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Preface

After the first fifty years from 1965, when Lotfi A. Zadeh published his famous and
seminal paper ‘Fuzzy Sets’, an impressive path has been followed for the consol-
idation of the theories of fuzzy sets and fuzzy logic, as well as for their application
to practical problems. In both the theoretical and the applied sides, and mainly in
the second, relevant successes have been accomplished. An interesting character-
istic shown by the new field, usually known as ‘Fuzzy Logic’, is that its study and
practice has been developed in many countries of Europe, Asia, America and
Oceania; it can be said that after these fifty years Fuzzy Logic is spread all over the
Earth.

It was thanks to Fuzzy Logic that the new field of Soft Computing, in which
fuzzy logic has a central role, appeared and developed as a new approach to
problems that before the mixing of fuzzy logic with neural nets, genetic algorithms,
probabilistic models, etc., could not be satisfactorily posed or solved. Concerning
the future of Fuzzy Logic, it seems today that it lies in the new ideas arising from
‘Computing with Words and Perceptions’ (CwW).

Fuzzy logic, Soft computing and CwW were established by Lotfi A. Zadeh, who
introduced a good deal of the seminal ideas on which their theoretical and practical
development is grounded on. Zadeh, an engineer with a strong personality and of
infinite courtesy, is one of the few people in the history of science and technology
who, having introduced a new field of research, not only pushed its study and
applications, but in his long life personally contemplated them. Today and happily,
Zadeh continues seeing how fuzzy logic follows up its strengthening and actual
penetration in the welfare of industries and people.

Along the first forty-five years forthcoming 1965, Zadeh traveled through all the
continents to explain his new ideas in conferences and meetings. As a consequence
of his efforts, many young researchers all over the world were compelled to work in
or with fuzzy logic. Thanks to his sweet intellectual form of confronting the adverse
opinions that arose from the very beginning of fuzzy set theory, this discipline
survived and joined researchers with a nice sense of camaraderie as well as a lack
of the typical internal or external academic fights. Fifty years later, there can be no
doubt that it was, and it will be thanks to the drive of young researchers that fuzzy
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logic can evolve towards the challenging goals posed by CwW in the twenty-first
century. Today, when very few people doubt about the importance of fuzziness and
on the relevance of its study and applications, new frontiers of knowledge are
waiting to be explored. It is for this reason that this book’s editors asked their
authors to write, from different disciplines and points of view, papers potentially
able to motivate young people to devote efforts in the future development of fuzzy
logic, fuzzy methodologies, fuzzy applications, etc.

As the editors we thank all authors for their contributions to this volume, for
their willingness to write their chapters. We also thank Springer Verlag and in
particular Dr. Thomas Ditzinger, Dr. Leontina Di Cecco and Holger Schäpe.

The editors of this book, in their own names and also in those of the authors
contributing to it, would like to express their affectionate respect and admiration for
Prof. Lotfi A. Zadeh and not only for the man, but also for his work.

Jena, Germany Rudolf Seising
Mieres, Spain Enric Trillas
Warsaw, Poland Janusz Kacprzyk
February 2015
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Chapter 1
On Reasoning with Words and Perceptions

Pere Julià

Abstract Fuzzy theorizing has included references to human behavior in general,
and to reasoning in particular, almost from its inception. Experience is fuzzy. The
strong connections between fuzzy logic and control theory take over, however, when
we rely on the machine as a conceptual blueprint, effectively leaving out what makes
human behavior unique. Failure to make the proper distinctions is tantamount to
letting the available technical means determine our conception of the subject matter
instead of the other way around. We will concentrate on the empirical status of the
words, perceptions, and rules on which reasoning builds. Language and perception
are forms of activity and thus functionally related to the sets of base variables in the
absence of which there would be no behavior to speak of. Simulation itself would be
a flight of fancy. The fact that claims about the relevance of fuzzy thinking to human
behavior continue to be supported through reference to spectacular achievements in
engineering clearly calls for reflection.

1.1 Introduction

Reasoning is something human beings do. Few people would question that it is
embedded in the broader human activity we usually call thinking. Just what their
boundaries and overlap are is far from clear, as the overwhelming literature on the
language/thinking/action trinity clearly attests. Some would argue that neither can be
ultimately dissociated from practical or theoretical problem solving. Underlying it
all is the traditional Olympian disregard for the multiplicity of factors in the absence
of which we can speculate endlessly about what we do or say, and why. What should
be clear by now, however, is the untenability of the lighthearted identification of
reasoning with language alone, particularly in its written form.
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Elsewhere I have argued (see, e.g., Julià [4–6]) that much of the prevailing
confusion can be traced to (1) the reluctance to confront the hypostatical nature
of the linguistic entities we usually operate with; and (2) the unwillingness to bring
conative factors into the picture. (1) and (2) are jointly responsible for the systematic
decoupling of the individual from the environment to which he/she must adapt to
survive. Conative variables—very roughly speaking, motivational and emotional
factors—fuel all forms of activity in real life; the study of cognition in abstraction
from them is doomed to sterility, as the record shows. But we will not be concerned
with conation here; we will concentrate instead on the methodological traps associ-
ated with (1).

Not surprisingly, the decoupling of the individual from the environment has
become an integral part of systems discourse (theoretical or instrumental) where,
by and large, “system” stands for the organism, human or otherwise, and for the
machines presumably designed to simulate the former’s behavior. It would appear
that in this kind of narrative, all we need by way of explanation is a set of rules
that could conceivably “cover” the facts. There is nothing wrong with this strat-
egy, of course, provided that we keep clearly in mind that rules are only hypothetical
statements—strings of words that we put together as experts (E). In the final analysis,
their descriptive relevance depends on the reliability of the variables contemplated,
the adequacy of the terms used, and the suitability of the operations we perform on
the data.

Hypostasis cautions us against the peril that confronts every use of symbols, viz.,
that the symbol may become detached from reality and be cultivated as an end in
itself (for a particularly powerful indictment, see Kantor [9–11]). Much of the opacity
concerning the symbolic and referential value of language stems from the failure to
keep words and their referents distinctly apart. The stage is then set for the confusion
between events and the constructs we propose to deal with them—an old story in the
philosophy of science, under different guises. We recall the admixture of ontological
and epistemological culs-de-sac associated with the status of the “laws of nature”—
tentative and always open to revision, as we all know, yet nature somehow managing
to oblige and “obey” our formulations at every stage.

The risk of substituting constructs for events is as real as it is widespread, although
the extent of the perils entailed varies with the different sciences. No appreciable
harm seems to follow from speaking about the “behavior of particles” in physics,
about cells “communicating” with one another, and the like; and the same presumably
goes for the “behavior” of computers and other machines, even if we wonder whether
“behavior” here does not illustrate the kind of opacity just alluded to.

But we cannot so easily ignore the consequences of confusing constructs and
events where bona fide animal and human behavior is at issue. It is here that hypo-
statical traps take over; it is here that we can quickly lose track of what it is we are
trying to account for. For obvious reasons, the probability of following false analyt-
ical leads is far greater where language itself is the object of study; the chances of
getting trapped in our own representational devices are vastly increased when the
events described (generically, words) and the means developed to deal with them
share a point-to-point correspondence.
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The upshot is lack of clarity or downright distortion of the concepts juggled,
notably when an action (or its traces, as we shall see) is treated independently of the
functional relations converging on its occurrence; or, coming closer to home, when,
conflating granules and words, the posited rules inadvertently morph into processes
“out there”—a clear case of imputation (some might call it projection) of E’s behavior
to the behavior of the subject (S) or of the subject matter. Special mention must be
made of the use of the machine as a conceptual template, effectively discarding what
makes human behavior unique as so much psychological gossamer. The differences
will become clear, I trust, as we proceed.

Sometimes this is done in the name of simplicity. Simplicity is always welcome,
of course, but the price we pay is obviously too high when it commits us to this
kind of procedural reductionism. The proliferation of formally motivated models
in recent decades, along with the subsequent need to invoke initially extraneous or
dubious notions to supply some kind of empirical footing for them, bears witness
to the difficulties inherent in any approach that, starting from real or imagined final
products, prefers to reconstruct or “reverse engineer” when, in many cases, it could
equally appeal directly to the variables and processes responsible for those final
products. Hypotheses can easily be upheld as facts.

The temptation to extrapolate from the machine blueprint to the complexities of
human behavior is all the more understandable where natural language—as opposed
to the artificially constructed symbolic languages used elsewhere—constitutes the
cornerstone, as in fuzzy logic (FL) and soft computing (SC). Still, claims continue to
be made on the basis of models seemingly more concerned with the accuracy of our
guesses than with the effective integration of empirical data. To cite but one example:
Smithson’s “fuzzy set theory may provide models or metaphors which mirror the rules
by which people manipulate fuzzy categories in thought and language” [21, p. 5] is
as representative a statement as any. How can we be so sure about the categories
invoked beforehand? What does “mirroring” translate into, in fact? It is claims like
these that motivate the present essay.

If knowledge and reasoning are to be represented as part of our research strat-
egy, we should be clear whose knowledge and reasoning we are talking about and
where the relevant processes are grounded. Answers are more likely to come from
an embodied approach to the raw facts than from abstract characterizations of what
might be the case. The bottom line is actually the choice between a standard top-down
versus an authentic bottom-up strategy.

We will not be concerned with reasoning proper at this point but with the empir-
ical status of the words and perceptions on which reasoning builds. The insights
and implications which FL brings to the contemporary scene are too deep, and the
possibilities offered by SC too important, not to ensure that we “get it right,” that is
to say, that respect for the proprieties prevails. The disambiguation of expressions
such as “computing with words” (CW) and “manipulating perceptions” (MP) seems
like a good place to begin.
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1.2 Words, Words, Words

1.2.1 Some Historical Background

Writing is a very recent development in human cultural history, but when we talk
and think about language we tend to do so in terms of words—in particular, written
words. The Western tradition of language study is eminently textual. This reliance on
the written word is only too understandable: speech occurs but once, and its acoustic
effects quickly vanish into thin air; written records, by contrast, enjoy a kind of
permanence, a staying power, as it were, which allows for the unlimited return to
them for consideration and manipulation. Historical and comparative linguistics,
from which modern theoretical research derives, proceed by reconstruction; they are
at bottom more akin to archaeology or paleontology than to a science purporting to
describe ongoing dynamic processes.

As a result, language itself is routinely conceptualized as a self-contained system
of forms, signs, and symbols—independent, so to speak, of the speakers and listeners
without whom there be would be no “language systems” for us to analyze. Saussure’s
[2] structuralist definition of language as “a system in which everything is coherent
with everything else, knowing no order but its own” continues to underwrite contem-
porary formal research of all stripes. Language becomes L, a system of words and
rules opaquely referred to as “a tool or instrument which we ‘use’ to communicate”.

This kind of abstractionism comes at a price, and a heavy price it is: once we
ignore the linguistic activity of speakers and listeners, and the circumstances under
which it occurs, all we are left with are the traces or products of this activity—
acoustic in the case of speech, graphic in the written case. The thoughts, ideas, and
feelings said to be communicated, as well as their effects at the receiving end, remain
unaccounted for.

The reluctance to distinguish between activity and product is at the root of most
if not all semantic quibbles and contradictions, old and new. To assume that words
are somehow imbued with intrinsic meaning is a well-known dead end: consider the
non sequiturs that come up, for example, in connection with synonymy, polysemy or
etymology, or the never-ending explanatory gyrations forced upon us by the subtleties
of figurative language. Nor is this the only reason that words, sentences, propositions,
and the like so sullenly resist a comprehensive and methodologically stable definition.
Clearly, the oft-invoked notion of “context” proves too vague to help us track down
the factors that make the just-noticeable difference.

We must realize that the linguistic and logical entities we usually deal with are no
longer the original utterances but transcriptions thereof, which they resemble in point
of form. As such they are, at best, quotations, “a certain anomalous feature which calls
for special attention: from the standpoint of logical analysis each whole quotation
must be regarded as a single word or sign, whose parts count for no more than
serifs or syllables. A quotation is not a description but a hieroglyph; it designates its
object not by describing it in terms of other objects, but by picturing it. The meaning
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of the whole does not depend on the meanings of the constituent words” (Quine
[19, p. 26]).

Quine’s quotation points to the essentially hypostatical nature of linguistic “facts”
and the ease with which we can be misled by our notational devices, wherein lies
a story of its own. The distinction between “use” and “mention” was an indirect
acknowledgment of the largely arbitrary nature of the freestanding units that materi-
alize in writing. To say that they conventionally “stand for” or “symbolize” or “mean”
whatever it is that the speaker or writer may be trying to say raises more questions
than it answers. Meaning successfully continues to elude us.

If pursued, the “use-mention” dichotomy could have provided valuable insight
into the plasticity and variability characteristic of verbal units in the raw and a better
appreciation of the dynamic nature of language—for instance, by exploring what
lies behind “designating” as opposed to “picturing,” or “mentioning” as opposed to
“use”. Who is doing the designating and picturing anyway? Surely not the words
themselves.

If pursued, it might also have brought various time-honored analytical positions
and the attendant philosophical impasses into a more realistic perspective. Alas, that
this did not happen is another indication of the deep-seated fascination with the
written word. It is no coincidence that we speak of “putting a reading” between the
lines when we are in fact listening to someone. Different variables are involved in
each case and different treatments are therefore required, as we shall see in the sequel.

1.2.2 On Speakers and Listeners, Writers and Readers

The reification of language as L has a twofold effect: (1) the more or less explicit
identification of speaking and understanding as two sides of the same coin, despite
the overwhelming practical and theoretical evidence to the contrary; and (2) the
disengagement of the vocal-auditory aspects of communicative behavior from the rest
of the individual’s activity—perceptual and motor—necessary for his/her adaptation
to the surrounding world. Does language ever occur by itself?

(1) The L-narrative construes speaking as the concatenation of words and other
constructs; understanding becomes a kind of reverse process of decomposition.
Theoretically anyway, the descriptive rules proposed should thus account for
both speaking and understanding. Respect for the raw facts tells a different
story: for starters, much of the behavior of the listener qua listener is not verbal;
this is particularly transparent when rules are followed rather than formulated. (It
might be noted in passing that this overall outlook similarly vitiates information
and computational models at large.)
It seems more reasonable to start at the beginning. To say that a given bit of
behavior—any behavior or traces there of—occurs is not enough: a satisfactory
scientific description requires the specification of the pertinent variables, too.
We note that motor behavior (e.g., pressing on a bar or a pedal) is bound to
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have a direct effect upon the environment; on the other hand, linguistic or verbal
behavior depends upon the presence of a listener for its effects. This is especially
obvious during the early phases of language acquisition, but the speaker-listener
compact remains in place throughout life. We generally speak in the presence of
others.
Faced with a green light, there are many things that an individual can do or say.
For simplicity, we will concentrate on two minimal possibilities: the S may (a)
press a pedal (a motor response); or (b) she/he may say “green” (a linguistic or
verbal response). The obvious answer to the question, Which will it be? is that
under normal circumstances, say, sitting in a car waiting for the traffic light to
change, “green” is more likely to be produced if someone else is present. We are
interested in “green”: it is the verbal response that lends itself to hypostasis and
the one that has a direct bearing on linguistic variables.
Elaborating on Kantor’s simplest schematization of linguistic events as adaptive
behavior, we can represent this example as follows:
where (A)R stands for A’s uttering “green,” Saj (or adjustment stimulus) stands
for the green light, and Sax (or auxiliary stimulus) stands for the listener. R(B)
ordinarily antecedes further perceptual, verbal and/or motor behavior.
This kind of configuration is called “bi-stimulational” on account of Saj and Sax

acting upon the speaker (A), simultaneously or in quick succession. We have a
similarly bi-stimulational situation for the listener too, but the role of Saj , Sax ,
and B have changed accordingly.
Upon seeing the green light, A is prompted to press the accelerator pedal but he
could just as easily do something else, for example, adjust his glasses or shade
his eyes against the sun. If A says “green,” the acoustic stimulus (the result of the
speaker’s action in Fig. 1.1b, becomes a variable for the listener: B, who may be
looking in her handbag, can now respond to “green” and to the green light (Sax

and Saj , respectively) in a variety of ways: she may, for example, fasten her seat
belt, make herself comfortable, or roll up her window, or she may say, “Finally!”
or “Let’s go!” or “So now, what where you saying?” inviting a conversation.
What both A and B will do or say at a given time t will naturally depend on
several factors, but the unique status and contribution of “green” as a decisive
factor for B needs to be pointed out.
A good deal of speech serves to put the listener in touch, as it were, with the
variables that prompted the speaker’s response in the first place. These variables
may be momentarily outside the listener’s range of vision or hearing, or he/she
may simply be unaware of them (we will come back to this point below). Another
instance: A looks at the clock on the wall, realizes that it is five o’clock and
remarks “It’s five o’clock,” bringing B’s attention to the clock in turn. (A may,
of course, be simultaneously reminding B of an impending task, or indicating
to B that he need not hurry yet, that she has already missed the bus, and so on.)
Thus informed by A, B may now look at the clock for confirmation and say,
“Thanks for telling me!” (perhaps ironically) and bank on the most convenient
interpretation before taking action, ignoring the remark altogether, and so forth.
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(a) (b)

S
ax

(B)   S
ax

  (A’s action, “green”)
 A(R) 

(verbo-vocal       R(B)  
      action) (audient action) 

 S
aj
 (green light) S

aj
  (green light) 

Fig. 1.1 Schema of linguistic events as adaptive behavior

The resulting multiplicity of meanings for both speaker and listener should warn
us against the temptation to conflate any one verbal stimulus with any one given
referent. The variables at work and the specific activities involved are different for
A and B and must be kept clearly apart if we are to avoid the snares of hypostasis.
This is not to say that there is no overlap between speaking and understanding:
there are indeed good behavioral reasons, not to mention abundant electromyo-
graphic and other physiological evidence, to argue against the traditional view
of listening-cum-understanding as an essentially passive exercise.
The listener responds to verbal stimuli along with nonverbal ones. Different lis-
teners bring different dispositions to bear on the stimulus complex at different
times, hence the room for misunderstanding and disagreement. Indeed, the same
individual may derive a different understanding from the same objective piece of
information (linguistic or otherwise) on different occasions, as we have all expe-
rienced. Generically speaking, the ease and depth of understanding is a function
of: (a) the intensity and/or clarity of the verbal stimulus; (b) the contribution of
adjacent stimuli; and (c) the dispositions—nonverbal as well as verbal—brought
by the listener or reader to the stimulus setting.

(2) The usual disengagement of speaker and listener from their surrounding world
is complete when we fail to take into account the numerous and intricate connec-
tions prevailing between language and other forms of behavior intimately tied
up with it—from simple cases of verbally supported or mediated perceiving to
full-fledged reasoning, thinking, self-monitoring, and genuinely creative activity
of all sorts. Of special importance are those self-descriptive repertoires that have
the speaking individual himself or herself as a referent. Oddly enough, this sub-
tle intertwining of verbal and nonverbal activity—which makes human language
so radically different from any other “systems of communication”—ordinarily
gets short shrift in the literature, if mentioned at all, despite the current flurry of
research on consciousness.

The external sources of stimulation discussed so far (the green light, the clock)
may be said to be located “out there”; they are, moreover, available to speaker and
listener alike. Crucially, however, human individuals soon, yet gradually, learn to
discriminate stimulation available only to themselves. This may require a word or
two of explanation.

The referent is now one’s own body: contrast, for example, “my arm/nose” with
“your/her arm/nose,” and/or various forms of stimulation arising from the nose, the
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position or movement of the arm, and so on. Similarly, different feelings are reported
when we say, “I’m hungry,” “My foot’s asleep,” “I’m happy/angry/ready/tired…” Or
compare these with “I need/want…,” “I dis/like…,” “I prefer X/choose to…,” and
scores of others, which point to both internal dispositions and external stimulation,
depending on how we fill in the blank.

We describe (or better, label) our behavior past, present or future: if “I’m walking”
versus “I’m talking” seems too facile an example, it is good to remember the network
of related discriminations that any thesaurus will offer to refer to different ways of
walking and talking. The importance of proprioceptive stimulation when compelled
to monitor our movements hardly needs mentioning. Nor must this be restricted
to gross motor action: it is worth pondering what is behind the saying/thinking
continuum, as in “Then I thought/said to myself …” and “That’s when I decided…,”
or more conjecturally, “I must have thought/reasoned…” and the like.

Labeling slides into description when we include a reference to the variables that
may have triggered the behavior: “I did X when I heard that…,” “When I see X,
I simply…,” “I’m saying this because….” The young child ceases to merely “act
tired” and knows that she is tired, and eventually why, when she can report how she
feels as the cause or reason for her sluggishness—a never-ending learning exercise
throughout life.

Self-referential behavior would appear to engage our senses in seemingly more
intimate ways than referential responses to the “external world” but the simultane-
ous participation of external and internal sources is in reality a matter of degree.
Language—self-referential as much as communicative—is a social phenomenon; it
is within the relative parameters defined by our social milieu that we literally learn
to tell the difference and get a sense of reality into the bargain, as the answer to “Am
I cold or is it cold?” makes all too clear. External and internal feedback combine to
provide a sense of reality, but also individuality, to members of a social group.

The relevance of self-responding to the study of important aspects of memory,
anticipation and self-regulation—where rule-related behavior is bound to play an
important role—should be immediately apparent. It is for this reason that at least
a thumbnail presentation has been deemed necessary at this point (for a related
discussion of how this comes about, see, e.g., Julià [8] and references cited therein).

1.2.3 On Reference and Linguistic Variables

The speaker-listener distinction permits a closer look at LVs. As already noted,
linguistic utterances or, more precisely, the written records we usually work with,
are not the original referent (their denotation, if you like) but a substitute for it, and
we may be led to believe that the referent postulated, and the associated labeling and
reasoning, are equally valid for speaker and listener, which we know not to be the case
(see, e.g., various contributions in [1]). Much confusion concerning the “symbolic”
value of linguistic constructs stems from the failure to distinguish between unalloyed
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referential language and quotation. Harking back to Quine’s observations above, we
are entitled to wonder: What is the referent of a quotation? Consider [24]:

In CW, a granule, g, which is the denotation of a word, w, is viewed as a fuzzy constraint on
a variable. …As a simple illustration, consider the proposition Mary is young, which may
be a linguistic characterization of a perception. In this case, young is the label of a granule
young. (Note that for simplicity the same symbol is used both for a word and its denotation.)
The fuzzy set young plays the role of a fuzzy constraint on the age of Mary” (emphasis
added).

We are essentially asking, What kind of variable is a linguistic variable? How
does a LV operate or, more exactly, how is it made to operate? One obvious approach
is to examine the manner of its establishment by E.

In setting up a LV, E is acting as a speaker: like S, E responds to a given range
of stimulation to which he/she can respond by saying or writing “green” or “tall,”
“young,” “Mary,” and so forth. Crucially, no nouns, verbs, phrases, rules, or propo-
sitions of any kind are part of the referent for either S or E. But the similarities end
there.

E is doing much more than S and what he does has very little in common with
what an ordinary speaker, or himself when not working as an E, does. He tenta-
tively “fixes” a referent (g) and supplies a label (w) and does so for very specific
purposes. “Young” plays the role of a fuzzy constraint on Mary’s age, given certain
concrete parameters, deliberately specified. Words stand for fuzzy sets; computa-
tion necessitates the membership functions associated with them. People do not go
around setting up LVs. There is a world of difference between everyday discrimina-
tive behavior to different aspects of the environment and the deliberate labeling and
targeted chunking here under consideration.

The tentativeness of the postulated granule will be resolved through subsequent
operations, depending on how well the assigned quantitative values conform with
the reality we are interested in; if necessary, E will write a revised set of rules or
instructions for the machine to follow. And so on.

It proves helpful to backtrack and consider the following: if the speaker’s PRESS
(a motor response) were to function as a cue for the listener to act (e.g., by pressing
another pedal in turn), we would still have the same g but no w, and no risk of
hypostatizing. The best we can do in such a case is to label the response (“a press”
versus “a push” or “a shove”) and adjust the pertinent values within a continuum
(PRESSING, PUSHING, SHOVING). This would be a “linguistic characterization
of a movement”—only a label, really, like “tall” or “green,” and no less dignified for
being about motor behavior than a “linguistic characterization of a perception” with
its air of intangibility.

In short, neither a PRESS nor “green” can be considered variables for the speaker:
they are his/her response to a given range of stimulation—the referent, denotation, or
granule g—as a reaction to which “green” (w) is produced. It is here that conceptual
confusion arises. There is at any rate no functional connection between the referent
granule and w, both of which will be readjusted by E as need arises.

On close inspection, a LV plays the role of a variable for the listener, for exam-
ple, by being included in rules of operation as a “linguistic characterization of a
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perception.” When the speaker’s response materializes (particularly in writing) as
“green,” “young,” “Mary,” and so on, it becomes an effective stimulus for subsequent
“manipulation,” a concept that demands a closer look (see below). Nor can “labeling”
and “characterization” be taken as necessarily synonymous on every occasion.

For the speaker/writer, the fuzziness associated with “green” as a constraint on a
variable involves the relation between his/her response and the range of stimulation
that triggered “green,” “young,” “Mary,” etc. For the listener/reader, it resides primar-
ily within the range of possible responses to “green” and what that may additionally
trigger in him/her, not only in terms of semantic clusters, presuppositions, and so
forth but also in terms of nonverbal dispositions. It may be argued that the listener
responding to “green” is in practice beginning to respond to the original stimulation
as well. That is correct; that is what “green” is supposed to do. It promotes an indirect
kind of reference, which will become full-fledged to the extent that the listener comes
to respond more fully to the same variables as the speaker. We will meet a parallel
situation in connection with rules later.

What may be ambiguous to the speaker need not be ambiguous to the listener
(and vice versa) at different times and places, and that raises challenging questions
about the source and nature of imprecision, vagueness, uncertainty, and their role in
common sense or approximate reasoning. Where are they to be found? In the original
physical referent? In the speaker’s response to it? Or perhaps in the listener’s response
to either of those, or even to both?

Finally, the risk that the connection between w and g become increasingly remote
and abstract, and their relation lost sight of, is real enough, particularly in theoret-
ical research by different Es, who may take w as an established fact and proceed
from there. Zadeh’s phraseology must be interpreted in this sense. He is obviously
not equating words and their denotations, and no one working with empirical facts
and getting back to them at every step, whether in science or engineering, would be
inclined to think so. Zadeh is, in fact, recognizing that there are events (the granules
defined as fuzzy constraints on variables) and constructs (w) and that we can conve-
niently represent them as we please. It cannot be too strongly emphasized, however,
that things can go badly awry when we extrapolate directly to everyday activity, as
the history of perceptual studies all too plainly shows. To repeat: people do not go
around setting up LVs.

1.3 On Perception

Collectively, perception has to do with those processes that lend a measure of coher-
ence and unity to sensory input; included here are physical, physiological, neuro-
logical, cognitive, and affective components. In the normal course of events, per-
ceptual responses precede motor and verbal activity; just as naturally, however,
perceptual responses can accompany, partially overlap, and eventually initiate or
even become a substitute for the original stimuli. The literature is complex and often
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inconsistent, different approaches reflecting different emphases on different
components and methodologies.

The bottom line is the relation between the stimulation impinging upon the behav-
ing organism and its response to it, neither of which can be effectively discussed
independently of the other. To do so is to perpetuate the most resilient conundrums
that continue to plague the field. We are essentially concerned with the presence or
absence of stimuli, the differences between them, and the relationships among them.

In our discussion of reference—or better, referential behavior—we de-
emphasized, as it were, the physical stimulus complex that might trigger a response
like “green.” The present section aims to make the relation between the responses
and their antecedent stimuli more explicit. The importance of doing so will become
especially clear when we consider behavior in the absence of the requisite stimulus
complex, the interlacing of verbal and perceptual responses, and the status of rules
in human as opposed to machine, behavior.

What we are interested in at this point is amply covered by the permanent give-and-
take inherent in the well-known processes of generalization and discrimination—
both Pavlovian and operant, with both positively reinforcing and aversive stimuli—
which routinely make up a sizable part of any textbook on the experimental analysis
of behavior.

In a nutshell, generalization is the tendency of an organism—infrahuman or
human—to respond to stimuli that lie along the same continuum as the objects,
properties and events present when the response was first acquired. A behavioral
event occurs but once and then passes into the history of the individual as a latent
disposition. It is extremely doubtful whether we could survive very long if different
bits of behavior had to be separately learned to meet all the variations and nuances
of the environment.

Unchecked generalization, however, would backfire if it made no room for speci-
ficity. Discrimination provides the counterpart: we do want to move on a green
light; failure to discriminate entails ineffective outcomes, or worse. In psycholog-
ical parlance, effective responding in the presence of one stimulus and not in the
presence of other stimuli along the same continuum is such as to cause the related
response strength—usually treated in terms of probability of occurrence—to separate
gradually.

The classic experiment [3] is actually quite simple, and the results could scarcely
be clearer. The X axis is wavelength of light in perceptual terms (color); the Y axis
shows percent of total responses.

Four different groups of pigeons were respectively conditioned to peck at a disc
having the wavelength of one of the four arrows in the following figure. When
the colored disc was on, the Ss would be reinforced with corn on a time-interval
schedule averaging one grain of corn per minute. When the disc color was off, they
received no corn at all. The final rate of responding came to approximately 100
pecks per minute. Next, reinforcement (delivery of corn) was entirely discontinued
and different colors were placed on the discs in order to observe the rate of pecking at
these new wavelengths, taking points to the left and to the right of each of the arrows.
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Fig. 1.2 Pigeons’ total response depending on the light’s wavelength

As Fig. 1.2 shows, the animals continued to peck at the highest rate in the presence of
the original wavelength; however, they also pecked at discs with wavelengths above
and below the original wavelength, the new rates being proportional to the disparity
between the new or test stimulus and the originally conditioned stimulus.

With the widening of the gap different bonds and dispositions develop. Enlarging
on Notterman’s [17, p. 119] discussion, this all seems so self-evident and sensible!
What is not so obvious is that the available evidence, obtained from a large variety
of species (ours included), behaviors, and sensory modalities, can be as orderly and
consistent as it has been found to be.

Where generalization makes for behavioral stability (and labor saving), discrim-
ination makes for the development of more finely defined subsets of behavioral
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fields of interaction between the S and the surrounding world. The resulting sets and
subsets are permanently open to generalization or further discrimination in turn—as
the environment may demand. This generalization-discrimination interplay provides
the baseline for the development of more complex and subtle forms of abstraction
and concept formation.

Ordinarily there is no need to specify what shade of green we are dealing with,
even though degrees of greenness can be stated precisely to the micromillimeter of a
wavelength. And there’s the rub: the very idea that the range of the stimulus setting
must be specified or precisely stated points directly to the interests and procedures
of E qua E, who can be a psychologist performing a fine-grain psychophysical study
or someone engaged in the design of a program in SC. Ordinary citizens have no use
for this kind of detail: faced, for example, with a green ball, they merely respond
according to its momentary relevance or possible use; the relative salience of its
physical features and other current incidental parameters, along with their history of
interaction (call it “experience”) with green objects and colored balls, will do.

A priori speculation about degrees of greenness, lightness, size, etc. would be
meaningless. The humble hyphen in “pattern re-cognition” just about sums up the
story behind numerous historically deep-rooted dualisms (say, ontology versus epis-
temology), which even the more solid sectors of psychophysics still seem unable to
do away with. This is not a matter of logic or mathematics but of behavioral variables
and the physical properties of the responses generated. Mathematics proves useful
when we know what to be mathematical about.

It would be surprising if the study of similarity, complexity, familiarity, contrast,
distinguishability, and the like, could not profit much in the future from the data and
principles gathered under rigorous experimental control, without having to drag in
the usual plethora of theoretical constructs to “explain” the strength of the resulting
stimulus and response bonds.

We have been concerned with the speaker so far. Although we have zeroed in on
the joint presence of a referent state of affairs—a green light or a clock prompting
the speaker to say “green” or “It’s five o’clock” in the presence of a listener—a
multiplicity of variables is always at work.

What is in it for the listener, though? We meet, of course, a different configura-
tion. The specific verbal stimulus, say, “It’s five o’clock,” does become focal for the
listener, and even more so when he/she does not have direct access to the clock. It
puts the listener automatically in touch with (“in mind of”) the state of affairs that
prompted the speaker’s response. Much perceptual behavior and “transfer of knowl-
edge” takes place “out of context,” wholly or in part. How is this to be understood?

Verbal stimulation, possibly even more than nonverbal, conjures up events in a
life, the meaning of which is continually revealed and enriched as more connections
make themselves felt or become recognized. As already noted, the effect and extent
of this overlap between speaker and listener is at the basis of understanding and
constitutes one of the greatest challenges in the study of perception and experimental
psycholinguistics. Progress in this area can go a long way toward clarifying the
structure of knowledge, the dynamics of thinking and the place of reasoning within it.
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We get an entering wedge when we consider a special property that verbal and
perceptual behavior have in common: where motor behavior requires a physical
environment with specific characteristics for its execution—you need an actual closed
door if you are to open it—perceptual and verbal activity can and often does occur
“in the absence of the stimulus.” We can speak about the past, the future, hypothetical
cases, alternative ways of handling specific situations, and so forth. In such situations
we are likely to find ourselves behaving both verbally and perceptually (seeing,
hearing, smelling, and so on) to different extents dictated by the nature of the task
itself and our discriminative history. Try not to see an elephant (or anything else)
when instructed not to think of one! [15].

Responding in the absence of the stimulus (sometimes significantly referred to
as “the mind’s eye”) enlarges the human individual’s range of adaptive possibilities
immeasurably and lies at the core of what makes human behavior the enormously
complex phenomenon that it is. This is the world of problem solving—where imag-
ination, intuition, contextualization, and such, are given free rein and must indeed
be kept in check, lest they become misperception, idle speculation, or wishful think-
ing. Intentionality and rationality (or better, intentional states and rational behavior)
must balance each other out in useful reconstructive memory, anticipatory behavior,
choice and decision making, and numerous other cognitive tasks.

Different sensory modalities are simultaneously at work at all times, though we
focus on some more than others according to circumstance. The plot thickens in the
human case because, given the different physiological structures involved, perceptual
and verbal responses can become interlaced with each other and with other responses
of the individual.

The availability of “green” may help sharpen the perceptual response (hence also
the subsequent action, as in choosing among different objects according to color) in a
momentarily ambiguous situation. Similarly, hefting and balancing a ball allows for
greater certainty before declaring it “light,” “heavy,” “hollow,” and degrees thereof,
and thus suitable for one purpose rather than another. The central role of internal
cues when one or more external sources of stimulation fail—e.g., in groping our way
through a familiar but suddenly darkened room, as opposed to doing so in a relatively
or completely unfamiliar one—scarcely needs pointing out.

We take the wrong turn when we assume that the relative or absolute absence of one
or more (internal or external) stimuli from our vantage point as analysts similarly
implies their absence for the S, and then proceed to set up models based on such
glaringly insufficient grounds. Whether S is aware of it or not, private stimulation is
part and parcel of any adjustments to the incoming stimulation at any given time.

