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Abstract The problem of fitting logistic regression to binary model allowing for
missppecification of the response function is reconsidered. We introduce two-stage
procedure which consists first in ordering predictors with respect to deviances of
the models with the predictor in question omitted and then choosing the minimizer
of Generalized Information Criterion in the resulting nested family of models. This
allows for large number of potential predictors to be considered in contrast to an
exhaustivemethod.We prove that the procedure consistently choosesmodel t∗ which
is the closest in the averaged Kullback-Leibler sense to the true binary model t . We
then consider interplay between t and t∗ and prove that for monotone response func-
tion when there is genuine dependence of response on predictors, t∗ is necessarily
nonempty. This implies consistency of a deviance test of significance under misspec-
ification. For a class of distributions of predictors, including normal family, Rudd’s
result asserts that t∗ = t . Numerical experiments reveal that for normally distrib-
uted predictors probability of correct selection and power of deviance test depend
monotonically on Rudd’s proportionality constant η.
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1 Introduction

We consider a general binary regression model in which responses y ∈ {0, 1} are
related to explanatory variables x = (1, x1, . . . , x p)

′ ∈ R p+1 by the equation

P(y = 1|x) = q(x′β), (1)

where vector β = (β0, β1, . . . , βp)
′ is an unknown vector of parameters and q :

R → (0, 1) is a certain unknown response function. To the data pertaining to (1) we
fit the logistic regression model i.e. we postulate that the posterior probability that
y = 1 given x is of the form

p(x′γ) = exp(x′γ)/[1 + exp(x′γ)], (2)

where γ ∈ R p+1 is a parameter. Ourmain interest here is the situationwhen the logis-
tic model is misspecified i.e. p �= q. Let t = {0} ∪ {1 ≤ k ≤ p : βk �= 0} be the true
model i.e. consisting of indices of nonzero coefficients corresponding to true predic-
tors and of the intercept denoted by 0. Our taskmay be either to identifymodel t when
incorrectly specified model (2) is fitted or, less ambitiously, to verify whether t con-
tains indices corresponding to predictors i.e. whether response depends on predictors
at all. The situation of incorrect model specification is of importance because of obvi-
ous reasons as in real applications usually we have no prior knowledge about data
generation process and, moreover, goodness-of-fit checks may yield inconclusive
results. Thus investigating to what extent selection and testing procedures are resis-
tant to response function misspecification is of interest. This is especially relevant
with large number of possible features and sparsity when selecting true predictors is
a challenge in itself and is further exacerbated by possible model misspecification.
Moreover, some data generation mechanisms lead directly to misspecified logistic
model. As an example we mention [6] who consider the case of logistic model when
each response is mislabeled with a certain fixed probability.

In the paper we consider selection procedures specially designed for large p
scenario which use Generalized Information Criterion (GIC). This criterion encom-
passes, for specific choices of parameters, such widely used criteria as Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC). AIC is known to
overestimate the dimension of the true model (see e.g. [4]) whereas BIC in the case
of correctly specified linear model with fixed p is consistent [7]. There are many
modifications of AIC and BIC which among others are motivated by the phenom-
enon that for large p depending on the sample size BIC also choses too large number
of variables. We mention in particular modified BIC [3, 23], Extended BIC (EBIC)
which consists in adding a term proportional to log p to BIC [8, 9] and Risk Inflation
Criterion [15]. Qian and Field [20] consider GIC and proved its consistency under
correct specification. In this line of research [9] propose minimization of EBIC over
all possible subsets variables of sizes not larger than k when k is some sufficiently
large number. However, this approach becomes computationally prohibitive for even
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moderate k. Other important approach is based on l1-penalized loglikelihood and
its extensions and modifications such as Elastic Net (see [24]) and SCAD [14]. It is
known that l1-penalization leads to cancelation of some coefficients and thus can be
considered as model selection method. For discussion of other approaches we refer
to [5, 10, 17] and references there.

The aims of the paper are twofold. We first introduce two-step modification of
a procedure based on GIC, the minimizer of which over the family of all possible
models is used as a selector of relevant variables. In the casewhen number of possible
predictors is large such an approach is practically unfeasible due to high computa-
tional cost of calculating GIC for all possible subsets. This is a reason, likely the
only one, why these methods are not frequently used and sequential greedy methods
are applied in practice. However, greedy methods lack theoretical underpinning and
it is known that they may miss true predictors. We thus propose a specific two-stage
greedy method which consists in first ranking the predictors according to residual
deviances of the models containing all variables but the considered one. Then in the
second stageGIC isminimized over the nested family ofmodels pertaining to increas-
ing sets of the most important variables. We prove that such procedure picks with
probability tending to 1 the logistic model t∗ which minimizes averaged Kullback-
Leibler distance from the binary model (1). This is to the best of our knowledge
the first formal result on the consistency of greedy selection procedure for logistic
regression even in the case when p = q. As a by-product we obtain the known
result concerning behaviour of GIC optimized over the family of all models due to
[22]. As in their paper the very general framework is considered for which stringent
assumptions are needed we note that it is possible to prove the result under much
weaker conditions (cf. their Proposition 4.2 (i), (ii) and Theorem 2 below). In view
of the result the nature of the interplay between t∗ and t becomes relevant. However,
it seems that the problem, despite its importance, has failed to attract much attention.
Addressing this question, admittedly partially, is the second aim of the paper. We
discuss Rudd’s (1983) result in this context which states that for certain distribu-
tions of predictors β∗ = ηβ for some η ∈ R, where β∗ which minimizes averaged
Kullback-Leibler distance from the binary model to logistic regressions. This obvi-
ously implies that t∗ = t if η �= 0. As our main result in this direction we prove in
Theorem 4 if t contains genuine regressors so does t∗ provided that q is monotone
and not constant. This implies in particular that in such a case significance test for
regressors constructed under logistic model is consistent under misspecification. We
also discuss the relevance of proved results in practice by investigating probability of
correct model selection for two-stage procedure and power of test of significance for
moderate sample sizes. In particular, we empirically verify that, surprisingly, mis-
specification of the model may lead to larger probabilities of correct selection and
positive selection rate than for correct specification and stress the importance of the
proportionality constant η in this context. Namely, it turns out that this phenomenon
occurs mostly in the cases when η > 1. Moreover, we established that probability of
correct selection and power of deviance test depend monotonically on η.
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Generalization to the case when p is large in comparison to n is left for further
study. As the fitting of the full model in the first stage of the procedure excludes its
application when p > n an initial screening of variables which is commonly done
in applications (see e.g. [9]) would be necessary.

The paper is structured as follows. Section2 contains preliminaries, in Sect. 3
we introduce and prove consistency of two-step greedy GIC procedure. Interplay
between t and t∗ is discussed in Sect. 4 together with its consequence for consis-
tency of deviance test under misspecification. In Sect. 5 we describe our numerical
experiments and Appendix contains proofs of auxiliary lemmas.

