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Fuzzy Natural Logic: Towards Mathematical
Logic of Human Reasoning

Vilém Novák

Abstract One of the often repeated proclaims appearing in the papers on fuzzy sets
and fuzzy logic is their ability to model semantics of some linguistic expressions so
that the inherent vagueness of the former is also captured. Recall that this direction
of research was initiated by L.A. Zadeh already in his early papers and since then,
most of the applications of fuzzy sets emphasize presence of natural language, at
least in hidden form. In this paper we argue that the potential of fuzzy set theory
and fuzzy logic is strong enough to enable developing not only a working model of
linguistic semantics but even more—to develop a model of natural human reasoning
that proceeds in natural language. We bring forward the concept of fuzzy natural
logic (FNL) that is a mathematical theory whose roots lay in the concept of natural
logic developed by linguists and logicians. Of course, this cannot be realized without
cooperation with linguists. On the other hand, it seems reasonable not to try to solve
all the problems raised by the linguistic research but rather to develop a simplified
model that would capture the main features of the semantics of natural language and
thus made it possible to realize sophisticated technical applications. In the paper,
we will show that basic formalism of FNL has already been established and has
potential for further development. We also outline how model of the meaning of
basic constituents of natural language (nouns, adjectives, adverbs, verbs) can be
developed and the human-like reasoning can proceed.
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8.1 Fuzzy Set Theory, Natural Language
and Human Reasoning

8.1.1 Motivation and History

Fuzzy set theory is the basis of methods that can be, in general, divided into two basic
classes: (a) methods with linguistic motivation, and (b) methods with non-linguistic
motivation. Typical example of (b) is fuzzy clustering (Cf. e.g., [16]), or the new and
very powerful fuzzy transform (See, e.g., [53]).

This paper is focused on methods (a) with linguistic motivation. We suggest, as
a possibility for future research, to focus on fuzzy natural logic (FNL)—the logic
of natural human reasoning for which it is typical to use natural language. Our
suggestion stems from the claim that fuzzy set theory has potential to serve as a good
tool for modeling of linguistic semantics. This was argued by L.A. Zadeh in many
of his papers since the very beginning (Cf. e.g., [63, 65, 66, 68]). It should also be
noted, that the first necessary steps towards FNL have already been done.

The problem, however, is not so easy and it requires close cooperation with lin-
guists. Zadeh suggested two simplified paradigms: computing with words (Cf. [69])
and precisiated natural language (See [70]). In the first case, it is assumed that we
should confine to a small number of special linguistic expressions. In the literature,
one can meet the term “linguistic label” (Cf. [23, 26, 64]). From the linguistic point
of view, these are expressions consisting of degree or evaluative adjective together
with (possibly) some hedge. This model, however, is oversimplified and one encoun-
ters quite often that the authors have in mind not the given linguistic expressions but
linguistically named linearly ordered evaluative categories that are used in various
kinds of questionaries. These are introduced to simplify the respondent’s work. For
example, instead of using the numbers 1–5, one is suggested to consider them as
typical examples of very small” (1), “small” (2), “medium” (3), “big” (4) and “very
big” (5). These categories are then taken as imprecise quantities whose meaning is
modeled using triangular fuzzy sets. We cannot speak in this case, though, that we
are using natural language.

The concept of a precisiated natural language is wider and it suggests to develop
a “reasonable working formalization of the semantics of natural language without
pretensions to capture it in detail and fineness.” The goal is to provide an acceptable
and applicable technical solution. The concept of PNL is based on twomain premises:

(a) much of the world’s knowledge is perception based,
(b) perception based information is intrinsically fuzzy.

It should be noted that the term perception is not considered here as a psycholog-
ical term but rather as a result of intrinsically imprecise human measurement. The
PNLmethodology requires presence of World Knowledge Database and Multiagent,
Modular Deduction Database where the former contains all the necessary informa-
tion, including perception based propositions describing the knowledge acquired by
direct human experience, which can be used in the deduction process. The latter
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contains various rules of deduction. Until recently, however, no exact formalization
of PNL had been developed and so, it should be considered mainly as a reasonable
methodology.

We are convinced that the potential of fuzzy set theory and fuzzy logic is strong
enough to enable developing a working model of linguistic semantics and, on the
basis of that, also a model of natural human reasoning. As has been convincingly
argued by many authors,1 vagueness is an unavoidable feature of natural language
semantics. We argue that the idea of fuzzy sets and fuzzy logic provides a reasonable
model of vagueness.2

Recall that in one of his early papers L.A. Zadeh [67]. suggested to model the
commonsense reasoning. The idea to develop a logical model of the commonsense
reasoning, however, is much older and has been proposed by J. McCarthy in 1959
[29] as a part of the program of logic-based artificial intelligence. Its paradigm is to
develop formal commonsense theories and systems using mathematical logics that
exhibit commonsense behavior. The reason is that commonsense reasoning is a cen-
tral part of human thinking and we cannot imagine a real intelligence without it. The
main drawback of the up-to-date formalizations of commonsense reasoning, in our
opinion, is that it neglects the vagueness present in the meaning of natural language
expressions (Cf. [5] and the citations therein). Therefore, a model of commonsense
reasoning based on fuzzy sets and fuzzy logic can be more realistic.

The above concept was initiated in AI. A related concept came from linguists: in
1970, G. Lakoff published a paper [21] in which he introduced the concept of natural
logic with the following goals:

• to express all concepts capable of being expressed in natural language,
• to characterize all the valid inferences that can be made in natural language,
• to mesh with adequate linguistic descriptions of all natural languages.

Natural logic is thus a collection of terms and rules that comewith natural language
and that allows us to reason and argue in it. According to G. Lakoff’s hypothesis,
natural language employs a relatively small finite number of atomic predicates that
take sentential complements (sentential operators) and are related to each other by
meaning-postulates that do not vary from language to language. The concept of
natural logic has been further developed by several authors.3

In the following subsection and further we will try to convince the reader that it
is reasonable to develop the concept of fuzzy natural logic (FNL) that continues the
mentioned concept of natural logic. We will show that a good portion of work has
already been done.

1Cf. e.g., [60].
2See, e.g., [39] where a well working mathematical model of the sorites paradox (a typical feature
of vagueness) has been proposed. It is also proved in this paper that the developed model copes
with the typical phenomenon of vagueness manifesting itself in the semantics of degree adjectives
(adjectives such as “tall, small”, etc.).
3See, e.g., [25, 58] and elsewhere.
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8.1.2 The Paradigm of FNL

If we put all the ideas above together, we come to the concept of the fuzzy natural
logic as a new theory that should be based on the results of linguists, logicians and
AI specialists in natural logic, logical analysis of natural language (See, e.g. [7].),
and commonsense reasoning. Our suggestion for the future is to develop FNL as an
extension of mathematical fuzzy logic. The partly elaborated constituents of FNL till
now can be summarized as follows:

(a) Formal theory of evaluative linguistic expressions.4

(b) Formal theory of fuzzy IF-THEN rules and approximate reasoning (derivation
of a conclusion) [8, 10, 36, 46, 47].

(c) Formal theory of intermediate and generalized quantifiers [9, 15, 37, 40].

