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Abstract Some statistical observations are frequently dismissed as “marginal” or
even “oddities” but are far from such. On the contrary, they provide insights that
lead to a better understanding of mechanisms which logically should exist but for
which evidence is missing. We consider three case studies of probabilistic models
in evolution, genetics and cancer. First, ascertainment bias in evolutionary genetics,
arising when comparison between two or more species is based on genetic markers
discovered in one of these species. Second, quasistationarity, i.e., probabilistic equi-
libria arising conditionally on non-absorption. Since evolution is also the history of
extinctions (which are absorptions), this is a valid field of study. Third, inference
concerning unobservable events in cancer, such as the appearance of the first malig-
nant cell, or the first micrometastasis. The topic is vital for public health of aging
societies. We try to adhere to mathematical rigor, but avoid professional jargon, with
emphasis on the wider context.

1 Introduction

This essay attempts to persuade the Reader that statistical observations that may be
dismissed as “marginal” or even “oddities” are far from such. On the contrary, they
provide insights that lead to a better understanding of mechanisms which logically
should exist but for which evidence is (and likely has to be) missing. To remain
focused, we adhere to probabilistic models in evolution, genetics and cancer, disci-
plines in which the author claims expertise. The paper includes three case studies.
First, ascertainment bias in evolutionary genetics, arising when comparison between
two or more species is based on genetic markers discovered in one of these species.
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Second, quasistationarity, i.e., probabilistic equilibria arising conditionally on non-
absorption. Since evolution is the history of extinctions (which are absorptions), this
is a valid field of study. Third, inference concerning unobservable events in cancer,
such as the appearance of the first malignant cell, or the first micrometastasis. The
topic is vital for public health, particularly in aging societies. We try to adhere to
mathematical rigor wherever needed and to provide references. Discussion concerns
the wider context and philosophical implications.

2 Ascertainment Bias in Evolutionary Genetics

It has been observed that in evolutionary comparisons of Species 1 and 2, it is
easy to err by using markers that were discovered in Species 1 and then sampled
(“typed”) in Species 1 and 2. Genetic markers have to exhibit among-individual
variation to be useful and therefore if a marker is discovered in Species 1, then on
the average it is more variable in Species 1 than in Species 2. Variability of markers
serves as a proxy for the rate of nucleotide substitution, which in turn may be a
proxy for the rate of evolution. For this reason, if Species 1 and 2 descend from a
common ancestral species, such as Human and Chimpanzee, andmarkers discovered
in Species 1 (Human, for example) are employed, then we may deduce that Human
has been evolving faster than its sister species Chimpanzee, when in fact it has not
[2, 7, 23]. One remedy for this effect (being a form of the ascertainment bias) is to
also use markers discovered in Species 2 and compare the outcomes in both cases.
However, how to analyze such data and what inferences might be drawn? Li and
Kimmel [19] demonstrate that this is quite complicated and that conclusions may be
far from obvious.

2.1 Microsatellite DNA and Divergence of Human and
Chimpanzee

Microsatellite loci are stretches of repeated DNAmotifs of length of 2–6 nucleotides.
An example is a triplet repeat (motif of length 3) with allele length X = 4 (motif
repeated 4 times)

· · · |ACG|ACG|ACG|ACG| · · · .

Mutations in such loci usually have the form of expansions or contractions occurring
at a high rate, ν ∼ 10−3–10−4 per generation. More specifically,

X −→ X + U (1)

whereU is an integer-valued random variable, at times constituting a Poisson process
with intensity ν. Mutations in this StepwiseMutationModel (SMM),mathematically
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form an unrestricted random walk (see e.g., [9]). Microsatellites are highly abun-
dant in the genome. They are also highly polymorphic (variable). Applications of
microsatellites include: forensics (identification), mapping (locating genes), and evo-
lutionary studies.

