

© Springer International Publishing Switzerland 2015
C.C. Insaurralde, Intelligent Autonomy for Unmanned Marine Vehicles,

11

Studies in Systems, Decision and Control 29, DOI: 10.1007/978-3-319-18778-5_3

3 Intelligent Control Architecture

3.1 Architectural Foundations

This Chapter presents the structural and behavioural aspects of the ICA proposed
in this research work. It describes architectural foundations key to develop the
ICA and presents conceptual principles as to its structure and behaviour. It in-
volves aspects of the control hierarchy (from goals to behaviours) for the above
architecture as well as a detailed explanation of knowledge representation and on-
tological reasoning methodologies to apply artificial intelligence to UMVs

Figure 3.1 shows the architectural concepts of the ICA. In the top of the figure,
the system deals with hierarchical mission goals that are achieved by the execution
of agent plans (sequence of activities listed as command messages). The planning
and matching are intellectual agent activities. The planning of tasks for an agent is
performed by each agent by matching internal agent capabilities but also taking
into account external capabilities from other agents to carry out different activities.
Agents are able to discover the capabilities of each other.

In the bottom of Figure 3.1, the activities can be seen as service processes (exe-
cution of services, e.g. navigation, manipulation, vision, etc.). They can have a
basic or composite structure. The basic processes are indivisible, whereas the
composite processes can be decomposed into other activities. This composition of
activities or service processes is called orchestration of services. It plays an impor-
tant role in the system architecture since it can define different encapsulation lev-
els to execute services. On the other hand, choreography of services deals with the
messages exchanges among services that are executed in parallel (collaborative
nature). Orchestration and choreography are terms from Service-Oriented Archi-
tecture (SOA). Based on the conceptual structure presented in Figure 3.1, a ser-
vice-oriented agent-based approach is proposed as ICA.

From the robotics viewpoint, missions, goals, planning, matching, and agents
correspond to the “deliberation” layer; services, orchestration, and choreography
correspond to the “execution” layer; and activities correspond to the “behaviour”
layer. For example, in a single-vehicle seabed survey (mission) the main goal is to
collect seafloor data from a given exploration area. The agent is an AUV which
plans its tasks (diving, path-following, and surface) by means of checking for
availability of its capabilities to carry out such tasks. Services for this mission are
from navigation, guidance, control, and vision capabilities to carry out activities
(also behaviour) such as “dive”, “emerge”, “capture image”, etc.

12 3 Intelligent Control Architecture

Fig. 3.1 Conceptual view of the service-oriented agent-based architecture

Table 3.1 shows the ICA architectural elements, and their different interaction
levels. The activities are classified as mission, operation, task, and action. The
services are categorized by following the above activities classification. This hier-
archical information classification impacts on the knowledge representation and
its design. Ontologies are used to represent the knowledge.

Table 3.1 Interaction levels of the ICA architectural elements

Integration
Level

Service Physical Enti-
ties

Logical Enti-
ties

Maritime Ac-
tivities

High Compositional
Group of vehi-
cles

Holons Missions

High-mid Compositional Vehicles Agents Operations

Low-mid Compositional Devices Actors Tasks

Low Atomic Transducers Workers Actions

3.1 Architectural Foundations 13

At the lowest level (centre of the Table 3.1), there are actions from transducers
(i.e. sensors and actuators). In the next level up, there are tasks from devices that
play a role as actors. Above that, there are operations carried out by vehicles
which play a role as agents.

At the highest level (top of the Table 3.1), there are missions carried out by
group of vehicles that play a role as holons (multi-agent interaction). The basic ro-
botics layers are placed between levels.

Figure 3.2 shows the dependency relations among the key elements of the ICA.
The system, i.e. AMRs, fulfils one or more missions (represented by “1..*”), has
one or more components (or modules), and use case(s). It also has facilities to
sense and act within the environment. Missions are carried out by agents that have
one or more goals and plans. A goal is achieved by one or more plans. An agent
carries out one or more activities planned according to the platform capabilities,
and the goal needs. An activity is carried out by one or more services that encap-
sulate one or more functionalities of the AMR components. Matching the robotics
architecture, functionality means “behaviour”.

Fig. 3.2 Relationships among the key elements of the ICA

Following the dependency relations presented in Figure 3.2, a bottom-to-top
development process for the AMR architecture is defined. It begins identifying the
functionalities of the platform components (or modules), and ends determining the
plans of the agent to achieve the given mission goals. The development steps are
as follows.

Extraction of functionality from platform components (or modules). Grouping
and separation of functionalities in order to build clusters of similar functions.
Each function can in turn be built of other functions.

14 3 Intelligent Control Architecture

Encapsulation of the above functionalities in basic or composite services gives
serviceability to the AMR system. It enables the AMR system to carry out activi-
ties (service process or execution of services that encapsulate functionalities) at
different interaction levels (mission, operation, task, and action). The activities are
based on capabilities derived from the component functionalities.

The capabilities are in turn grouped in order to build an agent. The plan of the
agent is built according to the mission goals of the AMR. A database stores the
knowledge representation of the entire AMR.