As adumbrated above, active self-responding becomes all-important, for example,
in self-reference, self-regulation, and complex forms of delayed mediated respond-
ing, of which rule-related behavior is a good example.
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1.3.1 An Interpolation on Rules

The need for RUs is universally taken for granted; although exceptions can be cited,
their status is rarely questioned. Different fields share different sets of assumptions,
different manipulative response sets, and different schemes of inference. Membership
in the guild presupposes the adoption of these assumptions, sets, and schemes, which
soon become unchallenged givens for most practitioners.

As with LVs, confusion arises when we take RUs out of context and deal with
them hypostatically as objects in themselves—strings of words, actually—forgetting
that they are the product of someone’s activity. RUs do not come out of the blue:
they are linguistic constructs put together by someone under specific circumstances,
generally so as to facilitate someone’s response—often after a lapse of time—to the
state of affairs that led to their formulation to begin with. Sometimes they include a
specification of the behavior that they direct the listener or reader to perform. In a
very real sense, they can be conceived as an extended version of LVs.

We circumvent the attendant hypostatical traps by zeroing in not on the RUs
themselves but on RU-related behavior: generically, RU-formulation, on the one
hand, and RU-following, on the other.

The individual engaged in a hands-on task—likely to be a mixture of perceptual,
verbal and manipulative behaviors—provides a useful basic scenario:

Harking back to Fig. 1.1b, the referent for A’s behavior may not be sufficiently
simple or unambiguous to automatically elicit “green” and A may have to figure out
the adequacy of the requisite response before she can reliably state the prevailing
relations. Having “put two and two together,” A sums up a state of affairs for herself:
“Oh, I see, if X is A, then Y is B,” “If/When X, then Y,” “If X, what I must do is
…,” and changes her ongoing course of action accordingly. She may also make a
mental note: “I must remember that if/when X, Y happens”; or “If/When I do X, Y
happens,” “If I say ‘x’ they are bound to understand ‘y’; therefore I’d better qualify
my statement.” Few people would deny that these are forms of thinking or problem
solving involving a measure of self-awareness. By the same token, A may jot down
these observations for future reference, her own, or someone else’s. Writing bestows
upon such memoranda the sort of durability helpful to any kind of delayed action.

By definition, future reference or “use” implies a different situation. These exam-
ples have to do with A acting as a speaker or writer. A may, of course, be also
instructing B in situ, where both can respond perceptually and verbally to the rele-
vant referent. But the green light, the clock, and so on may be out of the immediate
range of B, as we saw earlier. We face a similar situation when we follow a piece of
advice, a warning, an order, a set of instructions, conjectures, etc. It is because of
this “sight unseen” nature of much RU-related behavior that rules were alluded to
earlier under the auspices of private stimulation and the absence of the stimulus.
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Although by no means to be equated with reasoning and thinking (as is often
supposed), rules certainly play a major role in them and we can conveniently talk
about RUs tout court so long as we bear in mind that:

(a) RU-related behavior is both referential and relational: in putting two and two
together, the speaker responds to different aspects of the world, perhaps for
the first time, and summarizes the relation in verbal form, say, in the standard
IF/THEN frame. Crucially again, nouns, verbs, phrases, propositions, etc. do not
enter the speaker’s stimulus configuration when he fills in the frame, but they do
become central as a variable for B. Alas, this is a fundamental fact all too often
forgotten in the heat of battle, as we already saw in connection with LVs.
Assuming a measure of shared experience with the speaker, the listener who
understands the IF/THEN frame can begin to respond to those aspects of the
world referred to by the speaker, perhaps hesitantly at first. The uncertainty
diminishes with effective action, and we can eventually claim knowledge (intu-
itive knowledge, as it is often called) of a new place, a procedure, and so on
when the behavior becomes automatic and we can dispense with the RU and,
in time, forget it altogether. We gratefully acknowledge that most knowledge is
intuitive, or automatic, to begin with.

(b) Knowledge of a RU as such (or any verbal construct, for that matter) is a meager
kind of knowledge and we further distort reality when we assume that knowl-
edge of the RU automatically implies the ability of carrying out the behavior
that it is supposed to direct. This is a widespread misperception, unabashedly
strengthened by the computer metaphor, of which much is sometimes explicitly
made (compare, e.g., [14, 22]) in line with mainstream artificial intelligence,
cognitive science, and even systems thinking. Despite obvious differences, this
applies equally to cognitive tasks, say, logical and mathematical procedures, and
to activities directly related to the physical world. Consider the differences in
ease of retention and execution of a set of instructions (e.g., following a recipe),
depending on how familiar we are with the terms employed, on the one hand,
and on the amount of culinary experience we bring to the task, on the other. Ease
of retention and execution point again to the relevant, ever active give-and-take
of the pertinent generalization/discrimination gradients.

Not all RU-related behaviors lend themselves equally well to an IF/THEN schema-
tization. We need not stray too far to acknowledge, for example, that there is a fun-
damental difference between what we might call (1) “observational” RUs, which
point to stimulation “out there” and (2) “manipulative” RUs, which call for specific
nonverbal action following the initial perception. Unraveling the similarities and dif-
ferences is a tall order indeed and we ignore the subject at our own peril whenever,
taking the machine as a template, we expect the solutions we concoct for the latter
to provide an account of human reasoning as well.
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1.3.2 Perception Resumed

Experience is fuzzy. The numerous factors that make it up—both behavioral and
neurophysiological—are continuous and their possible combinations and quantifi-
cations open-ended. It stands to reason that in the absence of a disciplined appraisal,
any attempt “to incorporate the ‘experience’ of a human controller” must remain
metaphorical or so much guesswork. Indeed, “the main advantages of this approach
seem to be the possibility of implementing ‘rules of thumb’ experience, intuition,
heuristics, and the fact that it does not need a model of the process” [16].

More recently, Zadeh [25, p. 18] states: “Perceptions are intrinsically imprecise,
reflecting the bounded ability of human sensory organs and ultimately the brain,
to resolve detail and store information. Imprecision of perceptions is passed on to
natural languages”.

We can only agree that perceptions are intrinsically imprecise, but we must take
exception to the following: “A natural language is basically a system for describing
perceptions,” for it can easily lead to a biased view of what is being represented,
computed, and manipulated. Such a statement suggests a relapse to the old concep-
tion of language as a self-contained entity of some sort, detached from people and
circumstance. It betrays the standpoint of E qua E, who needs to describe, or at least
label, concrete aspects of the subject matter for his own purposes, generally with
machine programming in mind.

As we have seen, the relation between perception and language is clearly far more
complex than is suggested here. Their mutual interpenetration, as well as their joint
interlacing with motor activity, puts them squarely at the center of virtually every
branch of psychology, culminating in the extremely complex and subtle activities
that become embodied in self-responding and self-regulation.

The recurring methodological problem is always the same and it should be easy
to spot at this point: we can transcribe (from Latin trans-scribere) “green,” “tall,”
“Mary,” and so on but we cannot transcribe a color, a height, Mary, a clock, or any
object or property, or the perceptual and motor responses they evoke—let alone the
internal stimulation and feeling that accompany them. We “capture” them by “putting
them into words,” as we say, i.e., by labeling or by describing them: “When the light
turns green, S presses the accelerator pedal,” “If you feel cold, put on a sweater or
ask someone to close the window or turn up the thermostat.” We are left with strings
of words open to all the vagaries of hypostasis.

We are operating on LVs and RUs, which are then tested and modified as many
times as needed—a far cry from trying to account for the variables responsible for
someone pressing a pedal, putting on a sweater, or turning up the thermostat. As a
rule, machines are calibrated to detect external stimulation, to do so when we “tell”
them, and to do it the way we want it done. The sensors are specifically designed
to that end. The rules themselves are orders/commands to be executed if other well-
specified variables and constraints concur. But what about the less stringent RU-like
behaviors—from simple advice to shared conjectures—and all those complex situ-
ations calling for further reflection? Mathematical and technological improvements
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serve to make manipulative implementation as efficient as possible. The expression
“manipulation of a perception” must be understood in this restricted sense.

There is no MP, as such, in the behavior of either S or of E when the latter is
describing the former. When, analogizing, we speak of humans “rounding off” in
the manner of CW, the computational connotations and implications are difficult to
resist. This is quite in accordance with Mamdani’s suggested incorporation of the
“experience of a human controller” in fuzzy systems, assuming this to be feasible.
We must remember, however, that this is based primarily on E’s analytic behavior.
It is but one easy step for the postulated relations to be taken as actual processes in
the S. In contradistinction to the machine, the S’s range of perceptual stimulation
remains unaffected throughout, no matter how many changes E might make over g
or w. There is, after all, no intrinsic relation between them.

Staying with Zadeh’s quotation, whatever “storage” and “information” may ulti-
mately turn out to be in neurophysiological terms, resolution of detail—“how impre-
cision of perception is passed on to natural languages”—must appeal to the actual
complex sets of variables combining in the behavior of S, without whom we would not
be discussing language, perception, or any other activity of behaving organisms. The
very notion of simulation would be a flight of fancy—never mind the accompanying
speculation about sensory organs and the brain (see, e.g., [7, 18, 20]).

1.4 Envoi

We generally take words for granted, oblivious of the fact that language, like per-
ception, is a form of behavior and that both must be treated as such despite their
peculiarities vis-à-vis motor activity. No matter how you shuffle the cards, percep-
tual, motor, and verbal behaviors participate, to different extents and in different
ways, in the human individual’s interaction with the environment—reasoning being
one major part of this interaction.

In view of the centrality of natural language in FL in general and in SC in particular,
we have concentrated on LVs and RUs, partly for the light they shed on computing
with words and manipulating perceptions. We have found that in their hypostatical,
unrevised form, both LVs and RUs reflect (for lack of a better term) the activity of
the E that came up with them. On closer inspection, LVs and RUs lack the semantic
symmetry routinely assigned to them in the machine context, on the assumption that
speaking and understanding are two sides of the same coin. In the nature of things,
the speaker/writer supplies the LVs and the RUs; the listener acts upon them in a
variety of ways. Speaker and listener cannot be treated as one and the same.

Such considerations clearly pose no problem in engineering, but we face a very
different situation when these and other concepts, procedures, and problems are sim-
ply extrapolated to human behavior at large. Efficiency alone will not justify, for
instance, the frequently encountered identification of knowledge with knowledge of
RUs, their usefulness in the machine notwithstanding. There is in all this a sense of
déjà vu: recall the tortured teleological speculations of cybernetics and the random
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theorizing in much systems thinking (including its recent revival of constructivism),
not to mention the widespread physiologizing in standard AI research, psycholinguis-
tics, and cognitive science. Failure to make the proper distinctions is tantamount to
letting the available technical means determine our conception of the subject matter
instead of the other way around.

FL and SC could follow in the same tradition. Paradigmatically, their strong roots
in control theory seep through, for example, in Zadeh’s [23] insightful appraisal of
operant behavior, which he tellingly reduces to behavior modification; not surpris-
ingly, Zadeh concludes that a system-theoretic formulation would facilitate com-
puter analysis. Claims about their relevance to human behavior in general, and to
reasoning in particular—what we might call their philosophical and epistemological
implications—by and large continue to be supported through reference to spectacu-
lar achievements taken from engineering. Smithson’s observation that “…claims are
open to debate since fuzzy set applications in the human sciences are still in infancy.
However, the concepts, evidence and arguments in themselves are creatively stim-
ulating for both researchers and theorists” ([21], ibid.) remains as relevant today as
when it was issued in 1987.

We can make machines smarter (some speak of raising their IQ!), and, in the
process, we become smarter ourselves about machines but not about S, whose behav-
ior the machine is supposed to simulate. To come to grips with S, E has to confront
S, his/her relevant variables and the resulting behaviors. Whatever a machine does,
it cannot even be said to go “through the same motions” as either S or E. That is
partly why “one of the greatest drawbacks of modern robotic devices is that they lack
… flexible coordinative ability” (see Kelso [12, p. 30ff] for a forceful discussion).

The fundamental fact remains: machines just do not have the right nerves going
to the right places. In their case, we do not have to worry about all-too-human factors
like frustration, fatigue, self-doubt, cognitive dissonance, absent stimulation, delayed
action in the sense described, the perceptual/verbal/motor triad, not to speak of the
automatic/non-automatic dichotomy that proves pivotal in human self-knowledge
and self-regulation. Behind them all are those inescapable conative factors mentioned
at the beginning of this paper, which have been deliberately ignored throughout this
discussion in the interest of brevity of exposition. Metaphors have their place also in
science but, as elsewhere, they can be extended only so far.

Another look seems needed. In their survey of possible fields of application, Klir
and Yuan [13, p. 463] go as far as to say: “Psychology is not only a field in which
it is reasonable to anticipate profound applications of fuzzy set theory, but also one
that is very important to the development of fuzzy set theory itself.” This is definitely
not a task for seekers of immediate gratification, but the rewards beckoning are too
promising to ignore. The present essay has been written in this spirit and, one hopes,
not in greater detail or contrapuntal reiteration of the same underlying themes than
necessary.
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Chapter 2
Language, Fuzzy Logic, Metalogic

Josep-Maria Terricabras

Abstract This article envisages two main goals: (1) It stresses the importance of
language not just as an instrument but above all as an atmosphere, an ambience,where
we grow up, we learn, we love and hate, we have pain and we pray, we think, we
make mistakes and we finally die. That’s why language, though it is not governed by
arbitrary rules, is not either a rigid and inflexible instrument, since it has to express the
situations, emotions and experiences of our daily life. (2) It points out that logic has
always tried to establish the fundamental rules of language and reasoning. But logic
has not been able, till very recent times, to recognize its own possibility conditions,
which build up its sense and strength. There is a dogmatic demand of determinacy
of sense which should be avoided. Everyday language very often expresses doubt
or disagreement, hesitance, ambiguity or vagueness. Indeed, the ideal of exactness
is over. Fuzzy logic makes a fundamental contribution to the understanding of this
fact. Any sentence can have an exact or a vague meaning depending on its context
and purpose. Context is given by ordinary life which imposes conditions to sense
and understanding. Fuzzy logic takes into account the specific conditions governing
exactness and vagueness in the use of words.

2.1 Language

I will start with something commonly known, namely that language is the most
decisive element in shaping human thoughts and consequently human personality
and culture. Through language we communicate and express our ideas and opinions,
with language we build our inner world, our beliefs, feelings and hopes. Hence, each
language is the privileged place for the most personal and intimate life, and at the
same time a means of communication and social achievement, in favour of dialogue,
coexistence and peace.

J.-M. Terricabras (B)

University of Girona, Gran Via Jaume I, 17005 Girona, Spain
e-mail: josepm.terricabras@udg.edu

© Springer International Publishing Switzerland 2015
R. Seising et al. (eds.), Towards the Future of Fuzzy Logic,
Studies in Fuzziness and Soft Computing 325,
DOI 10.1007/978-3-319-18750-1_2

21



22 J.-M. Terricabras

Our world is a real cluster of languages. Some people resent it and complain
about this fact, probably because multiplicity of languages makes their lives a bit
more difficult, especially when they go around as tourists. Fortunately there are
also people and institutions which defend linguistic pluralism and try to preserve
language diversity, even if some individuals or groups are much more concerned
with the protection of their own languages than with the protection of all languages
without discrimination.

So we can affirm both at once: that linguistic pluralism is a fact, a simple and
undeniable fact; and, at the same time, that this fact is not experienced as a great
opportunity for building strong and rich cultures, but is merely seen as (perhaps) an
interesting cultural fruit of past geographical and political divisions. A strange sense
for globalization leads many people to believe that a linguistic unity would be better
than linguistic diversity. Those people think in terms of practical management of
public life, not in terms of real appreciation of goods and values. Those who want
to make some contribution to a better understanding among human beings should
not be so naïve as to think that they will be better off if they speak finally the same
language.Well-being depends on the capacity of expounding and increasing thoughts
and experiences. This iswhat humans dowhen they exploit all the possibilities offered
to them by the atmosphere of their native or acquired languages.

From what I have said I can draw the following conclusion: linguistic capacity is
a literally basic, fundamental capacity, without which humans would not be humans
anymore, since they would loose their own way of having thoughts and emotions,
of expressing ethical judgments, of making projects, of imagining and of commu-
nicating with each other. Each language does all these things in its own way, with
all the extraordinary possibilities and amazing means that history and tradition have
slowly developed. This richness must be preserved as a fundamental heritage of the
human species, which shows, in the dialogue of languages, how unity can be better
preserved through an active respect and consideration for linguistic plurality.

In that sense, languages should not be diminished to the level of political weapons,
but should be considered at their real human value. I am afraid that there is now a very
general opinion according to which a language is just a means (an instrument) for
human understanding. And certainly it is. But it is not just this. If language were just
a means for understanding, this would justify the attempt to achieve the superiority of
one language over the others. In that case, even if many languages were to disappear,
the mere existence of one language known by all would be enough guarantee to
preserve understanding in human relationships. The idea that language is just an
instrument for communication is the idea that lies beneath the lack of respect for
language diversity. If we only need to communicate with each other, than we do not
need many languages but a single one known by everybody.

But the truth is that language is more than a ladder, more than an instrument, more
than ameans designed to passmessages from one person to the other. Language is not
like a phone, which in case of being out of order, can be substituted by other means
like a letter, an e-mail or a carrier pigeon. Language is not just a means but a medium,
a milieu, not just an instrument but an atmosphere, an ambiance, where we grow up,
we learn, we love and hate, we have pain and we pray, we think, we make mistakes
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and we finally die. Language embraces and produces our different forms of life.
That is why languages cannot be simply substituted for each other. Each language
shows a vision of the world—perhaps even a Weltanschauung,—each one produces
different ways of interpreting and understanding not just what speakers say but also
what they do, how they react, what they feel. Each language is a world, a real world.
Of course there are connections between those worlds -that is why we translate texts
and books-, but we should not forget that translation is an art, and this means that
there are not automatic bridges which connect languages. (Translators know better
than anyone else how difficult it is to translate poetry properly, for instance.)

Those who pay attention to these very basic facts will be able to understand two
complementary things: (a) that languages are not totally arbitrary devices, since they
serve not only to unit communities but also to interconnect different linguistic groups
with each other; (b) that languages cannot be rigid but that they are rather very flexible
structures able to give way to all sort of situations, emotions and realities. Point (a)
explains why mankind has always been interested in logic; point (b) justifies the
creation and existence of something called �fuzzy logic�.

2.2 Logic

Nineteenth century logic was still a very much philosophico-hegelian science, a
philosophical discipline which moved between metaphysics and psychology. A new
logic, based on strict calculus (sometimes called �mathematical logic�), appears
firmly in the twentieth century. Nevertheless, if we look at the classical logic—the
one going from Aristotelian logic to nineteenth century logic—and compare it with
the new logic of the twentieth century, we easily realize that both, despite their
technical differences, have been cultivating extensional logic, i.e. both have being
concerned with the exactness of logical predicates they used. Some authors—as
Frege and Russell—tried to find exactness through the creation of ideal languages.
According to them, science feels uncomfortable with vagueness and needs absolute
precision in the use of its terms. Since ordinary language is not useful for the purpose
of exactness, it is necessary to build up ideal languages to ensure it.

Other authors, however, looked after exactness through the analysis of natural lan-
guage. They considered that the surface of natural (everyday) language is vague, but
that after closer analysis of our sentences we will eventually discover that exactness
is embedded in their deep structure. This is, in fact, the idea proposed byWittgenstein
in his Tractatus. His main objective was to isolate all logic vagueness, ambiguity and
inexactness. In fact, the idea of exactness has always been part of the bedrock of the-
oretical knowledge considered as higher knowledge. That is why sciences -including
logic andmathematics- have until recently focused their attention on the investigation
of fixed entities, permanent, unchanging and almost unchangeable realities.

Predicate logic has also been speaking of �classical (or fregean) predicates� to
refer to predicates which only admit two truth values: true and false (0 and 1), with no
degrees or shades of any kind. This means that, for any object whatsoever, it is always
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decidable whether the object falls or does not fall under the concept expressed by
the predicate, as it is shown in examples like�being a Berlin resident� or �being
twenty-one years old�. This is clearly a binary logic, one of �yes� or �no�;
any third possibility is totally excluded from it.

During the twentieth century, mathematics, thanks in part to statistics and proba-
bility theory, has expanded its traditional concern and has finally applied to humani-
ties and social sciences. Concern for accuracy has been losing ground in front of the
idea of approximation. Mathematical results are no longer measured by their alleged
certainty but by their degree of probability. It was also during the twentieth century
that logics have been developed accepting more than two truth-values: that was the
reason of the appearance of trivalent, tetravalent or, generally, multivalued logics.
However, not even those logics can adequately cope with such a basic and general
phenomenon as vagueness, which fills ordinary language, our expressions and our
reasoning.

2.3 Fuzzy Logic

�Vague� or �fuzzy� predicates do not admit a crisp classification of objects, as
it is seen in examples like�being bald�,�being rich�,�being healthy�. Frege
hated these predicates because, as already said, he was seeking rigorous exactness
without which, according to him, science would not work. In fact, a vague predicate
opens an interval of infinite gradation (infinitely divisible between 1 and 0). Ordinary
language reflects these gradations, these nuances, and logic has to cope with them if
it wants to give real answers to the challenges of everyday life. Nevertheless, when
logic does so, the expression �fuzzy logic� may lead to confusion, because it is
not logic which is fuzzy but the use of language analyzed by logic. What fuzzy
logic is precisely about to demonstrate is that fuzzy predicates can be treated with
mathematical rigor if you quantify them correctly. �High� is a vague predicate,
but people are 1.70, 1.80, 1.90 m. high, which are very precise heights. Fuzzy logic
has to specify the degree of highness of those people since it evaluates each case
within the range between 0 and 1.

Here I would like to mention again Wittgenstein’s position, since he had a pre-
eminent saying in analytic philosophy when fuzzy logic was officially born. Indeed,
he showed an own view on vagueness both in the Tractatus (1921) and in the Philo-
sophical Investigations (1953). These works are often seen as equally maintaining
that vagueness is an essential feature of language. According to this interpretation,
Wittgenstein’s work became an inspiration for some attempts to construct or justify
a logic of vagueness. But this was not exactly Wittgenstein’s position, since he did
not want to construct a logic of anything, neither of exactness nor of vagueness.
We have seen that the Tractatus tried to supersede vagueness by a proper analysis
of sentences. Later on, Wittgenstein’s turn to everyday language did not mean the
acceptance of ordinary language without more ado. Wittgenstein doesn’t want to
promote vagueness; he merely resists the dogmatic demand of determinacy of sense,
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that is, he tries to resist the insistence that the possibility of doubt or disagreement
about the application of an expression must be eliminated. This is a crucial point in
Wittgenstein’s approach to vagueness and to philosophy. In fact, he tries to distort
the ideal of exactness. On this line we can establish the following points:

(a) There is no single ideal of exactness. The contrast between exact and inexact is
relative to a context and a purpose (e.g., whether we are measuring our distance
to the sun or the length of a table). An inexact definition is not one which
fails to meet the elusive ideal of determinacy, but one which fails to meet the
requirements of understanding in a given context.

(b) No explanation could avert all possibility of indeterminacy, since no system of
rules can budget for the countless bizarre possibilities in advance.1

(c) Even if vagueness is considered a defect, a proposition with a vague sense still
has a sense, just as a vague boundary is still a boundary. If there is only one gap
in an enclosure, it is determined that there is only one way out (a fly-bottle is a
trap, although there is a way out). For a concept to be useful, all that is required
is that it is defined for some cases, so that some things would definitely fall under
it, and others definitely would not.

(d) One might respond in the spirit of the Tractatus that although the rules may
allow a certain degree of elasticity, that degree must itself be determinate: there
may be borderline cases, but it must be exactly determined what counts as such
a case. However, this idea leads to a vicious regress. If we try to make the limits
of an area more precise by drawing a line, that line has a breadth. If we try to
avoid this by using the colour-edge of the line, the only way of determining what
counts as overlapping this exact boundary is to draw another line, etc.2

Aswe can see,Wittgenstein is not working on a fuzzy logic but acts as an objective
ally since he accepts limits to exactness and evaluates their importance. Exactness
and inexactness (or vagueness) give sense to each other. Wittgenstein’s example
is important not just for his enormous influence in the history of thought but also
because it shows that the future of fuzzy logic does not depend only on its technical
improvements but also on the alliances and on the new ranges and applications it
can win. These applications are very important when they belong to the domains of
linguistics, psychology, literary criticism, ethics or political science.

2.4 Metalogic

Let’s now ask the following question: when we talk about �fuzzy logic�, are
we entering into a new field, into some kind of second level order, from which
we will be able to clarify logical problems and prepare new routes? To put it in
a more already classical terminology: can we accept the existence of something

1Cf. Ludwig Wittgenstein: Philosophical Investigations, §§80, 84–87.
2Cf. id. Philosophical Investigations, §88; Zettel, §§441–442.
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called �metalogic�? Carnap’s Logical Syntax of Language (1937)3 ascribes the
origin of the term �metalogic� to the Warsaw logicians. At present, this term is
used to refer to second-order reflections about logic (e.g., to proofs of soundness
and completeness). In agreement with the position of Wittgenstein on this matter, I
would oppose to the necessity of accepting metalogic. We refer to our logical work
using terms which can be considered �formal concepts�, like �proposition�,
�name�, �predicate�, �function�, etc. They are used to explain what we do
and the terms we use. But this doesn’t mean that they have an extra-ordinary status
within our logical system. They are simply terms or concepts which help us to explain
things, but they do not belong to the signs system. They are of a different order (since
strictly speaking we don’t use �propositions� but �p�, �q�, etc.), but they are
not of a second-order as if they were of a higher order.

A reflection is a reflection, no matter which sequential order they take. There is no
need to accept a second-order logic which allegedly would be more comprehensive
and better articulated then the previous one. We can expect no gain derived from
such an acceptance. Logic determines what is necessary, but there is no metalogic
which makes logic necessary to control previous levels. In fact, all concepts which
philosophy uses in describing ordinary language are themselves ordinary. The same
happens with logical concepts, which are, all of them, at the same level.

When I talk about language (words, sentences, etc.) I must speak the language of every day.
Is this language somehow too coarse and material for what we want to say? Then how is
another one to be constructed?—And how strange that we should be able to do anything at
all with the one we have! In giving explanations I already have to use language full-blown
(not some sort of preparatory, provisional one); this by itself shows that I can adduce only
exterior facts about language.4

This does not exclude that fuzzy logic—or logic tout court—may offer many
interesting aspects of discussion and reflection. In many cases logic uses terms and
concepts which are also important in other areas of knowledge. This is the case, for
instance of �ambiguity� (�good life depends on a liver�), that affects seman-
tics, pragmatics and particularly rhetoric, or �vagueness� (�John is bald�), that
affects also semantics, but it is less related to pragmatics and more linked to syntax
and logic; for that reason it is an absolutely central concept for fuzzy logic.

There is still another term which deserves a major attention, but which in the
shortness of this text it will only be treated—as it has been done with other terms—in
a rather informal way. I am referring to�uncertainty� or�uncertain�. Language
is a field without walls or doors. Indeed, the borders between the uses of language
are always tenuous and vague, but we can also say that they are uncertain. In fact,
we often live in the uncertainty (which is not simply a doubt), for instance when we
do not know if we make good use or misuse of some terms. This indicates that there
are at least two major uses of the word �uncertain�: our uses of terms may not
only be vague but also uncertain, and we may of course feel uncertain about things.
If I say �the epidemic outbreak caused by contaminated food is uncertain�, I’m

3Translation from Logische Syntax der Sprache, 1934.
4Ludwig Wittgenstein: Philosophical Investigations, §120.
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saying it fails to show clear profiles. This would be �objective uncertainty�. But I
can also say that I am uncertain about some situation, for example when I say �my
involvement in the business is uncertain�, which means that it is not safe, that I did
not yet take a final decision on it. This might be called �subjective uncertainty�.

And still we can make a third use of the term �uncertain� which I will call
�amphibological�, which consists in having both at once (that a fact is uncer-
tain and that I feel uncertain about a fact), that is, when the objective and subjective
uncertaintymatch. This happens, for example, when some experts involved in a polit-
ical debate say that�the impact of the broadcasted debate is very uncertain�. They
mean the impact itself is staggering, unequal, that it depends on small, unpredictable,
almost imperceptible details, and yet they also want to say that they are unsure about
what they do, about what they should do to positively influence the electorate. (This
amphibological character is also a special case of ambiguity: indeed, an expression
is amphibological when it has different meanings at once, that is when it cannot
simply have them and can play with them. Typically, the ambiguity is unique and
demands an alternative interpretation, as seen in the example given above. The term
�uncertain�, however, admits an amphibological use, i.e. it allows a simultaneous
interpretation of its ambiguity, but doesn’t impose it.)

The subjective component of �uncertain� has surely provoked that it had little
interest in fuzzy logic. But the very fact that uncertainty has sometimes a psycho-
logical component of subjective nature confirms the interest shown in its analysis by
scholars of the humanities and social sciences. Indeed, it seems tome uncontroversial
that in the future it will be crucial to give to psychological uncertainty the importance
it has been given so far to vagueness in physics and biology.

I’m not saying that logic returns to psychology. I’m only proposing that we try to
model and analyze our psychological capacities without having to accept the behav-
iorist model, which relies on the analysis of behavior without sufficiently examining
the linguistic terms of its analysis. Terms like �certain� and �uncertain� (which
don’t imply respectively �knowledge� or �ignorance�) are crucial to that pur-
pose.

This brings me to say that, in this twenty-first century, logic researchers are able
to make some connected statements that surely they could not have made some years
ago. I will organize those statements around two important points:

1. Language, considered in abstract terms, is neither exact nor vague. Any sentence
can have an exact or a vague meaning depending on its context and purpose.
Vagueness is not an exception in language but a common possibility. I do not
mean that there is an essence of vagueness in language but that any term can be
used or interpreted in a vague sense, not previously foreseen by yourself or others.
This doesn’t bring us to paralysis. Vagueness works because we constantly try to
narrow it for understanding purposes. Whenever we fail or are wrong, we have
self-correcting mechanisms. That’s why logic and analysis of language must be
increasingly flexible and subtle.

2. Exactness is the limit of vagueness. Vagueness, on its turn, has also its limits.
That is why we often accept many expressions as adequately accurate even if we
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know that they could be interpreted vaguely. This means that in our everyday life
we pragmatically accept the limits of the interval between 0 and 1.
It is, therefore, important to reverse the classical assumption according to which
vagueness is merely the limit of exactness. This is an important change of per-
spective which allows me to point out to some consequences which are relevant
for contemporary culture and which go far beyond the field of mathematics and
logic. I will briefly mention only six of those consequences:

(a) The theoretical shift towards understanding inexactness means a radical
change of perspective in the way humans look at reality. Therefore, we are
not facing a new theory, a newhypothesis or a newworkproject. This is rather
a Copernican turnaround that has already begun to have huge consequences
for industry and technology, but also for domestic life, education, medicine
and the rest of our lives.

(b) The shift towards understanding vagueness and inexactness redefines the
epistemological optimism of many modern scientists and thinkers. They
thought they might arrive to exact knowledge of everything, being able
to capture everything with precision and accuracy. Sometimes they even
assumed that what they could not understand with total precision had no
interest or was worthless. Knowledge has now become cautious. In the past
exactness had been linkedwith knowledge of reality. Inexactness and vague-
ness are now only linked with our way of speaking about reality, without
any ontological claim, without any attempt to know if reality is accurate
or inaccurate, simply because we just talk about it. This looks like a more
humble position but, paradoxically, it is more �realistic�.

(c) The shift towards understanding inexactness also redefines the concept of
description. What does it mean now the attempt �to describe reality�?
Over a hundred years ago nonfigurative art started this debate and questioned
the notion of plain description. Indeed, facts accept multiple descriptions. It
is precisely the kind of descriptions people use what shows us whether they
are describing the same thing in a different way or whether they are talking
about completely different things.

(d) The binomial true/false has lost its static and abstract character. Strictly
speaking, we should only refer to truth or falsity in terms of degree or range.
To assign a degree allows us to be both flexible and rigorous, because in
assigning a degree of truth we are also assigning a degree of falsity or of
ignorance. This is not a defense of relativism—which only makes sense
when opposed to absolutism-, but it highlights the relational nature of truth,
since nothing is true or false in itself or in an abstract way, but always with
respect to some criterion and within some system or framework. A new
problem arises when we ask whether we can compare different frames of
reference with each other. This is a capital issue in social sciences, when
they are about to make, for example, intercultural statements.

(e) No ideal of exactness can be laid down. Such an ideal have only been
supported by the belief that what is not predictable is irrelevant. But an
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inexact predicate is not useless; on the contrary we can obtain from it a
lot of very relevant information. Consider, for example, weather forecasts
which, though often very inaccurate, provide valuable information. After
all, we establish, not always in a very accurate way, our ideals of exact-
ness depending on time, subject, people and age. We should always ask:
�exactness what for?� The lack of exactness cannot be used for blame.
The lack of rigor should certainly be, because you can be very rigorous in
your treatment of inexactness.
In the field of ethics this is very important. Let’s see what happens in a
hospital: a doctor has no longer to ask what can be done to save a life. Now
doctors have to ask what should be done, because they have many resources
available. Nowyoumust choose and have preferences and priorities. Usually
this has not been the case before.

(f) The shift towards understanding inexactness makes explicit the approach of
science to society. Fortunately science has abandoned its selfish dogmatism.
Now we are confronted with enormous possibilities which remain open to
analysis and treatment in large areas of knowledge. This happens in a far
more vivid form in those areas which, due to its elasticity and flexibility,
had been virtually marginalized by a too narrow logico-mathematical per-
spective.

Indeed, nothing is negligible in principle. In a parody of Pascal we might say
that, if the heart has reasons that our head does not understand, then our head has to
do a greater effort. Or you can say with Goethe: �For those who think they know
everything, almost everything is ridiculous. For those who are reasonable, almost
nothing is.� Leibniz expresses the same thought schematically, i.e., in a sentence
which is clear and vague at the same time: �Je ne méprise presque rien.�



Chapter 3
On What I Still Hope from Fuzzy Logic

Enric Trillas

Abstract This paper just tries to look towards a particular aspect of fuzzy logic’s
future. Namely, that concerning to the form in which its theoretic evolution should
be followed up to approach, in a scientific manner, one of the greats desiderata in the
way to Zadeh’s Computing with Words: the renewal of the old thought of making
interact Fuzzy Logic and Natural Language Common Sense Reasoning. For such a
way, and from the perspective of its author, it is argued that fuzzy logic deserves to
move towards a new experimental science of linguistic imprecision and non-random
uncertainty. A goal for which a critical review of some still open questions should be
done, but not only taking asmodels those of logic andmathematics. The author thinks
that a better model is that of physics, joining observation, controlled experimentation
and mathematical models in the ground of language and ordinary reasoning, with the
extensive use of computational technology and its applications to practical problems.