A microsatellite locus can be considered to have a denumerable set of alleles
indexed by integers. Two statistics can summarize the variability at a microsatellite
locus in a sample of n chromosomes: The estimator of the genetic variance

V̂ /2 =
n∑

i=1

(
Xi − X

)2
/ (n − 1) , (2)

where Xi = Xi (t) is the length of the allele in the i th chromosome in the sample
and X is the mean of the Xi

V (t) = E(V̂ ) = E[(Xi − X j )
2], (3)

and Xi and X j are exchangeable random variables representing the lengths of two
alleles from the population [17]; and the estimator of homozygosity

P̂0 = (n
K∑

k=1

p2k − 1)/(n − 1), (4)

where pk denotes the relative frequency of allele k in the sample

Fig. 1 Evolutionary history of a locus in two species. Demographic scenario employed in the
mathematical model and simuPOP simulations. Notation: N0, N1, and N2, effective sizes of the
ancestral, cognate, and noncognate populations, respectively; X0, X1, and X2, increments of allele
sizes due to mutations in the ancestral allele, in chromosome 1 and in chromosome 2, respectively.
From Ref. [19]
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P0(t) = E(P̂0) = Pr[Xi (t) = X j (t)]. (5)

Random variables Xi are exchangeable but not independent.
Li and Kimmel [19] considered evolutionary history of a locus in two species.

They employed the following demographic scenario in the mathematical model and
simuPOP [20] simulations (Fig. 1). At time t before present (time is counted in
reverse direction), a microsatellite locus is born in an ancestral species. At time t0,
the ancestral species splits into species 1 (called cognate) and species 2 (called non-
cognate). Notation: N0, N1, and N2, are effective lengths of the ancestral, cognate,
and non-cognate populations, respectively; X0, X1, and X2 are increments of allele
lengths due to mutations in the ancestral allele, in chromosome 1 sampled at time 0
(present) from cognate population 1 and in chromosome 2, sampled from the non-
cognate population 2.

2.2 Ascertainment Bias versus Drift and Mutation

In the random walk-like SMM model of mutation, a good measure of variability at
a microsatellite locus is the length (repeat count) in a randomly sampled individual.
Let us suppose that we discover a sequence of short motif repeats in the cognate
species 1 and if its number of repeats Y1 is greater or equal the threshold value x ,
we retain this microsatellite (we say we discovered it). Then we find a homologous
microsatellite in species 2, i.e., microsatellite which is located in the same genomic
region (technically, flanked by sequences of sufficient similarity), provided such
microsatellite can be found. We take samples of microsatellite lengths from species
1 and 2, and consider their lengths to be realizations of random variables Y ′

1 and Y2,
respectively. We then consider the difference

D = E[Y ′
1|Y1 ≥ x] − E[Y2|Y1 ≥ x].

Other things being equal, D is a manifestation of the ascertainment bias and is likely
to be positive. However, things may not be entirely equal. For example, if species
1 has a lower mutation rate than species 2, then its microsatellites will tend to have
lower maximum length, which may reduce D. On the other hand, if, say, species 2
consistently has had a smaller population size, then genetic drift might have removed
some of the variants and now species 2 microsatellites will have lower maximum
length,whichmay inflate D. Li andKimmel [19] carried out analytical and simulation
studies of D under wide range of parameter values and obtained very good agreement
of both techniques (Fig. 2). Briefly, as explained already, the observed difference D
in allele lengths may be positive or negative depending on relative mutation rates and
population sizes in the species 0 (ancestral), 1, and 2. In conclusion, mutation rate
and demography may amplify or reverse the sampling (ascertainment) bias. Other
effects were studied by different researchers. For example, Vowles and Amos [23]
underscore the effects of upper bounds of repeat counts. An exhaustive discussion is
found in Ref. [19].
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(a)

