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Abstract Certainty factor and lift are known evaluation measures of association
rules. Nevertheless, they do not guarantee accurate evaluation of the strength of
dependence between rule’s constituents. In particular, even if there is a strongest
possible positive or negative dependence between rule’s constituents X and Y , these
measures may reach values quite close to the values indicating independence of X
and Y . Recently, we have proposed a new measure called a dependence factor to
overcome this drawback. Unlike in the case of the certainty factor, when defining
the dependence factor, we took into account the fact that for a given rule X → Y ,
the minimal conditional probability of the occurrence of Y given X may be greater
than 0, while its maximal possible value may less than 1. In this paper, we first
recall definitions and properties of all the three measures. Then, we examine the
dependence factor from the point of view of an interestingness measure as well as
we examine the relationship among the dependence factor for X and Y with those
for X̄ and Y , X and Ȳ , as well as X̄ and Ȳ , respectively. As a result, we obtain a
number of new properties of the dependence factor.

1 Introduction

Certainty factor and lift are known measures of association rules. The former measure
was offered in the expert system Mycin [9], while the latter is widely implemented in
both commercial and non-commercial data mining systems [2]. Nevertheless, they
do not guarantee accurate evaluation of the strength of dependence between rule’s
constituents. In particular, even if there is a strongest possible positive or negative
dependence between rule’s constituents X and Y , these measures may reach values
quite close to the values indicating independence of X and Y . This might suggest
that one deals with a weak dependence, while in fact the dependence is strong. In [4],
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we proposed a new measure called a dependence factor to overcome this drawback.
Unlike in the case of the certainty factor, when defining the dependence factor, we
took into account the fact that for a given rule X → Y , the minimal conditional
probability of the occurrence of Y given X may be greater than 0, while its maximal
possible value may less than 1. The dependence factor always takes value 1 if a
dependence is strongest possible positive, whereas for a strongest possible negative
dependence, it always takes value –1; in the case of independence, it takes value 0.

In [4], we have focused on examining properties of the dependence factor as a mea-
sure of dependence between rule’s constituents/events. Our new main contribution in
this paper is: (1) the examination of the dependence factor as an interestingness mea-
sure with respect to the interestingness postulates formulated by Piatetsky-Shapiro
in [7], and (2) the derivation of the relationship among the dependence factor for X
and Y , with those for X̄ and Y , X and Ȳ , as well as X̄ and Ȳ , respectively.

Our paper has the following layout. In Sect. 2, we briefly recall basic notions
of association rules, their basic measures (support, confidence) as well as lift and
certainty factor. In Sect. 3, we recall maximal and minimal values of examined mea-
sures in the case when probabilities of rule’s constituents are fixed, as shown in [4]. In
Sect. 4, we recall the definition and properties of the dependence factor after [4]. Our
new contribution is presented in Sects. 5 and 6. In Sect. 5, we examine the usefulness
of the dependence factor as an interestingness measure, while in Sect. 6, we identify
the relationship between the dependence factors for events and their complements.
Section 7 concludes our work.

2 Basic Notions and Properties

In this section, we recall the notion of association rules after [1].

Definition 1 Let I = {i1, i2, . . . , im} be a set of distinct literals, called items (e.g.
products, features, symptoms). Any subset X of the set I is called an itemset. A
transaction database is denoted by D and is defined as a set of itemsets. Each
itemset T in D is a transaction. An association rule is an expression associating two
itemsets:

X → Y, where Ø �= Y ⊆ I and X ⊆ I\Y.

Itemsets and association rules are typically characterized by support and confi-
dence, which are simple statistical parameters.

Definition 2 Support of an itemset X is denoted by sup(X) and is defined as the
number of transactions in D that contain X ; that is

sup(X) = |{T ∈ D |X ⊆ T }|.

Support of a rule X → Y is denoted by sup(X → Y ) and is defined as the support
of X ∪ Y ; that is,
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sup(X → Y ) = sup(X ∪ Y ).

Clearly, the probability of the event that itemset X occurs in a transaction equals
sup(X)/|D |, while the probability of the event that both X and Y occur in a transaction
equals sup(X ∪ Y )/|D|. In the remainder, the former probability will be denoted by
P(X), while the latter by P(XY).

Definition 3 The confidence of an association rule X → Y is denoted by conf (X →
Y ) and is defined as the conditional probability that Y occurs in a transaction provided
X occurs in the transaction; that is:

conf(X → Y ) = sup(X → Y )

sup(X)
= P(XY )

P(X)
.

A large amount of research was devoted to strong association rules understood
as those association rules the supports and confidences of which exceed user-defined
support threshold and confidence threshold, respectively. However, it has been argued
in the literature that these two measures are not sufficient to express different interest-
ingness, usefulness or unexpectedness aspects of association rules [3, 5–8, 10–12].
In fact, a number of such measures of association rules was proposed (see e.g. [3,
5–8, 10–12]. Among them very popular measures are lift [2] and certainty factor
[9].

Definition 4 The lift of an association rule X → Y is denoted by lift(X → Y )

and is defined as the ratio of the conditional probability of the occurrence of Y in a
transaction given X occurs there to the probability of the occurrence of Y ; that is:

lift(X → Y ) = con f (X → Y )

P(Y )
.

Lift may be also defined in an equivalent way in terms of probabilities only:

Property 1

lift(X → Y ) = P(XY )

P(X) × P(Y )
.

Definition 5 The certainty factor of an association rule X → Y is denoted by
cf(X → Y ) and is defined as the degree to which the probability of the occurrence
of Y in a transaction can change when X occurs there as follows:

c f (X → Y ) =

⎧
⎪⎨

⎪⎩

con f (X→Y )−P(Y )
1−P(Y )

if con f (X → Y ) > P(Y ),
0 if con f (X → Y ) = P(Y ),
− P(Y )−con f (X→Y )

P(Y )−0 if con f (X → Y ) < P(Y ).