3.1 Introduction

Imetwith fuzzy logic in the summer of 1974, a fewmonths after I gotmyfirst position
as a university professor, and thanks to a news in a French Newspaper. The news
referred to the first of the several books professor Arnold Kauffman published on
fuzzy sets, and it called my attention to the point that I bought the book, ‘Théorie des
sous-ensembles flous’ [1]. After trying to read it, and although if the book basically
deceived me, the idea of a fuzzy set left me worried since I linked it with an old
writing in French byMenger [2] on what, in English, he called Hazy Sets to translate
the French name ‘ensembles flous’ he coined to use in his paper, and that I knew by
being then working in Menger’s Statistical Metrics. Thus, I decided to have a look
on the paper that introduced the idea, the 1965s ‘Fuzzy Sets’ by Zadeh [3].
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Before reading Zadeh’s paper I was unable to imagine a fuzzy set as something
different of a probabilistic-driven idea. In fact, Menger’s hazy sets were defined as
something similar to the function given by the probability that an element in a ground
set belongs to a given subset of it. Zadeh’s first paper greatly surprised me since I
immediately realized that it referred to a wider concept, essentially linked with the
use of predicates in natural language. The problem appeared to me related with the
meaning of words, and not with random experiments. If Menger arrived at hazy sets
by some worries regarding quantum physics, Zadeh arrived at fuzzy sets by worries
on problems coming from a different, and actually distant, field, that of Cybernetics.
Since in that time, and by the intellectual interests of a colleague of mine, an engineer
working on Cybernetics, I was a little bit concerned with the idea of the ‘Analogical
Computer’, I decided to try to work on the theory of fuzzy sets that seemed to me
closer to the analogical than to the digital. Namely, I began with some work on the
measures of fuzziness introduced in 1972 by Luca and Termini [4]; the concept of
fuzziness as a measurable quantity seemed me both new and interesting. I saw to
‘fuzziness’ as a scientific, although restricted, alternative for the philosophical term
‘vagueness’ that seemed me too vague and on which I read the famous Russell’s
paper [5]; namely, as something close to non-boolean and that, contrarily to vague,
can be measured once the linguistic terms are represented by fuzzy sets.

The idea of mathematically modeling the linguistic use of an imprecise predicate,
was completely new for me and I noticed it as something mathematicians and math-
ematical logicians refused to consider from, at least, the work of Frege. It was my
personal boringness towards the strong ‘bourbakism’ then driving both the teaching
and the research in mathematics in Spain, jointly with my own concerns on the ‘set
extremism’ in the European pedagogical movement of the so-called ‘ModernMathe-
matics’, what impelled me towards fuzzy sets. I not only felt an interesting challenge
in the new concept, that of introducing mathematical models in language, but, and
perhaps in a too naïve form, I linked this study with one of my heroes, George Boole,
of whose two books on logic [6, 7].

I was an enthusiastic reader duringmy graduate student years.My thought quickly
moved from the old Boole’s mathematical analysis of logic, towards a larger and new
mathematical analysis of language. My scientific horizon was enriched with a new,
and unexpected, point of view, and in the next years I step-by-step changed my
research on Generalized Metric Spaces to that in Fuzzy Logic. I must confess that
I was then just thinking in the Leibniz’s ‘practical dictum’ Calculemus!; a dictum
that required the previous establishment of some kind of ‘calculus’ for language of
which Boole’s is a part, since it allows to represent some ‘large’ crisp statements by
formulas that, managed through it, help to better understand their meaning by either
enlarging or shortening them.

Frommy old field of research on theMenger [8], Wald [9], Schweizer and Sklar’s
[10], first Statistical and later on Probabilistic Metric Spaces, to which I did look
at coming from Fréchet’s abstract distances (‘écarts’), and Blumenthal’s Boolean
metrics, I preserved two concepts and a methodology that later on resulted of some
fertility in fuzzy logic. The concepts were those of t-norm/t-conorm, and Indistin-
guishability Relations, and the methodology of trying to pose some problems by
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means of functional equations. A lot of clarifications came from them between 1979
and 2010, the first of which was the result concerning the structure of strong negation
functions [11], and the last one the analysis of some classical schemes of inference
in fuzzy logic [12], in short, the analysis of the Aristotelian Forms in fuzzy logic. It
also appeared the fact, unknown in classical logic, that linguistic connectives cannot
have universal representations, as well as that the Aristotle’s principles of Non-
contradiction and Excluded-Middle can be posed in ways different from the usual
one [13] (either with the metaphysical predicates ‘false’ and ‘true’ or with classical
sets and its complement), and with which both principles universally hold with fuzzy
sets.

This paper just tries to briefly reflect, far of any hard mathematical formalism, on
what I yet expect from the evolution of fuzzy logic towards the Zadeh’s ‘Comput-
ing with Words and Perceptions’ [14]. Analogously to what Satosi Watanabe said
[15], perhaps, this paper contents could be inscribed in a new and wider field called
Epistemometrics.

3.2 Predicates, Collectives, and Their States

The concept of ‘meaning’ is something actually enigmatic; everybody understands
what can be captured by ‘the meaning of this word’, but no definition of the meaning
concept is actually and universally accepted. The problem of meaning, basic for
knowledge, and on which there is a big number of philosophical writings, well
deserves to be posed in mathematical terms. What follows is nothing else than a trial
towards it, by departing from the Wittgenstein’s statement [16], ‘The meaning of a
word is its use in the language’, that seems to be implicitly accepted in fuzzy logic
where the meaning of a statement clearly depends on context and is driven by the
purpose of its use.

3.2.1

Basic to arrive at the concept of a fuzzy set is the analysis of the use, or behavior,
of a predicate P in a universe of discourse X , that is, the study of the meaning of P
in X through the elemental statements ‘x is P’, for all x in X . In fuzzy logic X is
always taken as a classical set.

A predicate P alone has no meaning; its meaning only appears when P , naming
a property p that can be shown by the X ’s elements, is actually predicated of them.
The pair (X, p) is the starting point for the concept of the fuzzy set labeled P . This is,
in my view, the deep sense of the Wittgenstein’s statement. Without a context and a
purpose for its use, predicates are just something metaphysical, but not quantifiable,
that is, whose study can be conducted by means of a numerical quantity. Numerical
quantities are essential not only for all kind of scientific studies, but also for the
technological applications [17].

A first observation related to what concerns the use of predicates is that they and
their names can change over time with the change of the universe of discourse. For
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instance, the first meaning of P = high, did possibly appear with X1 = Forests, then
changed to X2 = Lions and Giraffes, to X3 = Mountain chains, to X4 = Buildings,
and perhaps finally passed to X5 = People, with the new name P∗ = tall. In these
change-processes the cultural advancement produced by the use of numerical scales
of measurement, should have an important role that is not independent of the appari-
tion of modern science, one of whose characteristics is not only measurement but the
interpretation of qualitative concepts by means of quantities. In a good part, modern
science is a movement towards the quantitative analysis of concepts of which tech-
nology can benefit; for instance, it is difficult that the control of an inverted pendulum
can be done by a fuzzy controller without previously representing predicates like ‘a
little bit ahead’ by a numerical function reflecting its meaning by a fuzzy set whose
values are in the unit interval.

A second observation relates with the empirical fact that the use of a predicate P
in a ground set X , generates a ‘collective’, let’s call it P, among the X ’s elements. For
instance, P∗ = tall, in X = Inhabitants of New York City, immediately generates
the idea given by the ‘collective of the tall inhabitants of NYC’. The collective P,
is a classical set whenever the use of P classifies the elements in X in just one or
two classes, that of the elements x that show the property p without any doubt, and
the class of those that without any doubt do not show it, and that in some cases
can be reduced to one of them by the emptiness of the other. For instance, if P =
greater than or equal to 10 in X = [0, 100], then it is P = [10, 100], and [0, 10)
is the set of the elements in X that are not at all greater than or equal to 10. Notice
that P, is a classical set whenever the use of P in X P is known by means of an ‘if
and only if’ definition. The use or meaning of most of the predicates appearing in
Natural Language is not ‘definable’ in this way, but is only ‘describable’ by means
of some empirical rules of use. For instance, once accepted that there is a threshold t
= approximately t0 centimeters (or whatsoever unity of length perceptively sensible
to the naked eye), the qualitative use of ‘tall’ can be described by some empirically
perceived and imprecise rules like,

1. If a person x seems to be below t, it can be asserted that x is not at all tall.
2. If a person y seems to be above t, it can be asserted that x is tall.
3. If x allows to assert ‘x is tall’, and y seems to be further of t than x , then it can

be also asserted ‘y is tall’,

three rules that do not allow to say that the collective P generates is a classical set,
as it can be easily shown by means of the so-called ‘Sorites method’ [18].

Once the hypothesis that the use of P in X generates a collective P is, even in
a provisory form, accepted, there is the problem of describing and mathematically
representing P. Such hypothesis is well supported by language; people usually talk
of ‘big houses’, ‘tall people’, ‘small apartments’, ‘small birds’, ‘impressing trees’,
‘many hundred euros’, etc.

3.2.2

To show a more or less natural way by which the idea of a collective P could be
approached when P is acting on a universe X , let us begin by considering the case
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in which P is a classical set, that is, in which the elements in X either completely
show p, or do not show it at all. Thus, it can be said that all the elements in each one
of the mentioned two classes show P equally, but that of two elements whatsoever
and each one in a different class, one shows P strictly less than the other. That is,
one of the two classes just consists of minimals for what corresponds the showing
of p, and the other consists of maximals.

Changing to say ‘x is less P than y’ if and only if x shows p less or equal than y,
the set X is endowed with the binary, and empirically generated relation,

x ≤P y ⇔ x is less P than y, (3.1)

with which a graph (X,≤P ) is added to X . Since the relation defined by, x =P y ⇔
x ≤P y & y ≤P x , is an equivalence if and only if ≤P enjoys the reflexive and
transitive properties, that is, if ≤P is a preorder, the quotient-set X/ =P consists
of the two before mentioned classes among which it can be defined the relation
[x] ≤∗

P [y] ⇔ x ≤P y, that is a partial order. Then one of the classes contains the
minimals for≤P , and the other the maximals, something that can be asserted without
using the terms ‘false’ and ‘true’, and permits to describe meaning in a Truth-free
way.

It is thanks to this chain of denotations that it is possible to define a unique
numerical function t : X → {0, 1}, such that all x in the class of the minimals has
the value t (x) = 0, besides for all y in the class of maximals is t (y) = 1. Hence, the
two classes are, respectively, the sets t−1(0) and t−1(1), and the first corresponds to
the statements ‘x is P’ of which it is commonly said that are ‘false’, and the second
to those that are said to be ‘true’. In this form, the use of P in X , that is, its meaning,
the collective P, is represented by the unique triplet (X,≤P , t) with the mapping t
satisfying the properties,

(1) If x ≤P y, then t (x) ≤ t (y)

(2) If x is minimal relatively to ≤P , then t (x) = 0
(3) if x is maximal, then t (y) = 1.

Such a unique triplet is nothing else than a form of expressing the so-called axiom
of specification of a precise predicate P , under which P specifies a unique (classical)
subset P = t−1(1) of X , characterized by x ∈ P ⇔ ‘x is P’ is true ⇔ t (x) = 1.

What happens when P is not a classical set? That is, when P does not classify X
in just one or two classes modulo =P?, or, what happens when the statements ‘x is
P’ are not only claimed to be either ‘false’ or ‘true’? In short, what happens when
the use of the predicate P is not precise, rigid, but imprecise, flexible, in X? Last
comments show a somehow natural way to afford this question [19].

3.2.3

If the use of P in X is not precise, but imprecise, there are the following three
possibilities,

(a) A relation ≤P can be clearly established and accepted by a big enough group
of people. That is, the use of P allows recognizing where it is, or it is not, ‘x is
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less P than y’ or, equivalently ‘y is more P than x’: ≤P is not empty. It is said
that P is potentially measurable in X , and that the graph (X,≤P ) represents
the primary meaning or use of P in X .

(b) No relation ≤P can be either established, or imagined. It is said that the use of
P is metaphysical in X .

(c) As an intermediate case between (a) and (b), it can be ≤P= ∅. It is said that, in
principle, P is meaningless in X .

Instances of these cases are: (a) P =Big, in X = [0, 10]; (b) P = Eternal, in X =
The Heavens (notice that this X is not known to be a set), and (c) P =Green, in X =
The set of London’s inhabitants. Of course, and without neglecting the interest some
metaphysical predicates could have, and supposed a single one actually exists, the
predicates that mostly interest to science and technology are those that are potentially
measurable. How they can be actually measured?

In principle, the range of applicability of predicates P is any kind of universes of
discourse X , either if they are previously embedded with some structure, or not, but
if potentially measurable, they ‘organize’ or ‘structure’ X by a graph (X,≤P ). This
corresponds to the more general and intuitive idea that, with a ‘rational discourse’
on something, it is tried to ‘order’, or ‘structure’, what is considered; that rational
talking tries to semantically order the objects that are considered.

Like in happens in the case of length, surface, volume, current intensity, random
events, etc., it is difficult to imagine how a coherent numerical evaluation, or measure
of the elements in play, can be introduced without previously knowing how these
elements grow, their conceptual dynamism. In the case of predicates, the arrows in
(X,≤P ), that is, the idea that ‘y follows x’ whenever x ≤P y, indicates an elemental,
but basic, form of growing. Like it also happens with random events once they are
represented by subsets A, B, . . . in a Boolean algebra Ω , and it is accepted that ‘The
event represented by A in Ω is less-random than that represented by B ′ ⇔ A ⊆ B,
or also with the length of sticks after accepting that a stick is shorter than another
one when a movement can superpose the first into a part of the second.

Once a primary meaning (X,≤P ) is known, we will say that

tP : X → [0, 1] (3.2)

is a measure of the extent up to which each x in X is P or, for short a measure of P ,
provided [19],

1. x ≤P y ⇒ tP (x) ≤ tP (y) in the total order ≤ of the unit interval,
2. If x is a maximal for ≤P , then tP (x) = 1, and
3. If y is a minimal for ≤P , then tP (y) = 0.

Notice that it is not said that If z is neither a maximal, nor a minimal, it should
necessarily be tP (z) ∈ (0, 1), and that it is also not said that the function t should be
strictly non-decreasing. In general, neither t−1(0) is just the set of minimals, nor is
t−1(1) that of maximals.

Then, each quantity (X,≤P , tP ) can be considered to represent a meaning of P
in X and, obviously, properties 1, 2, and 3, do not allow the specification of a single
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measure tP . To specify one of them, to measure the extent up to which the x’s are P ,
more information is needed on the particular use of P than that only furnished by
≤P ; more information on, for instance, the ‘shape’ of tP . For each primary meaning,
several meanings are possible.

Example If P = Big in X = [0, 10], it is easily acceptable that ≤Big is coincidental
with the total order ≤ of real numbers, and then there is a single maximal, 10, and a
single minimal, 0. Hence, the corresponding measures tBig = t , are those functions
t : [0, 10] → [0, 1], such that:

1. x ≤ y ⇒ t (x) ≤ t (y): t is non-decreasing
2. t (10) = 1
3. t (0) = 0,

of which there are uncountable many. If, for instance, it is known that the growing
of t should be linear, the only measure that can be specified is t (x) = x/10, but if
it should be quadratic, there are all of those t (x) = ax2 + (0.1 − 10a)x, that are
non-decreasing, with values in the unit interval and depend on the parameter a.

Provided it were additionally known that t (1) = 0.2, it will be a = −0.01, and a
single quadratic t will be specified. Provided it were known that t is not necessarily
continuous, another possible function t can be

t (x) = 0, if 0 ≤ x < 7, and t (x) = 1, if 7 ≤ x ≤ 10, (3.3)

that is, the classical set [7, 10]. The specification of each t depends on the total
available information on the behavior of P in X, and thus not only a single meaning
can be attributed to Big. With more information on it, less number of measures t can
be actually defined.

In the case with t (x) = 0, if x ∈ [0, 3]; t (x) = 1, if x ∈ [7, 10], and t (x) =
(x − 3)/4, if x ∈ (3, 7), the set t−1(0) = [0, 3] contains the minimum, and the set
t−1(1) = [7, 10] the maximum.

It is a similar problem than that happening with probabilities. For instance, in the
experiment of throwing a dice, no probability for the random event ‘getting a 5’ can
be established without some information on the dice and the surface on which it will
fall in. Without it, and supposing a perfect landing surface, the only answer is one of
the many probabilities verifying

Prob(‘5’) = a5 = 1 − (a1 + a2 + a3 + a4 + a6),
withai = Prob(‘i’) ∈ [0, 1], and∑

ai = 1.
(3.4)

With the information ‘the dice is not loaded at all’, or ai = 1/6 (i = 1, 2, 3, 4, 6),
it is Prob(‘5’) = 1/6, but with the information ‘the dice is loaded in such a way that
a6 = 0.6’, many solutions Prob(‘5’) = 0.4− (a1+ a2+ a3+ a4) are yet possible.
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Notes

(1) Most of Science would be almost nothing without numerical magnitudes, and
this often requires representing the concepts by quantities like the use of P is
represented by the quantities (X,≤P , tP ). Notwithstanding, there are cases in
which it is very difficult to reach a complete knowledge of the relation ≤P as
it is, for instance, in those where X is with many elements. In such cases it
could happen that only some increasing parts of ≤P can be sequentially known:
≤1

P ⊆ ≤2
P ⊆ . . . ≤P .

(2) Each measure tP is just the ‘idea’ of the fuzzy set with linguistic label P and
membership functionµP = tP . But it is important to notice that in the practice of
fuzzy logic, themembership functionsµP are often (and, sometimes, reasonably)
designed with not too much information on the behavior of P and, hence, they
should be taken as some kind of ‘approximations’ to the measures. For this
reason, the designers of the membership functions should be aware that as more
information on the behavior of P in X they can collect and use to design µP ,
better will approximate this membership function to an ideal measure of P in
X . The design of all the fuzzy terms involved in a problem must be always done
very carefully [20]; design’s processes should be rational processes of thinking.

(3) It should be noticed that ≤P cannot always enjoy a total character like it shows
the ordering of the unit interval; that is, there are often pairs x , y such that it is
neither x ≤P y, nor y ≤P x . A good example is supplied by P = Around 4,
in X = [0, 10], where it can be defined by : x ≤P y ⇔ 0 ≤ x ≤ y ≤ 4, or
4 ≤ y ≤ 10, a relation for which, for instance, it is neither 3 ≤P 6, nor 6 ≤P 3.

(4) The case where P is a classical subset is well subsumed in the precedent model
since it simply corresponds to the particular case in which it is tP (X) ⊆ {0, 1} ⊆
[0, 1]. In this ‘crisp’ case it could happen that one of the two classes t−1(0) or
t−1(1) is empty, and that respectively corresponds to either tP = µ0, or tP = µ1,
the characteristic functions of the empty set ∅ and the full set X , respectively.
With the definition µr (x) = r for all x in X , and r in [0, 1], the constant fuzzy
sets, it is also possible to have cases in which the classes given (whenever ≤P is
a preorder) by the equivalence =P = ≤P ∩ ≤−1

P , representing ‘equal P as’, are
in a finite number, and in each one of them tP is nothing else than the restriction
of some µr ; then, the corresponding predicate can be called quasi-imprecise.

(5) In general, the quotient set X/ =P , consisting in the classes [y] = {x ∈ X;
x =P y}, has at most the same number of classes than different values has tP

since it is,

x ∈ [y] ⇔ x =P y ⇔ x ≤P y & y ≤P x ⇒ tP (x) = tP (y), (3.5)

and the measure tP is constant in each class. Thus, it can be defined the mapping
t∗P : X/ =P→ [0, 1], t∗P ([x]) = tP (x), and the meaning of P in X could be also
represented by the quantity (X/ =P ,≤∗

P , t∗P ), with [x] ≤∗
P [y] ⇔ x ≤P y.
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When: t∗P ([x]) = t∗P ([y]) ⇔ [x] = [y] ⇔ x =P y ⇔ tP (x) = tP (y), or,
equivalently,

tP (x) ≤ tP (y) ⇔ x ≤P y, (3.6)

it can be said that tP perfectly reflects the primary meaning of P in X . Since the
order ≤ is a total one, it can only happen when the relation ≤P is also a total one.
Nevertheless and since this relation is not always a preorder, the character of perfectly
reflecting the meaning can be, in general, simply defined by (3.6) that does not refer
to ≤∗

P .
In the example of ‘Big’ in [0, 10] it is clear that all continuous measures tBig will

perfectly reflect themeaning of the predicate, but in the case of the specificationmade
by the interval [7, 10] in which the measure is discontinuous at the point x = 7, the
representation is not perfect. It is only perfect provided ‘Big’ is reduced to ‘Bigger
or equal than 7’. Different is the case of ‘Around four’ where ≤P is not total, and no
measure will allow to perfectly reflecting its primary meaning.

3.2.4

Once a primary meaning of P in X is fixed, the collective P is manifested through
their information-states tP , and is coincidental with just one of them only if P is
precise, has a rigid behavior in X manifested by a single use given by means of a
‘if and only if’ definition concerning the elemental statements ‘x is P’. But if the
predicate is imprecise, its behavior in X is flexible and such flexibility is manifested
by the several states in which it can appear, or being used, or of being described
what is understood by ‘x is P’. Each piece of information, either on ≤P , or on the
characteristics of tP , will be like a point of light allowing to throw a mathematical
‘shadow’ of P; like the different shadows in the Earth’s surface a cloud throws
depending on the solar light, and a shadow always allows to suspect that there is
something ‘material’ producing it. In principle, collectives can only be considered
by looking at their mathematical shadows; the existence of collectives is a hypothesis
that, nevertheless, is well grounded in the language.

Consequently, the collective P can be considered as an ‘idea’ generated by some-
thing like a ‘conceptual envelope’ of all the possible primary meanings ≤P , and all
the information-states tP ; an ‘envelope’ that, coming from the family,

{(X,≤P , tP ) ; for all possible ≤P , and all possible tP }, (3.7)

throws some ‘shadows’ that are nothing else than each one of its quantity’s ele-
ments. In this sense, the collective could appear as a cloudy or nebulous entity that,
notwithstanding, can be individualized through an identity defined by:

P = Q ⇔ For all possible primary meaning ≤P :
Every state tP is coincidental with a state tQ, and reciprocally.

that is, P and Q are always used in X in forms that are actually indistinguishable.
Perhaps and by such nebulous idea, the collectives could be called hazy sets as a way
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to recover, even in a more general form, the old Menger’s concept. Anyway, it yet
lacks to give a mathematical form to the ‘conceptual envelope’ that the collective
seems to be; if this mathematical formalization is someday reached, what the full
meaning of measurable predicates is will be actually better understood.

Notes

1. If the relation ≤P ‘grows’, that is, more information on the primary use of P is
available, then the corresponding measure should be consequently extended.
Provided it is ≤1

P ⊆ ≤2
P , and a quantity (X,≤1

P , t1P ) is known, then to have a
refined quantity (X,≤2

P , t2P ), t1P is only useful (monotonic, verifies property 1)
for those pairs (x, y) in ≤1

P , but not necessarily for the pairs in the difference set≤2
P − ≤1

P . This problem appears in the design of membership functions, since
only a part of ≤P is often available to the designer who, sometimes, needs to
quickly know a first ‘shape’ of µP , and only later on could need to refine such
function. Usually, in the practice, design processes are done step-by-step and a
first approximation must be subsequently corrected.

2. Once a measure t is specified, the designer counts with the new relation ≤t ,
defined by x ≤t y ⇔ t (x) ≤ t (y), that is larger than ≤P :

x ≤P y ⇒ t (x) ≤ t (y) ⇔ x ≤t y, or ≤P⊆≤t . (3.8)

Provided the difference-set � =≤t − ≤P is not empty, the let’s call it working
meaning ≤t , adds to the primary meaning what is in �, and this enlargement is only
not done when t allows to perfectly reflect the primarymeaning, that is, when� = ∅.
Themeasure t adds information to the primarymeaning, and this fact should be taken
into account by the designer [19, 21]. The act of measuring enlarges the ‘meaning’
of P in X .

Of course, a way for ≤t not being ‘total’ and, hence, having more possibilities
for its coincidence with ≤P , is by defining t as a mapping into a poset as it is, for
instance, the complex unit square [22]. In addition, when the quotient-set X/ =P

exists and is partially ordered by ≤∗
P , the mapping t (x) = [x] is a kind of natural

‘qualitative’ measure perfectly reflecting the primary meaning [19].

3.3 The Case of Singular Statements/Events

For capturingwhat does it mean a quantity (X,≤P , tP ) it could be helpful to consider
the case in which the universe of discourse X is just a singleton.

In a universe of discourse X that is a singleton, X = {x}, if it can be considered a
predicate P there is the single atomic statement ‘x is P’. The problem for capturing
its meaning lies necessarily in external relevant information on the P’s character
of x , like it is the case with x = God, and P = Eternal, or with x = Robert and
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P = Rich. The reason for this dependence of external information comes from the
following argumentation.

I. In the case of a “singular statement”, coming from a universe reduced to a
singleton, the empirical relation≤P (less P than) is either reduced to the relation
=P (equally P than), or is empty and then P is meaningless in P . This happens
depending on the verification or not of the single expression x =P x . Provided
the situation is the first, the elemental meaning of P in X is ({x} ,=P ), and all
measures tP : X → [0, 1], are given by a single real number tP (x) ∈ [0, 1] that
will ‘suffer’ from the fact that being x unique and≤P = =P , there is no way of
saying if it is maximal, minimal or intermediate, since the quotient set X/ =P is
just reduced to the single class [x] = {x} = X . That is, there is nothing internal
allowing to assert if it is tP (x) = 0, or tP (x) = 1, or 0 < tP (x) < 1, and the
problem to find this number can only rest on the availability of some sources
of external information on x , P , and ‘x is P’. This is the case when X is just a
singleton, and P is either the predicate probable, or the predicate possible.

II. Let S be the statement ‘x is P’. Provided P is known, it can be immediately con-
sidered its negation not S = S′ (God is not eternal,Robert is not rich); on the con-
trary, nothing can follow since it will mean that P is not understood. With that,
the set of the four statements S = {x is P, x is not P, x is P and not P, x is P
or not P} = {

S, S′, S and S′, S or S′}, can be taken into account. Then, pro-
vided the statement S can be represented by a crisp or fuzzy (sub)set A in X ,
the set A = {

A, A′, A ∩ A′, A ∪ A′} can be considered, and there are only two
possible cases that can be supposed,

a. S or S′ is true (call it the Boolean case).
b. S or S′ is not true (call it the non-Boolean case),

that is, either A ∪ A′ = X , or A ∪ A′ = X . Let us analyze these cases by
previously noticing that nothing in both Kolmogorov’s probability theory, and
Zadeh’s possibility theory, is against the existence of a probability of the state-
ment S, and against the possibilities of both statements S, and S′. This provided
in the first case (a) A can be identified with a Boolean algebra, and in the sec-
ond (b) with a De Morgan one. As it is usually done, we will consider the
probabilities and possibilities of the sets in A instead of those statements in S.

1. In case (a), a probability of A is defined by just a number p(A) ∈ [0, 1], such
that p(A′) = 1 − p(A). Then, provided the statement “S and S′” is false
(A ∩ A′ = ∅), it is p(A ∪ A′) = p(A) + p(A′) = 1, and the problem just
lies in determining the number p(A).
Provided the statement “S and S′” is not false, A is not identifiable with a
Boolean algebra and no probability p can be defined.

2. Provided A is identifiable with a De Morgan algebra, a possibility P of A
is defined by just a number P(A) ∈ [0, 1], such that P(A ∪ A′) = z =
max(P(A), P(A′)), and then it follows P(A) = z, or P(A′) = z. Determin-
ing the number z is the problem.
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Since possibility measures are also definable in Boolean algebras, in such case
and from A ∪ A′ = X , follows z = 1.

III. In general, how the numbers p(A) and z can be determined? Notice that deter-
mining z is equivalent to determine either P(A) or P(A′). Both values p(A) and
z, can only be known from some previous, external and relevant information on
A. Then,

(i) Provided that in 2, the statement “S or S′” can be considered true, then it is
z = 1, and P(A) = 1, or P(A′) = 1.

(ii) Provided that in 1, no information is available on A, then it can be supposed
p(A) = p(A′) = 0.5, reflecting a state of total ignorance.

(iii) Concerning 2, and also provided no information on A is available, it can be
supposed z = 0.5, and then it is P(A) = 0.5, or P(A′) = 0.5, also reflecting
a state of total ignorance.

(iv) In 1, the state of full faith does correspond to p(A) = 1, or with p(A′) = 0.
The state of full incredibility does correspond to p(A) = 0, or with
p(A′) = 1.

(v) In 2, the state of full faith does correspond to z = 1, that is, with P(A) = 1,
or P(A′) = 1. The state of full incredibility does correspond with z = 0, that
is, with P(A) = 0, or P(A′) = 0. Nevertheless, all these cases correspond
to just imaginary situations.

(vi) Intermediate cases between those of full faith and full incredibility do cor-
respond with 0 < p(A) < 1, and to 0 < z < 1, and the only way to take a
value strictly between 0 and 1, depends on external information.

IV. What can it be external relevant information? It is some background knowledge
on the element x (God, Robert, . . .) as, for instance, how it is seen by people,
or what is recorded on it in some knowledge-base, etc., as well as on how P
acts in other universes of discourse Y = X , etc.
For instance, if x =Cacamboo, and P =Generous, the statement S = ‘Cacam-
boo is generous’ means nothing except if some knowledge on Cacamboo is
available. Were Cacamboo a nickname for my friend Robert, then surely I can
have good reasons to state S, and perhaps also to assign a numerical value to tP

(Cacamboo).
Where such information could come from? Usually, it comes from some set of
attributes on S, some of which are relevant for what concerns the applicability
of P to x . From this last subset of attributes is from the value tP (x) can come
from through, for instance, an aggregation (a function Aggreg) of the values for
the attributes. If the attributes are A1, . . . , An , and tk= degree up to which x
verifies Ak , it can be taken tP (x) = Aggreg (t1, . . . , tn).

V. What happens if X has just two elements, X = {x, y}, and P is such that it is
not x =P y? Then it should be either x ≤P y, or y ≤P x , with the sign ≤P

taken strictly, or x NCP y.
Provided the first case holds, all measures tP are determined by the two num-
bers 0 ≤ tP (x) ≤ tP (y) ≤ 1, and analogously in the second case. Notice,
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notwithstanding, that x is the minimum and y is the maximum in the graph
({x} ,≤P ) and, hence, it should necessarily be tP (x) = 0 and tP (y) = 1.
With respect to the third case (let us call it a ‘rare case), to fix a value for tP it
will be strictly necessary to also take into account external information.

VI. It seems clear enough that these kinds of problems only have interest when X is
with a big enough number of different elements, and ≤P is not reduced to =P .
Were it just a single stick in all the world, the concept of length and its measure
would not exist.

3.4 Towards an Algebraic Structure for the Analysis
of Ordinary Reasoning

What is often understood by ‘inference’ is just formal deduction, but people only
scarcely reason in a formal deductive way, and rarely by using an artificial language
in a formal framework like it is the case of mathematics and mainly of the theorem’s
proving processes. People reasonwith andwithin aNatural Language and the reached
conclusions are only conjectures or refutations, and, hence, not all of them are safe at
all. In addition, the information on which the reasoning is based in (their premises)
is often uncertain, imprecise, incomplete, etc. In the way of fuzzy logic towards
Computing with Words and Perceptions, it seems that an approach to the forms in
which humans do reason is, at least, of some interest. At the end, good reasoning
cannot be done without refuting (falsifying either an information, or a conclusion),
abducing (searching for hypotheses, explanations), and speculating (searching ahead
for new ideas). Reasoning is not only for ‘safely proving something’, but mostly for
either refuting or explaining information, and especially for going farther from what
is known.

Let us call conjecturing to deducing (formally and informally), abducing and
speculating, and using guessing for only denoting the two last forms of conjecturing.
At the end, computers will not reason like people up to when they will be able to
conjecture and, especially, to speculate, to launch nets into the ocean of the unknown
and recognizing what appears in them; that is, to formulate questions and to obtain
answers. In a good part, scientific research can be said to be an art of systematically
controlled conjecturing, and specially of guessing. Mathematics, by its part, is the
art of guessing and of deductively proving, or disproving, the obtained guesses.

3.4.1

All people do reason by following similar patterns, and it is convenient to quote what
the brilliant scientist and Nobel Laureate, Sir Peter B. Medawar, called the Law of
Conservation of Information [23] that, perhaps, could be better called of ‘the formal
conservation of information’:

‘No process of logical reasoning can enlarge the information content of the axioms
and premises or observation statements from which it proceeds’.
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Medawar’s law expresses that the clothes of current logic are too short, or even
too large, for a good dressing of reasoning; that deductive logic is not sufficient to
mathematically model all processes of reasoning, as it can be suspected by what is
said at the beginning of this Sect. 3.3. And it is less sufficient again when imprecise
predicates play some role. Hence, it seems important or, at least interesting, to look
for some answer to the question:

How can it be described in mathematical terms what is a conjecture from a set
of premises in a general enough form, able to capture as many as possible kinds of
reasoning?

In this question, ‘kinds of reasoning’ refer to those modeled by classical logic,
quantum logic, and fuzzy logic, all of them theoretically build up from a partially
ordered set withminimum,maximumand jointlywith a negation. That is, and respec-
tively, Boolean and De Morgan algebras, Orthomodular lattices, and Standard alge-
bras of fuzzy sets, that are but instances of the more general structure of a Basic
Flexible Algebra (BFA) [24] where only the essential properties commonly needed
are preserved. For instance, in BFAs neither the connectives functional expressibility,
their commutativity, nor associativity, nor distributivity, nor duality, nor the double-
negation law, etc., are presumed, although either they or some restrictions of them
can be added to reach some conclusions.

Definition A B F A is a seven-tuple Ω = (X,≤, 0, 1;+, ·,′ ), where (X,≤) is a
poset with minimum 0 and maximum 1, + and · mappings X × X → X, and ′ a
mapping X → X, such that:

(1) a·1 = 1·a = a & a·0 = 0·a = 0 & a+1 = 1+a = 1 & a+0 = 0+a = a
(2) a ≤ b ⇒ a · c ≤ b · c & c · a ≤ c · b & a + c ≤ b + c & c + a ≤ c + b
(3) a ≤ b ⇒ b′ ≤ a′, and 0′ = 1, 1′ = 0, for all a, b in X.
(4) There exists a subset X0, {0, 1} ⊆ X0 ⊆ X, such that with the restriction to it of

≤,+, ·, and ′, it is Ω0 = (X0,≤, 0, 1;+, ·;′ ) a Boolean algebra.

Of course, X0 = {0, 1} generates the smallest Boolean algebra contained in Ω ,
and obviously Boolean algebras, De Morgan algebras, Ortholattices, and Standard
algebras of fuzzy sets, are but instances of a BFA.