Fig. 2 Observed difference D in allele sizes may be positive or negative. Comparison of simuPOP
simulations with computations based on Eq. (15). a Values of D for the basic parameter values
b0 = b1 = b2 = b = 0.55, ν0 = ν1 = ν = 0.0001, t0 = 2 × 105 generations, and t = 5 × 105

generations, with the effective sizes of all populations concurrently varying from 2×104 to 4×105

individuals and with mutation rates ν2 varying from ν to 5ν. b Values of D for the basic parameter
values b0 = b1 = b2 = b = 0.55, ν0 = ν2 = ν = 0.0001, t0 = 2 × 105 generations, and
t = 5 × 105 generations, with the effective sizes of all populations concurrently varying from
2× 104 to 4× 105 individuals and with mutation rates ν1 varying from ν to 5ν (assuming 20 years
per generation). From Ref. [19]

2.3 Hominid Slowdown and Microsatellite Statistics

Li and Kimmel [19] considered evidence for and against the so-called hominid slow-
down (as discussed e.g., in Bronham et al. 1996), the observation that as the great apes
become closer to theHuman lineage, their nucleotide substitution rates (rates of point
mutations in the genome) decrease. Consistent with this, Human and Human ances-
tors are expected to have slower substitution rates than Chimpanzee and its ancestors
(following the divergence from the common ancestral species about 7 million years
ago). Is this also true of microsatellite loci? Different molecular mechanisms shape
these two types of mutations. Nucleotide substitutions result from random errors in
DNA replication, which then may not be repaired, but also may lead to dysfunc-
tional proteins which will be eliminated from the population by natural selection
(as discussed e.g., in [10]). Microsatellite mutations, as explained already, result
from replicase slippage. Most microsatellites are located in noncoding regions and
therefore are considered selectively neutral.

The study [19] involves a reconstruction of the past demography of Human and
its ancestors as well as hypothetical demography of Chimpanzee and its ancestors,
includingmigrations of Human from its ancestral African territory and resulting pop-
ulation growth interrupted by recent glaciations and other events. Without getting
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into technical details, the conclusion is that microsatellite mutation rate is likely to
be higher in Human than in Chimpanzee. It is interesting to observe that also the
regulatory sites in the genome usually have the form of simple repeats (albeit inter-
rupted) and vary quite considerably among species of mammals (as reviewed e.g.,
in Ref. [13]). It is possible to further hypothesize that evolution in higher mammals
chose the path of regulation of gene expression as opposed to modification of the
amino acid sequences in proteins; possible reason being that these latter might be
too slow.

3 Quasistationarity in Genome Evolution

Let us consider an effect which is important if extinctions are indeed common in
evolution. Suppose that a proliferating population has a random component of such
nature that it leads any lineage to extinction with probability 1. On the other hand,
proliferation is sufficiently fast to make up for extinction so that the non-extinct
part may persist indefinitely. The long-term distribution of types of individuals in
the population conditional on non-extinction, if such distribution exists, is called
the quasistationary distribution. Quasistationarity in a more general sense has been
studied by mathematicians for a long time; relevant literature has been collected by
Pollet [21]. Here we will limit ourselves to an example from cell biology concerning
gene amplification, based on an experiment pioneered by Schimke [22], with math-
ematical model developed by Kimmel and Axelrod [15] and then generalized by
Kimmel [14] and Bansaye [3]. Let us notice that extinction causes information about
evolution of the population to be scrambled. Therefore, if quasistationary distribu-
tions are interpreted as if they were ordinary stationary distributions, the conclusions
may be paradoxical or misleading.

3.1 Gene Amplification in Cancer and Schimke’s Experiments

One of the prevalent types of rearrangements in human cancer genome is gene ampli-
fication, i.e., increase of the number of gene copies in cells beyond the usual diploid
complement. Some examples have been provided by [1], but the phenomenon is quite
common, usually appearing under the guise of copy number variation (CNV; Fig. 3).