2 Preliminaries

Observe that the first coordinate ofβ in (1) corresponds to the intercept and remaining
coefficients to genuine predictors which are assumed to be random variables. We
assume that β is uniquely defined. The data consists of n observations (yi , xi )which
are generated independently from distribution Px,y such that conditional distribution
Py|x is given by Eq. (1) and distribution of attribute vector x is (p + 1)-dimensional
with first coordinate equal to 1. We consider the case when x is random since in this
situation behaviour of β∗ of maximum likelihood estimator β̂ for incorrect model
specification can be more easily described (cf. definition (6) below, see however [13]
for analogous development for deterministic predictors).

As a first remark note that as distribution Px,y which satisfies (1) with parameters
q and β satisfies also (1) for parameters q̃ and cβ + α where c > 0 and q̃(s) =
q((s − α)/c). It follows that when q is unknown only the direction of the vector
β̃ = (β1, . . . , βp)

′ may be possibly recovered.
LetX be n×(p+1) designmatrix with rows x1, . . . , xn andY = (y1, . . . , yn)′ be

a response vector. Under the logistic regressionmodel, the conditional log-likelihood
function for the parameter γ ∈ R p+1 is

l(γ, Y|X) =
n∑

i=1

{yi log[p(x′
iγ)] + (1 − yi ) log[1 − p(x′

iγ)]}

=
n∑

i=1

{yi x′
iγ − log[1 + exp(x′

iγ)]}.

Note that we can alternatively view l(γ, Y|X) defined above as an empirical risk
corresponding to the logistic loss. Define also the score function for the parameter
γ ∈ R p+1

sn(γ) = ∂l(γ, Y|X)

∂γ
=

n∑

i=1

[yi − p(x′
iγ)]xi = X′(Y − p(γ)), (3)
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where p(γ) = (p(x′
1
γ), . . . , p(x′

nγ))′. The negative Hessian matrix will be denoted
by

Jn(γ) = −∂l2(γ, Y|X)

∂γ∂γ′ =
n∑

i=1

{p(x′
iγ)[1 − p(x′

iγ)]}xi x′
i = X′Π(γ)X, (4)

whereΠ(γ) = diag{p(x′
1
γ)(1− p(x′

1
γ)), . . . , p(x′

nγ)(1− p(x′
nγ))}. Under assump-

tion E(x2k ) < ∞, for k = 1, . . . , p it follows from the Law of Large Numbers that

n−1 Jn(γ)
P−→ Ex{xx′ p(x′γ)[1 − p(x′γ)]} =: J (γ). (5)

Observe that in the case of incorrect model specification cov[sn(γ)|x1, . . . , xn] =∑n
i=1{q(x′

i
γ)[1− q(x′

i
γ)]}xi x′

i is not equal to negative Hessian Jn(γ) as in the case
of correct model specification when p(·) = q(·).

The maximum likelihood estimator (ML) β̂ of parameter β is defined to be

β̂ = arg max
γ∈R p+1

l(γ, Y|X).

Moreover define
β∗ = arg min

γ∈R p+1
E{Δx[q(x′β), p(x′γ)]},

where

Δx[q(x′β), p(x′γ)] = q(x′β) log
q(x′β)

p(x′γ)
+ [1 − q(x′β)] log 1 − q(x′β)

1 − p(x′γ)

is the Kulback-Leibler distance from the true Bernoulli distribution with the parame-
ter q(x′β) to the postulated one with the parameter p(x′γ). Thus β∗ is the parameter
corresponding to the logistic model closest to binary model with respect to Kullback-
Leibler divergence. It follows from [16] that

β̂
P−→ β∗ (6)

Using the fact that ∂p(x′γ)/∂γ = p(x′γ)[1 − p(x′γ)]x it is easy to see that

E
[
∂Δx[q(x′β), p(x′γ)]

∂γ

]
= E[−q(x′β)x + p(x′γ)x]

and

E
[
∂2Δx[q(x′β), p(x′γ)]

∂γγ′

]
= E{p(x′γ)[1 − p(x′γ)]xx′}
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is positive-semidefinite. Thus from the first of the above equations we have

E[q(x′β)x] = E[p(x′β∗)x] = E(yx). (7)

Note that as the first coordinate of x is equal one which corresponds to intercept, the
pertaining equation is

E[q(x′β)] = E[p(x′β∗)] = E(y). (8)

Using (3) and (7) we obtain

cov{E[sn(β∗)|x1, . . . xn]} = nE{xx′[q(x′β) − p(x′β∗)]2}
− nE{x[q(x′β) − p(x′β∗)]}{E{x[q(x′β) − p(x′β∗)]}}′

= nE{xx′[q(x′β) − p(x′β∗)]2}.

We also have

E{cov[sn(β
∗)|x1, . . . , xn]} = nE{xx′q(x′β)[1 − q(x′β)]}.

Let Kn(γ) = cov[sn(γ)] be covariance matrix of score function sn(γ). From above
facts we have

n−1Kn(β∗)
= E

{
xx′{q(x′β)[1 − q(x′β)] + [q(x′β) − p(x′β∗)]2}

}
=: K (β∗). (9)

The form of Kn(β
∗) will be used in the proof of Lemma 2. From (6) it is also easy

to see that
β∗ = arg min

γ∈R p+1
E{−l(γ, Y|X)}.

It follows from [19] that β∗ exists provided 0 < q(β ′x) < 1 almost everywhere
with respect to Px and is unique provided E ||x|| < ∞. In the following we will
always assume that β∗ exists and is unique. In the case of correct specification, when
p(·) = q(·) we have β∗ = β. In general β∗ may be different from β. The most
immediate example is when q(s) = p(−s) which corresponds to logistic model
with switched classes. In this case β∗ = −β. Li and Duan [19], p. 1019 give an
example when supports of β and β∗ are disjoint for a loss different than logistic. Let
t∗ = {0} ∪ {1 ≤ k ≤ p : β∗

k �= 0}. In Sect. 4 we discuss the relationships between
β and β∗ as well as between t and t∗ in more detail. In Sect. 3 we give conditions
under which set t∗ is identified consistently. Under certain assumptions we can also
have t∗ = t and thus identification of set t is possible.

Let us discuss the notation used in this paper. Let m ⊆ f := {0, 1, . . . , p} be
any subset of variable indices and |m| be its cardinality. Each subset m is associ-
ated with a model with explanatory variables corresponding to this subset. In the
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following f stands for the full model containing all available variables and by null
we denote model containing only intercept (indexed by 0). We denote by β̂m a
maximum likelihood estimator calculated for model m and by β∗

m the minimizer
of averaged Kullback-Leibler divergence when only predictors belonging to m are
considered. Thus β∗ = β∗

f . Moreover, β∗(m) stands for β∗ restricted to m. Depend-
ing on the context these vectors will be considered as |m|-dimensional or as their
(p+1)-dimensional versions augmented by zeros.We need the following fact stating
that when m ⊇ t∗ then β∗

m is obtained by restricting β∗ to m.