Because of the few and weak laws a BFA owns, only the following few properties
can be proven,

(I) a · b ≤ a ≤ a + b & a · b ≤ b ≤ a + b, for all a, b in X . Hence, provided
(X,≤) were also a lattice with operations min, and max (and with which
axioms 1 to 3 are verified), it will be: a ·b ≤ min(a, b) ≤ max(a, b) ≤ a+b.
That is, in lattices min is the greatest operation ·, and max is the lowest +.
In particular, it is a · a ≤ a ≤ a + a, for all a in X : Law of sub-idempotency.

(II) IfΩ is a distributive lattice, and ′ is involutive or a strong one , that is, a′′ = a,
for all a in X , Ω is a De Morgan algebra.

(III) If X = [0, 1]Y ,Ω cannot be an Ortholattice, nor less an Orthomodular lattice,
and less again a Boolean algebra. In this case, if · and + are functionally
expressible by a t-normand a t-conorm, respectively, and ′ by a strongnegation
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function, Ω is a BFA that only if the t-norm is the greatest one, min, and the
t-conorm is the lowest one,max , is a lattice and, namely, a DeMorgan algebra
when the negation ′ is a strong one. In addition, if this algebra verifies the
property, a · a′ ≤ b + b′, for all a, b in X ; it is a Kleene’s algebra.

(IV) a ≤ b & c ≤ d ⇒ a · c ≤ b · d & a + c ≤ b + d, for all c, d in X : Laws of
monotony.

(V) a′ · b′ ≤ (a · b)′ & (a + b)′ ≤ a′ + b′, for all a, b in X .
(VI) If + = max , regardless of · and ′, it is (a + b)′ ≤ a′ · b′: First law of

semi-duality.
(VII) If · = min, regardless of + and ′, it is (a + b)′ ≤ a′ · b′: Second law of

semi-duality.
(VIII) With a ∧b = (a′ +b′)′, and a ∨b = (a′.b′)′, alsoΩ∗ = (X,≤, 0, 1; ∧,∨;′ )

is a BFA called the dual of Ω , and it inherits all additional properties enjoyed
by Ω .

3.4.2

Since BFAs are defined by just a few and weak axioms, only allowing very simple
calculations, what can be proven in their framework is but of a very general validity,
and will be preserved by the addition of new axioms to the list of the four that define
BFAs. One of the weaknesses of Boolean and De Morgan algebras, as well as of
Ortholattices, for the study of Commonsense Reasoning, lies in the big amount of
laws they enjoy and make such structures too rigid to afford the flexibility shown
by both Natural Language and Ordinary Reasoning. They own laws that, like the
commutative law of ·, not always appear in the language where, for instance, ‘time’
often causes the failure of such property for the conjunction ‘and’. At this respect,
the Standard algebras of fuzzy sets show a lot of cases in which some Aristotelian
forms are valid in one but not in another algebra; for instance, the classical law of
duality is broken when the t-conorm is not the dual of the corresponding t-norm
[25]. It is also the case that the von Neumann’s law of perfect repartition [26],
a = a · b + a · b′, only can hold provided the t-norm (functionally representing ·),
and the t-conorm (functionally representing +) are not dual. The worlds of language
and ordinary reasoning are very different from the world of artificial languages and
formal deductive reasoning.

In the words of Watanabe [15], a new land can be perhaps offered to young
researchers, provided ‘a direct contact with the world of common sense which is the
mother earth of all knowledge’ is not disdained at all.

3.5 Conjectures and Refutations

People often say something like ‘from this I deduce that’, and they, if questioned,
distinguish such expression from another like ‘from this I guess that’. But the fact is
that when ‘deducing’ they don’t conduct the corresponding reasoning with neither
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an artificial language, as it is that of mathematics, nor in a formal framework, nor
do it step-by-step but with some jumps even if they are convinced that these jumps
could be refilled with more steps, and that all the process starts from some premises
(this) and ends with the conclusion (that). Then, it seems that a distinction between
the formal and the informal idea of ‘deduction’ is in order, once accepted that the
first is well captured by Tarski’s operators of consequence.

A first thing that should be considered, even if usually people do not take special
care of it, is if among the premises, or statements asserting the available information
captured on the subject under scrutiny, any kind of contradiction is hidden, since,were
it recognized a single one, everybody would refuse the conclusion even if the process
of reasoning, that going from the premises to the conclusion, were not questionable
in itself. Let us understand by contradiction between two statements that there is
agreement on asserting ‘If this, then not-that’, provided the form of negating by ‘not’
is well understood.

To such an end, it will be supposed that all the statements are in a BFA, Ω , whose
operations model the linguistic and by ·, the linguistic or by+, the linguistic not by ′,
and the linguistic conditionals if/then by≤. In this framework, a set of premises P =
{p1, . . . , pn} is said to be contradiction-free provided no single formula pi ≤ p′

j
holds for any i, j between 1 and n; that is, for all i, j ∈ {1, 2, . . . , n}, it is pi ≤ p′

j .
Once assumed that P is contradiction-free, let us consider as the r ésumé of P the
element, p = p1·(p2·(· · · )·pn) in X .With p, P will be called information-consistent,
provided it is p ≤ p′, and p′ ≤ p; that is, if p is not at all self-contradictory. Notice
that if it is p = 0 since 0 < 1 = 0′ = p′, information-consistency implies p = 0.

With all that, let us define that q in X is informally deduced from P [27], whenever
there is a path under the partial order ≤ going from p to q like, for instance, it is
p ≤ a ≤ b ≤ c ≤ q, with a, b, and c in X , or it is simply p ≤ q. Then, since ≤ is
supposed to be a transitive relation, the set of the informal consequences of P can
be defined as the set

IC(P) = {q ∈ X; p ≤ q}, (3.9)

in which there is not 0, but there are 1 and p and, hence, is never empty. Notice that
it is IC(P) = IC({p}). Provided IC(P) enjoys the properties of a Tarski’s operator
of consequences, that is,

(1) P ⊆ IC(P): IC is extensive;

(2) If P and Q are contradiction-free and information-consistent,
and if P ⊆ Q, then IC(P) ⊆ IC(Q): IC is monotonic;

(3) If q ∈ IC(P), then q ′ /∈ IC(P): IC is consistent, and

(4) If IC(P) is contradiction-free and information-consistent, then IC(IC(P)) =
IC2(P) = IC(P): IC is a closure,
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it will be said that the elements in IC P) are the formal consequences of P . Which
of these properties do always hold out of formal deduction?

Of course, the first holds always since, regardless of the way of numbering the
premises, it is p = p1 · (. . .) ≤ p1, p ≤ p2 · (. . .) ≤ p2, etc., that is, all pi belong
to IC(P) and, hence, P ⊆ IC(P).

With respect to the second property, provided the operation · is associative, then,
since P ⊆ Q means that it is Q = {p1, . . . , pn, pn+1, . . . , pm}, and it is sure that
q = p1 · · · pn · pn+1 · · · pm ≤ p1 · · · pn = p, with which if p ≤ r it is also q ≤ r ,
it follows IC(P) ⊆ IC(Q). Hence, property 2 can hold provided, for instance, that
the associative law of · can hold in Ω .

Concerning property 3, if it is p ≤ q and p ≤ q ′, from q ′ ≤ p′ it will follow
p ≤ p′, that is absurd; hence it should be p ≤ q ′, and property 3 always holds.

With respect to the fourth property, for applying the ‘operator’ IC to the set
IC(P), this set should be contradiction-free and information-consistent, something
that can be difficult to assert when, for instance, X is not clearly a finite set. Provided
IC(P) were not finite, then the first problem lies in defining its résumé, and a good
option for this is to take as it, and provided it exists, Inf (P). In such case, is IC(P) =
{q ∈ X; Inf (P) ≤ q}, and at least, when P is finite it is Inf (P) = p. Thus, and since
IC (IC(P)) = {q ∈ X; Inf IC(P) ≤ q}, it is Inf IC(P) = Inf {q; Inf P ≤ q} =
Inf (P), provided Inf (P) ≤ (Inf (P))′ and (Inf (P))′ ≤ Inf (P), it is IC(IC(P)) =
IC(P), and property 3 holds.

It seems clear enough that it is difficult to state that IC is a closure in ordinary
reasoning.

In summary, the set IC(P) of the informal consequences is not generally a set of
formal consequences, unless some additional properties can be supposed in Ω as,
for instance, that the operation · is associative, that the sets of premises P and IC(P)

are finite, contradiction-free, and information-consistent, or that X is finite, etc. All
this can easily happen when Ω is an Ortholattice or a De Morgan algebra, and in
particular if it is a Boolean algebra, as well as if Ω is a Standard algebra of fuzzy
sets. Nevertheless, and in general, IC is just an extensive and consistent operator
although, in ordinary reasoning as it is made by people, it is just consistency what is
taken into account; to refuse a ‘deductive’ conclusion it is usually tried to just show
that there is some ‘consequence’ whose negation is also so. This is just the idea of
‘falsifying’ the reasoning.

Once the concept of an informal consequence is established, a conjecture from
P [27] will be defined as an element in X that is not contradictory with the résumé
p : p ≤ q ′. That is, that its negation cannot be informally deduced from P , that the
reasoning is not falsifiable, or that q is not refutable. Then the set of conjectures from
P can be defined by,

Conj(P) = {
q ∈ X; p ≤ q ′} = {

q ∈ X; p ≤ q ′}c
. (3.10)

Since p ≤ q ′ reflects that ‘If p, then not-q’ can be asserted, that q refutes p, it is
reasonable to call refutations of P to the elements in the set
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Ref (P) = {
q ∈ X; p ≤ q ′} = {

q ∈ X; q ′ ∈ IC(P)
}
. (3.11)

The refutations are those elements whose negation is an informal consequence
of P , that is, whose negation can be informally deduced from the premises. Is a
definition that seems to capture well the idea of ‘refuting’.

Notice that,

X = Ref (P) ∪ Ref (P)c = Ref (P) ∪ Conj(P), (3.12)

shows that, once P is given, there are no more elements in X than either conjectures
from P or refutations of P .

Obviously, IC(P) is not a part of Ref (P), since the coexistence of p ≤ q (imply-
ing q ′ < p′) and p ≤ q ′ conducts to the absurd p ≤ p′. Is it a part of Conj(P)?
That is: Does p ≤ q imply p ≤ q ′? The same argument proves it and, hence, it
is IC(P) ⊆ Conj(P): informal consequences are a particular type of conjectures.
Then, what about those conjectures that are not informal consequences:

Conj(P) − IC(P) = {
q ∈ X; p ≤ q ′ & p ≤ q

}

= {
q ∈ X; p ≤ q ′ & q < p

} ∪ {
q ∈ X; p ≤ q ′ & p nc q

}
?

(3.13)

where nc shortens ‘not comparable under ≤’. The first subset in this union consists
of those conjectures q from which, in the informal deductive form, it follows the
résumé p and, hence, all the premises; that is, that q ‘explains’ the premises. This
is just the idea of what a hypothesis is, and, for this reason, we will call this subset
that of the hypotheses for P , and denote it by Hyp(P).

The second subset consists of those conjectures that are not comparable with the
résumé, and that can be called the speculations from P , and its set is,

Sp(P) = {
q; q ′ < p & p nc q

} ∪ {
q; p nc q ′ & p nc q

}
, (3.14)

a partition in which it appears that, in the first part, the equivalence between q ′ < p
and p′ < q (provided the negation verifies the law a′′ ≤ a for all a in X ), shows that
the résumé p is informally deducible from q ′, and that q is not comparable with p.
The second part is, nevertheless, that of the absolutely non-deductible speculations.
Let us denote, respectively, by Sp1(P) and Sp2(P) these two sets.

Since every q in Hyp(P) is a conjecture from which, as it is 0 < q < p, p
is informally deductible from q, the conjectures in Sp2(P) are the only that are
actually never reachable through a either forwards or backwards deductive process,
provided the negation verifies a′′ ≤ a; let’s call them creative conjectures. At the
end, a complete classification of conjectures is given by the partition,

Conj(P) = IC(P) ∪ Hyp(P) ∪ Sp1(P) ∪ Sp2(P). (3.15)
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Notes

1. Provided Ω is a Boolean algebra, it is p ≤ q ′ ⇔ p · q = 0, thus q is in
Conj(P) ⇔ p · q = 0. Thus, in Boolean algebras the conjectures are just those
elements that are not disjoint with the résumé of the premises.

2. If q ∈ Conj(P) it cannot be q = 0 since, from p ≤ 1 = 0′, it follows that q is
not a conjecture. On the contrary, it is 1 ∈ Conj(P), since p ≤ 1′ = 0 implies
the absurd p = 0.

3. If P and Q are contradiction-free and information-consistent, if it is P ⊆ Q,
since it is q ≤ p, provided r ∈ Conj(Q), or q ≤ r ′, if it were p ≤ r ′ it will
follow the absurd q ≤ r ′. Hence r ∈ Conj(P), and Conj(Q) ⊆ Conj(P). That
is, the operator Conj is anti-monotonic [27].

4. With the last supposition, if r ∈ Hyp(Q), or r < q, it follows r < p, and r ∈
Hyp(P). Hence, Hyp(Q) ⊆ Hyp(P), and the operator Hyp is anti-monotonic
[27].

5. If Ω is an Ortholattice, p ≤ q ′ implies p · q = 0. Hence, if q is a hypothesis,
from q < p follows q = p · q, and q = 0 that is absurd since 0 is not a
conjecture. Hence, in ortholattices it is simply Hyp(P) = {q; 0 < q < p}, since
the conjecture’s condition of hypotheses, p ≤ q ′, can be avoided [28].

6. If it is p ≤ p′, it could be p′ < p, against the information-consistent character of
P; it is absurd. Hence, it is not difficult to prove that if P and Q are contradiction-
free and information-consistent, if P ⊆ Q, then Sp1(Q) ⊆ Sp1(P), that is, the
operator Sp1 is anti-monotonic.

7. It is easy to find examples in Boolean algebras showing that Sp2 is neither
monotonic, nor anti-monotonic. It is enough to take a power set with two subsets
P ⊆ Q, and show a type-two speculation from P that is not one from Q, and
reciprocally. Among conjectures the ones in Sp2(P) (type-two speculations)
are very special; there is no law for its growing when the number of premises
grows. They are neither monotonic, nor anti-monotonic and, actually, they are
the conjectures that can be properly called non-monotonic.
Since, like conjectures in general, and hypotheses and type-1 speculations in
particular, also the set of type-2 speculations is not necessarily consistent, the
newly coined name ‘creative conjectures’ seems to be well attributed to them.
They are non-monotonic and there is no path to reach them deductively neither
from p, nor from p′, neither forwards, nor backwards, and their suitability as
‘new’ ideas, that is, ideas not contained in the premises, is open and should be
externally checked. They deserve more analysis.

8. Anyway, to show the relevance of speculations for reasoning, if q is any spec-
ulation such that 0 = p · q = p, then p · q is a hypothesis, and p + q is a
consequence; hence, and in particular, type-two speculations are useful to either
find ‘explanations’ for the premises, or ‘continuations’ of them [27, 28].
If q is in Sp2(P) it can be interesting to analyze what can be done with the
elements in some special sets generated by q as, for instance, {r ∈ X; q < r ,
or r < q}.
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9. How to find creative conjectures or speculations and, mainly, type-2 ones? Those
of type-1 can, in principle, be searched among the q in X that are not comparable
with p, by going step-by-step and forwards, from p′ to q, since q ′ < p ⇒ p′ <

q ′′ ≤ q, provided ′ verifies the law a′′ ≤ a; that is, there are cases in which
it is possible to find q deductively. But this is not the case for type-2, creative
conjectures. Thus, what? A typical way followed in ordinary reasoning is to
tentatively reach q by analogy with a similar former case in which a problem
was well or, at least, satisfactorily solved. This is another question deserving
analysis.

10. In the scientific mode of reasoning it sometimes appears the problem called the
‘falsification’ of a presumed hypothesis that, the model here presented, allows
to formalize [27, 28].
If it is presumed that h ∈ Hyp(P), from r ∈ IC(P), or p ≤ r , and from
h < p ≤ r , follows h < r , and r ∈ IC(h). That is IC(P) ⊆ IC({h}): all the
consequences of P are also consequences of the hypothesis. Hence, to show that
h is not actually a hypothesis for P , it suffices to find a consequence of P that
cannot deductively follow from h; a current way of falsifying a hypothesis by
‘reductio ad absurdum’.

3.6 An Important Open Problem

3.6.1

There is in course an interesting debate concerning the concepts o(which are in them-
selves obscure but so often appearing in both language and science) of uncertainty,
possibility, and probability, as well as the relations between them. that they deserve
attention. Attempting to look at them from the point of view presented in section 2,
that of a non-formalized language, a first question concerns on how are commonly
used the three mother-predicates U = uncertain, P = probable, and � = possible,
fromwhich the three concepts do come; that is, which quantities (X,≤, t) can reflect
their respective meanings. In principle, it seems widely accepted that is

‘x is probable’ ⇒ ‘ x is possible’ ⇒ ‘x is uncertain’, (3.16)

but this chain of implications is not, as far as I know, actually checked by experimental
means. Nor are the inclusions [29] ≤P ;⊆;≤U and ≤�;⊆;≤U , even if it seems
accepted that the probability measures (Prob) coherent with possibility measures
(Poss) for allowing to simultaneously consider the measures of the statements ‘x
is P’ and ‘x is �’, should verify Prob ≤ Poss. The problem concerns reasoning,
since those three statements appear in both the premises, and in the conclusions of
reasoning; that is, that x should be either a conjecture, or a refutation. For instance, it
can be accepted that q is possible or probable under the premises P , just means that
q is either a conjecture from P or a refutation of P . In any case, the above chains of
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implications and inclusions can easily be context-dependent; something that should
conduct to experiments in several domains.

Notwithstanding, and at least in the scientific field, the elements x are supposed
to be managed after they are represented in Boolean algebras (sets) in the case of
probability, and in De Morgan algebras (fuzzy and crisp sets) in that of possibility,
and it seems that it is accepted by both probabilist’ and ‘possibilist’ people, that ≤P

is taken as coincidental with the respective partial orders ≤ in these algebras, even
if the only that is fully acceptable ‘a priori’ is that these partial orders are just part
of the relations ≤P and ≤�, respectively. That is, it lacks to experimentally check
if it is actually ≤ ⊆ ≤P ⊆ ≤U , and ≤ ⊆ ≤� ≤ ≤U , respectively. Before doing
that, it is risky to accept that both probability and possibility can actually measure
the uncertainty carried by the elements x ; it lacks to know when the difference-sets
≤U − ≤, for the partial orders of Boolean and De Morgan algebras, are truly empty,
or not. If they are not empty, it is not possible, for instance, to be sure that if it is
x ≤P y ⇒ x ≤ y, but it is not reciprocally, then Prob(x) truly measures to which
extent an element x is uncertain.

In the case of the probability measures, and for instance, in the random game of
throwing a dice, the universe of discourse is identified with the Boolean algebra with
the six atoms in the set X = {1, 2, 3, 4, 5, 6}, that is, the results that can be obtained,
and the résumé is X itself. Then the conjectures are the events q such that X ≤ qc, or
q ≤ Xc = ∅, that is, Conj(P) = {q; q = ∅}, the consequences are those q such that
X ≤ q, that is IC(P) = {X}, and the hypotheses are Hyp(P) = {q; ∅ < q < X}.
Thus, in this case there are no speculations, but only hypotheses and just a unique
consequence.As the set of refutations isRef (P) = {

q; X ≤ q ′} = {∅}, excluding the
sure event (to which, in addition, no betting is allowed), the measure of a probability
will be just applied to hypotheses, and verifying Prob(∅) = 0, Prob(X) = 1. In
general, if Prob(p) = 1, the probability of all consequences will be 1.

To illustrate the case of the possibility measures, let’s consider the following
example: A variable Z takes its values in [0, 10], and it is only available on Z
the partial information that it has values in [3, 6], but not in [0, 2] ∪ [8, 10]. The
question is to measure the possibility that Z could take values in the semi-open
interval q = [6.1, 8). Since the set of premises is P = {[3, 6], ([0, 2] ∪ [8, 10])c},
the résumé is p = [3, 6] ∩ ([0, 2] ∪ [8, 10])c = [3, 6] ∩ (2, 10] ∩ [0, 2) = [3, 6],
that is not empty, and verifies p ⊆ qc = [6.1, 8)c = [0, 6.1) ∪ [8, 10]; hence,
q is a refutation. Of course, like in the case of probabilities, if Poss(p) = 1, all
consequences have also possibility 1.

In both examples, it is doubtful that in general Prob(q), and Poss(q), can be
always taken as the more suitable measures of the uncertainty carried by q [29].

3.6.2

The set of decidable elements, those q for which either q or not q is deductible from
the given P , is

Dec(P) = {
q; p ≤ q or p ≤ q ′} = IC(P) ∪ Ref (P). (3.17)
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Thus, the un-decidable elements constitute the set [27, 28],

Un(P) = X − Dec(P) = Hyp(P) ∪ Sp(P). (3.18)

In the case of consequences and hypotheses, and provided it is Prob(p) > 0,
from p ≤ q and 0 < q < p, respectively, it is always 0 < Prob(q) if q is
a consequence, but, depending on the character of the measure Prob, it can be
0 = Prob(q) < Prob(p). In the case of a refutation, from p ≤ q ′ follows 0 <

Prob(p) ≤ 1 − Prob(q), that is Prob(q) < 1. Similarly, in the case of the Poss
measures analogous inequalities hold, except for the case of refutations, where it is
not Poss(q ′) = 1 − Poss(q), since Poss(q ′) is not functionally expressible.

Notice that since the only conjectures that are actually non-reachable by some
deductive process are the speculations of the second type, perhaps and in front of
ordinary reasoning, the concept of decidable statement deserves to be modified by
including consequences, hypotheses and the first type of speculations.

Note

A problem that remains open is that of knowing the basic properties a measure
of uncertainty should verify, and to clarify when probabilities and possibilities can
be taken as measuring uncertainty [29]. At least it is doubtful that they should be
always additive like with probabilities, or sub-additive like with possibilities; like
it is doubtful that the measure of not-q should be functionally expressible from the
measure of q. It is difficult to believe that uncertainty, in general, is not involved with
losses of information, and that its measures should right believe like those of length,
surface, or volume. At least, the additive law of probabilities seems to be ‘rare’ in a
world where losses and gains of information are more the norm than the exception.

3.7 Conclusion

As it can be seen in the preceding sections, a lot of questions are yet waiting to be
answered. Many, if not all of them, are not just of a purely theoretical character, since
their possible answers do require to be checked with the practice of natural language
and ordinary reasoning before being accepted as such, and even in a provisory form.
There is yet another question that I judge as a relevant one:

Provided those answers do come from a mathematical model, can we expect that
such model will be found by just coming from purely mathematical thinking? or,
should it come from some abstractions on the information furnished by the corre-
sponding reality? that is, from data captured thanks to a scientific typically controlled
processes of observation and experimentationwithin language and reasoning?Notice
that the concept of a fuzzy set, here re-introduced as an information-state of the behav-
ior of its linguistic label, seems to show that a fuzzy set is more a scientific ‘object’
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than a purely mathematical or logical one; and scientific objects are those that are
typically analyzed by science.

Which should be the best working’s methodology to follow up with: just pure
theoretic thinking, like that of mathematicians, often based on second order abstrac-
tions, and at once responding to a theoretic interest on themathematics of the subject,
or mixed experimental-and-theoretic thinking like that of physicists where theoretic
models should be tested against the observed physical reality? Is it possible to conduct
a mathematical analysis of both language and ordinary reasoning, without previously
considering the nuances and variability of the ‘natural matter’ for such study? Is not
language and reasoning such natural matter [30]?

In my view, and, at least to actually become a science of language and reasoning,
fuzzy logic needs to evolve towards an experimental science with a methodology
analogous to that of physics. On the contrary, its evolution towards Zadeh’s Comput-
ing withWords and Perceptions will only result in amore or less disjointed collection
of computational techniques, based on the current fuzzy logic, and able to be used
at each particular problem. Let me clearly say that this is not bad at all, and that
without any doubt its research should be continued [31], but I seriously doubt it
can be sufficient enough for a scientific enlightening on the actual ‘functioning’ of
language and reasoning.

A scientific-like modeling of language and reasoning is, in my view, and jointly
with that on how the human brain actually works, that is, what is and how it is
‘thinking’ reached, one of the big challenges for science in the XXI Century, and the
starting point for the end of a very large path that begun many centuries ago. Two
challenges between which I think there are many bridges communicating one with
the other. At the end, before having a good understanding of language and reasoning,
I keep many doubts concerning the possibility that technology can arrive at machines
able to actually reason like people do.

This new way of studying imprecision and uncertainty in natural language and
ordinary reasoning, is what I yet hope, and wish, it will come from the old fuzzy
logic [31]. At the end fuzzy logic is where mathematical analysis actually begun into
use for representing both language and inference like it happened before in natural
sciences. Would young researchers devote their efforts to it!
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Chapter 4
Fuzzy Logic and Modern Economics

Francesc Trillas

Abstract Fuzzy Logic has made two important contributions to economic analysis:
a theory of fuzzy preferences, and the development of empirical techniques based
on fuzzy sets. However, modern areas of economic research are not sufficiently
influenced by these ideas. Behavioral and institutional economics, among other fields
in modern economics, would benefit from insights from fuzzy logic.

4.1 Introduction

A typical PhD economist can obtain her degree and have a decent career without ever
having to understand what fuzzy logic is. However, fuzzy logic has made very impor-
tant contributions and obtained big success in other related branches of knowledge,
including computer science and engineering.

Fuzzy logic has nevertheless two prominent applications in economics. First, as
an expansion of preference and choice theory. And second as an empirical method
to take into account degrees of membership in economic or social categories, and to
establish set-theoretic relationships between these degrees ofmembership. Both have
to do with the measurement of the complexity of behaviour of human individuals or
institutions.

Fuzzy preferences represent vague preferences, relationships between alterna-
tives where one alternative is not necessarily clearly preferred to another, although
the agent can to some extent compare the alternatives (hence the preference relation is
not incomplete). If a conventional economist is first introduced to fuzzy preferences,
he or she, if familiar with behavioural economics (broadly speaking, the intersec-
tion between economics and psychology), would say that fuzzy preferences are an
example of non-standard preferences (as compared to the standard of neo-classical
economics, the economics usually taught at universities). Non-standard preferences
are one set of predictable “anomalies” that psychology has uncovered in human
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behavior, and that make human behaviour different from that assumed in traditional
(neoclassical) economics, namely rational, meaning with well defined, exogenous
and individualistic binary preferences.

The role of “non-standard” preferences in behavioral economics is crucial: it
acknowledges that we are guided less by a correct exact knowledge of our self-
interest than by a socially learned, evolved, intuitive grasp derived from mental
shortcuts (frames, reference points, envy, addiction, temptation, fairness). In general,
behavioral economics amounts to a critique of economic thought as it has been
transmitted during the last six decades. This economic thought is well represented
by neoclassical economics, with its assumption that consumers, firms and economic
agents in general are rational and self-interested (individualistic); and by public
choice. The latter criticized neoclassical economics because this concluded that in
those cases where the self-interest of rational agents was not conducive to desirable
social results (e.g. efficiency) a social planner (government) had a potential role to
improve upon the so-called market failures. The public choice critique was that the
assumption of self-interested and rational agents should be extended to people in
the political process (citizens, politicians and bureaucrats, to use the words of public
choice scholars), and therefore that the potential to improve upon market failures
was more limited than originally expected. A new emphasis was born on government
failures, but both the neoclassical approach and the public choice approach shared
the assumption of rationality and self-interest of the economic agents. Actually, what
the public choice school did was to expand the applicability of the assumption.

Of course, fuzzy logic can also shed light on other sets of predictable “anomalies”
highlighted by behavioural economics, such as imperfect optimization and lack of
self-control, to the extent that these types of anomalies point to changing preferences,
and preferences could experience changes in the degree, measure or type of fuzziness
depending on visibility, framing or the location of the individual relative to some
reference point.

The potential of fuzzy logic to contribute to empirical work in economics and
social science in general is well represented by Ragin [16] and the applications
of his proposed methodology. This constitutes an empirical method to take into
account degrees ofmembership in economic or social categories, and to establish set-
theoretic relationships between these degrees of membership. Together with fuzzy
preference theory, fuzzy set empirical methodologies contribute to measuring the
complex behaviour of human individuals or institutions.

There is no doubt that an important component of this need to tackle social com-
plexity is the fact that human judgement and decision making departs from the sim-
plistic representation of rationality used by traditional economics. The first papers
of fuzzy preference theory clearly related fuzzy preferences to degrees and forms
of rationality. But the subsequent explosion of behavioural economics paid scarce
attention to the theory of fuzzy preferences or to fuzzy logic in general. The 1984s
paper by Basu on degrees of rationality that is reviewed below, for example, had no
impact on the subsequent explosion of research on bounded rationality.
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Basu himself in a later book1 argued that his fuzzy adventure had been somehow
sterile. He devoted a chapter to the difficulties of preference theory in traditional eco-
nomics, and argued (p. 32) that “tucked away in the woodwork of our models, these
assumptions—that each person has a utility function, and that this is unchanging—go
unexamined, but if we do examine themwewill find that they are strong assumptions
and quite unacceptable in lots of contexts. Often, we have no well-defined prefer-
ences, andmake choices fromavague and ill-defined idea ofwhatwewant. This leads
to vacillation and changes in our ordering over different goods.” But then in a foot-
note in the same page (footnote 11) he writes that “one way to capture ill-definedness
is to assume that human preferences or utility functions are “fuzzy,” in the technical
sense of the term. This approach, which was in vogue at one point in time, does make
for some leeway, but as is now evident, it brings about no fundamental change.”

And still ideas such as the Eubulides or sorites paradox that Basu used in his 1984
paper to illustrate the relevance of fuzzy concepts in social sciences and economics
seem as relevant as ever: if n grains make a heap we must agree that n − 1 grains
also make a heap, but it is very difficult then to say what amount of grains does not
make a heap, although we will always agree that one grain does not make a heap.

In this brief chapter, an attempt ismade to relate fuzzy logic tomodern applied eco-
nomics,without emphasizing a crisp split between applied and theoretical economics,
quite the opposite. In Sect. 4.2, fuzzy preference theory is presented. Section4.3
describes empirical techniques based on fuzzy sets. Section4.4 suggests some fields
of research in modern economics that could fruitfully be illuminated by a closer
connection with fuzzy logic (and viceversa). And conclusions are briefly presented
in Sect. 4.5.

4.2 Fuzzy Preferences and Rationality

Many of the important debates in modern economics have to do with the degree and
nature of rationality of agents and with the role, nature and implications of individual
preferences. This section summarizes the early contribution of fuzzy logic to these
debates.

Following Basu [3], let U be the universal (unfuzzy) set. A is a fuzzy subset of U ,
or simply a fuzzy set, implies A : U → [0, 1]. For all x ∈ U , A(x) is interpreted as
the extent towhich x belongs to A. In economics and social sciences,many categories
are fuzzy, for instance the set of “developing countries”.

Fuzzy sets can be applied to relations between alternatives. Again following Basu
[3], let X (#X < ∞) be an exact set of alternatives, R is a fuzzy binary relation
(FBR) on X means R : X × X → [0, 1], i.e. R is a fuzzy subset of X × X .

In economics, a preference relation is a possible application of a fuzzy relation.
As Aliev [1] argues, the conventional preference frameworks miss a very important
feature of human preferences: these are vague. He supposes for example that Robert

1See Basu [5], published just before he became chief economist of the World Bank.
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wants to decide among two possible jobs, a1 and a2, based on the following criteria:
salary, excitement and travel time. If for Robert salary is more important than the
time issues and slightly more important than excitement then it may be difficult to
him to compare these alternatives. The relevant information is too vague for Robert
to clearly give preference to any of the alternatives. Hemay think that to some degree
job a1 is as good as job a2 and, at the same time, that to some degree job a2 is as
good as job a1.

I may clearly prefer FC Barcelona to R. Madrid, but I may only prefer Arsenal to
Manchester City to some degree, and this degree may depend on context. We clearly
need a theory of preference that encompasses both possibilities: clear preference and
vague preference. In many cases, human preferences are instances of indeterminacy
or vagueness.2 Under some conditions, preferences can be represented by utility
functions. If one adheres to the idea that individual preferences represent individual
welfare (something that modern behavioural economics questions) these preferences
canbe aggregated to represent socialwelfare functions, representing criteria for social
choice, giving different weights and relating in different ways the individual utilities.

Given two fuzzy sets, one can define and compute the difference between two
fuzzy sets. Given that an ordinary or exact set (one where members either belong or
do not belong to the set, without intermediate degrees of membership) is an extreme
example of a fuzzy set, one can compute the distance between a fuzzy set and an
exact set. That is, one can compute the degree of fuzziness of a set or relation.

In neo-classical economics, a preference relation rationalizes individual actions
(that is, an economic agent is rational) if individual choices are consistent with an
exact preference relation. According to Basu [3], a fuzzy revealed preference theory
has the advantage that it allows us to think in terms of human beings as possessed of
different degrees of rationality instead of the harsher notion of a partition of rational
and irrational persons. Taking into account the possibility that preferences are fuzzy,
a person can be described as rational if his choice function, C(·), could be thought
of as the expression of an underlying fuzzy preference.

Basu [3] suggests that if an individual has a (fuzzy or exact) preference ordering
but he fails to adhere to it, then we could always conceive of another person who has
a fuzzier preference ordering and adheres to it and whose behaviour is identical to
that of the first. The possibility exists, according to Basu, of thinking of individuals
as possessing different degrees of rationality: if C(·) and Ĉ(·) are such that R and
R̂ are the least-fuzzy orderings (respectively) which rationalize them and R is less
fuzzy than R̂, then C(·) could be thought as more rational than Ĉ(·). Of course the
step from degrees of fuzziness to degrees of rationality could presumably be done
in ways different from those considered by Basu. But to some extent, this argument
establishes that the measurement of fuzziness can contribute to the measurement of
rationality. And although fuzzy preference theory (it is perhaps my wrong view that)
has evolved more towards the analysis of normative issues (such as how to aggregate
individual fuzzy preferences into aggregate social preferences), the measurement of

2See Piggins and Salles [15].
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degrees and forms of rationality seems very promising from a more positive point
of view.

It is thus important to think about potential positive applications of these mea-
sures of rationality. Thus the measurement of the distance to rationality can be used
for example to choose a model in the table by Munro [12] in page 135, where he
distinguishes models where either citizens or rulers can be fully rational or bound-
edly rational, and when they are boundedly rational they can be aware or unaware
of it. Or one could even better think about an extended version of this table where
a continuum of degrees of rationality is allowed. This table shows the implications
for the choice of model to explain public policy depending on the degree of rational-
ity of citizens and rulers, but where the degree of rationality is constrained to be of
three discrete types: fully rational, boundedly rational with awareness and boundedly
rational without awareness.