Classical experiments demonstrating gene amplification and its connection with
drug resistance have been carried out in Schimke [22]. The gist of the experimental
data can be described as follows. After passaging surviving cultured cells to ever
increasing levels of metothrexate (MTX) over the period of the order of 10 Msec =
5 month, it was possible to evolve cells that were resistant to extremely high doses
of MTX (Fig. 4). When the cells were put back into no MTX medium, they were
observed to lose resistance within about 100 cell doublings (some cultures did not,
but we sweep these under the rug for now).
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Fig. 3 Cytogenetics of gene amplification. Amplified DNA can be present in various forms includ-
ing double minutes. A two-chromosome genome is depicted (top of the figure). Examples of array
CGH copy number profiles (bottom left; plotted as the normalized log2 ratio) are shown with cor-
responding FISH pictures (bottom right) of the cells using BAC clones from the region of the
amplicon indicated by the red and green arrows. Many red and green signals can be seen in the
double minutes in a methotrexate-resistant human cell line. From Ref. [1]

Fig. 4 Loss of resistance in
Schimke’s experiments.
Cells resistant to MTX are
exposed to nonselective
conditions. Some cell lines
lose resistance completely
(circles), while other only
partially (squares and
triangles). From Ref. [5]
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Schimke discovered, using techniques available at that time, that the highly resis-
tant cell had, besides the usual chromosomes, small extrachromosomal DNA ele-
ments roughly dicentric (he named them the “double minute chromosomes” or DM
for short) that contained extra copies of the dihydrofolate reductase (DHFR) gene,
that confers resistance to MTX [1]. It became clear that the increased resistance was
due to amplification of the DHFR gene. But how did the amplified copies get there?
Clearly a supercritical process of gene copy proliferation was at play. However, how
did the cells know to multiply gene copies? The ghost of Lamarck knocked at the
door.

3.2 Probabilists to Rescue

Fortunately for the common sense, Kimmel and Axelrod [15] conceived an idea
consistent with the neo-Darwinian paradigm (despite appearances, this sentence is
not necessarily an oxymoron). The hypothesis can be stated as follows:

• Increased resistance is correlatedwith increased numbers of gene copies on double
minute chromosomes (DM).

• The number of DHFR genes on double minutes in a cell may increase or decrease
at each cell division. This is because double minutes do not have centromeres,
which are required to faithfully segregate chromosomes into progeny cells.

• The process of DM proliferation in cells is subcritical, since the DM do not effi-
ciently replicate. Therefore cells grown in the absence of the drug gradually lose
resistance to the drug, by losing extra gene copies.

The following model has been constructed by Kimmel and Axelrod [15].

• Galton-Watson process of gene amplification and deamplification in a randomly
chosen line of descent (Fig. 5).

– Double minute chromosomes replicate irregularly
– Upon cell division, DMs are asymmetrically assigned to progeny cells.

• The process is subcritical, i.e., the average number of DMs at division is less than
twice that number assigned to the cell at birth. This is consistent with imperfect
replication and segregation of DMs.

Hypotheses of the model explain why, under nonselective conditions, the number
of DMs per cell decreases which causes gradual loss of resistance (Fig. 5). In other
words, zero is an absorbing state for the number of DMs. However, under selective
conditions, only the cells with nonzero DM count survive. Therefore, conditionally
on nonabsorption (non-extinction of the DMs), according to the Yaglom theorem for
subcritical branching processes, the number of DMs per cell converges in distribution
to a quasistationary distribution.

Specifically, suppose that proliferation ofDMs fromone cell generation to another,
in a randomly selected ancestry line of cells is described by a Galton-Watson branch-
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Fig. 5 A simplified view of gene amplification and deamplification process. Each cell with at least
one gene copy can give rise to 2 progeny cells, each of which with probability b has amplified
(doubled) count of DM gene copies, with probability d has deamplified (halved) count, or with
probability 1 − b − d, the same number. Halving of a single DM results in 0 DMs. Histogram at
the bottom shows the resulting distribution of gene copies per cell in the fourth generation. From
Ref. [15]

ing process with the number of “progeny” of a DM is a nonnegative integer random
variable with generic probability generating function (pgf) f (s), under the usual
conditional independence hypotheses. As already noticed, this process is subcritical,
i.e., m = f ′(1−) < 1. Let Zn denote the number of DMs in generation n and let
fn(s) denote the pgf of Zn .

