rather different from the traditional notion
of reversibility since only configurations are considered that are reachable from
initial configurations. At first glance, such a setting should simplify matters. But
quite the contrary, we prove that real-time reversibility is undecidable.

In this paper, we continue the research on real-time reversibility and inves-
tigate one-way cellular automata (OCA). For the definition of reversible OCA,
we first observe that information flow is from right to left in a forward compu-
tation and from left to right in a backward computation. Then, the following
problem may occur: intuitively, every information which has passed the left-
most cell cannot be reconstructed since the leftmost cell always gets the border
symbol from the left in the backward computation. Thus, such computations
will be in general irreversible. We will show that this intuition is in fact right
by proving that any real-time reversible OCA accepts a regular language. To
obtain a more powerful model, we will allow that information may additionally
flow circularly from the leftmost cell into the rightmost cell. It is shown that the
language class accepted by real-time OCA with this extension, called circular
OCA (COCA) is equivalent to the class accepted by classical real-time OCA.
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Thus, the computational power of the general models is not increased, but it
turns out that reversible COCA are more powerful than reversible OCA. First,
we can prove that the computational power of reversible COCA lies properly
in between reversible OCA and reversible two-way CA. Second, by a suitable
simulation of reversible linearly bounded Turing machines by real-time COCA
we obtain that emptiness and finiteness are undecidable for reversible real-time
COCA. This implies the undecidability of inclusion and equivalence as well.
Moreover, the problem of whether a given COCA is real-time reversible is also
undecidable. These results are in line with the results for real-time two-way CA
and real-time iterative arrays. Furthermore, we obtain also that the language
class accepted by real-time COCA is closed under Boolean operations.

2 Preliminaries and Definitions

We denote the set of non-negative integers by N. The reversal of a word w is
denoted by wR. For the length of w we write |w|. We write ⊆ for set inclusion,
and ⊂ for strict set inclusion. In order to avoid technical overloading in writing,
two languages L and L′ are considered to be equal, if they differ at most by the
empty word. Throughout the article two devices are said to be equivalent if and
only if they accept the same language.

A one-way cellular automaton is a linear array of identical deterministic finite
state machines, called cells, that are identified by natural numbers. In case of
fixed boundary condition, each but the rightmost cell is connected to its nearest
neighbor to the right. Cell 0 is in a distinguished permanent boundary state,
and the rightmost cell is connected to cell 0. In case of circular boundary condi-
tion, the boundary state is not necessarily permanent [20] (see Fig. 1). The state
transition depends on the current state of a cell itself and the current state of
its neighbor. The state changes take place simultaneously at discrete time steps.
The input mode for cellular automata is called parallel. One can suppose that
all cells fetch their input symbol during a pre-initial step.

Definition 1. A (circular) one-way cellular automaton ((C)OCA) is a system
〈S, F,A, #, δ〉, where S is the finite, nonempty set of cell states, F ⊆ S is the
set of accepting states, A ⊆ S is the nonempty set of input symbols, # ∈ S \ A
is the distinguished boundary state, and δ : S × S → S is the local transition
function.

A configuration of a (circular) one-way cellular automaton 〈S, F,A, #, δ〉 at time
t ≥ 0 is a mapping ct : {0, 1, 2, . . . , n} → S, for n ≥ 1, that assigns a state
to each cell. The operation starts at time 0 in a so-called initial configuration,
which is defined by the given input w = a1a2 · · · an ∈ A+. We set c0(i) = ai,
for 1 ≤ i ≤ n and c0(0) = #. Successor configurations are computed according
to the global transition function Δ. Let ct, t ≥ 0, be a configuration with n ≥ 1,
then the successor ct+1 of a one-way cellular automaton with fixed boundary
condition (OCA) is

ct+1 = Δ(ct) ⇐⇒
⎧⎨
⎩

ct+1(0) = #

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {1, 2, . . . , n − 1}
ct+1(n) = δ(ct(n), ct(0))

.
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The successor ct+1 of a one-way cellular automaton with circular boundary con-
dition (COCA) is

ct+1 = Δ(ct) ⇐⇒
{

ct+1(i) = δ(ct(i), ct(i + 1)), i ∈ {0, 1, . . . , n − 1}
ct+1(n) = δ(ct(n), ct(0)) .

In order to distinguish between the boundary conditions, we write circular one-
way cellular automaton for arrays with circular boundary conditions.

· · ·# a1 a2 a3 an

Fig. 1. A (circular) one-way cellular automaton.

An input w is accepted by a (circular) one-way cellular automaton if at some
time step during its course of computation the leftmost cell receiving an input
symbol, that is, cell 1, enters an accepting state. The language accepted by M is
denoted by L(M). Let t : N → N, t(n) ≥ n, be a mapping. If all w ∈ L(M) are
accepted with at most t(|w|) time steps, then M is said to be of time complexity t.

Observe that time complexities do not have to meet any further conditions.
This general treatment is made possible by the way of acceptance. An input w is
accepted if cell 1 enters an accepting state at some time i ≤ t(|w|). Subsequent
states of the cell are not relevant. However, in the sequel we are particularly inter-
ested in fast devices operating in real-time, that is, obeying the time complexity
t(n) = n. In general, the family of languages accepted by some device X with time
complexity t is denoted by Lt(X), where Lrt(X) is written for real time.

Now we turn to cellular automata that are reversible on the core of compu-
tation, that is, from initial configuration to the configuration given by the time
complexity. Consequently, we call them t-time reversible if the time complexity t
is obeyed. One can imagine that the devices are switched off or reset after the
computation. In this way only configurations are considered that are reachable
from initial configurations. However, since the predecessor of such a configura-
tion is unique, there cannot be an unreachable configuration as predecessor of
a reachable one. Basically, reversibility is meant with respect to the possibility
of stepping the computation back and forth. So, there must exist a reverse local
transition function. Due to the domain S2 and the range S, obviously, the local
transition function cannot be injective in general. However, for reverse compu-
tation steps we may utilize the information which is available for the cells. In
particular, the flow of information is reversed as well, and each cell receives the
state of its left neighbor (the left neighbor of cell 0 is cell n).

For some mapping t : N → N let M = 〈S, F,A, #, δ〉 be a t-time ((C)OCA).
Then M is said to be t reversible (REV-(C)OCA), if there exists a reverse local
transition function δR : S×S → S so that ΔR(Δ(ci)) = ci, for all configurations ci
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of M , 0 ≤ i ≤ t(n) − 1. The global transition functions Δ and ΔR are induced by
δ and δR, respectively. For distinctness, we denote 〈S, F,A, #, δR〉 by MR.

In order to clarify the notation we give an example.

Example 2. Language L = { anbm | m ≥ n ≥ 1 } is accepted by a real-time
REV-COCA. For the construction we consider that each cell is divided into four
tracks. Track 1 is used to store the original input permanently. Tracks 2 and 3
are used to shift input blocks of b’s to the left. Here, every cell initially carrying
an a (a-cell) uses both tracks, first track 3 and then track 2, to shift the input
with speed 1/2. The #-cell and the remaining b-cells shift b’s with speed 1 to the
left using track 3 only. Using the circular structure of a COCA, any information
shifted beyond the leftmost cell is stored step by step in the rightmost part of
the COCA. Finally, track 4 is used to check the correct format and that there
have been more b’s than a’s in the input. The latter check can be performed by
every a-cell testing at the right time whether it is carrying a b on track 3. Only
in this case an accepting state is entered.

Let us now argue why the automaton constructed accepts L. Assume that
the input is anbn. Since a-cells shift with speed 1/2 and b-cells shift with speed 1,
the first b at cell n + 1 enters track 3 of the first a at cell 1 at time 2n − 1. More
generally, the ith b at cell n+ i enters track 3 of the ith a at cell i at time 2n− i.
Thus, it is possible for the signal started on track 4 of cell 2n at time 1 which
reaches cell i at time 2n − i + 1 to check whether every cell i carries a b on its
track 3 at time 2n− i. If the input is anbm with n ≤ m, the behavior is identical
and an accepting state is entered if n ≥ 1. If the input is anbm with n > m, then
there is no b on track 3 of cell 1 at time m + n and the input is not accepted. If
the input is not of the form a+b+, this can be detected by the check on track 4
and the entering of an accepting state is avoided. Nevertheless, the shifting and
checking is continued.

To show that the automaton constructed is reversible we first note that the
shifting of b’s is reversible, since every b is shifted at every time step and the
speed of shifting is uniquely determined by the original input stored on track 1.
By the circular structure of the automaton, also no information is lost. Moreover,
the actions on track 1 are reversible since its contents are never changing. The
check of the correct format on track 4 can be done reversibly by simulating a
deterministic finite automaton. Details are given in the proof of Theorem4. For
the remaining check we send a signal with maximum speed to the left started
in the rightmost cell and enter an accepting state every time when the check on
track 3 is successful. This can clearly be done reversibly.

Finally, we have to make sure that the original input is restored when going
from time 1 to time 0. This can be ensured by a suitable interpretation of the
input symbols. We identify symbol b with a state whose tracks 1 and 3 carry
symbol b while tracks 2 and 4 are empty. In this way, the input symbol b can be
used in later calculations and the need to restore them in the backward initial
step is not occurring. On the other hand, we have to differentiate between an
input symbol b and a state with b on its first track and empty track 3 which
may occur when a blank is shifted into the cell. To this end, the latter states
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# a a a b b b

# a a a b b b◦
b b b

# a a a b b◦ b◦
b
b b

# a a a b◦ b◦ b◦
b

b b
# a a a b◦ b◦ b◦

b b+
b

# a a a b◦ b◦ b◦
b+

b b
# a a a b◦ b◦ b◦

b+ b
b

# a a a a b b

# a a a a b b◦
b b

# a a a a b◦ b◦
b
b

# a a a a b◦ b◦
b+

b
# a a a a b◦ b◦

b+
b

# a a a a b◦ b◦
b

b
# a a a a b◦ b◦

b
b

# a b b b a b

# a b b b◦ a b◦
b b b b

# a b b◦ b◦ a b◦
b b+
b b

# a b◦ b◦ b a b◦
b

b b b
# a b◦ b b◦ a b

b
b b b
# a b b◦ b◦ a b

b b b b
# a b◦ b◦ b◦ a b

b
b b b

Fig. 2. Three example computations. A + denotes an accepting state, and a ◦ marks a
cell into which a blank has been shifted on the third track. A solid arrow denotes the
final check on the fourth track. If an error is encountered, the arrow is changed to a
dotted arrow. Additionally, the time step is kept by storing a permanent information
in the cell in which the error is encountered. This is depicted by the vertical dotted
arrow. This construction is reversible since it occurs at most once.

are marked with ◦. Altogether, we obtain that L can be accepted by a real-time
REV-COCA. Some example calculations to illustrate the construction are given
in Fig. 2. �

3 Computational Capacity of Reversible (C)OCA

The classical definition of one-way cellular automata is the non-circular variant.
However, for reversible real-time computations the slight generalization to cir-
cular cellular automata has a big impact. So, first we elaborate on this point.

Theorem 3. Any language accepted by a real-time REV-OCA is regular.

So, the condition to be reversible drastically reduces the computational capacity
of OCA to that of deterministic finite automata, that is, a single cell. On the
other hand, the next result says that every regular language can be accepted by
a reversible real-time OCA. This is in contrast to the fact that there are regular
languages that are not accepted by reversible DFA [2,19].

Theorem 4. The family of regular languages and the family Lrt(REV-OCA)
are equal.
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Proof. By the previous theorem it remains to be shown that every regular lan-
guage L can be accepted by some real-time REV-OCA. Since the regular lan-
guages are closed under reversal, LR is also regular. Let LR be accepted by a
DFA M with state set S, input alphabet A, initial state s0, set of accepting
states F , and transition function δ : S × A → S.

#

# a1 a2 · · · an−i an−i+1 · · · an−1 an

si · · · s2 s1

#

# a1 a2 · · · an−i an−i+1 · · · an−1 an

si+1 si · · · s2 s1

Fig. 3. Subsequent configurations of the REV-OCA M ′ in the proof of Theorem 4.

The idea for the simulation of L by a REV-OCA M ′ is first to divide its state
set into two tracks. Track 1 is used to store the input permanently, while track 2
is used to send a signal from the rightmost cell with maximum speed to the left.
The signal simulates the DFA M in such a way, that the state history is stored
permanently on track 2. More precisely, let the input of M ′ be a1a2 · · · an. At
time step 1, the rightmost cell n initiates the signal by calculating and storing
s1 = δ(s0, an) on track 2. In general, for 0 ≤ i ≤ n − 1, the signal reaches cell
n − i at time i + 1 and calculates and stores state si+1 = δ(si, an−i) on track 2
(see Fig. 3). The accepting states of M ′ are defined as those states having an
accepting state of M on track 2. Clearly, M ′ accepts L. Trivially, the permanent
storing of the input on track 1 is reversible. Moreover, since on track 2 the state
history of M is stored, also the signal is reversible. �
The previous results justify a slight generalization of reversible OCA. Moreover,
the next result shows that for real-time computations the slight generalization
to circular devices does not increase the computational capacity.

Theorem 5. The language families Lrt(OCA) and Lrt(COCA) are equal.

Proof. By definition, every OCA is a special case of a COCA. On the other hand,
let M be a real-time COCA and w ∈ L(M) be some accepted input. The states
passed through by cell 1 up to time |w| depend only on the states of cell 1 and 2
at time |w| − 1, the states of cells 1 to 3 at time |w| − 2, and so on until the
states of cells 1 to |w| at time 1, and the states of cells 1 to |w| and 0 at time 0.
Therefore, information sent by cell 1 to its left neighbor and further via cell |w|
towards cell 1 again can reach cell 1 not before time |w| + 1. Thus, it cannot
affect the overall computation result for real-time computations. �
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Since real-time OCA and real-time COCA characterize the same family of lan-
guages and the computational capacity of reversible OCA reduces to that of
deterministic finite automata, we now turn to investigate the computational
capacity of reversible real-time COCA. An immediate corollary is that the latter
are strictly more powerful than the former, since Example 2 provides a non-
regular language belonging to Lrt(REV-COCA). So we have:

Lemma 6. The family Lrt(REV-COCA) properly includes Lrt(REV-OCA).

Nextwe turn to compare real-time reversibleREV-COCAwith real-time reversible
two-way cellular automata (REV-CA). Basically, REV-CA are defined as
REV-OCA with the exception that now the flow of information is two-way, that
is, each cell is connected to its both nearest neighbors and the transition function
δ maps S × S × S to S.

Theorem 7. The family Lrt(REV-CA) properly includes Lrt(REV-COCA).

Proof. The inclusion follows for structural reasons. For the properness we use a
unary witness language. It is well known that the language L = { a2n | n ≥ 0 }
is not accepted by any real-time OCA (see, for example, [9,10]).

On the other hand, in [4] it is shown that L is accepted by some CA in real
time. The basic idea is depicted in Fig. 4. Initially a signal with speed 1/3 is sent
to the right. Additionally, a signal with speed 1 that bounces between the slow
signal and the leftmost cell is initiated. Now it is immediately verified that the
fast signal is in the leftmost cell exactly at time steps 2i, i ≥ 1. Finally it suffices
to send a signal from the rightmost cell to the left that accepts if and only if it
arrives at the leftmost cell together with the fast signal. These three signals can
be implemented in a reversible CA. �
So, we have the following three level hierarchy:

REG = Lrt(REV-OCA) ⊂ Lrt(REV-COCA) ⊂ Lrt(REV-CA)

4 Closure Properties

This section is devoted to the closures of Lrt(REV-COCA) under Boolean oper-
ations. A family of languages is said to be effectively closed under some operation
if the result of the operation can be constructed from the given language(s).

Theorem 8. The language family Lrt(REV-COCA) is effectively closed under
the Boolean operations complementation, union, and intersection.

Proof. The effective closure under union and intersection can be proved the
same way as for reversible real-time two-way CA [11]. The construction there
is based on the well-known two-track technique and a suitable interpretation of
accepting states. Both techniques do not require two-way communication and
apply to REV-OCA as well.
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t 0
1
2
3
4
...

8

...

16
...

20

Fig. 4. Signals in a two-way cellular automaton accepting { a2n | n ≥ 0 }.

The principal idea for the construction showing the closure under comple-
mentation is to interchange accepting and non-accepting states. To enable this
we have to make sure that the given REV-COCA accepts exactly at time step n
on an input of length n and never before. This can be achieved by adding a
copy S′ of the state set S and by modifying the local transition function such
that a state in S′ is entered when an accepting state in S would have been
entered. The transitions on S′ are defined analogously to those of S. In this
way, a cell remembers that it has entered an accepting state at some time step.
Additionally, in the first time step a signal is started in the rightmost cell which
moves with maximum speed to the left and makes any cell in some state from S′

accepting. In this way acceptance in cell 1 at time n is ensured and accepting
and non-accepting states can be interchanged. To guarantee the reversibility, we
must be able to restore the time step in which cell 1 enters a state from S′ for
the first time. To this end, a signal Z is started in the next time step in cell 0
initially marked with #. This signal is shifted to the right part of the input by
the circular structure of the automaton. Since only one such signal is started, we
obtain the reversibility of the construction. A schematic example computation
can be found in Fig. 5. �

5 Decidability Questions

To show undecidability results for real-time REV-COCA we reduce the problems
for deterministic one-tape one-head Turing machines whose space is limited by
the length of the input, so-called linear bounded automata. It is well known that,
for example, emptiness, finiteness, equivalence, regularity, and context-freeness
is undecidable for such devices (see, for example, [6]).
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t = 0 #

t = i +

t = n

Fig. 5. Schematic construction of the signals used in the proof of closure under com-
plementation. Cell 1 enters a state of S′ at time step i for the first time. Signal Z is
started at time step i + 1 in cell 0 and is depicted by a dotted arrow. The solid arrow
is the signal which arrives at real time in cell 1.

Theorem 9. Emptiness is undecidable for real-time REV-COCA.

Proof. Let T be an arbitrary deterministic linear bounded automaton. In [16] it
has been shown that there is an equivalent reversible linear bounded automa-
ton T ′. Since T ′ works on limited space, we may assume that it is always halting.
Moreover, by maintaining a counter as mentioned in [16], the backward compu-
tations of T ′ can be made always halting in the initial configuration. Next, T ′

can be modified to T ′′ without affecting the reversibility so that it starts with
the head on the rightmost tape square and halts (in forward computations) and
accepts only if the head is on the leftmost tape square.

Let Q denote the state set, q0 the initial state, and I the input alphabet
of T ′′. From T ′′ a new reversible linear bounded automaton T̂ is constructed
as follows. In a first phase, T̂ simulates T ′′ from an initial configuration to a
halting configuration. For a second phase a copy Qb of the state set is used.
After halting, T̂ enters the copy of its current state. Now the states from Qb are
used to simulate the backward computation of T ′′ until the initial configuration
(with the copy of the initial state) is reached and the backward computation
halts.

Next we construct a REV-COCA M = 〈S, F,A, #, δ〉 that, to some extent,
simulates T̂ as follows. The input alphabet A is I ∪{$}, where $ is a new symbol.
Basically, M uses three tracks. The input is provided on the third track, while
the first and second one are initially empty.

The purpose of the third track is to simulate the tape of T̂ . The second track
is used to store the current state of T̂ , and the first track is used to mark cells.
Initially, every cell with an input symbol from I whose right neighbor carries
either $ or # marks itself on the first track. In addition, it writes the initial
state of T̂ on its second track. See Fig. 6 for an example of the initial and first
configuration.

Next, the simulation of T̂ starts, where the simulation of one step of T̂ takes
two steps of M . To this end, the content of the third track is circularly shifted
to the left at every other time step. Figure 7 shows how the transitions of T̂ are
simulated.
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#

#

#

$ · · · $ a1 · · · al $ · · · $ b1 · · · bm $ · · · $ c1 · · · cn

#

#

#

$ · · · $ a1 · · · al
q0

•

$ · · · $ b1 · · · bm
q0

•

$ · · · $ c1 · · · cn
q0

•

Fig. 6. Initial (top) and first (bottom) configuration of the REV-COCA M in the proof
of Theorem 9.

When the simulation of T̂ halts, that is, apart from the copy of its ini-
tial state, T̂ is in its initial configuration again, the marked cells delete their
mark and the state on their second track. The effect is that the original input
is restored though cyclically shifted. Therefore, the whole simulation process
repeats. Clearly, M is reversible since T̂ is.

It remains to be explained how an input is accepted. To this end, M is
extended by another, initially empty track that does not affect the behavior on
the other tracks. In the first time step the rightmost cell initiates a signal on that
track that moves to the left and simulates a deterministic finite automaton A. On
its way the state history is stored so that the whole process is again reversible.
Automaton A checks the structure of the input that has to be of the form
$+I+$+. Moreover, A enters an accepting state if and only if the structure is
correct, and exactly at the moment it arrives in a cell the forward simulation
of T̂ halts accepting. The accepting states of M are now defined to be those
states with an accepting state of A on the additional track.

Assume that T̂ and, thus, the given linear bounded automaton T accepts an
input. Then there exist appropriated numbers of $ to the left and to the right of
the input so that M accepts as well. On the other hand, if T̂ does not accept any
input, also M does not accept any input. So, if emptiness would be decidable
for real-time REV-COCA it would be decidable for linear bounded automata, a
contradiction. �
The reduction in the proof of the previous theorem shows even more:

Theorem 10. (In)finiteness is undecidable for real-time REV-COCA.

Proof. If the real-time REV-COCA in the proof of Theorem9 accepts, the num-
bers of $ to the left and to the right of the input over I is not unique. The
simulation of T̂ can go through further rounds. By adjusting the number of $
appropriately, we can find further inputs accepted by M without changing the
input over I. Therefore, L(M) is finite if and only if L(T ) is empty. This implies
that neither finiteness nor infiniteness is decidable. �



Real-Time Reversible One-Way Cellular Automata 67

ai aj

q

ak

ai aj

qq
ak

ai

q
aj ak

ai aj

q
ak

ai aj

q
ak

ai aj ak

q

ai aj ak

q

Fig. 7. Simulation of transitions of the linear bounded automaton. The initial situation
is depicted at the top row. The two subconfigurations of the left column show the sim-
ulation of a left move, that is, (q, aj) is mapped to (q′, left). Here the intermediate state
q′
q is used to indicate the following left move of the state. The two subconfigurations of

the center column show the simulation of a stay/write move, that is, (q, aj) is mapped
to (q′, a′

j), and the two subconfigurations of the right column show the simulation of
a right move, that is, (q, aj) is mapped to (q′, right). The part of the state controlling
the shift at every other step is omitted.

Theorem 11. Equivalence and, thus, inclusion are undecidable for real-time
REV-COCA.

Proof. A COCA that simply does nothing is trivially reversible and accepts the
empty language if the set of accepting states is empty. So, if equivalence would
be decidable, emptiness would be decidable as well.

Two COCA M1 and M2 are equivalent if and only if L(M1) ⊆ L(M2) and
L(M2) ⊆ L(M2). So, the decidability of inclusion would imply the decidability
of equivalence. �
Theorem 12. Let M be a real-time COCA. It is undecidable whether or not M
is real-time reversible.

Proof. Let M ′ be a real-time REV-COCA and F its set of accepting states.
We modify M ′ to a real-time COCA M in such a way that we first add a
new state g to the state set. Second, {g} is defined to be the set of accepting
states of M . Finally, the transition function is modified such that every cell
in M enters state g whenever the cell would enter some state from the set F .
Additionally, every cell in state g stays for the rest of the computation in this
state and propagates state g with maximum speed to the left. We claim that
the computation becomes irreversible whenever g is entered at least once. Let
cell i enter state g at time step t on input w. Then, the behavior of state g
destroys for the remaining time any information stored in cells 1, 2, . . . , i. Since
the information flow in M is from right to left only, there are infinitely many
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inputs of arbitrary length with suffix w such that at real time all cells to the left
of cell i are carrying only the information g. Then it is in particular not possible
to restore the input: the only way would be to store the input using the circular
structure. But since the inputs may be arbitrarily long, any information would
reach a g-cell from the right and the information is lost.

Next, we claim that M is reversible if and only if L(M ′) is empty. If M
is reversible, then any cell can never enter state g which implies that L(M) is
empty. Then, by the construction, M ′ never enters an accepting state and L(M ′)
is empty as well. On the other hand, if L(M ′) is empty, then M ′ never enters
an accepting state and M never enters state g. Thus, M behaves the same way
as M ′ and thus is reversible since M ′ is.

Now, we assume that the reversibility of a real-time COCA is decidable.
This implies that we can decide the reversibility of M and so we can decide the
emptiness of M ′. This is a contradiction to Theorem 9. �

6 Conclusion

Concerning the language recognition capacity of reversible cellular automata we
obtained the strict hierarchy

REG = Lrt(REV-OCA) ⊂ Lrt(REV-COCA) ⊂ Lrt(REV-CA).

Nevertheless, several questions remain unanswered. Exemplarily, we mention
the relation between reversible real-time COCA and general real-time OCA.
Can every language from Lrt(OCA) reversibly be accepted by some real-time
REV-COCA? In order to approach this problem, one can investigate counters.
Is there a reversible COCA that passes through kn different configurations on
inputs of length n? The languages Lk = { anbk

n | n ≥ 1 } belong to the fam-
ily Lrt(OCA). Moreover, it is known that all linear context-free languages are
accepted by real-time OCA. For example, to accept the mirror language without
center marker {w | w ∈ {a, b}∗, w = wR } a real-time OCA has to treat sev-
eral different positions as centers. Can this computation be done reversibly by a
REV-COCA?

The relations between Lrt(REV-COCA) and the family of languages
accepted by reversible as well as general iterative arrays, or between the fam-
ilies Llt(REV-COCA) and Lrt(REV-CA) are also promising fields for further
investigations.
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Abstract. Two dynamical systems are cycle equivalent if they are topo-
logically conjugate when restricted to their periodic points. In this paper,
we extend our earlier results on cycle equivalence of asynchronous finite
dynamical systems (FDSs) where the dependency graph may have a non-
trivial automorphism group. We give conditions for when two update
sequences π, π′ give cycle equivalent maps Fπ, Fπ′ , and we give improved
upper bounds for the number of distinct cycle equivalence classes that
can be generated by varying the update sequence. This paper contains a
brief review of necessary background results and illustrating examples,
and concludes with open questions and a conjecture.
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1 Introduction

When studying finite dynamical systems (FDSs) of the form

F = (F1, F2, . . . , Fn) : Kn −→ Kn , (1.1)

it is typically unrealistic to determine the entire phase space explicitly. Even
a moderately small value for n and binary state space K = {0, 1} leads to a
number of states that, at best, is challenging to handle computationally. Based
on this, reasoning about the dynamics of (1.1) in terms of the map structure
itself can often give more insight as outlined in the following.