Let us remark that there are some other papers whose topics relate to the topic of
FNL (Cf. [20, 62]). None of them, however, can be considered as a contribution to
the consistent development of FNL as a formal logical theory.

The essential constituent of FNL is amodel of linguistic semantics.Many logicians
and linguists (Cf. [27, 28, 57]) have argued that the first order logic is not sufficient
for this task. A suitable formal system has been chosen as the basis for further
development of FNL is higher-order fuzzy logic called the fuzzy type theory.

8.1.3 Fuzzy Type Theory—The Mathematical Tool for FNL

The main mathematical tool for FNL is the fuzzy type theory (FTT), that is a higher-
order mathematical fuzzy logic. There are more kinds of FTT that differ in the used
algebra of truth values. For FNL, the most important is the Łukasiewicz fuzzy type
theory (Ł-FTT) whose algebra of truth values is formed by an MV-algebra.

In this section we very briefly outline some of the main concepts of FTT. Details
and full proofs of all theorems can be found in the literature [35, 42, 43]. Let us
remark that FTT generalizes the classical type theory.

Syntax of Ł-FTT

The basic syntactical objects of Ł-FTT are classical (See [1].), namely the concepts
of type and formula. The types are special subscripts (denoted by Greek letters)
assigned to all formulas using which we distinguish kinds of objects represented
by formulas. The atomic types are ε representing elements and o representing truth
values. The set of all types is denoted by Types.

The language J of Ł-FTT consists of variables xα, . . ., special constants cα, . . .

(α ∈ Types), the symbol λ, and brackets. We will consider the following concrete

4[39]; see also [38].
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special constants: E(oα)α (fuzzy equality) for every α ∈ Types, C(oo)o (conjunction),
D(oo) (delta operation on truth values) and descriptions operator ιε(oε).

Formulas are formed of variables, constants (each of specific type), and the symbol
λ. As mentioned, each formula A is assigned a type (we write Aα). A set of formulas
of type α is denoted by Formα and a set of all formulas is Form = ⋃

α∈Types Formα.5

Recall that if B ∈ Formβα and A ∈ Formα then (B A) ∈ Formβ . Similarly, if
A ∈ Formβ and xα ∈ J , α ∈ Types, is a variable then (λxα A) ∈ Formβα.

The main connective is equivalence ≡ defined by λxαλyα(E(oα)α yα)xα for all
types α ∈ Types. As usual, we write (Aα ≡ Bα) instead of (≡ Aα)Bα. Note that
this is a formula of type o.

Further connectives are conjunction (∧∧∧ := λxoλyo(C(oo)o yo)xo), implication
(⇒⇒⇒ := λxoλyo (xo∧∧∧ yo) ≡ xo), negation (¬¬¬ := λxo(xo ≡ ⊥)), strong conjunction
(&&& := λxo(λyo(¬¬¬(xo ⇒⇒⇒ ¬¬¬yo)))), disjunction (∨∨∨ := λxo(λyo(xo ⇒⇒⇒ yo) ⇒⇒⇒ yo))
and delta (ΔΔΔ := λxoDooxo). The general (∀) and existential (∃) quantifiers are also
defined as special formulas [35].

The fuzzy type theory has 17 logical axioms. Most of them are introduced to char-
acterize properties of the considered algebra of truth values. For FNL, the considered
algebra is MV-algebra. There are also inference rules:

(R) Let Aα ≡ A′
α and B ∈ Formo. Then infer B ′ where B ′ comes from B by

replacing one occurrence of Aα, which is not preceded by λ, by A′
α.

(N) Let Ao ∈ Formo. Then, from Ao inferΔΔΔAo.

The inference rules of modus ponens and generalization are derived rules in Ł-FTT.
The concepts of provability and proof are defined in the same way as in classical
logic. A theory T over Ł-FTT is a set of formulas of type o (T ⊂ Formo). By
T � Ao we mean that Ao is provable in T. Many theorems characterizing syntactical
properties of FTT were proved including deduction theorem and other ones.

Semantics of Ł-FTT

The truth values form an MV-algebra (See [4, 49].) extended by the delta operation.
It can be seen as the residuated lattice [13, 35] L = 〈L ,∨,∧,⊗,→, 0, 1,Δ〉. An
important special case is the standard Łukasiewicz MVΔ-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉 (8.1)

where

∧ = minimum, ∨ = maximum,

a ⊗ b = max(0, a + b − 1), a → b = min(1, 1 − a + b),

¬a = a → 0 = 1 − a, Δ(a) =
{
1 if a = 1,

0 otherwise.

5In type theory, all syntactical objects including variables and connectives are taken as formulas.
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We will also consider the operation a ⊕ b = min(1, a + b). This algebra generates
the variety of MV-algebras. Therefore, the MV-operations ⊗,⊕ are often called
Łukasiewicz conjunction and Łukasiewicz disjunction, respectively.

Let J be a language of Ł-FTT and (Mα)α∈Types be a system of sets called basic

frame such that Mo, Mε are sets and for each α,β ∈ Types, Mβα ⊆ M Mα
β , i.e. it is a

set of functions from Mα to Mβ .6 The general frame is a tuple

M = 〈(Mα,=α)α∈Types ,LΔ〉 (8.2)

so that the following holds:

(i) The LΔ is a structure of truth values (i.e., an MV-algebra). We put Mo = L and
assume that the set Moo ∪ M(oo)o contains all the operations from LΔ.

(ii) =α is a fuzzy equality on Mα and =α∈ M(oα)α for every α ∈ Types.

A general model is a general frame M such that for every Aα, α ∈ Types inter-
pretation Mp gives

Mp(Aα) ∈ Mα

where p is an assignment of elements from the sets Mα to variables (depending on
the given type). This means that each set Mα from the frameM has enough elements
so that the interpretationMp(Aα) is always defined. A general modelM is a model
of a theory T , M |= T , if M(Ao) = 1 holds for all axioms of T . If Ao is true in
the degree 1 in all general models of T then we write T |= Ao.

Let T be a theory. A formula Ao is true in the degree a ∈ L in T , if

a =
∧

{Mp(Ao) | M |= T, p ∈ Asg(M)}. (8.3)

In this case, will write T |=a Ao. If a = 1 then we omit the subscript.
The following completeness theorem was proved (See [35, 43]).

Theorem 1 (completeness)

(a) A theory T is consistent iff it has a general model M.
(b) For every theory T and a formula Ao

T � Ao ⇐⇒ T |= Ao.

The completeness theorem is an important result assuring us that FTT is a well
founded mathematical tool that can be used for the development of FNL.We are thus
able to formulate many results syntactically and, at the same time, to be sure that
our results hold in all models. Hence, FNL is very powerful and encompasses most
results in fuzzy set theory obtained semantically. Consequently, we should always
try to formulate our problem syntactically and then use it in semantic interpretation.

6By currying, we may consider only unary functions.
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8.1.4 Future Prospects of Fuzzy Set Theory
in Linguistic Modeling

As one possible direction in the future development of the fuzzy set theory and fuzzy
logic we suggest to focus on fuzzy natural logic. This logic should be developed as
an extension of the mathematical fuzzy logic in narrow sense.