3.2 Hierarchical Control

This Subsection presents hierarchical control aspects of the ICA by explaining de-
tails of the system architecture integration, AMR hierarchy, and agent anatomy.

3.2.1 System Architecture Integration

Figure 3.3 shows the operation principles of the AMV system. This figure is ex-
plained by dividing it into two areas: the top part and bottom part. The former
depicts how the system works at the planning level. The latter depicts how the
system works at the execution level.

Fig. 3.3 High-low-level agent integration

3.2 Hierarchical Control 15

Figure 3.3 presents the existing connections between the planning and execu-
tion levels. The concept shown in this figure can also be applied to the internal op-
eration of an agent, i.e. internal planning and execution of agent tasks in a similar
way (strategy) as it is happens in a team of agents.

At the left bottom of Figure 3.3, the network of platform services performs the
activities required by the plan (the left top). There is a one-by-one relation
between activities and services as shown in the figure. The activities are only trig-
gered when pre-conditions are met. They also generate post-conditions. Pre-
conditions are usually evaluated by “if-then” conditional sentences on states of
data, and objects. Post-conditions normally result in new states of data, and ob-
jects that are used to evaluate the next pre-conditions. Goals are states, so every
intermediate state reached can be considered as sub-goals achieved.

On the right of Figure 3.3 is a description of what a capability is, and the two
levels it covers. At the right bottom, the network of platform services is the func-
tionality that the system (AMV), subsystems (OCU, ASC, or IAUV), subsystem
nodes, and node components provide. At the right top, the activities are hierarchi-
cally categorized as missions, operations, tasks, and actions. Thus, a capability is
built of activities and functionalities (services).

The capability anatomy is depicted in Figure 3.4. Capabilities are basically di-
vided into two main parts: activity and functionality (service), and are triggered by
messages. Activities are carried out by services. Thus, capabilities can be seen
from a dynamic viewpoint; activities, and from a static viewpoint; services.

Fig. 3.4 Capability anatomy

As capabilities are built of services, they also follow the classification for ser-
vices as to hierarchical decomposition as presented in the following Chapter.
Therefore, the ICA has two types of capabilities:

16 3 Intelligent Control Architecture

• Basic capability: They are indivisible. Therefore, they are the atomic elements
of AMR platform in which the ICA is based on.

• Composite capability: They are composed by in other capabilities (basic or
composite capabilities).

Following the above classification, capabilities are classified following the hi-
erarchical categorization:

• A mission capability is composed of one or more Operation capabilities
• An operation capability is composed of one or more Task capabilities
• A task capability is composed of one or more Action capabilities
• An action capability are the atomic part of the capability hierarchy

The first three capability classifications are composite capabilities, and the last
one is a basic capability. The mission and operation capabilities are designed by
wrapping high-level functionalities and operability. The task and action capabili-
ties are designed by wrapping low-level functionalities and operability that pro-
vide the platform components.

3.2.2 Autonomous Marine Robot Hierarchy

Advanced computational systems such as multi-agent systems are suitable to im-
plement biological organizations inspired from social behaviour of their members
who can be organized in group, community, etc. according to their role in the sys-
tem. This enables the system to define an organizational hierarchy, and be part and
whole of the system at a time.

Holonic structures offer a powerful abstract modelling for large complex sys-
tems. An architectural approach to support the above structure in agency (agent
community) with collective behaviour exhibited by groups of agents is by means
of holonic systems. The main representational concern in this approach is that in-
teracting agents with particular skills behave as if they were a single entity. Based
on the holon concept, elementary entity of a holonic system, groups of agents can
be organized in a team of coalesced agents. A holon keeps structural self-
similarity by being composed of holons as sub-structures. This hierarchical rela-
tionship can be extended recursively, and is called holarchy. Thus, a holon can be
seen either as an autonomous individual entity or as a hierarchical organization of
sub-holons, according to the viewpoint chosen [35].

Figure 3.5 shows the hierarchical multi-agent or holonic system defined for
TRIDENT [1]. The OCU agent is at a higher control level where it supervises be-
haviour of the other two agents (ASC and IAUV). Of course, each agent keeps
autonomy all the time but in term of organization, the OCU implements organiza-
tional techniques to facilitate the interaction among agents, i.e. communication,
coordination, cooperation, and collaboration.

3.2 Hierarchical Control 17

Fig. 3.5 Multi-agent hierarchy

Based on the above holonic structure, the following Subsections describe de-
tails of design as to the external behaviour of the AMR agents. They are focused
on the mission and operation capabilities provides by the AMR system.

Therefore, planning approach is a global planning for local plan where there are
basically two planning: the global plan for the OCU, and the local plans for the
ASC and IAUV. They are presented in Section 7.

3.2.3 Foundations for the Agent Structure

The foundations of the ICA have multi-disciplinary nature. It comes from the ro-
botics, cognitive science, and computer science. Therefore, the ICA development
is based on the following architectural representations: robotic, cognitive, and
agentic models. There are currently different reference models for each of the
above representational descriptions. In particular, the ICA combines the following
approaches.