To the map in (1.1) one may associate its dependency graph. Assuming states
are given as x = (x1, . . . , xn), the dependency graph has vertex set {1, 2, . . . , n},
and there is a directed edge from vertex j to vertex i if Fi : Kn −→ Kn depends
non-trivially on xj . Here, non-trivially means that there is some x ∈ Kn such
that F (x) �= F (x′) where x and x′ only differ in the jth coordinate. In general,
this graph is directed and it may contain loops.
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-18812-6 6
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The map F in (1.1) may also have a specific structure or may have been
constructed in a specific manner. One example of this is where F has resulted
through composition of maps that may only modify one of the states xv. Specif-
ically, we may have maps of the form Fv : Kn −→ Kn where

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x1, . . . , xn), xv+1, . . . , xn) (1.2)

and where F is given as

F = Fn ◦ Fn−1 ◦ · · · ◦ F1 .

In this case the map F has been constructed by sequentially (or asynchronously)
applying the maps Fi in the sequence (1, 2, . . . , n). In general one may consider
other composition sequences such as a permutation π of the vertex set. We would
like to know how the sequence π influences the dynamics of F , and we would
also like to compare the dynamics resulting from two different update sequences.
We will write Fπ instead of F whenever we have a map assembled through
composition of maps of the form Fi in (1.2) using the sequence π = π1π2 · · · πn.

As we illustrate in the background section, many aspects of the dynamics can
be analyzed directly in terms of the dependency graph or the update sequence.
These are examples of structure-to-function results. Rather than using brute-
force, exhaustive computations, we derive insight about the dynamics using the
structural properties of the map F in (1.1).

In this paper, we demonstrate how the dependency graph allows us to reason
about the long-term dynamics of the class of maps of the form Fπ as defined
above. These are sometimes called asynchronous automata networks [6], sequen-
tial dynamical systems [11], or asynchronous cellular automata.

Throughout, X is an undirected, loop-free graph with vertex set V = v[X]
(usually {1, . . . , n}) and edge set E = e[X]. For a vertex v of degree d(v), we let
n[v] denote its 1-neighborhood, which has size d(v)+1. The set of permutations
of V is denoted SX . An element of SX represents a total ordering of the vertices,
which we write as π = π1π2 · · · πn.

Each vertex v takes on a vertex state xv ∈ K where K is some finite set. The
global state is denoted by x = (xv) ∈ KV , and the v-local state is x[v] = (xv) ∈
Kn[v]. We will omit the qualifiers vertex, global and v-local when specifying
states if no ambiguity can arise.

Additionally, each vertex v is assigned a vertex function fv : Kn[v] −→ K
and an X-local function Fv : KV −→ KV given by

Fv(x1, . . . , xn) = (x1, . . . , xv−1, fv(x[v]), xv+1 . . . , xn) . (1.3)

Here, the vertex function fv updates the state xv from time t to time t+1 locally.
The reason for introducing X-local functions is that they can be composed.

A vertex function fv is symmetric if any permutation of the input vector does
not change the function. Common examples of symmetric functions include log-
ical AND, OR, XOR, and their negations. A slightly weaker condition is being
outer symmetric, which means that fv is symmetric in the arguments corre-
sponding to the states of the d(v) neighbors of v in X. A sequence (gi)n

i=1 of
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symmetric functions, where gk : Ki −→ K, induces a sequence of vertex func-
tions (fv)v on X by setting fv = gd(v)+1. Outer symmetric functions also can
induce vertex functions, though slighly more care is needed in the notation.

Let (Fv)v∈V be a sequence of X-local functions and π ∈ SX . The asynchro-
nous finite dynamical system map Fπ : Kn −→ Kn is given by

Fπ = Fπ(n) ◦ Fπ(n−1) ◦ · · · ◦ Fπ(1) .

In other words, the map Fπ is constructed by applying the vertex functions
fv in the sequence given by π. The map Fπ is sometimes called a sequential
dynamical system or an asynchronous automata network. If the vertex functions
are induced we also say that the map Fπ is induced.

A sequence of local functions (Fv)v∈V defines a (directed) dependency graph.
However, for the questions we want to address, it is advantageous to use the
undirected, simple, loop-free graph X. From the dependency graph, one may
always construct the graph X by omitting loops and converting every directed
edge into an undirected edge while eliminating multiple edges.

0

14

23

Fig. 1. The graph Wheel4 from Example 1.

Example 1. Let X ′ = Circ4, the circle graph on 4 vertices, and let X = Wheel4 =
X ′ ⊕ 0 be the graph obtained form X ′ as the vertex join of X ′ and 0, as shown
in Fig. 1. In this case n[1] = (0, 1, 2, 4) whereas n[0] = (0, 1, 2, 3, 4). We assign
each vertex a state in K = F2 = {0, 1} and let the vertex functions be induced
by the logical NOR functions

norm : Km −→ K , norm(x1, . . . , xm) =
m∏

i=1

(1 + xi) .

In other words, norm returns 1 if and only if all its arguments are 0. As an
example, the X-local function F1 : K5 −→ K5 is here defined by

F1(x0, x1, x2, x3, x4) = (x0,nor4(x[1]), x2, x3, x4) .

If we use the permutation π = (0, 1, 2, 3, 4) we get the composed map

Fπ = F4 ◦ F3 ◦ F2 ◦ F1 ◦ F0 ,

which in particular means that Fπ(0, 0, 0, 0, 0) = (1, 0, 0, 0, 0). If we instead use
the sequence π′ = (1, 0, 2, 3, 4), we get Fπ′(0, 0, 0, 0, 0) = (0, 1, 0, 1, 0), illustrat-
ing the fact that the choice of sequence affects the dynamics. For comparison,
note that using a parallel update scheme the state (0, 0, 0, 0, 0) maps to the state
(1, 1, 1, 1, 1).
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2 Equivalence of Maps of the Form Fπ

In this section we review the notions of functional equivalence, dynamical equiv-
alence and cycle equivalence along with condensed versions of the key results.
These are all needed for our consideration of how symmetries of X govern results
on cycle equivalence.

2.1 Functional Equivalence

Functional equivalence is simply equality of functions. Every permutation π =
π1π2 · · · πn of the vertices of X canonically determines a partial order on X, or
equivalently, an acyclic orientation Oπ of X (under a slight absuse of notation,
we will use both of these terms interchangeably). Specifically, orient edge {i, j}
as (i, j) if i appears before j in π. This defines a mapping

SX −→ Acyc(X) , π �−→ Oπ .

where Acyc(X) is the set of acyclic orientations of X. The fibers of this map
define an equivalence relation ∼α on SX , and it is easily seen that π ∼α π′ if and
only if both are linear extensions of the same O ∈ Acyc(X). Since any two linear
extensions of the same finite poset differ by a sequence of transposing adjacent
incomparable elements, the following result is immediate.

Proposition 1. Let (Fv)v∈V be a sequence of X-local functions and π, π′ ∈ SX .
If Oπ = Oπ′ then Fπ = Fπ′ .

Thus, α(X) := |Acyc(X)| is an upper bound for the number of distinct maps Fπ,
where π ∈ SX . For certain classes functions, such as when each vertex function
is a nor-function, this bound is known to be sharp [1].

It is well-known that the quantity α(X) satisfies the deletion-contraction
recurrence

α(X) = α(X\e) + α(X/e) ,

for any edge e of X. Here, X \e is the graph X with the edge e deleted, X/e
is the graph X with e contracted. As such, α(X) = TX(2, 0), where TX is the
Tutte polynomial of X (see [14]).

Example 2. We continue Example 1 using the graph X = Wheel4. The two
update sequences π = (0, 2, 4, 1, 3) and π′ = (0, 4, 2, 3, 1) give identical maps Fπ

and Fπ′ since Oπ = Oπ′ . Both acyclic orientations orient the edges of X as (0, 1),
(0, 2), (0, 3), (0, 4), (4, 1), (2, 1), (2, 3), and (4, 3).

Using the deletion/contraction recursion above, one obtains α(X) = 78. In other
words, for this graph and a fixed sequence (Fv)v of X-local functions, there are at
most 78 distinct composed maps of the form Fπ. If all vertex functions are nor-
functions, this bound is sharp, and the 78 corresponding compositions are indeed
distinct.
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2.2 Dynamical Equivalence

Two finite dynamical systems φ, ψ : Kn −→ Kn are dynamically equivalent
(or topologically conjugate in the discrete topology) if there is a bijection
h : Kn −→ Kn such that

ψ ◦ h = h ◦ φ . (2.1)

This is equivalent to saying that the phase spaces Γ (φ) and Γ (ψ) are isomorphic
as directed graphs.

The automorphism group of X, denoted by Aut(X), acts on Acyc(X) by

O
γ�−→ γO , (γO)({v, w}) = γ

(
O

({γ−1(v), γ−1(w)})) , (2.2)

where γ(v, w) = (γ(v), γ(w)). Let ᾱ(X) denote the number of orbits under this
action. In [11], the bijection

Fix(γ) −→ Acyc(〈γ〉 \ X) (2.3)

is established. Here 〈γ〉\X is the orbit graph of X and the cyclic group 〈γ〉. This
is the multi-graph whose vertices (resp. edges) are the orbits of the action of 〈γ〉
on V (resp. E). An edge (orbit) connects the vertex orbits corresponding to any
of its edges. Note that the orbit graph may have loops and parallel edges. The
orbit graph 〈(13)(24)〉 \ Wheel4 is illustrated in Fig. 2.

{2,4} {1,3}

{0}

Fig. 2. The orbit graph 〈(13)(24)〉 \ Wheel4.

Combining (2.3) with Burnside’s Lemma, one obtains

ᾱ(X) =
1

|Aut(X)|
∑

γ∈Aut(X)

|Fix(γ)| =
1

|Aut(X)|
∑

γ∈Aut(X)

α(〈γ〉 \ X) . (2.4)

The computation of ᾱ(X) is simplified by the fact that the orbit graph often
contains loops and therefore has no acyclic orientations.

Any σ ∈ SX defines a canonical mapping R
n → R

n by permuting the coor-
dinates:

σ : (x1, . . . , xn) �−→ (xσ−1(1), . . . , xσ−1(n)) .

A sequence of vertex functions (fv)v∈V is Aut(X)-invariant if either of the fol-
lowing two equivalent conditions hold:
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• fv = fγ(v) for all γ ∈ Aut(X);
• γ ◦ Fv ◦ γ−1 = Fγ(v) for every v and all γ ∈ Aut(X).

Note that vertex functions induced by a set of symmetric or outer-symmetric
functions (gi)n

i=1 are always Aut(X)-invariant.

Theorem 1. For any sequence (fv)v∈V of Aut(X)-invariant vertex functions,
the maps Fπ and Fγπ are dynamically equivalent, and ᾱ(X) is an upper bound
for the number of such maps, up to dynamical equivalence.

We conjecture that this upper bound is sharp, but so far, this has only been
shown for a few graph classes.

Example 3. We continue our running example with X = Wheel4, whose auto-
morphism group is Aut(X) ∼= D4, the symmetry group of the square:

Aut(X) = {id, (1234), (13)(24), (1432), (14)(23), (12)(34), (13), (24)} . (2.5)

Taking γ = (1234) and π = (0, 1, 2, 3, 4) we have γπ = (0, 2, 3, 4, 1). With nor-
functions at each vertex, the conditions in Theorem 1 are satisfied and we con-
clude that two update sequences π and π′ = γπ yield dynamically equivalent
maps Fπ and Fπ′ .

To determine the upper bound ᾱ(X), we compute the orbits graphs 〈γ〉 \ X
for γ ∈ Aut(X). Note that 〈id〉 \ X is always isomorphic to X while the orbit
graphs corresponding to γ ∈ {(1234), (1432), (13)(23), (12)(34)} have loops and
therefore no acyclic orientations. The orbit graphs resulting from γ ∈ {(13), (24)}
are isomorphic to the square with a diagonal which has 18 acyclic orientations.
This leaves γ = (13)(24), whose orbit graph 〈γ〉 \X is shown in Fig. 2 which has
6 acyclic orientations. Using (2.4), we obtain

ᾱ(X) = 1
8 (78 + 0 + 6 + 0 + 0 + 0 + 18 + 18) = 15 ,

which implies that there are at most 15 dynamically distinct maps Fπ over X
arising from a fixed sequence of Aut(X)-invariant functions.

2.3 Cycle Equivalence

Cycle equivalence is a coarsening of dynamical equivalence. In this case, we
only compare the periodic points of the maps. For a discrete dynamical system
F : Kn −→ Kn, let Per(F ) denote its periodic points and let Fix(F ) denote
its fixed points. Two dynamical systems φ : Kn

1 −→ Kn
1 and ψ : Kn

2 −→ Kn
2

are cycle equivalent if there is a bijection h : Per(φ) −→ Per(ψ) such that the
equation

ψ ◦ h = h ◦ φ

holds when restricted to Per(φ). When K is finite, it follows that φ and ψ are
cycle equivalent if their multi-sets of periodic orbits sizes are the same. It is clear
that functional and dynamical equivalence both imply cycle equivalence.
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Given an update sequence π = π1π2 · · · πn ∈ SX , define

shift(π) = π2π3 · · · πnπ1 , and reverse(π) = πnπn−1 · · · π1 .

The following theorem shows how shifts and reversals of the update sequence give
rise to cycle equivalent composed maps. One of these requires the functions to be
update sequence independent, which means that Per(Fπ), set-wise, is independent
of π ∈ SX . This perhaps peculiar requirement holds for 104 of the 256 elementary
cellular automata rules [7]. It is needed because it ensures that Fπ and Freverse(π)

are inverses when restricted to their periodic points.

Theorem 2 ([9]). For any set (fv)v∈V of vertex functions, the maps Fπ and
Fshift(π) are cycle equivalent. Moreover, if |K| = 2 and (fi)i∈V is update sequence
independent, then Fπ and Freverse(π) are cycle equivalent.

It is easy to extend this result from update sequences that are permutations to
general words over V .

On the level of acyclic orientations, transforming π into shift(π) corresponds
to converting π1 from a source in Oπ to a sink in Oshift(π). Such an operation
is called a flip, and it generates an equivalence relation on Acyc(X) called toric
equivalence and denoted by ∼κ. The equivalence classes are called toric posets.
The name is motivated from a bijection between the toric posets over X and the
chambers of the toric graphic (hyperplane) arrangement Ator(X) in the torus
R

V /ZV , analogous to the bijection between ordinary posets over X and the
chambers of the graphic arrangement A(X) in R

V (see [4]). Similarly, trans-
forming π into reverse(π) corresponds to reversing each edge orientation in Oπ

to obtain Oreverse(π) – we call this a reversal, and denote the equivalence relation
generated by flips and reversals by ∼δ. We let κ(X) and (resp. δ(X)) denote the
number of ∼κ-equivalence (resp. ∼δ-equivalence) classes.

Let P = v1v2, . . . , vk be a path in X and define the function νP : Acyc(X) −→
Z, where νP (OX) is the number of edges oriented as (vi, vi+1) (the “forward
edges”), minus the number of edges oriented as (vi+1, vi) (“backward edges”).
If P is a cycle then νP is preserved under flips, so νP extends to a map ν̄P : Acyc
(X)/∼κ−→ Z on toric posets over X. Two acyclic orientations are torically
equivalent if and only if νC(ω) = νC(ω′) for all cycles C in X. Moreover, ω ∼δ ω′′

if and only if νC(ω) = ±νC(ω′′). The δ-equivalence classes can be enumerated
from the toric equivalence classes, which satisfy a deletion-contraction recurrence
for any cycle edge e of X:

κ(X) = κ(X\e) + κ(X/e) = TX(1, 0) ,
δ(X) = �κ(X)/2� ,

(2.6)

We can now summarize our results on cycle equivalence for maps of the form Fπ.

Theorem 3 ([7,9,10]). Let K be a finite set, let (fi)v∈V be a fixed sequence
of vertex functions over X. If Oπ ∼κ Oπ′ then Fπ and Fπ′ are cycle equivalent.
If |K| = 2 and (fv)v∈V is update sequence independent, then Fπ and Fπ′ are
cycle equivalent if Oπ ∼δ Oπ′ .
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Theorem 3 provides an easy way to test if Fπ and Fπ′ are cycle equivalent:
first choose a cycle basis for X and then evaluate ν for Oπ and Oπ′ . If these
are identical then the two maps are cycle equivalent. If ν(Oπ) = ±ν(Oπ′), then
the maps are also cycle equivalent, provided the functions are update sequence
independent. Of course, since this is a sufficient condition, the two maps may
still be cycle equivalent if this condition fails to hold.

Example 4. Returning to our running example with X = Wheel4, we first see
that κ(X) = 14. To see this, one can either use the deletion/contraction recursion
relation (2.6) or resort to Proposition 3 (placed in the next section for the purpose
of exposition) using the vertex v = 0. As a consequence, there are at most 14
distinct long-term behaviors for any finite dynamical system of the form Fπ

over X assuming fixed functions (Fv)v∈V .

As a consequence of Proposition 3, we note that representative update sequences
for these 14 classes can be obtained as follows: first direct each edge {0, i} as
(0, i) where 1 ≤ i ≤ 4 and then orient the remaining edges so that the graph
is acyclic. There are 14 such acyclic orientations. The representative update
sequences result by choosing precisely one linear extension for each of these 14
acyclic orientations.

3 Main Results

The results presented above for cycle equivalence do not consider the effects of
symmetries in the graph X. Here we will complete the analysis through an exten-
sion of Theorem 1 from Sect. 2.2. As before, when considering graph symmetries,
we need to assume that the vertex functions are Aut(X)-invariant.

For γ ∈ Aut(X), linear extensions π of O and π′ of γO give dynamically
equivalent maps Fπ and Fπ′ . In the following, we will show that Aut(X) acts
on Acyc(X)/∼κ via γ[O] = [γO]. From this it follows that (i) linear extensions
of κ-classes on the same Aut(X)-orbit give cycle-equivalent maps, and (ii) the
number of cycle equivalence classes is bounded above by the number κ̄(X) of
orbits of the action of Aut(X) on Acyc(X)/∼κ. The same statement holds for
δ-classes and the corresponding number δ̄(X).

To start, we first observe that if v is a source (resp. sink) in the acyclic
orientation O then γ(v) is a source (resp. sink) in γO. Assume that v is a source
in O and let c = cv be the length one flip-sequence mapping O1 to O2. We have
a commutative diagram

O1 � γ
��

�

cv

��

γO1
�

cγ(v)

��

O2 �
γ

�� γO2

(3.1)

which can be verified by examining what happens to each edge {u,w}.
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Lemma 1. For ∼∈ { ∼κ, ∼δ}, the group Aut(X) acts on Acyc(X)/ ∼ by
γ[O] = [γO].

Proof. By vertically concatenating diagrams of the form (3.1), we see that the
mapping

Aut(X) × Acyc(X)/∼ −→ Acyc(X)/∼ , (γ, [O]) �−→ [γO]

is well-defined. It is a group action because the group Aut(X) acts on Acyc(X)
by γO = γ ◦ O ◦ γ−1; see for example [11].

Corollary 1. Let γ ∈ Aut(X). For any permutation π with Oπ ∈ [O] and π′

for which Oπ′ ∈ γ[O], the two maps Fπ and Fπ′ are cycle equivalent.

Since Aut(X) acts on Acyc(X)/∼κ and Acyc(X)/∼δ, we may use Burnside’s
Lemma to determine κ̄(X) and δ̄(X).

Proposition 2. Let X be a finite, undirected graph. Then

κ̄(X) =
1

|Aut(X)|
∑

γ∈Aut(X)

|Fix(γ)| , (3.2)

where Fix(γ) = {[O] | γ[O] = [O]}.
In this form it is, however, not easy to determine |Fix(γ)|. It would be desirable to
develop a result analogous to the orbit graph correspondence that what we have
when Aut(X) acts on Acyc(X) as in (2.4). The following results provide parts
of this [3,8].

Proposition 3. For any fixed vertex v of X, the set Acycv(X) ⊂ Acyc(X)
consisting of all acyclic orientations where v is the unique source, is a complete
set of toric equivalence class representatives.

For determining Fix(γ), this proposition has an immediate consequence if γ fixes
a vertex.

Corollary 2. Let φv : Acyc(X)/∼κ−→ Acycv(X) be the map that assigns to
[O] its unique element in Acycv(X). If γ ∈ Aut(X) fixes the vertex v ∈ V then
[O] ∈ Fix(γ) if and only if γφv([O]) = φv([O]).

Proof. For any v ∈ V the automorphic image of an element of Acycv(X) is also
an element of Acycv(X). If γ fixes v then it follows that γ fixes [O] if and only
if γ fixes φv([O]).

It follows that in this case one can derive a result analogous to the orbit graph
enumeration in (2.4), however, in this case one must take care to only consider
those acyclic orientations where v is the unique source.

The fact that the ν-function is a complete invariant for toric equivalence
offers an alternative approach:
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Proposition 4. Let X be a graph, let v ∈ v[X] and let C be a cycle basis for
X. Then

κ̄(X) =
1

|Acyc(X)|
∑

γ∈Aut(X)

N(γ)

where N(γ) = |{O ∈ Acycv(X) | νC(O) = νC(γO)}|.
Proof. This follows from the fact that ν evaluated on any cycle-basis is a com-
plete invariant for toric equivalence [12].

The following examples illustrates how Proposition 4 can be used to determine
κ̄(X) as well as δ̄(X). We also include the other graph measures mentioned
above.

Example 5. As a specific example, take X to be the double square graph as
illustrated in Fig. 3. Here

Aut(X) = {id, τ = (1, 6)(2, 5)(3, 4), σ = (1, 3)(4, 6), στ = (1, 4)(2, 5)(3, 6)},
(3.3)

leading to α(X) = 98, ᾱ(X) = 28, κ(X) = 9 and δ(X) = 5. Nine tori-
cally non-equivalent elements in Acyc2(X) are shown in Fig. 4. The letters in

1 2 3

6 5 4

Fig. 3. The graph of Example 5 with orientations for the fundamental cycles of the
cycle basis.

2 -2

0 -2

-2 -2

2 0

0 0

-2 0

2 2

0 2

-2 2

(a)

(a)

(b)

(c)

(d)

(e)

(d)

(c)

(b)

Fig. 4. The transversal Acyc2(X) for κ-equivalence of the graph in Example 5.
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parentheses on the left show five δ-class representatives. The ν-values are indi-
cated inside each fundamental cycle of the chosen cycle basis.

Let (ν1, ν2) denote the value of ν on O. Then ν(τO) = (−ν1,−ν2), ν(σO) =
(ν2, ν1), and ν(τσO) = (−ν2,−ν1). From this we conclude that N(id) = 9,
N(τ) = 1, N(σ) = 3 and N(τσ) = 3. As a result we have κ̄(X) = (9 + 1 + 3 +
3)/4 = 4.

In the same manner we obtain δ̄(X) = 4. Specifically, we have |Fix(id)| = 5,
|Fix(τ)| = 5, and |Fix(σ)| = 3, |Fix(τσ)| = 3, leading to δ̄(X) = (5 + 5 + 3 +
3)/4 = 4.

Corollary 3. Let X be the graph in Example 5. Then there are at most four
cycle classes for maps of the form Norπ (each vertex function is a nor-function)
where π ∈ SX .

This follows directly since nor-functions are symmetric and Boolean. There are
6! = 720 possible permutation update sequences for this graph. However, for this
class of functions, there are at most four distinct long-term behaviors. In our
opinion, this is a remarkable result.

Example 6. For the running example with X = Wheel4 we can use Corollary 2
to take advantage of the fact that this graph is the vertex join of 0 and Circ4
and that 0 has maximal degree. To determine Fix(γ) in Acyc(X)/∼κ, we can
now simply reason about the transversal Acyc0(X) and use the orbit graph
construction. For example, there are 2 elements of Acyc0(X) fixed under the
automorphism γ = (13)(24). Accounting for each γ ∈ Aut(X) using the order in
which they appear in (2.5) gives

κ̄(X) =
1
8
(14 + 0 + 2 + 0 + 0 + 0 + 4 + 4) = 3

which equals κ̄(Circ4).

The fact that κ̄(Circ4 ⊕ 0) = ᾱ(Circ4) clearly generalizes. We state this without
proof:

Proposition 5. If X = X ′ ⊕ v where X ′ has no vertex of maximal degree, then
κ̄(X) = ᾱ(X ′).

We include one more example illustrating the various graph measure for the
three-dimensional cube.

Example 7. Let X = Q3
2, the 3-dimensional binary hypercube, i.e., the cube.

Straightforward (but somewhat tedious) calculations show that

α(Q3
2) = 1862, κ(Q3

2) = 133, ᾱ(Q3
2) = 54, and κ̄(Q3

2) = δ̄(Q3
2) = 8.

Again, in the context of dynamical systems of the form Fπ induced by a sequence
of Aut(X)-invariant Boolean functions, this means that there are at most 8
distinct periodic orbit configurations for induced, symmetric permutation SDS
over Q3

2. This should be compared to the total number of permutation over SX

which is 8! = 40320.
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4 Summary

In this paper, we extended results on cycle equivalence for finite dynamical sys-
tems of the form Fπ. The results provide a sufficient condition for determining
when Fπ and Fπ′ are cycle equivalent when taking into account the symme-
tries of the graph. The restriction that the vertex functions be Aut(X)-invariant
functions is not as artificial as it may seem – it includes all symmetric and
outer-symmetric functions, which are very common in practice. We also derived
a bound for the number cycle-equivalence classes for such maps Fπ. As for the
measures α(X), ᾱ(X), κ(X) and δ(X), the conditions and enumerations do not
depend on the particular choice of functions – they are graph measures. This
means that we can reason about dynamics of maps Fπ using only the graph
structure. It is another example of mapping structure to dynamics rather than
performing brute-force phase space computations.