The definition of the certainty factor is based on the assumption that the probability
of the occurrence of Y in a transaction given X occurs there (conf (X → Y )) can
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0 P(Y ) conf(X→Y)   1 0 conf(X→Y ) P(Y ) 1

Fig. 1 Calculating the absolute value of the certainty factor as the ratio of the lengths of respective
intervals when conf (X → Y ) > P(Y ) (on the left-hand side) and when conf (X → Y ) < P(Y )

(on the right-hand side)

be increased from P(Y ) up to 1 and decreased from P(Y ) down to 0. In Fig. 1, we
visualize the meaning of the absolute value of the certainty factor as the ratio of the
lengths of respective intervals.

As shown in Property 2, the certainty factor can be expressed equivalently in terms
of unconditional probabilities (by multiplying the numerator and denominator of the
formula in Definition 5 by P(X)) or lift (by dividing the numerator and denominator
of the original cf formula by P(Y )).

Property 2

(a) c f (X → Y ) =

⎧
⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
P(X)−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),

0 if P(XY ) = P(X) × P(Y ),

− P(X)×P(Y )−P(XY )
P(X)×P(Y )−0 if P(XY ) < P(X) × P(Y ).

(b) c f (X → Y ) =

⎧
⎪⎪⎨

⎪⎪⎩

li f t (X→Y )−1
1

P(Y )
−1

if li f t (X → Y ) > 1,

0 if li f t (X → Y ) = 1,

− 1−li f t (X→Y )
1−0 if li f t (X → Y ) < 1.

Both lift and certainty factor are related to the notion of (in)dependence of events,
where two events are treated as independent if the product of the probabilities of their
occurrences equals the probability that the two events co-occur. Otherwise, they are
regarded as dependent. Note that this notion of dependence does not indicate which
event is a reason of the other. However, it allows formulating whether the dependence
between events is positive or negative in the case when the events are dependent on
each other.

Definition 6 X and Y are:

• independent if P(XY) = P(X) × P(Y ),
• dependent positively if P(XY) > P(X) × P(Y ),
• dependent negatively if P(XY) < P(X) × P(Y ).

In Table 1, we provide equivalent conditions in terms of P , conf , lift and cf for
independence, positive dependence and negative dependence, respectively, between
two itemsets.

In general, one may distinguish between symmetric (two direction) measures of
association rules and asymmetric (one direction) ones.
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Table 1 Conditions for independence, positive dependence and negative dependence

(In)dependence (In)dependence
condition

Equivalent conditions in
terms of measures for
X → Y

Equivalent conditions in
terms of measures for
Y → X

Y and X are dependent
positively

P(XY) >
P(X) × P(Y )

conf (X → Y ) > P(Y )

lift(X → Y ) > 1
cf (X → Y ) > 0

conf (Y → X) > P(X)

lift(Y → X) > 1
cf (Y → X) > 0

Y and Xare independent P(XY) =
P(X) × P(Y )

conf (X → Y ) = P(Y )

lift(X → Y ) = 1
cf(X → Y ) = 0

conf (Y → X) = P(X)

lift(Y → X) = 1
cf(Y → X) = 0

Y and Xare dependent
negatively

P(XY) <
P(X) × P(Y )

conf (X → Y ) < P(Y )

lift(X → Y ) < 1
cf(X → Y ) < 0

conf (Y → X) < P(X)

lift(Y → X) < 1
cf(Y → X) < 0

Definition 7 A measure m is called symmetric (two direction) if m(X → Y ) =
m(Y → X) for any X and Y. Otherwise, it is called an asymmetric (one direction)
measure.

Property 3

(a) conf(X → Y ) = conf(Y → X) is not guaranteed to hold.
(b) lift(X → Y ) = lift(Y → X).
(c) cf(X → Y ) = cf(Y → X) is not guaranteed to hold if conf(X → Y ) > P(Y ).
(d) cf(X → Y ) = cf(Y → X) if conf(X → Y ) ≤ P(Y ).

As follows from Property 3, conf is an asymmetric measure and lift is a symmetric
measure. On the other hand, we observe that strangely cf has a mixed nature—
asymmetric for positive dependences and symmetric for negative dependences and
independences. This observation provoked us to revisit the definition of cf and to
propose its modification in [4]. When defining the dependence factor there, we took
into account the fact that in some circumstances it may be infeasible to increase
the probability of the occurrence of Y in a transaction under the presence of X
(conf (X → Y )) from P(Y ) up to 1 as well as it may be infeasible to decrease it from
P(Y ) down to 0.

3 Maximal and Minimal Values of Rule Measures

In this section, we first recall global maximal and minimal values of rule measures
(Table 2). Next, following [4], we recall maximal and minimal values of rule measures
for given values of P(X) and P(Y ).

In the remainder of the paper, we denote maximal probability and minimal probability
of the co-occurrence of X and Y given P(X) and P(Y ) are fixed by max_P(XY |P(X),P(Y ))

and min_P(XY |P(X),P(Y )), respectively. Analogously, maximal confidence and minimal
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Table 2 Global maximal and minimal values of rule measures

Measure Max Min

P(XY) 1 0

conf (X → Y ) 1 0

lift(X → Y ) ∞ 0

cf(X → Y ) 1 if Y depends on X positively −1 if Y depends on X
negatively

confidence (maximal lift, minimal lift, maximal certainty factor, minimal certainty factor)
of X → Y given P(X) and P(Y ) are fixed are denoted by max_conf (X → Y |P(X),P(Y ))

and min_conf (X → Y |P(X),P(Y )) (max_lift(X → Y |P(X),P(Y )), min_lift(X →
Y |P(X),P(Y )), max_cf (X → Y |P(X),P(Y )), min_cf (X → Y |P(X),P(Y )), respectively.