The work on FNL consists of two tasks: (a) development of mathematical model
of linguistic semantics and (b) characterization of fundamental reasoning schemes
of human mind. Both tasks require close cooperate with linguists and logicians.

Natural language, however, is extremely complicated structure with many sub-
tleties and exceptions. Even simple linguistic units, such as evaluative adjectives (e.g.,
“good, interesting”, etc.) can be used in many contexts and ways, their meaning may
depend on the position within topic-focus articulation (Cf. [14]) and so, at present
stagewe can hardly hope to be able to develop amathematical model of the semantics
of natural language that would capture all the details. It is therefore, questionable
whether we should struggle for complete capturing semantics of natural language. It
seems reasonable to relax our requirements and in line with the paradigm of Zadeh’s
precisiated natural language focus on smaller parts of natural language and try only
to capture their essential properties, of course, with the perspective to improve and
deepen continuously the model in parallel with the increase of linguistic knowledge.
Our temporary goal should be to develop the model to such an extent that would
make it possible to apply it in various technical and economical problems.

8.2 Linguistic Semantics and FNL

In this section, we will outline some aspects of linguistic semantics and relate them
to the existing results in FNL. Let us remark that the model of semantics of FNL
stems from the ideas presented in the book [33] on the Alternative mathematical
model of linguistic semantics (AML).

Wewill turn our attention to a selection of specific linguistic units and phenomena,
namely nouns, adjectives, adverbs, hedging and simple noun phrases and other ones.
Our goal is to remind wealth and complexity of natural language and outline some
of the problems and results of linguistic studies. In each case we at the same time
outline how FNL, in its present state, copes with some of the discussed linguistic
phenomena.

We will use the means of fuzzy type theory. Recall that FTT assigns a type to each
formula. To make the notation more readable and transparent, we often introduce the
type of a given formula only in the first occurrence and then write it without the type
assuming that the reader still keeps it in mind.



144 V. Novák

8.2.1 Nouns and Objects

Nouns are names of objects. More specifically, they denote persons, places, things,
events, substances, qualities, quantities, etc. Nouns are original, e.g., “house, horse,
square”, etc. and derived, namely from adjectives, e.g. “redness, beauty, simplicity”,
or verbs (we speak about postverbal nouns), e.g. “jumping, walk, writing”, etc. There
are also proper nouns denoting one specific object, e.g., “Earth, Saturn, Russia” and
common ones that denote a class of objects, e.g., “planet, mammal, street”, etc.

Countable nouns are common nouns that can take a plural, can be combined with
numerals or counting quantifiers (e.g., one, two, several, every, most), and can take
an indefinite article such as “a” or “an” (in languages which have such articles).
Examples of count nouns are “chair, nose, occasion”. Mass nouns or uncountable (or
non-count) nouns differ from count nouns in precisely that respect: they cannot take
plurals or combine with number words or the above type of quantifiers. For example,
it is not possible to refer to a “furniture or three furnitures”. Depending on the kind
of objects, we can also distinguish concrete (e.g., “horse, table, house”, etc.) and
abstract nouns (e.g., “work, idea, feeling, happiness”, etc.).

Objects are entities that can have very complicated properties. In general, an object
is a phenomenon to which we concede its individuality that makes it distinct from
its surrounding. In fact, we can construe arbitrary phenomenon as an object.

Till now, there is no more detailed model of nouns in FNL (or in general fuzzy
set theory). The problem is in finding a satisfactory model of real objects because
of too high complexity of them. It is possible to model some very special objects,
such as 2-D or 3-D geometrical shapes, or so. But in full generality that includes also
abstract objects such as those considered in postverbal nouns is this task so far too
complicated.

In FNL, we suggest a simplification that can work in various AI applications and
elsewhere. Namely, note that each object can be characterized by various kinds of
features (characteristics), for example, “height, nationality, age, weight, strength,
shape, intelligence”, etc. Therefore, we can identify objects with sets of values of
features. Semantically, an object can be represented by a tuple

o = 〈v1, v2, . . . , vn〉 (8.4)

where i = 1, . . . , n are various features characterizing the object and vi are their
values. The n can in principle be even infinity. For example, if i is a feature “length”
then, for example, vi = 1.2m. We can see that the values can be real numbers, or
some other kinds of characteristics. Since the set of real numbers is rich enough to
represent all kinds of values, we will in practice usually take vi ∈ R.

A fuzzy set of objects o in (8.4) forms an extension of a noun if it is determined
with respect to a certain context (possible world). Then an intension of a noun is
represented by a function from the set of all contexts into a set of all objects.

The objects and nouns can be expressed in the syntax of FTT as follows. First,
we must introduce special types:
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(a) ϕ—features of objects. Any formula Aϕ represents some specific feature. Given
a model, the interpretation M(Aϕ) ∈ Mϕ is a unique object representing one
specific feature. In (8.4) it is a given i ∈ {1, . . . , n}.

(b) α—valuesof concrete features.Asmentioned above, in themodelwewill usually
take Mα = R.

(c) Given a feature, it may attain various values dependently on its local context.
Therefore, we will introduce a special type ω for local context of values of
one specific feature. Recall that this type may even be itself more complex, for
example, we may put ω := αo.

(d) ωϕ—global context which covers all features and can be taken as a context of
the whole noun. We will use the variable wωϕ for global contexts. In a model
M, the interpretationM(wωϕ) ∈ Mωϕ is a function that assigns to each feature
from Mϕ a context w ∈ Mω .

(e) (αω)ϕ—type of objects that are elements of an extension of a noun. The objects
are represented by sets of values of features in a global context. We will use
the variable h(αω)ϕ for objects. In a model M, the interpretation M(h(αω)ϕ) ∈
M(αω)ϕ is the tuple of the form (8.4). For example,M(h(αω)ϕ) can be a Swede.

(f) ((oα)ω)ϕ—type of a noun. Any formula S((oα)ω)ϕ represents a formal way how
a noun is construed. Its interpretation in a modelM is a function which assigns
to each feature from Mϕ its intension.

Semantics of nouns

In accordance with the results of analysis done in linguistics and logic, semantics of
expressions of natural language is characterized by the concepts of possible world,
intension and extension. Then, we can formalize semantics of nouns in FNL as
follows.

LetS((oα)ω)ϕ be a formula representing aNoun. For example,Noun can beSwede,
plate, house, etc. Intension of Noun is defined by

Int(Noun) := λwωϕ λh(αω)ϕ · (∀cϕ)(Sc (wc)(hc(wc))). (8.5)

Thus, in a modelM, intension (8.5) of Noun is interpreted by a function assigning
to each global contextM(w) a fuzzy set of objectsM(h). It can be seen from (8.5)
that each feature M(cϕ) is in a local context M(wc) assigned a value M(hc(wc))
which also depends on the context M(wc).