The structures we have covered above are relevant to other areas beyond
asynchronous finite dynamical systems. One example is in the study of Coxeter
groups and their Coxeter elements [2]. Let (W,S = {s1, . . . , sn}) be a Coxeter
system with (unlabeled) Coxeter graph X. It is well-known that there is a bijec-
tion between Acyc(X) and the set of Coxeter elements C(W ) = {cπ(n) · · · cπ(1) |
π ∈ SX}. Moreover, O ∼κ O′ if and only if the corresponding Coxeter elements
are conjugate [5,8]. It follows that α(X) = TX(2, 0) and κ(X) = TX(1, 0) enu-
merate the number of Coxeter elements and their conjugacy classes. Moreover,
it can be shown that κ̄(X) is an upper bound for the number of spectral class of
Coxeter elements, see for example [13]. We are not aware of any significance for
δ̄(X) in the context of Coxeter groups.

We close with two questions and a conjecture that we invite the reader to
explore further:

Question 1. Is it possible to compute δ̄(X) from κ̄(X) in a manner similar to
that of δ(X) = �κ(X)/2�? For which graphs are δ̄(X) and κ̄(X) the same?

Question 2. Is there a simpler way to determine κ̄ than the one in Proposition 4?
Is there a result involving νC(Acycv(X)) analogous to (2.4) with orbit graphs?

Conjecture 1. The bounds κ̄(X) and δ̄(X) are sharp. In other words, for any
graph X, there is a function sequence (Fv)v∈V such the that the number of cycle
classes of the maps Fπ equals κ̄(X) (resp. δ̄(X)).

Acknowledgments. We thank our collaborators andmembers of the Network Dynam-
ics and Simulation Science Laboratory (NDSSL) for discussions, suggestions and
comments. This work has been partially supported by DTRA R&D Grant HDTRA1-
09-1-0017, DTRA Grant HDTRA1-11-1-0016, DTRA CNIMS Contract HDTRA1-11-
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Abstract. Here we present a solution to the generalized firing squad
synchronization problem that works on some class of shapes in the hexag-
onal tiling of the plane. The solution is obtained from a previous solution
which works on grids with either a von Neumann or a Moore neighbor-
hood. Analyzing the construction of this previous solution, we were able
to exhibit a parameter that leads us to abstract the solution. First, and
for an arbitrary considered neighborhood, we focus our attention on a
class of shapes built from this neighborhood, and determine the cor-
responding parameter value for them. Second, we apply our previous
solution with the determined parameter value for the hexagonal neigh-
borhood and show that, indeed, all the considered shapes on the hexag-
onal tiling synchronizes.

1 Introduction

The Firing Squad Synchronization Problem (FSSP for short) is a very old prob-
lem. It has been reported for the first time in 1957 by John Myhill (see [7]).
The goal is to design a cellular automaton (CA for short) such that starting
from a initial configuration where every cell is inactive except one cell, called the
general or the initiator, the dynamics leads to an uniform configuration where
all cells are in the same (firing) state that has never been reached before.

There is a lot of solutions to that problem, each focused on some variation
of it. One may want to synchronize lines, rectangles (see [2,3]), parallelepipeds
(see [14,15,17]), graphs (see [11]), Cayley graphs (see [10]); another may want to
be able to start the process at a given special position, at any position (see [8]),
start the process at many different places at the same time or not (see [12]), etc.
Some others focused their attention on lowering the synchronization time, the
set of states (see [1,6,9,13]), or the communication capabilities of cells. Actually,
there are probably more than 150 papers on the subject.

But all in all, almost all solutions are recursive as the simple basic idea is
to recursively split the space into equals parts, until elementary sub-spaces are
obtained that are obvious to synchronize. Most of the solutions split the space
into two equals parts (for a more complex scheme see [6]).

This work is partially supported by the French program ANR 12 BS02 007 01.

c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 83–96, 2015.
DOI: 10.1007/978-3-319-18812-6 7
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In a previous paper [4], by the use of so-called distance fields we gave a
very general scheme that captures the core of many unidimensional solutions.
A distance field is an open cellular automaton which ultimately computes on
each point of the space its distances to some given set of reference points. We
believe that it is a nice way to understand what is behind the scene in many
solutions. Although most of them are constructed in an ad-hoc way, it seems clear
that some distance information, and therefore distance fields, are implicitly used
to determine their splitting points.

In [4], we took an explicit approach to build the unidimensional solution. We
use distance fields to detect middles as required to split the space into half-spaces,
and we compose as many instances of this splitting process as required to split
half-spaces into quarter-spaces and so on recursively. Then a reduction to a finite
number of states is described that leads to a classical finite cellular automaton.
This two-steps approach allows the solution to be correct by construction, the
infinities allowing to be abstract, more semantic and clearer. A description with
a finite number of states usually leads to less obvious semantics and dynamics of
the transition function, especially when minimal synchronization time is aimed.

In [5], we proposed a generalization of this unidimensional solution to han-
dle more different spaces within a single scheme. It was parametrized by some
information extracted from the given neighborhood. We showed that it works
on the classical and less classical space shapes either with the Moore or the von
Neumann neighborhood. We now want to show how all of this can be applied
as-is on more general spaces. We tested our construction on various space shapes
with an hexagonal neighborhood.

Hexagonal cellular spaces are of special interest because there is no known
solution to the generalized FSSP on them up to now. Researchers focused on 1D
lines, 2D/3D square grids, some on more general graphs but, to the best of our
knowledge, not on hexagonal tilings with arbitrary position of the initiator, or
at least not on various shapes on the hexagonal tilings.

In Sect. 2, we give the reader the necessary background on the previous works.
The paper is written to ease a global understanding of the key concepts, ques-
tions, and answers without having to dig too much in the details of the transition
function and the previous results. That section mainly focuses on the parameter
of the scheme which allowed to switch from 1D to the various 2D cellular spaces
considered in previous works. At that time, some of the values of this parameter
were determined in an ad-hoc way.

The purpose of Sect. 3 is to extend the work by proposing a procedure to
determine the possible values for the parameter. This will also helps to identify
a class of synchronizable shapes thus generalizing the set of shapes previously
considered.

In Sects. 4 and 5 we proceed with some arguments and experimental results
to show and explain how the synchronization is achieved.

In Sect. 7, we finally summarize the paper and discuss interesting future direc-
tions of work.
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2 Summary of Previous Solutions

As already explained, this work is based on two previous works. The first one [4]
gives a very general solution for the 1D FSSP. The second one [5] extends this
solution to various 2D space shapes on the Moore and the von Neumann neigh-
borhood.

In this section, we do not give all the details of the internals of the CA as
they are not relevant here. Instead, we only introduce the leading concepts of
interest for the remaining. The reader is therefore referred to the cited papers
for more details.

Fig. 1. Evolutions of our 1D algorithm with different sets of generals. The reader must
be aware that this does not show the states of the CA but only some “interesting”
information extracted from.

Our unidimensional solution was designed from the simple key idea that
middles of a space are characterized by their distance to the borders of the
space, and that many layers of middles detection have to be stacked to obtain the
recursive computation of the synchronization. Figure 1 provides a summarized
view of the stack of layers for different sets of initiators, and the space-time
diagrams looks a lot like many other optimal time solutions. This is exactly why
we claim that our solution captures many classical solutions.

In order to generalize this solution to the case of the classical rectangle,
the starting idea was to split this rectangle into four quarter-rectangles and so
on recursively. This can be easily achieved by superposing two unidimensional
splitting processes: one along the horizontal axis and another one along the
vertical axis.
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Table 1. Values of parameter ν used for borders

Moore von Neumann

X-axis X-axis

ν−1
X =

{(−1
−1

)
,
(−1

0

)
,
(−1
+1

)}
ν−1
X =

{(−1
0

)
,
(

0
+1

)}

ν+1
X =

{(
+1
−1

)
,
(
+1
0

)
,
(
+1
+1

)}
ν+1
X =

{(
+1
0

)
,
(

0
−1

)}

Y-axis Y-axis

ν−1
Y =

{(−1
−1

)
,
(

0
−1

)
,
(
+1
−1

)}
ν−1
Y =

{(−1
0

)
,
(

0
−1

)}

ν+1
Y =

{(−1
+1

)
,
(

0
+1

)
,
(
+1
+1

)}
ν+1
Y =

{(
+1
0

)
,
(

0
+1

)}

The study of this superposition process led us to the introduction of a para-
meter ν that describes the different axes on which a 1D solution have to be
executed. For the Moore neighborhood, the axes that make the synchronization
work are the horizontal and vertical ones. For the von Neumann neighborhood,
the axes are the north-west/south-east and south-west/north-east axes. This is
formally described in Table 1 in terms of ν’s. For simplicity, the axes indexes
are D = {X,Y } in both cases, although this might be slightly misleading. So,
for example, ν−1

X can be read as “the subset of neighbors that all contribute
to the left-neighborhood along the X axis” and similarly ν+1

Y as “the subset of
neighbors that all contribute to the right-neighborhood along the Y axis”.

Here “left”, “right”, “−1” and “+1” are purely a matter of convention, since
the unidimensional solution is symmetric. The ν’s map the given topological neigh-
borhood into many appropriate unidimensional neighborhoods, one per axis.

The notion of border is centric to the unidimensional solution. As a con-
sequence we need to find an equivalent counterpart in our cases. Borders are
determined for each axis. For any axis d ∈ D, they are determined by the use of
the following predicate excerpted from the solution described in [5]:

border0,dt+1(c) = inputt+1(c) ∧ ∃i ∈ I; ∀δ ∈ νi
d; c + δ �∈ S (1)

This equation defines the borders of the space S along the axis d and at time
t + 1 as the cells c that are activated (inputt+1(c)) and have no neighbors in at
least one direction i ∈ I = {−1,+1} along the axis, i.e. no neighbors “on the
left”, or no neighbors “on the right”.

With these definitions of axes and borders, we showed that the solution
synchronizes what we called rectangles and diamonds for any location of the initia-
tor. These spaces are illustrated in Fig. 2. For a given neighborhood, the rectangle
has border cells for one or the other axis all along the boundary of the space while
the diamond only have isolated border cells according to Eq. (1).

In [5], the values of the ν’s for the Moore and von Neumann neighborhoods
were obtained in two distinct ways. Now we will show that a common procedure
allows to consider more complex shapes, and in particular hexagonal spaces.
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Fig. 2. Synchronized shapes and their respective borders

3 Determination of the Axes, Borders and Shapes

In the literature, people are usually interested in the synchronization of classical
rectangles like Fig. 2a and d. It can be argued that the most natural neighbor-
hood to consider first on a rectangle is the Moore neighborhood as the Moore
rectangle exactly corresponds to what one probably think at first about a classi-
cal rectangle is (Fig. 2a). So let us describe our general procedure by examining
this case first.

3.1 The Moore Case

With the Moore neighborhood a rectangle can easily be considered as a gener-
alization of a square. A square of side length 2r is simply a Moore ball BM

r of
radius r. Note that in this paper, all lengths are given in number of hops which
corresponds to a distance, and not in terms of numbers of cells which would add
many annoying “+1” in the expressions. By observing what characterizes the
borders of a Moore’s ball, we can obtain the values of the parameter ν and make
explicit the relation with the rectangle as illustrated in Fig. 3b.

On a Moore’s ball, one can identify four kinds of border cells. These types
are characterized by the set of their missing neighbors. These sets can be paired
by symmetry and this pairing naturally corresponds to the concept of axis. Here
there are two axes X and Y , each of them having two symmetric sets ν−1

d , ν+1
d

for d ∈ D = {X,Y }.
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Fig. 3. Moore’s balls and rectangles

In this respect, rectangles are very similar to squares. Their borders are also
classified into these same four types. Moreover, any rectangle can be obtained by
cutting down all cells of a given type. This operation preserves the classification,
as the trimmed cells become the missing neighbors of some other cells, the laters
becoming the new border cells of the considered type. This is illustrated in Fig. 3b
where a rectangle RM

4×2 is obtained by two removals of border cells of type ν+1
Y

from the ball BM
2 . Let us make two important observations.

First, the borders of squares are parallel by construction and so are the
borders of rectangles since the cutting down operation obviously preserves this
property.

Second, the sets νI
D thus constructed correspond exactly to the values pre-

sented in Table 1 and that allowed the synchronization.
Although, these constructions and properties seem to be obvious in the Moore

case, things are slightly subtler in the following cases.

3.2 The von Neumann Case

With the von Neumann topology, one can apply exactly the same process: take a
ball, identify the sets of missing neighbors, pair them by symmetry, characterize
the axes, and cut down some borders. As for the Moore case, the resulting sets
of missing neighbors correspond to the values of Table 1. The construction is
illustrated in Fig. 4 where a rectangle RV

3×6 is obtained by three removals of
borders of type ν−1

X from a ball BV
3 . However, if instead of removing border of

type ν−1
X , we choose to do three removals of border of type ν+1

X , we obtain a
different but symmetric instance of a rectangle RV

3×6. It might seem completely
different from the Moore case but it is in fact very similar if we restrict our
attention to the lengths: balls BV

r are rectangles RV
2r×2r, so cutting down an

X (resp. Y ) border reduces the length of the shape along the X-axis (resp. Y -
axis). Later we will see a more convincing argument about this, but for now it is
sufficient to remark that borders on a given axis remains geometrically parallel.
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Fig. 4. Von Neumann balls and rectangles

It is not common to call such shapes “rectangles”, this is why we called them
von Neumann rectangles. In the literature, the space considered is almost always
the “classical” rectangle that we first considered in the Moore case. One can
remark that these “classical” rectangles can be considered (see [16] for example)
with the von Neumann neighborhood, but the borders are not where one might
expect. If one agrees on our process to identify the borders then the border cells
of the “classical” rectangle in the case of the von Neumann neighborhood are
only the cells at corners. This is why we called this shape the von Neumann
diamond, as the axes we identified are (roughly) the diagonals as illustrated in
Fig. 2d.

Although this might be surprising, these diamonds have all the good prop-
erties to be synchronizable: the borders along a given axis are parallel, and we
can remove some borders as described before and preserve the parallelism of the
borders. This gives rise to some additional synchronizable shapes, but more is
said about this in Sect. 4. As a final note about diamonds, note that the distance
between the X borders is the same that the one between the Y borders. In fact,
the two axes are totally symmetric in diamonds. Actually, this can be viewed
as the reason why a single axis is used in the work presented in [16] which is
restricted to von Neumann diamonds.

Similarly the Moore neighborhood can be used on the von Neumann rectangle
(this is called a Moore diamond) with the same peculiarities and properties as
shown in Fig. 2b.

3.3 The Hexagonal Case

We can now apply the same procedure in the hexagonal case and see what
happens. In the hexagonal ball BH

r of radius r, we can identify six types of
borders paired into three axes that we called U , V , and W , as illustrated in
Fig. 5a. The values of sets ν−1

d , ν+1
d for d ∈ D = {U, V,W} are shown in Table 2.

Now we cut-down some borders. What is obtained is an object that as three
lengths that represents, on each axis, the distance in between parallel borders.
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Fig. 5. Hexagonal balls and rectangles

Table 2. Values of parameter ν for the hexagonal case

Hexagonal

U-axis V-axis W-axis

ν−1
U =

{(
+2
0

)
,
(
+1
+1

)}
ν−1
V =

{(
+2
0

)
,
(
+1
−1

)}
ν−1
W =

{(−1
−1

)
,
(
+1
−1

)}

ν+1
U =

{(−2
0

)
,
(−1
−1

)}
ν+1
V =

{(−2
0

)
,
(−1
+1

)}
ν+1
W =

{(
+1
+1

)
,
(−1
+1

)}

By analogy with the previous cases such shapes are called Hexagonal rectangles.
This is illustrated in Fig. 5b, where from BH

2 , by removing a border of type ν+1
V

and then two borders of type ν−1
U we obtained RH

2×3×3.
The reader can note some differences with the Moore and von Neumann

cases. First in the hexagonal case it possible to remove a border of some type
without removing it explicitly. For example, in the figure we removed two U ’s
and one V borders and as a side effect a border of type W also disappeared.
Second, our notation RH

l×m×n does not represent a single shape as in the Moore
case, nor even a class of symmetric shapes as in the von Neumann case, but
a class of different shapes (see Fig. 6). But this is really not important for our
discussion, as the numbers l, n,m represents the data that really matter for the
synchronization, namely the lengths along each axis. Therefore, all shapes in the
same class are equivalent for our discussion.

We remind that the important thing is the concept of parallel borders, and
this is why we were able to synchronize all those shapes with our algorithm using
the right ν’s. Now, let us say more about why and how all of this works.

4 Sketch of the Synchronization Process

As we said, the synchronization of the whole space is obtained by superposing
independent unidimensional solutions along the identified axis. We therefore
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(a) (b) (c) (d)

Fig. 6. Two different shapes for RH
3×3×3 and for RV

3×3

need to explain how the whole is built from the pieces, and then explain what
happens along each axis for the whole space.

At the initial configuration, only one cell, the initiator, is active. The first
thing to known is that a cell becomes active as soon as one of its neighbors is
active, independently of the axes. Once active, a cell participates in all super-
posed synchronizations, i.e. two for the Moore and von Neumann neighborhood,
and three for the hexagonal one. For each axis d, the cell uses the corresponding
νd’s to give a real meaning to “left” and “right” in the corresponding unidimen-
sional synchronization. Each instance being independent, it might reach its fire
state at a time different from the others. A cell finally fires exactly when all the
instances have fired. This means that it has to wait for the latest synchronization
to effectively fire at the same time.

To have a global meaning for this local behavior, we need to understand how
things happen globally for an arbitrary axis, and then see how the independent
axes synchronization signals give rise to a coherent compound synchronization
signal.

So let us now consider an arbitrary axis d. The first thing to clarify is how
the fact that there are many “left” and “right” neighbors (according to the νd’s)
comply with the fact that we execute a single unidimensional synchronization of
the axes. This is the reason why we insisted on the parallelism of borders along
axes in all considered shapes. This parallelism property means more precisely
that for all cells, all unidimensional lines built from them that reach a “left”
border using the ν−1

d and that reach a “right” border using the ν+1
d have the

same length. Such lines are called lines along the axis (see Fig. 7) and their
lengths are exactly the ones used in the notation Rl×m and that are given in the
figures.

We remind to the reader that our unidimensional solution is based on the
notion of distance to the borders, so this parallelism implies that all those lines
are equivalent with respect to this notion. When a splitting occurs and new
borders are added, we known that the parallelism property still holds for each
resulting half-spaces. Indeed the splittings can be described in terms of borders
removal, and we showed that this operation preserves the parallelism property.
Thanks to this parallelism, the fact that a cell belongs to many lines along a
given axis is not a problem. Its goal for all these lines is the same since it has the
same distance to the borders for all of them. Also, the unidimensional solution
is therefore able to mix distance coming from different “left” neighbors in a
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Fig. 7. Two lines along the X axis in the Moore rectangle

single “left” information, and similarly for the right direction. This gives good
properties at the global level.

These good properties can be clearly stated in the Moore and von Neumann
cases. For any axis, and when we restrict our attention on the activated part
of the space, all the lines along the considered axis have exactly the same uni-
dimensional configuration. In particular, when one active cell fires along this
axis, all the other active cells fire. So for a given axis either it fires before or
after all the cells are active. If it fires after the full activation of the space, its
synchronization signal is global. If it fires before the full activation of the space,
as illustrated in Fig. 8, then each cell that become active after also fires. The
picture is completed by the fact that the last axis to fire necessarily fire after
the full activation of the space, and since it is the last to fire, it is the one that
determines to complete compound fire.

m

l

p

2l − p 2l − p

Fig. 8. A Y-axis synchronization on a large rectangle in Moore

For the hexagonal case, it is not the case that all the lines in the active
part of the space have the same unidimensional configuration, so a more general
argument is needed. The important fact to establish is that when the last axis to
fire do so, the axes which were not able to fire globally have already finished to
fire all the cells of the space. Instead of digging more into such an argument we
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provide some executions on the hexagonal case that allows to verify the property
in some elementary and understandable cases.

5 Executions of the Algorithm in the Hexagonal Case

In the hexagonal case, we determined that three axes exist. Thus three synchro-
nizations have to be superposed. This represents a lot of information per cell
but one can have a good insight of how the synchronization occurs by simply
observing how and when the splittings occur.

Figure 9 illustrates the case of a hexagonal ball of radius 15 with the initiator
at the center. Looking at the time of apparition, one can see the classical loga-
rithmic behavior of the divide and conquer scheme used: it takes 15 transitions
to activate the borders, then 15 more transitions to get the first splittings. The
subsequent splittings occur after 8, then 4, and then 2 transitions at which point
for each cell its neighborhood is full of borders of all kind. This event triggers
the global synchronization signal. One can also note that the hexagon splits into
6 triangles, and that here after each one splits into 4 triangles. In this example,
all the axes act symmetrically since the initiator is exactly at the center of the
space.

t = 15 t = 30 t = 38 t = 42 t = 44

Fig. 9. Splitting of an hexagonal ball of radius 15 with the initiator at the center

In Fig. 10, the independence of the axes and the fact that early splittings end
before the final one for each given recursive level can be observed. For time 33
to 39, the axis U starts its splitting, then the axis W , but both of them finished
before the axis V finished its first splitting. For the second level of splittings, the
same thing can be observed from time 42 to 47, this is harder to observe because
the axis U starts its third level of splitting at time 46, making even more explicit
the independence of the axes. All in all, V is the last axis to complete the synchro-
nization at all levels, and this determines the global synchronization time that
happens at step 54, just after that the whole neighborhood is full of borders of
all kind.

In Fig. 11 an even more complex situation is illustrated with splittings occur-
ring during the synchronization of an asymmetric Hexagonal rectangle.
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t = 33 t = 34 t = 35 t = 36 t = 37

t = 38 t = 39 t = 42 t = 43 t = 46

t = 47 t = 48 t = 49 t = 51 t = 53

Fig. 10. Splittings of an hexagonal ball of radius 15 with the initiator’s position indi-
cated by the isolated point. All configurations where borders appear are shown. The
independence of the axes is even clearer.

Fig. 11. Splittings of a trimmed hexagonal RH
18×14×14

6 Synchronization Time

An important thing to discuss is the synchronization time. In the unidimensional
case, if we denote by l the length of the line (in number of hops, not in number
of cells), and we denote by p the distance of initiator to the nearest border, the
synchronization occurs after 2l − p + 1 transitions. Here, we superposed many
axis synchronizations. Reminding that the global synchronization occurs when
the latest axis synchronizes, we obviously obtain the following formula:

Ts = max
d∈D

{2ld − pd + 1}. (2)

Then we recover the minimal synchronization time in all the considered case,
i.e. Moore rectangle, and von Neumann diamond being the most known for the
bidimensional case.
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7 Conclusion

In [4,5] we presented an algorithm that solves the G-FSSP on various shapes in
dimension 1 and 2. Even if it was easy to understand how to extend it to higher
dimensions, we asked if our solution was usable to solve the G-FSSP on 2D
shapes in the hexagonal topology, which is a priori less obvious (remind that no
one had proposed a solution up to now). This was obtained by the identification
of some properties of the synchronized shapes that permits to determine the right
values of some parameters to the algorithm that are related to the topology. We
do not have a formal proof of our claims yet, but we experimented successfully
everything that is presented here. All the characterizations and properties we
talked about can be proved, but this will be the main thread of a work to
come. We claim that we have a very generic solution that is able to synchronize
many regular shapes of any dimensions with various topologies in minimal-time.
Characterizing all the shapes that our solution captures is now a challenge.
We also think that it is possible to decorrelate in some way the axes to the
neighborhood and to “choose” more independently the axes. Of course, this
will necessitate to understand well the relations in between the ν’s and the
neighborhood.
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Abstract. We study the strict majority bootstrap percolation process
on graphs. Vertices may be active or passive. Initially, active vertices are
chosen independently with probability p. Each passive vertex v becomes
active if at least � deg(v)+1

2
� of its neighbors are active (and thereafter

never changes its state). If at the end of the process all vertices become
active then we say that the initial set of active vertices percolates on the
graph. We address the problem of finding graphs for which percolation is
likely to occur for small values of p. For that purpose we study percolation
on two topologies. The first is an n × n toroidal grid augmented with a
universal vertex. Also, each vertex v in the torus is connected to all nodes
whose distance to v is less than or equal to a parameter r. The second
family contains all random regular graphs of even degree, also augmented
with a universal node. We compare our computational results to those
obtained in previous publications for r-rings and random regular graphs.

1 Introduction

Consider the following deterministic process on a graph G = (V,E). Initially,
every vertex in V can be either active or passive. A passive vertex can become
active depending on the state of its neighbors. Once active, a vertex cannot
change its state. Such a process is called bootstrap percolation. In Sect. 2, we
will describe some families of graphs and transition rules that have been already
studied and what is known about the resulting processes.

The set of active vertices grows monotonically. Therefore, for a finite graph,
a fixed point has to be reached after a finite number of steps. If the fixed point
is such that all vertices have become active, then we say that the initial set of
active vertices percolates on G.
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The basic question is to determine the ratio of initial active vertices one needs
to choose randomly in order to percolate the whole graph with high probability.
More precisely, suppose that the elements of the initial set of active vertices
A ⊆ V are chosen independently with probability p. The problem consists in
finding values of p for which percolation of A is likely to occur. The least p for
which percolation will happen with probability greater than or equal to 1/2 will
be called the critical probability.

In the (simple)majority bootstrap percolation [1], each passive vertex v becomes
active if at least �deg(v)

2 � of its neighbors are active, where deg(v) denotes the
degree of node v in G. In the present paper we study the strict majority bootstrap
percolation process. In this case, each passive node v becomes active if it has
strictly more active than passive neighbors. More precisely, it will change if at
least �deg(v)+1

2 � of its neighbors are active. Note that if deg(v) is odd, the rules
for the strict and simple majority bootstrap percolation process coincide. Our
decision to use strict majority, as opposed to the simple version, is related to
our augmentation of a graph with a universal vertex, i.e. one that is connected
to every other vertex in the graph. Intuitively, the simple majority percolation
process in the augmented graph is somehow equivalent to the strong majority
process in the original one.

A natural question to ask about the strict majority bootstrap percolation
process is what graphs result in the critical probability being small. This prob-
lem, which motivates the present work, has not been addressed yet. Nevertheless,
it is possible to conclude, from a paper of Balogh and Pittel [2], that the criti-
cal probability of the strict majority bootstrap percolation for random 7-regular
graphs is 0.269.

Here we test empirically two different families of graphs. The first class is
the set of augmented 2D-tori. The other family is the set of augmented random
k-regular graphs. The results of the numerical experiments, in Sect. 3, show that
for the augmented 2D-torus, the estimated critical probability (call it pc) is about
0.185. For the augmented random d-regular graph, we obtain unexpectedly high
values for pc. For “small” values of d, that is d ≤ 16, we obtain pc > 0.33. This is
surprising (especially when d = 4) because the relatively high girth of the graphs
and a simple characterization of the vertices that will remain passive suggests
that the value for pc should be small.