Lemma 1 Let m ⊇ t∗ and assume β∗ is unique. Then β∗
m = β∗(m).

Proof The following inequalities hold

E{Δx[q(x′β), p(x′
mβ∗

m)]} ≥ E{Δx[q(x′β), p(x′β∗)]}
= E{Δx[q(x′β), p(x′

mβ∗(m))]}.

From the definition of projection the above inequality is actually equality and from
the uniqueness the assertion follows.

3 Consistency of Two-Step Greedy GIC Procedure

We consider the following model selection criterion

G I C(m) = −2l(β̂m, Y|X) + an|m|,

where m is a given submodel containing |m| variables, β̂m is a maximum likelihood
estimator calculated for model m (augmented by zeros to p-dimensional vector) and
an is penalty. Observe that an = log(n) corresponds to Bayesian Information Crite-
rion and an = 2 corresponds to Akaike Information Criterion. GIC was considered
e.g. by [22]. We would like to select a model which minimizes G I C over a family

M := {{0} ∪ s : s ⊆ {1, . . . , p}},

i.e. the family of all submodels of f containing intercept. Denote the corresponding
selector by t̂∗. As M consists of 2p models and determination of t̂∗ requires cal-
culation of GIC for all of them this becomes computationally unfeasible for large
p. In order to restrict the space of models over which the optimal value of criterion
function is sought we propose the following two-stage procedure.

Step 1. The covariates {1, . . . , p} are ordered with respect to the residual deviances

D f \{i1} f ≥ D f \{i2} f ≥ · · · ≥ D f \{i p} f .
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Step 2. The considered model selection criterion G I C is minimized over a family

Mnested := {{0}, {0} ∪ {i1}, {0} ∪ {i1, i2}, . . . , {0} ∪ {i1, i2, . . . , i p}}.

We define t̂∗gr as the minimizer of GIC over Mnested. The intuition behind the first
step of the procedure is that by omitting the true regressors from the model their cor-
responding residual deviances are increased significantly more than when spurious
ones are omitted. Thus the first step may be considered as screening of the family
M and reducing it to Mnested by whittling away elements likely to be redundant.

The following assumption will be imposed on Px and penalization constants an

(A1) J (β∗) is positive definite matrix.
(A2) E(x2k ) < ∞, for k = 1, . . . , p.
(A3) an → ∞ and an/n is nonincreasing and tends to 0 as n → ∞.

The main result of this section is the consistency of the greedy procedure defined
above.

Theorem 1 Under assumptions (A1)–(A3) greedy selector t̂∗gr is consistent i.e.
P(t̂∗gr = t∗) → 1 when n → ∞.

The following two results which are of independent interest constitute the proof of
Theorem1. The first result asserts consistency of t̂∗. This is conclusion of Proposition
4.2 (i) and (iii) in [22]. However, as the framework in the last paper is very general,
it is possible to prove the assertions there under much milder assumptions without
assuming e.g. that loglikelihood satisfies weak law of large numbers uniformly in β

and similar assumption on Jn . Theorem 3 states that after performing the first step
of the procedure relevant regressors will precede the spurious ones with probability
tending to 1. Consistency of GIC in the almost sure sense was proved by [20] for
deterministic regressors under some extra conditions.

Theorem 2 Assume (A1)–(A3). Then t̂∗ is consistent i.e.

P(t̂∗ = t∗) = P[ min
m∈M,m �=t∗

G I C(m) > G I C(t∗)] → 1.

Consider two models j and k and denote by

Dn
jk = 2[l(β̂k, Y|X) − l(β̂ j , Y|X)] (10)

deviance of the model k from the model j .

Theorem 3 Assume conditions (A1)–(A2). Then for all i ∈ t∗ \ {0} and j �∈ t∗ \ {0}
we have

P[D f \{i} f > D f \{ j} f ] → 1, as n → ∞.

Proof (Theorem 1) As the number of predictors is finite and does not depend on n
the assertion in Theorem 3 implies that with probability tending to one model t∗ will
be included inMnested. This in view of Theorem 2 yields the proof of Theorem 1.
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The following lemmas will be used to prove Theorem 2. Define sequence

d2
n = min{[ max

1≤i≤n
||xi ||2]−1, [ min

k∈t∗,1≤k≤p
(1/2)β∗

k ]2}. (11)

Remark 1 It follows fromLemma 6 that under assumptions (A2) and (A3) if t∗\0 �=
∅ we have nd2

n/an
P−→ ∞.

Two lemmas below are pivotal in proving Theorem 2. The proofs are in the appendix.

Lemma 2 Let c ⊇ m ⊇ t∗. Assume (A1)–(A2). Then Dmc = OP (1).

Lemma 3 Let w �⊇ t∗ and c ⊇ t∗. Assume (A1)–(A2). Then P(Dwc > α1nd2
n ) → 1

as n → ∞, for some α1 > 0.

Proof (Theorem 3) It follows from Lemma 3 that for i ∈ t we have P[Dn
f \{i} f >

α1nd2
n ] → 1, for α1 > 0 and by Remark 1 nd2

n
P−→ ∞. By Lemma 2 we have that

D f \{ j} f = OP (1) for j ∈ t∗, which end the proof.

Proof (Theorem 2) Consider first the case t∗ = {0} ∪ m, m �= ∅. We have to show
that for all models m ∈ M such that m �= t∗

P[−2l(β̂ t∗ , Y|X) + |t∗|an < −2l(β̂m, Y|X) + |m|an] → 1,

as n → ∞ which is equivalent to P[Dmt∗ > an(|t∗| − |m|)] → 1. In the case of

m �⊇ t∗ this follows directly from Lemma 3 and nd2
n/an

P−→ ∞. Consider the case
of m ⊃ t∗. By Lemma 2 Dmt∗ = OP (1). This ends the first part of the proof in view
of an(|t∗| − |m|) → −∞. For t∗ = {0} we only consider the case m ⊃ t∗ and the
assertion P[Dmt∗ > an(1 − |m|)] → 1 follows again from Lemma 2.

4 Interplay Between t and t∗

In view of the results of the previous section t∗ can be consistently selected by two-
stepGICprocedure.Aswewant to choose t not t∗, the problemwhat is the connection
between these two sets naturally arises. First we study the problem whether it is
possible that t∗ is {0} whereas t does contain genuine regressors. Fortunately, the
answer under some mild conditions on the distribution Px,y , including monotonicity
of response function q, is negative.We proceed by reexpressing the fact that t∗ = {0}
in terms of conditional expectations and then showing that the obtained condition
for monotone q can be satisfied only in the case when y and x are independent.