The two dimensionality of Munro’s table prevents us from seeing the potential
for expanding the insight to the existence of a richer set of agents, not only citi-
zens and rulers but also passive citizens, active citizens, civil society, politicians,
civil servants, technocrats… Also, citizens could be thought of as more or less ratio-
nal depending on whether they are considered individually or collectively (using a
variety of mechanisms): rational individuals can have irrational (i.e. non-transitive)
preferences, and biased individuals may make unbiased judgments when considered
together under some conditions (wisdom of the crowds). Combining different possi-
bilities, it is possible to think of models where individuals with different preferences
delegate ones in others or where it is possible to study phenomena such as the manip-
ulation of preferences in behavioural political economy (the interaction of politics
and economics).

4.3 Empirical Techniques

Ragin [16] explains how fuzzy logic can be applied to improve upon traditional
variable-oriented methodologies in empirical social sciences. His proposed method-
ology consists of measuring degrees of belonging to social categories and then
exploring the relationship between categories using these measures. For example,
generosity of the welfare states as related to presence of left parties, trade unions and
homogeneous populations.

Many social science concepts do not involve simple dichotomous judgments, but
complex categories with partial membership. These categories can then be related to
explore necessity: the outcome is then a sub-set of the cause.Or to explore sufficiency:
the cause is a sub-set of the outcome. Necessity and sufficiency are not distinguished
with variable oriented techniques, but they are important for policy intervention. If
you remove something necessary you avoid the outcome.

García Castro et al. [8] apply Ragin’s methodology to the analysis of the relation-
ship between corporate governance and firm performance. The important academic
debate on this issue has centered on the possibility of different bundles of governance
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features being conducive to high performance in different societies. It is part of what
has been called the “varieties of capitalism” literature. In this field, the notion of
complementarities has an important role. Following García Castro et al. [8], com-
plementarities are defined as situations where the difference in utility between two
alternative practices U (X ′)− U (X ′′) increases for all actors in the domain X , when
the practice of Z ′ prevails over practice Z ′′. That is, for complementarities to arise,
the value of practice X is higher when practice Z is also present in a given domain.
However, bundles of governance practices are selective in the sense that there is a
point of decreasing marginal returns in organizational homogeneity.

García Castro et al. [8] demonstrate that there are multiple bundles of firm-level
corporate governance practices leading to high firm performance. Governance prac-
tices in these bundles do not relate to each other in a monotonic and cumulative
fashion because this would lead to higher costs and over-governance, and bundles
may have hybrid characteristics conducive to high performance that had not been
uncovered using conventional empirical methods.

The advantages of fuzzy empirical methods over variable-oriented methods
include that the latter are unable to distinguish which independent variables are
necessary, sufficient or redundant in affecting the dependent variable. García Castro
et al. [8] add to this that fuzzy set techniques are a better measuring tool than con-
ventional index construction techniques such as factor analysis because these present
the limitation of treating each configuration as a black box, and hardly make explicit
how each of the elements in a configuration combines with the others to achieve the
outcome.

Ragin [16] claims that the use of fuzzy empirical techniques facilitates a better
dialogue between theory and data, because fuzzy techniques do not work with ready
made data but they construct their own data sets by using substantial and previous
knowledge to measure the degrees of membership to categories. Fuzzy sets are better
as tools of discovery than ready-made variables in conventional data-sets.

4.4 Relationship with Modern Economics

In this section I provide some vague thoughts on how fuzzy logic could contribute
to some modern branches of the economics literature. Following most of the guide
of Nicholas Stern,3 a prominent economist involved both in academia and in pub-
lic policy, in his speech as president of the European Economic Association a few
years ago, I identify three fields where economics is making a lot of progress in the
recent past and which depart in significant ways from traditional economic thinking.
These fields are: behavioural economics, the economics of institutions and new the-
ories of justice. I add one further field, not considered by Stern, which is agent-based

3See Stern [20]. He is one of the most prominent scholars in the study of the economics of climate
change.
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computational economics, because it seems complementary of some of these
approaches and also has important connections with fuzzy logic.

4.4.1 Behavioral Economics

As explained in the Introduction above, behavioural economics replaces the assump-
tions of rational and exogenously individualistic behaviour by an assumption that
individual behaviour is presided by the mental shortcuts and predictable biases that
real individuals show, according to research in empirical and social psychology.
Decisions depend on framing, preferences are reference dependent, and the com-
munication based on natural language (intuitions, vagueness, fast thinking) matters.
Fuzzy logic seems complementary to this approach, to the extent that it provides a
more realistic framework on which to base assumptions on preferences. In addition
to this, to the extent that behavioral economics separates the measurement of individ-
ual preferences from the measurement of individual welfare (I may prefer something
that is not good for me), fuzzy logic could help in providing a more realistic metric
for both of them, and therefore analyze with more precision the relationship between
them. Public policies could then be designed to fight the cognitive problems that
prevent voters from having a real sense of the importance of phenomena such as
climate change and other global challenges.

4.4.2 Institutional Economics

Formal and informal rules that constrain and structure our social behaviour (institu-
tions) are recognized as important in attempting to solve social dilemmas (cooper-
ation and coordination problems) in our society. Aoki [2] for example stresses the
role that social norms based on cognitive salience play in the consolidation of social
architecture. Our behaviour in repeated games depends on cognitive representations,
where languages are instrumental in a variety of domains: firm, market, politics,
communities. Sugden [22] claims that institutions (such as property rights) make
use of pre-existing and psychologically salient relations (such as first possession, or
long possession). Salience is key in the emergence of conventions. The coordination
of identities develops into interactive sense-making for example in Hermann-Pillath
[10], where fuzzy property rights as a state (etics) result of the sequence elements,
patterns, processes, creating a new element, which will create a new pattern via
the sense-making activities of individual cognitive schemes (emics). Fuzzy logic
could play an important role in better describing the function of natural language in
cognitively structuring representations in our social games.
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4.4.3 New Theories of Justice

Given the difficulties of deriving welfare conclusions from individual preferences,
Sen proposes not to use these preferences as a metric for welfare, and instead replace
them by the measurement of capabilities that make possible a free life: health, educa-
tion, social structures. The measurement of these components of a minimum living
standard could be done using fuzzy empirical techniques, as suggested by Basu [4].
More in general, fuzzy logic could contribute to the development of new measure-
ment tools to replace traditional metrics such as GDP (gross domestic product) as
suggested by Stiglitz [21]. Traditional metrics have been criticized for not giving
an accurate picture of the human welfare of the majority of populations. Relatedly,
fuzzy logic can contribute to improving the measurement of qualitative features that
are difficult to measure using conventional techniques, but that play an important
role in the theory of incentives or in statistics (see Silver [19], for example). Sen
([17, 18]) are full of insights of how realistic concepts of justice and identities need
to be more complex than the ones assumed in traditional social sciences.

4.4.4 Complexity and Agent-Based Models

The economy as a complex adaptive system can be analyzed (Beinhocker [6]) using
agent-based models where the dynamics of social systems is described by endowing
agents with simple behavioural rules that combine with uncertainty. Agent-based
models using fuzzy preferences have been used for example to analyze penalty kicks
in soccer by Vu et al. [23], although again in this case with no communication (for
example, no cross reference) to empirically successful attempts to analyze the same
phenomenon using more traditional tools such as mixed-strategy Nash equilibrium
of games with two pure strategies as in Palacios-Huerta [14].

In all these fields fuzzy logic could help not only with decisions, but also with
strategic interactions: coordination/cooperation games, conventions for solving prob-
lems, games where communication plays some role. In all these fields models that
incorporate fuzzy logic could:

• Test the robustness of traditional insights or tools to fuzzy assumptions, as has
been done with the Gini coefficient in inequality by Basu [4].

• Explain behaviour that seems difficult to reconcile with binary relations, such as
solutions to adverse selection problems (Georgescu [9] presents this and other
related applications).
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4.5 Conclusions

This paper has suggested some fields where a better dialogue between fuzzy logic
and positive economics could be fruitful. Kahneman [11] argues that most of our
thinking takes place with a cognitive system that is fast and intuitive, instead of slow
and systematic. Similarly, Aliev [1] argues that the prevailing amount of relevant
information is carried not at a level of objective measurements but at a level of
subjective perceptions which are intrisically imprecise and are often described in
natural language.

Merging behavioural sciences or at least improving the dialogue across disci-
plines we could take advantage of useful insights that have been developed quite
independently but that point into a similar direction. Bowles [7] explains how we
know very little about how to achieve coordination and cooperation (although we
humans are not the only animals that try to achieve them), which are key to solve
many of the complex social dilemmas of the XXI century. Ostrom [13] reflected on
how the analysis of these dilemmas needs to go beyond the use of discrete categories
such as market or state and rational versus irrational.

In the last century economics has made progress by explaining partially the work-
ings of very simplistic market economies. The next step should be to analyze the
dynamics of socio-political systems with boundedly rational players that navigate
with fuzzy categories, where citizens as voters and policy makers interact with citi-
zens as they behave in the domains of markets and communities.
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Chapter 5
Linguistic Summaries of Time Series:
A Powerful and Prospective Tool
for Discovering Knowledge on Time
Varying Processes and Systems

Janusz Kacprzyk and Sławomir Zadrożny

Abstract Weprovide a critical state of the art surveyof linguistic data summarization
in its fuzzy logic based version,meant as a process for a comprehensive description of
big and complex data sets via short statements in natural language. These statements
are represented by protoforms in the form of linguistically quantified propositions
dealt with using tools and techniques of fuzzy logic to grasp an inherent imprecision
of natural language that is very difficult, if not impossible, for traditional natural
language generation related approaches to linguistic summarization. Such linguistic
data summaries can provide a human user, whose only natural means of articulation
and communication is natural language, with a simple yet effective and efficient
means for the representation and manipulation of knowledge about processes and
systems. We concentrate on the linguistic summarization of dynamic processes and
systems, dealing with data represented as time series. We extend the basic, static data
oriented concept of a linguistic data summary to the case of time series data, present
various possible protoforms of linguistic summaries, and an analysis of their proper-
ties and ways of generation. We show two our own real applications of the new tools
of linguistic summarization of time series, for the summarization of quotations of an
investment (mutual) fund, and of Web server logs, to show the power of the tool. We
also mention some other applications known from the literature. We conclude with
some remarks on the strength of the linguistic summarization for broadly perceived
data mining and knowledge discovery, emphasize its potentials, and outline some
possible further research directions, being strongly convinced that the fuzzy logic
based approach to linguistic summarization of time series is one of more important
areas in which fuzzy logic can play a crucial role in the years to come.
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5.1 Introduction

The very purpose of this important volume is to present various opinions on what
is, or will be, a promising fuzzy logic based solution, technology, application, etc.
in the next decades to come. Many different views are here possible, and the main
distinguishing factor is the very field or area of science or technology in which
the particular authors are interested. It can be said without exaggeration that most
peoplewho are active in broadly perceived fuzzy logicwork in applications, andmost
of their areas of interest and activities concern some systems and processes. They
can be meant in various ways but all definitions involve some sort of a structural
characterization, exemplified by components, their interconnections, architecture,
processes involved, etc. and a characterization of behavior, both in terms of particular
components and the particular processes involved, or even the system as a whole.

An overwhelmingmajority of real processes and problemswhich occur in nontriv-
ial, real world systems, are dynamic and should be analyzed by taking into account
their time varying behavior. This also concerns all kinds of approaches aimed at
discovering information and/or knowledge about the processes and problems con-
sidered, as well as the whole systems.

As a result of the recent development of technology that concerns more and
more widely used and accessible systems, a human being is more and more often
a crucial element of virtually all complex processes and problem solving tasks as
the research interest moves towards more and more complex systems. This implies a
wider andwider gap between the human being, who is much better than the computer
in sophisticated tasks but much worse than the computer in sheer number crunching.
A human-centric systems paradigm initiated by Dertouzos [12] and developed by,
e.g., Pedrycz and Gomide [31] has therefore been proposed to find a way to manage
in such difficult environments of systems with a crucial human element. Basically,
the very idea of this approach, or maybe better to say, philosophy, is that an artificial
interface between the computer and the human being should be removed. In our
context this would boil down to a possibly wide use of natural language for the
representation of the information/knowledge extracted, conclusions, drawn, etc. The
reason is simple, namely for the humans natural language is the only fully natural
means of communication and articulation.

Theremay bemany possibleways of using natural language in all kinds of descrip-
tions, analyses, etc. of various systems and processes, both related to their structure
and architecture, and to their behavior, that is, processes that occur within them. In
this paper we will deal with linguistic data summaries in the sense of Yager [37], in
their more implementable form proposed by Kacprzyk and Yager [20] and Kacprzyk
et al. [21] in which, in the static case, we have a (relational) database that is too large
to be comprehended by the human being and therefore we wish to find a short and
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comprehensible linguistic summary of its contents as a short linguistically quantified
proposition in the sense of Zadeh [42]. For instance, in the case of a personnel data-
base, a linguistic summary with respect to “age” and “salary” can be most of young
employees earn low salaries. Notice that an explicit use of a (relational) database
does provide universality of the approach as, in practice, all kinds of data on real
processes and systems are almost always stored in relational database because this
is a mature technology so that the data mentioned can be handled in an effective and
efficient way.

This basic concept of a static linguistic summary mentioned above has been
extended to the dynamic case, specifically to linguistic summaries of time series
by Kacprzyk et al. [16]. By first performing a segmentation of the time series data
into trends, i.e., parts of the time series exhibiting a uniform behavior, we obtained
linguistic summaries like “most of slowly decreasing trends have a large variabil-
ity”, “almost all of trends with a high variability are sharply decreasing”, etc. This
approach was extended in, e.g., Kacprzyk et al. [18, 19], showing an application
to investment (mutual) fund quotations, and in Zadrożny and Kacprzyk [43, 44] for
Web log analyses. Then, many other approaches have been proposed as, e.g., Alvarez
et al. [2], Batyrshin and Sheremetov [6, 7], Castillo et al. [9, 10], Anderson et al. [3],
Ros et al. [32] for various application areas as, e.g., elderly care, traffic analyses, etc.
Notice that this extension is extremely relevant because dynamics is what is crucial
in virtually all analyses of processes and systems.

Obviously, the generation of linguistic summaries, even static, not to mention
dynamic ones, can be a serious problem and has rarely been addressed except
for Kacprzyk and Zadrożny [22] and their subsequent papers in which the gen-
eration is considered in the context of fuzzy database querying, Kacprzyk and
Zadrożny’s [23] use of Zadeh’s protoforms representing linguistic summaries,
Kacprzyk and Zadrożny’s [26] proposal to derive (generate) linguistic summaries
via association rule mining, Kacprzyk and Zadrożny’s [25] proposal to generate
linguistic summaries using natural language generation (NLG), and Kacprzyk and
Zadrożny’s [24] proposal to generate linguistic summaries by using some elements
of systemic functional linguistics (SFL).

Aswe can see, linguistic summaries, notably of time series data, are very powerful
and can operationally be derived.We strongly believe that theywill play an increasing
role in the area of applications of fuzzy logic, and they should be included in this
volume the purpose of which is, among others, to show some prospective research
directions and solutions.

We will now briefly present the concept of a linguistic data summary, first of
static and then dynamic (time series) data. Then, we will mention two examples
of applications, for the summarization of investment (mutual) fund quotations and
Web logs.
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5.2 Linguistic Data Summaries: A Static and Dynamic Case

In its very essence, Yager’s [37] source concept of a linguistic data summary
concerns: Y = {y1, y2, . . . , yn}, the set of objects (records) in the database D as,
e.g., a set of employees; A = {A1, A2, . . . , Am}, the set of attributes (features)
characterizing the objects from Y as, e.g., a salary or age. A linguistic (data) sum-
mary includes:

• a summarizer P , i.e. an attribute together with a linguistic value (fuzzy predicate)
defined on the domain of attribute A j (e.g., low for the attribute salary);

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g., most);
• a truth value (validity) T of the summary, i.e. a number from [0, 1] yielding the
truth (validity) of the summary (e.g., 0.7);

• optionally, a qualifier R, i.e. another attribute togetherwith a linguistic value (fuzzy
predicate) defined on the domain of attribute Ak determining a (fuzzy) subset of
Y (e.g., young for attribute age).

A linguistic data summary in that sense may be exemplified by the simple form

T (most of employees earn low salary ) = 0.7 (5.1)

or by an extended form, including a qualifier (e.g., young), by

T (most of young employees earn low salary) = 0.82 (5.2)

The core of a linguistic summary is therefore a linguistically quantifiedproposition
in the sense of Zadeh [42] which for (5.1) may be written as

Qy′s are P (5.3)

and for (5.2) may be written as
Q Ry′s are P (5.4)

The truth value (validity), T , of the above simple and extended summary, (5.3)
and (5.4), are then, respectively:

T (Qy′s are P) = µQ

(
1

n

n∑

i=1

µP (yi )

)

(5.5)

T (Q Ry′s are P) = µQ

(∑n
i=1 µP (yi ) ∧ µR(yi )

∑n
i=1 µR(yi )

)

(5.6)
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where ∧, the minimum operation, may be replaced by, e.g., a t-norm, if needed, and
Q is a fuzzy set representing the fuzzy linguistic quantifier like, for instance,

µQ(x) =
⎧
⎨

⎩

1 for x ≥ 0.8
2x − 0.6 for 0.3 < x < 0.8
0 for x ≤ 0.3

(5.7)

Other methods of calculating T can also be used, notably those based on the OWA
(orderedweighted averaging) operators (cf. Yager [38, 39], Yager andKacprzyk [40],
and Yager et al. [41]), and the Sugeno and Choquet integrals (cf. Bosc et al. [8] or
Grabisch [14]).

It is easy to see that the above concept of a linguistic (data) summary does provide
an extremely powerful, yet simple, tool to represent many real world relationships
in a form that is easily comprehensible to the human being.

As we have already mentioned, in virtually all cases of real world processes
and systems dynamics is what really matters. The above approach can easily be
extended to the dynamic case, i.e., to the summarization of time series, as proposed
by Kacprzyk et al. [16], and then considerably developed in, e.g., Kacprzyk et al. [18,
19], to name a few. Basically, in that approach the linguistic summarization of a time
series is performed as the linguistic summarization of the trends (segments) extracted
from the time series. First, we assume a piecewise linear representation of time
series data, and we extract segments, i.e., the constituent straight lines that represent
an uniform behavior of the data. This can be done by using, for instance, on-line
(sliding window) algorithms, bottom-up or top-down strategies (cf. Keogh et al. [28,
29]) or, as in our works, using a modification of the Sklansky and Gonzalez [34]
algorithm.

The following basic features of trends in the time series are considered:

1. dynamics of change,
2. duration, and
3. variability,

meant as: the dynamics of change is the speed of change of the consecutive values of
the time series which may be described by the slope of a line representing the trend,
then represented by a linguistic variable, the duration is the length of a single trend,
also represented by a linguistic variable and the variability describes how “spread
out” a group of datawithin a segment is. The use of a small set of granulated linguistic
labels as, e.g.: quickly increasing, increasing, slowly increasing, constant, slowly
decreasing, decreasing, quickly decreasing, equated with fuzzy sets, is employed.

Then, we basically employ protoforms (abstract prototypes, or templates, of a lin-
guistically quantified propositions) of linguistic summaries as proposed byKacprzyk
and Zadrożny [23], exemplified by
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• for the simple form:
Among all segments, Q are P (5.8)

e.g.: “Among all segments, most are slowly increasing”.
• for the extended form:

Among all R segments, Q are P (5.9)

e.g.: “Among all short segments, most are slowly increasing”.

Moreover, we can further enhance the extended protoforms given in (5.8) and
(5.9) by adding a temporal expression, ET , like: “recently”, “initially”, “in the very
beginning”,“in the early Spring of 2010”, etc., which yields the temporal protoforms:

• for the case of the simple protoform:

ET among all segments, Q are P (5.10)

e.g.: “Recently, among all segments, most are slowly increasing”.
• for the case of the extended protoform:

ET among all R segments, Q are P (5.11)

e.g.: “Initially, among all short segments, most are slowly increasing”.

The truth (validity) of those linguistic summaries is calculated similarly as in the
static case, and we obtain for the simple and extended protoform, respectively:

T (Among all y’s, Q are P) = µQ

(
1

n

n∑

i=1

µP (yi )

)

(5.12)

T (Among all Ry’s, Q are P) = µQ

(∑n
i=1 µR(yi ) ∧ µP (yi )

∑n
i=1 µR(yi )

)

(5.13)

where ∧ is the minimum operation or, more generally, a t-norm.
The computation of the truth values of temporal summaries is very similar to the

previous case, and—basically—we obtain for the simple temporal protoform sum-
mary (5.10) and for the extended temporal protoform summary (5.11), respectively:

T (ET among all y’s, Q are P) = µQ

(∑n
i=1 µET (yi ) ∧ µP (yi )

∑n
i=1 µET (yi )

)

(5.14)

where µET (yi ) is the degree to which a trend (segment) occurs during the time span
described by ET ;
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T (ET among all Ry’s, Q are P) =
µQ

(∑n
i=1 µET (yi ) ∧ µR(yi ) ∧ µP (yi )

∑n
i=1 µET (yi ) ∧ µR(yi )

)

(5.15)

and for technicalities we refer the reader to our papers cited above.
Naturally, this is not the only way to calculate that degree. For instance, we may

also use the OWA (ordered weighted averaging) operators (cf. Kacprzyk et al. [17]).
One can also employ some other aggregation methods exemplified by those using the
Sugeno integral (cf. Bosc and Lietard [8]) or the Choquet integral (cf. Grabisch [14]).

Moreover, it should be noticed that the degree of truth has been assumed as the
single quality criterion in the first pioneering paper on linguistic data summaries by
Yager [37] just for simplicity which is crucial for a paper that is meant to propose a
novel concept. In next years in the papers by Kacprzyk and Yager [20] and Kacprzyk
et al. [21] some new quality criteria have been proposed. Obviously, the analysis
and, above all, the generation of such linguistic summaries becomes much more
difficult but we obtain a much more adequate representation by a “best” summary
(with respect to many quality criteria, not only its truth value) of the very essence of
relationiships occuring in data.

The use of multiple quality criteria for linguistic summaries, notably the degrees
of: imprecision, specificity, fuzziness, covering, focus, appropriateness, informa-
tiveness, and the length of the summary, proposed conceptually in earlier works by
Kacprzyk and Yager [20], Kacprzyk et al. [21], and then extended into the time series
summarization, e.g., in Kacprzyk andWilbik [15], is very important but needs much
more research, and also impliesmuchmore difficult a process of summary generation
because this should proceed with respect to multiple criteria.

5.3 Examples of Applications

Now, we will show two examples of our works on the linguistic summarization of:
(1) daily quotations of a mutual (investment) fund that is to invest at least 66%
assets in shares listed at the Warsaw, Zagreb and Moscow Stock Exchanges, and (2)
Web logs of the institute server. As we will see, different protoforms of linguistic
summaries have been employed which is implied by the specificity of the problem.
These examples will, first, show the very essence of the linguistic data summaries
in the form considered here, and second, clearly indicate their prospective potentials
making them an important candidate for a new set of prospective future tools and
techniques in what might be called fuzzy technology.
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5.3.1 Linguistic Summarization of Investment (Mutual)
Fund Quotations

In the first example, the time series of daily quotations of an investment (mutual)
fund was considered over the period from January 1, 2002 to the December 31,
2010; notice that in the period considered there were some economic disturbances in
Europe. The value of one share was PLN 12.06 in the beginning and PLN 40.52 at the
end of the time span (PLN stands for the Polish Zloty). The minimal value recorded
was PLN 9.35 while the maximal one during this period was PLN 57.85. The biggest
daily increase was PLN 2.32, while the biggest daily decrease was 3.46. Using the
piecewise linear segmentation we obtained 100 segments from 1 to 191days long.
Almost 50% of segments were shorter than 10days, with very few segments longer
than 50days.

We used the granulation of 5 labels for each attribute, like very short, short,
medium and long, very long for the duration, and similarly for other criteria.

Many linguistic summaries have been generated, taking into account, for instance,
what a particular user has been interested in, and what has been comprehensible to
him/her. Some examples of the linguistic summaries obtained were:

• the simple summaries:

– Among all slowly decreasing segments, most are short,
– Among all long and constant segments, most are of very high variability,
– Among all very long segments, most are constant,
– Among all of moderate variability segments, most are short,
– Among all very long segments, most are constant and of very high variability,

• the summaries which reflect a temporal aspect:

– Recently, among all slowly decreasing segments, most are short,
– Recently amongall long andof very highvariability segments,most are constant,
– Recently among all short and of very high variability segments, most are slowly
decreasing,

– Recently among all very long and of very high variability segments, most are
constant,

– Recently among all very long segments, most are constant and of very high
variability,

– Recently among all slowly increasing segments,most are of very highvariability.

5.3.2 Linguistic Summarization of Web Server Logs

The second application concerns the linguistic summarization ofWeb server logs and
was proposed by Zadrożny and Kacprzyk [43, 44]. That application was motivated
by the fact thatWeb servers are crucial elements of virtually all IT systems in all kinds
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of institutions, organizations, companies, etc. and it may be very important to use
some advanced tools and techniques for their design and running. Broadly perceived
soft computing, or better to say, computational intelligence tools and techniques have
been employed for that purpose, cf. [1, 4, 5, 11, 30, 35, 36]. However, the approaches
cited, as well as virtually all other ones, have not explicitly used any natural language
based method as we have proposed in our approach.

The idea of our approach, from the viewpoint of soft computing, is similar to
Abraham [1, 35, 36] who deals, using fuzzy clustering, evolutionary algorithm,
neural networks and the Takagi-Sugeno type fuzzy systems. On the other hand, their
access trends analysis is similar in spirit to the dynamic linguistic summaries used
by us though not explicitly natural language focused. Moreover, Shiu andWong [33]
approach is also somehow related to our approach due to their use of the fuzzy
association rules which are employed for the generation of a subclass of linguistic
summaries (cf., our work on that topic [27]). However, none of those works uses a
human consistent natural language based approach.

Basically, each request to a Web server is recorded in one or more log files that
contain the following main fields: the requesting computer name or IP address, the
username of the user triggering the request, the user authentication data, the date and
time of the request, the HTTP command related to the request which includes the
path to the requested file, the status of the request, the number of bytes transferred
as a result of the request, the software used to issue the request.

One may use an extended format with more fields but it is beyond the scope of
this paper.

By using similar linguistic summarization algorithms, we obtained both static
and dynamic summaries, which may be briefly exemplified as follows. First, for the
static case:

• for the case of the simple summaries:

– Most of the requests come from the Firefox browser
– Almost all requested files are small

• for the case of the extended summaries:

– Almost all failures concern files with an extension “ppt”
– Most of the requests concerning large files happen in the evening.

What concerns the dynamic summaries, i.e., concerning time series of requests
(their trends), we can quote the following examples:

• for the case of the simple summaries:

– Most of the trends concerning the number of requests are decreasing

• for the case of the simple summaries which account for the duration:

– Trends concerning the number of requests that took most time are slowly
increasing
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• for the case of the extended summaries which account for the frequency of event
occurrence:

– Most of increasing trends concerning the number of requests are of high vari-
ability

• for the case of the extended summaries which account for the duration of event
occurrence:

– Increasing trends concerning the total size of requested files, that took most of
the time, are very long

It is easy to see that in both examples of real applications the linguistic summaries
derived have providedmuch insight into the very essence of the set of data considered.
They can be of a valuable help in making decisions.

5.4 Concluding Remarks

To respond to the very purpose of this volume, that is, a wide coverage of various
possible directions, tools, techniques, areas of application, etc. of fuzzy logic which
can be considered to be promising and prospective in the decades to come, we
have presented the concept of a linguistic data summary of both static and dynamic
(time series) data. This concept and its related tools and techniques have, in our
opinion, an extremely high potential to become of top application examples of fuzzy
logic, maybe one of “killer apps”, due to its generality, power and an extreme human
consistency.Webriefly presented the concept of a linguistic summary of numeric data
which boils down to a linguistically quantified proposition that is dealt with using
fuzzy logic tools and techniques. This makes it possible, first, to provide a short
and comprehensive, yet very useful representation of information and knowledge
exhibited by the (large set of) data in questions in a short natural language form.
Second, via the use of fuzzy logic, an inherent imprecision of natural language can
be effectively and efficiently handled. This all is clearly a considerable step towards
human consistent and human centric computing that can help bridge an inherent gap
between the human being and the computer. We also believe that as an important
topic for a further in depth research in that area should be an explicit inclusion in the
very definition, analysis and generation of linguistic summaries powerful tools and
techniques of natural language generation (NLG) and systemic functional linguistics
(SFL), as outlined in our papers—cf. Kacprzyk and Zadrożny [24, 25], respectively.

Other directions of research, which have been already initiated, include further
studying the inference and dependencies between summaries, handling sets of sum-
maries or designing employing other protoforms of linguistic summaries leading to,
e.g., bipolar summaries introduced by Dziedzic et al. [13].

We showed two real applications of linguistic summaries of time series data,
for daily quotations of an investment mutual fund, and for Web server logs, listing
some more interesting linguistic summaries of various types (protoforms) that could
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provide much insight and information which might be useful for the analysis of the
problems considered.
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Chapter 6
Granular Geometry

Gwendolin Wilke

Abstract Many approaches have been proposed in the fuzzy logic research
community to fuzzifying classical geometries. From the field of geographic infor-
mation science (GIScience) arises the need for yet another approach, where geo-
metric points and lines have granularity: Instead of being “infinitely precise”, points
and lines can have size. With the introduction of size as an additional parameter,
the classical bivalent geometric predicates such as equality, incidence, parallelity or
duality become graduated, i.e., fuzzy. The chapter introduces the Granular Geometry
Framework (GGF) as an approach to establishing axiomatic theories of geometries
that allow for sound, i.e., reliable, geometric reasoning with points and lines that
have size. Following Lakoff’s and Núñez’ cognitive science of mathematics, the
proposed framework is built upon the central assumption that classical geometry
is an idealized abstraction of geometric relations between granular entities in the
real world. In a granular world, an ideal classical geometric statement is sometimes
wrong, but can be “more or less true”, depending on the relative sizes and distances
of the involved granular points and lines. The GGF augments every classical geo-
metric axiom with a degree of similarity to the truth that indicates its reliability in
the presence of granularity. The resulting fuzzy set of axioms is called a granular
geometry, if all truthlikeness degrees are greater than zero. As a background logic,
Łukasiewicz Fuzzy Logic with Evaluated Syntax is used, and its deduction apparatus
allows for deducing the reliability of derived statements. The GGF assigns truthlike-
ness degrees to axioms in order to embed information about the intended granular
model of theworld in the syntax of the logical theory. As a result, a granular geometry
in the sense of the framework is sound by design. The GGF allows for interpreting
positional granules by different modalities of uncertainty (e.g. possibilistic or veris-
tic). We elaborate the framework for possibilistic positional granules and exemplify
it’s application using the equality axioms and Euclid’s First Postulate.
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6.1 Introduction

Many approaches have been proposed in the fuzzy logic research community to
fuzzify classical geometries. From the field of geographic information science
(GIScience) arises the need for yet another approach, where geometric points and
lines have granularity: Instead of being “infinitely precise”, points and lines can
have size. With the introduction of size as an additional parameter, the classical biva-
lent geometric predicates such as equality, incidence, parallelity or duality become
graduated, i.e., fuzzy.

The chapter introduces the Granular Geometry Framework as an approach to
establishing an axiomatic theory of geometry that allows for reliable geometric rea-
soning with points and lines that have size: In the presence of granularity, classical
geometric statements are often wrong, and and it depends on the specific geomet-
ric configuration “how wrong” they are [35, 72, 73]. A granular geometry in the
sense of the framework augments every classical geometric statement with a degree
of reliability, and the reliability degree is propagated in geometric reasoning. The
Granular Geometry Framework extends the work of Roberts [51] and Katz [32] by
using Łukasiewicz Fuzzy Logic with Evaluated Syntax [41], F Lev(Ł∀), as a back-
ground logic for representing and propagating the degree of reliability. F Lev(Ł∀)
allows for treating the reliability degree as an intrinsic part of the syntax of a logical
formula and guarantees that reasoning in granular geometry is sound.

Following L. Zadeh’s Restriction Centered Theory of Truth and Meaning [83]
(RCT), points and lines with size can be seen as positional restrictions of the geo-
graphic space, and, in the style of Zadeh’s theory of Z-valuations [82], a granular
geometry can be seen as a precisiation of a reliability calculus for positional restric-
tions. In RCT, restrictions can have different modalities of uncertainty, and this is
also the case for granular geometries. For instance, a “positional restriction of type
point” may be precisiated by a possibility distribution, a probability distribution, or a
verity distribution, and the Granular Geometry Framework provides a guideline for
precisiating the geometric theory accordingly.

As a first step towards a possibilistic granular geometry, we apply the Granu-
lar Geometry Framework to the equality axioms and to Euclid’s first postulate. We
show exemplarily how the introduction of size in classical geometries causes a fuzzi-
fication of classic geometric predicates. Borrowing a terminology commonly used
in the GIScience literature, we call the resulting theory an Approximate Tolerance
Geometry [73–75].

The chapter is structured as follows: Sect. 6.2 gives a motivation for the introduc-
tion of granular geometries for geographic information systems (GIS) and reviews
related work from the GIScience community and related fields. Section6.3 intro-
duces similarity logic as the underlying idea and main tool for incorporating a reli-
ability measure in classical geometry, and—on this basis—develops the Granular
Geometry Framework. Section6.4 applies a possibilistic instantiation of the Granu-
lar Geometry Framework to the equality axioms and to Euclid’s First Postulate, thus
elaborating a first step towards an Approximate Tolerance Geometry. In Sect. 6.5, we
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briefly discuss the Granular Geometry Framework in the context of Zadeh’s RCT.
Section6.6 finally gives a summery of results and discusses current limitations of
the framework. We also give an outlook to future directions and further work.

6.2 Background

In Sect. 6.2.1, we briefly discuss the rationale of introducing a granular geometry,
which stems from the area of geographic information science (GIScience) and gives
simple examples of granular geometric configurations. Section6.2.2 reviews existing
approaches to handle granular geometric objects withing the GISience community
and related research fields. Section6.2.3 reviews related work from computer science
and mathematics, with a special focus on axiomatic approaches.

6.2.1 Motivation

As a motivation for the introduction of granular geometries for spatial analysis in
geographic information systems (GIS), Fig. 6.1 illustrates three typical geographic
scenarios: Part (a) shows a boat floating on a river. While the boat may be seen as
a granular point, the river may be conceptualized as a granular line. We can say
that the granular point approximately “sits on” the granular line. Using a geometric
terminology, the granular point is more or less incident with the granular line. Part
(b) shows a similar configuration. Here, a metro station building is shown, which is
more or less incident with railway tracks. Part (c) shows a highway and a highlighted
area that indicates an increased freuquency of car accidents in this sector of the

Fig. 6.1 An example of a a veristic, b a possibilistic, and c a probabilistic interpretation of a
granular point that is more or less incident with a granular line ((a) after [77])



82 G. Wilke

Fig. 6.2 a Poincaré Paradox, b approximate direction

road. All three scenarios can be interpreted geometrically, namely as approximate
incidence of a (granular) point with a (granular) line. The difference between the
them is the modality of imperfection with which the granular features are modeled:
The statement “The boat is on the river” refers to the boat as an indivisible entity, and
we can model this by a (crisp) verity distribution. Here, every coordinate pair in the
black rectangle is considered part of the boat with a degree of 1. In contrast, when
I say “I am at the metro station”, the metro station in (b) indicates the (crisp) set
of coordinate pairs that possibly coincide with my true exact location at the time of
speaking. Finally, in (c), the shaded area provides a color indication of the probability
that I encounter a car accident when driving through this section of the highway.