2 Related and Previous Work

A common activation rule in literature is as follows: A passive vertex changes
to the active state if at least k of its neighbors are already active. The result-
ing process is known as k-neighbor bootstrap percolation, and was proposed by
Chalupa et al. [3]. Since its introduction this percolation process has mainly been
studied in the d-dimensional grid [n]d = {1, . . . , n}d [4–7]. The precise definition
of critical probability that has been used is the following:

pc([n]d, k) = inf{p ∈ [0, 1] : P
(
Apercolates on [n]d

) ≥ 1/2}. (1)
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The result of [9] is the culmination of many efforts aiming to obtain a sharp
threshold for pc([n]d, k). The result states that for every d ≥ k ≥ 2:

pc([n]d, k) =

(
λ(d, k) + o(1)

log(k−1) n

)d−k+1

,

where λ(d, k) < ∞ for every d ≥ k ≥ 2. Bootstrap percolation has also been
studied on other graphs such as high dimensional tori [1,10–13], infinite trees
[14–16] and random regular graphs [2,17].

In [18] the authors gave explicit constructions of two (families of) graphs for
which the critical probability is also small (but higher than 0.269). The idea
behind these constructions is the following. Consider a regular graph of even
degree G. Let G ∗ u denote the graph G augmented with a single universal ver-
tex u. The strict majority bootstrap percolation dynamics on G ∗ u has two
phases. In the first phase, assuming that vertex u is not initially active, the
dynamics restricted to G corresponds to the strict majority bootstrap perco-
lation. If more than half of the vertices of G become active, then the universal
vertex u also becomes active, and the second phase begins. In this new phase, the
dynamics restricted to G follows the simple majority bootstrap percolation (and
full activation becomes much more likely to occur). This justifies our interest in
the strict majority activation rule.

The two augmented graphs studied in [18] were the wheel Wn = u ∗ Rn and
the toroidal grid plus a universal vertex TWn = u ∗ R2

n (where Rn is the ring
on n vertices and R2

n is the toroidal grid on n2 vertices). For a family of graphs
G = (Gn)n, the following parameter was defined (A again denotes the initial
set of active nodes, however now the dynamics is driven by the strict majority
bootstrap percolation process):

p+c (G) = inf
{

p ∈ [0, 1]: lim inf
n→∞ P (Apercolates on Gn) = 1

}
. (2)

Note that in the last definition the limit of the probability has to be equal
to 1. This seems to be in conflict with the definition in Eq. 1, in which we demand
the probability of percolation to be greater than 1/2. There is no contradiction,
though. Considering lim infn→∞ P (A percolates on Gn) as function of p, it is
easy to prove that its value will transition from 0 to 1 at p+c (G), i.e. it is a step
function. Thus, the definition in Eq. 2 could be rewritten demanding the limit
to be greater than 1/2.

Now consider the families W = (Wn)n and T W = (TWn)n. It was proved
in [18] that p+c (W) = 0.4030..., where 0.4030... is the unique root in the interval
[0, 1] of the equation x + x2 − x3 = 1

2 . For the toroidal case it was shown that
0.35 ≤ p+c (T W) ≤ 0.372.

Computing the critical probability of the (one-dimensional) wheel is a trivial
task. Nevertheless, if we increase the radius of the vertices from 1 to any other
constant, then the situation becomes much more complicated. More precisely,
let Rn(r) be the ring where every vertex is connected to its r closest vertices to
the left and to its r closest vertices to the right. Obviously, Rn = Rn(1).
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Kiwi et al. [19] studied the strict majority bootstrap percolation process in a
generalization of the wheel that is called r-wheel Wn(r) = u ∗ Rn(r). A pecu-
liarity of the model in this paper is that the initial state of the universal vertex is
always set to 0. This is somewhat arbitrary, but simplifies the analysis and allows
to find an upper bound for p+c (W(r)) when the universal vertex can be initialized
randomly. The main result in [19] is that for the class of r-wheels W(r),

lim
r→∞ p+c (W(r)) = 1/4.

This is the smallest critical probability that has been proved for any class of
graphs. We would like to point out that the deterministic counterpart of both
the simple majority and the strict majority bootstrap percolation processes have
been intensively studied. In fact, bounds have been derived for the minimum
number of vertices one needs to activate in order to end up activating the whole
graph. These sets of vertices are called irreversible dynamic monopolies or irre-
versible dynamos [20–29].

3 Experiments and Results

The purpose of our experiments is to estimate p+c (G) for a given G. Informally,
we choose an n which is “large enough”, create G ∈ G of size n. We then activate
vertices with probability p (forcing the universal vertex to 0, following [19]) and
simulate the strict majority bootstrap percolation process on it until it reaches
a fixed point. We then analyze the fixed point and determine whether the initial
set percolates on G. We can repeat the experiment several times and compute
the fraction of replicas that resulted in percolation on G (call it f). Since f is
an estimation of the probability of the initial set percolating on G, we can try
different values of p until f ≈ 1/2. We will refer to this particular value of p as
pc. This will be our estimation of p+c (G). The goal of our simulation is finding a
family of grpahs for which p+c (G) < 1/4.

For our simulations we used an in-house program written in C. The total
amount of CPU time needed to generate the results we are presenting was
approximately 10 days.

3.1 Augmented Toroidal Grid

By analogy with the generalization of the wheel in [19], we define an augmented
torus. Let R2

n be as before and let R2
n(r) be the graph so every node v is connected

to all vertices whose Moore distance from v is less than or equal to r. Now
TWn(r) = u ∗ R2

n(r). We finally define the class of r-tori T W(r) = (TWn(r))n.
Intuitively, they are tori of n×n size, with vertices connected to all other vertices
at distances no greater than r. Besides, there is the universal vertex connected
to all other nodes in the grid.

For the experiments, we run our simulator for r = 1, 2, 3. For each value of
r we tried different values of p and measured f . As it is well known, some per-
colation problems are hard to study using simulations, because the asymptotic
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behavior of the system as (say) n grows is not apparent until n is so large that
simulation is not feasible. As a simple (heuristical) test, we run our simulations
for n = 2000 and n = 4000. By comparing the estimations of pc we obtained
from both variants we can have a rough idea of the reliability of our results.

Due to running time constraints we had to adjust the number of replicas we
used to compute f . For r = 1, n = 2000 we run 100 replicas per value of p (that is,
a single data point in Fig. 1). For r = 1, n = 4000 we used 20 replicas per point.
For r = 2, n = 2000 we computed 50 replicas per point and for r = 2, n = 4000
we did 20 replicas per point. Similarly, for r = 3 and n = 2000, 400 we had 100
and 25 replicas per point respectively.

Figures 1, 2 and 3 describe the r = 1, 2 and 3 cases respectively.
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Fig. 1. f vs. p for TWn(1). n = 2000, 4000

3.2 Random Regular Graphs

Since they have been also heavily studied, we run experiments using random reg-
ular graphs. There is another powerful motivation though. Consider a 4-regular
graph. It is easy to prove that if there is a cycle where all vertices belonging
to it are passive, they will all remain passive under the dynamics imposed by
the by the strict majority activation rule. Moreover, this condition character-
izes precisely the set of vertices that never become active. Since random regular
graphs have a “large” girth, in a probabilistic sense, the intuition is that with
high probability, those cycles will have at least one active node unless, of course,
p is very small. This intuition led us to hope for a very small pc.

Given n and k, generating k-regular graphs with n vertices (with uniform
probability) is a very challenging computational task. The intuitive and simple
algorithms are slow while faster methods are very cumbersome to implement.
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For an introduction to the problem algorithms see [30]. To reduce development
time we used some existing code written by Golan Pundak, uploaded to MAT-
LAB central. This function generates a k regular random graph with n vertices
using the pairing model, also described in [30]. The graphs generated by this
code were fed into our simulator.

The running times for generating each graph were long. The extreme case was
k = 50, n = 100000: it takes 2 days of CPU time to create a single graph. There-
fore we adopted the following strategy: for n = 100000, for k = 4, 8, 16, 50, we
generated a single graph. That is, we generated four graphs in total. For each one
of these graphs we estimated the value of pc and the results are displayed in Fig. 4.
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As a matter of fact we obtained the analogous results for n = 2000 and n = 10000.
The values we computed for pc changed very little with n. The differences where
in the third or fourth significative digits. Therefore the resulting plots would have
been almost the same as Fig. 4 and hence we omitted them.

0 4 8 16 50
0.3

0.32

0.34

0.36

0.38

0.4

d

p c

Fig. 4. pc vs d for d-regular random graphs with n = 100000.

3.3 Analysis of the Simulations

Our experiments for T W(r) show a pc ≈ 0.2963 for r = 1, and pc ≈ 0.187
for r = 2. Since the estimations were very similar regardless of the values of
n, our heuristic suggests n was large enough for the simulations to capture the
asymptotic behavior. Therefore pc should be a reasonable approximation to p+c .
When r = 3 there is a bigger discrepancy between the n = 2000 and n = 4000
runs than before. For the former, pc ≈ 0.19. For the latter, pc ≈ 0.20. We suspect
pc < 0.185 if n is large enough. This is based on some preliminary simulation
results, but considering it would require weeks of CPU time (with the current
software) to explore the r = 3, n = 8000 case we do not expect the approach
based on direct simulations to scale up much more.

Nonetheless, obtaining estimations below 0.19 is encouraging as they suggest
G = (TWn(2))n is a good candidate for having the new lowest known p+c (G).
Further, the successive values for pc we obtained when increasing r were 0.2963,
0.187 and 0.185. Although the last one is still dubious, this points to a decreasing
monotonicity of p+c (T W(r)) w.r.t. r. Based on these simulations and previous
results in [19], we expect it to be the case.

For the random d-regular graphs (see Fig. 4), we note three features in the
results. The first one is that the estimations for pc are larger than what we
obtained for the augmented tori or has been proved for wheels. This is surpris-
ing since our heuristic argument suggested the opposite had to happen. Another
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feature is the similarity of pc values for different d’s. Besides, there is the lack
of monotonicity in pc w.r.t. d. We are unable at this time to explain these
phenomena. Finally, we see how our addition of the universal vertex can dra-
matically affect the value of the critical probability. For our model, when d = 4,
we obtain pc ≈ 0.37. This contrasts with the case without the universal vertex,
were p+c (G) = 0.667, as proved by Ballogh and Pittel in [2].

4 Conclusion and Open Problems

We performed numerical experiments simulating the strict majority bootstrap
percolation process on two families of graphs. The objective is to advance toward
the resolution of this problem: Is there a class G = (Gn)n of graphs such that
the critical probability p+c (G) is 0, and if not, what is the smallest achievable
critical probability?

Our experiments strongly suggest that determining p+c (TWn(2))n will yield
a lower value than the lowest known today p+c (T W(r)) = 1/4. Further, the
question of whether or not p+c (TWn(r))n is monotonically decreasing w.r.t. r
is open, although we conjecture it is the case. From the above, it would be
interesting to calculate the limit (as r → ∞) of p+c (TWn(r))n, or at least to
determine if it is zero or not. The same questions can be generalized to higher
dimensional augmented tori.

Finally, in spite of the k-random regular graphs failing dramatically at yield-
ing a small value for pc, it would be interesting to know why the intuition was
invalid, why the value of pc almost did not change for different values of k and
determine whether p+c (G) is not monotonic.

References

1. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hyper-
cube. Comb. Probab. Comput. 18, 17–51 (2009)

2. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random
Struct. Algorithms 30(1–2), 257–286 (2007)

3. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J.
Phys. C Solid State Phys. 12, L31–L35 (1979)

4. Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys.
A Math. Gen. 21, 3801–3813 (1988)

5. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions.
Ann. Probab. 37(4), 1329–1380 (2009)

6. Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation.
Stoch. Process. Appl. 101, 69–82 (2002)

7. Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap perco-
lation. Probab. Theor. Relat. Fields 125(2), 195–224 (2003)

8. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge (2009)

9. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for
bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364, 2667–2701
(2012)



Strict Majority Bootstrap Percolation on Augmented Tori 105

10. Balogh, J., Bollobás, B.: Bootstrap percolation on the hypercube. Prob. Theory
Rel. Fields 134, 624–648 (2006)

11. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Comb. Probab. Comput. 19(5–6), 643–692 (2010)

12. Van der Hofstad, R., Slade, G.: Asymptotic expansions in n−1 for percolation
critical values on the n-cube and Z

n. Random Struct. Algorithms 27(3), 331–357
(2005)

13. Van der Hofstad, R., Slade, G.: Expansion in n−1 for percolation critical values on
the n-cube and Z

n: the first three terms. Comb. Probab. Comput. 15(5), 695–713
(2006)

14. Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-
amenable groups. Comb. Probab. Comput. 15, 715–730 (2006)

15. Biskup, M., Schonmann, R.H.: Metastable behavior for bootstrap percolation on
regular trees. J. Statist. Phys. 136, 667–676 (2009)

16. Fontes, L.R., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has
2 phase transitions. J. Statist. Phys. 132, 839–861 (2008)

17. Janson, S.: On percolation in random graphs with given vertex degrees. Electron.
J. Probab. 14, 86–118 (2009)

18. Rapaport, I., Suchan, K., Todinca, I., Verstraete, J.: On dissemination thresholds
in regular and irregular graph classes. Algorithmica 59, 16–34 (2011)

19. Kiwi, M., Moisset de Espanés, P., Rapaport, I., Rica, S., Theyssier, G.: Strict
majority bootstrap percolation in the r-wheel. Inf. Process. Lett. 114(6), 277–281
(2014)

20. Adams, S.S., Bootha, P., Troxell, D.S., Zinnen, S.L.: Modeling the spread of fault in
majority-based network systems: dynamic monopolies in triangular grids. Discrete
Appl. Math. 160(1011), 1624–1633 (2012)

21. Adams, S.S., Troxell, D.S., Zinnen, S.L.: Dynamic monopolies and feedback vertex
sets in hexagonal grids. Comput. Math. Appl. 62(11), 4049–4057 (2011)

22. Berger, E.: Dynamic monopolies of constant size. J. Comb. Theor. Ser. B 88(2),
191–200 (2001)

23. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Appl. Math
157(7), 1615–1627 (2009)

24. Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal
rings. Discrete Appl. Math. 113(1), 23–42 (2001)

25. Flocchini, R., Kralovic, A., Roncato, P., Ruzicka, N.: Santoro on time versus size
for monotone dynamic monopolies in regular topologies. J. Discrete Algorithms
1(2), 129–150 (2003)

26. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discrete Appl. Math. 137(2), 197–212 (2004)

27. Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Pro-
ceedings of the 6th International Colloquium on Structural Information and Com-
munication Complexity, pp. 204–218 (1999)

28. Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb.
16(1), 20 (2009). Research Paper 2

29. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor.
Comput. Sci. 282, 231–257 (2002)

30. Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.)
Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge
(1999)



Language Recognition by Reversible Partitioned
Cellular Automata

Kenichi Morita(B)

Hiroshima University, Higashi-Hiroshima 739–8527, Japan
km@hiroshima-u.ac.jp

Abstract. We investigate the language accepting capability of one-
dimensional reversible partitioned cellular automata (RPCAs). It is well
known that bounded cellular automata (CAs) are equivalent to deter-
ministic linear-bounded automata (DLBAs) in their language accepting
capability. Here, we prove RPCAs are also equivalent to them by show-
ing a construction method of an RPCA that simulates a given DLBA.
Thus, the reversibility constraint does not decrease the ability of PCAs.

1 Introduction

One-dimensional cellular automata (CAs) as language acceptors have been exten-
sively studied until now, and fast recognition algorithms as well as their proper-
ties have been investigated (see, e.g., a survey [1]). Smith [8] showed deterministic
CAs whose space is bounded by the input length are equivalent to deterministic
linear-bounded automata (DLBA) in their accepting capability if computing time
is not bounded. On the other hand, Kutrib and Malcher [2] studied reversible CA
acceptors, and derived basic properties of real-time ones.

In this paper, we study how the constraint of reversibility affects the accepting
capability of bounded CAs in the case computing time is not bounded. For this
purpose, we consider the following two sub-problems. The first one is how a
DLBA is converted into an equivalent reversible DLBA (RDLBA). The second
one is how an RDLBA is simulated by a reversible bounded CA. For the first
problem, Lange, McKenzie and Tapp [3] showed that a DLBA can be simulated
by an RDLBA. However, their method is complex, and it is difficult to give
a practical procedure of conversion. Here, we give a much simpler conversion
method based on the one shown in [6]. For the second problem, we use the
framework of a deterministic partitioned cellular automaton (PCA), since it
makes design of reversible CAs easier. In [4,7], it is shown that a reversible Turing
machine (RTM) is simulated by a reversible PCA (RPCA). However, there, the
configuration size of the RPCA was not bounded, and thus a new technique
is required to simulate an RDLBA in a bounded RPCA. Here, we propose a
formulation of an RPCA acceptor, and give a conversion method of an RDLBA
into an RPCA that simulates the former in the cellular space whose working
space is always bounded by the input length plus 2. By above, any given DLBA
can be converted into an RPCA acceptor that simulates the former. Hence, the
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 106–120, 2015.
DOI: 10.1007/978-3-319-18812-6 9
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language accepting capability of bounded PCAs does not decrease, even if the
reversibility constraint is added.

2 Reversible Partitioned Cellular Automaton (RPCA)

Definition 1. A 1-dimensional 3-neighbor deterministic partitioned cellular
automaton (PCA) as an acceptor of a language is defined by P = ((L,C,R),
f, (#,#,#), rs, Σ,A). Here, L,C,and R are nonempty finite sets of states of left,
center, and right parts of a cell, and thus the state set of a cell is Q = L×C×R.
A mapping f : Q → Q is a local function, (#,#,#) ∈ Q is a quiescent state
that satisfies f(#,#,#) = (#,#,#), rs ∈ R is a start state, Σ ⊂ C is an input
alphabet, and A ⊂ L is a set of accepting states.

Let pL : Q → L be the projection such that pL(l, c, r) = l for all (l, c, r) ∈ Q. The
projections pC : Q → C and pR : Q → R are also defined similarly. Let Conf(Q)
be the set of all configurations over Q, i.e., Conf(Q) = {α | α : Z → Q}, where
Z is the set of all integers. The global function F : Conf(Q) → Conf(Q) of P
induced by f is defined as the one that satisfies the following:

∀α ∈ Conf(Q),∀x ∈ Z (F (α)(x) = f(pL(α(x + 1)), pC(α(x)), pR(α(x − 1)))).

Let F t denote the operation of applying F repeatedly t times (t = 0, 1, . . .).
In a PCA P , the next state of each cell is determined by the present state

of the left part of the right-neighboring cell, the center part of this cell, and the
right part of the left-neighboring cell. Note that a state in L (R, respectively)
can be regarded as a “signal” to the left-neighboring (right-neighboring) cell. An
equation f(l, c, r) = (l′, c′, r′), where (l, c, r), (l′, c′, r′) ∈ Q, is called a rule of P .

Definition 2. Let P = ((L,C,R), f, (#,#,#), rs, Σ,A,N) be a PCA. P is
called locally reversible iff the local function f is injective, and called globally
reversible iff the global function F induced by f is injective.

Proposition 1. [7] Any PCA P is locally reversible iff it is globally reversible.

As stated in Proposition 1, local and global reversibility are equivalent in PCAs.
Hence, in the following, we shall design a locally reversible PCA to obtain a
globally reversible one, and it is simply called a reversible PCA (RPCA).

In the following, we assume a PCA (or RPCA) P satisfies the condition
(P1) below so that the number of non-quiescent cells does not exceeds n + 2
throughout a computation process, where n is the length of an input.

(P1) If a cell of P is in the state # in the center part, then it bounces any
signal l (r, respectively) from the right (left), and sends back a signal
r′ (l′) to the right (left): ∀ l ∈ L, ∃ r′ ∈ R (f(l, #,#) = (#,#, r′)) and
∀ r∈R, ∃ l′ ∈L (f(#,#, r) = (l′,#,#)).
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−1 0 1 2 · · n n + 1 n + 2

t = 0 # # # # # rs # a1 # # a2 # · · · · · · # an # # # # # # #

...
t = t1 # # # # # r0 l1 c1 r1 l2 c2 r2 · · · · · · ln cn rn ln+1 # # # # #

Fig. 1. An initial configuration αw (t = 0) of a PCA with an input w = a1a2 · · · an,
and an accepting configuration (t = t1) where pL(F

t1(αw)(1)) = l1 ∈ A.

Definition 3. Let P = ((L,C,R), f, (#,#,#), rs, Σ,A,N) be aPCA,and w =
a1a2 · · · an ∈ Σn (n = 1, 2, . . .) be an input word. The configuration αw defined
below is called an initial configuration of P with w.

αw(x) =

⎧⎨
⎩

(#,#, rs) if x = 0
(#, ax,#) if 1 ≤ x ≤ n
(#,#,#) if x < 0 or x > n

We sayw is accepted by P if ∃ t1 > 0 (pL(F t1(αw)(1)) ∈ A). The language
accepted by P is: L(P ) = {w ∈ Σ∗ | ∃ t1> 0 (pL(F t1(αw)(1)) ∈ A)}.

An initial configuration and an accepting configuration are illustrated in
Fig. 1. Here, we assume an infinite array of cells. But, since the condition (P1)
holds, only n+2 cells are used in a computation. In the case of usual CA acceptors
border cells at the positions 0 and n+1 do not change their states (see [1]). But,
in PCA acceptors, the right part of the left border cell, and the left part of the
right border cell may change their states.

3 Reversible Linear-Bounded Automaton (RLBA)

Lange, McKenzie and Tapp [3] showed that the complexity class of deterministic
space S(n) is equal to that of reversible space S(n). From this, we obtain equiv-
alence of a deterministic linear-bounded automaton (DLBA) and a reversible
DLBA (RDLBA) by letting S(n) = n. But, their method is complex, and it is
difficult to get a concrete description of the RDLBA. Here, we show a simpler
method of converting a DLBA into an RDLBA based on the method in [6].

In this paper, a linear-bounded automaton (LBA) is defined as a 2-track
LBA shown in Fig. 2 rather than a standard 1-track LBA, because in the proof of
Lemma 2, which gives a method of converting an irreversible LBA to a reversible
one, it is required that an input word is kept unchanged throughout its com-
putation. It is easy to see a 2-track LBA can simulate a 1-track LBA, and vice
versa by a straightforward method, and thus they are equivalent.

Definition 4. A 2-track linear-bounded automaton (LBA) consists of a finite-
state control, a read-write head, and a tape with an input track and a storage
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Input track (read-only)a1 a2 an

q Finite-state control

Storage track (read/write)b1 b2

· · · · · ·
· · bm # · · #

Fig. 2. A 2-track linear-bounded automaton (LBA).

track (Fig. 2). It is defined by M = (Q,Σ, Γ, δ,�,�,#, q0, A,N). Q is a non-
empty finite set of states, Σ is a nonempty finite set of input symbols for the
input track, and Γ is a nonempty finite set of storage symbols for the storage
track. �and �are left and right endmarkers of each track of the tape such that
{�,�} ∩ (Σ ∪ Γ ) = ∅, and # ∈ Γ is a blank symbol for the storage track.
q0 (∈ Q) is the initial state, and A (⊂ Q) and N (⊂ Q)are sets of accepting and
non-accepting states that satisfy A ∩ N = ∅. δ is a subset of (Q × ((Σ×Γ 2 ∪
{[�, [�,�]], [�, [�,�]]}) ∪ {−1, 0,+1}) × Q) that determines the transition rela-
tion on M ’ s configurations. Here, −1, 0, and +1 stand for left-shift, no-shift,
and right-shift of the head, respectively. In what follows, we also use − and +
instead of −1 and +1 for simplicity. Note that only reading is permitted on the
input track, while both reading and writing are allowed on the storage track.

Each element r = [p, x, q] ∈ δ is called a rule of M in the triple form, where
x = [a, [b, c]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]} or x = d ∈ {−, 0,+}. A rule of
the form [p, [a, [b, c]], q] is called a read-write rule, and means if M is in the state
p and reads an input symbol a and a storage symbol b, then rewrites the latter
to c, and enters the state q. Here, � and � should not be rewritten to any other
symbol. A rule of the form [p, d, q] is called a shift rule, and means if M is in the
state p, then shifts the head to the direction d, and enters the state q.

Let q ∈ Q, w ∈ Σ∗, v ∈ Γ ∗ such that |v| = |w|, and h ∈ {0, 1, . . . , |w| +
1}. Then, [�w�,�v�, q, h] is called a computational configuration (or simply a
configuration) of M with an input w. It means that the contents of the input
track and the storage track are w and v, the finite-state control is in the state
q, and the head position is h, where the position of � is 0.

Let S be a set of symbols. A partial function s : S+ ×N → S is defined
as follows, where N is the set of all non-negative integers. If x = x0x1 · · · xn−1

(xi ∈ S), then s(x, j) = xj for 0 ≤ j < n, and s(x, j) is undefined for j ≥ n.
Hence, s(x, j) gives the j-th symbol of x, where the leftmost symbol is the 0-th.

The transition relation |−−
M

between a pair of configurations [�w�,�v�, q, h]
and [�w�,�v′�, q′, h′] is defined as follows.

[�w�,�v�, q, h] |−−
M

[�w�,�v′�, q′, h′] iff (1) or (2) holds.

(1) [q, [s(�w�, h), [s(�v�, h), s(�v′�, h′)]], q′] ∈ δ ∧ h′ = h ∧
∀j (0 ≤ j ≤ |v| + 1 ∧ j = h ⇒ s(�v′�, j) = s(�v�, j))

(2) [q, h′−h, q′] ∈ δ ∧ v′ = v
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The reflexive and transitive closure, and the transitive closure of the relation |−−
M

is denoted by |−−
M

∗ and |−−
M

+ , respectively. A configuration [�w�,�#|w|�, q0, 0] is
called an initial configuration with an input w ∈ Σ∗. A configuration C is called
a halting configuration if there is no configuration C ′ such that C |−−

M
C ′.

We say w ∈ Σ∗ is accepted by M if [�w�,�#|w|�, q0, 0] |−−
M

∗ [�w�,�v�, q, h]
for some q ∈ A, v ∈ Γ |w|, and h ∈ {0, 1, . . . , |w| + 1}. The language accepted by
M is the set of all words accepted by M , and denoted by L(M).