Property 4

(a) max_conf (X → Y |P(X),P(Y)) = max_P(XY |P(X),P(Y))
P(X)

(b) min_conf (X → Y |P(X),P(Y)) = min_P(XY |P(X),P(Y))
P(X)

(c) max_lift(X → Y |P(X),P(Y)) = max_conf (XY |P(X),P(Y))
P(Y) = max_P(XY |P(X),P(Y))

P(X)×P(Y)

(d) min_lift(X → Y |P(X),P(Y)) = min_conf (XY |P(X),P(Y))
P(Y) = min_P(XY |P(X),P(Y))

P(X)×P(Y)

(e) max_cf (X → Y |P(X),P(Y)) = max_conf (X→Y |P(X),P(Y))−P(Y)
1−P(Y)

= max_P(XY |P(X),P(Y ))−P(X)×P(Y )

P(X)−P(X)×P(Y )
= max_li f t (XY |P(X),P(Y ))−1

1
P(Y )

−1

(f) min_cf(X → Y |P(X),P(Y )) = − P(Y )−min_con f (X→Y |P(X),P(Y ))

P(Y )−0

= − P(X)×P(Y )−min_P(XY |P(X),P(Y ))

P(X)×P(Y )−0 = − 1−min_li f t (XY |P(X),P(Y ))

1−0

In Proposition 1, we show how to calculate min_P(XY |P(X),P(Y )) and max_P(XY |P(X),P(Y )).
We note that neither max_P(XY |P(X),P(Y )) necessarily equals 1 nor min_P(XY |P(X),P(Y ))

necessarily equals 0. Figure 2 illustrates this.

Proposition 1

(a) max_P(XY |P(X),P(Y )) = min{P(X), P(Y )}
(b) min_P(XY |P(X),P(Y )) =

{
0 if P(X) + P(Y ) ≤ 1
P(X) + P(Y ) − 1 if P(X) + P(Y ) > 1

= max{0, P(X) + P(Y ) − 1}
The next proposition follows from Property 4 and Proposition 1.

Proposition 2

(a) max_conf (X → Y |P(X),P(Y )) = min{P(X),P(Y )}
P(X)

=
{

1 if P(X) ≤ P(Y ),
P(Y )
P(X)

if P(Y ) < P(X).



Dependence Factor as a Rule Evaluation Measure 211

X Y X Y X Y
x x x x
x x x x
x x x x

x x
x x x 
x x

(a) (b) (c)

Fig. 2 a max_P(XY |P(X),P(Y )) = min{P(X), P(Y )} = min
{ 3

6 ,
2
6

} = 2
6 . b

min_P(XY |P(X),P(Y )) = 0 if P(X) + P(Y ) ≤ 1. c min_P(XY |P(X),P(Y )) = P(X) + P(Y ) − 1 =
5
6 + 4

6 − 1 = 3
6 if P(X) + P(Y ) > 1

(b) min_conf (X → Y |P(X),P(Y )) = max{0,P(X)+P(Y )−1}
P(X)

=
{

0 if P(X) + P(Y ) ≤ 1,
P(X)+P(Y )−1

P(X)
if P(X) + P(Y ) > 1.

(c) max_lift(X → Y |P(X),P(Y )) = min{P(X),P(Y )}
P(X)×P(Y )

= 1
max{P(X),P(Y )} .

(d) min_lift(X → Y |P(X),P(Y )) = max{0,P(X)+P(Y )−1}
P(X)×P(Y )

=
{

0 if P(X) + P(Y ) ≤ 1,
P(X)+P(Y )−1

P(X)×P(Y )
if P(X) + P(Y ) > 1.

(e) max_cf (X → Y |P(X),P(Y )) = min{P(X),P(Y )}−P(X)×P(Y )
P(X)−P(X)×P(Y )

=
1

max{P(X),P(Y )}−1
1

P(Y )
−1

=
⎧
⎨

⎩

1 if P(X) ≤ P(Y ),
1

P(X)
−1

1
P(Y )

−1
if P(X) > P(Y ).

(f) min_cf (X → Y |P(X),P(Y )) = − P(X)×P(Y )−max{0,P(X)+P(Y )−1}
P(X)×P(Y )−0

= max{0,P(X)+P(Y )−1}
P(X)×P(Y )

− 1 =
{ −1 if P(X) + P(Y ) ≤ 1

P(X)+P(Y )−1
P(X)×P(Y )

− 1 if P(X) + P(Y ) > 1.

In Table 3, we summarize real achievable maximal and minimal values of P(XY),
conf (X → Y ), lift(X → Y ) and cf(X → Y ) for given values of P(X) and P(Y ).

4 Dependence Factor

In this section, we recall the definition of the dependence factor of a rule X → Y ,
which we offered in [4] as a modification of the certainty factor. Unlike the certainty
factor, it is based on real maximal and minimal values of conf (X → Y ) for given
values of P(X) and P(Y ). Then we present the properties of this measure.
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Table 3 Real achievable maximal and minimal values of P(XY), conf (X → Y ), lift(X → Y ) and
cf(X → Y ) for given values of P(X) and P(Y )

Measure Max for given values of P(X) and
P(Y )

Min for given values of P(X) and
P(Y )

P(XY) min {P(X), P(Y )} max {0, P(X) + P(Y ) − 1}
conf (X → Y )

min{P(X),P(Y )}
P(X)

max{0,P(X)+P(Y )−1}
P(X)

lift(X → Y )
min{P(X),P(Y )}

P(X)×P(Y )
max{0,P(X)+P(Y )−1}

P(X)×P(Y )

cf(X → Y )
min{P(X),P(Y )}−P(X)×P(Y )

P(X)−P(X)×P(Y )
if Y

depends on X positively
− P(X)×P(Y )−max{0,P(X)+P(Y )−1}

P(X)×P(Y )−0 if
Y depends on X negatively

Definition 8 The dependence factor of X → Y is denoted by df(X → Y ) and is
defined as the ratio of the actual change of the probability of the occurrence of Y in
a transaction given X occurs there to its maximal feasible change as follows:

d f (X → Y ) =

⎧
⎪⎨

⎪⎩

con f (X→Y )−P(Y )
max_con f (X→Y | P(X ), P(Y ))−P(Y )

if con f (X → Y ) > P(Y ),

0 if con f (X → Y ) = P(Y ),
− P(Y )−con f (X→Y )

P(Y )−min_con f (X→Y |P(X ), P(Y ))
if con f (X → Y ) < P(Y ).