A robotic architecture which is a hybrid approach composed of three-layer ar-
chitecture (Planning, Sequencing, and Skill) plus a knowledge block; World
Model. Figure 3.6 shows this combined architecture (top left).

18 3 Intelligent Control Architecture

A cognitive architecture built of two blocks: TBox and ABox which are part
of the knowledge representation based on description logics in Figure 3.6 shows
the elements of this cognition process (top right).

An agentic architecture based on the Belief-Decide-Intention (BDI) software
model. The agent structure is shown in Figure 3.6 (bottom). It is built of well-
defined blocks, i.e. Belief, Desire (goal), and Intention blocks. Additionally, there
are Interpreter and Plan blocks.

Fig. 3.6 Architectural drivers for the agent structure

Situation Awareness (SA) is the ability to be aware of and understand what is
happening in the surroundings of an agent, both at the present time, and in the fu-
ture through prediction. This capability allows systems to understand dynamic and
complex environments, and operate with them. It can be divided into three sepa-
rate levels: perception of the elements in the environment, comprehension of the
current situation, and projection of future status. SA involves the events, states,
condition, and activities of the environment dynamics as to time and space from
which some situations arise (in particular those changes that occurred in the envi-
ronment over some time interval). A situation is defined by a specific state after a
sequence of events (with intermediate states, and activities with pre and post con-
ditions). The situation is concerned with the comprehension of the environment
features, and with the evolvement of these features over time [36].

3.2 Hierarchical Control 19

SA is essential for decision makers. Within an agent, the decision making cycle
is defined by four basic stages: Observation-Orientation-Decision-Action (OODA)
loop. The Observation stage is the SA perception level. The Orientation stage
takes into account the information acquired from the Observation stage and the
knowledge of the agent, to understand the situation (SA comprehension level).
The Decision stage is carried out at the SA projection level. The Action stage
closes the OODA loop by carrying out actions according to the environmental
adaption made in the previous stage.

The mapping of the SA and OODA concepts onto the BDI agent architecture is
as follows. The Belief block represents the informational state of the agent, and
describes the known state of the world (the world model). It matches the SA per-
ception and comprehension levels or OODA observation and orientation stages.
The Desire block represents the motivational state of the agent (goals or situations
that the agent would like to accomplish). The Intention block represents the delib-
erative state of the agent (what the agent has chosen to do). It corresponds to the
SA projection level or OODA decision and action stages. The Interpreter block
maps to the agent reasoner.

The above approach endows the agent with initiative. Decision making mecha-
nisms are critical for problem-solving processes that are preformed every time an
agent receives a mission to be carried out.

3.2.4 Agent Anatomy

The agent anatomy is depicted in Figure 3.7. It shows the internal structure of the
service-oriented agent. There is one agent per marine vehicle. This figure encom-
passes three architectural models mentioned above:

• A block-layered robotic model as shown in the centre of Figure 3.7
(linked to the model shown in the top-left of Figure 3.6) with the follow-
ing blocks: units of planning (deliberation), sequencing (execution), skill
(behaviour), and a world model. In addition, a user interface is taken into
account.

• A description-logics model as shown in the top-left of Figure 3.7 (linked
to the model shown in the top-right of Figure 3.6) which involves the fol-
lowing blocks: deliberation unit (mission reasoner), and world model
(mental model; ontology).

• A model with the logical structure of BDI agents as shown in Figure 3.7
(linked to the model shown in the bottom-centre of Figure 3.6): beliefs,
desires, interpreter, intentions, and plans.

20 3 Intelligent Control Architecture

Fig. 3.7 Agent anatomy

The five main blocks (identified as SysML packages, i.e. “pkg”) in the agent
anatomy shown in Figure 3.7 are:

User Interface. The end user is able to deal with the mission, and visualize the
mission results through an Operator Control Unit (OCU), e.g. seabed map (image
mosaicking), scene and objects characterization, etc.

Deliberation Unit. This has basically three components: the mission communica-
tor, the mission planner and the mission reasoner. The mission communicator,
which includes the communication manager (wired and wireless communication
channels), communicates with the human operator and with the marine vehicles
through the social model. The mission planner, which includes the resource man-
ager, helps to selects the agent capabilities required to take actions according to
the decisions made by the agent interpreter. The mission reasoner, which includes
the agent interpreter, reads the data perceived from sensors, interprets them ac-
cording to the knowledge embedded in the mental model, and makes the decision
of what to do next. The mission planner output is a plan (list of activities to be
carried out by the spooler).

Execution Unit. This is in charge of dealing with the execution of the agent ser-
vices. The execution is according to the plan generated in the mission planner, and
it is executed by the mission spooler. The mission spooler is responsible for par-
celing out activities listed in the mission plan for execution by platform services.