L(M) = {w ∈ Σ∗ | [�w�,�#|w|�, q0, 0] |−−
M

∗ [�w�,�v�, q, h] for some
q ∈ A, v ∈ Γ |w|, and h ∈ {0, 1, . . . , |w| + 1} }

The set N of non-accepting states is not used in the definition of acceptance.
But, it is convenient to specify it for the later construction of reversible LBAs.

Definition 5. An LBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N)is called a determin-
istic LBA (DLBA) iff the following determinism condition holds.

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ :
(r1 = r2 ∧ p = p′) ⇒ (x ∈ {−, 0,+} ∧ x′ ∈ {−, 0,+} ∧
∀ [a, [b, c]], [a′[b′, c′]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}
(x = [a, [b, c]] ∧ x′ = [a′, [b′, c′]] ⇒ [a, b] = [a′, b′]))

It means that for any two distinct rules r1 and r2 in δ, if the present states pand
p′ are the same, then they are both read-write rules, and the pairs of the input
symbols and the read storage symbols [a, b] and [a′, b′] are different.

Definition 6. An LBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) is called a reversible
LBA (RLBA) iff the following reversibility condition holds.

∀ r1 = [p, x, q] ∈ δ, ∀ r2 = [p′, x′, q′] ∈ δ :
(r1 = r2 ∧ q = q′) ⇒ (x ∈ {−, 0,+} ∧ x′ ∈ {−, 0,+} ∧
∀ [a, [b, c]], [a′[b′, c′]] ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}
(x = [a, [b, c]] ∧ x′ = [a′, [b′, c′]] ⇒ [a, c] = [a′, c′]))

It means that for any two distinct rules r1 and r2 in δ, if the next states q and
q′ are the same, then they are both read-write rules and the pairs of the input
symbols and the written storage symbols [a, c] and [a′, c′] are different.

A rule [p, x, q] is called a deterministic rule (reversible rule, respectively), if there
is no rule [p′, x′, q′] such that the pair ([p, x, q], [p′, x′, q′]) violates the determin-
ism (reversibility) condition.

A reversible and deterministic LBA is denoted by RDLBA. In the following,
we consider only DLBAs and RDLBAs. From the definition, it is easily seen that
if M is deterministic, then for every configuration C of M there is at most one
configuration C ′ such that C |−−

M
C ′. Likewise, if M is reversible, then for every

configuration C of M there is at most one configuration C ′ such that C ′ |−−
M

C.
We define a computation graph GM,w = (V,E) of M with an input w ∈ Σ∗

as follows. Let Conf(M,w) be the set of all configurations of M with w, i.e.,
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Conf(M,w) = {[�w�,�v�, q, h] | q ∈ Q ∧ v ∈ Γ |w| ∧ h ∈ {0, 1, . . . , |w| +
1} }. The set V (⊂ Conf(M,w)) of nodes is the smallest set that contains the
initial configuration [�w�,�#|w|�, q, h], and satisfies the following condition:
∀C1, C2 ∈ Conf(M,w) ((C1 ∈ V ∧ (C1 |−−

M
C2 ∨ C2 |−−

M
C1)) ⇒ C2 ∈ V ).

Namely, V is the set of all configurations connected to the initial configuration,
and is finite. The set E of directed edges is: E = {(C1, C2) | C1, C2 ∈ V ∧ C1 |−−

M
C2}. If M is deterministic, then outdegree of each node in V is either 0 or 1,
where a node of outdegree 0 corresponds to a halting configuration. On the other
hand, if M is reversible, then indegree of each node in V is either 0 or 1.

In the following, we assume, without loss of generality, any given DLBA
M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) satisfies the following conditions (C1)–(C6)
for the later convenience. In fact, M is easily modified so that it satisfies them.

(C1) The initial state q0 does not appear as the third component of a rule in δ:
∀[q, x, q′] ∈ δ (q′ = q0).

(C2) M performs read-write and shift operations alternately. Hence, Q is written
as Q = Qrw ∪ Qsf for some Qrw and Qsf such that Qrw ∩ Qsf = ∅, and δ
satisfies the following condition:
∀ [p, x, q] ∈ δ

((x ∈ Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]} ⇒ p ∈ Qrw ∧ q ∈ Qsf) ∧
(x ∈ {−, 0,+} ⇒ p ∈ Qsf ∧ q ∈ Qrw))

We can easily modify M so that it satisfies the above condition by adding
new states to it. Each element of Qrw and Qsf is called a read-write state and
a shift state, respectively. We further assume q0 ∈ Qrw, and A ∪ N ⊂ Qsf ,
though each state in A ∪ N makes no further move as in (C3).

(C3) Every state in A ∪ N is a halting state in Qsf , and vice versa:
∀q ∈ Q (q ∈ A ∪ N ⇔ q ∈ Qsf ∧ ¬∃[q, x, q′] ∈ δ).

(C4) If M reads a left (right, respectively) endmarker, then in the next step the
shift direction of the head is to the right (left):
∀p, r ∈ Qrw, ∀q ∈ Qsf ,
∀[a, [b, c]] ∈ (Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}), ∀d ∈ {−, 0,+}

([p, [a, [b, c]], q], [q, d, r] ∈ δ ⇒ (a = � ⇒ b = c = � ∧ d = +) ∧
(a = � ⇒ b = c = � ∧ d = −))

Likewise, if M reads a left (right, respectively) endmarker, then in the
previous step the shift direction of the head is to the left (right):
∀p, r ∈ Qsf , ∀q ∈ Qrw,
∀[a, [b, c]] ∈ (Σ×Γ 2 ∪ {[�, [�,�]], [�, [�,�]]}), ∀d ∈ {−, 0,+}

([r, d, q], [q, [a, [b, c]], p] ∈ δ ⇒ (a = � ⇒ b = c = � ∧ d = −) ∧
(a = � ⇒ b = c = � ∧ d = +))

(C5) Just after M starts to move, it confirms the storage track contains only
blank symbols #s. It is done by replacing the rule [q0, [�, [�,�]], q] by
[q0, [�,[�,�]], q0,1], [q0,1,+, q0,2], [q0,2, [a, [#,#]], q0,1],
[q0,2, [�,[�,�]], q0,3], [q0,3,−, q0,4], [q0,4, [a, [#,#]], q0,3], [q0,4, [�,[�,�]], q].

Here, q0,1, q0,2, q0,3, q0,4 are new states, and the rules [q0,2, [a, [#,#]], q0,1]
and [q0,4, [a, [#,#]], q0,3] are added for each a ∈ Σ. Note that there is only
one rule that has q0 as the first component since (C1) and (C2) hold.
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We define the following functions to give the condition (C6) below: prev-rw :
Qrw → 2Qsf×{−,0,+}, prev-sf : Qsf × (Σ×Γ ∪{[�,�], [�,�]}) → 2Qrw×(Γ∪{�,�}),
degrw : Qrw → N, and degsf : Qsf × (Σ×Γ ∪ {[�,�], [�,�]}) → N as follows,
where Qrw and Qsf are the sets given in (C2).

prev-rw(q) = {[p, d] | p ∈ Qsf ∧ d ∈ {−, 0,+} ∧ [p, d, q] ∈ δ}
prev-sf(q, a, c) = {[p, b] | p ∈ Qrw ∧ b ∈ (Γ ∪ {�,�}) ∧ [p, [a, [b, c]], q] ∈ δ}

degrw(q) = |prev-rw(q)|
degsf(q, a, c) = |prev-sf(q, a, c)|

Assume M is in the configuration [�w�,�v�, q, h]. If q is a read-write state
(shift state, respectively), then degrw(q) (degsf(q, s(�w�, h), s(�v�, h))) gives
the total number of previous configurations of [�w�,�v�, q, h]. Each element
[p, d] ∈ prev-rw(q) ([p, b] ∈ prev-sf(q, s(�w�, h), s(�v�, h)), respectively) gives
a previous state and a shift direction (a previous state and a previous storage
symbol). If M is an RDLBA, then degrw(q) ≤ 1 and degsf(q, a, c) ≤ 1 hold for
any q ∈ Q, and (a, c) ∈ (Σ×Γ ∪ {[�,�], [�,�]}).

(C6) M satisfies degrw(q) ≤ 1 for all q ∈ Qrw. If otherwise, we modify M as
follows. If there is a pair of shift rules [p, d1, q] and [p′, d2, q] in δ, then add
a new state q′ in Q, remove [p′, d2, q] from δ, and add rules [p′, d2, q′] and
[q′, [a, [b, c]], r] for each [q, [a, [b, c]], r] ∈ δ. Hence, degsf(r, a, c) increases,
but degrw(q) decreases. Repeat this procedure until no such pair exits.

We first show Lemma 1 stating that an RDLBA always halts. It is proved in a
similar manner to the case of a reversible multi-head finite automaton [5].

Lemma 1. Let M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) be an RDLBA that satisfies
(C1). Then, it eventually halts for any input w ∈ Σ∗.

Proof. Let C0 |−−
M

C1 |−−
M

C2 |−−
M

· · · be a computation of M starting from the
initial configuration C0 = [�w�,�#|w|�, q0, 0] with an input w ∈ Σ∗. First, we
show M never loops for any w. Assume, on the contrary, it loops, i.e., there exists
a pair of integers (i, j) such that 0≤ i<j and Ci = Cj . Let (i0, j0) be the pair such
that i0 is the least integer among such (i, j)-pairs. By the condition (C1), there
is no configuration C−1 that satisfy C−1 |−−

M
C0. Hence, C0 = Ci0 = Cj0 , and

thus i0 > 0. Therefore Ci0−1 = Cj0−−1. But, since Ci0−1 |−−
M

Ci0 , Cj0−1 |−−
M

Cj0 ,
and Ci0 = Cj0 hold, it contradicts the assumption M is reversible. Therefore,
M never loops. On the other hand, the total number of configurations reachable
from C0 is bounded by |Q| · |Γ ||w| · (|w| + 2). Hence, M halts for any input w. ��
We now give a method of converting a DLBA to an RDLBA in Lemma 2.

Lemma 2. Let M = (Q,Σ, Γ, δ,�,�,#, q0, A,N) be a DLBA. We can con-
struct an RDLBA M† = (Q†, Σ, Γ, δ†,�,�,#, q0, {q̂b0}, {qb0}) such that the fol-
lowing holds, and thus L(M†) = L(M).

∀w ∈ Σ∗ ((w ∈ L(M) ⇒ [�w�,�#|w|�, q0, 0] |−−
M†
+ [�w�,�#|w|�, q̂b0 , 0] )∧

(w ∈ L(M) ⇒ [�w�,�#|w|�, q0, 0] |−−
M†
+ [�w�,�#|w|�, qb0 , 0] ))
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Proof. In our construction, M† traverses the computation graph GM,w from the
initial configuration of M with an input w to find an accepting one as shown
in Fig. 3. We assume M satisfies the conditions (C1)–(C6). We further assume
the sets Q, and Γ ∪ {�,�} are totally ordered, and the elements of the set
prev-sf(q, a, c) is sorted by these orders. Thus, we express it by an ordered list as
below. Note that since M satisfies (C6), |prev-rw(q)| ≤ 1 holds for all q ∈ Qrw.

prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]], where k = degsf(q, a, c)

Then, Q† = {q, q̂, qb, q̂b | q ∈ Q}, and δ† is defined as below.

δ† = δ1 ∪ · · · ∪ δ4 ∪ δ̂1 ∪ · · · ∪ δ̂4 ∪ δA ∪ δN

δ1 = { [qb, [a, [c, b1]], pb1 ], [p1, [a, [b1, b2]], pb2 ], [p2, [a, [b2, b3]], pb3 ], . . . ,
[pk−1, [a, [bk−1, bk]], pbk], [pk, [a, [bk, c]], q] |

q ∈ Qsf ∧ (a, c) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ degsf(q, a, c) ≥ 1
∧ prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]], where k = degsf(q, a, c) }

δ2 = { [qb,−d, pb], [p, d, q] | q ∈ Qrw ∧ prev-rw(q) = [[p, d]] }
δ3 = { [qb, [a, [c, c]], q] | q ∈ Qsf − (A ∪ N)

∧ (a, c) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ degsf(q, a, c) = 0 }
δ4 = { [q, [a, [b, b]], qb] | q ∈ Qrw − {q0}

∧ (a, b) ∈ (Σ×Γ ∪ {(�,�), (�,�)}) ∧ ¬∃c∃p ([q, [a, [b, c]], p] ∈ δ) }
δ̂i = { [p̂, x, q̂] | [p, x, q] ∈ δi } (i = 1, . . . , 4)
δA = { [q, 0, q̂b] | q ∈ A } ∪ { [q̂, 0, qb] | q ∈ A }
δN = { [q, 0, qb] | q ∈ N } ∪ { [q̂, 0, q̂b] | q ∈ N }

Q† has four types of states. They are of the forms q, q̂, qb and q̂b. The states
without a superscript (i.e., q and q̂) are for forward computation, while those
with a superscript “b” (i.e., qb and q̂b) are for backward computation. The states
with “ˆ” (i.e., q̂ and q̂b) are the ones indicating that an accepting configuration
of M was found in the process of traversal, while those without “ˆ” (i.e., q and
qb) are for indicating no accepting configuration has been found so far.

δ1, . . . , δ4 are the sets of rules for the states without “ˆ”, and δ̂1, . . . , δ̂4
are the ones of corresponding rules for the states with “ˆ”. δ1 and δ̂1 are for
searching the graph GM,w at a shift state of M . See, for example, the node
with a shift state q3 in Fig. 3 (a). By the rules in δ1 and δ̂1, the graph GM,w

is searched by the states of M† from q̂b3 to q̂b5 , from q̂5 to q̂b0 , from q0 to qb6 ,
and from q6 to q3. δ2 and δ̂2 are for searching GM,w at a read-write states of
M . For example, see the node with a read-write state q1 in Fig. 3 (a). By these
rules the graph is searched from q̂b1 to q̂b3 , and from q3 to q1. δ3 and δ̂3 are for
turning the direction of search from backward to forward in GM,w for a shift
state. See, for example, the node with the shift state q9 in Fig. 3 (a), where
the state of M† changes from q̂b9 to q̂9. δ4 and δ̂4 are for turning the direction
from forward to backward in for halting configuration with a read-write state.
There is no example of this type in Fig. 3. But, if the configuration with q2 were
such a one, then the state of M† changes from q2 to qb2 . δA (δN , respectively) is
for turning the search direction from forward to backward for accepting (non-
accepting) states. In addition, each rule in δA makes M† change the state from a
one without “ˆ” to the corresponding one with “ˆ”. Note that the sets of rules
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{[q̂, 0, qb] | q ∈ A} ⊂ δA and {[q̂, 0, q̂b] | q ∈ N} ⊂ δN are not used to simulate M ,
but for keeping symmetry between the states with “ˆ” and those without “ˆ”.

We can verify M† is deterministic and reversible. For example, consider the
rules in δ1. Since prev-sf(q, a, c) = [[p1, b1], . . . , [pk, bk]] (k = degsf(q, a, c) ≥ 1),
there are rules [p1, [a, [b1, c], q]], [p2, [a, [b2, c], q]], . . . , [pk, [a, [bk, c], q]] in δ of M .
First, [qb, [a, [c, b1]], pb1 ] ∈ δ1 is a deterministic rule, because it is the sole rule of
the form [qb, [a, [c, x]], yb] (for some x ∈ Γ ∪{�,�} and y ∈ Q) for the com-
bination (q, a, c). It is also a reversible rule, since [p1, [a, [b1, c], q]] ∈ δ is a
deterministic rule. Second, [pi, [a, [bi, bi+1]], pbi+1] ∈ δ1 (i = 1, . . . , k − 1) is
deterministic, since [pi, [a, [bi, c], q]] ∈ δ is deterministic. It is reversible, since
[pi+1, [a, [bi+1, c], q]] ∈ δ is deterministic. Third, [pk, [a, [bk, c]], q] ∈ δ1 is deter-
ministic, since [pk, [a, [bk, c], q]] ∈ δ is deterministic. It is also reversible, since it is
the sole rule of the form [x, [a, [y, c]], q] ∈ δ1 (for some x ∈ Q and y ∈ Γ∪{�,�})
for the combination (q, a, c). It is also easy to verify that other rules in δ† are
deterministic and reversible.

We can also verify that the constructed M† also satisfies the conditions (C1)–
(C6) except (C4) (since there are rules of the form [p, 0, q] in δA and δN ). For
example, (C2) can be verified from the following fact: if q, q̂ ∈ Q†

rw (q, q̂ ∈ Q†
sf ,

respectively), then qb, q̂b ∈ Q†
sf (qb, q̂b ∈ Q†

rw).
Now, consider the case where M finally halts in a configuration Ch. Then

GM,w becomes a finite tree with the root Ch. Given the input w, M† starts
to search GM,w. As explained above, from each node, M† visits all of its child
nodes one after another, and thus M† will perform a depth-first search of a tree
(Fig. 3 (a)). Note that the search starts not from the root of the tree but from
the leaf node [�w�,�#|w|�, q0, 0]. Since each node of GM,w is identified by the
configuration of M of the form [�w�,�v�, q, h], it is easy for M† to keep it by
the configuration of M† itself.

If M† enters an accepting state of M , say qa, which is the root of the tree
while traversing the tree, then M† goes to the state q̂ba by a rule in δA, and
continues the depth-first search. After that, M† uses the states of the form q̂
and q̂b indicating that the input w should be accepted. M† will eventually reach
the initial configuration of M by its configuration [�w�,�#|w|�, q̂b0 , 0]. Thus,
M† halts and accepts the input.

If M† enters a halting state of M other than the accepting states, then by
a rule in δN ∪ δ4, and then by rules in δ1 ∪ δ2 ∪ δ3 it continues the depth-first
search without entering a state of the form q̂. Also in this case, M† will finally
reach the initial configuration of M by its configuration [�w�,�#|w|�, qb0 , 0].
Thus, M† halts and rejects the input.

We can see M† halts either in the configuration [�w�, �#|w|�, q̂b0 , 0] or
[�w�,�#|w|�, qb0 , 0] by the following reasons. First, M† does not halt in a
state other than q̂b0 and qb0 , since δ† is so designed that M† continues the tra-
versal at any node of GM,w such that M ’s state is not q0. Second, M† does
not halt in a configuration [�w′�,�v�, q̂b0 , h] or [�w′�,�v�, qb0 , h] for some
w′ ∈ Σ∗ such that w′ = w, v ∈ Γ |w′| and h ∈ {0, . . . , |w′| + 1}, since input
symbols are not rewritten. Note that, if M rewrites input symbols, then GM,w
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Fig. 3. Examples of computation graphs GM,w of an DLBA M . Each node represents
a configuration of M , though only a state of the finite-state control is written in a
circle. The node labeled by q0 represents the initial configuration of M . An RDLBA
M† traverses these graphs along thin arrows using its configurations, and finally halts.
(a) A case M halts in an accepting state qa. (b) A case M loops forever.

may have two or more initial configurations, and thus M† does not traverse
GM,w entirely even if it is a tree. Third, M† does not halt in a configuration
[�w�,�v�, q̂b0 , h] or [�w�,�v�, qb0 , h] for some v ∈ Γ |w| and h = 0. Since
the initial configuration of M is [�w�,�#|w|�, q0, 0], and (C1) holds, we can
assume there is no rule of the form [q0, [a, [b, c]], q] with [a, [b, c]] = [�, [�,�]] in
δ. Hence, [�w�,�v�, q0, h] with h = 0 is not a node of GM,w. Fourth, the case
that M† halts in [�w�,�v�, q̂b0 , 0] or [�w�,�v�, qb0 , 0] for some v = #|w| is
also inhibited. If it starts from [�w�,�v�, q0, 0] with v = #|w|, it halts in q0,2,
because of (C5). Hence, [�w�,�v�, q0, 0] with v = #|w| is not a node of GM,w.

Next, consider the case where M enters a loop. Then GM,w is not a tree, but
a finite graph (Fig. 3 (b)). In this case, since there is no accepting configuration
in GM,w, M† never reaches an accepting state of M no matter how M† visits the
nodes of GM,w (it may not visit all the nodes of GM,w). Thus, M† uses only the
states without “ˆ”. Since M satisfies the condition (C1), M† eventually halts
by Lemma 1. By the same argument as in the case GM,w is a tree, M† must halt
in the configuration [�w�,�#|w|�, qb0 , 0]. By above, the theorem holds. ��
Example 1. Consider a DLBA Mp that accepts all well-formed parentheses.

Mp = (Q, { (, ) }, {#, x}, δ,�,�,#, q0, {qa}, {qr})
Q = {q0, q0,1, q0,2, q0,3, q0,4, q1, q2, q3, q4, q5, q6, qa, qr}
δ = { [q0, [�, [�,�]], q0,1], [q0,1,+, q0,2], [q0,2, [ (, [#,#]], q0,1], [q0,2, [ ), [#,#]], q0,1],

[q0,2, [�, [�,�]], q0,3], [q0,3,−, q0,4], [q0,4, [ (, [#,#]], q0,3], [q0,4, [ ), [#,#]], q0,3],
[q0,4, [�, [�,�]], q1], [q1,+, q2], [q2, [ (, [#,#]], q1], [q2, [ (, [x, x]], q1],
[q2, [ ), [x, x]], q1], [q2, [ ), [#, x]], q3], [q2, [�, [�,�]], q5], [q3,−, q4],
[q4, [ (, [x, x]], q3], [q4, [ ), [x, x]], q3], [q4, [ (, [#, x]], q1], [q4, [�, [�,�]], qr],
[q5,−, q6], [q6, [ (, [x, x]], q5], [q6, [ ), [x, x]], q5], [q6, [ (, [#,#]], qr],
[q6, [�, [�,�]], qa] }
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If an input w ∈ { (, ) }∗ is given, Mp first checks if the condition (C5) holds
by the states q0,1, q0,2, q0,3, and q0,4. Next, it scans the input to the right to
find the leftmost “)” using the states q1 and q2, and mark it by “x” on the
storage track. Then, it scans the input to the left to find the corresponding
“(”, and also mark it by “x” by the states q3 and q4. Mp repeats this pro-
cedure until all “)”s are marked. Note that already marked parentheses are
ignored. It finally checks if no unmatched parenthesis exists by the states q5 and
q6. Mp is irreversible, since the pairs ([q2, [ (, [x, x]], q1], [q4, [ (, [#, x]], q1]) and
([q2, [ ), [#, x]], q3], [q4, [ ), [x, x]], q3]) violate the condition of Definition 6. We can
see it satisfies (C1)–(C6). Examples of its computation are as below.

[�( )�, �##�, q0, 0] |−−
Mp

29 [�( )�, �xx�, qa, 0]

[�( ( ) ( ) )�, �######�, q0, 0] |−−
Mp

85 [�( ( ) ( ) )�, �xxxxxx�, qa, 0]

[�( ( ) ( )�, �#####�, q0, 0] |−−
Mp

55 [�( ( ) ( )�, �#xxxx�, qr, 1]

An RDLBA M†
p that simulates Mp obtained by the method in Lemma2 is:

M†
p = (Q†, { (, ) }, {#, x}, δ†,�,�,#, q0, {q̂b0}, {qb0}),

where Q† = {q, q̂, qb, q̂b | q ∈ Q}. δ† has 152 rules, and is not described here.
Examples of computing processes of M†

p are as follows.

[�( )�, �##�, q0, 0] |−−
M†

p

71 [�( )�, �##�, q̂b0 , 0]

[�( ( ) ( ) )�, �######�, q0, 0] |−−
M†

p

739 [�( ( ) ( ) )�, �######�, q̂b0 , 0]

[�( ( ) ( )�, �#####�, q0, 0] |−−
M†

p

239 [�( ( ) ( )�, �#####�, qb0 , 0]

4 Simulating RDLBA by RPCA

Lemma 3. For any DLBA M = (Q,Σ, Γ, δ,�,�,#, q0, A,N), we can construct
an RPCA PM such that L(PM ) = L(M).

Proof. Let M† = (Q†, Σ, Γ, δ†,�,�,#, q0, {q̂b0}, {qb0}) be the RDLBA converted
from M by the method given in Lemma 2. Here, we design PM so that it simulates
M†. The simulation method is based on the one given in [4,7], but here PM

should be constructed so that it satisfies the condition (P1).
From the method shown in Lemma 2 it is easy to see that M† also satisfies the

condition (C2) as well as M . Let Q†
rw and Q†

sf be the sets of read-write states and
shift states, respectively, where Q† = Q†

rw ∪Q†
sf , and Q†

rw ∩Q†
sf = ∅. Let Q†

−, Q†
0,

and Q†
+, which are subsets of Q†

rw, be as follows: Q†
− = {q | ∃ p ([p,−, q] ∈

δ†)}, Q†
0 = {q | ∃ p ([p, 0, q] ∈ δ†)}, and Q†

+ = {q | ∃ p ([p,+, q] ∈ δ†)}. Since
M† satisfies the reversibility condition and (C1), Q†

−, Q†
0, and Q†

+ are mutually
disjoint, and (Q†

− ∪ Q†
0 ∪ Q†

+) ∩ {q0, q̂0} = ∅. Note that, here we assume there
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is no “useless” state in Q of M that never appears as the third component of a
rule except q0. Thus, Q†

rw = Q†
− ∪ Q†

0 ∪ Q†
+ ∪ {q0, q̂0} holds.

PM is defined as follows.

PM = ((L,C,R), f, (#,#,#), rs, Σ, {l̂h})

L = Q†
− ∪ {#}

C = Σ ∪ Σ×(Γ − {#}) ∪ Σ×Γ ×(Q†
0 ∪ Q†

sf − {qb0 , q̂b0}) ∪ {#}
R = Q†

+ ∪ {#}
rs(∈ R) is the state such that ∃ p ([q0, [�, [�,�]], p], [p,+, rs] ∈ δ†).
l̂h(∈ L) is the state such that [l̂h, [�, [�,�]], q̂b0 ] ∈ δ†.

Note that rs is the state of M† that appears two steps after q0, and l̂h is the
state that appears just before q̂b0 .

The local function f : L×C×R → L×C×R is defined as follows. Here, the
notation [a, b] in (b), (d), (e) and (g) represents the combination of symbols as
it is, if b = #. But, [a,#] (i.e., in the case b = #) stands for the symbol a ∈ Σ.
This is only for simplifying the description of the local function f .