It follows from (8.5) that extension of Noun in a (global) context w is

Extw(Noun) := λh(αω)ϕ · (∀cϕ)(Sc(wc)(hc(wc))). (8.6)

Clearly, in a model M it is a fuzzy set of elements M(h(αω)ϕ).
In this model, we easily obtain semantics of “a Noun” and “the Noun”,7 for

example, “a Swede” and “the Swede”. In the former case, for a given context, the

7We speak about indefinite and specifying grammateme of a noun, respectively, cf. [33, 57].
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interpretation is an element from the kernel of the fuzzy set (8.6) and in the latter
case it is one specific object taken from its support (see below).

8.2.2 Adjectives

Adjectives are names of properties of objects.We can distinguish proper and derived
adjectives. Example of the former are “red, tall, good”, the latter are derived from
other types of words, namely nouns (e.g., wood–wooden, grease–greasy) or verbs
(deverbal adjectives), for example e.g., “smiling, washing.

We can distinguish also are other specific classes of adjectives. Important are (See
[3].) gradable adjectives [2] (also called degree adjectives), for example “hot”“small,
tall”, evaluative adjectives [59], for example “good, awful, fantastic, disasterous”,
andabsolute (non-gradable) adjectives “green, freezing, dead, nuclear”. The gradable
adjectives can still be divided (See [19].) into absolute, for example “bent, straight”
and relative gradable adjectives such as “expensive, tall, strong”, etc.

The accepted hypothesis is that gradable adjectives denote functions that map
objects onto representations of the degree to which they posses some gradable prop-
erty. Hence, gradable adjectives may differ with respect to their scales. This corre-
sponds with our model of objects in FNL outlined above.

Another specific feature of gradable but also of evaluative adjectives [56] are
existence of pairs of antonyms, for example “short–long, clean–dirty, complete–
incomplete”. Antonymous pairs of gradable adjectives can be complementary and
non-complementary. Complementary adjectives are pairs of antonymous adjectives
that are furthermore eachother’s negationon their domain, e.g. complete–incomplete.
Non-complementary adjectives may have an xtension gap which corresponds to the
set of objects that the predicate is neither true nor false of in a particular context
of utterance. This gives rise to what is called in FNL: the fundamental evalua-
tive trichotomy that is a triple of expression consisting of the nominal adjective, its
antonym and a middle member, for example “weak–medium (strong)–strong”, etc.
—see below. Crucially, the positive and negative extensions and the extension gap of
a gradable predicate may vary across contexts of use, becoming more or less precise.
In FNL, we propose a model covering both gradable as well as evaluative adjectives
including also hedging discussed in the next subsection.

A special phenomenon is existence of the comparative and superlative of adjec-
tives. The comparative is a name of a relation that does not necessarily corresponds
with the given adjective. For example, bigger is a name of a relation ≥ that does
not correspond with the adjective “big”. Clearly, if “John is small” and “Charles is
bigger”, it does not imply that “Charles is big” (both John and Charles can be very
small men). The comparative has degrees since we can say, for example, “much big-
ger, a little smaller”, etc. The superlative is derived from comparative and, in fact,
it corresponds to result of maximization (in mathematical sense). No satisfactory
model of comparative and superlative phenomena is in FNL so far suggested.
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8.2.3 Hedging

Hedging is a linguistic phenomenon that is used to specify more or less closely the
topic of utterance. In the theory of fuzzy sets, we learned about hedges being special
adverbs (such as “very, roughly”). However, hedging is a wider phenomenon that
can be expressed by more complex expressions.

Examples of hedging are expressions such as “to some respect, in a sense, a sort
of” but also “very roughly, approximately, more or less, about, almost”. The most
important in hedging is a class of adverbs called intensifying ones, among them we
rank “very, extremely, typically, roughly”, etc.

The concept of hedging was in linguistics in more detail analyzed first by
G. Lakoff [22]. He also noticed that the general effect of hedging is either in inceras-
ing fuzziness (widening effect) or decreasing fuzziness (narrowing effect). Thus,
hedging is an important tool of natural language that enables us to specify more
concretely what we have in mind. We may distinguish narrowing hedges (very,
extremely, significantly, etc.), widening hedges (more or less, roughly, very roughly,
etc.) and specifying hedges (approximately, about, rather, precisely, etc.).

8.2.4 Evaluative Linguistic Expressions in FNL

The analysis of nouns, adjectives and hedges gives rise to a more general concept.
Namely, we can introduce a special class of linguistic expressions called evalua-
tive ones. When putting together properties of gradable and evaluative adjectives
discussed in the literature, we can specify evaluative linguistic expressions as spe-
cial expressions of natural language using which people evaluate phenomena around
them.

They include them the following classes of linguistic expressions:

(i) 〈TE-adjective〉, that belong to a class of special adjectives (TE stands for “tri-
chotomic evaluative”) that include gradable adjectives (big, cold, deep, fast,
friendly, happy, high, hot, important, long, popular, rich, strong, tall, warm,
weak, young), evaluative adjectives (good, bad, clever, stupid, ugly, etc.), but
also adjectives such as left, middle, medium, etc. The TE-adjectives can usually
be grouped to form a fundamental evaluative trichotomy that consists of two
antonyms and a middle member, for example low, medium, high; clever, aver-
age, stupid; good, normal, bad, etc. The triple of adjectives small, medium, big
will further be taken as canonical. An exception are complementary adjectives
mentioned above that lack the middle member.

(ii) Fuzzy numbers. These include all linguistic expressions containing some num-
ber that is often completed by some hedge, for example “three hundred, roughly
one hundred, about twenty five, approximately two million”, etc.

(iii) Simple evaluative linguistic expressions (possibly with signs). They have a
general form
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〈linguistic hedge〉〈TE-adjective〉. (8.7)

From the logical point of view, it is reasonable to introduce also empty hedge.
Then we can consider as simple evaluative expressions also pure adjectives.
Hence, examples of simple evaluative expressions are “small, rather medium,
very big, more or less weak, medium strong, strong, quite silly, normal,
extremely intelligent”, etc. Note that from grammatical point of view simple
evaluative expressions are adjective phrases. Note also, that we cannot apply
the same hedgewith all adjectives. For example “verymedium” has nomeaning
and so, it is not an evaluative expression.

(iv) Compound evaluative expressions (roughly small ormedium, small but not very
(small), etc.). These expressions are formed fromsimple ones using connectives.
However, these expressions never form a boolean structure since there aremany
combinations that have no sense. For example, the expression “very small or
medium and extremely big” has no meaning.

(v) Negative evaluative expressions (not small, not very big, etc.). The use of nega-
tion is problematic and one encounters here a special linguistic phenomenon
called topic-focus articulation (Cf. [14]). Namely, the particle “not” can act at
least in two ways—either on the whole evaluative expression or only on the
hedge. For example, not very small has (at least) two different meanings: either
“(not very) small” where “very is negated” so that we deal with a new hedge
“not very”, or “not (very small)” where the whole expression “very small” is
negated.

In the applications of fuzzy logic, evaluative linguistic expressions occur in the
expressions of the form

X is 〈evaluative expression〉 (8.8)

where X is a variable whose values are the values of some measurable feature of the
noun andA is an evaluative expression. They are a simplified from of a special class
of verb phrases that are called evaluative linguistic predications. From linguistic
point of view they are simple phrases of the form

〈noun〉 is 〈evaluative expression〉 (8.9)

where “is” is a copula—the verb “to be”. Examples are “temperature is low, very
intelligent man, more or less weak force, medium tension, extremely long bridge,
short distance and pleasant walk, roughly small or medium speed, etc.).