«module»
Mission
Planner

«module»
Mission
Spooler

«module»
Social
Model

«module»
Service

Matchmaker

«module»
Geospatial

Model

«module»
Mental
Model

pkg World Model

Agent Beliefs

pkg Deliberation Unit

pkg Execution Unit

pkg Behavior Unit

pkg User Interface

Agent Desires

Agent Plans

Agent Interpreter

Pool of Services

«agent»
Operator

Control Unit

Agent Intentions

«module»
Mission

Reasoner

«module»
Mission

Communicator

«module»
Health

Monitor
«module»

Maintenance
Console

Steps of operation:
Services are advertised and discovery by means of the service matchmaker.
The operator sets the mission, and communicates it to the team of agents (AMVs).
Each agent (AMV) queries itself in order to know how to deal with the given mission.
Capabilities required by the mission are checking for availability.
The planner sends the mission plan to the mission spooler for execution.
The mission spooler checks status of services though the service matchmaker.
The mission spooler executes task as planned by invoking services.

3.2 Hierarchical Control 21

The health monitor deals with the status of the platform services by keeping re-
cord of the vital working conditions. It implements the fault diagnosis techniques.

Behaviour Unit. The pool of services of the agent depends on the marine vehicle
it is deployed on. They are services at the vehicle level. In the case of the ASC the
services provided are: navigation, behaviour management, waypoint list setting,
and acoustic/radio communication. In the case of the IAUV the services provided
are: navigation, path plan setting, maps generation, seabed data collection,
scene/object identification, visual docking, manipulation, grasp specification, and
acoustic/radio communication.

World Model. This is a central repository built from the following models. (1) So-
cial Model. It describes the social context which the agent inhabits and interacts
with. It is built of the agent directory module which includes the service registry. (2)
Mental Model. It describes what the agent is able to know about itself. (3) Geospa-
tial Model. This contains environmental data collected by sensors (perception).

The steps of agent operation are as follows:

1. Advertisement and discovery of services
The first operation step is performed just after the subsystem (only marine vehi-
cles; ASC or IAUV) is switched on. The platform services are advertised to the
match maker, and so discover by the subsystem and other services in order to
know which of them are available or any other status they may have. They are
able to create dependencies as needed but they are not executed. They just wait
for that order which comes from the mission spooler later on. Thus, the pool of
services is in an idle state waiting for execution.

2. Mission selection
The second operation step is performed after the subsystem (only marine vehicles;
ASC or IAUV) has taken note of the available services and their status. The end
user selects the mission to be carried out through the operator console which then
communicates with the marine vehicle in order to let them know about the mission
request.

3. Query on the mental model for capabilities required
The third operation step is performed after the subsystem (only marine vehicles;
ASC or IAUV) has received the order to carry out the mission given. The mission
planner queries the mental model by means of the mission reasoner in order to get
the know-how to carry out the mission. The mental model provides to the mission
planner with a kind of “recipe” involving (sub)goals, (sub)capabilities; activities
plus functionalities, and (sub)conditions.

4. Query on the matchmaker for service availability
The fourth operation step is performed just after the subsystem (only marine
vehicles; ASC or IAUV) is switched on. The mission planner checks the plan
consistency (based the capabilities required to carry out the mission) against the

22 3 Intelligent Control Architecture

record kept by the match maker. The platform services are basically available or
not available. When they are available, the mission planner must check their
health status in order to know if he can really make use of them. If there is any
problem to execute the services or if they are unavailable, the service matchmaker
proceeds to find any other capability that can replace the required one. If no capa-
bility are available at all, the service matchmaker must decide what to do the plan
(if it is still viable or not), and communicates to the rest of the system (AMR).

5. Plan ready for spooling
The fifth operation step is performed after the subsystem (only marine vehicles;
ASC or IAUV) has checked the plan consistency. The mission planner builds the
plan based on the platform capabilities, and then sends it to the mission spooler for
execution.

6. Retrieval of more details about the services
The sixth operation step is performed after the subsystem (only marine vehicles;
ASC or IAUV) is ready to implement the mission plan given. The mission spooler
retrieves the all the information needed to execute the services from the match-
maker, i.e. based on the service name, the mission spooler makes a query for sta-
tus, and invocation method for each service in order to create the execution queue.

7. Plan spooling as services execution
The seventh operation step is performed after the subsystem (only marine vehi-
cles; ASC or IAUV) is ready to execute the platform services. The mission spooler
invokes the platform services according to the mission plan, and taken into ac-
count the health of the services

The health monitor keeps watching over the entire subsystem by detecting po-
tential faults, and notifying them to the spooler as well as the mission planner.

3.2.5 Agent Dependability

Intelligent agents are developed to cope with uncertainty and abnormal situations.
A robust marine robot is that can survive and fulfil its missions despite unforeseen
contingencies such obstacles, rough seafloors, and even failures. Thus, robotic ro-
bustness is the ability to deal with adverse environments, and any failure whilst
providing an acceptable serviceability. Therefore, intelligent agents can be more
or less dependable based on the above robustness statement.

All the above contingencies are considered as faults. The challenge for intelli-
gent agents is to know how to deal with the faults found whilst autonomous opera-
tion. In terms of faults management, two main process stages can be defined:
diagnosis and mitigation.