Let β̃ = (β1, . . . , βp), β̃
∗ = (β∗

1 , . . . , β∗
p) and x̃ = (x1, . . . , x p). The first

proposition (proved in the appendix) gives the simple equivalent condition for t∗ =
{0}.
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Proposition 1 E(x|y = 1) = E(x|y = 0) if and only t∗ = {0}.
Let f (x̃|y = 1) and f (x̃|y = 0) be the density functions of x̃ in classes y = 1 and
y = 0, respectively and denote by F(x̃|y = 1) and F(x̃|y = 0) the correspond-
ing probability distribution functions. Note that the above proposition in particular
implies that in the logistic model for which expectations of x in both classes are
equal we necessarily have β̃ = 0. The second proposition asserts that this is true for
a general binary model under mild conditions. Thus in view of the last proposition
under these conditions t∗ = {0} is equivalent to t = {0}.
Proposition 2 Assume that q is monotone and densities f (x̃|y = 1), f (x̃|y = 0)
exist. Then E(x̃|y = 1) = E(x̃|y = 0) implies f (x̃|y = 1) = f (x̃|y = 0) a.e., i.e.
y and x̃ are independent.

Proof Define h(x̃) as the density ratio of f (x̃|y = 1) and f (x̃|y = 0). Observe
that as

h(x̃) = f (x̃|y = 1)

f (x̃|y = 0)
= P(y = 0)

P(y = 1)

q(β0 + x̃′β̃)

1 − q(β0 + x̃′β̃)
(12)

we have that h(x̃) = w(x̃′β̃) and w is monotone.
Consider first the case p = 1. It follows from the monotone likelihood ratio

property (see [18], Lemma 2, Sect. 3) that since h(x̃) is monotone then conditional
distributions F(x̃|y = 1) and F(x̃|y = 0) are ordered and as their expectations are
equal this implies F(x̃|y = 1) = F(x̃|y = 0) and thus the conclusion for p = 1.

For p > 1 assume without loss of generality that β1 �= 0 and consider the
transformation z = (z1, . . . , z p) = (β̃

′
x̃, x2, . . . , x p)

′. Denote by f̃ (z|y = 1) and
f̃ (z|y = 0) densities of z in both classes. It is easy to see that we have

f̃ (z|y = 1) = β−1
1 f

(
(z1 − β2z2 − · · · − βpz p)/β1, z2, . . . , z p

∣∣ y = 1),

f̃ (z|y = 0) = β−1
1 f

(
(z1 − β2z2 − · · · − βpz p)/β1, z2, . . . , z p

∣∣ y = 0)

and

f̃ (z|y = 1)

f̃ (z|y = 0)
= w

(
β̃

′
((z1 − β2z2, . . . , βpz p)/β1, z2, . . . , z p)

)
= w(z1). (13)

It follows from (13) that marginal densities f̃1(z1|y = 1), f̃1(z1|y = 0) satisfy
f̃1(z1|y = 1)/ f̃1(z1|y = 0) = w(z1) and the first part of the proof yields f̃1(z1|y =
1) = f̃1(z1|y = 0).



What Do We Choose When We Err? … 281

Thus we have for fixed z1

f̃ (z|y = 1)

f̃ (z|y = 0)
= f̃ (z2, . . . , z p|z1, y = 1) f̃1(z1|y = 1)

f̃ (z2, . . . , z p|z1, y = 0) f̃1(z1|y = 0)

= f̃ (z2, . . . , z p|z1, y = 1)

f̃ (z2, . . . , z p|z1, y = 0)
= w(z1),

which implies that for any z1 we have f̃ (z2, . . . , z p|z1, y = 1) = f̃ (z2, . . . , z p|z1,
y = 0) and thus f̃ (z|y = 1) = f̃ (z|y = 0) and consequently f (x̃|y = 1) =
f (x̃|y = 0) which ends the proof.

Observe now that in view of (12) if f (x̃|y = 1) = f (x̃|y = 0) then q(β0 + x̃′β̃) is
constant and thus β̃ = 0 if 1, x1, . . . , x p are linearly independent with probability 1
i.e. x′b = b0 a.e. implies that b = 0 (or equivalently that Σx > 0). Thus we obtain

Theorem 4 If q is monotone and not constant and 1, x1, . . . , x p are linearly inde-

pendent with probability 1 then t∗ = {0} is equivalent to t = {0} or, β̃
∗ �= 0 is

equivalent to β̃ �= 0.

Now we address the question when t = t∗. The following theorem has been proved
in [21], see also [19] for a simple proof based on generalized Jensen inequality.

Theorem 5 Assume that β∗ is uniquely defined and there exist θ0, θ1 ∈ R p such
that

(R) E(x̃|x̃′β = z) = θ0 + θ1z.

Then β̃
∗ = ηβ̃, for some η ∈ R.

It is well known that Rudd’s condition (R) is satisfied for eliptically contoured distri-
butions. In particular multivariate normal distribution satisfies this property (see e.g.
[19], Remark 2.2). The case when η �= 0 plays an important role as it follows from
the assertion of Theorem 5 that then t∗ = t . Note that in many statistical problems
we want to consistently estimate the direction of vector β and not its length. This is
true for many classification methods when we look for direction such that projection
on this direction will give maximal separation of classes. Theorem 4 implies that
under its conditions η in the assertion of Theorem 5 is not equal zero. Thus we can
state

Corollary 1 Assume (A1)–(A3), (R) and conditions of Theorem 4. Then

P(t̂∗gr = t) → 1

i.e. two-stage greedy G I C is consistent for t .

Proof Under (R) it follows from Theorem 5 that β̃
∗ = ηβ̃ and as q is monotone and

not constant it follows from Theorem 4 that η �= 0 and thus t = t∗. This implies the
assertion in view of Theorem 2.
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In thenext sectionbymeansof numerical experimentswewill indicate thatmagnitude
of η plays an important role for probability of correct selection. In particular we will
present examples showing that when regressors are jointly normal and thus Ruud’s
condition is satisfied, probability of correct selection of t by two-step greedy GIC
can be significantly larger under misspecification than under correct specification.

The analogous result to Corollary 1 follows for t̂∗ when G I C is minimized over
the whole family of 2p models.