Evaluative predications semantically express a property of object(s) characterized
by the given evaluative expression. If noun is concretely specified (e.g., John, my
friend) then the meaning of (8.9) is a truth value. If it is general, e.g., “house is big”
(i.e., without specification, which house) then the meaning of (8.9) (and also of (8.8))
is extension of all objects having the property denoted by 〈evaluative expression〉. In
this case, the meaning of (8.9) is equal to the meaning of
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〈evaluative expression〉〈noun〉,

for example “big house”.
In more general way, evaluative linguistic expressions occur in the position of

adjective phrases characterizing features of some objects and are used either in pred-
icative or attributive role.

Example of the predicative use is “The man is very stupid”. Example of the
attributive one is “The very stupid man climbed a tree”. The purpose of the first
sentence is simply to communicate a particular quality of the sentence’s subject. The
purpose of the second sentence is primarily to tell us what the subject did i.e. climbed
a tree; that the subject is very stupid is a secondary consideration.

Semantics of evaluative expressions in FNL

Formalization of the semantics of evaluative expressions in FNL is based on the
standard assumptions of the theory of semantics developed in linguistics and logic
(Cf. [14, 27, 28]). Namely, the fundamental concepts to be formalized are possible
world, intension, and extension. This task is in FNL solved by introducing a special
theory T Ev that is a special formal theory of Łukasiewicz fuzzy type theory (Ł-FTT).
This theory8 formalizes certain general characteristics of the semantics of evaluative
expressions.

Let us remark that the model of semantics of evaluative expressions is very suc-
cessful in applications. One of the reasons is that this semantics is based on the theory
of ordered sets that is a well elaborated part of mathematics and it is relatively easy
to construct the necessary models.

On e of essential concepts in the theory of semantics of natural language expres-
sions is that of possible world. This concept can be traced back to Leibniz and in
modern conception toCarnap aswell as logicians such asQuine,Wittgenstein, Lewis,
Kripke and many others.

In the theory of evaluative expressions, we will speak about context instead of a
possible world. The latter is usually taken as a state of the world at a given point in
time and space. It is very difficult to formalize such a definition. However, in [39], it
is argued that extensions of evaluative expressions are classes of elements taken from
some scale representing. Therefore, we can introduce a simplified concept of context
that is a nonempty, linearly ordered and bounded set, in which three distinguished
limit points can be determined: a left bound vL , a right bound vR , and a central point
vS . Hence, each context is identified with an ordered triple

w = 〈vL , vS, vR〉

where vL , vS, vR ∈ U . A straightforward example is the predication “A town”, for
example “small town”, “very big town”, etc. Then, the corresponding context for
the Czech Republic can be 〈3 000, 50 000, 1 000 000〉, while for the USA it can be
〈30 000, 200 000, 10 000 000〉.

8The detailed presentation and an informal justification of T EV can be found in [39].
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We introduce a set W of contexts. Each element w ∈ W gives rise to an interval
w = [vL , vR] ⊂ U .

Intension Int(A) of an evaluative expression A is a property that attains various
truth values in various contexts but is invariant with respect to them. Therefore, it is
modeled as a function

Int(A) : W → F(U ) (8.10)

where F(U ) is a set of all fuzzy sets over U . Note that of an evaluative expression
or predication A is obtained as interpretation of a formula λw λx (Aw)x (in the
language of Ł-FTT) in a special model M.

Extension Extw(A) of an evaluative expressionA in the contextw ∈ W is a fuzzy
set of elements

Extw(A) = Int(w)(A) ⊂∼ w.

In our example, the truth value of a “small town having 30 000 inhabitants” could
be, for example, 0.7 in the Czech Republic and 1 in the USA.

In the theory T Ev, the extension of an evaluative expression is obtained as a shifted
horizon where the shift corresponds to a linguistic hedge, which is thus modeled by
a function L → L . A graphical scheme of such an interpretation in a specific context
can be seen in Fig. 8.1.

Recall also our discussion above about gradable adjectives. We can distinguish
absolute and relative ones. What is the difference between them? From our point
of view, the solution is simple: absolute gradable adjectives have only one context
and so, their intension coincides with their extension while the relative ones have
(infinitely) many of contexts and so, their intension is the function (8.10).

Fig. 8.1 Graphical scheme of a construction of extensions of evaluative expressions in a given
context. Each extension is obtained as a composition of a function representing a respective horizon
LH, MH, RH (in the figure, it is linear because of the use of Ł-FTT) and the deformation function
νa,b,c whose graph is for convenience depicted turned 90◦ anticlockwise
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8.2.5 Linguistic Quantifiers and Determiners

A special phenomenon in natural language is a huge and apparently messy collection
of expressions such as “not just every and some, but most, few, between five and
ten, a lot of”, and many others. These expressions occur in typical sentences, for
instance:

(a) Few (both, enough, at lest ten, all but five) students attended the party.
(b) More male than female students attended the party
(c) John’s mother arrived.
(d) Every student attended the party.

These sentences have the following standard syntactic structure:

The Det is a determiner that is a generalized (linguistic) quantifier. The NP is noun
phrase. In our case it is a quantified noun phrase, also called determiner phrase.

In linguistic semantics, a generalized quantifier is an expression that denotes a
property of a property (a higher-order property).

In linguistics, a determiner phrase (DP) is a type of phrase posited by some theories
of syntax. The head of a DP is a determiner, as opposed to a noun. For example in
the phrase “the car”, “the” is a determiner and “car” is a noun; the two combine to
form a phrase, and on the DP-analysis, the determiner “the” is head over the noun
“car”.

8.2.6 Intermediate (Fuzzy) Quantifiers in FNL

In logic, the linguistic quantifiers are modeled using the concept of generalized
quantifier [18, 24, 31, 54, 61]. These were in fuzzy set theory generalized under
the name fuzzy (generalized) quantifiers. The first paper in this topic was written by
L.A. Zadeh [68]. His theory has been further elaborated by several authors (See, e.g.,
[9, 12, 15, 17]).

The theory, in the mentioned papers is focused on computation rather than on
linguistics. The suggestion that took into account linguistic side and thus contributes
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to the theory of FNL was introduced by Novák [40]. This theory was inspired by
the theory of intermediate quantifiers studied in detail by Peterson [55]. These are
linguistic quantifiers whose meaning layes between classical and existential quan-
tifiers. The basic idea consists in the assumption that these quantifiers are classical
general or existential quantifiers for which the universe of quantification is modified
and the modification can be imprecise.

We introduce a theory T IQ which is a special theory of Ł-FTT extending the
theory T Ev of evaluative linguistic expressions introduced in the previous section by
few more axioms, namely those for the measure function (see below).