Diagnosis (identification)
• Detection
• Classification (localization or Isolation)
• Analysis

3.2 Hierarchical Control 23

Mitigation (Means)
• Fault prevention
• Fault tolerance
• Fault removal
• Fault prediction

The faults management process affects to the following agent features: auton-
omy, architecture, and deliberation. Thus, to keep stable autonomy, the architec-
ture has to efficiently deal with the deliberative process in an agent. In particular,
with the decision-making capability in order to not only plan the right activities to
be performed but besides increase the likelihood of being successful. Addressing
this issue, this report version only takes into account the fault tolerance mitigation
applied to the agent planning. To deal with the fault management, a fault-tolerant
planning performs diagnosis in order to identify the faults, and then mitigate them
by some recovery mechanisms.

Faults Diagnosis. The key step of this diagnostic mechanism of faults identifica-
tion is the first step above defined, i.e. faults detection. The faults detection tech-
niques supported by the agents implemented in the ICA are as follows:

• Watchdog timing.
• Consistency analysis.
• Effectiveness detection.
• Malfunction detection.

Faults Recovery. There are two basic robustness techniques to recover from a
plan failure caused by adverse situations [43]:

• Re-planning. It consists in developing a new plan from the current system
state, and still unresolved goals. Depending on the planning model com-
plexity, re-planning may be significantly time costly. Other system activi-
ties are thus generally halted during re-planning.

• Plan repair. It may be attempted before re-planning, with the aim of
reducing the time lost in re-planning. It uses salvageable parts of the pre-
vious failed plan that are executed while the rest of the plan is being re-
paired. However, if reducing the salvaged plan conflicts with unresolved
goals, plan repair is stopped and re-planning is initiated.

Faults Classification (adapted from [44])

• Nature
o Unintentional (chance)
o Intentional

• Perception
o Conceptual
o Logical
o physical

24 3 Intelligent Control Architecture

• Boundary
o Internal (inter)
o External (intra)
o (supra)

• Origin
o Development
o Deployment
o Sustainment (Operation)

• Occurrence
o Non-periodic
o Sporadic
o Aperiodic
o Periodic

• Hierarchy
o Mission
o Operation
o Task
o Action

3.3 Knowledge Representation

This Subsection presents architectural aspects of the knowledge representation as
well as details of the ontology defined for the ICA.

3.3.1 Cognitive Conceptualization

The knowledge representation in the ICA utilizes ontologies. The main ontology
elements are concepts (classes), properties, instances (individuals), and assertions.
A concept represents a set of entities or things within a domain. Properties define
either relations between an individual and a value, or between two individuals;
called data type properties, and object properties, respectively. Knowledge repre-
sentation based on description logics has a block called TBox which defines the
concepts and properties in a domain in addition to specifying terminological axi-
oms for every atomic concept (Figure 3.8). Axioms are used to constrain the
range, and domain of the concepts, e.g. an IAUV is a marine vehicle that has
navigation capabilities. A block called ABox contains a finite set of assertions for
the classification of individuals, and the properties they have. The combination of
the TBox and the ABox forms the knowledge base that can be described with on-
tologies. Inference over the ontology is provided by a reasoner.

3.3 Knowledge Representation 25

Fig. 3.8 Knowledge representation structure based on description logics

Situation Awareness (SA) is the ability to be aware of and understand what is
happening in the surroundings of an agent, both at the present time, and in the fu-
ture through prediction [23]. This capability allows systems to understand dy-
namic and complex environments, and operate with them. It can be divided into
three separate levels: perception of the elements in the environment, comprehen-
sion of the current situation, and projection of future status [24]. The decision
making cycle is defined by four basic stages: Observation-Orientation-Decision-
Action (OODA) loop [25]. The Observation stage is the SA perception level. The
Orientation stage takes into account the information acquired from the Observa-
tion stage and the knowledge of the agent, to understand the situation (SA com-
prehension level). The Decision stage is carried out at the SA projection level. The
Action stage closes the OODA loop by carrying out actions according to the envi-
ronmental adaption made in the previous stage.

The two above concepts, SA and the OODA loop, are the foundation of AMRs.
The SA levels for individual unmanned vehicle systems range from fully human
controlled to fully autonomous unmanned capabilities [26].

The ICA is based on agents that apply the above SA and OODA concepts. The
agent structure selected for the current approach implements a BDI-based architec-
ture. This architecture is built of well-defined blocks, i.e. Belief, Desire (goal), and
Intention blocks. Additionally, there are Interpreter and Plan blocks. The mapping of
the SA and OODA concepts onto this architecture is as follows. The Belief block
represents the informational state of the agent, and describes the known state of the
world (the world model). It matches the SA perception and comprehension levels or
OODA observation and orientation stages. The Desire block represents the motiva-
tional state of the agent (goals or situations that the agent would like to accomplish).
The Intention block represents the deliberative state of the agent (what the agent has
chosen to do). It corresponds to the SA projection level or OODA decision and ac-
tion stages. The Interpreter block maps to the agent reasoner.

There are three ontology levels: foundation/upper, core/domain, and applica-
tion. The ICA only develops core and application ontologies since the founda-
tional (or upper) ontology represents the very basic principles to ensure reusability
across different domains.