The dependence factor not only determines by how much the probability of the
occurrence of Y in a transaction changes under the presence of X with respect to by
how much it could have changed, but also it determines by how much the probability
of the occurrence of X and Y in a transaction differs from the probability of their
common occurrence under independence assumption with respect to by how much
it could have been different (see Proposition 3a). In addition, the dependence factor
determines by how much the value of the lift of a rule X → Y differs from the value
1 (that is, from the value indicating independence of rule’s constituents in terms of
the lift measure) with respect to by how much it could have been be different (see
Proposition 3b).

Proposition 3

(a) d f (X → Y ) =

⎧
⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
max_P(XY |P(X),P(Y ))−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),

0 if P(XY ) = P(X) × P(Y ),
− P(X)×P(Y )−P(XY )

P(X)×P(Y )−min_P(XY |P(X),P(Y ))
if P(XY ) < P(X) × P(Y ).

(b) d f (X → Y ) =

⎧
⎪⎨

⎪⎩

li f t (X→Y )−1
max_li f t (X→Y |P(X),P(Y ))−1 if li f t (X → Y ) > 1,
0 if li f t (X → Y ) = 1,
− 1−li f t (X→Y )

1−min_li f t (X→Y |P(X),P(Y ))
if li f t (X → Y ) < 1.

Theorem 1

(a) If P(XY) > P(X) × P(Y ), then df(X → Y ) ∈ (0, 1].
(b) If P(XY) = P(X) × P(Y ), then df(X → Y ) = 0.
(c) If P(XY) < P(X) × P(Y ), then df(X → Y ) ∈ [−1, 0).

Proof Follows from Proposition 3a. �
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Table 4 Maximal and minimal values of df(X → Y ) for any given values of P(X) and P(Y )

Measure Max for any given values of
P(X) and P(Y )

Min for any given values of
P(X) and P(Y )

df(X → Y ) 1 if X and Y are dependent
positively

–1
if X and Y are dependent
negatively

As follows from Proposition 3a, the dependence factor is a symmetric measure.

Theorem 2 df(X → Y ) = df (Y → X).

Based on Proposition 1 and 3a, we will express the dependence factor df(X → Y )

in terms of P(XY), P(X) and P(Y ), which will be useful for examining properties
of this measure.

Theorem 3

d f (X → Y ) =

⎧
⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
min{P(X),P(Y )}−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),
0 if P(XY ) = P(X) × P(Y ),
− P(X)×P(Y )−P(XY )

P(X)×P(Y )−max{0,P(X)+P(Y )−1} if P(XY ) < P(X) × P(Y ).

One may easily note that df(X → Y ) reaches 1 when P(XY) is maximal for given
values of P(X) and P(Y ); that is, when P(XY) = min {P(X), P(Y )} or, in other
words, when the dependence between X and Y is strongest possible positive for
given values of P(X) and P(Y ). Analogously, df(X → Y ) reaches –1 when P(XY)
is minimal for given values of P(X) and P(Y ); that is, when P(XY) = max {0, P(X)+
P(Y ) − 1} or, in other words, when the dependence between X and Y is strongest
possible negative for these probability values (Table 4).

Based on Theorem 3 and Property 2a, one may derive relations between the
dependence factor and the certainty factor as follows:

Theorem 4

(a) df (X → Y ) ≥ cf (X → Y ) if P(XY) > P(X) × P(Y ),
(b) df (X → Y ) = cf (X → Y ) = 0 if P(XY) = P(X) × P(Y ),
(c) df (X → Y ) ≤ cf (X → Y ) if P(XY) < P(X) × P(Y ),
(d) df (X → Y ) = max{cf (X → Y ), cf (Y → X)} if P(XY) > P(X) × P(Y ),
(e) df (X → Y ) = cf (X → Y ) if P(XY) < P(X) × P(Y )

and P(X) + P(Y ) < 1,
(f) df (X → Y ) < cf (X → Y ) if P(XY) < P(X) × P(Y )

and P(X) + P(Y ) > 1.

Tables 5–6 illustrate the findings expressed as Theorem 4. In particular, Table 5 shows
values of lift(X → Y ), cf(X → Y ) and df(X → Y ) for P(X) = 0.6 and P(Y ) = 0.3;
that is, in the case when P(X) + P(Y ) ≤ 1. For these values of P(X) and P(Y ),
the maximal possible value for P(XY) equals min {P(X), P(Y )} = 0.3. The fact of
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Table 5 Comparison of values of lift(X → Y ), cf(X → Y ) and df(X → Y ) when
P(X) + P(Y ) ≤ 1

P(X) P(Y ) P(XY) P(X) ×
P(Y )

lift(X →
Y )

cf(X →
Y )

cf(Y →
X)

df (X →
Y ) =
df (Y →
X)