Yaglom Theorem (see e.g., Theorem 4 in Kimmel and Axelrod [16]) If m < 1,
then P[Zn = j |Zn > 0] converges, as n → ∞ to a probability function whose pgf
B(s) satisfies the equation

B[ f (s)] = mB(s) + (1 − m).

Also,

1 − fn(0) ∼ mn

B′(1−)
, n → ∞.

Yaglom limit is also an example of a quasistationary distribution, sayμ(x), which
in a general Markov chain can be defined via the following condition

μ(x) =
∑

y≥1 μ(y)Py[X (t) = x]
∑

y≥1 μ(y)Py[X (t) �= 0] ,

where Py[X (t) = x] is the transition probability matrix.
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Let us suppose now that cell population has been transferred toMTX-freemedium
at generation n = N . Based on the Yaglom Theorem, the fraction of resistant cells
decreases roughly geometrically

1 − fn(0) ∼ mn−N

B′(1−)
, n > N ,

while {Zn|Zn > 0} remains unchanged. Moreover, if 2m > 1, then the net growth
of the resistant population is observed also at the selection phase (n ≤ N ).

Loss of DMs in non-selective conditions has been visualized experimentally [5].
Population distribution of numbers of copies per cell can be estimated by flow cytom-
etry. Proportion of cells with amplified genes decreases with time (Fig. 6). Shape of
the distribution of gene copy number in the subpopulation of cells with amplified
genes appears unchanged as resistance is gradually lost.

Fig. 6 Loss of resistance visualized by flowcytometry. Population distribution of numbers of copies
per cell can be estimated by flow cytometry. Proportion of cells with amplified genes decreases with
time. Shape of the distribution of gene copy number in the subpopulation of cells with amplified
genes appears unchanged as resistance is gradually lost. From Ref. [5]
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An important finding is that if 2m > 1, i.e., if absorption is not too fast, then cell
proliferation outweighs the loss of cell caused by the selective agent (MTX) and the
resistant subpopulation grows in absolute numbers also under selective conditions
(when n ≤ N ; details in the original paper and the book).

A more general mathematical model of replication of “small particles” within
“large particles” and of their asymmetric division (“Branching within branching”)
has been developed by Kimmel [14] and followed up by Bansaye [3]. It is interesting
to notice that quasistationary distributions are likely to generate much heterogeneity.
An example is provided by large fluctuations of the critical Galton-Watson process
before extinction; see Wu and Kimmel [24].

3.3 Quasistationarity and Molecular Evolution

An observation can be made that trends observed in molecular evolution can be mis-
leading, if they are taken at their face value andwithout an attempt to understand their
underlying “mechanistic” structure. It may be concluded, looking at the evolution
of resistance in cells exposed to MTX that there exists something in the MTX that
literally leads to an increase of the number of DM copies. So, gene amplification
is “induced” by MTX. Only after it is logically deduced that DMs have to undergo
replication and segregation and assuming that both these processes are less orderly
in DMs than in the “normal” large chromosomes, the conclusion concerning the true
nature of the process (selection superimposed on subcritical branching) follows by
the laws of population genetics.