26 3 Intelligent Control Architecture

3.3.2 Foundation Ontology

To lay the foundation for the knowledge representation of unmanned vehicles,
consideration was placed on the Joint Architecture for Unmanned Systems
(JAUS). This was originally developed for the ground domain only, and has re-
cently been extended to all domains trying to provide a common set of architec-
ture elements and concepts [8].

The JAUS model separates the service-oriented agents, called Functional
Agents, in six different functional sets: Command, Telecommunications, Mobility,
Payload, Maintenance and Training. It also classifies four different sets of Knowl-
edge Stores: Status, World map, Library and Log. Our experience has shown that
an overlap exists between these different sets of knowledge stores. The approach
proposed in this book provides more flexibility in the way the information can be
accessed and stored, while being JAUS compliant at the communication level be-
tween agents.

Core Ontology

Within the proposed framework, JAUS concepts are considered as the foundation
for the knowledge representation. The core ontology developed in this work extends
these concepts while remaining focused in the domain of unmanned systems.

The knowledge concepts identified as essential parts for maritime systems as
vehicles, measurable parameters that are related with this domain are:

Platform: Static or mobile (ground, air, underwater vehicles).
Payload: Hardware with particular properties, sensors or modules.
Module: Software with specific capabilities.
Sensor: A device that receives and responds to a signal or stimulus.
Driver: Module for interaction with a specific sensor/effector.
Waypoint: Position in space with coordinate and tolerance.
Coordinate: Local frame, global frame, angular.
Velocity: Linear, angular.
Attitude: Roll, pitch, yaw.

The conceptual structure of the core ontology focuses on the AMR system. The
following classification of concepts describes the structure of the core ontology:

System context
o Environment (sensing/actuating)
o Stakeholders (end user interface)
o Other systems

System architecture
o Structural description

 Composition
• Data (observation + ...)
• Software (modules, services, agents)
• Hardware
• Mechanics

3.3 Knowledge Representation 27

 Topology (JAUS; systems, subsystem, nodes, compo-
nents)

 Messages (JAUS)
 System platform elements (group of vehicles, vehicle,

device, transducer)
o Behavioural description

 Transitions (Events)
 States
 Processes (of services or activities; mission, operation,

task, action)
System mission

o Goals
o Plans
o Capabilities (including payload)
o Targets (physical objects)

System status

Figure 3.9 shows the main classes of the Core Ontology. This class is the entry
point to the core ontology since the concepts shown are connected to (depend on)
the central entity which is called “thing”. This means that any entity (or concept)
is a thing. Each of these main entities is developed in details in Appendix A.

Fig. 3.9 Main classes of the core ontology

28 3 Intelligent Control Architecture

Figure 3.10 shows the relations (properties) among the core ontology individu-
als (focus on capabilities). The most important cross-entity relation is that between
‘system capability’ and ‘system mission’.

Fig. 3.10 Relations (properties) among the core ontology individuals (focus on capabilities)

Application Ontology

Application concepts are handled at the executive layer and are used to ground the
abstract concepts managed by the agents running in the vehicle. Application con-
cepts are specific to the expertise or service provided by each of the intelligent
agents. In the case study presented in this book, these agents are the OCU, ASC,
and IAUV. These agents make use of the proposed framework and allow the tran-
sition from the Deliberative to the Action phase of the OODA loop [25].

The most important concepts identified for service-oriented distributed mission
planning are:

Resource: state of an object (physical or abstract) in the environment (vehicle,
position, sensor, etc.)

Action: Capability to modify the state of resources (calibrate, classify, explore, etc.)

Plan: A list of time slots containing sequences of instantiated actions

Execution: When an action instantiation is executed successfully
The design of the ontologies encapsulating the knowledge handled by the above

agents is described as follows.
The conceptual structure of the application ontology focuses on the AMR sys-

tem mission. The following classification of concepts describes the structure of the
application ontology:

3.3 Knowledge Representation 29

Missions
o Goals
o Plans
o Core ontology: Capabilities
o Activities

 Messages (commands linked to platform capabilities)
 Core ontology: Services

Figure 3.11 provides a global and extensible model into which data originating
from distinct sources can be mapped and integrated. The knowledge representa-
tion in this level is given by a common set of architecture elements and concepts
from JAUS.

Fig. 3.11 Application ontology

The application ontology (Figure 3.12) provides an underlying formal model
for tools that integrate source data, and perform a variety of extended functions.
The application concepts are handled at the executive layer and are used to ground
the abstract concepts managed by the agents running in the vehicle.

Application concepts are specific to the expertise or service provided by each
of the intelligent agents. In the case study presented in this book, these agents are
two marine vehicles, and the operator console. These agents make use of the pro-
posed framework and allow the transition from the Deliberative to the Action
phase of the OODA loop [23].