0.60 0.30 0.30 0.18 1.67 0.29 1.00 1.00

0.60 0.30 0.25 0.18 1.39 0.17 0.58 0.58

0.60 0.30 0.20 0.18 1.11 0.05 0.17 0.17

0.60 0.30 0.18 0.18 1.00 0.00 0.00 0.00

0.60 0.30 0.15 0.18 0.83 –0.17 –0.17 –0.17

0.60 0.30 0.10 0.18 0.56 –0.44 –0.44 –0.44

0.60 0.30 0.00 0.18 0.00 –1.00 –1.00 –1.00

Table 6 Comparison of values of lift(X → Y ), cf(X → Y ) and df(X → Y ) when
P(X) + P(Y ) > 1

P(X) P(Y ) P(XY) P(X) ×
P(Y )

lift(X →
Y )

cf(X →
Y )

cf(Y →
X)

df (X →
Y ) =
df (Y →
X)

0.80 0.60 0.60 0.48 1.25 0.38 1.00 1.00

0.80 0.60 0.55 0.48 1.15 0.22 0.58 0.58

0.80 0.60 0.50 0.48 1.04 0.06 0.17 0.17

0.80 0.60 0.48 0.48 1.00 0.00 0.00 0.00

0.80 0.60 0.45 0.48 0.94 –0.06 –0.06 –0.37

0.80 0.60 0.40 0.48 0.83 –0.17 –0.17 –1.00

reaching the maximal possible value by P(XY) for the given values of P(X) and
P(Y ) is reflected by the value of df(X → Y ) = 1, which means that the dependence
between X and Y is strongest possible positive. On the other hand, cf(X → Y )

= 0.29 does not reflect this fact. In general, the real dependence of Y on X may
be underestimated when expressed in terms of cf(X → Y ). Also the value 1.67 of
lift(X → Y ) itself does not reflect the strong positive dependence between X and Y
in the considered case in the view that the lift may reach very large values (close to
infinity) in general.
Table 6 shows values of lift(X → Y ), cf(X → Y ) and df(X → Y ) for P(X) = 0.8
and P(Y ) = 0.6; that is, in the case when P(X) + P(Y ) > 1. For these values of
P(X) and P(Y ), the minimal possible value of P(XY) equals P(X) + P(Y ) − 1 =
0.4. Then the dependence between X and Y is strongest possible negative. This is
reflected by the value of df(X → Y ) = −1. On the other hand, cf(X → Y ) = –0.17
does not reflect this fact by itself. Also the value 0.83 of lift(X → Y ) itself does not
reflect the strong negative dependence between X and Y as it is positioned closer to
the value 1 characteristic for independence rather than to the value 0.
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5 Dependence Factor as an Interestingness Measure

In [7], Piatetsky-Shapiro postulated that a good interestingness measure of an asso-
ciation rules X → Y should fulfill the following conditions:

1. be equal to 0 if X and Y are independent; that is, if P(XY) = P(X) × P(Y ),
2. be increasing with respect to P(XY) given P(X) and P(Y ) are fixed,
3. be decreasing with respect to P(X) given P(XY) and P(Y ) are fixed or be

decreasing with respect to P(Y ) given P(XY) and P(X) are fixed.

According to [7], the following rule interest measure ri(X → Y ) = |D |×[P(XY)−
P(X)× P(Y )] fulfills the above postulates. Nevertheless, we notice that this measure
does not always satisfy the third postulate. Beneath we present the case in which the
ri measure violates this postulate:

Let P(Y ) = 0. Then, P(XY) = 0. In this case, ri(X → Y ) = 0 for each value of
P(X) in the interval [0, 1]. Thus, ri(X → Y ) is not guaranteed to be decreasing with
respect to P(X) given P(XY) and P(Y ) are fixed. Analogically, we would derive
that ri(X → Y ) = 0 for each value of P(Y ) in the interval [0, 1] if P(X) = 0. So,
ri(X → Y ) is not guaranteed to be decreasing with respect to P(X) given P(XY)
and P(Y ) are fixed. As a result, ri(X → Y ) does not fulfill the third postulate if
P(X) or P(Y ) equals 0.

In fact, the novelty(X → Y )measure, which was defined in [5] as [P(XY)–P(X)×
P(Y )], violates the third postulate in the same way as ri(X → Y ).

Now, we will focus on examining if the dependence factor fulfills the postulates
of rule interestingness. We start with formulating the properties of probabilities of
events which will be useful in our examination.

Proposition 4

(a) If P(X) = 0 or P(Y ) = 0 or P(X) = 1 or P(Y ) = 1, then P(XY) =
P(X) × P(Y ).

(b) If P(XY) �= P(X) × P(Y ), then P(X), P(Y ) ∈ (0, 1).

Proof Ad (a) Trivial.

Ad (b) Follows from Proposition 4a. �

Theorem 5 Let X → Y be an association rule.

(a) df(X → Y ) = 0 iff P(XY) = P(X) × P(Y ).
(b) df is increasing with respect to P(XY) given P(X) and P(Y ) are fixed.
(c) df is non-increasing with respect to P(X) given P(XY) and P(Y ) are fixed. In

addition, df is decreasing with respect to P(X) given P(XY) and P(Y ) are fixed,
P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0.

(d) df is non-increasing with respect to P(Y ) given P(XY) and P(X) are fixed.
In addition, df is decreasing with respect to P(Y ) given P(XY) and P(X) are
fixed,P(X) /∈ {0, P(XY), 1} and P(XY) �= 0.
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Proof Ad (a, b) Follow trivially from Theorems 1 and 3.

Ad (c) Let us first determine the derivative df ′(X → Y ) of df(X → Y ) as a function
of variable P(X) based on Theorem 3 in all possible cases when P(XY) �= P(X) ×
P(Y ). We will use the fact that in such cases P(X), P(Y ) ∈ (0, 1) (by Proposition
4b).