1. Rules of PM for the case a cell does not change its state.
(a) For each a ∈ (Σ ∪ Σ×(Γ − {#}) ∪ {#}), f(#, a,#) = (#, a,#).

2. Rules of PM for simulating shift rules of M†.
(b) For each p ∈ Q†

sf , q ∈ Q†
−, and (a, b) ∈ Σ×Γ ,

if [p,−, q] ∈ δ†, then f(#, [a, b, p],#) = (q, [a, b],#).
(c) For each p ∈ Q†

sf , q ∈ Q†
0, and (a, b) ∈ Σ×Γ ,

if [p, 0, q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, b, q],#).
(d) For each p ∈ Q†

sf , q ∈ Q†
+, and (a, b) ∈ Σ×Γ ,

if [p,+, q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, b], q).
3. Rules of PM for simulating read-write rules of M†.

(e) For each p ∈ Q†
−, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(p, [a, b],#) = (#, [a, c, q],#).

(f) For each p ∈ Q†
0, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(#, [a, b, p],#) = (#, [a, c, q],#).

(g) For each p ∈ Q†
+, q ∈ Q†

sf , and (a, b, c) ∈ Σ×Γ 2,
if [p, [a, [b, c]], q] ∈ δ†, then f(#, [a, b], p) = (#, [a, c, q],#).

4. Rules of PM for simulating the movements of M† at the left and the right
endmarkers. Here, H† = A ∪ N ∪ Â ∪ N̂ , where Â = {q̂ | q ∈ A} and N̂ =
{q̂ | q ∈ N}. By the rules in (h) and (i) ((j) and (k), respectively), two (four)
steps of M†’s movements are simulated by one step of PM .
(h) For each p1 ∈ Q†

−, p2 ∈ Q†
sf − H†, and p3 ∈ Q†

+,
if [p1, [�, [�,�]], p2], [p2,+, p3] ∈ δ†, then f(p1,#,#) = (#,#, p3).

(i) For each p1 ∈ Q†
+, p2 ∈ Q†

sf − H†, and p3 ∈ Q†
−,

if [p1, [�, [�,�]], p2], [p2,−, p3] ∈ δ†, then f(#,#, p1) = (p3,#,#).
(j) For each p1 ∈ Q†

−, p2 ∈ H†, p3 ∈ Q†
0, p4 ∈ Q†

sf − H†, and p5 ∈ Q†
+,

if [p1, [�, [�,�]], p2], [p2, 0, p3], [p3, [�, [�,�]], p4], [p4,+, p5] ∈ δ†,
then f(p1,#,#) = (#,#, p5).
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(k) For each p1 ∈ Q†
+, p2 ∈ H†, p3 ∈ Q†

0, p4 ∈ Q†
sf − H†, and p5 ∈ Q†

−,
if [p1, [�, [�,�]], p2], [p2, 0, p3], [p3, [�, [�,�]], p4], [p4,−, p5] ∈ δ†,
then f(#,#, p1) = (p5,#,#).

5. Rules of PM for the cases M† halts. Since the RPCA PM cannot halt, here we
set f to generate the signals q0 and q̂0 by the signals lh and l̂h. By these rules,
PM finally goes back to the initial configuration, and repeats its computation
indefinitely. However, note that, any PM necessarily goes back to the initial
configuration whatever the injection f is.
(l) f(l̂h,#,#) = (#,#, r̂s), and f(lh,#,#) = (#,#, rs).

Though f is defined only on a subset of L×C×R by (a)–(l), we can verify it
is injective on this set, since M† is reversible. From this partial function we can
easily make an injective total function f by appropriately determining undefined
values of f . Hence, PM is an RPCA.

If an input w ∈ Σ∗ is given, PM starts its computation from the initial
configuration αw (in Definition 3). Then, PM simulates M† step by step by the
rules (b)–(g). Movements of M† at the left and right border cells are simulated
by (h)–(k). Hence, ∃ t1 > 0 (pL(F t1(αw)(1)) = l̂h) holds iff w ∈ L(M†). Thus,
L(PM ) = L(M†) = L(M) is concluded. ��
Let L(A) denote the class of languages accepted by the class of acceptors A.
From Lemmas 2 and 3, and the fact that PCAs can be easily simulated by DLBAs
(since the condition (P1) is assumed), the following theorem is obtained.

Theorem 1. L(RPCA) = L(PCA) = L(RDLBA) = L(DLBA).

Example 2. Consider the DLBA Mp in Example 1. An RPCA PMp such that
L(PMp) = L(Mp) is given below. PMp simulates the RDLBA M†

p constructed by
the method shown in Lemma 3.

PMp = ((L,C,R), f, (#,#,#), q0,2, { (, ) }, {q̂b0,1})

L = Q†
− ∪ {#}

C = { (, ) } ∪ { (, ) }×{x} ∪ { (, ) }×{x,#}×(Q†
0 ∪ Q†

sf − {qb0 , q̂b0}) ∪ {#}
R = Q†

+ ∪ {#}

In M†
p , |Q†| = 52, |Q†

rw| = |Q†
sf | = 26, |Q†

−| = 10, |Q†
0| = 4, and |Q†

+| = 10.
Therefore, |L| = 11, |C| = 117, and |R| = 11. Hence, the number of states of a
cell, and that of rules of PMp are both 14157. However, the number of rules that
are actually used to simulate M†

p is only 203. Here, we omit to describe f , but
from Fig. 4 we can observe how the rules are applied.

Figure 4 shows an example of a computing process of PMp with the input
w = ( ). PMp accepts the input at time t = 56. Note that the initial state q0,
and the accepting state q̂b0 of M†

p do not appear in PMp , since a few steps of
M†

p at the left and right endmarkers are simulated by one step of PMp . From
t = 57 to 113, PM performs essentially the same computing process as the one
from t = 0 to 56, except that the states with “ˆ” and those without “ˆ” are
swapped. At time t = 114, PMp becomes the initial configuration again, and
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t = 0 q0,2 ( )

1
(
q0,1

)

2 ( q0,2 )

3 ( )
q0,1

4 ( ) q0,2

5 ( ) q0,4

6 ( )
q0,3

7 ( q0,4 )

8
(
q0,3

)

9 q0,4 ( )

10 q2 ( )

11 (
q1

)

12 ( q2 )

13 (
)
x
qb
4

14 ( )
x qb

3

15 ( )
x q4

16 ( )
x
q3

17 ( q4
)
x

18
(
x
q1

)
x

19 (
x q2

)
x

20 (
x

)
x
q1

21 (
x

)
x q2

22 (
x

)
x q6

23 (
x

)
x
q5

24 (
x q6

)
x

25
(
x
q5

)
x

26 q6
(
x

)
x

27 q̂b
5

(
x

)
x

28
(
x
q̂b
6

)
x

29 (
x q̂b

5
)
x

30 (
x

)
x
q̂b
6

31 (
x

)
x q̂b

5

32 (
x

)
x q̂b

1

33 (
x

)
x
q̂b
2

34 (
x q̂b

1
)
x

35
(
x
q̂b
2

)
x

36 q̂b
1

(
x

)
x

37 q̂b
0,3

(
x

)
x

38
(
x
q̂0,3

)
x

39 q̂0,4
(
x

)
x

40 q̂2
(
x

)
x

41
(
q̂b
4

)
x

42 ( q̂b
3

)
x

43 ( )
q̂b
2

44 ( q̂b
1

)

45
(
q̂b
2

)

46 q̂b
1

( )

47 q̂b
0,3

( )

48
(
q̂b
0,4

)

49 ( q̂b
0,3

)

50 (
)
q̂b
0,4

51 ( ) q̂b
0,3

52 ( ) q̂b
0,1

53 (
)
q̂b
0,2

54 ( q̂b
0,1

)

55
(
q̂b
0,2

)

56 q̂b
0,1

( )

57 q̂0,2 ( )

...
114 q0,2 ( )

Fig. 4. A computing process of RPCA PMp with the input w = ( ). It is accepted at
t = 56, since q̂b0,1 is an accepting state. Here, the state # is indicated by a blank.
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repeats the computing process infinitely many times. Note that, even if the rules
of (l) in Lemma 3 are not included, PMp will eventually go back to the initial
configuration, since it is reversible and (P1) holds (in such a case, generally, after
a very large number of time steps).

5 Concluding Remarks

In this paper, we showed that the language accepting capability of PCAs is equal
to that of deterministic linear-bounded automata, even if reversibility constraint
is added (Theorem 1). This result is for the case computing time is not limited.
It is left for the future study to characterize the capability of RPCAs for the
case time is limited, e.g., in polynomial time, linear time, or real time.
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Abstract. In this article, we study countable sofic shifts of Cantor-
Bendixson rank at most 2. We prove that their conjugacy problem is
complete for GI, the complexity class of graph isomorphism, and that
the existence problems of block maps, factor maps and embeddings are
NP-complete.

Keywords: Sofic shift · SFT · Topological conjugacy · Graph isomor-
phism · Complexity class

1 Introduction

The computational complexity class GI is defined as the set of decision problems
reducible to the graph isomorphism problem in polynomial time. The class is
one of the strongest candidates for an NP-intermediate class, that is, one that
lies strictly between P and NP. It contains a plethora of other isomorphism prob-
lems of finite objects, like multigraphs, hypergraphs, labeled or colored graphs,
finite automata and context-free grammars, most of which are GI-complete. The
classical reference for the subject is [14].

In the field of symbolic dynamics, which studies sets of infinite sequences of
symbols as topological dynamical systems, there is a fundamental isomorphism
problem whose decidability has been open for some decades: the conjugacy prob-
lem of shifts of finite type. A shift of finite type is a class of sequences defined
by finitely many forbidden patterns that must never occur, and a conjugacy is
a homeomorphism that commutes with the shift transformation, or in combina-
torial terms, a bijection between shifts of finite type defined by a local rule. The
most common version of this problem further restricts to mixing shifts of finite
type, whose dynamics is intuitively the most random and unpredictable. See [4]
for a review of the problem (and many others).

In this article, we take a different approach, and study the conjugacy problem
of countable sofic shifts. Sofic shifts are a generalization of shifts of finite type,
and the class of countable shifts of finite type can be seen as the polar opposite
of the mixing class, as they are very well-structured and combinatorial. Their
properties have previously been studied at least in [1,2,10–12] (although usually
somewhat indirectly).
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 121–134, 2015.
DOI: 10.1007/978-3-319-18812-6 10
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A useful tool in the study of countable sofic shifts (and topological spaces
in general) is the Cantor-Bendixson rank. Every countable sofic shift has such
a rank, which is a number n ∈ N, and we study the first few levels of this
hierarchy in this article. Rank 1 countable sofic shifts are the finite ones, and
the conjugacy problem for them is very easy (Proposition 2). Rank 2 count-
able sofic shifts are the first non-trivial case, and our main result states that
the conjugacy problem of rank 2 countable SFTs and sofic shifts is GI-complete
(with respect to polynomial-time many-one reductions), when the shift spaces
are given by right-resolving symbolic edge shifts. Using the same methods, we
also prove that the existence of block maps, factor maps and embeddings between
rank 2 countable sofic shifts is NP-complete. Of course, corresponding hardness
results follow for general SFTs, since countable SFTs of rank 2 are a (very small)
subcase. However, we are not able to extract any corollaries for the usual case
of mixing SFTs.

Note that it is of course GI-complete to check whether two given edge shifts
are isomorphic in the sense that the graphs defining them are isomorphic. This
is not equivalent to conjugacy of the edge shifts, as shown in Example 1. The
graph representations we use are more canonical representations of the shift
spaces, and very specific to the rank 2 case.

2 Definitions

Let A be a finite set, called the alphabet, whose elements are called symbols. We
equip the set AZ with the product topology and define the shift map σ : AZ → AZ

by σ(x)i = xi+1 for all x ∈ AZ and i ∈ Z. The pair (AZ, σ) is a dynamical system,
called the full shift over A. For a word w ∈ A∗ and x ∈ AZ, we say that w occurs
in x, denoted w � x, if there exists i ∈ Z with x[i,i+|w|−1] = w.

A topologically closed and σ-invariant subset X ⊂ AZ is called a shift space.
Alternatively, a shift space is defined by a set F ⊂ A∗ of forbidden patterns as
X = {x ∈ AZ | ∀w ∈ F : w �� x}. If F is finite, then X is a shift of finite type, or
SFT for short, and if F is a regular language, then X is a sofic shift. For n ∈ N,
we denote Bn(X) = {w ∈ An | x ∈ X,w � x}, and define the language of X as
B(X) =

⋃
n∈N Bn(X). We also denote by P(X) = {x ∈ X | ∃p ∈ N : σp(x) = x}

the set of σ-periodic points of X. We say x and y are left asymptotic if xi = yi

for all small enough i, and right asymptotic if this holds for all large enough i.
A shift space is uniquely determined by its language, so for a language L such

that w ∈ L always implies uwv ∈ L for some nonempty words u, v ∈ A∗ (often
called an extendable language), we denote X = B−1(L), where X is the unique
shift space such that B(X) = {w | ∃u, v ∈ A∗ : uwv ∈ L}. For a configuration
x ∈ AZ, we write Oσ(x) = {σn(x) | n ∈ Z} for the σ-orbit of x, and X for the
topological closure of X, when X is a subset of AZ.

A continuous function f : X → Y between shift spaces satisfying σ|Y ◦ f =
f ◦σ|X is a block map. Alternatively, a block map is defined by a local function f̂ :
B2r+1(X) → B1(Y ), where r ∈ N is called a radius of f , as f(x)i = f̂(x[i−r,i+r]).
Block maps with radius 0 are called symbol maps and identified with their local
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functions. Sofic shifts are exactly the images of SFTs under block maps. The
standard reference for shift spaces and block maps is [9].

If a block map f : X → Y is bijective, it is known that its inverse is also
a block map, and then f is called a conjugacy between X and Y . A surjective
block map f : X → Y is called a factor map from X to Y , and such an injection
is called an embedding. The problem of deciding whether two SFTs are conjugate
is known as the strong shift equivalence problem, and its decidability has been
open for several decades. See [4] for more information on this and other open
problems in symbolic dynamics.

We include a full definition of Cantor-Bendixson rank for completeness,
although we only need this concept for natural numbers in the case of sofic
shifts. Let X be a topological space. The Cantor-Bendixson derivative of X is
the set X ′ = {x ∈ X | X \ {x} = X} ⊂ X. In other words, X ′ is exactly X minus
its isolated points. For every ordinal λ, we define the λ’th iterated derivative of
X, denoted X(λ), as follows.

– If λ = 0, then X(λ) = X.
– If λ = β + 1, then X(λ) = (X(β))′.
– If λ is a limit ordinal, then X(λ) =

⋂
β<λ X(β).

The smallest ordinal λ such that X(λ) = X(λ+1) is called the Cantor-Bendixson
rank of X, and denoted rank(X). If X is a shift space, then it is countable if
and only if X(rank(X)) = ∅. In this case, the rank of a point x ∈ X, denoted
rankX(x), is the least ordinal λ such that x /∈ X(λ). It is not hard to show that
if X is a shift space, then X(λ) is a shift space for all ordinals λ.

By a graph we understand a tuple G = (V,E), where V = V(G) is a finite
set of vertices and E = E(G) a set of edges, which are two-element subsets of
V (so self-loops and multiple edges are not allowed). A labeled graph is a triple
G = (V,E, π), where E(G) = E is now a set of tuples (e, �) with e an edge and
� ∈ L its label, and π = πG : E → L is the labeling function given by π(e, �) = �.
For a set C, a C-colored graph has its vertices colored with elements of C so
that no adjacent vertices have the same color. Directed versions of all types of
graphs have tuples as edges, instead of sets, and may have self-loops. Finally,
a (directed) multigraph is similar to a (directed) graph, but its edges form a
multiset, so multiple edges between two vertices are allowed.

Homomorphisms of C-colored graphs must preserve the colors. For a fixed
graph H which is not bipartite, it is NP-complete to decide whether there exists a
homomorphism from a given graph G to H, by a result of Hell and Nešetřil [6].
Likewise, for some classes of graphs H, it is NP-complete whether an edge-
surjective homomorphism (also known as a compaction) exists from a given
graph G to H [13]. Deciding the existence of edge-injective homomorphisms
between two graphs is NP-complete [3], but not if one of them is fixed.

Every SFT is conjugate to an edge shift, the SFT X defined by a directed
multigraph G over the alphabet of edges E(G) as follows. A set of forbidden
patterns for X is given by the pairs of edges ee′ such that the target of e differs
from the source of e′, or in other words, X is the set of edges of all bi-infinite
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walks in G. Similarly, every sofic shift is conjugate to a symbolic edge shift,
the image of an edge shift under a symbol map π : E(G) → A. Equivalently,
a symbolic edge shift consists of the labels of all bi-infinite walks in a labeled
directed graph. A symbolic edge shift is called right-resolving if for each vertex
v ∈ G, any distinct edges that start from v have different labels.

The graph isomorphism problem is the problem of deciding whether two
graphs, encoded as lists of edges, are isomorphic. The set of decision problems
polynomial-time reducible to the graph isomorphism problem is denoted GI. It
is known that P ⊆ GI ⊆ NP. Examples of GI-complete isomorphism problems
include those of directed graphs, labeled graphs and {0, 1}-colored graphs. The
classical reference for GI is [14]. In this paper, hardness and completeness with
respect to a complexity class are taken with respect to standard polynomial time
many-one reductions.

3 Countable Sofic Shifts

In this section, we give some background on countable sofic shifts and countable
SFTs, and present their basic properties. As a conclusion, we obtain a combi-
natorial characterization of rank 2 sofic shifts in Corollary 2. The point of this
section is mainly to put our results into place in the theory of symbolic dynamics.
Readers interested in the complexity theoretic result only can take the defini-
tion of a rank 2 sofic shift to be the second condition listed in Corollary 2, and
otherwise skip this section.

Lemma 1 (Proposition 3.8 of [12]). All sofic shifts have finite Cantor-
Bendixson rank.

Lemma 2 (Corollary of Lemma 4.8 of [10]). A shift space X ⊂ AZ is a
countable sofic shift if and only if it can be presented as a finite union of shift
spaces of the form

X (u0, . . . , um, v1, . . . , vm) = B−1(u∗
0v1u

∗
1 · · · u∗

n−1vmu∗
m),

where ui ∈ A+ and vi ∈ A∗, and each configuration ∞uivi+1ui+1
∞ is aperiodic.

Intuitively, the configurations of a countable sofic shift consist of long periodic
areas, with ‘disturbances’ of bounded length in between. The traditional applica-
tion of symbolic dynamics is the encoding of information in a restricted medium,
and from this viewpoint, countable sofic shifts are extremely restricted, as the
asymptotic amount of information per coordinate in a configuration is zero.

Definition 1. Let X ⊂ AZ be a countable sofic shift, and let T be a finite set of
tuples over A∗ such that X =

⋃
t∈T X (t) and the conditions of Lemma 2 hold.

Then the set T is called a combinatorial representation of X.

We remark that a nonempty countable sofic shift has infinitely many differ-
ent combinatorial representations. Using the notation of Lemma 2, we write
n(u0, . . . , um, v1, . . . , vm) = m. The following lemma relates the rank of a count-
able sofic shift to its combinatorial representation.
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Lemma 3. Let X ⊂ AZ be a nonempty countable sofic shift with the combina-
torial representation T . Then

rank(X) = 1 + max{n(t) | t ∈ T}.

Proof. First, we need to show that if X,Y ⊂ AZ are shift spaces with ranks
m,n ∈ N, respectively, then the (not necessarily disjoint) union X ∪ Y has
Cantor-Bendixson rank max{m,n}. This follows directly from the well-known
property (X ∪ Y )′ = X ′ ∪ Y ′ of the derivative operator.

From this, we obtain by induction that the Cantor-Bendixson rank of a finite
union of finite-rank shift spaces is just the maximal rank of the components. It
is then enough to show that the Cantor-Bendixson rank of a shift space of the
form X (u0, . . . , um, v1, . . . , vm) is precisely m + 1, and we proceed by induction.
It is clear that the rank is 1 if m = 0, since the shift space is finite but nonempty.
On the other hand, it is not hard to show that

X (u0, . . . , um, v1, . . . , vm)′ = X (u1, . . . , um, v2, . . . , vm) ∪
X (u0, . . . , um−1, v1, . . . , vm−1),

from which the claim follows. �
We state some well-known characterizations of finite shift spaces, and then list
some characterizations of the rank 2 case.

Corollary 1. The following are equivalent for a nonempty shift space X:

– X contains only periodic points,
– X is finite,
– X has rank 1,
– X is a countable SFT (and/or sofic shift) of rank 1,
– X is a finite union of shift spaces of the form X (u) = B−1(u∗).

Corollary 2. The following are equivalent for an infinite shift space X:

– X is a countable sofic shift of rank 2,
– X is a finite union of shift spaces of the form X (u0, u1, v) = B−1(u∗

0vu∗
1)

(where ∞u0vu1
∞ may or may not be periodic),

– X is a countable shift space of rank 2,
– every configuration in X is either periodic or isolated.

Proof. The first and second conditions are equivalent by Lemma3. The third
and fourth are equivalent by the definition of rank and the previous corollary,
and the first trivially implies the third.

We give a proof sketch for the fact that a countable shift space of rank 2
satisfies the second condition, which concludes the proof. If X ⊂ AZ is such
a shift space, then X ′ has rank 1, and is thus an SFT by the previous corol-
lary. By Lemma 2.6 in [2], X \ X ′ then consists of finitely many orbits. Then,
X = Oσ(x1) ∪ · · · Oσ(xk) ∪ Y , where Y ⊂ AZ is a finite shift space of periodic
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configurations, none of the configurations xi ∈ X are periodic, and the orbits
Oσ(xi) are pairwise disjoint. Since every xi is isolated in X (as it is not in X ′),
there exists a word w(i) ∈ A∗ which occurs in xi at exactly one position, and
occurs in none of the xj for j �= i. Now, note that the shift space

XR
i = {σn(xi) | n ∈ N}

(the shift space generated by the right tail of xi) is a subset of X and does not
contain any of the isolating patterns w(j) for j ∈ [1, k]. It is then a subset of Y ,
which implies that it is actually the orbit of a single periodic configuration, and
xi then in fact has a periodic right tail.1 Similarly, xi has a periodic left tail,
from which the claim follows. �

4 Structure Graphs

Every SFT is conjugate to an edge shift, and if the graphs defining two edge
shifts are isomorphic, then the SFTs are conjugate. It is clearly GI-complete, in
general, to check whether two SFTs are conjugate in this particular way. We
show that even in the rank 2 case, two SFTs can be conjugate even though the
graphs defining their edge shifts are not isomorphic.2

Example 1. Let X be the edge shift of the directed graph , and let
Y be that of . The graphs are not isomorphic, but the edge
shifts are easily seen to be conjugate by the block map f : X → Y defined by

f(x)i =

⎧⎪⎪⎨
⎪⎪⎩

(a, a), if xi = (a, a),
(a, b), if xi = (a, b),
(b, c), if xi−1 = (a, b),
(c, c), if xi−1 = (b, b).

We now define the structure graph of a rank 2 countable sofic shift, which is a
certain labeled directed graph. Corollary 3 shows that this graph is canonical
up to renaming the vertices.

Definition 2. Let X be a rank 2 countable sofic shift. Define the labeled directed
graph G(X) = (V,E, π) as follows. First, V = P(X) is the set of σ-periodic
points of X. For all x ∈ P(X), add an edge x → σ(x) into E with the label �,
called a rotation edge. Then, for each pair of configurations x, y ∈ P(X) such
that the set C(x,y) = {z ∈ X | ∃n ∈ N : z(−∞,−n] = x(−∞,−n], z[n,∞) = y[n,∞)} is
nonempty, add an edge e = (x, y) into E with the label π(e) = |{Oσ(z) | z ∈ Ce}|,
called a transition edge. We call G(X) the structure graph of X.

1 There is a common period p ∈ N for the configurations in Y , and if this period
breaks infinitely many times in the right tail of x, then XR

i is not contained in Y .
2 From Proposition 2, one can extract that in the rank 1 case, conjugacy of edge shifts
is equivalent to the graphs defining them being isomorphic.
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A homomorphism between two structure graphs G(X) and G(Y ) is a graph homo-
morphism τ : G(X) → G(Y ) that satisfies

τ−1(π−1
G(Y )(�)) = π−1

G(X)(�),

that is, τ respects the property of being a rotation edge. A bijective homomor-
phism is called an isomorphism.

Note that the structure graph is finite and transition edges have finite labels,
as there are finitely many σ-orbits in a rank 2 countable sofic shift. Also, the
inverse function of an isomorphism of structure graphs is itself an isomorphism.

Example 2. Let X = B−1(0∗10∗+0∗(12)∗+0∗(13)∗+(12)∗(1+2)(13)∗), a rank 2
countable sofic shift. Then P(X) = {∞0∞, ∞(12)∞, ∞(21)∞, ∞(13)∞, ∞(31)∞},
and the structure graph G(X) is the one depicted in Fig. 1.

∞0∞

∞(12)∞

∞(21)∞ ∞(13)∞

∞(31)∞

�

�
�

�
�

2

1

1 1

1

11 11

2

2

Fig. 1. The structure graph of the countable sofic shift X of Example 2.

Next, we show that the structure graph is functorial: block maps between two
shift spaces correspond to homomorphisms between their structure graphs.

Proposition 1. For every block map f : X → Y between rank 2 countable
sofic shifts, there exists a homomorphism G(f) : G(X) → G(Y ) between their
structure graphs such that G(idX) = idG(X) for all X, and G(g◦h) = G(g)◦G(h)
for all g : Y → Z and h : X → Y .

Proof. Let f : X → Y be as stated, and define G(f) : G(X) → G(Y ) as
follows. For each x ∈ P(X), let G(f)(x) = f(x) ∈ P(Y ) = V(G(Y )). Then
for any rotation edge e : x → σ(x) in E(G(X)), there exists a rotation edge
e′ : f(x) → σ(f(x)) in E(G(Y )), so let G(f)(e) = e′. Finally, for any transition
edge e : x → y with label k > 0, the set C(x,y) is nonempty, which implies that
C(f(x),f(y)) is also nonempty. Thus e′ = (f(x), f(y)) is a transition edge of G(Y )
with some label � > 0, and we again let G(f)(e) = e′.

It is easy to see that G(f) is a homomorphism between the structure graphs,
and that G(idX) = idG(X) holds. Proving the equation G(g ◦ h) = G(g) ◦ G(h)
is simply a matter of expanding the definitions. �
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The operation G that sends block maps to structure graph homomorphisms
preserves injectivity and surjectivity in the following sense.