The important consequence of Theorem 4 is that power of significance test will
increase to 1 when there is dependence of y on x even when logistic model is
misspecified and critical region is constructed for such model. Namely, consider
significance test for H0 : β̃ = 0 with critical region

C1−α = {Dnull,t̂∗gr
> χ2

|t̂∗gr |−1,1−α
} (14)

where χ2
k,1−α is quantile of order 1−α of chi-squared distribution with k degrees of

freedom. Observe that if p = q it follows from Theorem 2 and [12] that under null
hypothesis P(C1−α|H0) → α what explains the exact form of the threshold of the
rejection region when the logistic model is fitted. We have

Corollary 2 Assume that conditions of Theorem 4 are satisfied and β̃ �= 0. Consider
test of H0 : β̃ = 0 against H1 : β̃ �= 0 with critical region C1−α defined in (14).
Then the test is consistent i.e. P(Dnull,t̂∗gr

∈ C1−α|H1) → 1.

Observe that if β̃
∗ �= 0 then in view of Remark 1 nd2

n → ∞. Then the main results

and Lemma 3 imply that when β̃
∗ �= 0 P[Dnull,t̂∗gr

> χ2
|t̂∗gr |−1,1−α

] → 1 for any

α > 0 and the test is consistent. But in view of Theorem 4 β̃
∗ �= 0 is implied by

β̃ �= 0.

5 Numerical Experiments

In this section we study how the incorrect model specification affects the model
selection and testing procedures, in particular how it influences probability of correct
model selection, positive selection rate, false discovery rate and power of a test of
significance. In the case when attributes are normally distributed we investigate how
these measures depend on proportionality constant η appearing in Rudd’s theorem.

Recall that t denotes the minimal true model. Convention that β t is subvector of
β corresponding to t is used throughout. We consider the following list of models.

(M1) t = {10}, βt = 0.2,
(M2) t = {2, 4, 5}, β t = (1, 1, 1)′,
(M3) t = {1, 2}, β t = (0.5, 0.7)′,
(M4) t = {1, 2}, β t = (0.3, 0.5)′,
(M5) t = {1, . . . , 8}, β t = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)′.
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Models (M3)–(M5) above are considered in [9]. The number of all potential attributes
is initially set to be p = 15 so the proportion of relevant variables varies from
6.66% (for model M1) to 53.33% (for model M5). Recall that q(·) denotes a true
response function, i.e. for a given x, y is generated from Bernoulli distribution with
success probability q(x′β). The logistic model defined in (2) is fitted. Let FN (0,1)(·)
denote distribution function of standard normal random variable and FCauchy(u,v)(·)
distribution function of Cauchy distribution with location u and scale v. In the case
of incorrect model specification, the following response functions are considered:

q1(s) = FN (0,1)(s) (Probit model),

q2(s) =

⎧
⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (0.1, 0.8)

0.1 for FN (0,1)(s) ≤ 0.1

0.8 for FN (0,1)(s) ≥ 0.8,

q3(s) =

⎧
⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (0.2, 0.7)

0.2 for FN (0,1)(s) ≤ 0.2

0.7 for FN (0,1)(s) ≥ 0.7,

q4(s) =
{

FN (0,1)(s) for |s| > 1

0.5 + 0.5 cos[4π FN (0,1)(s)]FN (0,1)(s) for |s| ≤ 1,

q5(s) = FCauchy(0,1)(s),

q6(s) = FCauchy(0,2)(s),

Studied response functions are shown in Fig. 1. Dashed line there corresponds to
fitted logistic response function p(·).

We consider two distributions of attributes, in both cases attributes are assumed to
be independent. In the first scenario x j have N (0, 1) distribution and in the second x j

are generated from Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1). Thus in the first
case condition (R) of Theorem 5 is satisfied. This implies β̃

∗ = ηβ̃, for some η ∈ R.
One of our main goals is to investigate how the value of η affects the performance
of model selection and testing procedures.

Recall that although Rudd’s condition is a property of distribution of predictors
and β it follows from definition of β∗ that η depends on the model as well as
on misspecified response q(·). Table1 shows values of estimated proportionality
constant η, denoted by η̂. To calculate η̂, for each variable k ∈ t , the value β̂k/βk ,
where β̂ is based on n = 106 observations is computed and then the values are
averaged over all attributes. The first column corresponds to η = 1 and it allows
to gauge the variability of η̂. Note also that the smallest value of η̂ equal 0.52 and
the second largest (equal 1.74) are obtained for the model M2 and responses q6 and
q1, respectively. It follows that in the first case estimated β is on average two times
smaller than the true one and around 1.7 times larger in the second case. Observe also
that when β̂ and β are approximately proportional, for q(s) such that q(s) > p(s)
for s > 0 we can expect that β̂ > β as we try to match q(x′

iβ) with p(x′
i β̂).
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Fig. 1 Responses functions. Dashed line corresponds to fitted logit model p(·)

Table 1 Values of η̂ for considered models

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·)
M1 0.988 1.642 1.591 1.591 0.788 1.241 0.651

M2 1.005 1.741 0.863 0.537 1.735 0.874 0.522

M3 0.993 1.681 1.352 0.968 1.524 1.045 0.580

M4 1.005 1.644 1.510 1.236 1.293 1.140 0.610

M5 1.013 1.779 0.897 0.552 1.724 0.879 0.532

This results in η̂ > 1. Thus as expected for q1, η̂ is greater than 1, whereas for q6 it
is smaller than 1.

It is noted in [2] (Sect. 4.2) that the probit function can be approximated by the
scaled logit function as q1(s) ≈ p(a ·s), where the scaling constant a = √

8/π ≈ 1.6
is chosen so that the derivatives of the two curves are equal for s = 0. Observe that
constant a is very close to η̂ calculated for q1 (see Table1).
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In order to select the final model we use the two-step greedy procedure with
Bayesian Information Criterion (BIC) described in Sect. 3. All fitted models include
intercept.

Let t̂∗ denote the model selected by a given selection criterion. As the measures
of performance we use the following indices:

• probability of correct model selection (CS): P(t̂∗ = t),
• positive selection rate (PSR): E(|t̂∗ ∩ t |/|t |),
• false discovery rate (FDR): E(|t̂∗ \ t |/|t̂∗|),
• power of significance test (POWER): P(Dnull,t̂∗ ∈ C1−α|H1), where C1−α is
critical region and H1 corresponds tomodelsM1–M5.Levelα = 0.05was adopted
throughout.

Empirical versions of the above measures are calculated and the results are averaged
over 200 simulations. In the case of difficult models containing several predictors
with small contributions CS can be close to zero and thus PSR and FDR are much
more revealing measures of effectiveness. Observe that PSR is an average fraction
of correctly chosen variables with respect to all significant ones whereas FDR mea-
sures a fraction of false positives (selected variables which are not significant) with
respect to all chosen variables. Thus PSR = 1 means that all significant variables
are included in the chosen model whereas FDR = 0 corresponds to the case when
no spurious covariates are present in the final model. Instead of using critical region
based on asymptotic distribution defined in (14) for which the significance level usu-
ally significantly exceeded assumed one, Monte Carlo critical value is calculated.
For a given n and p 10000 datasets from null model are generated, for each one t̂∗
and Dnull,t̂∗ is computed and this yields distribution of Dnull,t̂∗ . The critical value is
defined as empirical quantile of order (1 − α) for Dnull,t̂∗ .