Case P(XY) > P(X) × P(Y ) and min{P(X), P(Y )} = P(X).
Then P(XY) > P(X) × P(Y ) > 0 and
df ′(X → Y ) = P(XY )×(1−P(Y ))

(P(X)−P(X)×P(Y ))2 < 0.

Case P(XY) > P(X) × P(Y ) and min{P(X), P(Y )} = P(Y ).
Then
df ′(X → Y ) = P(Y )×(P(XY )−P(Y ))

(P(Y )−P(X)×P(Y ))2 .

Hence:

• If P(XY) = P(Y ), then df ′(X → Y ) = 0.
• If P(XY) �= P(Y ), then P(XY) < P(Y ), so df ′(X → Y ) < 0.

Case P(XY) < P(X) × P(Y ) and max{0, P(X) + P(Y ) − 1} = 0.
Then
df ′(X → Y ) = P XY×(P(Y )

(P(X)×P(Y ))2 .

Hence:

• If P(XY) = 0, then df ′(X → Y ) = 0.
• If P(XY) �= 0, then df ′(X → Y ) < 0.

Case P(XY) < P(X)× P(Y ) and max{0, P(X)+ P(Y )− 1} = P(X)+ P(Y )− 1.
Then
df ′(X → Y ) = (1−P(Y ))×(P(XY )−P(Y ))

(P(X)×P(Y )−(P(X)+P(Y )−1))2 = (1−P(Y ))×(P(XY )−P(Y ))

((1−P(X))×(1−P(Y )))2
.

Hence:

• If P(XY) = P(Y ), then df ′(X → Y ) = 0.
• If P(XY) �= P(Y ), then P(XY) < P(Y ), so df ′(X → Y ) < 0.

Now, let us consider the case when P(XY) = P(X)× P(Y ) and P(Y ) ∈ (0, 1). Then
P(X) may take only one value, namely P(XY )

P(Y )
.

Finally, we note that for P(Y ) = 0 as well as for P(Y ) = 1, P(XY) = P(X)× P(Y )

(by Proposition 4a), and so, df(X → Y ) = 0 for each value of P(X) in the interval
[0, 1].

Thus, df is a non-increasing function with respect to P(X) given P(XY) and P(Y )

are fixed. However, if P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0, then df is a decreasing
function with respect to P(X) given P(XY) and P(Y ) are fixed.
Ad (d) Analogous to the proof of Theorem 5c. �
Corollary 1 df(X → Y ) fulfills the first and second Piatetsky-Shapiro postulates.
In addition, it fulfills the third Piatetsky-Shapiro postulate if P(Y ) /∈ {0, P(XY), 1}
and P(XY) �= 0 or if P(X) /∈ {0, P(XY), 1} and P(XY) �= 0.

Proof By Theorem 5. �
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6 Dependence Factors for Events and Their Complements

In this section, we examine the relationship between the dependence factors for
events and their complements. We start with determining extreme values of joint
probabilities of events and their complements. Next, we prove that the character
of the (in)dependence between X and Y determines uniquely the character of the
(in)dependence between X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. Even-
tually, we derive the relationship among the dependence factor for X and Y , with
those for X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively.

Proposition 5

(a) max_P(XY |P(X),P(Y )) = 1 iff P(X) = P(Y ) = 1.
(b) min_P(XY |P(X),P(Y )) = 0 iff P(X) + P(Y ) ≤ 1.
(c) P(X) + P(Y ) ≤ 1 iff (1 − P(X)) + (1 − P(Y )) ≥ 1 iff P(X̄) + P(Ȳ ) ≥ 1.

Proof Ad (a) Follows from Proposition 1a.
Ad (b) Follows from Proposition 1b.
Ad (c) Trivial. �

Proposition 6

(a) max_P(X̄ Ȳ |P(X̄),P(Ȳ )) = min{P(X̄), P(Ȳ )} = min{1 − P(X),

1 − P(Y )} = 1 − max{P(X), P(Y )}
(b) min_P(X̄ Ȳ |P(X̄),P(Ȳ )) = max{0, P(X̄) + P(Ȳ ) − 1} =

max{0, (1 − P(X)) + (1 − P(Y )) − 1} = max{0, 1 − P(X) − P(Y )}
(c) max_P(XȲ |P(X),P(Ȳ )) = min{P(X), P(Ȳ )} = min{P(X), 1 − P(Y )}
(d) min_P(XȲ |P(X),P(Ȳ )) = max{0, P(X) + P(Ȳ ) − 1} =

max{0, P(X) + (1 − P(Y )) − 1} = max{0, P(X) − P(Y )}
(e) max_P(X̄Y |P(X̄),P(Y )) = min{P(X̄), P(Y )} = min{1 − P(X), P(Y )}
(f) min_P(X̄Y |P(X̄),P(Y )) = max{0, P(X̄) + P(Y ) − 1} =

max{0, (1 − P(X)) + P(Y ) − 1} = max{0, P(Y ) − P(X)}
Proof Ad (a, c, e) Follows from Proposition 1a, saying that max_P(VZ|P(V ),P(Z)) =
min{P(V ), P(Z)}.
Ad (b, d, f) Follows Proposition 1b, saying that min_P(VZ|P(V ),P(Z)) = max{0,
P(V ) + P(Z) − 1}. �

Lemma 1

(a) P(XY) > P(X)× P(Y ) iff P(X̄ Ȳ ) > P(X̄)× P(Ȳ ) iff P(XȲ ) < P(X)× P(Ȳ )

iff P(X̄Y ) < P(X̄) × P(Y ).
(b) P(XY) = P(X)× P(Y ) iff P(X̄ Ȳ ) = P(X̄)× P(Ȳ ) iff P(XȲ ) = P(X)× P(Ȳ )

iff P(X̄Y ) = P(X̄) × P(Y ).
(c) P(XY) < P(X)× P(Y ) iff P(X̄ Ȳ ) < P(X̄)× P(Ȳ ) iff P(XȲ ) > P(X)× P(Ȳ )

iff P(X̄Y ) > P(X̄) × P(Y ).