Lemma 4. A homomorphism τ : G(X) → G(Y ) of structure graphs

1. always has a G-preimage,
2. has an injective G-preimage if and only if it is edge-injective, and every tran-

sition edge e of G(X) satisfies π(e) ≤ π(τ(e)),
3. has a surjective G-preimage if and only if it is edge-surjective, and every

transition edge e of G(Y ) satisfies
∑

τ(e′)=e π(e′) ≥ π(e),
4. has a bijective G-preimage if and only if it is edge-bijective and preserves the

labels of transition edges.

Proof. First, we prove that if f : X → Y is injective, then condition 2 holds
for G(f). The edge-injectivity of G(f) follows immediately. For each transition
edge e = (v, w) of G(X) with label k > 0, the function from {Oσ(y) | y ∈ Ce}
to {Oσ(z) | z ∈ CG(f)(e)} defined by Oσ(y) �→ Oσ(f(y)) is injective, since f is.
Thus we have k ≤ π(G(f)(e)), and condition 3 holds.

Suppose next that f is surjective, so that G(f) is clearly surjective on vertices
and rotation edges. For each transition edge e = (v, w) of G(Y ) with label k > 0
and each configuration y ∈ C(v,w), there exists some periodic configurations
v′ ∈ f−1(v) and w′ ∈ f−1(w), and a configuration z ∈ f−1(y) ∩ C(v′,w′). Then
(v′, w′) is an edge of G(X) that G(f) maps to e, so it is surjective on the
transition edges as well. Finally, we have

k = |{Oσ(y) | y ∈ Ce}| ≤ |{Oσ(z) | z ∈ X, f(z) ∈ Ce}|
=

∑
v′,w′∈P(X)

G(f)(v′,w′)=e

|{Oσ(z) | z ∈ C(v′,w′)}| =
∑

G(f)(e′)=e

π(e′).

If f is bijective, this and the previous case together show that condition 4 holds.
Finally, we construct a G-preimage f : X → Y for τ with the desired prop-

erties. We must of course have f(x) = τ(x) for every periodic configuration
x ∈ P(X), which is well-defined since τ(σ(x)) = σ(τ(x)). Let then x ∈ X be
aperiodic, and let y, z ∈ P(X) be such that x ∈ C(y,z). Then G(X) has a tran-
sition edge e = (y, z) with some label k > 0. Let e′ = τ(e) = (y′, z′). Now e′

has some label � > 0, so that Ce′ is also nonempty. We choose some x′ ∈ Ce′

and define f(x) = x′, and extend f to Oσ(x) by defining f(σn(x)) = σn(x′) for
all n ∈ Z. For this, note that x is isolated in X. If condition 2 holds, there are
enough orbits in

⋃
e∈τ−1(e′) Ce to guarantee that every x′ ∈ Ce′ can be given

an f -preimage, and if condition 3 holds, then there are enough orbits in Ce′ to
guarantee that every x ∈ C(y,z) can be given a different f -image.

The definition of f is now complete, and it is easy to see that it is continuous
and shift-invariant, thus a block map. Moreover, it follows immediately from the
definition of f that G(f) = τ . �
As a corollary of the above, we obtain the following.

Corollary 3. Let X and Y be countable rank 2 sofic shifts. Then X and Y are
conjugate if and only if G(X) is obtained from G(Y ) by renaming its vertices.
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5 Complexity Classes of Conjugacy, Factoring,
Embedding and Block Map Existence

In this section, we present our results on the computational complexity of differ-
ent decision problems related to countable rank 1 and rank 2 sofic shifts. If one
is only interested in decidability, then it is irrelevant what kind of encodings we
use for shift spaces X ⊂ AZ, since there are computable transformations between
all reasonable encodings. However, for finding out the precise complexity class,
there are some subtleties in how the algorithm receives the shift space as input.
There are several possibilities:

1. Every sofic shift can be encoded by a finite list F ⊂ B∗ of forbidden words
that define an SFT over the alphabet B, and a symbol map f : B → A. For
SFTs, we can take B = A and f = idA.

2. Every sofic shift is the symbolic edge shift defined by a (possibly right-
resolving) labeled graph. For SFTs, up to conjugacy, we can take the symbol
map to be the identity map, and obtain edge shifts given by adjacency matri-
ces. This is the standard encoding of SFTs in the conjugacy problem.

3. Countable sofic shifts can be encoded by combinatorial representations.
4. Countable sofic shifts of rank at most 2 can be encoded by structure graphs.

We show that, up to polynomial-time reductions, encodings 2 and 4 are equiva-
lent in the rank 2 case, if we assume right-resolvingness, so it makes no difference
which one we choose.

Lemma 5. For countable sofic shifts of rank at most 2, the representations by
right-resolving symbolic edge shifts and structure graphs are equivalent up to
polynomial-time reductions.

Proof. First, let G be a right-resolving labeled graph of size n encoding a count-
able rank 2 sofic shift X ⊂ AZ. We construct the structure graph of X, and
for this, we may assume that G is the minimal right-resolving representation
of X (which can be computed in polynomial time from a given right-resolving
labeled graph, see Sect. 4 of [9] for details). In particular, since X is countable,
the cycles of G are disjoint, and we can enumerate them as C0, . . . , Cc−1, and
if (q0i , . . . , qmi−1

i ) are the vertices of the cycle Ci, then
∑c−1

i=0 mi ≤ n. Also, if
ui ∈ Ami is the label of the cycle Ci, then ∞u∞

i has least period mi, for oth-
erwise we could replace Ci by a shorter cycle and obtain a smaller presentation
for X.

Call a path in G transitional if it contains no edges of any cycle. Then the
length of a transitional path is at most n. Now, let M ∈ N

V(G)×V(G) be the
matrix defined by M(qr

i , qr+1
i ) = 0 for all i ∈ [0, c − 1] and r ∈ [0,mi − 1], and

M(v, w) = |{e : v → w | e ∈ E(G)}| for all other vertices v, w ∈ V(G). Note
that since G is right-resolving, the edges in the above set have distinct labels.
The number of transitional paths of a given length � ∈ N between two vertices
v, w ∈ V(G) is then exactly M �(v, w), and their labels are also distinct.
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For each periodic configuration ∞u∞ ∈ X, there are at most two cycles in G
with the label u, one with outgoing and one with incoming transitional paths, for
otherwise we could replace two such cycles with a single one and obtain a smaller
right-resolving representation. Now, the vertices of the structure graph G(X) are
the periodic configurations σr(∞u∞

i ) for i ∈ [0, c− 1] and r ∈ [0,mi − 1], and its
transitional edges are exactly e : x → y with labels

π(e) =
∑

x=σr(∞u∞
i )

y=σs(∞u∞
j )

n∑
�=1

lcm(mi,mj)−1∑
k=0

|M �(qr+k
i , qs+k+�

j )|,

plus 1 in the case x = y to account for the periodic point itself. Thus G(X) can
be computed from G in polynomial time.

Next, we take the structure graph G(X) for X, and construct a right-resolving
labeled graph G whose shift space Y is conjugate to X. From G(X) we can easily
extract the periodic orbits of X, which we denote by Oσ(∞u∞

i ) for i ∈ [0, c− 1],
where ui ∈ A+. For all i ∈ [0, c−1] and r ∈ [0, |ui|−1], we add to G two vertices
pr

i and qr
i , and two edges e : qr

i → qr+1
i and e′ : pr

i → pr+1
i with the same labels

ar
i . The labels of the cycles of G, and thus the periodic points of Y , are thus

ai = a0
i · · · a|ui|−1

i for i ∈ [0, c − 1].
Let then e : σr(∞u∞

i ) → σs(∞u∞
j ) be a transitional edge in the structure

graph G(X), and let π(e) =
∑d−1

�=0 2k� be the binary representation of its label,
where k0 < · · · < kd−1. For each � ∈ [0, d − 1], we add to G the subgraph
Ge = qr

i → v0
e ⇒ v1

e ⇒ · · · ⇒ vk�
e → w0

e → · · · → wp
e → ps

j whose length divides
|ui| and |uj |. Apart from the vertices qr

i and ps
j , the subgraphs Ge for different

transitional edges e are disjoint, and their edges have distinct labels. Then G is
a right-resolving labeled graph with exactly π(e) transitional paths from qr

i to ps
j

of length dividing |ui| and |uj |. Every configuration of Y which is left asymptotic
to σr(∞a∞

i ) and right asymptotic to σs(∞a∞
i ) contains the label of one of the

paths in Ge. This implies that G(Y ) is obtained from G(X) by renaming each
vertex σr(∞u∞

i ) to σr(∞a∞
i ), and then X and Y are conjugate by Corollary 3.

It is clear that the construction of G can be done in polynomial time. �
We can also show a similar result for forbidden words and general symbolic edge
shifts, although we omit the proof.

Lemma 6. For countable sofic shifts of rank at most 2, the representations by
symbolic edge shifts and forbidden words are equivalent up to polynomial-time
reductions.

It is known [8] that computing the number of words of a given length accepted
by a given nondeterministic finite automaton is complete in a complexity class
known as #P, which contains NP and is believed to be much larger than it.
Thus, under reasonable complexity assumptions, there is no polynomial-time
algorithm for computing the structure graph of a given symbolic edge shift, if
the input need not be right-resolving. We do not know the exact complexity of
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the conjugacy problem, if the inputs are given in this form. The hardness results
are still valid, and the problems are all decidable in this case as well.

The next example shows that the combinatorial representation is not equiv-
alent to the other three, since there is an exponential blowup.

Example 3. Any combinatorial representation of the rank 2 countable SFTdefined
by the right-resolving labeled graph

clearly contains at least 2k terms, as each term only represents one σ-orbit.

In what follows, we assume that in the decision problems, all countable SFTs
and sofic shifts are encoded by their structure graphs, and we will do so without
explicit mention.

We first solve the case of rank 1. As one might imagine, there are fast and
simple algorithms in this case.

Proposition 2. Conjugacy, and existence of blockmaps, factormaps, and embed-
dings between countable sofic shifts of Cantor-Bendixson rank 1 is in P.

Proof. Every such shift space X is a finite union of periodic orbits of some
least periods p1, . . . , p� ∈ N, which can be computed from the structure graph
in polynomial time. Let Y be another one with least periods q1, . . . , qm ∈ N.
Clearly, X and Y are conjugate if and only if (p1, . . . , p�) = (q1, . . . , qm), if the
periods are given in ascending order. A block map from X to Y exists if and
only if, for every i ∈ [1, �], there exists j ∈ [1,m] with qj |pi, which is equivalent
to the condition that the orbit of X with period pi can be mapped onto the orbit
of Y with period qj . An embedding from X to Y must map every orbit of X
to an orbit of Y of the same period, so one exists if and only if there exists an
injection α : [1, �] → [1,m] with pi = qα(i) for all i ∈ [1, �]. These checks are easy
to do in polynomial time.

The interesting case is factoring. For this, construct a bipartite graph G with

V(G) = {L} × [1, �] ∪ {R} × [1,m],

and ((L, i), (R, j)) ∈ E(G) if and only if qj |pi. It is easy to see that there exists
a factor map from X to Y if and only if there exists a block map from X to Y ,
and G has a matching of size m (that is, we can find separate preimages for all
the orbits of Y ). Computing a matching of maximal size – and thus the maximal
size itself – is well-known to be in P, see for example Sect. 5.2 in [5]. �
Now, we give our main result: the complexity of conjugacy of rank 2 countable
SFTs (and sofic shifts).

Theorem 1. Conjugacy of countable sofic shifts or SFTs of Cantor-Bendixson
rank at most 2 is GI-complete.
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Proof. Corollary 3 states that conjugacy is equivalent to the equivalence problem
of structure graphs under vertex renaming. This problem, on the other hand,
is easily reducible to the isomorphism problem of directed graphs (associate to
each label k a distinct small number mk ≥ 3, and replace every edge e : x → y
with label k by mk parallel paths of length mk), which is GI-complete [14]. Thus
the conjugacy problem is in GI.

To prove completeness, we reduce the color-preserving isomorphism prob-
lem of {0, 1}-colored graphs to the conjugacy problem of SFTs; the claim then
follows, as the former is GI-complete [14]. Let thus G = (V,E, π) be a {0, 1}-
colored graph with the coloring π : V → {0, 1}. We may assume that G contains
no isolated vertices. Define a rank 2 countable SFT by

XG =
⋃

{u,v}∈E(G)
π(u)=0

B−1(u∗v∗).

After renaming the vertices, the structure graph of XG is exactly G, except that
each vertex v has gained two self-loops labeled � and 1, and each edge {u, v}
where u is colored with 0 has gained the label 1. Thus, two {0, 1}-colored graphs
G and H are isomorphic by a color-preserving isomorphism if and only if the
structure graphs of XG and XH are equivalent up to renaming the vertices. By
Corollary 3, this is equivalent to the conjugacy of XG and XH . �
With the same ideas, we obtain many NP-complete problems, at least for count-
able sofic shifts.

Theorem 2. Existence of embeddings between countable sofic shifts of Cantor-
Bendixson rank at most 2 is NP-complete. Also, there exist countable rank 2 sofic
shifts X and Y such that for a given countable rank 2 sofic shift Z, existence
of block maps from Z to X, and of factor maps from Z to Y , are NP-complete
problems.

Proof. Proposition 1 and Lemma 4 imply that all three problems are in NP, since
the conditions given in Lemma 4 are easy to check in polynomial time for a given
structure graph homomorphism.

We prove the completeness of all three problems using the same construction.
For all graphs G, we define a countable rank 2 sofic shift

XG =
⋃

{u,v}∈E(G)

B−1((#u)∗(#v)∗) ∪ B−1((#u)∗(v#)∗),

where # /∈ V(G) is a new symbol.
For two graphs G and H, we show a correspondence between graph homo-

morphisms φ : G → H and block maps f : XG → XH . First, for each homo-
morphism φ, we define a block map fφ as the symbol map fφ(#) = # and
fφ(v) = φ(v) for all v ∈ V(G), and by the definition of XG and XH , it is a
well-defined block map from XG to XH . Second, for a block map f , we define
a homomorphism φf by φf (v) = w if and only if f(∞(#v)∞) ∈ Oσ(∞(#w)∞).
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Then {u, v} ∈ E(G) implies that ∞(#u)(#v)∞, ∞(#u)(v#)∞ ∈ XG, and since
XH contains no points of period 1, the f -image of at least one the configurations
is aperiodic. But this implies {φf (u), φf (v)} ∈ E(H) by the definition of XH , so
that φf is indeed a graph homomorphism.

It is easy to see that surjectivity or injectivity of φ (on both vertices and
edges) implies the same property for fφ, and analogously for f and φf . The
claim then directly follows from the corresponding NP-completeness results for
graph homomorphisms, compactions and edge-injective homomorphisms found
in [6],[13], and [3], respectively. �

6 Further Discussion

In this article, we have studied the conjugacy problem of countable SFTs and
sofic shifts, and have shown that the special case of Cantor-Bendixson rank 2
is decidable. The classical formulation of the conjugacy problem of SFTs only
considers mixing SFTs of positive entropy, which are uncountable, and concep-
tually very far from countable SFTs. Even though our results do not directly
advance the study of this notoriously difficult problem, they show that related
decision problems can be computable, and even have a relatively low computa-
tional complexity.

A natural continuation of this research would be to extend the results to
countable sofic shifts of higher ranks, possibly for all countable sofic shifts. We
suspect that for rank 3 countable sofic shifts, the problem is no longer in GI, as
distances between two disturbances can encode infinitely many essentially differ-
ent configurations. However, we also believe it to be decidable, possibly even in
NP, as any conjugacy has a finite radius and must thus consider distant distur-
bances separately. The problem is then essentially combinatorial, and finding a
suitable representation for the shift spaces, similar to the structure graph, might
be the key to determining its complexity class.

Of course, a lot of tools have been developed for tackling the mixing case, and
it could be that these tools easily decide conjugacy in the countable case. For
example, it is well-known that a weaker type of conjugacy called shift equivalence
is decidable in high generality, so it would be enough to show that in the case
of countable SFTs, this is equivalent to conjugacy (although we have not been
able to show this). Thus, we explicitly state our interest:

Question 1. Is the conjugacy of countable SFTs decidable?

In the usual case of mixing (and uncountable) SFTs and sofics, the decidability
of conjugacy has not yet been solved. However, there might be an easy way to
show that the conjugacy problem is, say, NP-hard. We are not aware of such
investigations in the literature. Such a view might be helpful in finding ways to
encode computation in instances of the conjugacy problem. Such a way would
presumably need to be found in order to show that the problem is undecidable,
but might also be useful (or at least interesting) if it turns out to be decidable.
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Finally, we note that in the case of multidimensional SFTs, the conjugacy
problem is undecidable. In fact, it was even shown in [7] that for all two-
dimensional SFTs X, it is undecidable whether a given SFT Y is conjugate
to it (and they also determine the complexity of finding factor maps).
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Abstract. In this article, we study classes of multidimensional sub-
shifts defined by multihead finite automata, in particular the hierarchy
of classes of subshifts defined as the number of heads grows. The hier-
archy collapses on the third level, where all co-recursively enumerable
subshifts are obtained in every dimension. We also compare these classes
to SFTs and sofic shifts. We are unable to separate the second and third
level of the hierarchy in one and two dimensions, and suggest a related
open problem for two-counter machines.
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1 Introduction

In this article, we discuss multihead finite automata on infinite multidimensional
configurations, which we call plane-walking automata, and use them to define
classes of subshifts. Our model is based on the general idea of a graph-walking
automaton. In this model, the automaton is placed on one of the nodes of a graph
with colored nodes, and it repeatedly reads the color of the current node, updates
its internal state, and steps to an adjacent node. The automaton eventually
enters an accepting or rejecting state, or runs forever without making a decision.
Usually, we collect the graphs that it accepts, or the ones that it does not reject,
and call this collection the language of the automaton. We restrict our attention
to machines that are deterministic, although an interesting continuation of our
research would be to consider nondeterministic or alternating machines.

Well-known such models include the two-way deterministic finite automata
(2DFA) walking back-and-forth on a finite word, and tree-walking automata tra-
versing a tree. See [7] for a survey on multihead automata on words, and the
references in [2] for information on tree-walking automata. In multiple dimen-
sions, our automata are based on the concept of picture-walking (or 4-way)
automata for accepting picture languages, defined in [1] and surveyed in [10,11].

The first question about subshifts accepted by plane-walking automata is how
this class relates to existing classes of subshifts. In particular, we compare the
class of subshifts accepted by a one-head deterministic automaton to SFTs and
sofic shifts, two well-known classes in the theory of subshifts. They correspond,
in some sense, to local languages and regular languages of finite words, since an
c© Springer International Publishing Switzerland 2015
T. Isokawa et al. (Eds.): AUTOMATA 2014, LNCS 8996, pp. 135–148, 2015.
DOI: 10.1007/978-3-319-18812-6 11
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SFT is defined by local rules, and a sofic shift is a letter-to-letter projection of
an SFT. It is well-known that in the one-dimensional finite case, graph-walking
automata with a single head (2DFA) define precisely the regular languages. How-
ever, for more complicated graphs, deterministic graph-walking automata often
define a smaller class than the one containing letter-to-letter projections of local
languages (which is often considered the natural generalization of regularity):
deterministic tree-walking automata do not define all regular tree languages [3]
and deterministic picture-walking automata do not accept all recognizable pic-
ture languages [6]. We show in Theorem 1 that this is also the case for a one-head
deterministic plane-walking automaton in the multidimensional case: the class
of subshifts defined is strictly between SFTs and sofic shifts.

Already in [1], the basic model of picture-walking automata was augmented
by multiple heads,1 and we similarly consider classes of subshifts defined by mul-
tihead plane-walking automata. In [1, Theorem 3], it was shown that the hier-
archy obtained as the number of heads grows is infinite in the case of pictures
(by a diagonalization argument). Similar results are known for one-dimensional
words [8] and trees [4]. In the case of subshifts, we show that the hierarchy col-
lapses to the third level, which is precisely the class of subshifts whose languages
are co-recursively enumerable. In particular, it properly contains the class of
sofic shifts. However, we are not able to separate the second and third levels
in the case of one or two dimensions, although we find it very likely that they
are distinct. We discuss why this problem appears hard to us, suggest a possible
separating language, and state a related open problem for two-counter machines.

2 Preliminary Notions

In this article, a (d-dimensional) pattern is a function P : D → Σ, where
D = D(P ) ⊂ Z

d is the domain of P , and Σ is a finite alphabet. A full pattern
with domain Z

d is called a configuration (over Σ), and other patterns have finite
domains unless otherwise noted. The restriction of a pattern P to a smaller
domain D is denoted by P |D. We say that a pattern P occurs at v ∈ Z

d in
another pattern P ′, if we have u+ v ∈ D(P ′) and P ′

u+v = Pu for all u ∈ D(P ).
For s ∈ Σ, we denote by |P |s the number of occurrences of s in P .

A subshift is a set X ⊂ ΣZd

of configurations defined by a set F of forbidden
patterns – a configuration x ∈ ΣZd

is in X if and only if none of the patterns
of F occur in it. If F is finite, then X is a subshift of finite type, or SFT for
short, and if F is recursively enumerable, then X is co-RE or Π0

1. If the domain
of every pattern in F is of the form is {0,ei}, where e1, . . . ,ed is the natural
basis of Z

d, then X is a tiling system. A sofic shift is obtained by renaming the
symbols of an SFT, or equivalently a tiling system. If it is decidable whether a
given pattern occurs in some configuration of X, then X is recursive.

Unless otherwise noted, we always use the binary alphabet Σ = {0, 1}.

1 Strictly speaking, they were augmented by markers, but the difference is small.
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3 Choosing the Machines

The basic idea in this article is to define subshifts by deterministic and multihead
finite automata as follows: Given a configuration x ∈ ΣZd

, we initialize the heads
of the automaton on some of its cells, and let them run indefinitely, moving
around and reading the contents of x. If the automaton halts in a rejecting
state, then we consider x to be rejected, and otherwise it is accepted.

After this high-level idea has been established, there are multiple a priori
inequivalent ways of formalizing it, and we begin with a discussion of such
choices. Much of this freedom is due to the fact that many different definitions
and variants of multihead finite automata exist in the literature, both in the case
of finite or infinite pictures and one-dimensional words (see [7] and references
therein).

Heads or markers? A multihead automaton can be defined as having multiple
heads capable of moving around the input, or as having one mobile head and
several immobile markers that the head can move around. In the latter case,
one must also decide whether the markers are indistinguishable or distinct, and
whether they can store information or not. In this article, we choose the former
approach of having multiple mobile heads.

Global control or independent heads? Next, we must choose how the heads of
our machines interact. The traditional approach is to have a single global state
that controls each head, but in our model, this could be considered ‘physically
infeasible’, as the heads may travel arbitrarily far from each other. For this
reason, and in order not to have too strong a model, the heads of our automata
are independent, and can interact only when they lie in the same cell.

Synchronous or asynchronous motion? Now that the heads have no common
memory, we need to decide whether they still have a common perception of time,
that is, whether they can synchronize their motion. In the synchronous updating
scheme, the heads update their states and positions at the same time, so that the
distance between two heads moving in the same direction stays constant. The
other option is asynchronous updating, where the heads may update at different
paces, possibly nondeterministically. We choose the synchronous scheme, as it is
easier to formalize and enables us to shoot carefully synchronized signals, which
we feel are the most interesting aspect of multihead plane-walking automata.

Next, we need to decide how exactly a plane-walking automaton defines a
subshift. Recall that a subshift is defined by a possibly infinite set of finite
forbidden patterns in a translation-invariant way. In our model, the forbidden
patterns should be exactly those that support a rejecting run of the automaton.

How do we start? First, we could always initialize our automata at the ori-
gin 0 ∈ Z

d, decide the acceptance of a configuration based on this single run,
and restrict to automata that define translation-invariant sets. Second, we may
quantify over all coordinates of Z

d, initialize all the heads at the same coordi-
nate, and reject if some choice leads to rejection. In the third option, we quantify
over all k-tuples of coordinates, and place the k heads in them independently.
The first definition is not very satisfying, since most one-head automata would
have to be discarded, and of the remaining two, we choose the former, as it is
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more restrictive. We also quantify over a set of initial states, so that our subshift
classes are closed under finite intersection, and accordingly seem more natural.

How do we end? Finally, we have a choice of what constitutes as a rejecting
state. Can a single head cause the whole computation to reject, or does every
head have to reject at the same time, and if that is the case, are they further
required to be at the same position? We again choose the most restrictive option.

All of the above models are similar, in that by adding a few more heads or
counters, one can usually simulate an alternative definition. Sometimes, one can
even show that two models are equivalent. For example, [1, Theorem 2.3] states
that being able to distinguish markers is not useful in the case of finite pictures;
however, the argument seems impossible to apply to plane-walking automata.

To recap, our definition of choice is the deterministic k-head plane-walking
finite automaton with local information sharing, synchronous updating, quantifi-
cation over single initial coordinate and initial state, and rejection with all heads
at a single coordinate, with the (necessarily ambiguous) shorthand kPWDFA.

4 Definitions

We now formally define our machines, runs, acceptance conditions and the sub-
shifts they define. For this section, let the dimension d be fixed.

Definition 1. A kPWDFA is a 5-tuple A = (Q,Σ, δ, I, R), where Q = Q1 ×
· · · × Qk is the finite set of global states, the Qi are the local states, Σ is the
alphabet, and δ = (δ1, . . . , δk) is the list of transition functions

δj : Sj × Σ → Qj × Z
d,

where Sj = Q′
1 × · · · × Q′

j−1 × Qj × Q′
j+1 × · · · × Q′

k, and Q′
i = Qi ∪ {?}. We

call I ⊂ Q the set of initial states, and R ⊂ Q the set of rejecting states.

Note that all functions above are total.