The theory T IQ is obtained from T Ev by extending the latter by the concept of
measure of fuzzy sets. In the frame of Ł-FTT, it can be introduced syntactically.
Namely, the measure is represented by a special formula μ ∈ Formo(oα)(oα) whose
interpretation is a function Mα → L , i.e. values of the measure are taken from the set
of truth values.9 Moreover, the measure is noremed with respect to some reference
fuzzy set (recall that a formula of type oα represents a function Mα → L , i.e. a fuzzy
set). Namely,

μ(zoα)xoα

represents a measure of a fuzzy set xoα normed with respect to the fuzzy set zoα

(i.e., xoα is proportional to zoα). Its properties properties (and interpretation) can be
found in the cited literature.

Definition 1 Let Ev ∈ Formoo be intension of some evaluative expression, A, B ∈
Formoα be formulas and z ∈ Formoα and x ∈ Formα variables where α ∈ S. Then
a type 〈1, 1〉 intermediate generalized quantifier interpreting the sentence

“〈Quantifier〉 B’s are A”

is one of the following formulas:

(Q∀
Ev x)(B, A) ≡ (∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(z x ⇒⇒⇒ Ax))

∧∧∧ Ev((μB)z)). (8.11)

(Q∃
Ev x)(B, A) ≡ (∃z)((ΔΔΔ(z ⊆ B)&&&(∃x)(z x ∧∧∧ Ax))

∧∧∧ Ev((μB)z)). (8.12)

For some syllogismfigure, also presupposition requiring that only non-empty (fuzzy)
subsets of B are considered.

9This is quite natural because the set of truth values is assumed to be MV-algebra, namely the
Łukasiewicz one whose support set is [0, 1].
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Note that each formula above consists of three parts:

(∃z)((ΔΔΔ(z ⊆ B)
︸ ︷︷ ︸

“the greatest” part of B’s

&&&

(∀x)(z x ⇒⇒⇒ Ax))
︸ ︷︷ ︸

each of B’s has A

∧∧∧

Ev((μB)z))
︸ ︷︷ ︸

size of z is evaluated byEv

Thus, the concrete quantifiers are obtainedwhen specifying the evaluative expression
Ev.

Below are introduced several specific intermediate quantifiers based on the analy-
sis provided by Peterson (Cf. [55]).

A: All B are A := Q∀
BiΔΔΔ(B, A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E: No B are A := Q∀
BiΔΔΔ(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P: Almost all B are A := Q∀
Bi Ex(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ (Bi Ex)((μB)z)),

(extremely big part of B has A)

B: Few B are A := Q∀
Bi Ex(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ (Bi Ex)((μB)z)),

(extremely big part of B does not have A)

T: Most B are A := Q∀
Bi Ve(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ (Bi Ve)((μB)z)),

(very big part of B has A)

D: Most B are not A := Q∀
Bi Ve(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ (Bi Ve)((μB)z)),

(very big part of B does not have A)

K: Many B are A := Q∀
¬¬¬(Sm ν̄νν)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

(not small part of B has A)

G: Many B are not A := Q∀
¬¬¬(Sm ν̄νν)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

(not small part of B does not have A)

I: Some B are A := Q∃
BiΔΔΔ(B, A) ≡ (∃x)(Bx ∧∧∧ Ax),

O: Some B are not A := Q∃
BiΔΔΔ(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).
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Remark 3 (i) The evaluative expressions used in the definition of the quantifiers
above are considered in the abstract context woo and so, the variable woo is
omitted in the corresponding formulas.

(ii) The quantifier B is, in fact, defined as “Almost all B are not A”.
(iii) The quantifier “most” is considered in its shifted meaning as “relatively close

to all” and not as “simple majority”.
(iv) The quantifiers with the hedge ΔΔΔ are equivalent to the corresponding classical

ones.

8.2.7 The Meaning of Noun Phrases and Simple Sentences

Using the formalmeans of FNL,we can construct themeaning of simple noun phrases
or simple sentences. Our construction in this section will be syntactical. However,
after defining a model, it is straightforward to construct the concrete fuzzy relations
representing the meaning of the given noun phrase or a sentence.

Wewill first demonstrate our construction on a simple example of the noun phrase
Very tall Swedes.

Special types

Let us first introduce the following special types:

(a) β—features (characteristics) of objects. These can be, for example, “height,
nationality, age, weight”, and many other ones. In this section, we will consider
only the first two ones.

(b) α—values of concrete features. These are often real numbers, or some other
kinds of characteristics.

(c) αβ—objects (people), i.e. people are in our model identified with sequences of
values of features.

Special constants and variables

Recall that nouns are identified with functions fαβ that can be seen as sets of val-
ues of features. Each feature cβ is a assigned some value vα via the function fαβ .
Iterpretation of fαβ in any model M can be seen as the set

M( fαβ) = {〈c, v〉, 〈c′, v′〉, . . .} (8.13)

where c, c′, . . . ∈ Mβ, . . . are various features and v, v′, . . . ∈ Mα . . . are their
values. The sets (8.13) represent people in this model. Furthermore:

(i) The constant hβ is the feature of height.
(ii) The constant nβ is the feature of nationality. Of course, this is a simplification.

Instead, we could consider a set of several specific characteristics, such as
mother tongue, hair, skin, etc. We do not need such a complicated model in this
example.
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(iii) The variable νννoo is a linguistic hedge. It is used as a general variable standing
for specific hedges (very, roughly, etc.).

(iv) The variable wαo is a context (possible world). Its interpretation is a function
from the set of truth values into a set Mα of typeα. This trick enables to transfer
ordering properties of the algebra of truth values into the set Mα.

Every Swede is a human being and so, we must first introduce the property “to
be human”:

Int(Human) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc))) (8.14)

where H(oαω)ϕ is a formula representing people.
Among all features cϕ we may distinguish also a feature of nationality nϕ and

height vϕ. Let the nationality of Swedes nϕ be determined by the value (constant)
dα. Then intension of “to be Swede” is

Int(Swedes) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc)))&&&(hn(wn) ≡ dα).

(8.15)

Thus, intension of Swedes assigns to each context wωϕ a fuzzy set of people whose
nationality hn(wn) in the context wn corresponding to nationality has the value dα,
i.e. the nationality of Swedes.

To express intension of Very tall Swedes, we must consider the height vϕ and
characterize the truth of the proposition the height is very big in the context wv:

Int(Very tall Swedes) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc)))&&&

(hn(wn) ≡ dα)&&&(Bi Ve)(wv)(hv(wv)). (8.16)

Thus, this intension is a function assigning to each (global) context a fuzzy set of
people whose nationality is to be Swede and whose height hv(wv) in the context wv

is very big (i.e., they are very tall).
Now we can also construct the meaning of a simple sentence10:

〈Quantifier〉 Swedes are tall.

Firstwewill introduce the formulaSwedeusingλ-conversion: Swede ≡ Int(Swedes)
wh. Then intension of the proposition (sentence) “All Swedes are very tall” is

λwωϕ · (∀h(αω)ϕ)Swedewh ⇒⇒⇒ (Bi Ve)(wv)(hv(wv)).

Its interpretation in a modelM is a function which assigns to each context (possible
world woα) a truth value. We thus obtain intensions of various kinds of propositions,
such as “All Swedes are extremely tall ”, “All Swedes are more or less tall ”, etc.