30 3 Intelligent Control Architecture

Fig. 3.12 Relations (properties) among the application ontology individuals

3.4 Knowledge Reasoning

The human operator sets the mission to be carried out through the OCU. He/she
commands this order to communicate to the maritime vehicles (ASC and IAUV),
through the mission communicator to the mission planner, the mission assigned.
After setting the mission to be carry out, many questions come up. The first ques-
tion is that to know whether or not a maritime vehicle is really able to carry out
such a mission of part of it. The answer to this question comes from the maritime
vehicle that responds based on knowledge about itself as a potential platform suit-
able (capabilities represented by the pool of services) of successfully performing
the tasks required. Then, the following questions are: what capabilities are re-
quired from the vehicle platform? Can the vehicle do the job (mission) in a time
period? Etc. These questions are made by means of the reasoner that interacts with
the mental model in order to know the answer. Then, the answer is passed to the
mission planner which begins to make the plan based on the information obtained
from reasoning and the social and geospatial models.

Initially, two possible approaches for planning based on knowledge representa-
tion (same ontological database for the OCU, ASC, and IAUV) are proposed:

Built-in Plans. Description of the predefined plans in the ontological database, re-
trieval of the plan, and then checking capabilities supported by the vehicles to
execute the plan.

Built-on-Demand Plans. Build the plans based on queries performed against the
ontological database by using a forward search algorithm. Then, check consis-
tency against the capabilities available in the system platform.

3.4 Knowledge Reasoning 31

3.4.1 Built-in Plans

The queries to be performed against the ontological database in order to deal with
built-in plans are in the following order.

1. Does the marine vehicle have any predefined plan to tackle the mission
operation given? If so, retrieve the plan, and go to the next query. If not,
the marine vehicle is not able to carry out the mission operation due to
lack of plan, and then notify it to the rest of the system. The query select
statement to answer this question is as show in Query 1.
 ? ? ? { 0 : ℎ (? ?) ∧ : ℎ (?)

Query 1. Formal search sentence for predefined plan.

2. Does the marine vehicle have the capabilities to implement the plan re-
trieved? If so, return successfully, and go to the next query. If not, the
marine vehicle is not able to carry the mission operation out due to lack
of one or more capabilities need, and then notify it to the rest of the sys-
tem. The query select statement to answer this question is as show in
Query 2.
 ? ? { : (? , :) ∧ : ℎ (? ?)

Query 2. Formal search sentence for capabilities in the platform (marine vehicle).

3. What are the pre-conditions and post-conditions of every plan activity?
Retrieve pre-conditions and post-conditions according to the activities
specified in the plan. The query select statement to answer this question
is as show in Query 3.
 ? ? { : ℎ (? ?) ∧ : ℎ (? ?)

Query 3. Formal search sentence for pre and post conditions of activities.

The reasoning algorithm for the built-in planning is shown in Algorithm 1
where m is a mission, s is a state reached in a plan, π is a plan, c is a capability, o
is an operation, ai is the ith activity, A is a set of activities, prec is a pre-condition,
and postc is a post-condition.

32 3 Intelligent Control Architecture

3.4.2 Built-on-Demand Plans

The queries to be performed against the ontological database in order to deal with
built-on-demand plans are in the following order.

1. Does the marine vehicle have any plan to tackle the mission operation
given? To answer this question a search algorithm performs queries on
the ontological database in search of activities that satisfy the intermedi-
ate goals placed between the initial goal and the end goal (mission goal).
The first activity chosen is one that has the initial goal as a pre-condition,
the second activity is one that has the post-condition of the first one as a
pre-condition, and so on. Thus, sub-goals are chained by listing activities
in a certain order. If it is possible to go from the initial goal to the end
goal by means of selecting activities, then a plan can be defined; go to the
next query. If not, the marine vehicle is not able to carry the mission op-
eration out due to lack of a plan, and then notifies the rest of the system.
The query select statement to answer this question is as show in Query 4.
 ? ? { : ℎ (? ?)}

Query 4. Formal search sentence to build the plan

2. Does the marine vehicle have the capabilities to implement the plan re-
trieved? If so, return successfully, and go to the next query. If not, the
marine vehicle is not able to carry the mission operation out due to lack

3.5 Goal-Driven Capability-Based Planning 33

of one or more capabilities need, and then notify it to the rest of the sys-
tem. The query select statement to answer this question is as show in
Query 5.
 ? ? { : (? , :) ∧ : ℎ (? ?)

Query 5. Formal search sentence for capabilities in the platform (marine vehicle).

The reasoning algorithm for the built-on-demand planning is shown in Algorithm 2.

After answering the above questions, and in either planning approach, the mis-

sion reasoner gets back to mission planner in order to generate the plan.

3.5 Goal-Driven Capability-Based Planning

The planning paradigm is time-constrained with activity scheduling according to
resource availability. The planning nature comes from classical planning with
classical representation [31]. In addition, the planning control strategy is based on
Hierarchical Task Network (HTN).

The initial proposal chosen to approach the internal agent planning is very sim-
ple. It is inspired by classical approach such as the state-space planning with
forward search. The main difference between the classical planning approach con-
sidered and the one proposed is that the search mechanism is replaced by a more
complex paradigm of search based on reasoning.

34 3 Intelligent Control Architecture

Figure 3.13 shows a comparison between the above planning approaches. A block
diagram corresponding to the classical planning is shown on the left and a block dia-
gram corresponding to the planning proposed is shown on the right of the figure.