Table2 shows the results for n = 200. The highlighted values are maximal value
in row (minimal values in case of FDR) and the last column pertains to maximal
standard deviation in row. Observe that the type of response function influences
greatly all considered measures of performance. Values of POWER are mostly larger
than CS as detection of at least one significant variable usually leads to rejection of
the null hypothesis. The most significant differences are observed for model M5 for
which it is difficult to identify all significant variables as some coefficients are close
to zero but it is much easier to reject the null model. However, when there is only one
significant variable in the model, the opposite may be true as it happens for model
M1. Note also that CS, PSR and POWER are usually large for large η̂. To make this
point more clear Fig. 2 shows the dependence of CS, PSR, POWER on η̂. Model M1
is not considered for this graph as it contains only one significant predictor. In the
case of CS, PSR and POWER monotone dependence is evident. However FDR is
unaffected by the value of η which is understandable in view of its definition.

Table3 shows the results for n = 200 when attributes x j are generated from
Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1). Observe that the greatest impact of
the change of x on CS occurs for truncated probit responses q2 and q3 for which
in the case of M2–M5 CS drops dramatically. The change affects also PSR but to a
lesser extent.
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Table 2 CS, PSR, FDR and POWER for x j ∼ N (0, 1) with n = 200, p = 15

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·) max sd

M1 CS 0.100 0.410 0.410 0.400 0.070 0.190 0.060 0.035

PSR 0.170 0.530 0.530 0.520 0.110 0.300 0.080 0.036

FDR 0.218 0.198 0.198 0.198 0.142 0.234 0.243 0.030

POWER 0.080 0.200 0.200 0.200 0.110 0.120 0.040 0.028

M2 CS 0.820 0.760 0.850 0.550 0.770 0.870 0.590 0.035

PSR 1.000 1.000 1.000 0.860 1.000 1.000 0.867 0.016

FDR 0.050 0.072 0.040 0.051 0.061 0.038 0.064 0.011

POWER 1.000 1.000 1.000 0.970 1.000 1.000 0.970 0.012

M3 CS 0.680 0.790 0.760 0.670 0.680 0.660 0.250 0.034

PSR 0.920 0.995 0.975 0.910 0.985 0.940 0.590 0.023

FDR 0.068 0.073 0.082 0.060 0.103 0.095 0.087 0.013

POWER 0.980 1.000 1.000 0.950 1.000 0.990 0.550 0.035

M4 CS 0.300 0.700 0.680 0.440 0.380 0.380 0.050 0.035

PSR 0.650 0.940 0.920 0.795 0.740 0.765 0.310 0.023

FDR 0.130 0.078 0.073 0.113 0.140 0.103 0.153 0.021

POWER 0.700 1.000 0.990 0.890 0.870 0.830 0.290 0.033

M5 CS 0.000 0.090 0.010 0.000 0.110 0.000 0.000 0.022

PSR 0.647 0.821 0.601 0.391 0.815 0.595 0.372 0.012

FDR 0.033 0.031 0.034 0.047 0.024 0.038 0.068 0.010

POWER 1.000 1.000 1.000 0.950 1.000 1.000 0.930 0.018

To investigate this effect further we consider the probit function truncated at levels
c and 1 − c

q7(s) =

⎧
⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (c, 1 − c)

0.2 for FN (0,1)(s) ≤ c

0.7 for FN (0,1)(s) ≥ 1 − c,

which is a generalization of q2 and q3. Figure7 shows howparameter c influencesCS,
PSR and FDR when the response is generated from q7 and attributes are generated
from Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1).

To illustrate the result concerning the consistency of greedy two-stepmodel selec-
tion procedure stated in Corollary 1 we made an experiment in which dependency
on n is investigated. Figures3 and 4 show considered measures of performance with
respect to n for models M4 and M5. Somehow unexpectedly in some situations the
results for incorrect model specification are better than for the correct specification,
e.g. for model (M4) CS is larger for q1, q2 and q4 than for q(·) = p(·) (cf. Fig. 3).
The results for q6 are usually significantly worse than for p, which is related to the
fact that η̂ for this response is small (see again Table1). Observe also that the type
of response function clearly affects the PSRs whereas FDRs are similar in all cases.
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Fig. 2 CS, PSR, FDR, POWER versus η̂ for n = 200, p = 15. Each point corresponds to different
response function

Figure5 shows how the power of the test of significance for the selectedmodel and
for the full model depends on the value of coefficient corresponding to the relevant
variable in model M1. We see that for both correct and incorrect specification the
power for selected model is slightly larger than for the full model for sufficiently
large value of coefficient β10. The difference is seen for smaller values of β in case
of misspecification.

Finally we analysed how the number of potential attributes p influences the per-
formance measures. The results shown in Fig. 6 for model M1 and n = 500 indicate
that FDR increases significantly when spurious variables are added to the model. At
the same time CS decreases when p increases, however, PSR is largely unaffected.

In conclusion we have established that when predictors are normal quality of
model selection and power of the deviance test depend on the magnitude of Rudd’s
constant η. When η > 1 one can expect better results than for correct specification.
Moreover, values of CS, PSR and POWER depend monotonically on η.
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Table 3 CS, PSR, FDR and POWER for x j ∼ 0.95N (0, 1) + 0.05N (5, 1) with n = 200, p = 15