Proof We will proof the proposition using the following equations:
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• P(X̄) = 1 − P(X), P(Ȳ ) = 1 − P(Y ),
• P(X̄Y ) = P(Y ) − P(XY), P(XȲ ) = P(X) − P(XY),
• P(X̄ Ȳ ) = P(X̄) − P(X̄Y ) = 1 − P(X) − P(Y ) + P(XY).

Ad (a)

• P(X̄ Ȳ ) > P(X̄)×P(Ȳ ) iff 1−P(X)−P(Y )+P(XY) > (1−P(X))×(1−P(Y ))

iff P(XY) > P(X) × P(Y ).
• P(XȲ ) < P(X)× P(Ȳ ) iff P(X)− P(XY) < P(X)× (1 − P(Y )) iff P(XY) >

P(X) × P(Y ).
• P(X̄Y ) < P(X̄)× P(Y ) iff P(Y )− P(XY) < (1 − P(X))× P(Y ) iff P(XY) >

P(X) × P(Y ).

Ad (b, c) Analogous to the proof of Lemma 1a. �

Proposition 7

(a) X and Y are dependent positively iff X̄ and Ȳ are dependent positively iff X and
Ȳ are dependent negatively iff X̄ and Y are dependent negatively.

(b) X and Y are independent iff X̄ and Ȳ are independent iff X and Ȳ are independent
iff X̄ and Y are independent.

(c) X and Y are dependent negatively iff X̄ and Ȳ are dependent negatively iff X
and Ȳ are dependent positively iff X̄ and Y are dependent positively.

Proof Follows from Lemma 1. �

Lemma 2 (Proof in Appendix)

(a) df (X → Y ) = df (X̄ → Ȳ )

(b) df (X → Ȳ ) = df (X̄ → Y )

(c) df (X → Ȳ ) = −df (X → Y )

Theorem 6 follows immediately from Lemma 2.

Theorem 6

df(X → Y ) = df (X̄ → Ȳ ) = −df (X → Ȳ ) = −df (X̄ → Y ).

Corollary 2

(a) df (X → Y ) reaches maximum iff df (X̄ → Ȳ ) reaches maximum iff df (X → Ȳ )

reaches minimum iff df (X̄ → Y ) reaches minimum.
(b) df (X → Y ) reaches minimum iff df (X̄ → Ȳ ) reaches minimum iff df (X → Ȳ )

reaches maximum iff df (X̄ → Y ) reaches maximum.
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7 Conclusions

In [4], we have offered the dependence factor as a new measure for evaluating the
strength of dependence between rules’ constituents. Unlike in the case of the certainty
factor, when defining the dependence factor, we took into account the fact that for a
given rule X → Y , the minimal conditional probability of the occurrence of Y given
X may be greater than 0, while its maximal possible value may less than 1. df(X →
Y ) always reaches 1 when the dependence between X and Y is strongest possible
positive, –1 when the dependence between X and Y is strongest possible negative,
and 0 if X and Y are independent. Unlike the dependence factor, the certainty factor
itself as well as lift are misleading in expressing the strength of the dependence.
In particular, if there is strongest possible positive dependence between X and Y ,
cf(X → Y ) is not guaranteed to reach its global maximum value 1 (in fact, its
value can be quite close to 0 that suggests independence). On the other hand, if
there is strongest possible negative dependence between X and Y , cf(X → Y ) is not
guaranteed to reach its global minimum value –1 (in fact, its value can be quite close
to 0). Similarly, lift may reach values close to the value 1 (that means independence
in terms of this measure) even in the cases when the dependence between X and
Y is strongest possible positive or strongest possible negative. Thus, we find the
dependence factor more accurate measure of a rule constituents’ dependence than
the certainty factor and lift.

In this paper, we have: (1) examined the dependence factor as an interesting-
ness measure with respect to the interestingness postulates formulated by Piatetsky-
Shapiro in [7], and (2) derived the relationship among the dependence factor for X and
Y with those for X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. We have proved
that the dependence factor df(X → Y ) fulfills all Piatetsky-Shapiro interestingness
postulates if P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0 or if P(X) /∈ {0, P(XY), 1}
and P(XY) �= 0. Otherwise, it fulfills the first two postulates entirely and the third
postulate partially as df(X → Y ) is a non-increasing function rather than decreasing
with respect to the marginal probability of an event given the joint probability and the
marginal probability of the other event are fixed. On the other hand, it can be observed
that several interestingness measures of association rules proposed and/or discussed
in the literature does not fulfill all interestingness postulates from [7], including the
rule interest ri [7] and novelty [5], which violate the third postulate for zero marginal
probabilities.

In this paper, we have found that the character of the (in)dependence between X
and Y determines uniquely the character (positive/negative) of the (in)dependence
between X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. We have also found
that the absolute value of the dependence factors is the same for events and their
complements. We find this result justified as the marginal and joint probabilities of
events and all their complements depend uniquely on the triple of the probabilities
〈P(X), P(Y ), P(XY)〉.
Acknowledgments We wish to thank an anonymous reviewer for constructive comments, which
influenced the final version of this paper positively.
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Appendix

Proof of Lemma 2
In the proof, we will use the following equations:

• P(X̄) = 1 − P(X), P(Ȳ ) = 1 − P(Y ),
• P(X̄Y ) = P(Y ) − P(XY ), P(XȲ ) = P(X) − P(XY ),

• P(X̄ Ȳ ) = P(X̄) − P(X̄Y ) = 1 − P(X) − P(Y ) + P(XY).