The need for geometric reasoning with extended objects in GIS stems from a par-
adigm change that took place in GIScience in the recent years. While traditionally,
imprecision in geographic data was considered an error, the proliferation of location
based applications and crowd-sourced geographic data1 raised the general awareness
for the value of human-centered and perception based interaction with GIS applica-
tions. Today, it is considered a feature to offer GIS functionality for imprecise input.
Since geometric reasoning lies at the core of the GIS vector data model and thereby
also at the core of all derived spatial analysis capabilities, it is desirable to provide
a geometric calculus for granular features in GIS. While most current approaches in
the community are based on heuristics that where originally designed to deal with
small imprecisions in traditional, well-maintained datasets, the proposed Granular
Geometry Framework aims at providing a reliable granular geometric calculus that
is reliable, even if the position granules involved are potentially very large.

Existing heuristic algorithms in GIS often map classical geometric predicates to
the approximate geometric relations between granular points and lines. Yet, when
classical geometric reasoning is applied to position granules, i.e., to points and/or
lines with size, the result may be wrong. In other words, geometric reasoning with
position granules is not reliable. A classical example of this fact is the Poincaré
Paradox [46], which states that the equality of sensations and measurements in the
physical continuum is not transitive.An instance of the Poincaré Paradox is illustrated
in Fig. 6.2a.

1An well-known example for the use of crowed-sourced geographic data in participatory mapping
is OpenStreetMap (www.openstreetmap.org).

www.openstreetmap.org
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Fig. 6.3 The “degree of uniqueness” of an approximate connection depends on the distance between
the involved granular points [73]

A test person whose skin is stimulated in the spots P and Q, e.g. by a sharp object,
may not be able to distinguish the two approximate locations on their skin. In other
words, in the person’s perception, the two spots are equal. For the same reason, the
person will also not be able to distinguish Q and R, and therefore, they will also
consider them as equal. Yet, since the spots P and R are not very close together,
they can be distinguished easily, and the person will identify the relation between
P and R as not equal. In other words, perceived equality is not always transitive.
Whenwemodel the relation of perceived equality (i.e., of indistinguishability) by the
classical (transitive) geometric equality relation, the result of the query “P = R?”
may be wrong. In geographic information systems, these kind of problems arise as
a result of, e.g., measurement inaccuracy, mapping error or overlay errors.2 To the
knowledge of the author a generic solution to the problem of sound, i.e., reliable,
geometric reasoning with position granules in GIS has not been found as of yet.

With the introduction of size to classical geometries, classical crisp geometric
notions become fuzzy. As an example, Fig. 6.2b shows two granular points P and Q.
The granular line L is approximately incident with both, P and Q, and so is the
granular line M . What we observe is that, in contrast to classical geometry, “the”
connecting line is not unique, and the direction specified by the two granular points
P and Q is only an approximate direction.

Figure6.3 illustrates exemplarily that the “degree of uniqueness” of “the” con-
necting granular line depends on the distance between the involved granular points.
Figure6.4 illustrates that it also depends on their size.

Notice that the fuzziness of geometric predicates is a result of the fact that the
size of objects varies: If granular points have fixed size, there is a bijection from
granular to exact geometry. The Granular Geometry Framework assumes variabel
size of positional granules. It is an approach to parametrizing the fuzziness of classical
geometric statements as a function of size and distance parameters.

Figure6.5 illustrates exemplarily the fuzzification of the classic geometric notion
of duality in granular geometries: In classical logic, every point can be seen as a
pencil of lines, and every line can be interpreted as a range of points. In granular
geometry, every (approximate) range of granular points specifies an approximate
direction, i.e., it is more or less (granular) linear. Conversely, every (approximate)

2cf., e.g., [48].
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Fig. 6.4 The “degree of uniqueness” of the approximate connection depends on the sizes of the
involved granular points [73]

Fig. 6.5 a–c Classical duality, a′–c′ Fuzzyfied duality [73]

pencil of granular lines specifies a an approximate location, which is more or less
(granular) punctual.

6.2.2 Granulated Space in Geographic Information Science

We discuss the increasing need for granular geometries in GIScience and give a brief
overview over existing approaches from the community that relate to the problem.
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GIScience as a Mapping Science

The representation and propagation of error and uncertainty inmeasurement sciences
like surveying is based on awell-developedmathematical foundation inmeasurement
theory [23, 64]. Here, measurement inaccuracy can often be disregarded, “because it
has been possible to devise increasingly more careful or refined methods of compar-
ison for properties like weight and distance” [65, p. 299f.]. As opposed to surveying,
which deals with physical measurements, geographic information science is not a
measurement science, but a mapping science [25]. Mapping errors that arise, e.g.,
from geocoding [84], and the superposition of different data layers with different
lineage and quality leads to geometrical discordance: different data layers represent
what is meant to refer to the same entity in reality by different coordinate represen-
tations, thus introducing positional uncertainty of coordinate points and lines. The
resulting uncertainty can often only be subsumed as possibilistic uncertainty and
cannot be propagated with established statistical methods of Gaussian error propa-
gation.

The need to deal with large positional uncertainties has been drastically increas-
ing in the last years as lay users became prosumers by collecting geographic data
(known as “volunteered geographic data”, VGI [25]) in participatory GIS projects
such as OpenStreetMap (OSM3). Here, the strict quality control of traditional map-
ping agencies does not apply, and the expert use of scale as a means to balance the
granularity of representation with the sampling frequency of the available measure-
ment points can not be taken for granted. Still, it is paramount to provide positional
information that is sufficiently reliable for the end users, e.g., of OSM-based car
navigation systems. To guarantee that the positional information that is derived by
geometric construction from the original VGI measurement data is reliable enough
for the respective application, a sound error calculus for possibilistic uncertainty is
needed.

Besides possibilistic positional uncertainty, veristic uncertainty also becomes an
issue in GI Science as the need for geometric reasoning with extended objects
increases: A verity distribution [82] specifies the set of all positions, where a certain
property applies, such as, e.g., the property of belonging to a certain registered place
such as Picadilli Circus. With the proliferation of mobile computing, cheap GPS
sensors, and natural language user interfaces such as Siri,4 it is considered a feature
to allow users of location based services to specify location on an appropriate level of
detail instead of forcing them to be as precise and accurate as possible. An example is
the natural language statement “My house is in the middle between Picadilli Circus
and Leicester Square”. Here, the geographic information system should be able to
derive the approximate center point of the approximate line segment that connects
Picadilli Circus and Leicester Square, including the corresponding uncertainty.

3www.openstreetmap.org.
4www.apple.com/ios/siri.

www.openstreetmap.org
www.apple.com/ios/siri
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In the following, we describe approaches from theGI Science community towards
handling positional uncertainty in geometric reasoning.Most of these approaches are
heuristics that are not geared towards handling large uncertainties and/or soundness
of reasoning. When used in longer sequences of geometric constructions, they may
produce highly unreliable or even completely wrong results.

Models of Positional Granularity in GIScience

Oneof the earliest errormodels for representingpoint and line featureswith positional
uncertainty is the epsilon band model introduced by J. Perkal [43, 44]. Here, every
feature is associatedwith a zoneofwidth epsilon around it. The zone canbe associated
with different modalities of imperfections, e.g., it may refer to the area in which
the true feature possibly sits, or to a probability distribution for the position of the
true feature with standard error epsilon. The epsilon band model gave rise to a
huge amount of research in this direction, which today mainly focuses on statistical
treatment of positional imperfection.5 Another classical error model for line features
is Peucker’s ‘Theory of the Cartographic Line’ [45], which postulates thickness as
an intrinsic characteristic of cartographic lines. The theory derives from research
on the generalization of line features by D. Douglas and T.K. Peucker [15]. The
Douglas-Peucker algorithm, which was independently suggested by U. Ramer [49],
is still in use today.

In theGIS community, the representation of geographic regions such asmountains
or informally defined places in a city as fuzzy sets is usually referred to by the term
vague regions or regions with broad boundaries.6 An approaches to reasoning with
vague regions have been proposed, e.g., by A. Dilo [14]. Her work is based on fuzzy
sets theory and defines topological and metrical operations for vague regions. In
terms of geometric notions, these approaches use vague regions as point-like objects
that have a fuzzy size, and extend point-operations to them. E. Clementini [13]
extends the existing models for vague regions to linear (line-like) features that have
extension. He defines the boundary of a line feature (i.e., a line segment) as its zero-
dimensional boundary in R, and broadens it by assigning to it a two dimensional
extent in R

2. Clementini’s approach is not limited to fuzziness, but integrates differ-
ent modalities of imperfections of positional information. From the field of remote
sensing stems the approach of S. Heuel. His work is concerned with augmenting
Grassmann-Cayley algebra (an algebraic approach to projective geometry that is
widely used in remote sensing) with Gaussian probability density functions (pdfs).
Heuel’s calculus provides an error-propagation calculus for probabilistic uncertainty,
yet, it does not represent the incomplete knowledge about geometric relations as an
intrinsic part of the calculus, and soundness can not be shown directly.

5cf., e.g., [11, 36, 60–63].
6cf., e.g., [10].
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Research on the quality of volunteered geographic information has not gained
much interest yet, and the research on positional accuracy of VGI is even more
sparse. One of the first papers that carried out a systematic analysis of VGI data
quality is [28]. It is partly based on the work of N. Zulfiqar [86] on the positional
accuracy of motorways in the UK using a buffer overlap analysis. C. Amelunxen
[1] investigates the positional accuracy of OpenStreetMap data for the purpose of
geocoding. M. Haklay [29] show that the positional accuracy of Open Street Map
data increases with the number of contributors to the data set.

6.2.3 Fuzzy and Granular Geometries

We review related literature from other research communities, in particular from
computer science and mathematics. Here, we put particular emphasis on axiomatic
approaches. We briefly introduce Robert’s tolerance geometry and Katz’ inexact
geometry that both provide the basis for approximate tolerance geometry and the
generic Granular Geometry Framework.

Digital Geometry

In the field of computer science, a predominant source of granulation of positional
information is the discretization error that stems from the discrete representation and
finite precision arithmetic used in digital image processing. From this problem field
stems the research area of digital geometry. Digital geometry deals with the represen-
tation of geometric configurations as subsets of the discrete digital 2D and 3D space,
and devises according geometric constructions and tests. It’s main areas of applica-
tion is digital image analysis and digital image processing. A prominent approach in
digital geometry is the cell complex model of the digital plane that defines “digital
points” as equivalence classes of points inR

2. Derived from digital points are “digital
lines”, and problems of unsound reasoning arise from it: “The intersection of two
digitized lines is not necessarily a digital point, and two digital points do not define
a unique digital straight line, unless we introduce additional criteria to select such
a line” [71, p. 100]. Based on the cell complex model, P. Veelaert [71] provides a
mathematical framework that addresses the affine geometric relations of parallelism,
collinearity, and concurrency in the digital plane. In contrast to the Granular Geom-
etry Framework introduced here, Veelaert does not use an axiomatic approach, but
instead shows that the digitized versions of affine geometric relations “can be verified
by constructions that are still purely geometric, though slightly more complicated
[…]” [71, p. 100]. He replaces the geometric relations by Helly-type properties,
whose characteristic is to be not in general transitive and introduces a notion of
thickness of digital points and lines to parametrize positional imprecision. Veelaert’s
approach differs from the one presented here in two main points: First, granular
geometries are defined axiomatically and therefore meta-mathematical properties
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like soundness can be investigated. Second, Veelaert’s approach is tailored to digital
image processing, and consequently only applicable to positional error that results
from discretization. In contrast to that, positional error in GIS stems from a large
variety of sources, and it is necessary to provide a more general approach, where
points and lines with size are not restricted to the constraints imposed by the struc-
ture of the digital plane. Yet another approach to capture a notion of granularity in
geometric reasoning from the field of digital geometry is the ‘Epsilon Geometry’
proposed by D. Salesin, J. Stolfi, and L. Guibas.7 Epsilon geometry is not only a
model for error representation, but implements geometric constructions and tests.

Fuzzy Geometry as a Part of Fuzzy Mathematics

In the mathematical literature, different approaches to fuzzifying classical geometry
can be found, and we list some of them. One prominent field is fuzzy geometry
as a subfield of fuzzy mathematics. Much of the early work in this area has been
done by K. C. Gupta [26], A. Rosenfeld [53–56] J. J. Buckley and E. Eslami [8, 9],
S.-C. Cheng and J. N. Mordeson [12]. Later work in this line is, e.g., H. Liu’s and
G. M. Coghill’s fuzzy trigonometry [37]. An approach to propagating incomplete
positional information in geometric reasoning that is based on fuzzy sets theory
has been proposed by S. Dutta [16]. Following Zadeh’s approach [79] of defining
mathematical and logical operators on the semantic level, all these approaches have
the disadvantage that metamathematical properties such as soundness of reasoning
cannot be verified easily.

Axiomatic Approaches to Fuzzy Geometry

In contrast to that, axiomatic approaches also exist that define a geometric theory
on the syntactic level and provide corresponding models on the semantic level. An
example is L. Kuijken’s and H. Van Maldeghem’s “fibered” projective geometry
[33, 34]. Here, every point x in R

2 is a base point for several uncertain points.
T. Topaloglou [68] axiomatizes one and two dimensional discrete space “with a
built-in concept for imprecision” in a first order language. The axiom system is
based on two sorts, point and scale, and two predicates, haze and precedence, where
the haze relation is a reflexive and symmetric indistinguishability relation that is not
necessarily transitive. In two dimensions, a theory of haze rectangles is constructed:
A haze rectangle is a pair of haze points, where “haze points refer to points of space
which are surrounded by a haze area, the smallest distinguishable quantity in the
representation” [68, p. 47f.]. In 1971 T. Poston published his PhD thesis under the
title of “Fuzzy Geometry” [47]. Yet, the term “geometry” in the title of Poston’s
thesis mostly refers to topological and not to geometric notions. The word “fuzzy”
in the title of Poston’s thesis can be misleading as well: Poston replaces the terms

7cf. [58].
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“physical continuum” and “tolerance space”, with the term fuzzy space, but the term
“fuzzy” in his work is not directly related to notion of “fuzzy set” as introduced by
L. A. Zadeh [79].

Y. Rylov discusses axiomatic approaches to multivaraint geometries in physics,
which he defines as geometries with an “equivalence” relation that is not transitive
in general. This definition corresponds to the relation of “possible equality “ in
Approximate Tolerance Geometry (cf. Sect. 6.4), which is an instance of granular
geometry as introduced in this chapter. Rylov discusses that multivaraint geometries
are granular geometries in the sense that they are partly continuous andpartly discrete.

Region based geometries, or point-free geometries, are axiomatic theories of
geometry that—instead of using the abstract concept of point as a primitive object—
are based on the region primitive. Similar to granular geometries, region based
geometries are motivated by the fact that the interpretation of a point as an infinitely
small entity is counter-intuitive, whereas regions have extension and are cognitively
more adequate. The difference between the two approaches is that granular geome-
tries axiomatize a new form of geometric reasoning, namely geometric reasoning
with regions, while region based geometries axiomatize classical geometric reason-
ing, with exact points, only using a different object primitive, namely the region
primitive, to do that. As in granular geometry, the regions in region based geome-
tries are considered to be location constraints for exact points. The literature on
region-based geometries has a long history, starting with N. I. Lobacevskij [38]. A
historical overview is given by G. Gerla [18], and recent results are summarized by
D. Vakarelov [70]. Many newer approaches build upon A. Tarski’s Geometry of
Solids [67]. In particular, the work of Gerla and co-workers [6, 17, 21, 22], is rele-
vant for granular geometry, because some of Gerla’s results are used as a basis for
it; The work of B. Bennett et al. [2–5], relates to the field of GIS.

The Granular Geometry Framework introduced in this chapter and, in particular,
its possibilistic version, Approximate Tolerance Geometry, is based on F. S. Roberts’
tolerance geometry [51], andM. Katz’ inexact geometry [32]. The basis for Roberts’
tolerance geometry was laid with the work of Zeeman [85] and Roberts and Suppes
[52] on the granular nature of visual perception. Zeeman described as a distinguishing
property of the geometry of visual perception the fact that the identity relation is
reflexive and symmetric, but not in general transitive, and he calls such a relation
a tolerance relation. Tolerance relations are often also called indistinguishability
relations [40, 46, 47, 50, 69, 85]. Other examples of tolerance relations are the
nearness relation and the relation of possible equality, as we use it in Approximate
Tolerance Geometry. The observation that transitivity is often violated when dealing
with identity in the physical continuum is usually attributed to H. Poincaré [46], and
is also known as the Poincaré Paradox. Amongst others, it motivated the work of
K.Menger [39] on ensemble flou (probabilistic equivalence relations) andwas further
continued by L. Zadeh [80] with the introduction of fuzzy similarity relations (fuzzy
equivalence relations).

Roberts tolerance geometry is an axiomatic theory of one dimensional Euclidean
geometry, where the notion of identity (i.e., equality or equivalence) is replaced by
tolerance, i.e., by a tolerance relation. He derives his theory of tolerance geometry
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in an iterative process: First, he chooses an existing axiomatization of a classical
geometry. Second, he chooses a specific model of the axiom system, i.e., an interpre-
tation that complies with the axioms. Third, in this model, he substitutes the equality
relation with an interpretation of the tolerance relation, namely with the closeness
relation. In other words, he defines an “intended interpretation” of the equality rela-
tion. As a consequence of the changed interpretation, the interpretation does not
comply with all of the axioms of the theory. In a fourth step, he modifies the respec-
tive axioms in such a way that the intended interpretation is a model again. Robert’s
iterative approach is the basis for the generic Granular Geometry Framework intro-
duced in Sect. 6.3, where an “intended interpretation” of the geometric primitives
point and line as position granules and their relations is the starting point for the
fuzzy extension of an axiom system of classical geometry.

Roberts interprets the tolerance relation as a closeness relation with an arbitrary,
but fixed distance threshold ε: Here, two points, p and q, are considered close to each
other if their distance is smaller than or equal to ε. In other words, the granularity
of the position granules is fixed. Katz [32] shows that modeling variable granularity
(i.e., variable size of position granules) requires a graduated, i.e., fuzzy version of the
tolerance relation. As a consequence, he uses a fuzzy logical system for the axioma-
tization of his theory of inexact geometry instead of the classical crisp logical system
used by Roberts. More specifically, Katz uses Łukasiewicz fuzzy predicate logic Ł∀,
and Approximate Tolerance Geometry adopts his choice. A big drawback of Katz’
theory is the fact that his definition of graduated tolerance is in fact not an extension
of the crisp tolerance relation, but an extension of a crisp equivalence relation (i.e., its
kernel is transitive). It was only in 2008—18 years after Katz’ introduction of inexact
geometry—that Gerla [20] introduced the notion of an approximate fuzzy equiva-
lence relation, which is a true fuzzy extension of both, tolerance and equivalence
relations. Approximate fuzzy equivalence relations lay the basis for approximate
tolerance geometry as introduced in this chapter.

6.3 The Granular Geometry Framework

Before introducing the Granular Geometry Framework itself in Sects. 6.3.2 and 6.3.1
introduces similarity logic as the basic idea andmain tool for axiomatizing geometric
reasoning with granular points and lines as proposed in the framework.

6.3.1 Similarity Logic

Soundness of Geometric Reasoning

Granular geometry is intended to provide a calculus for geometric reasoning with
position granules that is sound, i.e., reliable. A logical theory is sound, if all formulas



6 Granular Geometry 91

that can be derived from the theory with its inference rules are valid with respect to
its semantics. In other words, the rules of a corresponding calculus do not produce
wrong or erroneous output. This is clearly not the case for heuristic approaches
towards geometric reasoning with position granules. For this reason, the Granular
Geometry Framework adopts a logical and axiomatic approach to the problem,where
soundness is provable. Yet, the classical logical definition of soundness only applies
in the context of perfect information (i.e., information that is precise, complete and
certain). Outside this context, we cannot speak of soundness or unsoundness. To solve
this problem, the Granular Geometry Framework uses a fuzzy logical system in the
narrow sense, i.e., a graduated logical system that allows for treating imperfections of
data as an integral part of the logical theory, allowing for the definition of soundness
despite the presence of imperfections. More specifically, we use Łukasiewicz Fuzzy
Logic with Evaluated Syntax as a similarity logic.

Similarity Logic

“In classical logic, falsity entails any statement. But, in many occasions, we may
want to use ‘false’ theories, for instance, Newton’s Gravitational Theory.” [24, p. 80]
These are theories that are not self-contradictory, but empirically or factually false.
The problem can be solved by attaching to statements degrees of approximate truth,
measured as proximity, or closeness, to the truth. The proximity of a statement Φ to
the truth is measured as a “distance”, or, dually, a similarity, between models of Φ

andmodels of “reality”. Logical formalisms that represent and reasonwith proximity
to truth are usually subsumed under the name similarity logics or similarity based
reasoning. They aim at “studying which kinds of logical consequence relations make
sense when taking into account that some propositions may be closer to be true
than others. A typical kind of inference which is in the scope of similarity-based
reasoning responds to the form ‘if Φ is true then Ψ is close to be true’, in the sense
that, although Ψ may be false (or not provable), knowing that Φ is true leads to infer
that Ψ is semantically close (or similar) to some other proposition which is indeed
true [24, p. 83].”

Research in similarity-based reasoning ismainly divided in twomajor approaches:
The first approach uses similarity relations between models (or “worlds”) of a log-
ical statement or theory. I.e., it defines similarity semantically. From the similarity
relation a notion of approximate semantic entailment is derived which allows to
draw approximate conclusions from approximate premises. The main reference in
this area is Ruspini [57]. The second approach was proposed by Ying [78]. It uses
similarity relations between formulas, i.e. it defines similarity syntactically. A notion
of approximate proof is developed “by allowing the antecedent clause of a rule to
match its premise only approximately” [78, p. 830], which again allows for drawing
conclusions in an approximate setting. As shown by Biacino and Gerla [7], a gener-
alization of Ying’s apparatus can be reduced to Rational Pavelka Logic [42], which
extends Łukasiewicz fuzzy predicate logic (F Lev(Ł∀)) by adding additional truth
constants [27]. Rational Pavelka Logic has been further generalized to Łukasiewicz
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fuzzy predicate Logic with Evaluated Syntax (F Lev(Ł∀)) by V. Novák and I. Perfil-
ieva [41] and G. Gerla [19]. FŁev is the main tool used in the Granular Geometry
Framework to define an approximate geometric calculus.

Godo’s and Rodríguez’ Ontology of Imperfections

L. Godo and R. O. Rodríguez [24] propose an ontology of imperfections that is
based on a formal logical viewpoint and allows for assigning appropriate classes of
approximate reasoning tools. They distinguish three types of imperfections: vague-
ness, uncertainty and truthlikeness (cf. Fig. 6.6).

In classical logics, vagueness can not be expressed, since a classical logical inter-
pretation function as proposed by A. Tarski [66] is bivalent. Fuzzy logic solves the
problem. Uncertainty stems from the problem of incomplete information: In clas-
sical logic, there is no means of deciding the truth value of a statement in case
neither the statement nor it’s negation can be deduced. The problem can be solved
by attaching belief degrees to the truth values of statements, and examples of corre-
sponding approximate reasoning tools are, e.g., probability theory, possibility theory
or Dempster-Shafer theory of evidence. Finally, truthlikeness refers to the fact that
classical logic has no means of expressing how close a false theory or statement
comes to being true, and the problem can be solved by similarity based reasoning.

Fig. 6.6 Ontology of Imperfections after Godo and Rodríguez [73]
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Contributing Imperfections: Possibility and Truthlikeness

According to this ontology of imperfections, two types of imperfections contribute to
geometric reasoning with position granules. These are (positional) uncertainty and
truthlikeness. Positional uncertainty stems from the positional granulation of exact
points and lines. Truthlikeness stems from the assumption that classical geometry is
false but close to the truth,whichwe adopt fromLakoff’s andNunez’ cognitive theory
of mathematics [35]. For a given modality of uncertainty, the Granular Geometry
Framework describes a generic way of defining and propagating truthlikeness in
granular geometry. More specifically, it provides guidance of

1. how to define a truthlikeness measure for granular geometry based on a given
modality of uncertainty (e.g., possibilistic or probabilistic),

2. how to axiomatize granular geometry in Fuzzy Logic with Evaluated Syntax (as
a similarity logic) based on a given axiomatization of classical geometry.

The result is an axiomatic theory of granular geometry that treats reliability (truth-
likeness) as an intrinsic part of the theory. Fuzzy Logic with Evaluated Syntax allows
for propagating the integrated reliability degree, and geometric reasoning with posi-
tion granules is sound by design.

6.3.2 The Granular Geometry Framework

The Granular Geometry Framework provides a step-wise approach to axiomatize
granular geometry based on an existing axiomatization of a classical geometry and
for a given modality of uncertainty. It consists of four steps:

1. Choose a classical geometry and a corresponding axiomatization {ϕi }i .
2. Define an intended interpretation of

• the primitive geometric objects of the axiomatization by positional granules
(such as points and lines with size) with a fixed modality of uncertainty (such
as possibilistic, probabilistic, or veristic).

• the equality relation between positional granules that is semantically consistent
with the chosen modality of uncertainty (e.g., if points with size are interpreted
as sets of possible exact points, a sensible interpretation of the equality predicate
is the overlap relation, cf. Sect. 6.4.2).

• the primitive geometric relations between these positional granules that is
semantically consistent with the chosen modality of uncertainty.

3. Define a truthlikeness measure for all predicates in the intended interpretation.
4. Fuzzify the chosen axiomatization {ϕi }i in F Lev(Ł∀):
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(a) For every axiomϕi of the chosen axiomatization {ϕi }i use the truth-functional
operators and quantifiers of Łukasiewicz fuzzy predicate logic (F Lev(Ł∀))8
to derive the truthlikeness degree ai of ϕi from the truthlikeness measures of
the involved predicates.

(b) For every axiom ϕi assign the truthlikeness degree ai to ϕi as a fuzzy degree
of membership to the truth.

(c) Check if the truthlikeness degrees of all axioms ϕi are greater than zero:

• If yes, {(ϕi ; ai )} defines an axiomatization of a granular geometry.
• If no, extend the corresponding axioms (if possible), such that a positive
truthlikeness degree results. The fuzzy extension must be consistent with
the classical axiom. (I.e., for positional granules of size zero, fuzzy exten-
sion must coincide with the respective classical axiom).

Section6.3.1 discussed the rationale of steps 1–3. In step 4, the classical axioma-
tization is fuzzified by attaching to every classical axiom its degree of truthlikeness.
The result is a fuzzy set of axioms, {(ϕi ; ai )}, where the truthlikeness degrees (signs)
ai attached to the classical axioms ϕi indicate their fuzzy membership degrees to
“real world geometry”. The truthlikeness is interpreted as a measure of reliability of
the respective axiom in the presence of positional granularity. It may happen that the
truthlikeness of one or several of the axioms is zero,9 which is equivalent to absolute
falsity. In F Lev(Ł∀)—as in classical (crisp) logical theories—it is not useful to list
an absolutely false formula as an axiom of a fuzzy theory: from an absolutely false
formula, the graded deduction apparatus of F Lev(Ł∀) can only deduce absolutely
false formulas, and absolutely false formulas are completely unreliable, i.e., useless.
For this reason, it is necessary to ensure in step 4b that all fuzzified classical axioms
have a positive truthlikeness degree. Only if this is the case, we call the resulting
fuzzy theory a granular geometry.

Remark 1 Notice that the steps 3 and 4a derive the truthlikeness measure semanti-
cally in the interpretation domain, while it is used in step 4b as part of the syntax. As a
result, the intended interpretation is by design a model of the fuzzy theory {(ϕi ; ai )}.
In F Lev(Ł∀), a pair (ϕi , ai ) is called a signed formula, and ai is called the sign or
syntactic evaluation of ϕi .10

In the subsequent section, we apply the Granular Geometry Framework exem-
plarily to some axioms of projective plane geometry, based on a possibilistic inter-
pretation of granular geometric objects.

8cf, e.g., [27].
9Axioms are often universally quantified. In Łukasiewicz predicate logic, the universal quantifier
∀ is interpreted as the infimum operator. As a result, the truthlikeness degree of a universally
quantified axiom ∀x .[Statement (x)] is the infimum over all truthlikeness degrees of all instances
Statement (x), i.e., the worst case truthlikeness degree. Depending on the intended interpretation,
this may result to zero.
10For details on signed formulas in F Lev(Ł∀) see [41].
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6.4 Towards an Approximate Tolerance Geometry

Wilke [73, 75] developed the Granular Geometry Framework for a special case of
possibilistic uncertainty, where possibilistic position granules are (crisp) neighbor-
hoods of possible positions of an exact point or line. The uncertain geometric relation
between these possibilistic position granules as they occur in GIScience community
is often referred to as positional tolerance, andWilke calls the developed possibilistic
granular geometry an approximate tolerance geometry (ATG). In step 1 of theGranu-
lar Geometry Framework, she chooses a standard axiomatization of projective plane
geometry, and elaborates in steps 2–3 the definition of the intended interpretation
of possibilistic position granules and their truthlikeness. In step 4 (the fuzzification
step), she applies the fuzzification procedure only to a subset of the chosen axioma-
tization, and a complete fuzzy axiomatization of approximate tolerance geometry in
F Lev(Ł∀) is subject to further work.

Wilke shows that step 4(c) of the framework (validation of non-zero truthlikeness)
is indeed necessary: In ATG, some of the axioms have a truthlikeness degree of
zero. She proposes fuzzy extensions of these axioms that have positive truthlikeness
degrees and are consistent with the corresponding classical axioms.

6.4.1 Step 1: Choose an Axiomatization

Wilke [73, 74], chooses the following standard axiomatization of projective plane
geometry11 that uses points and lines as primitive objects, and equality and incidence
as primitive relations:

(Pr1) For any two distinct points, at least one line is incident with them.
(Pr2) For any two distinct points, at most one line is incident with them.
(Pr3) For any two lines, at least one point is incident with both lines.
(Pr4) Every line is incident with at least three distinct points.
(Pr5) There are at least three points that are not incident with the same line.

The axioms (Pr1) and (Pr2) are usually called Euclid’s First Postulate. They state
that two distinct points can always be connected by a unique line. The projective
axioms (Pr1)–(Pr5) can be formalized in classical predicate logic as follows:

(Pr1) ∀p,q.∃l. [¬E(p,q) → I(p,l)&I(q,l)],
(Pr2)∀p,q,l,m. [¬E(p,q)&I(p,l)&I(q,l)&I(p,m)&I(q,m) → E(l,m)],
(Pr3) ∀l,m.∃p. [I(p,l)&I(p,m)],
(Pr4)∀l.∃p,q,r. [¬E(p,q)&¬E(q,r)&¬E(r,p)&I(p,l)&I(q,l)&I(r,l)] ,
(Pr5) ∃p,q,r.∀l.¬ [I(p,l)&I(q,l)&I(r,l)] .

11cf., e.g., [30].
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Here, ∀ (“for all”) denotes the the universal quantifier, and ∃ (“exists”) denotes
the existential quantifier. Connectives are used to formulate compound statements:
stands& for a logical ANDoperator (conjunction),→ denotes implication,¬ denotes
negation. We use the symbol E to denote the equality predicate and the symbol I to
denote the incidence predicate. Predicates can assume Boolean truth values, i.e. the
value 1 (true) or the value 0 (false). E.g., I(p,l) = 1 says that p is incident with l.
The axioms employ two sorts of object variables, namely points and lines. Points are
denoted by p,q,r, . . ., lines are denoted by l,m,n, . . . In logical theories, equality
(equivalence) is usually treated as part of the background logic. Yet, in the context of
uncertainty, equality can not be recognized with certainty in general. The Granular
Geometry Framework accounts for this fact, and treats the axioms of geometric
equality as part of the logical theory. They are axiomatized as follows:

(E1) ∀x. [E(x,x)],
(E2) ∀x,y. [E(x,y) → E(y,x)] ,
(E3) ∀x,y,z. [E(x,y) & E(y,z) → E(x,z)] .

Here, x,y,z are either all points or all lines. (E1) is called reflexivity, (E2) is called
symmetry, and (E3) is called transitivity.

6.4.2 Step 2: Define the Intended Interpretation

Step 2 of the framework requires the definition of the intended interpretation of the
primitive geometric objects and relations of the chosen axiomatization in the context
of granularity. For the axiom system (Pr1)–(Pr5), primitive objects are points and
lines, and the primitive relations are equality and incidence.

The Intended Interpretation of Primitive Objects

According to Lakoff andNúñez, granules of positional information are the primitives
of geometry as we perceive it in our interaction with the world around us, and we
call them position granules (PGs).

Definition 1 Let (X, dX ) be a metric space, and let τdX be the induced metric topol-
ogy on X . We call P ⊆ X a position granule of type approximate point in X , if P
is either a τdX -topological neighborhood of a point p ∈ X or a singleton, P = {p}.
We denote the set of approximate points in X by PX .

The definition of a PG P as a neighborhood in a metric space (or a singleton) is
motivated by examples from the GIS domain, cf., e.g., Fig. 6.1. Here, a PG is given
as a crisp point set. Since Wilke address the possibilistic modality of uncertainty,
she interprets a PG P as the crisp set of possible positions of an exact point, i.e. as



6 Granular Geometry 97

a possibilistic position granule (PPG). I.e., a PPG of type approximate point can be
specified by the simple possibility distribution

pos(x) =
{
1 if x ∈ P,

0 if x /∈ P.
(6.1)

In many axiomatizations of geometry, both, points and lines are primitive objects.
In the vector based representation model of GIS, geometric lines are not considered
primitive objects, yet they are sometimes obtained as original measurements. It is
therefore reasonable that the ATG framework adopts the approach of treating lines
as primitives. A line feature in GIS consists of a number of connected line segments
and is represented as a tuple (p1, . . . , pn) of coordinate points. Each pair (pi , pi+1),
i ∈ 1, . . . , n − 1, of consecutive coordinate points of the tuple defines a line seg-
ment, together with its corresponding geometric line li = pi ∨ pi+1, cf. Fig. 6.7a.
If the points pi , pi+1 have positional tolerance, they can be represented by position
granules Pi , Pi+1 of type approximate point. As a consequence, the corresponding
line li inherits positional tolerance from pi , pi+1, and it can be represented as a set
L = {Li }i of geometric lines, cf. Fig. 6.7b. It is consequently reasonable to interpret
a geometric line with positional tolerance by a set Li of geometric lines that are
possible candidates for an assumed ideal “true” line li .