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·) max sd

M1 CS 0.140 0.540 0.490 0.370 0.270 0.220 0.060 0.036

PSR 0.220 0.700 0.670 0.490 0.330 0.320 0.110 0.036

FDR 0.403 0.263 0.270 0.233 0.452 0.344 0.245 0.034

POWER 0.220 0.460 0.450 0.240 0.340 0.260 0.090 0.035

M2 CS 0.790 0.730 0.180 0.050 0.780 0.720 0.350 0.034

PSR 0.993 1.000 0.943 0.573 1.000 0.977 0.777 0.021

FDR 0.052 0.070 0.278 0.227 0.056 0.084 0.094 0.016

POWER 1.000 1.000 0.990 0.740 1.000 1.000 0.980 0.031

M3 CS 0.600 0.740 0.140 0.090 0.700 0.440 0.140 0.035

PSR 0.925 1.000 0.915 0.725 0.990 0.855 0.600 0.021

FDR 0.103 0.095 0.338 0.283 0.106 0.169 0.163 0.019

POWER 1.000 1.000 0.990 0.840 1.000 1.000 0.790 0.029

M4 CS 0.330 0.670 0.120 0.040 0.410 0.210 0.010 0.035

PSR 0.690 0.920 0.700 0.620 0.800 0.685 0.385 0.020

FDR 0.148 0.077 0.235 0.230 0.127 0.147 0.248 0.027

POWER 0.950 1.000 0.930 0.760 1.000 0.890 0.460 0.035

M5 CS 0.010 0.140 0.000 0.000 0.070 0.000 0.000 0.025

PSR 0.641 0.834 0.338 0.194 0.792 0.573 0.324 0.011

FDR 0.013 0.020 0.188 0.185 0.017 0.034 0.054 0.015

POWER 1.000 1.000 0.970 0.720 1.000 1.000 0.960 0.032

In addition to tests on simulated data we performed an experiment on real data.
We used Indian Liver Patient Dataset publicly available at UCI Machine Learning
Repository [1]. This data set contains 10 predictors: age, gender, total Bilirubin,
direct Bilirubin, total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos. The
binary response indicates whether the patient has a liver disease or not. Our aim
was to use real explanatory variables describing the patients to generate an artificial
response from different response functions. This can mimic the situation in which
the liver disease cases follow some unknown distribution depending on explanatory
variables listed above. We applied the following procedure. Predictors chosen by
stepwise backward selection using BIC were considered. Estimators pertaining to
3 chosen variables (1st-age, 4th-direct Bilirubin and 6th-albumin) are treated as
new true parameters corresponding to significant variables whereas the remaining
variables are treated as not significant ones. Having the new parameter β and vectors
of explanatory variables x1, . . . , xn in the data we generate new y1, . . . , yn using
considered response functions p, q1, . . . , q6.

Table 4 shows fraction of simulations in which the given variable was selected
to the final model when the two-step procedure was applied. Note that this measure
is less restrictive than CS used in previous experiments. Observe that the choice of
response function affects the probabilities, e.g. direct Bilirubin is chosen in 80%
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for FDR
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simulations for correct specification and only in 12% simulations for q3. The sig-
nificant variables are most often chosen to the final model for p and q1. It is seen
that direct Bilirubin is less likely to be selected in the case of most of the considered
response functions (Fig. 7).
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Table 4 Probabilities of selecting variables to the final model for Indian liver patient dataset

Relevant
variable

β p q1 q2 q3 q4 q5 q6

1 −0.02 0.95 1.00 1.00 0.88 0.87 0.95 0.62

0 0.00 0.12 0.13 0.20 0.11 0.09 0.09 0.11

0 0.00 0.23 0.23 0.16 0.07 0.18 0.19 0.27

1 −0.67 0.80 0.77 0.36 0.12 0.30 0.60 0.63

0 0.00 0.11 0.15 0.26 0.08 0.17 0.10 0.17

1 −0.02 1.00 1.00 0.44 0.10 0.95 0.84 0.72

0 0.00 0.17 0.17 0.27 0.05 0.09 0.22 0.19

0 0.00 0.23 0.16 0.13 0.01 0.08 0.15 0.16

0 0.00 0.28 0.15 0.06 0.02 0.08 0.18 0.17

0 0.00 0.22 0.14 0.06 0.04 0.10 0.16 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

C
S

M1
M2
M3
M4
M5

c

P
S

R

M1
M2
M3
M4
M5

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

c

F
D

R

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M1
M2
M3
M4
M5

Fig. 7 CS, PSR, FDR versus c for q7, x j ∼ 0.95N (0, 1) + 0.05N (5, 1), n = 200 and p = 15

Appendix A: Auxiliary Lemmas

This section contains some auxiliary facts used in the proofs. The following theorem
states the asymptotic normality of maximum likelihood estimator.

Theorem 6 Assume (A1) and (A2). Then

√
n(β̂ − β∗) d−→ N (0, J−1(β∗)K (β∗)J−1(β∗))

where J and K are defined in (5) and (9), respectively.

The above Theorem is stated in [11] (Theorem 3.1) and in [16] ((2.10) and Sect. 5B).
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Lemma 4 Assume that max1≤i≤n |x′
i (

γ − β)| ≤ C for some C > 0 and some
γ ∈ R p+1. Then for any c ∈ R p+1

exp(−3C)c′ Jn(β)c ≤ c′ Jn(γ)c ≤ exp(3C)c′ Jn(β)c, a.e.

Proof It suffices to show that for i = 1, . . . , n

exp(−3C)p(x′
iβ)[1−p(x′

iβ)] ≤ p(x′
iγ)[1−p(x′

iγ)] ≤ exp(3C)p(x′
iβ)[1−p(x′

iβ)].

Observe that for γ such that maxi≤n |x′
i (

γ − β)| ≤ C there is

p(x′
i
γ)[1 − p(x′

i
γ)]

p(x′
iβ)[1 − p(x′

iβ)] = ex′
i (

γ−β)

[
1 + ex′

i β

1 + ex′
i
γ

]2

≥ e−C

[
e−x′

i β + 1

e−x′
i β + eC

]2

≥ e−3C .

(15)
By replacing β and γ in (15) we obtain the upper bound for c′ Jn(γ)c.

Lemma 5 Assume (A1) and (A2). Then l(β̂, Y|X) − l(β∗, Y|X) = OP (1).

Proof Using Taylor expansion we have for some β̄ belonging to the line segment
joining β̂ and β∗

l(β̂, Y|X) − l(β∗, Y|X) = √
n(β̂ − β∗)′[Jn(β̄)/n]√n(β̂ − β∗)/2, (16)

Define set An = {γ : ||γ − β∗|| ≤ sn}, where sn is an arbitrary sequence such that
ns2n → 0. Using Schwarz and Markov inequalities we have for any C > 0

P[max
i≤i≤n

|x′
i (γ − β∗)| > C] ≤ P[ max

1≤i≤n
||xi ||sn > C]

≤ n max
i≤i≤n

P[||xi || > Cs−1
n ] ≤ C−2ns2n E(||x||2) → 0.

Thus using Lemma 4 the quadratic form in (16) is bounded with probability tending
to 1 from above by

exp(3C)
√

n(β̂ − β∗)′[Jn(β∗)/n]√n(β̂ − β∗)/2,

which is OP (1) as
√

n(β̂ − β∗) = OP (1) in view of Theorem 6 and n−1 Jn(β∗) P−→
J (β∗).
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A.1 Proof of Lemma 2

As β∗
m = β∗

c we have for c ⊇ m ⊇ t∗

l(β̂c, Y|X) − l(β̂m , Y|X) = [l(β̂c, Y|X) − l(β∗
c , Y|X)] + [l(β∗

m , Y|X) − l(β̂m |X, Y)],

which is OP (1) in view of Remark 1 and Lemma 5.