Definition 2. Let A = (Q,Σ, δ, I, R) be a kPWDFA. An instantaneous descrip-
tion or ID of A is an element of IDA = (Zd)k × Q. Given a configuration
x ∈ ΣZd

, we define the update function Ax : IDA → IDA. Namely, given
c = (v1, . . . ,vk, q1, . . . , qk) ∈ IDA, we define Ax(c) as follows. If (q1, . . . , qk) ∈ R
and v1 = · · · = vk, then we say c is rejecting, and Ax(c) = c. Otherwise,
Ax(c) = (w1, . . . ,wk, p1, . . . , pk), where wj = vj + uj and

δj(q′
1, . . . , q

′
j−1, qj , q

′
j+1, . . . , q

′
k, xvj ) = (pj ,u

j),

where we write q′
i = qi if vi = vj, and q′

i = ? otherwise. The run of A on x ∈ ΣZd

from c ∈ IDA is the infinite sequence A∞
x (c) = (An

x(c))n∈N. We say the run is
accepting if no An

x(c) is rejecting. We define the subshift of A by

S(A) = {x ∈ ΣZd | ∀q = (q1, . . . , qk) ∈ I,v ∈ Z
d : A∞

x (v, . . . ,v, q) is accepting.}
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We now define our hierarchy of interest:

Definition 3. We refer to the class of all d-dimensional SFTs (sofc shifts) over
the alphabet Σ = {0, 1} as simply SFTd (soficd, respectively). For k > 0, define

Sd
k = {S(A) | A is a d-dimensional kPWDFA.}

It is easy to see that Sd
k ⊂ Sd

k+1 for all k > 0, and that every Sd
k only contains

Π0
1 subshifts. Since a deterministic finite state automaton can clearly check any

local property, we also have SFTd ⊂ Sd
1 .

Remark 1. We note some robustness properties. While the definition only allows
information sharing when several heads lie in the same cell, we may assume that
heads can communicate if they are at most t cells away from each other. Namely,
if we had a stronger k-head automaton where such behavior is allowed, then we
could simulate its computation step by Θ(ktd) steps of a kPWDFA where the
heads visit, one by one, the Θ(td) cells at most t steps away from them, and
remember which other heads they saw in which states. Also, while we allow the
machines to move by any finite vector, we may assume these vectors all have
length 0 or 1 by simulating a step of length r by r steps of length 1. Finally, the
classes Sd

k are closed under conjugacy, rotation, mirroring and intersection.

To compare these classes, we need to define a few subshifts and classes of sub-
shifts. In most of our examples, the configurations contain the symbol 0 in all
but a bounded number of coordinates.

Definition 4. The d-dimensional n-sunny side up subshift is the d-dimensional
subshift Xd

n ⊂ {0, 1}Zd

with forbidden patterns {P | |P |1 > n}. A d-dimensional
subshift is n -sparse if it is a subshift of Xd

n, and sparse if it is n-sparse for some
n ∈ N. If X is a d1-dimensional subshift and d2 > d1, we define XZd2−d1 as the
d2-dimensional subshift where the contents of every d1-dimensional hyperplane
{∑d1

i=1 niei | n ∈ Z
d1} ⊂ Z

d2 are independently taken from X.

An n-sparse subshift is one where at most n symbols 1 may occur, and the sunny
side up subshifts are the ones with no additional constraints. The name sunny
side up subshift is from [13]. We called the n-sunny side up subshift the n-sparse
subshift in [14], but feel that the terminology used here is a bit better.

We also use the following variation of the well-known mirror subshift.

Definition 5. The d-dimensional mirror subshift Xd
mirror ⊂ {0, 1}Zd

is defined
by the following forbidden patterns.

– All patterns P of domain {0} × {0, 1, 2}d−1 such that the all-1 pattern of
domain {0,ei} for some i ∈ {2, . . . d} occurs in P , but |P |0 �= 0.

– All patterns P of domain {0, k} × {0, 1}d−1 for some k > 1 with |P |0 = 0.
– All patterns P of domain {−k, k} × {0}d−1 ∪ {0} × {0, 1}d−1 for some k > 1

where P |{0}×{0,1}d−1 contains no symbols 0 and P(−k,0,...,0) �= P(k,0,...,0).
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Intuitively, the rules are that if two symbols 1 are adjacent on some (d − 1)-
dimensional hyperplane perpendicular to e1, then that hyperplane must be filled
with 1’s, and there is at most one such hyperplane, whose two sides are mirror
images of each other. In two dimensions, the hyperplane is just a vertical line.

Finally, we define a type of counter machine, which we will simulate by 2- and
3-head automata in the proofs of Proposition 3 and Theorem 5. This is essentially
the model MP1RM (More Powerful One-Register Machine) defined in [15]. We
could also use any other Turing complete machine with a single counter which
supports multiplication and division, such as John Conway’s FRACTRAN [5].

Definition 6. An arithmetical program is a sequence of commands of the form

– Multiply/divide/increment/decrement C by m,
– If (C mod m) = j, goto k,
– If C = m, goto k,
– Halt,

where j,m ∈ N are arbitrary constants and k ∈ N refers to one of the commands.

To run such a program on an input n ∈ N, we initialize a single counter C to n,
and start executing the commands in order. The arithmetical commands work in
the obvious way. We may assume the program never divides by a number unless
it has checked that the value in C is divisible by it, and never subtracts m unless
the value in C is at least m. Thus, C always contains a natural number. In the
goto-statements, execution continues at command number k. The halt command
ends the execution, and signifies that the program accepts n. It is well-known
that this model is Turing complete; more precisely, we have the following.

Lemma 1 ([15]). If a set L ⊂ N is recursively enumerable, then {2n | n ∈ L}
is accepted by some arithmetical program.

5 Results

Our first results place the class Sd
1 between SFTd and soficd.

Lemma 2. In all dimensions d, we have (X1
1 )Z

d−1 ∈ Sd
1 \ SFTd.

Proof. Note that X = (X1
1 )Z

d−1
is the d-dimensional subshift where no row may

contain two symbols 1. First, we show X is not an SFT: Suppose on the contrary
that it is defined by a finite set of forbidden patterns with domain [0, n − 1]d for
some n ∈ N. Consider the configurations x0, x1 ∈ ΣZd

where xi
(0,0) = xi

(n,i) = 1
and xi

v = 0 for v ∈ Z
d −{(0, 0), (n, i)}. Since any pattern with domain [0, n−1]d

occurs in x0 if and only if it occurs in x1, we have x0 ∈ X if and only if x1 ∈ X,
a contradiction since clearly x0 /∈ X and x1 ∈ X.

To show that X ∈ 1PWDFA, we construct a one-head automaton for X. The
idea is that the head will walk in the direction of the first coordinate, and incre-
ment a counter when it sees a symbol 1. If the counter reaches 2, the automaton
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rejects. More precisely, the automaton is A1 = ({q0, q1, q2}, {0, 1}, δ, {q0}, {q2}),
where δ(q0, a) = (qa,e1), δ(q1, a) = (q1+a,e1) and δ(q2, a) = (q2,0) for a ∈
{0, 1}. If there are two 1’s on any of the rows of a configuration x ∈ ΣZd

, say
xv = xw = 1 where w = v + ne1 for some n ≥ 1, then the run of A1 on x from
(q0,v) is not accepting, as the rejecting ID (q2,w + e1) is entered after n + 1
steps. Thus, x /∈ S(A1). On the other hand, it is easy to see the if no row of
x ∈ ΣZ2

contains two symbols 1, then x ∈ S(A1). �

Theorem 1. In all dimensions d, we have Sd
1 ⊂ soficd, with equality if d = 1.

Remark 2. For all dimensions d1 < d2, all k, and all subshifts X ∈ Sd1
k , we

have XZd2−d1 ∈ Sd2
k , since a d2-dimensional kPWDFA can simply simulate a

d1-dimensional one on any d1-dimensional hyperplane. In particular, if X ⊂ ΣZ

is sofic, then XZd−1 ∈ Sd
1 for any dimension d.

Of course, since multidimensional SFTs may contain very complicated configu-
rations, the same is true for the classes Sd

1 . In particular, for all d ≥ 2 there are
subshifts in Sd

1 whose languages are co-RE-complete. However, just like in the
case of SFTs, the sparse parts of subshifts in Sd

1 are simpler.

Theorem 2. Let the dimension d be arbitrary, and let X ∈ Sd
1 . For all k, the

intersection X ∩ Xd
k is recursive.

Proof. Let X = S(A) for a 1PWDFA A = (Q,Σ, δ, I, R) that only takes steps of
length 0 and 1. First, we claim that it is decidable whether a given configuration
y with at most k symbols 1 is in Y . We need to check whether there exists v ∈ Z

d

such that started from v in one of the initial states, A eventually rejects y.

To decide this, note first that if A does not see any symbols 1, then it does
not reject – otherwise, the all-0 configuration would not be in Y . Define W =
{v ∈ Z

d | ‖v‖ ≤ |Q|}, and denote ZW = {nw | n ∈ Z, w ∈ W}. Let E ⊂ Z
d be

the convex hull of D = {v ∈ Z
d | yv = 1}, and let F = E + W + W . Note that

no matter which initial state A is started from, the only starting positions from
which it can reach one of the symbols 1 are those in

W + ZW + W + D ⊂ ZW + F.

Namely, whenever A takes |Q| steps without encountering a symbol 1, it must
repeat a state. Thus, if A is at least 2|Q| cells away from the nearest symbol 1,
then it must be ultimately periodically moving in some direction v ∈ Z

d with
‖v‖ ≤ |Q|, repeating its state every s ≤ |Q| steps. If we denote by (qn,vn)n≤N

the (finite or infinite) sequence of states and coordinates that A visits before
encountering a symbol 1, then there are a < b ≤ |Q| with qa = qb. This implies
that va+k(b−a)+� = va + k(vb − va) + w� for all k ∈ N and � ≤ b − a for which
the coordinate is defined, where ‖va − v0‖, ‖w�‖ ≤ |Q|. The claim follows, since
A must enter the domain D in order to encounter a 1.

Next, we show that we only need to analyze the starting positions in G =
W+W+W+F . Namely, if A enters the set F for the first time after a+k(b−a)+�
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steps and k > 2|Q|/‖vb − va‖, then the distance of the coordinate vn from F is
at least |Q| for all n ≤ a. This means that if we initialize A at the coordinate
v0 +vb −va in the same state q0 ∈ Q, then it will also enter F for the first time
in the state qa+k(b−a)+� and at the coordinate va+k(b−a)+�.

From each starting position in the finite set G and each initial state, we now
simulate the machine until it first enters F or exits W + G (in which case it
never enters F ). Now, we note that if the machine re-exits F after the first time
it is entered, then it does not reject y. Namely, F = E + W + W is convex
and contains a 0-filled border thick enough that A must be in an infinite loop,
heading off to infinity. Thus, if A ever rejects y, it must do so by entering F from
G without exiting W +G, then staying inside F , and rejecting before entering a
loop, which we can easily detect. This finishes the proof of decidability of y ∈ Y .

Now, given a pattern P with domain D ⊂ Z
d, we need to decide whether it

occurs in a configuration of Y . If |P |1 > k, the answer is of course ‘no’ since Y
is k-sparse, so suppose |P |1 ≤ k. Construct the configuration y with y|D = P
and yv = 0 for v ∈ Z

d \ D. If y ∈ Y , which is decidable by the above argument,
then we answer ‘yes’. If y /∈ Y and |P |1 = k, then we can safely answer ‘no’.

If y /∈ Y and |P |1 < k, then we have found a rejecting run of A that only visits
some finite set of coordinates C ⊂ Z

d. If there exists x ∈ Y such that x|D = P ,
then necessarily xv = 1 for some v ∈ C \ D. For all such v, we construct a new
pattern by adding {v �→ 1} into P , and call this algorithm recursively on it. If
one of the recursive calls returns ‘yes’, then we answer ‘yes’ as well. Otherwise,
we answer ‘no’. The correctness of this algorithm now follows by induction. �
For the previous result to be nontrivial, it is important to explicitly take the
intersection with a sparse subshift instead of assuming that X is sparse, for the
following reason.

Proposition 1. For all dimensions d ≥ 2, the class Sd
1 contains no nontrivial

sparse subshifts.

Proof. Let A be a 1PWDFA such that S(A) is sparse and contains at least
two configurations. We may assume that Xd

1 ⊂ S(A) by recoding if necessary.
Recall the notation of the proof of Theorem 2. It was shown there that if A
can reach a position v ∈ Z

d from the origin without encountering a 1, then
v ∈ W +W +ZW . Let V ⊂ Z

d be an infinite set such that v−w /∈ ZW +W +W
for all v �= w ∈ V . One exists since d ≥ 2. Define x ∈ ΣZd

by xv = 1 if and only
if v ∈ V . Then A accepts x, since it encounters at most one symbol 1 on every
run on x, contradicting the sparsity of S(A). �

Next, we show that two heads are already quite powerful in the one- and two-
dimensional settings, and such results do not hold for them. In two dimensions,
some type of searching is also possible with just two heads.

Proposition 2. The k-sunny side up shift X2
k is in S2

2 for all k.

The following proposition gives the separation of the classes Sd
1 and Sd

2 for d ≤ 2.
It can be thought of as an analogue of the well-known result that two counters
are enough for arbitrarily complicated (though not arbitrary) computation.
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Proposition 3. For d ≤ 2, there is a 2-sparse co-RE-complete subshift X ∈ Sd
2 .

Proof. We only prove the case d = 2, as the one-dimensional case is even easier.
Let X be the subshift of X2

2 where either the two symbols 1 are on different rows,
or their distance is not 2n for any n ∈ L, for a fixed RE-complete set L ⊂ N.

To prove X ∈ S2
2 , we construct a 2PWDFA A for it. The heads of A are called

the ‘zig-zag head’ and the ‘counter head’. Since S2
2 is closed under intersection,

Proposition 2 shows that we may restrict our attention to configurations of X2
2 .

First, our machine checks that it is started on a symbol 1 and another symbol 1
occurs on the same row to the left, by doing a left-and-right sweep with the zig-
zag head. Otherwise, A runs forever without halting. The rightmost 1 is ignored
during the rest of the computation, and from now on, we refer to the leftmost 1
as the pointer. Since the heads never leave the row on which they started, they
can keep track of whether they are to the right or to the left of the rightmost 1.

We think of the distance of the counter head from the pointer as the value of
a counter C of an arithmetic program accepting the language L′ = {2n | n ∈ L}
(which exists by Lemma 1). We simulate this program using the two heads as
follows: The finite state of the zig-zag head will store the state of the program.
If the counter of the arithmetical program contains the value C and the pointer
is at v ∈ Z

2, then both heads are at v + (C, 0) (except for intermediate steps
when a command of the program is being executed). See Fig. 1. To increment or
decrement C by m, the zig-zag head and the counter head simply move m steps
to the left or right, staying together. To check C = m, the zig-zag head moves
m steps to the left and looks for the pointer, and to check (C mod m) = j, the
zig-zag head makes a left-and-right sweep, visiting the pointer and returning to
the counter head, using its finitely many states to compute the remainder.

Multiplications and divisions are done by standard signal constructions. For
example, to move the zig-zag head and the counter head from v + (C, 0) to
v + (C/2, 0) (assuming it has been checked that C is even), the counter head
starts moving left at speed 1, and the zig-zag head at speed 3, bouncing back
from the pointer, and the two meet at exactly v+(C/2, 0). It is easy to construct
such pairs of speeds for multiplication or division by any fixed natural number.

If the arithmetical program eventually halts, then A rejects the configuration,
and otherwise it simulates the program forever. Now, let x ∈ X2

2 be arbitrary.
If A is not started on the rightmost 1 of a row of x that contains two 1’s, then
it does not reject x. Suppose then that this holds and let � ∈ N be the distance
between the two 1’s, so that A starts simulating the arithmetical program as
described above, with input value �. If � ∈ L′, then the program eventually halts
and the automaton rejects, and we have x /∈ X. Otherwise, the program and
thus the automaton run forever, and x ∈ X since A does not reject x from any
starting position. This shows that S(A) = X. �
We do not believe that all 2-sparse co-RE-complete subshifts are in Sd

2 for d ≤ 2,
but we cannot prove this. In three or more dimensions, however, we obtain the
following analogue of Proposition 1, which is proved similarly.

Theorem 3. For all dimensions d ≥ 3, the class Sd
2 contains no nontrivial

sparse subshifts.
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Z C1 1

Current counter value

Input value

Fig. 1. Simulating an arithmetical program with two heads, labeled Z for zig-zag and
C for counter. The leftmost 1 is the pointer, and empty squares contain 0-symbols.

Proof. Let A be a 2PWDFA taking only steps of length 0 or 1 such that S(A)
is sparse and contains at least two configurations. We may again assume that
Xd

1 ⊂ S(A). As in the proof of Theorem 2, it is easy to see that there exists
some p ∈ N such that, denoting W = {v ∈ Z

d | ‖v‖ ≤ p} and ZW = {nw | n ∈
Z,w ∈ W}, we have the following. Let the two heads of A be initialized on
some coordinates v = v0 ∈ Z

2 and w = w0 ∈ Z
2 in any states, and denote by

(vn)n≤N and (wn)n≤N their itineraries up to some timestep N ∈ N. If we have
‖v−w‖ ≤ p (‖v−w‖ > p), then vn ∈ v+ZW +W and vn ∈ v+ZW +W until
either head sees a symbol 1 (either head sees a symbol 1 or the heads meet each
other, respectively). In the former case, note that the heads may travel together,
so that their ‘combined state’ can have a period greater than |Q|.

Analogously to the proof of Proposition 1, let V ⊂ Z
d be an infinite set such

that v−w /∈ ZW + ZW +W +W for all v,w ∈ V . Define x ∈ ΣZd

by xv = 1 if
and only if v ∈ V . We prove that x is accepted by A, contradicting the sparsity of
S(A). We may assume that A is started at some position w ∈ Z

d and encounters
a 1 at the origin after some number of steps.

By the first paragraph, both heads stay in the region w+ ZW +W until the
origin is found, say by the first head. Then w ∈ ZW + W , so the second head
stays in the domain ZW + ZW + W + W until it encounters the origin or the
first head. The first head is restricted to the domain ZW + W until it meets the
second head, so the heads cannot reach any coordinate v ∈ V \ {0} before this.
But if the heads meet, they must do so in a coordinate of ZW + W , and after
this, they are confined to the domain ZW + ZW + W + W until one of them
reaches the origin again. Thus, the heads never reach a symbol 1 other than the
origin, and since Xd

1 ⊂ S(A), the configuration x must be accepted. �

There are no nontrivial restrictions for sparse sofic shifts.

Theorem 4. For all dimensions d ≥ 2, every sparse co-RE subshift is in soficd.

Combining Theorems 3, 4 and Proposition 1, we obtain the following.

Corollary 1. For all dimensions d ≥ 2, we have Sd
1 � soficd, and for all dimen-

sions d ≥ 3, we have Sd
2 �⊂ soficd.

While Theorem 4 shows that all sparse Sd
2 subshifts are sofic, we can show that

this is not true in general. In particular, the next result shows that Sd
1 is properly

contained in Sd
2 for all d ≥ 2.
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Proposition 4. In all dimensions d ≥ 2, we have Xd
mirror ∈ Sd

2 \ soficd.

Proof. The proof of Xd
mirror /∈ soficd is completely standard both in the theory

of subshifts and in the theory of picture languages, although we do not have a
direct reference for it. The same argument is applied in [12, Example 2.4] to a
slightly different subshift.

To show that Xd
mirror ∈ Sd

2 , we describe a 2PWDFA for it. Using the fact
that Sd

2 is closed under intersection, we restrict to the SFT defined by the first
point of Definition 5. We can also assume there is at most one hyperplane of
symbols 1, as this is checked by a 1PWDFA that walks in the direction of the
first axis from its initial position, and halts if it sees the pattern {0 �→ 1,e2 �→ 1}
twice.

Under these assumptions, the mirror property is easy to check. One of the heads
memorizes the bit in the initial position in its finite memory. Then, one of the heads
starts traveling to the direction e1, and the other to e1 + e2. If the latter sees a
hyperplane of symbols 1, it turns to the direction e1 −e2. If the heads meet, they
check that the bit in the initial position matches the bit under the current position,
and if not, the configuration is rejected. �

Finally, we collapse the hierarchy. This can be thought of as an analogue of the
well-known result that three counters are enough for all computation.

Theorem 5. In all dimensions d, the classes Sd
k for k ≥ 3 coincide with the

class of co-RE subshifts.

Proof. We only need to show that Sd
3 contains all Π0

1 subshifts. Namely, Sd
k ⊂

Sd
k+1 holds for all k > 0, and since a Turing machine can easily enumerate

patterns supporting a rejecting computation of a multihead finite automaton,
every Sd

k subshift is also Π0
1.

Let T be a Turing machine that, when started from the initial configuration
c0 with empty input, outputs a sequence (Pi)i∈N of patterns by writing each
of them in turn to a special output track, and visiting a special state qout. We
construct a 3PWDFA AT accepting exactly those configurations where no Pi

occurs. The heads of AT are called the pointer head, the zig-zag head, and the
counter head. The machine has a single initial state, and when started from any
position v ∈ Z

d of a configuration x, it checks that no Pi occurs in x at v. Since
AT is started from every position, it will then forbid all translates of the Pi.

The machine simulates an arithmetical program as in the proof of Propo-
sition 3, but in place of the ‘leftmost symbol 1’, we use the pointer head. The
crucial difference here is that unlike a symbol 1, the pointer head can be moved
freely. This allows us to walk around the configuration, and extract any infor-
mation we want from it. The arithmetical program simulates Algorithm1, which
finally simulates the Turing machine T .

The algorithm remembers a finite pattern P = x|D(P )+v, where v ∈ Z
d is

the initial position of the heads, and a vector u ∈ Z
d containing w − v, where
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Algorithm 1. The algorithm that the three-head automaton AT simulates.
1: c ← c0 � A configuration of T , set to the initial configuration
2: u ← 0 ∈ Z

d � The position of the pointer head relative to the initial position
3: P : ∅ → {0, 1} � A finite pattern at the initial position
4: loop
5: repeat
6: c ← NextConfT (c) � Simulate one step of T
7: until State(c) = qout � T outputs something
8: P ′ ← OutputOf(c) � A forbidden pattern
9: while D(P ′) �⊂ D(P ) do

10: w ← LexMin(D(P ) \ D(P ′)) � The lexicographically minimal vector
11: while u �= w do
12: d ← NearestUnitVector(w − u) � Nearest unit vector in Z

d

13: MoveBy(d) � Move the heads of AT to the given direction
14: u ← u + d
15: b ← ReadSymbol � Read the symbol of x under the pointer head
16: P ← P ∪ {u 	→ b} � Expand P by one coordinate
17: if P |D(P ′) = P ′ then halt � The forbidden pattern P ′ was found

w ∈ Z
d is the current position of the pointer. The machine T is simulated step

by step, and whenever it outputs a forbidden pattern P ′, the algorithm checks
whether D(P ) contains its domain. If so, it then checks whether x|D(P ′)+v = P ′.
If this holds, then the algorithm halts, the arithmetical program simulating it
halts, and the automaton AT moves all of its heads to the pointer and rejects.
If P ′ does not occur, the simulation of T continues.

If D(P ′) is not contained in D(P ), then the algorithm expands P , which is
done in the outer while-loop of Algorithm 1. To find out the contents of x at
some coordinate w + v for w ∈ D(P ′), the algorithm chooses a unit direction
(one of ±ei for i ∈ {1, . . . , d}) that would take the pointer head closer to w+v,
and signals it to AT via the arithmetical program. In a single sweep of the zig-
zag head to the pointer and back, AT can easily move all of its heads one step
in any unit direction. Then the simulation continues, and the algorithm updates
u accordingly. When u = w finally holds, the algorithm orders AT to read the
symbol xv+u under the pointer, which is again doable in a single sweep. The bit
b = xv+u is given to the algorithm, which expands P by defining Pu = xv+u.

For a configuration x and initial coordinate v ∈ Z
d, the automaton AT thus

computes the sequence of patterns (Pi)i∈N and checks for each i ∈ N whether
x|D(Pi)+v = Pi holds, rejecting if it does. Since v is arbitrary, we have x ∈ S(AT )
if and only if no Pi occurs in x. Thus Sd

3 contains an arbitrary Π0
1 subshift. �

The basic comparisons obtained above are summarized in Fig. 2.

6 The Classes S1
2 and S2

2

A major missing link in our classification is the separation of Sd
2 and Sd

3 in dimen-
sions d ≤ 2. We leave this problem unsolved, but state the following conjecture.
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d = 1 SFT1

S1
1 = sofic1

S1
2

Π0
1 = S1

3 = S1
4 = · · ·

�=

�=

?

d = 2 SFT2

S2
1

sofic2 S2
2

Π0
1 = S2

3 = S2
4 = · · ·

�=

�=�=

�= ?

d ≥ 3 SFTd

Sd
1

soficd Sd
2

Π0
1 = Sd

3 = Sd
4 = · · ·

�=

�=�=

�= �=

Fig. 2. A comparison of our classes of subshifts. The solid, dashed and dotted lines
denote inclusion, incomparability and an unknown relation, respectively, as we only
know Sd

2 �⊂ soficd for d = 2.

Conjecture 1. For d ≤ 2, there exists a sparse co-RE subshift which is not in Sd
2 .

In particular we have Sd
2 � Sd

3 , and sofic2 and S2
2 are incomparable.

Recall from the proof of Proposition 3 that two counters are enough for a plane-
walking automaton to simulate any arithmetical program in a sparse subshift. It
is known that two-counter machines (which are basically equivalent to arithmeti-
cal programs by [15]) cannot compute all recursive functions, and in particular
cannot recognize the set of prime numbers [9]. A natural candidate for realizing
Conjecture 1 in the one-dimensional case would thus be the subshift X ⊂ X1

2

where the distance of the two 1’s cannot be a prime number.
However, instead of simply simulating an arithmetical program, the automa-

ton may use the position of the rightmost 1 in the middle of the computation,
and a priori compute something an ordinary arithmetical program cannot. In
some sense it thus simulates an arithmetical program that remembers its input.
Conversely, we also believe that a run of a 2PWDFA on a 2-sparse subshift can
be simulated by such a machine. All currently known proof techniques for lim-
itations of two-counter machines break down if one is allowed to remember the
input value, which raises the following question.

Question 1. Can arithmetical programs (or two-counter machines) that remem-
ber their input (for example, in the sense that they can check whether the current
counter value is greater than the input) recognize all recursively enumerable sets?
In particular, can they recognize the set of prime numbers?

Other tools for separating classes of multihead automata are diagonalization,
where an automaton with much more than k heads can analyze the behavior
of one with k heads, and choose to act differently from it on some inputs, and
computability arguments, where algorithms of certain complexity can only be
computed by machines with enough heads. Unfortunately, these approaches can-
not separate Sd

2 from Sd
3 , since both are capable of universal computation.
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