Fig. 3.13 Conceptual planning model comparison

The main difference between the two planning approaches is that for the descrip-
tion of Σ (set of plans). In a traditional planning model (on the left of Figure 3.13) it
is set by the user of the system (AMR system operator). In the proposed planning
model such description is embedded in the system (AMR system) as knowledge in
the ontological database. The system controller is instructed by the planner to carry
out the task-based plan through activities (actions).

The description of the AMR system is given by the ontological database. The
reasoner queries this ontology in search of solutions for the planning problem. The
initial state of the system is given by the initial states of the marine vehicles, i.e.
ASC and IAUV. The objectives, in a more general way are represented by goals,
where the main goal matches the mission goal that can be divided into sub-goals.

Once the plan is initially pre-defined with the information obtained from the
ontological database, the mission planner checks the plan consistency in terms of
capabilities available in the system platform.

3.6 System Development Process

The system development process has the following typical phases: requirements
analysis (requirements definition, system architecture specification), system de-
sign (architecture design), system realization (architecture realization; Chapter 5),
and system verification/validation (architecture evaluation; Chapter 6).

Planner

Controller

System Σ

Description of Σ

Plans

Actions

Events

Observations

Execution status

Initial state

Objectives

Mission Planner

Mission Spooler
(Controller)

Pool of Services
(System Σ)

Capabilities
(Description of Σ)

Plans

Activities
(Actions)

Events

Notifications
(Observations)

Execution status

Initial state

Mission goal
(Objectives)

Mental Model

Mission Reasoner

Classical planning model Proposed planning model

Queries

Results

3.6 System Development Process 35

Figure 3.14 shows the design methodology for the vehicle intelligent control ar-
chitecture. It involves the first three stages of the development process (user and
system requirements definition, system architecture specification, and system archi-
tecture design). The remaining two stages of the development process are the system
implementation (based on ROS), and the system verification and validation (evalua-
tion scenarios).

Fig. 3.14 First phases of the system development process

«d
ev

el
op

m
en

tS
ta
ge

»
R

eq
ui

re
m

en
ts

 D
ef

in
iti

on
«d

ev
el
op

m
en

tS
ta
ge

»
Sy

st
em

 A
rc

hi
te

ct
ur

e
Sp

ec
ifi

ca
tio

n
«d

ev
el
op

m
en

tS
ta
ge

»
Sy

st
em

 A
rc

hi
te

ct
ur

e
D

es
ig

n

36 3 Intelligent Control Architecture

As shown in Figure 3.14, the development process is divided into two parts.
The first part involves a service-oriented approach, and the ontology design. The
second part (Agent Design) involves an agent-based approach which is built on
the previous approach in order to finally get a service-oriented agent-based archi-
tecture for the AMR system.

User and System Requirements Definition (top of Figure 3.14). The definition
of the requirements consists of statements about the functionality expected from
the system and the constraints under which it must operate. The outcomes ob-
tained from this phase are:

• Intermediate results (white rectangle boxes)
o Identification of Stakeholders
o System context diagram
o Identification of actors
o External system interfaces (environment, stakeholder, other systems)
o Use cases

• End results; incoming information required by the next phases (grey rectangle
boxes)

o Scenarios (interaction diagrams from use cases)
o Perception/Actuation
o Missions, goals and high-level functionalities

System Architecture Specification (middle of Figure 3.14). The specification of
the SOA consists of defining in details of all the available services in the system.
It is based on the information provided by the user and system requirement defini-
tion. The outcomes obtained from this stage are:

• Intermediate results (white rectangle boxes)
o System structure diagram
o Components network (components and connectors)
o Low-level protocols (from system components)

• End results; incoming information required by the next phases (grey rectangle
boxes)

o System components
o Low-level functionalities (from system components)
o Data coupling among components

System Architecture Design (bottom of Figure 3.14). The design the SOA con-
sists of describing all the above services by focussing on their orchestration and
choreography. The former deals with the composition of service process (multiple
encapsulations at runtime). The latter deals with the interaction among services
processes when they are executed in parallel (how they exchange information,
i.e. messages, protocols and models of communication).

3.6 System Development Process 37

• Intermediate results (white rectangle boxes)
o Orchestration and choreography of services (Interactions among ser-

vices; protocols)
• End results; incoming information required by the next phases (grey rectangle

boxes)
o Services (interfaces; data & events). Basic services (from low-level

functionalities) & composite services (from low-level functionalities)
o Communication patterns for communication among services

Knowledge representation (information collected from the different develop-
ment phases).

	3 Intelligent Control Architecture
	3.1 Architectural Foundations
	3.2 Hierarchical Control
	3.2.1 System Architecture Integration
	3.2.2 Autonomous Marine Robot Hierarchy
	3.2.3 Foundations for the Agent Structure
	3.2.4 Agent Anatomy
	3.2.5 Agent Dependability

	3.3 Knowledge Representation
	3.3.1 Cognitive Conceptualization
	3.3.2 Foundation Ontology

	3.4 Knowledge Reasoning
	3.4.1 Built-in Plans
	3.4.2 Built-on-Demand Plans

	3.5 Goal-Driven Capability-Based Planning
	3.6 System Development Process