Ad (a)

Case P(X̄ Ȳ ) > P(X̄) × P(Ȳ ):
This case is equivalent to the case when P(XY) > P(X)× P(Y ) (by Lemma 1a).

Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= P(X̄ Ȳ ) − P(X̄) × P(Ȳ )

max _P(X̄ Ȳ |P(X̄),P(Ȳ )) − P(X̄) × P(Ȳ )
= /* by Proposition 6a */

= (1 − P(X) − P(Y ) + P(XY )) − (1 − P(X)) × (1 − P(Y ))

(1 − max{P(X), P(Y )}) − (1 − P(X)) × (1 − P(Y ))

= P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= d f (X → Y ).

Case P(X̄ Ȳ ) = P(X̄) × P(Ȳ ):
This case is equivalent to the case when P(XY ) = P(X) × P(Y ) (by Lemma

1b). Then:
df (X̄ → Ȳ ) = /* by Proposition 3a */

= 0 = /* by Proposition 3a */

= df (X → Y ).

Case P(X̄ Ȳ ) < P(X̄) × P(Ȳ ) and P(X̄) + P(Ȳ ) ≤ 1:
This case is equivalent to the case when P(XY) < P(X)× P(Y ) (by Lemma 1c)

and P(X) + P(Y ) ≥ 1 (by Proposition 5c). Then:
df (X̄ → Ȳ ) = /* by Proposition 3a */

− P(X̄) × P(Ȳ ) − P(X̄ Ȳ )

P(X̄) × P(Ȳ ) − min _P(X̄ Ȳ |P(X̄),P(Ȳ ))
= /* by Proposition 6b */

= − (1 − P(X)) × (1 − P(Y )) − 1(−P(X) − P(Y ) + P(XY ))

(1 − P(X)) × (1 − P(Y )) − max{0, 1 − P(X), P(Y )}
= − P(X) × P(Y ) − P(XY )

(1 − P(X) − P(Y ) + P(X) × P(Y )) − (0)

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − (P(X) + P(Y ) − 1)
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= − P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= d f (X → Y ).

Case P(X̄ Ȳ ) < P(X̄) × P(Ȳ ) and P(X̄) + P(Ȳ ) > 1:
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) + P(Y ) < 1 (by Proposition 5c). Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= − P(X̄) × P(Ȳ ) − P(X̄ Ȳ )

P(X̄) × P(Ȳ ) − min _P(X̄ Ȳ |P(X̄),P(Ȳ ))
/* by Proposition 6b */

= − (1 − P(X)) × (1 − P(Y )) − (1 − P(X) − P(Y ) + P(XY ))

(1 − P(X)) × (1 − P(Y )) − max{0, 1 − P(X), P(Y )}
= − P(X) × P(Y ) − P(XY )

(1 − P(X) − P(Y ) + P(X) × P(Y )) − (1 − P(X) − P(Y ))

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − 0

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= d f (X → Y ).

Ad (b)
The proof is analogous to the proof of Lemma 1a.

Ad (c)

Case P(XȲ ) > P(X) × P(Ȳ ) and P(X) ≤ P(Ȳ ):
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) ≤ 1 − P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= P(XȲ ) − P(X) × P(Ȳ )

max _P(XȲ |P(X),P(Ȳ )) − P(X) × P(Ȳ )
= /* by Proposition 6c */

= (P(X) − P(XY )) − P(X) × (1 − P(Y ))

min{P(X), 1 − P(Y )} − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − 0

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= −d f (X → Y ).
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Case P(XȲ ) > P(X) × P(Ȳ ) and P(X) > P(Ȳ ).
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) > 1 − P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= P(XȲ ) − P(X) × P(Ȳ )

max_P(XȲ |P(X),P(Ȳ )) − P(X) × P(Ȳ )
= /* by Proposition 6c */

= (P(X) − P(XY )) − P(X) × (1 − P(Y ))

min{P(X), 1 − P(Y )} − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

(1 − P(Y )) − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= −d f (X → Y ).

Case P(XȲ ) = P(X) × P(Ȳ ):
This case is equivalent to the case when P(XY ) = P(X) × P(Y ) (by Lemma

1b). Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= 0 = /* by Proposition 3a */

= −d f (X → Y ).

Case P(XȲ ) < P(X) × P(Ȳ ) and P(X) + P(Ȳ ) ≤ 1.
This case is equivalent to the case when P(XY ) > P(X)× P(Y ) (by Lemma 1a)

and P(X) ≤ P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= − P(X) × P(Ȳ ) − P(XȲ )

P(X) × P(Ȳ ) − min _P(XȲ |P(X),P(Ȳ ))
= /* by Proposition 6d */

= − P(X) × (1 − P(Y )) − (P(X) − P(XY ))

P(X) × (1 − P(Y )) − max{0, P(X) − P(Y )}
= − P(XY ) − P(X) × P(Y )

(P(X) − P(X) × P(Y )) − (0)

= − P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= −d f (X → Y ).

Case P(XȲ ) < P(X) × P(Ȳ ) and P(X) + P(Ȳ ) > 1.
This case is equivalent to the case when P(XY ) > P(X)× P(Y ) (by Lemma 1a)

and P(X) > P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */
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= − P(X) × P(Ȳ ) − P(XȲ )

P(X) × P(Ȳ ) − min _P(XȲ |P(X),P(Ȳ ))
= /* by Proposition 6d */

= − P(X) × (1 − P(Y )) − (P(X) − P(XY ))

P(X) × (1 − P(Y )) − max{0, P(X) − P(Y )}
= − P(XY ) − P(X) × P(Y )

P(X) × (1 − P(Y )) − (P(X) − P(Y ))

= − P(XY ) − P(X) × P(Y )

P(Y ) − P(X) × P(Y )

= − P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= −d f (X → Y ). �
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