4 Unobservables in Cancer

Early detection of cancer by mass screening of at risk individuals remains one of the
most contentious issues in public health. We will mainly use lung cancer (LC) as an
example. The idea is to identify the “at risk” population (smokers in the LC case), and
then to apply an “early detection” procedure (CT-scan in the LC case), periodically,
among the members of the “at risk” population. By treating the early (and implicitly,
curable) cases discovered this way, a much higher cure rate is assured than that of
spontaneously appearing symptomatic cases. Is this reasoning correct? Two types
of arguments have been used to question the philosophy just described. On one
hand, part of the early detection may constitute overdiagnosis. Briefly, by the effect
known from the renewal theory, a detection device with less than perfect sensitivity,
placed at a fixed point in time and confronted with examined cases “flowing in time”,
preferentially detects cases of longer duration, i.e. those for which the asymptomatic
early disease is more protracted. This effect is known as the length-biased sampling
(discussion in Ref. [12]). Its extreme form, called overdiagnosis, causes detection of
cases that are so slow that they might show only at autopsy, or cases which look
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like cancer but do not progress at all. Overdiagnosis, if it were frequent, would
invalidate early detection: a large number of “early non-cancers” would be found
and unnecessarily treated, causing increased morbidity and perisurgical mortality,
without much or any reduction in LC death count.

On the other hand, the following scenario is possible, which also may invalidate
screening for early detection, although for an opposite reason. If it happens that LC
produces micrometastases, which are present when the primary tumor is of submil-
limeter size, then detection of even 2–3mm tumors (achievable using CT) is futile,
since the micrometastases progress and kill the patient whether the primary tumor
has been detected or not.

How to determine if screening reduces number of LC deaths? The orthodox bio-
statistics approach is “empirical”. It consists of designing a two-arm RCT (screened
versus non-screened high risk individuals) and comparing numbers of LC deaths
in the two arms. This methodology is statistically sound, but it may be considered
unethical. Patients in the control arm are denied potentially life-saving procedures.
Those in the screened arm do not necessarily take advantage of the current state-of-
art technology. Two sources of reduced contrast are: noncompliance in the screened
arm and/or “voluntary” screening in the control arm. It has been claimed that the
results of the Mayo Lung Project (MLP) 1967–1981 trial, which influenced recom-
mendations not to screen for LC by chest X ray were simply due to lack of power to
demonstrate mortality reduction by 5–10% which might be achievable using X ray
screening [12]. Finally, the National Lung Screening Trial (NLST) in the USA, in
which around 50,000 smokers took part, demonstrated that a series of three annual
screenings followed by treatment of detected cases reduced mortality by about 20%.
It has to be noted, that predictions of similar magnitude reduction obtained using
modeling [18] have been almost universally disregarded by the medical community.

The NLST has left as many questions unanswered as it did answer. One of them is
the choice of the “best” high-risk group for LC screening. Given limited resources,
how to allocate them to subgroups of screenees so that the efficacy of amass screening
program is maximized. Even if the meaning of the term “efficacy” is clarified, it is
still unknown who should be screened. Are these the heaviest smokers, the smokers
who have smoked for the longest period of time, individuals with family history of
lung cancer, or those with impaired DNA-repair capacity [11]? At what age does
it make sense to start screening and how often should the individuals be screened?
Answers to these questions require knowledge of the natural course of disease, which
is exactly what is not observable (Fig. 7).

Arguably, modeling can help. If a model of carcinogenesis, tumor growth and pro-
gression (i.e., nodal and distant metastases) is constructed and validated and models
of early detection and post-detection follow-up are added to it, then various scenarios
of screening can be tested in silico. Another use of modeling is less utilitarian, but
equally important. It can be called the inverse problem: How much is it possible
to say about the course of cancer based on snapshots including the disease charac-
teristics at detection? To what extent is the size of the primary tumor predictive of
the progression of the disease? In [6] some inferences of this type have been made
(Fig. 8).
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Fig. 7 Time lines of cancer progression and detection

Fig. 8 Distributions of occult nodal and distant metastases in the simulated lung cancer patients
(1988–1999) with stage N0M0, N1M0 and M1 stratified by tumor size. *TS, Primary tumor size
(cm) in diameter **In SEER data, 7208 were N0M1, which is 9.7% of 74109 that had N and M
staged. This stage is not modeled. From Ref. [6]