Similar to the definition of PGs of the type approximate point, we call L a PG of
type approximate line. It is a set of geometric lines, which are “close” to the unknown
“true” line and constrains its position:

Definition 2 Let L X denote the set of geometric lines in a domain X . For a given
geometric line l ∈ L X , denote by l ′ its dual point in a dual line parameter space
Y = X ′. Let dY be a metric on Y , and let τdY be the induced metric topology on Y .
L ⊆ L X is called a position granule of type approximate line in X , if L ′ = {l ′|l ∈ L}
is a position granule of type approximate point inY .We denote the set of approximate
lines in X by LX .

In analogy to the possibilistic semantic of approximate points, we attribute a pos-
sibilistic semantic to approximate lines, i.e., we consider PPGs of type approximate

Fig. 6.7 a A line feature and a geometric line. b Points with tolerance induce a geometric line with
tolerance [75]
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line. The definition of approximate points and lines extends the (corresponding) clas-
sical interpretation of geometric points and lines: An approximate point is a set P
of points that possibly coincide with the coordinates of an assumed “true” point p.
If there is no uncertainty about the coordinates of p, P = {p} holds. Similarly, if
there is no uncertainty about the parameters of an exact line l, the set of possible
coordinates of l coincide with the one-element set containing l, i.e. L = {l}.

The Intended Interpretation of Primitive Relations

Since PPGs represent the set of possible positions of an exact point or line, geometric
relations between PPGs can not be recognized with certainty. In order to guarantee
a correct representation of the available information, the primitive geometric rela-
tions between approximate points and lines are interpreted as possible relations of
exact points and lines. More specifically, the geometric equality predicate is inter-
preted by possible equality (often also called indistinguishability [46, 47, 80, 85])
of the corresponding “true” points, cf. Fig. 6.8. It can be represented by overlapping
neighborhoods of equal sort, i.e. the overlapping of an approximate point with an
approximate point, or the overlapping of an approximate line with an approximate
line. Notice that by “overlapping approximate lines”, we mean that the approximate
lines have a line (and not only a point) in common.

Definition 3 The intended interpretation of the geometric equality predicate in ATG
in a metric space X is given by the Boolean overlap relations

eB : PX × PX → {0, 1}, eB(P, Q) = (P ∩ Q 
= ∅) , (6.2)

eB : LX × LX → {0, 1}, eB(L , M) = (
L ′ ∩ M ′ 
= ∅

)
. (6.3)

The relation eB is called equality with tolerance.

Following the same semantic as for equality, the geometric incidence predicate
is interpreted by possible incidence of an exact point with an exact line. In terms of

(a)

(b)

Fig. 6.8 The exact points p̄, q̄ (the exact lines l̄, m̄) are a certainly distinct; b possibly equal [73]
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(a) (b)

Fig. 6.9 An exact point p̄ and an exact line l̄ are a certainly not incident; b possibly incident [73]

neighborhoods, possible incidence of exact objects translates into the overlap relation
between constraints of different sort, i.e. into the overlapping of an approximate point
with an approximate line, cf. Fig. 6.9.

Definition 4 The intended interpretation of the incidence predicate in ATG in a
metric space X is given by the Boolean relation

iB : PX × LX → {0, 1}, iB(P, L) = (P ∩ L 
= ∅) . (6.4)

The relation iB is called incidence with tolerance.

6.4.3 Step 3: Define Truthlikeness

Step 3 of the Granular Geometry Framework requires the definition of a truthlikeness
measure of all predicates in the intended interpretation.

Truthlikeness of Primitive Relations

The relations equality with tolerance, eB, and incidence with tolerance, iB, are
Boolean relations that specify the intended interpretation of the corresponding logical
predicates geometric equality and incidence in an ATG. The interpretations specify
what we intend to accept as truth. Similarity of eB and iB to the intended truth
(truthlikeness) can be represented by fuzzy relations, that extend the corresponding
Boolean relations. The fuzzy relations are chosen such that they assume the value
1 if the corresponding Boolean relations hold and their values decrease “the more
wrong” it is to assume that the corresponding Boolean relations hold. The fuzzy
membership degrees are understood as truthlikeness degrees. I.e. the fuzzy relations
are graduated extensions of the intended truth.

We first quantify the similarity of the statement eB(P, Q) = 1 to the truth (i.e.,
the statement “P and Q are equal with tolerance”). The spatial setting of the problem
statement suggests that a similarity measure that is dual to a spatial distance measure
is appropriate.More specifically,Definition3of equalitywith tolerance, eB(P, Q) :=
(P ∩ Q 
= ∅), suggests using the following set distancemeasure, which is illustrated
in Fig. 6.10:
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Fig. 6.10 The set distance
measure (6.5) [75]

d(dX )(P, Q) = inf {dX ( p̄, q̄)| p̄ ∈ P, q̄ ∈ Q} , P, Q ⊆ X. (6.5)

Here, dX denotes the metric in the underlying metric space X . d(dX )(P, Q) is an
extensive distance (cf. Wilke [74], Gerla [20]), and measures the shortest distance
between the subsets P and Q: It quantifies the semantic distance of the statement
d(dX )(P, Q) = 0 from the truth. Since

d(dX )(P, Q) = 0 ⇔ P ∩ Q 
= ∅ ⇔ eB(P, Q) = 1 (6.6)

holds, d(dX )(P, Q) is a dual measure of the of similarity of eB(P, Q) = 1 to
the truth: The greater the distance d(dX )(P, Q), the smaller the truthlikeness of
d(dX )(P, Q) = 0. Similarly, the set distance

d(dY )(L , M) = inf
{
dY (l̄ ′, m̄′)|l̄ ′ ∈ L ′, m̄′ ∈ M ′} (6.7)

quantifies the semantic distance of the statement d(dY )(L , M) = 0 from the truth,
and is a dual measure of truthlikeness of d(dY )(L , M) = 0. Here, dY denotes the
metric in the underlying line parameter space.

Similarity measures are often normalized to the interval [0, 1], and we adopt
this. We assume that the distance measures (6.5) and (6.7) are normalized to the
interval [0, 1] as well. As a result of this assumption, the degree of truthlikeness of
a statement eB(P, Q) = 1, or eB(L , M) = 1, can be defined by 1 − d(dX )(P, Q)

and 1− d(dY )(L , M), respectively. The assumption that dX , and consequently d(dX ),
can be normalized, i.e. that a maximal distance exists, is reasonable in the context of
GIS, since all maps are bounded.

Definition 5 The fuzzy interpretation of the geometric equality predicate in ATG is
given by the fuzzy relations

e(dX ) : PX × PX → [0, 1], e(dX )(P, Q) := 1 − d(dX )(P, Q), and (6.8)

e(dY ) : LY × LY → [0, 1], e(dY )(L , M) := 1 − d(dY )(L , M). (6.9)

P, Q and L , M are called approximately equal with tolerance to the degree e(dX )

(P, Q) and e(dY )(L , M), respectively. Here, dX and dY are a normalized metrics in
X and Y , respectively.

The fuzzy relations e(dX ) and e(dY ) extend the Boolean relations eB and eB, respec-
tively, because they coincide at the value 1:
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e(dX )(P, Q) = 1 − d(dX )(P, Q) = 1 ⇔
eB(P, Q) = (P ∩ Q = ∅) = 1, (6.10)

e(dY )(L , M) = 1 − d(dY )(L , M) = 1 ⇔
eB(L , M) = (

L ′ ∩ M ′ = ∅
) = 1. (6.11)

As a second step, we quantify the similarity of the statement iB(P, L) = 1 to
the truth (i.e., the statement “P and L are incident with tolerance”). A measure of
truthlikeness for the primitive relation of incidence with tolerance is a measure that
quantifies the distance of the statement iB(P, L) = (P ⊂ L) = 1 from the truth. The
set distance measure used for specifying truthlikeness of equality with tolerance can
not be used here: While the Boolean interpretation of equality with tolerance is the
overlap relation between location constraints of the same sort, incidence with toler-
ance is interpreted by the overlap relation between location constraints of different
sorts. The trivial solution for this problem is to keep the Boolean relation (P ⊂ L)

and interpret it as a discrete similarity measure. In order to simplify the modeling
task at hand, [73] adopts this solution, and we keep with it. The integration of a more
realistic graduated definition of truthlikeness of incidence with tolerance is a task for
future work. In analogy to the definition of eB, we may understand (P ⊂ L) as an
inverse distance measure, (P ⊂ L) = 1 − Δ(P, L), where Δ denotes the discrete
distance measure

Δ(P, L) = 1 − (P ⊂ L) =
{
1 if (P ⊂ L) = 0,

0 if (P ⊂ L) = 1.
(6.12)

Definition 6 The fuzzy interpretation of the incidence predicate in ATG coincides
with Definition 4. It is a Boolean relation and it is given by

iΔ : PX × LX → {0, 1} ⊂ [0, 1], iΔ(P, L) := 1 − Δ(P, L) = P ⊂ L , (6.13)

P and L are called approximately incident with tolerance to the degree iΔ(P, L) ∈
{0, 1}.
Since the fuzzy relation is chosen such that it coincides with the Boolean relation, it
trivially extends the Boolean relation.

Remark 2 Apossible candidate for a graded definition of truthlikeness is the distance
measure d⊥

(dX )(P, L) = inf
{
d⊥

X ( p̄, l̄)| p̄ ∈ P, l̄ ∈ L
}
, where d⊥

X ( p̄, l̄) denotes the

orthogonal distance between Cartesian points and lines p̄, l̄. In order to integrate this
measure in ATG, it is necessary to investigate if it works in concert with the definition
of truthlikeness of the possible equality predicate in the sense that, together, they allow
for a modification of classical geometric axioms such that a model of the modified
axioms exists that complies with the properties of the intended interpretation.
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6.4.4 Step 4: Fuzzification

In the fourth step of the Granular Geometry Framework, the truthlikeness measure
derived in step 3 is used to fuzzify the classical axioms (E1)–(E3) and (Pr1)–
(Pr5). As a first step towards an approximate tolerance geometry, Wilke [73] did
this exemplarily for the equality axioms (E1)–(E3) and for Euclid’s First Postulate,
(Pr1) and (Pr2).

Step 4a: Truthlikeness of the Classical Axioms

Geometric axioms are compound geometric statements: they are composed of atomic
formulas, connectives and quantifiers. In the present work, atomic formulas are state-
ments that involve one of the predicates geometric equality E, incidence I, and in
ATG, these are interpreted by the fuzzy relations approximate equality with tolerance
e(dX ), approximate incidence with tolerance i(dX ), respectively. A truth-functional
fuzzy logical system provides fuzzy interpretations of connectives and quantifiers,
and since Łukasiewicz fuzzy predicate logic (L∀) is truthfunctional, it can be used
to evaluate the truthlikeness degree of the classical axioms (E1)–(E3) and (Pr1)–
(Pr2) from the truthlikeness degrees of the involved atoms. Attaching the derived
truthlikeness degrees to the classical axioms results in a fuzzy set of axioms, and
the truthlikeness degree of an axiom indicates its degree of membership to granular
geometry. Wilke [73, 74] shows that in the intended interpretation of ATG and with
the definition of truthlikeness given in the foregoing subsection, the axioms (E1),
(E2) and (Pr1) have a truthlikeness degree of 1, while the transitivity axiom (E3)
and the “uniqueness axiom” (Pr2) have a truthlikeness of zero, i.e., they are useless
for geometric reasoning with position granules. The subsequent paragraph lists the
resulting fuzzy set of axioms in F Lev(Ł∀) that includes the “useless” fuzzy axioms,
and the remainder of the subsection discusses fuzzy extensions of the two axioms
that yield a positive truthlikeness degree.

Step 4b: Fuzzification of the Classical Axioms

Attaching the derived truthlikeness degrees to the axioms (E1), (E2), (E3), (Pr1)
and (Pr2) yields the following fuzzy set of axioms in F Lev(Ł∀):
(E1)ev

(
∀x. [E(x,x)]; 1

)
,

(E2)ev

(
∀x,y. [E(x,y) → E(y,x)]; 1

)
,

(E3)ev

(
∀x,y,z. [E(x,y) & E(y,z) → E(x,z)]; 0

)
,

and
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(Pr1)ev

(
∀p,q.∃l. [¬E(p,q) → I(p,l) & I(q,l)]; 1

)
,

(Pr2)ev

(
∀p,q,l,m.

[
¬E(p,q) & I(p,l) & I(q,l) &

I(p,m) & I(q,m) → E(l,m)
]
; 0

)
,

respectively. Here, we write a fuzzy axiom in the form (ϕ; a), where ϕ is a classi-
cal axiom and a is its truthlikeness degree [41]. Since the classical axioms (E3) and
(Pr2) have a truthlikeness degree of zero, the corresponding evaluated axioms (E3)ev

and (Pr2)ev are useless for geometric reasoning in granular geometry. The follow-
ing subsection introduces fuzzy extensions of (E3) and (Pr2) that have a positive
truthlikeness degree.

Step 4c: A Consistent Extension of the Fuzzified Axioms

Following Gerla [20], Wilke [73, 74] shows that a truthlikeness degree of 1 can be
achieved for “weak transitivity”. Weak transitivity (E3x) extends the classical tran-
sitivity axiom (E3) with a unary exactness predicate X that is an inverse measure of
the size of position granules:

(E3x)ev

(
∀x,y,z. [E(x,y) & X(y) & E(y,z) → E(x,z)]; 1

)
.

The weak transitivity axiom is a fuzzy extension of the classical transitivity axiom,
i.e., in particular, it coincides with classical transitivity when only exact points and
lines are involved. In this case, X(y) = 1 for arbitrary y, and (E3x) ≡ (E3).

Wilke [73] also shows that a truthlikeness degree of 1 can be achieved for a “weak
uniqueness axiom”: We mentioned in Sect. 6.2.1 that the connection of two approx-
imate points P, Q by an approximate line L is not unique, and that, intuitively, the
“degree of uniqueness” depends on the size and distance of the involved granular
points P, Q, cf. Figs. 6.4 and 6.3. The weak uniqueness axiom (Pr2x) extends the
classical uniqueness axiom (Pr2) with a binary directionality predicate Dir(p,q)

that captures the influence of the size and extensive distance on of the involved
approximate points p and q on the uniqueness of L , and can be seen as a measure
of the directionality of the approximate connection:

(Pr2x)ev

(
∀p,q,l,m.

[
¬E(p,q) & Dir(p,q) & I(p,l) & I(q,l) &

I(p,m) & I(q,m) → E(l,m)
]
; 1

)
,

The weak uniqueness axiom is a fuzzy extension of the classical uniqueness axiom,
i.e., in particular, it coincides with the classical uniqueness axiom when only exact
points and lines are involved. In this case, two distinct points always define an exact
direction that is given by the unique connecting line. Here, Dir(p,q) = 1 for arbi-
trary distinct points p,q, and (Pr2x) ≡ (Pr2).
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In the remaining paragraphs of this section, we give definitions of the exactness
and directionality predicates, and briefly show how they can be derived from the
intended interpretation introduced in Sect. 6.4.2.
The Exactness Predicate

We first define a Boolean version of the exactness predicate as part of the intended
interpretation, and then discuss its fuzzy extension to define a corresponding truth-
likeness measure. The Boolean version of the exactness predicate X is intended to
single out the exact classical points and lines from the set of approximate points
and lines.

Definition 7 The intended interpretationof exactnessofPGsof the type approximate
point in a domain X is the set

xB : PX → {0, 1}, xB(P) = (|P| = 1) . (6.14)

Here, |P| denotes the cardinality of the set P . If xB(P) = 1, P is called exact.
Similarly, the intended interpretation of exactness of PGs of the type approximate
line in a domain X is the set

xB : LX → {0, 1}, xB(L) = (∣
∣L ′∣∣ = 1

)
. (6.15)

If xB(L) = 1, L is called exact.

The exactness predicate xB can be seen as an inverse bivalent size measure, xB =
1 − sB, where the size

sB(P) := max {Δ(p, q)|p, q ∈ P} (6.16)

of an approximate point P is measured based on the discrete metric Δ,

Δ(a, b) =
{
1 if a 
= b,

0 if a = b.
(6.17)

To measure the truthlikeness of the exactness of a granular point or line, we
quantify the similarity of the statement “X (P) = 1” (i.e., the statement “P is exact”)
to the truth. Points (or lines) that have non-zero positional tolerance are not exact.
In this case xB(P) = 0 holds. Since we represent positional tolerance by position
granules, the size (diameter) of a position granule P can be used to quantify “how
much” positional tolerance is involved: It measures the error made when assuming
that all points p ∈ P are equal. In terms of the exactness relation xB, the size of P
measures “how wrong” it is to assume that the statement xB(P) = 1 holds.

Definition 8 For an approximate point P ∈ PX , and an approximate line L ∈ LX ,
define the size of P and L , respectively, by
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s(dX )(P) := sup {dX ( p̄, q̄)| p̄, q̄ ∈ P} and (6.18)

s(dY )(L) := sup
{
dY (l̄ ′, m̄′)|l̄ ′, m̄′ ∈ L ′} . (6.19)

The size measures s(dX )(P) and s(dY )(L) quantify the semantic distance of the
assumptions

[dX ( p̄, q̄) = 0 ∀ p̄, q̄ ∈ P] , and
[
dY (l̄ ′, m̄′) = 0 ∀l̄ ′, m̄′ ∈ L ′] (6.20)

from the truth, respectively. Conversely, the truthlikeness degree of xB(P) is intended
to measure the similarity of the statement xB(P) = 1 to the truth. We define the
truthlikeness degree x(dX )(P) of xB(P) = 1 as an inverse size measure:

Definition 9 The fuzzy interpretations of the exactness predicate in ATG are given
by the fuzzy sets

x(dX ) : PX → [0, 1], x(dX )(P) := 1 − s(dX )(P), and (6.21)

x(dY ) : LY → [0, 1], x(dY )(L) := 1 − s(dY )(L), (6.22)

respectively. Here, dX and dY are a normalized metrics in X and Y . P and L are
called approximately exact to the degree x(dX )(P) and x(dY )(L), respectively.

Approximate exactness x(dX ) is a fuzzy extension of exactness xB: The fuzzy set
x(dX ) : PX → [0, 1] is an extension of the classical set xB : PX → {0, 1}, because
both coincide at the value 1:

x(dX )(P) = 1 ⇔ s(dX )(P) = 0 ⇔ |P| = 1 ⇔ xB(P) = 1. (6.23)

This holds analogously for the second object sort, approximate lines: The fuzzy set
x(dY ) : LX → [0, 1] is an extension of the classical set xB : LX → {0, 1}. because
x(dY )(L) = 1 ⇔ xB(L) = 1 holds for all L ∈ LX .
The Directionality Predicate

In classical projective geometry, the join of two distinct points is the unique line that
is incident with them. Inspired by the classical terminology, we give the following
definition of an approximate join:

Definition 10 Let P, Q ∈ PX be two approximate points in (X, dX ). An approxi-
mate line L ∈ LX that is approximately incident with both, P and Q, is called an
approximate join of P and Q.

In the intended interpretation,wemay define a pencil of approximate joins as follows:

Definition 11 The pencil of approximate lines through two approximate points
P, Q ∈ PX is the set of approximate joins of P and Q,

P � Q := {L ∈ LX |P, Q ⊂ L} . (6.24)
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For short, we call P � Q the pencil of approximate joins of P and Q. We call

S(dX ′ )(P � Q) := s(d(dX ′ ))(P � Q) = sup
{
d(dX ′ )(L , M)|L , M ∈ P � Q

} ∈ [0, 1]
(6.25)

the extensive size of (P � Q) ⊆ LX , and we call

X(dX )(P � Q) := 1 − S(dX )(P � Q) ∈ [0, 1] (6.26)

the extensive approximate exactness degree of P � Q.

Wementioned inSect. 6.2.1 that the connectionof twoapproximate points P, Q by
an approximate line L is not unique, and that, intuitively, the “degree of uniqueness”
depends on the size and distance of the involved granular points P, Q, cf. Figs. 6.4
and 6.3. This intuition is formalized by the uniqueness axiom

(Pr2)∀p,q,l,m. [¬E(p,q)&I(p,l)&I(q,l)&I(p,m)&I(q,m) → E(l,m)].

This can be seen as follows: According to the Granular Geometry Framework, we
determine the truthlikeness degree of (Pr2) by determining its valuewhen interpreted
in F Lev(Ł∀). Following Gerla, Wilke [73] shows that the interpretation of (Pr2) in
F Lev(Ł∀) is equivalent with

inf
P,Q∈PX

[
d(dX )(P, Q) ⇒ X(dx )(P � Q)

]
, (6.27)

where [
d(dX )(P, Q) ⇒ X(dx )(P � Q)

]
(6.28)

is the extension of the formula

∀l,m.
[
¬E(p,q) ∧ I(p,l) ∧ I(q,l)∧ (6.29)

I(p,m) ∧ I(q,m) → E(l,m)
]
. (6.30)

Equation (6.28) measures the truthlikeness of the assumption “Whenever the exten-
sive distance of P and Q is large, the extensive exactness of P � Q is also large”.
Loosely formulated we may say that it measures the truthlikeness of the assump-
tion “The larger the distance, the closer is the approximate join to being unique”.
We call (6.28) the directionality degree of P and Q, and define the corresponding
directionality measure and directionality predicate as follows:

Definition 12 For e(dX ) : PX × PX → [0, 1] and i:ΔPX × LX → {0, 1}, the
directionality measure induced by e(dX ) and iΔ is the fuzzy relation dir : PX ×PX →
[0, 1],

dir(P, Q) :=
[
d(dX )(P, Q) ⇒ X(dX )(P � Q)

]
∈ [0, 1] (6.31)
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We call dir(P, Q) the directionality degree of the pair P, Q ∈ PX w.r.t. e(dX ), iΔ.
The directionality measure dir is the extension of the directionality predicate

Dir(p,q) :≡ ∀l,m.
[
¬E(p,q) ∧ I(p,l) ∧ I(q,l)∧

I(p,m) ∧ I(q,m) → E(l,m)
]
.

(6.32)The Extended Axioms

Wilke [73, 74] shows that the following extensions (E3x) and (Pr2x) of the transi-
tivity and uniqueness axioms have a truthlikeness degree of 1. The resulting set of
axioms in FŁev is the following crisp axiom set:

(E1)ev

(
∀x. [E(x,x)]; 1

)
,

(E2)ev

(
∀x,y. [E(x,y) → E(y,x)]; 1

)
,

(E3x)ev

(
∀x,y,z. [E(x,y) & X(y) & E(y,z) → E(x,z)]; 1

)
,

and

(Pr1)ev

(
∀p,q.∃l. [¬E(p,q) → I(p,l) & I(q,l)]; 1

)
,

(Pr2x)ev

(
∀p,q,l,m.

[
¬E(p,q) & Dir(p,q) & I(p,l) & I(q,l) &

I(p,m) & I(q,m) → E(l,m)
]
; 1

)
,

Consequently, the above axiom set fulfills all requirements of the Granular Geometry
Framework.

6.5 Granular Geometries and Zadeh’s Restriction-Centered
Theory of Truth and Meaning

In 2011, L. Zadeh [82] introduced the concept of a Z-number as a pair (A, B), where
“the first component, A, is a restriction (constraint) on the values which a real-valued
uncertain variable, X, is allowed to take. The second component, B, is a measure of
reliability (certainty) of the first component.” [82, p. 2923]. A position granule in
the sense of the Granular Geometry Framework can be seen as a precisiation of a
positional restriction in the sense of Zadeh’s restriction-centered theory of truth and
meaning (RCT) [81, 83]:Here, Zadeh defines a restriction (orgeneralized constraint)
in its canonical form by R(X) : X isr A, where X is the restricted variable and A
is the restricting relation, both typically expressed in natural language. r specifies
the way in which A restricts X (the modality of R). Modalities are, for example,
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r = blank for possibilistic restriction, or r = p for probabilistic restrictions. For
r = blank, R(X) can be written as Poss(X = x) = μA(x).

In Approximate Tolerance Geometry, an approximate point P is a possibilistic
restriction of the position of an exact point p. It can be written as R(X) : X is P ,
or, more specifically, Poss(X = p) = μP (p), where μP is given by the possibility
distribution (6.1). To compute the degree to which X satisfies R, it is necessary
provide a precisiation. In ATG, the restriction is unprecisiated, if P is given in natural
language, e.g. P = “Piccadilly Circus”. It is precisiated, if it is given as a subset of
a metric space.

The intended interpretations of many of the fuzzy geometric statements (ϕ; a) in
ATG are Z-numbers (φ, a), where φ is the intended interpretation of the classical
formula ϕ. To see that, observe that a position granule P ∈ PX is a restriction of a
(possibilistic) uncertain variable p ∈ X . The intended interpretation φ of a statement
ϕ that includes p is in many cases also a restriction of the corresponding domain. As
an example consider the statementϕ ≡ (p = q). Its intended interpretationφ in ATG
is eB(P, Q) = 1 (“P and Q are possibly equal”). Since P and Q are restrictions of
assumed “true” points p, q ∈ X , respectively, the relation eB(P, Q) = 1 can be seen
as a restriction of the uncertain variable (p, q) ∈ X × X in the sense of RCT. Here,
p and q are the assumed “true” exact points associated with the position granules
P and Q, respectively. Deviating from Zadeh’s definition of a Z-number, (p, q) is
not real-valued, and φ is not a fuzzy number, but, more generally, a fuzzy relation
in X × X .12 The second component, a, is the truthlikeness degree associated with
ϕ. It is a fuzzy number that measures the reliability (certainty) of the information
provided by φ.

Zadeh [82] also proposes a generic schema for the computation with Z-numbers.
Zadeh’s schema applies on a semantic level, operating on the interpretations of state-
ments and is based on the extension principle. In ATG, the use of fuzzy logic with
evaluated syntax allows for the “trick” of evaluating the syntax: Calculations can
be done on the syntactic level of logical propositions, while the evaluation compo-
nent is derived from the “intended” possibilistic interpretation. It thereby allows for
metamathematical considerations such as the possibility to guarantee soundness of
a theory of granular geometry.

12More specifically, φ is a crisp relation. Yet, in principle, the Granular Geometry Framework can
be extended to consider not only crisp position granules P , but also fuzzy position granules. In the
GIS community, fuzzy position granules are discussed under the name “vague regions”, cf., e.g.
[10].



6 Granular Geometry 109

6.6 Conclusions and Outlook

6.6.1 Summary

The introduction of the Granular Geometry Framework is motivated by the intention
to provide a geometric calculus for granular geometry that is sound. I.e., geometric
reasoningwith position granules should be reliable, even if the introduced uncertainty
is very big. For a given modality of uncertainty and a given classical axiomatiza-
tion of geometry, the framework provides a guideline for fuzzifying the classical
axioms so that the result is a sound logical theory of granular geometry. Soundness
is achieved by augmenting every classical geometric axiom with a degree of reli-
ability (truthlikeness), resulting in a fuzzy set of classical axioms. The reliability
degree is derived from the intended interpretation (intended semantic) of granular
geometry and incorporated in the logical theory as part of the syntax as a fuzzy mem-
bership degree. As a result, any classical geometric theory that is fuzzified based on
the Granular Geometry Framework is sound by design. The underlying formal tool
for representing and propagating reliability as an intrinsic part of the logical theory
is Łukasiewicz Fuzzy Logic with Evaluated Syntax F Lev(Ł∀), which is used as a
similarity logic.

Approximate Tolerance Geometry is a possibilistic instantiation of the Granu-
lar Geometry Framework. We introduced its intended interpretation, derived cor-
responding truthlikeness (i.e., reliability) measures, and applied them to two fun-
damental geometric axioms groups, namely the equality axioms and Euclid’s First
Postulate. Research [73, 74] shows that some of the fuzzified axioms have a relia-
bility degree of zero, and that a reliable fuzzy extension exists that is consistent with
the classical axioms and that even has a reliability degree of 1.

6.6.2 Limitations

In her thesis, Wilke [73] elaborates the interpretation of Approximate Tolerance
Geometry introduced in Sect. 6.4.2 for the specific case of the real projective plane
X = P

2. Her research shows that, in the projective interpretation, the extended
uniqueness axiom is always trivially fulfilled, which effectively renders it useless in
practical application. She shows that the approximate join P � Q of two approximate
points always has a directionality degree of zero, meaning that P and Q, in the
worst case, do not constrain the direction of a connecting approximate line at all, cf.
Fig. 6.11. The reason for this is that approximate lines are allowed to be “arbitrarily
broad”.

With the benefit of the hindsight, this result is not surprising: A theory of granular-
ity is concerned with relating and propagating size restrictionsand if no size restric-
tions are imposed on some of the objects, results can be arbitrary. In the proposed
fuzzy extension of the equality axiom and Euclid’s First Postulate, we introduced
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Fig. 6.11 P and Q behave
like one single point w.r.t. L .
[76]

size restrictions for some of the involved objects, but not for all of them: In the
case of the transitivity axiom (E3x)ev, we restricted (parametrized) the size of the
middle element y using the exactness predicate, while the sizes of the other two
elements, x and z, are arbitrary (cf. Sect. 6.4.4). Here, the sizes of x, z do not impact
the truthlikeness degree, which is why it is not necessary to restrict them. This is
different in the case of the “uniqueness axiom” (Pr2x)ev: Here, we did not relate
the sizes of the involved approximate points and lines to each other, resulting in an
arbitrary statement. The following subsection addresses—amongst other topics—
possible approaches to avoinding the problem by including further size restrictions.

6.6.3 Further Work

Introducing Size Restrictions

To address the problem ofmissing size restrictions in ATG, the fuzzified “uniqueness
axiom” need to be further extended by also adding exacness predicates for the lines.
Wilke [73] also mentiones the presumably simpler solution of introducing global
size restriction parameters, i.e., upper and lower bounds on the maximal allowable
size of approximate points and lines that can be chosen according to the specific prac-
tical application scenario. Its incorporation in ATG, and in the Granular Geometry
Framework in general, is subject to future work.

It is expected that the necessity of introducing size restrictions not only applies to
ATG, but to granular geometries in general. A test should be added to the Granular
Geometry Framework that checks, if an axiom is trivially fulfilled.

Elaborating ATG

In her PhD research, Wilke [73] applied the Granular Geometry Framework to the
equality axioms and to Euclid’s First Postulate. To define a full-fledged Approximate
Tolerance Geometry of the projective plane, the remaining axioms (Pr3)–(Pr5) need
to be fuzzified as well.

She also simplified the definition of the truthlikeness measure for approximate
incidence, cf. Definition 6. The goal was to facilitate the formalization task: Instead
of employing the overlap relation, she used the binary subset relation to define the
truthlikeness degree of incidence of an approximate point with an approximate line.
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The formalizations devised in her work should be extended to the overlap relation.
It can be expected that this step will add considerable complexity to the formalism.

In order to be able to use approximate tolerance geometry for geometric construc-
tions, e.g. in a geographic information system, it is a precondition that approximate
versions of the geometric operators (constructors) join and meet are available. These
are not yet defined in Approximate Tolerance Geometry. The reason for that is that
the approximate join is not unique in general. As a consequence, an approximate
version of the classical join operator is not definable. Instead, only the unique pencil
of approximate joins can be assigned to a pair of approximate points. This seems not
to be useful in practical application. Wilke suggests to instead use a choice function.
Such a function must be defined in the interpretation domain.

Another interesting direction of future work is the elaboration of fuzzy projective
notions in ATG, such as approximate direction, approximate angle, or approximate
duality. Wilke [73] discusses first considerations in this directions in her thesis.

Finally, the intended interpretation of ATG may be further extended: While the
proposed definition of approximate points and lines interprets them by crisp regions,
fuzzy regions may be of interest as well. Here as well, it may be expected that
considerable complexity will be added to the formalism with this step.

Including Other Modalities of Uncertainty

The Granular Geometry Framework allows for choosing the modality of uncertainty
of position granules. In ATG, the intended interpretation of position granules is
based on the assumption that location constraints describe possibilistic uncertainty.
The Granular Geometry Framework may be applied to other kinds of imperfections
in positional information. For example, verity distributions can also be modeled by
location constraints. Their interpretation is not possibilistic, but veristic, cf. [81]:
Instead of interpreting a location constraint as a set of possible positions of an exact
point, it is interpreted as a set of points that are occupied at the same time. Examples
are parcels or the footprints of buildings, cf. [72].

Considering Other Gemometries

The Granular Geometry Framework also allows for choosing the classical geometry
and its axiomatization. In ATG, we referred to a standard axiomatization of the pro-
jective plane. This is sensible for applications inGIS, but formany other applications,
e.g., Euclidean geometry is preferable, and the elaboration of a granular Euclidean
geometry is desirable.
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Chapter 7
Inquiry About the Origin and Abundance
of Vague Language: An Issue for the Future

Alejandro Sobrino

Abstract The origin of language has entered the current concern of the study of
language as a topic of great interest and debate. Although vagueness is one of the
most common features of common language, there are few references to about its
roots. From a modern point of view, the main property characterizing human lan-
guage is the ability to generate infinite sentences using recursion. Current linguistics
emphasizes the role of the recursion in the consolidation of human language, under-
scoring center-embedded or coordinated sentences as the top of complexity in the
generation process. But pragmatics, not only syntax, seems to play a relevant role
in everyday language. Vague language, as previously said, is almost ubiquitous and
present inmany of the words we utter.We can hardly imagine a communication with-
out using vague words. Thus, they are constitutive of human language as structural
properties do. To inquire about how these words may have arisen in the language
evolution and why they are so abundant seems to be an interesting challenge. Gossip
is a kind of social communication that uses narratives to generally refer the rules
that guide our behavior in the complexities of the social and cultural life. Gossip is
related to vagueness as there is unthinkable gossiping using only precise meanings.
Using expressions not completely defined, nonsense terms, generalities and vague
language are common in gossiping. In this work we will show that many functions
attributed to vague lexicon matches with many roles characteristics of gossiping.
Thus, gossip seems to be a promising place to inquire the origins and abundance of
vague language.
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7.1 Introduction: Vagueness in Syntax, Semantics
and Pragmatics

From a philosophical point of view, the North American linguist Ch. Morris settled
the study of language in three areas: syntax, semantic and pragmatics. In all of them
can be traced the importance and interest to consider different aspects of vagueness,
as a pervasive characteristic of natural language.

Vagueness has a double presence in syntax: as an attribute linked to undecidability
and as a property of some grammatical categories that overlaps between them.

From modern linguistic (cf. [17]), recursion is a critical aspect of the language
order and productivity. Recursion facilitates generating infinite sentences from a
discrete set of symbols or alphabet, making language creative in essence. The dis-
crete infinitude offers a demarcation criterion that distinguishes human language
from animal communication systems. Natural languages are not recursive, but recur-
sively enumerable, because exist a grammar to diagnose grammatical sentences, but
not an effective procedure to prove ungrammatically ones. A sentence can fail to
be grammatical due to its malformation or because it has not been fully formed.
Because natural language is recursively enumerable, it leaves a loophole to vague-
ness. Adopting the computational theory of mind, Changizi [8], approached vague
sentences as those for which human beings have no criterion to decide their truth or
falsity; thus, they are neither true nor false. If an element is a borderline case of a
vague property (as tall, round, truth, …), we have no way to ensure if the element
holds or not under the extension of that property; there is no an algorithm to decide
whether or not it has the property: it is an undecidable case.