10This sentence is often discussed by L.A. Zadeh in his lectures.
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Finally, we will analyze the proposition Most Swedes are tall. Using our theory
of intermediate quantifiers, we obtain intension of this proposition as follows:

λwωϕ · (∃zo((αω)ϕ)(ΔΔΔ(z ⊆ Swede w))&&&

(∀h(αω)ϕ)(zh ⇒⇒⇒ Bi(wv)(hv(wv)))&&&Bi Ve((μ(Swede w)z)). (8.17)

Thus, interpretation of this formula in a model M is a function assigning to each
(global) context wωϕ a truth value which is obtained as a minimum of the truth that
the greatest fuzzy set z of tall Swedes in the context w is very big (in the sense of the
measure μ).

8.2.8 Verbs and Other Linguistic Phenomena

Verbs that are the most complicated units of natural language. They vary by type,
and each type is determined by the kinds of words that follow it and the relationship
those words have with the verb itself. There are six types of verbs: intransitive (to run
how, to speak how), two kinds of transitive (to read what, to consider what), to-be
verbs, linking (seem, become) and two-place transitive (to give whom what).

Verbs stay in the core of sentences and can have varying number of arguments
(this is called valency) depending on the complexity of sentence. Furthermore, they
are characterized by other features, namely by tense (present, future, past), modality
(necessity, indicative, possibility), aspect (perfective, imperfective, continuous, etc.),
direction of speech, gender and other ones. More about verbs can be found in an
extensive literature (See, e.g., [6, 30, 57].)

The model of the meaning of verbs must cope with the problem of changing
valency. This mathematically means that verbs behave as relations with changing
arity. A possible model of the meaning of verbs can interpret them, for example, as a
union of fuzzy sets of fuzzy relations of different arities that depends on time. Hence,
we may construct intension of a verb as a function

Int(verb) : W × T →
K⋃

n=1

F(F(U n))

where T is time (we can put T = R), W is a set of possible worlds (contexts), U
a universe and K is a possible valency of the verb. The universe should consist of
various kinds of elements that can be named by noun phrases. In syntax of FTT, we
can express the meaning of verbs as a formula
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λw λt
K∨

n=1

Ao(oαn)

where αn = α · · · α︸ ︷︷ ︸
n−times

and ∨ is a disjunction.

Till now, no model of the meaning of verbs using the means of fuzzy logic was
suggested. A detailed and careful elaboration in cooperation with linguists is needed.

There are also other phenomena that need to be captured by themodel of linguistic
semantics. Among them let us recall the topic–focus articulation and de dicto/de re
usage. The topic–focus articulation is a phenomenon that extremely extends expres-
sive power of natural language. Roughly speaking, each more complex linguistic
expression can be divided into two parts: the topic that is the known part and focus,
the new information. Each expression is thus ambiguous and the meaning of it can
be clear only after specifying both parts. For example, “John goes to the cinema”
says either that JOHN goes to the cinema (and not somebody else), or that John goes
to the CINEMA (and not to the theater), etc.11

The de dicto/de re distinction relates to the distinction about occupied office (e.g.,
that we speak about president—de dicto) or about Mr. Obama (de re). This problem
seems to be well captured by the means of FTT since it enables us to distinguish
between functions Aεε and objects Bε and manipulate with them (Cf. [7]).

8.3 Reasoning in FNL

Since FNL claims to be a logic of human reasoning, it must also suggest its model.
Till now, two main inference models are available. The first is inference on the basis
of linguistic description consisting of fuzzy/linguistic IF-THEN rules. The second
are reasoning schemes with generalized quantifiers. The most elaborated part are
intermediate syllogisms.

8.3.1 Fuzzy/Linguistic IF-THEN Rules

The theory of fuzzy IF-THEN rules is the most widely discussed and most powerful
area of fuzzy logic, which has a wide variety of applications. Recall the general form
of a fuzzy IF-THEN rule:

IF X is A THEN Y is B, (8.18)

11More about this phenomenon can be found, e.g., in [14].
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where X is A, Y is B are evaluative predications.12 A typical example is

IF temperature is small THEN the amount of gas is very big.

From the linguistic point of view, this is a simple conditional clause, i.e. a conditional
sentence with a clear structure consisting of the antecedent and consequent.

In FNL, we call a (finite) set of rules (8.18) a linguistic description. The rules
(8.18) (and the linguistic descriptions) apparently characterize some kind of relation
between values of X and Y . In the fuzzy set theory, these rules are usually construed
as special fuzzy relations. This is purely extensional approach and the rules, in fact,
are not treated as sentences of natural language. Let us remark that this method
of interpretation of fuzzy IF-THEN rules is very convenient when we need a well
working tool for approximation of functions but it is less convenient as a model of
human reasoning. Therefore, it does not fit the paradigm of FNL.

In FNL, the rules (8.18) are taken as genuine conditional clauses of natural lan-
guage and the linguistic description is taken as a text characterizing some situation,
strategy of behavior, control of some process, etc. The goal of the constructed FNL
model is to mimic the way how people understand natural language. Then, a formal
theory of Ł-FTT is considered so that intension of each rule (8.18) can be constructed:

Int(R) := λw λw′ · λx λy · EvA wx ⇒⇒⇒ EvC w′y (8.19)

where w,w′ are contexts of the antecedent and consequent of (8.18), respectively,
EvA is the intension of the predication in the antecedent and EvC the intension
of the predication in the consequent. The linguistic description is interpreted as a
set of intensions (8.19).13 When considering a suitable model, we obtain a formal
interpretation of (8.19) as a function that assigns to each pair of contextsw,w′ ∈ W a
fuzzy relation among objects.14 It is important to realize that in this case,we introduce
a consistent model of the context and provide a general rule for the construction of
the extension in every context.

When amodel of a linguistic description is given, wemust be able tomodel human
reasoning on the basis of it, given a perception in the form ‘X is A0’ whereA0 may
differ slightly from all the A1, . . . ,An . The well elaborated method is perception-
based logical deduction (See [36, 47].) whose main idea is to consider the linguistic
description as a specific text, which has a topic (what we are speaking about) and
focus (what is the new information).15 Each rule is understood as local but vague
information about the relation between X and Y . The given predication ‘X is A0’ is
taken as a perception of some specific value of X . On this basis, the most proper rule
from the linguistic description is applied (fires), and the best value of Y with respect
to this rule is taken as a result. Hence, despite the vagueness of the rules forming the
linguistic description, the procedure can distinguish among them

12For simplicity, we consider only one variable in the antecedent.
13See [38, 46] for the details.
14Note that for specific elements assigned to x, y, the intension (8.19) provides a truth value.
15For the detailed linguistic analysis of these concepts, see, e.g., [14].
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The rule of perception-based logical deduction can be formally expressed as

rPbL D : LPercLD(x0, w) = Int(X is Ai0), LD

Eval(ŷi0 , w
′,Bi0)

,

where LD is a linguistic description, and ŷi0 is the resulting best value of Y , provided
that the perception of x0 in the context w is the linguistic expression Ai0 and the
dependence between X and Y is locally characterized by LD.