A.2 Proof of Lemma 3

The difference l(β̂c, Y|X) − l(β̂w, Y|X) can be written as

[l(β̂c, Y|X) − l(β∗, Y|X)] + [l(β∗, Y|X) − l(β̂w|X, Y)]. (17)

It follows from Lemma 5 and Remark 1 that the first term in (17) is OP (1). We will
show that the probability that the second term in (17) is greater or equal α1nd2

n , for
some α1 > 0 tends to 1. Define set An = {γ : ||γ − β∗|| ≤ dn}. Using the Schwarz
inequality we have

sup
γ∈An

max
i≤n

|x′
i (γ − β∗)| < max

1≤i≤n
||xi ||dn ≤ 1, (18)

with probability one. Define Hn(γ) = l(β∗, Y|X) − l(γ, Y|X). Note that H(γ) is
convex and H(β∗) = 0. For any incorrect model w, in view of definition (11)
of dn , we have β̂w /∈ An for sufficiently large n. Thus it suffices to show that
P(infγ∈∂ An Hn(γ) > α1nd2

n ) → 1, as n → ∞, for some α1 > 0. Using Taylor
expansion for some γ̄ belonging to the line segment joining γ and β∗

l(γ, Y|X) − l(β∗, Y|X) = (γ − β∗)′sn(β
∗) − (γ − β∗)′ Jn(γ̄)(γ − β∗)/2

and the last convergence is implied by

P[ sup
γ∈∂ An

(γ − β∗)′sn(β
∗) > inf

γ∈∂ An
(γ − β∗)′ Jn(γ̄)(γ − β∗)/2 − α1nd2

n ] → 0. (19)

It follows from Lemma 4 and (18) that for γ ∈ An

(γ − β∗)′ Jn(γ̄)(γ − β∗) ≥ e−3(γ − β∗)′ Jn(β∗)(γ − β∗). (20)

Let τ = exp(−3)/2.Using (20), the probability in (19) can be bounded fromabove by
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P[ sup
γ∈∂ An

(γ − β)′sn(β) > τd2
nλmin(Jn(β)) − α1nd2

n ]
+ P[ inf

γ∈∂ An
(γ − β)′ Jn(γ̄)(γ − β)/2 < τd2

nλmin(Jn(β))]. (21)

Let λ−
1 = λmin(J (β))/2. Assuming α1 < λ−

1 τ , the first probability in (21) can be
bounded by

P[dn||sn(β)|| > τnd2
nλ−

1 − α1nd2
n ] + P[λmin(Jn(β)) < λ−

1 n]
≤ P[||sn(β)|| > (τλ−

1 − α1)n
1/2a1/2

n ]
+ P[ndn < n1/2a1/2

n ] + P[λmin(Jn(β)) < λ−
1 n]. (22)

Consider the first probability in (22). Note that sn(β∗) is a random vector with
zero mean and the covariance matrix Kn(β∗). Using Markov’s inequality, the fact
that cov[sn(β

∗)] = nK (β∗) and taking α1 < λ−τ it can be bounded from above by

tr{cov[sn(β
∗)]}

(τλ− − α1)2n2d2
n

= tr [Kn(β
∗)]

(τλ− − α1)2n2d2
n

≤ nκp

(τλ− − α1)2n2d2
n

(23)

≤ κp

(τλ− − α1)2an
→ 0,

where the last convergence follows from an → ∞.
The convergence to zero of the second probability in (22) follows from nd2

n/an
P−→

∞. As eigenvalues of a matrix are continuous functions of its entries, we have

λmin(n−1 Jn(β∗)) P−→ λmin(J (β∗)). Thus the convergence to zero of the third prob-
ability in (22) follows from the fact that in view of (A1) matrix J (β∗) is positive
definite. The second term in (21) is bounded from above by

P[ inf
γ∈∂ An

(γ − β)′ Jn(γ̄)(γ − β)/2 < τd2
nλmin(Jn(β))]

≤ P[ inf
γ∈∂ An

(γ − β)′[Jn(γ̄) − 2τ Jn(β)](γ − β)/2

+ 2τd2
nλmin(Jn(β))/2 < τd2

nλmin(Jn(β))]
≤ P[ inf

γ∈∂ An
(γ − β)′[Jn(γ̄) − 2τ Jn(β)](γ − β)/2 < 0] → 0,

where the last convergence follows from Lemma 4 and (18).

Lemma 6 Assume (A2) and (A3). Then we have maxi≤n ||xi ||2an/n
P−→ 0.

Proof Using Markov inequality, (A2) and (A3) we have that ||xn||2an/n
P−→ 0.

We show that this implies the conclusion. Denote gn := max1≤i≤n ||xi ||2an/n and
hn := ||xn||2an/n. Define sequence nk such that n1 = 1 and nk+1 = min{n >

nk : maxi≤n ||xi ||2 > maxi≤nk ||xi ||2} (if such nk+1 does not exist put nk+1 = nk).
Without loss of generality we assume that for A = {nk → ∞} we have P(A) = 1
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as on Ac the conclusion is trivially satisfied. Observe that gnk = hnk and hnk

P−→ 0

as a subsequence of hn
P−→ 0 and thus also gnk

P−→ 0. This implies that for any
ε > 0 there exists n0 ∈ N such that for nk > n0 we have P[|gnk | ≤ ε] ≥ 1 − ε.
As for n ∈ (nk, nk+1) gn ≤ gnk since an/n is nonincreasing we have that if n ≥ n0

P[|gn| ≤ ε] ≥ 1 − ε i.e. gn
P−→ 0.

A.3 Proof of Proposition 1

Assume first that β̃
∗ = 0 and note that this implies p(β0 + x̃′β̃∗

) = p(β0) = C ∈
(0, 1). From (8) we have

P(y = 1) = E(y) = E[E(y|x̃)] = E[q(β0 + x̃′β̃)] = E[p(β∗
0 + x̃′β̃∗

)] = C. (24)

Using (24) and (7) we get

E(x̃y) = E{E[x̃y|x̃]} = E{x̃E[y|x̃]} = E[x̃q(β0 + x̃′β̃)] (25)

= E[x̃ p(β∗
0 + x̃′β̃∗

)] = E(x̃)C.

From (24) we also have

E(x̃y) = Ex̃I {y = 1} = E(x̃|y = 1)P(y = 1) = E(x̃|y = 1)C.

Comparing the last equation and right-side term in (25) we obtain E(x̃|y = 1) =
E x̃ = E(x̃|y = 0). Assume now E(x̃|y = 1) = E(x̃|y = 0) which implies as before
that that E(x̃|y = 1) = E(x̃). Thus

E(x̃y) = E(x̃|y = 1)E(y) = E(x̃)E(y). (26)

Since (β∗
0 , β̃

∗
) is unique it suffices to show that (7) and (8) are satisfied for β̃

∗ = 0
and β∗

0 such that Ep(β∗
0 ) = P(Y = 1). This easily follows from (26).
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