Figure8 depicts distributions of undetected (so-called occult) nodal and distant
metastases in the simulated lung cancer patients, fitting demographic and smoking
patterns of theSEERdatabase 1988–1999, detectedwith stageN0M0,N1M0andM1,
stratified by primary tumor size. N0 and N1 correspond to the absence and presence
of lymph node metastasis, and M0 and M1 to the absence and presence of distant
metastasis, respectively. In other words, modeling allows to estimate how many of
lung cancers detected as belonging to a given category, in reality belong to different,
prognostically less favorable, categories. The results show some unexpected trends.
The most important are the three top rows of Fig. 8, which concern tumors detected
without nodal or distant metastases (N0M0). These tumors, on the face of things,
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offer best prognosis. Model predictions confirm this intuition, up to a point. Indeed
up to the primary tumor size of about 1cm, more than 50% of apparent N0M0
tumors are indeed N0M0. If they are detected at larger sizes, then only a minority
are truly N0M0, and the rest have occult metastases. So, if these tumors below 1cm
are removed, there is a good chance the patient is cured. But, surprisingly, there is
another turning point. At sizes above 2.5–3cm, again majority of tumors are N0M0.
Similar, though not as distinctive trend is present when we consider tumors detected
as N1M0. Therefore, if a very large tumor is discovered without apparent nodal and
distant metastasis and it is resectable, then the suggestion is that it might be resected
for cure.

The explanation for this peculiar pattern is that if the rates of growth and pro-
gression (metastasizing) of tumors are distributed, then detection is “cutting out
windows” in the distributions, through which the tumor population is observed. In
the large primary tumor size category with no metastases observed, we deal with
the fast growing, slowly metastasizing subset. Other subpopulations simply present
with metastasis when the primary tumor is large, become symptomatic and quickly
progress to death. So, active detection leads to biased TNM distributions, with the
bias sometimes being non-intuitive.

Mathematical models of the NLST trial predicted its outcome in two publications,
one in 2004 [18] and the other in 2011 ([8]; submitted for publication before the
NLST outcomewas announced), using two different modeling approaches. As stated
already, at that time these papers were universally ignored.

5 Discussion

What is the role and use of statistics as a profession (science?) and of statisticians
as professionals (scientists?). In minds of other scientists (physicists, biologists or
physicians) statistics is mainly perhaps a useful, but strictly confirmatory field. What
is expected of a collaborating statistician is the “p-value” or the sample size needed
to obtain a given “power” of a test as required by the funding agencies. However,
one may reflect on how many useful and deep scientific concepts and techniques
are statistical in nature. Some of them have been revolutionary. We may list some
with biological applications: Fluctuation Analysis (FA) in cell biology, Moolgavkar-
Knudson (M-K) model of carcinogenesis, Wright-Fisher (W-F) model in population
genetics, Capture-Recapture (C-R) method in ecology, Maximum Likelihood (ML)
and Least Squares (LS) methods in molecular phylogenetics, and other. However, let
us notice that these methods are based on models that include structural features of
the biological nature of the phenomenon in question. Some of these are unobserv-
able, such as mutations in cells in FA, stage transition times in M-K, segregation
of chromosomes to progeny in W-F, collections of individuals in C-R and ancestral
nodes in phylogenetics.
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Arguably, statistics is most useful, when it considers phenomena in a “gray zone”
such as inference on the unseens, i.e., processes that we believe are real, but which
cannot be directly observed. Three phases of scientific inquiry, are usually present:

1. Initially, when there is little or no data; the unseens are not suspected to exist,
2. Existence of the unseens is revealed through progress in data collection and

logical analysis,
3. Further progress may lead to resolution of the unseen by a reductionist approach.

Examples considered in the essay involve analyses in Phase 2. Each involves unseens
that may become observable at some time. Also, each required construction of a new
model based on inferred biology of the process. In addition, each of the examples
includes a statistical sampling mechanism, which introduces a bias (we may call it
the ascertainment bias). The role of the model is among other, to understand and
counter the bias. Arguably, this is the true purpose of statistical analysis.
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