The perception-based logical deduction is a powerful reasoning method that well
models the way of human reasoning and has a lot of various kinds of applications
(See [44]).

8.3.2 Syllogistic Reasoning

In this section, we will discuss syllogistic reasoning on the basis of sentences con-
taining intermediate quantifiers. We suppose to deal with the formal theory T IQ

mentioned above.
By a valid syllogism we understand a triple16 of formulas 〈P1, P2, C〉 such that

T IQ � P1&&& P2 ⇒⇒⇒ C

(equivalently, if T IQ � P1 ⇒⇒⇒ (P2 ⇒⇒⇒ C)). Note that, if a syllogism is valid then
the inequality

M(P1) ⊗ M(P2) ≤ M(C) (8.20)

holds in every model M |= T IQ.
Let Q1, Q2, Q3 be intermediate quantifiers and X, Y, M ∈ Formoα be formulas

representing properties. Analogously as in classical logic, we will consider four
figures of syllogisms:

Figure I
Q1 M is Y

Q2 X is M
Q3 X is Y

Figure II
Q1 Y is M

Q2 X is M
Q3 X is Y

Figure III
Q1 M is Y

Q2 M is X
Q3 X is Y

Figure IV
Q1 Y is M

Q2 M is X
Q3 X is Y

Peterson in his book [55] demonstrated that there are 105 intermediate syllogisms
that are valid. All these syllogisms contain the above introduced intermediate quanti-
fiers. Validity of them is proved syntactically in FNL (See [32].) (in the formal theory
T IQ) that is a very strong result assuring us that the inequality (8.20) holds in every
model. For example, below is the list of valid intermediate syllogisms containing the
intermediate quantifiers almost all (P), few (B), most (T, D), and many (K, G):

16In fact, we only need the number of formulas to be finite and reasonably small.
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Figure I Figure II Figure III Figure IV
AAP AEB (∗P)AI AEB
APP ABB E(∗P)O (∗P)AI
APT ABD (∗B)AO E(∗P)O
APK ABG A(∗P)I
API A(∗B)O P(∗P)I
EAB EAB T(∗P)I
EPB EPB (∗K)PI
EPD EPD (∗P)TI
EPG EPG P(∗K)I
E(∗P)O E(∗P)O B(∗P)O

D(∗P)O
G(∗P)O
B(∗T)O
B(∗K)O

(the letters refer to the concrete quantifiers introduced introduced above and the
asterisks denote quantifiers with presupposition of non-emptiness of the universe).

Examples of valid syllogisms are the following:

ATT-I : All women are well dressed Most people in the party are women

Most people in the party are well dressed

ETO-II : No lazy people pass exam Most students pass exam

Some students are not lazy people

PPI-III : Almost all old people are ill Almost all old people have gray hair

Some people with gray hair are ill

TAI-IV : Most shares with downward trend are from energy industry All shares of energy industry are important

Some important shares have downward trend

8.3.3 A Model of Commonsense Human Reasoning

Finally, we will also demonstrate the power of FNL in a more complex model of
human reasoning. This was shown on an example of reasoning of a detective Lt.
Columbo based on one episode from the famous TV series.17 Let us emphasize that
the presented method can be taken as a more general methodology that has a variety
of other specific applications (Cf. [11]).

17For the details, see [45].



8 Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning 161

The story:

Mr. John Smith has been shot dead in his house. He was found by his friend, Mr. Robert
Brown. Lt. Columbo suspects Mr. Brown to be the murderer.

Mr. Brown’s testimony:

I have started from my home at about 6:30, arrived at John’s house at about 7, found John
dead and went immediately to the phone booth to call police. They came immediately.

Evidence of Lt. Columbo:

Mr. Smith had a high quality suit and a broken wristwatch stopped at 5:45. There was no
evidence of a hard blow to his body. Lt. Columbo touched the engine of Mr. Brown’s car and
found it to be more or less cold.

Lt. Columbo concluded that Mr. Brown lied because of the following:

(i) Mr. Brown’s car engine is more or less cold, so he must have been waiting long
(more than about 30min). Therefore, he could not have arrived and called the
police (who came immediately).

(ii) A high quality wristwatch does not break after not too hard blow. A man having
high quality dress and a luxurious house is supposed to also have a high quality
wristwatch. The wristwatch of John Smith is of low quality, so it does not belong
to him. It does not display the time of Mr. Smith’s death.

The reasoning of Lt. Columbo based on FNL is modeled by means of a combina-
tion of logical rules, world knowledge and evidence with the help of non-monotonic
reasoning.

The world knowledge includes common sense knowledge of the context and
further knowledge, which can be characterized using linguistic descriptions applied
in specific context for the included variable, e.g., drive duration to heat the engine,
temperature of engine, etc. The used linguistic descriptions are, e.g., the following:

• Logical rules that are hereditary valid, for example

IF X is Smν THEN X is¬¬¬ Bi,

IF X is Biν THEN X is¬¬¬ Sm.

where Sm, Bi are linguistic expressions “small, big” and ν is some linguistic hedge.
• Common sense knowledge from physics:

IF drive duration is Bi THEN engine temperature is Bi,

IF drive duration is Sm THEN engine temperature is ML Sm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Common sense knowledge of customs of people:

IF quality of x’s suit is Bi AND quality of x’s house isVe Bi

THEN wealth of x is Bi,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Some other kinds of common sense knowledge, for example, properties of prod-
ucts, etc.

On the basis of a formal analysis which includes the use of the perception-based
logical deduction, Lt. Columbo concludes that the two special constructed theo-
ries are contradictory. Since his perceptions and the evidence cannot be doubted,
Mr. Brown is lying, so he had an opportunity to kill Mr. Smith. It is important to
emphasize that the contradictory theories were constructed as nodes of a graph rep-
resenting the structure of non-monotonic reasoning.

8.4 Conclusion

In this paper, we suggest to focus more deeply on the proclaimed ability of fuzzy
sets—to enable to model the semantics of natural language expressions. Our idea is
to develop a special branch of mathematical fuzzy logic that we call Fuzzy Natural
Logic as a generalization of an older classical concept of Natural Logic. Its paradigm
is to model natural human reasoning that is based on the use of natural language.
Therefore, it is necessary to have also a model of semantics of natural language
at disposal. We argue that FNL should be developed in a close cooperation with
linguists and logicians.

We gave a brief overview of some units and phenomena of natural language and
outlined problems connected with their semantics. In parallel, we also outlined ways
how their semantics can be modeled inside FNL. In the second part, we also outlined
some of possible human reasoning schemes that can be modeled using FNL.

One can see that still many problems and open questions have to be solved and
answered before we can say that FNL is a well developed theory that reached its
goal—to model natural human reasoning. Even at this stage of research, though,
there are various interesting and quite well working applications of FNL. Let us
mention few of them:

• Identification of rock sequences on the basis of expert geologists’ knowledge [34].
• Linguistic control of technological processes [41, 51].
• Multi-criteria decision-making (without need to define weights of criteria) [48].
• Forecasting of the trend-cycle of time series [50, 52] and linguistic evaluation of
is trend (i.e., “steep increase/decrease, stagnating, rough increase/decrease”, etc.).
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