Vagueness also holds in syntax due to the existence of grammatical categories that
presents borderline cases. Grammar books recognize eight parts of speech, nouns
and verbs regarded as primary. Bolinger [4], spoke about the gradience in grammar to
highlight that linguistic does not pay attention, until then, to fringe cases. Chomsky
[9], himself noted the convenience to attribute a degree of grammaticalness other
than 0 or 1 to deviant sentences from the well-formed set of phrases generated by
a generative grammar. The ideal hearer-speaker of a language is fully grammatical
producing his/her sentences, but the acceptability of language requires gradedness.
In this vein, Ross [30], argued that nouns, for example, falls into a hierarchy of
nounniness, as the parsing shows that some nouns are ‘nounier’ that others. There are
prototypical models of grammar categories, but also deviances from the dichotomy
grammatical/ungrammatical that are better represented using degrees. In so far as
grammar shows borderline cases, it is fuzzy.

Semantic deals with the meaning of the words or sentences. Traditionally, seman-
tic relates linguistic symbols with the real or ideal entities they refer. Semantic places
the language in the framework of communication, aiming to get a representation of
the transmitted idea as close as of that the transmitter had in his mind. Meaning is
frequently related with our perceptual capabilities and memory. We not only mean
what we wont, but what we can. Vagueness emerges in this border. As our senses
are limited, we need to use vague words in order to not commit too much with
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our assertions, to be respectful with our partners in the communication process.
Vagueness is related to prudence in expression. Attending this property, semantics
goes towards pragmatics.

Pragmatics is the use of context in order to make the message adequate and
useful. In this task, vague language is an inescapable tool for communication due
to, at least, two factors: (a) Vague language makes communication easier and fluid.
Try to communicate in ordinary life using only precise language and see that it is
impossible. (b) Vague language has proved useful in situations where, still having
poor data, we need tomake reasonable decisions using them.Vague language permits
to manage incomplete sets of data with high efficacy. Decision-making theory offers
abundant examples of rational choices based on poor data, endorsing the success of
vague language in ordinary communication.

D. Everett [16], recently introduced a relevant factor characterizing human lan-
guage from a pragmatic or cultural perspective. In his view, prior to communication is
socialization or how we best interact with each other, back at the time of the child’s
interplay with the mother in the placenta. Socialization is also a key point in the
Calvin and Bickerton’s [5], approach to the origin of language. Even if in the emer-
gence of the first language (protolanguage) had priority food and reproduction over
socialization, the tribe is required if language is developed in its fullest. Education is
the key element in the socialization. Protolanguage included perhaps verbs, denoting
actions, and names, designating the subjects and objects of the actions. No trace of
adjectives, quantifiers or other lexicon involvedwith vagueness.Nevertheless in order
to clarify the situations related to survival scenarios, the use of vague vocabulary was
perhaps paradoxically decisive. To defend against a predator maybe it was relevant
to determine if there were many or few opponents in the environment, ‘many’ and
‘few’ vague quantifiers; to achieve food it was perhaps decisive to define if a berry is
a little or almost nothing poisonous, ‘a little’ and ‘almost nothing’ semantic hedges,
etc. Getting a map of the social relationships between human beings and between
them and the environment was relevant to understand the evolution. Hearing about
the adventures and misadventures of others qualify us to know the essential rules of
our culture, including morals, traditions or laws, forwarding us to face them. Gossip
is a linguistic practice that helps us in that task.

Pragmatics involved in socialization is relevant in our life, but behavior left as
sediment structural patterns, such as reversibility in language, denoted for example
through the word ‘reciprocally’. ‘Reciprocally’ does not denote something specific;
an object or a being. It denotes an action referring the own language. In ‘Mary loves
John and reciprocally’, ‘reciprocally’ authorize us to reverse the order of subject
and object in the alluded sentence. Calvin and Bickerton [5] emphasized syntax as a
kind of scheme distilled from sentences denoting relevant practices in evolution. For
example, reversible schemas, as symmetry, perhaps came from reversible practices,
as delousing.

Dunbar [12], stressed the relationship between socialization and grooming and
their relevance in the origin of language. Social grooming used by apes serves to bond
and reinforce social structures, sharing that custom in their communities. In order to
be effective and prevent diseases, a grooming activity as delousing should be practice
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in both directions: Iwill remove the louses to you and you, in correspondence, remove
the louses to me. Cooperation as a means to acquire abstract patterns of behavior,
finally reflected in the language by words as ‘reciprocally’ is, as aforementioned,
a key factor in the development of the language syntax. But socialization involves
behaviors that are not only immediately useful and readily visible. Human beings are
defined by its ascription to a species, but also to a culture. Culture is often referred as
an integrated pattern of human knowledge, belief, and behavior involving symbolic
thought and social learning. Human beings need nature as much as nurture to live
and nurture is mainly related to pragmatics, not to syntax.

A cultural event that has been given increasing importance in the development
of the human species is that of gossip, the linguistic evolution of grooming. Gossip
encourages talking extensively about personal or social topics, without few restric-
tions on the lexicon employed. To use gossip means to prioritize socialization or
communication over representation, as Dan Everett pointed out regarding the origin
of language. Emler [15], said that about 80% of conversation time involved gossip.
Our thesis is that in the origin of language, vague words played a relevant role favor-
ing socialization through a possibly deficient but easy communication, encouraging
the exchange of messages even if they did not have crisp meanings at hand. If precise
words were required in the past to communicate, probably today we would have
neither culture nor specie. To develop language gossip is needed and to fully develop
gossip, vague language is demanded. Gossip is the oral correlate of the observational
learning, allowing us to quickly gain information about our neighbors and contribut-
ing to cement our social links. As observational learning is always improvable if
we have more and better observational instruments, vague language always tolerates
precisification. But accuracy will always admits more precision, becoming futile any
aimed ultimate precision.

Vague language is at the base of our community life, the engine of our communi-
cations and socialization. Vagueness shows its utility and function in the optimization
of elections involving poor data, general contexts or ill-defined scenarios, common
facts in our daily life. Vague words are widely used by humans in their conversa-
tional practices, helping to communicate our emotions, feelings or thoughts even if
we have not an absolute or certain knowledge of what we mean; thus, vagueness
prevents paralysis or silence. As the usefulness of gossip and vague language are
closely related, we conjecture that gossip perhaps allows us to inquiry in the origin
of the vague language.

In order to approach this conjecture, the paper will attend the following plan: In
point 2 we will show that vagueness is present in both empirical language and formal
language. In empirical language vagueness is related with observation or memory.
Because memory and observation are common cognitive skills, perhaps vagueness is
so abundant in natural language. In formal language, vagueness is linked with recur-
sion. In point 3 we will describe some distinctive aspects of vagueness from related
phenomena, as ambiguity or generality and the lexicon generally associated with
vagueness are presented. In point 4 we will show gossip as a way to extensively use
the language with the purpose of communication and socialization, including vague-
ness as a form of sociability. The use of a vague word carries an incomplete meaning
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that must be filled by another participant in the dialogue, fostering collaboration and
negotiation rather than imposition. In point 5 the functions of vague language are
highlighted and the vagueness as a linguistic device aiding to take good decisions
in poor communicative scenarios is addressed. Finally, we conclude that gossip and
vagueness show relations in so far as their functions match at a good extent. The con-
jecture that gossip can explain the origin and abundance of vague words in natural
language is defended. Acknowledgements and references will complete the work.

Inquiry about the origin of vague language is an attractive task to deepening
in the essentials of this feature of human language. Addressing the role and func-
tion of vagueness in human conversation perhaps help us to better understand this
phenomenon.

7.2 The Pervasiveness of Vagueness: Vagueness
in both an Empirical and a Formal Discourse

In an empirical frame, vagueness is related with observational predicates and with
the limits of the human memory. In a formal setting, Changizi [8], related vagueness
with undecidability, embracing the double hypothesis that human mind operates as
a computer and that the meaning of the sentences produced by our mind can be
delimited by an effective procedure that is not recursive, but recursive enumerable.

It is a common place to say that observational predicates are vague predicates
(Cf. M. Dummet [13]). Color terms are a typical example of observational terms.
Although it is possible to know with absolute precision the wavelength of a given
color, we can still have serious doubts about naming it with a word or another (for
example, with ‘red’ or ‘vermillion’ in English language). Berlin and Kay [2], put
forwarded some conditional universals of color after studying 98 languages. The
generalization they come is as follows: If a language has two terms of color, it
discriminates between ‘black’ and ‘white’. If the same language has another term
of color, then it names the ‘red’ color. If a language has four terms of color, them
it has one term for ‘green’ or for ‘yellow’, but not for both, ..., and so on. Moral:
although the color characterization in terms of the wavelength is unique, it can vary
for different people or cultures and still for people sharing a culture. Colors are
culture-dependent: and object -the sun- is named ‘yellow’ in English but ‘okora’ in
Mbembe, a Nigeria language, denoting okora ‘red’, ‘orange’ and ‘yelow’ in English.
Then, there is an overlap between different color denominations attending different
cultures. Moreover, color transitions are fuzzy into the same culture. An English
speaker distinguishes black and white color, but perhaps, in some situations, as poor
lighting, he/she has no way to difference a dark gray from a black jersey. In sum and
as Lakoff [19, p. 29] pointed out: ‘colors categorization makes use of human biology,
but color categories are more than merely a consequence of the nature plus human
biology plus a cognitive mechanisms. They have some of the characteristics of fuzzy
set theory plus a culture-specific choice of which basic color categories they are.’
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In his investigations about Piraha, D. Everett emphasized the cultural source of
the observational predicates. He reported as Piraha language has only four words
for naming colors. Those words matches the corresponding Berlin & Kay’s condi-
tional universals, although Everett stressed that using theword ‘red’, Piraha language
denotes something that requires a kind of description, as ‘It is like blood’. This fact
leads Everett to conclude that Piraha has not exactly words for color, but sentences
including the description of a prototype of the named color. Everett [16, p. 259] said
that the moral is that it is possible to classify objects in the world without using
words. But descriptions may be so lax: Having only four names for colors, Piraha
people perhaps describes ‘brown’ as ‘like a liana’. But ‘like a liana’ can refer to color
but also to strength. In this sense, categorization becomes both an ambiguous and a
fuzzy job.

Vagueness involved in observational predicates provokes sorites-like paradoxes.
The popularization of the Sorites paradox often uses words as ‘bald’ or ‘heap’,
both observational predicates; in fact, Sorites paradox is frequently named ‘the bald
paradox’ or ‘the heap paradox’. Although vague predicates are closely related with
everyday language, Parikh [26], noted that they are also relevant in the scientific
practice in so far as observation is a main part of the scientific method. In order
to deal with observational predicates in science, Parikh analyzed the continuity of
the observational predicates introducing the concept of ‘?-connected’ and ‘connected
metrical space’. Ametric space isα-connected if it cannot be divided into two disjoint
subsets A, B (A, B �= ∅), such that, for two arbitrary elements x ∈ A, y ∈ B, the
distance d(x, y) > α, α denoting a real number. A connected metric space satisfies
the previous condition for any α.

Observation can be practiced with our senses or helping us with a measuring
instrument. If observation is made with our senses (vision), we can say for example,
that the length of a pen is high, very high or perhaps, that it measures approximately
15cm. Any effort to measure more precisely using our vision it is doomed to failure.
Perhaps all we can adjust the previous measure is tuning it saying that the length of
the pen is 15cmmore than 20cm, becausewe feel that the top of the pen is closer to 15
than to 20 in an imaginarymeasuring tape. In the case that the observational predicates
depend on our senses, it is pointless trying to refine the measure, but if we have a
measure instrument, it does. Human senses may be perfected with measurements
instruments. Telescope or microscope is an example of tool that allows us to see in
detail absent realities hitherto. In the aforementioned case, we can employ a tape
that measures in mm to better adjust the measure. A tape measure discriminating
mm makes precise what was vague before showing that the new true measure is, for
example, 155mm.

It seems that with measurement instruments, vagueness has no place. But the
‘α-connected’ property changes that view. If the α is posed in cm. perhaps the tape
measure is sufficient to specify the length, but if the α is posed now in mm, the
old tape doesn’t work because the measure can falls into a range that the cm. are
incapable of discriminate. In order to avoid this, a new tape that discriminates mm.
should be provided. But the same reasoning as we did before for centimeters, can be
done now for millimeters. The moral we can draw is: in a connected metric space is
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not possible to define, one and for all and in a precise way, the exact denotation of the
observational predicates. Although in a practical setting, the refinement of a measure
usually ends at the moment in which is considered sufficiently accurate for a given
purpose, in theory we can always increase its precision more and more by choosing
a shrinking α; small and small threshold. As Parikh said: . . . this very exactness is a
defect. And this restriction applies not only to ordinary people using their eyes and
ears, but also to scientists using their instruments…What carpenters and physicists
do is inherently inexact [26, p. 246–248].

Observational predicates depending of our senses don’t admit an incremental
accuracy. Human senses if aided by measurement instruments can change a vague
predicate denoting an observation by a crisp predicate. But the precision is only
transitory, an illusion. If the matter demands more precision, marks that separates
a predicate and its negation will show an area that is fuzzy, opaque to recognition.
And this judge can be repeated again and again.

Vagueness is also related with memory. Human beings have limited senses and
memory is an example or such constraints. Consider the following scenario: we go
to a stadium and the speaker tell us the exact number of spectators. After a while,
perhaps we can only remember vaguely that there were many or a lot of people
in the stadium, ‘many’ or ‘a lot of’ vague quantifiers. Similarly, and in relation to
perception, if someone gets a lost object on a beach, he/she may be able to remind
the exact location of the find, but a few minutes later, perhaps he/she can only point
vaguely the connected area. Human memory and perception are quite limited and
seem to have an compelling tendency to the economy, the summarization and the
approximation to what it is said or seen, probably to make room to other things and
avoid a cognitive collapse.

In connection with memory and observation, vagueness has a relevant place in
natural language. But also has a room in formal language. Changizi [8], made a
pioneering study to accommodate vagueness in a formal language. He embraces the
computationalmetaphor ofmind advocating that humanmind operates as a computer.
From that hypothesis, he distinguishes decidable and semi-decidable computational
problems, even for human beings. If the semantics of natural language were decid-
able, an effective procedure would determine if the meaning ascribed to a word is or
is not the alleged one. But to appoint meanings is a semidecidable operation because
still providing full information about the concerned sentence, in many cases we can
have reasonably doubts whether to name (or not) with a word an event or action.
For example, knowing the exact member of hairs one person has, don’t afford us to
name him/her as ‘bold’ or ‘haired’ with absolute certainty. Perhaps to build a robot
that manages this essential uncertainty is a major challenge in Artificial Intelligence.
Up till now AI aspires to design artifacts that solve imprecision with precise math-
ematic, be discrete, probabilistic or fuzzy. But the imprecision can be tackled only
essentially if we manage it imprecisely; the opposite is to adjust (to regimentate)
vagueness adapting it to the model used in the representation. However, today is
really a chimera to know what a vague algorithm is.

Vagueness is a pervasive fact of natural language because to observe and to mem-
orize are very common activities of our life. If our daily hypothesis are mainly about
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what we observe and those hypothesis are supported, contravened, influenced or
backed by our memory, and observation and memorization are, as human activities,
imperfect techniques, the use of vague language is motivated. In the next point, we
will confirm the abundance of vague language.

7.3 Vagueness and Related Phenomena: The Vocabulary
of Vagueness

Vagueness is a ubiquitous feature of natural language. Opposite to the language of
science, ideally precise, natural language is mostly inaccurate, imperfect or vague.
If you transcribe a conversation, you may notice that vague words and incomplete
expressions are plentiful. If you read a novel, where the language is used in full,
vague expressions and vague words are the norm, while words denoting accurately
are the exception. It is a matter of fact that natural language includes extensively
vague words. We will show that in this section.

But previously, some digressions about the specificity of vagueness are required.
Usually vagueness is confused with ambiguity and generality. Although there are
some borderline properties overlapping these phenomena, it is possible to make
some key distinctions that separate one of the other. There are a lot of definitions of
a vague word. The Sainbury’s [32] one is brief, but substantial: the main feature of a
vague word is that it denotes boundaryless concepts; i.e., concepts without fringes,
without borders separating the objects that fall and not fall under the extension of
the concept. ‘Tall’ is a typical example of vague word.

Vagueness is distinguished from ambiguity. Ambiguity emerges both at the level
of words and at the level of sentences. At the level of words, ambiguity is related
with polysemy. A polysemic word has a definition including alternative meanings,
but one in each sense. Thus, the word ‘bench’ has two meanings: a kind of furniture
used to sit (I sat down on a park bench) or a kind of table (I’m sawing a table in the
work bench). In each sense, the reference is essentially crisp: we can distinguish in
a park an object that is a bench from another that it is not.

At the level of the sentences, ambiguity is related with phrases that have more
than one interpretation. The phrase “I saw the man with the binoculars” admits two
interpretations: Binoculars are mine or I saw a man looking through his binoculars.
Both sentences have different meanings, but in each interpretation, the meaning is
essentially crisp. Thus, we can say that a word or a phrase is ambiguous if there
are several contexts that can be unmistakably chosen to specify the meaning of
the sentence or word. In this vein, if a word is vague, contexts can help to bring the
margins near, but not to definitively demarcate them. This is a key difference between
vagueness and ambiguity.

Vagueness is also different from generality. A term is general if it refers loosely.
Thus, the word ‘fish’ is used with generality if we are demanding information of a
kind of fish; for example a sardine. The word ‘herd’ is general if we need to know
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the exact number of ‘heads’ for a commercial transaction. A general term is a word
not specified enough, but they could be completely defined if more information is
requested and available. This does not happen with a vague word. ‘Tall’ remains a
vague word even knowing the exact measure of the height of a person (170cm); even
approximating the measure as much as we want (1705mm). That is the difference
with generality.

Still a final differentiation should be quoted. Since the emergence of the fuzzy
logic, it is usual to differentiate vagueness from fuzziness. E. Trillas [35, p. 12],
advocates that fuzziness is vagueness accepting to be represented or modeled by
fuzzy logic. Ungerer and Smidt [36], posited another distinction between vagueness
and fuzziness, referring vagueness to entities or objects and fuzziness to properties.
Vagueness is used to denote the boundaryless between one entity and another, both
of which are parts of the same whole. For example at the Himalayas is vague where
ends Mount Everest and begins Mount Lhotse. Mount Everest and Mount Lhotse
are vague entities. Fuzziness however applies to the boundary between one category
and another. The boundaries between the Mount Everest and the Silence Valley are
ill-defined and consequently, fuzzy. Although conceptually flashy, I guess that the
previous distinction has not main implications in the differentiation of vagueness
from other related phenomena.

Vagueness is a property of natural language with its own peculiarities and it
deserves to be pursued. Vagueness, involved in words or expressions, is present in
most discourses, whether academic or informal. Opposed to precision, typical of
numbers or words denoting numerical characteristics, common words are vague and
are traditionally associated to a negative valuation. As Zadeh [33, p. 5], pointed out
“there is a very deep-seated tradition according much more respect to numbers than
to words…Numbers are respected, words are not ... (but) when true numbers are not
known or are too costly to obtain ... words are good enough”. Vague words facilitate
communication and cooperation between human beings. The task to exchange a lot
of messages everyday is not conceivable if vague words didn’t have an extensive
presence in the language. There are many words and expressions that count as vague
language in English. We will show some of them below.

There are some types of highly vague words in natural language. In a pioneer
investigation [11], advanced some general categories accommodating the vague lex-
icon: (a) placeholders, (thingummy, thingy); (b) summarizing lexical items (e.g., and
everything, and that); (c) vague generic terms and collective nouns (e.g., heaps,
bold), (d) approximate quantities (e.g. around five); (e) words with the suffix –ish
(e.g. boyish, fortyish).

AlthoughCrystal andDavy’s approachwas about language in general, the specific
study of Channell [7], about the vague lexicon matches, in a good extent, the afore-
mentioned classification. Semantic hedges, a term coined by Lakoff in [20], should
be added to that classification. Hedges are expressions that permit the speaker to cir-
cumvent categorical or straightforward assertions, avoiding unwanted commitments
in situations that are not clear enough or that we want to emphasize as very clear. It is
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not infrequently to approach hedges as a kind of approximator. Ruzaité [31], aimed
to summarize all of these contributions in the following classification:

1. Placeholders
2. General extenders
3. Approximators
4. Vague quantifiers.

Vague words are highly context-dependent and subordinated to the background of
the hearer. Categories showed above classify almost all prototypical vague words.
Next we will approach some of their representative properties.

7.3.1 Placeholders (whatsisname, thingy)

Channell [7, p. 164] defined placeholders as ‘dummy nouns which stand for item
names or for names of persons’. They are words referring to objects or people whose
names are irrelevant or unknown; words without meaning but serving some syntactic
function. They are used for several purposes, playing a relevant role in oral parlance:
using them, the speaker avoids be pretentious, ambitious or offensive with the hearer.

7.3.2 General Extenders (and son forth, something like that)

General extenders refer vaguely to a set or category. Channell [7] supported that
general extenders denote lexical gaps, as the lack of a label for an inexistent category
(e.g., the label for alive and death in the Schrödinger’s cat) or a superordinate category
covering subordinate ones (e.g. precipitation as a category level for rain, snow or
hail). General extenders as and something like that, or whatever, and so on are used
to share a background between speaker and hearer. Simpson [34] approached general
extenders in the frame of the academic discourse, concluding after an empirical study
that and so forth, and so on favors teachers discourse and something like that, things
like that are employed basically by pupils.

7.3.3 Approximators (approximately, more that, roughly)

Approximators are words that refer vaguely to quantities. Typical approximators are
almost, or less, at least, more than, defined by Jucker et al. [18], as either a lower
or a higher level for quantities. Channell [7, p. 42], defined an approximator as a
component of a sentence containing an exemplar number and usually a measure
noun, matching the following pattern:

Approximator (about) + Exemplar number (four) + Measure noun (trees)



7 Inquiry About the Origin and Abundance of Vague Language … 127

In some cases, approximators roughly can appear after an exemplar number and a
measure noun, as occurs in five weeks roughly. Excluding this exception, we can say,
following the above formula, that an approximator is a lexical category that precedes
a cardinal number to make it less specific. If applied to degree adjectives or adverbs,
approximators become Lakoff’s semantic hedges.

7.3.4 Vague Quantifiers (few, many, most)

Quantifiers, as Ruzaité [31, p. 41] said, are non-numerical expressions used for refer-
ring to quantities; they answer the question How-much? Channell [6, p. 115], put the
major utilities typical of vague quantities: (a) macrodiscourse constraints (structure,
genre, readability); (b) giving the right amount of information; (c) persuading the
reader; (d) lacking specific information (displacement); and (e) downgrading and
highlighting. Moxey and Sanford [23] advocate for the use of quantifiers as they
permits to easily remember situations difficult to recall if we use crisp numbers.
They conclude that a vague approach of a contextualized sentence is better than a
numerical representation of a decontextualized word.

Quantifiers can be negative or positive. Negative quantifiers,—little, few or
neither ... nor—, serve to emphasize the poverty or even the absence of information
in a field. They are referred also as ‘downtoners’, because they decrease the scalar
intensity of verbs and adjectives they accompany. Little and a bit are called minimiz-
ers, little being a negative and a bit a nonassertive one. Much or many are intensifiers
or amplifiers, playing a special role in topic generalizations.

Although not mentioned in the Ruzait’e’s classification, comparatives deserve a
special mention. Many philosophers and linguists consider comparatives as a clear
index of vagueness. Comparatives provide a test for checking whether a predicate
is inherently gradable or not. In effect, a vague predicate can be translated into
a conditional sentence in where comparatives play a major role: If P is a vague
predicate, X is P can be translated to X is P-er than (X is tall → X is taller than ...).
But comparatives can be used to precisificate vagueness. That happens if X is P-er
than is interpreted as:

(a) X exceeds the average of P;
(b) X beats the majority of the members of the set to which X belongs to.

Some researchers use the previous interpretation for turning vagueness into precision,
but the attempt is doomed to failure. In a connected metric space, it is not reasonable
to argue that we can discriminate perfectly in terms of a predicate and its classical
negation. If on the scale [1, 10] the average is 5, there is muchmore distance between
5.01 and 10 than between 4.99 and 5.01. Then, to say that 5.01 is true and 4.99 is false
poses many problems as pass or fail a student with those grades. To show tolerance
to degrees represent progress not only in human behavior, but also in technology.
Setting a threshold as an absolute cut is a matter of convention rather than of reason.
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Lexical vagueness concerns both with semantic and pragmatics. As a question of
meaning, vague words denote loosely; as a question of use, vague words are context
and knowledge dependent. To end this paragraph we will explore another possible
place for linguistic vagueness: syntactic or structural vagueness.

Syntax and vagueness seem to be distant: syntax is governed by rules and vague-
ness, by uses in language games. It is possible to find a case of grammatical vague-
ness, even though linked to ambiguity, a structural feature of some sentences. Look
at this example: two names together (apple, pear) don’t involve vagueness. A name
attached to a vague adjective leads to a vague expression—vagueness is infectious—
(big, apple). But if we add a vague adjective to two nouns, then we reach both an
ambiguous and a vague sentence (big apple and pear).

The inability to decide the membership of an element to a given property perhaps
influences the bad reputation of vagueness. If vague language usually involves neg-
ative valuations, crisp language is normally associated to positive facets. In ordinary
language sentences beginning with ‘exactly’ are highly valued and sentences includ-
ing ‘loosely speaking’ are poor considered. But vague language is neither bad nor
good; it should be used rightly. If used appropriately, the relevant is not precision,
but clarity, as Popper [28], highlighted.

7.4 Gossip Language and Gossip Roles

In Chomsky’s view, language is dependent on syntax and syntax requires a mathe-
matical brain module, able to manage recursion. The emergence of language is an
abrupt process culminating with a mutation. Evolutionary theories, that understand
language as a gradual process, have no role in this formal explanation of language.But
to imagine complex syntactic structures coming from other more simple perhaps sur-
facing from unstructured signals is not meaningless. Environment and social factors
have a prominent role in this approach. R. Dunbar [12] championed the Social Bond-
ing Hypothesis as the evolutionary thesis about the origin of the human language. In
this approach, grooming and gossip play a key role. Although the hypotheses about
the origin of language are pen and paper conjectures held by countless arguments, the
Dumbar’s one seems reasonable as put social intelligence, based on in the increasing
interaction in groups, in the focus of the origin of language.

Grooming is a type of behavior bymeans of which apes belonging to a group clean
or maintain one another’s body or appearance. Grooming is characteristic of animals.
Gossip can be defined as exchanging personal information about absent third parties
providing a positive or negative evaluation. Gossip is typical of human beings.

One of the most important factors in the human socialization is grooming and
gossip. First steps in mammal species communication seem to be always about
relationships. Grooming favors that task, and gossip completes it. As Dunbar said:
... language evolved among humans to replace social grooming because grooming
time required by our large groups made impossible demands on our time. Language,
I argue, evolved to fill the gap because it allows us to use the time we have available
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for social interaction more efficiently [12, p. 192]. In so far as primate groups become
larger, more efficient instruments that grooming are required in order to maintain the
social coherence. The hands should be free to use tools or bear arms. Other muscles
should be employed in the task of social cohesion. The voice box, which includes
some of the more subtle movements that human beings do, provided an efficient
channel to exchange social information. Language favors ‘grooming at a distance’.

When humans become bipedal in the African savannah, competitors threatening
for surviving gain advantage. In that scenario, belonging to a group was essential
to reach protection. Individual defense require allies to be effective. The Dunbar’s
thesis suggested that the glue maintaining alliances in higher primates is mutual
grooming. But an increase in the size of groups requires a growth of alliances, in so
far as the grooming time required to maintain bonds is proportional to the size of
groups. Then, the substitution of grooming by vocal signals in humans provides the
benefit to establish bonds without requiring physical presence. According to Dunbar,
it was from this ‘contact calls’, characteristics of monkeys and apes, so that language
emerged. Language appears in humans to replace grooming. But oral language not
fully replaces the gestures involved in sign language.

Signals associated to language, as smile or laughing has the effect to introduce
confidence in conversation that oral discourse don’t have. Signs substitute groom-
ing in socialization, but oral language doesn’t substitute completely gestures. For
example signals of proximity or distance are relevant marks to diagnose whether the
neighbor is or is not an ally.

Isolated signs are necessary but they are not enough to form language. Language
is, above all, sentences, i. e, structured words that serve a hierarchy showing a kind
of geometry reflected in a syntactic tree. Novak et al. [24], attractively suggests that
when the number of the signs required to socialization is too large, syntactic structures
emerge: ‘the crucial step that guided the transition from non-syntactic communica-
tion was an increase in the number of relevant events that could be referred to’
[24, p. 497]. While hominid communication uses gestures pointing to objects, syn-
tactic communication characteristic of full language uses sentences representing the
world.

Based on this thesis, language can be explained by a gradualist hypothesis, with
fewer commitments than a nativist one, based on mutation and radical change. It is
reasonable to think that natural selection favored individuals who employed words to
liberate hands in social activities and that words were syntactically organized when
themessage become complex.M. Corbalis [10], a specialist in recursion at language,
endorsed this thesis.

Language allows us to interchange messages each other even at distance, without
the presence of the object. Contrarily, apes can only know what they see by direct
observation. Gossip overtakes the observational learning: interchanging messages
about the successes and misadventures of others using a loose language, people learn
how to act in community. Undertaken this task, gossip is cheap, easy and effective.
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Baumeister et al. [1, p. 112] suggested two different functions of gossiping as a
tool cementing social relationships:

(a) gossiping, the teller and the hearer strength their links as they share information
of mutual interest.

(b) gossiping, the teller and the hearer try to share a common context to favor com-
munication and exchange of information.

In both tasks it is expected that the teller and the hearer use a vague lexicon. Unfor-
tunately there are no yet studies about the lexicon of gossip. In some papers, gossip
is related to the language of women, although today is tested that gossip is not only
a female job. Further, the gossip is linked to the absence of specificity in discourse.
In gossip what prevails is the act of communicating, not the accuracy of what is
communicated. Gossip is to socialize, to share, no to prove, to make science. Briefly,
we sum some linguistic characteristics of the gossiping activity:

(1) Gossip uses narratives to communicate.
Gossip uses narratives to communicate social norms or sanctions if the rules are
broken in a community. It is a kind of low-cost control method that culture uses
to standardize individuals’ behavior. Gossip is not a kind of story for passive
hearers, as it is a monologue, but a rather collaborative offer that encourages the
hearer to complete the script. As that is a characteristic of vaguewords, gossiping
ask for the use of vague language.

(2) Gossip facilitates information flow.
Gossip makes communications easier. It is considered an efficient tool for gath-
ering and disseminating information. Wert and Salovey [38], argued that gossip
avoids the risks of confrontation in communication: if the information requested
is negative, gossip is the best election in order to mitigate a possible conflict. A
typical feature of vague language is that it favors politeness and negotiation.

(3) Gossip provides stimulation for interaction at a low price. Rosnow and Fine
[29], highlighted that gossip is a bulwark against life’s monotony. Gossip favors
human contact as money benefits trade.

Topics 1–3 need vague language. Next we will see that the uses of vague language
are quite consistent with those required by the gossip ones.

7.5 The Usefulness of Vague Language

Vague lexicon is so abundant because they play a major role in human commu-
nication. Right after, we will approach some tasks associated to the use of vague
language, convinced that, as Jucker [18] said, in some contexts, vague language can
be more effective than precision and rarely leads to misunderstanding. Channell [7]
highlights the following functions of vague language:
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1. Give the right amount of information and withhold the needed information
2. Don’t stop if precise information is not available. Look for approximate

conclusions
3. Encourage negotiation and deal.
4. Favor politeness and self-protection
5. Contribute to informality

Next, we will briefly expand those points.

1. Vague language is frequently used in daily conversations because even if we
dont’t know all details involved in a scene, we want to speak about it. Humans
spent much time talking about several subjects. Only a small part of these issues
refer to ‘serious’ subjects, with a clear explanatory basis or with a vocabulary
denoting with absolute precision. Most of the things we speak about are referred
in an incomplete or inaccurate manner, without reaching a clear conclusion as
a consequence from a delimited set of premises. In daily life we use language
preferably not to represent reality, but to thrill, to empathize with our fellows.
The success of a conversational thread is due more to the intention of the speaker
and listener to respectively understand and be understood, than for the use of
precise words. Try to have a conversation using only precise vocabulary and
easily check yourself that it is crazy project. Even in scientific context, Popper
said that: “there can be no point in trying to be more precise than our problem
demands.” [28, p. 28].

2. In some cases vague lexicon serves to fix a kind of a maximum threshold beyond
which our sentence would not be responsibly used. Channell [7] displayed as
example of vague quantity the phrase: ‘Some 200 million tonnes’. This sentence,
used by an economist, perhaps becomes an argument both persuasive and honest,
because even not having the exact figure to represent a crisp quantity, using a
vague quantifier transmits the conviction that he/she is approximating the raw
data. The use of vague language in daily argumentation serves to persuade the
listener of our convictions. An example comes from approximate syllogism. In
the Aristotelian frame, from the two following premises

Almost all young people are healthy
Few salutary people use drugs

it is not strictly possible to derive any conclusion, because (1) the first and the sec-
ond premise include uncovered vague quantifiers (almost, few) in the Aristotelian
syllogistic and (2) there is no perfect matching between the words representing
the middle term, even if ‘healthy’ and ‘salutary’ are synonyms. However, using
common sense and vague quantifiers, most people would say that some con-
clusion reasonably follows from the premises: in particular, among others, that
‘Few young people use drugs’. This is a quite convincing conclusion, which may
be shared with any listener, favoring a responsible communication in so far as
the information included in the conclusion is proportional to the content of the
premises.
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3. According to Wardhaugh [37] power is best exercised subtly rather than overtly;
because acting subtly you can offer others a chance. Accuracy leaves no room
for cooperation. While crisp meanings have a definition once and for all, vague
meanings require a pact, a deal, because they have open texture and change over
the time and context. If either crisp language are employed by professionals as
a tactic for mystification, as a strategy to produce a power-oriented discourse
dividing professionals and people; vague language bring people closer, because
it provides a space for consensus on matters that require interpretation, context
and negotiation.

4. Vagueness has the role to reduce the conflict between the speaker and the hearer in
a dialogue. Vague words made that sentences are not definitively finished, avoid-
ing perhaps a strong breakup. Loosely speaking, vague words favor politeness.
Leech [21, p. 132] suggested six maxims of Politeness related to the academic
discourse: a) theApprobationmaxim, summarized in: (a1)Minimize the dispraise
of other; (a2) Maximize praise of other; (b) the Modesty Maxim, that says: (b1)
Minimize praise of self; (b2) Maximize dispraise of self. The praise-dispraise
scale can be applied in the context of the teacher-student communication. Stu-
dents should practice the Modesty maxim whereas teachers should apply the
Approbation Maxim. In order to communicate, we should minimize the use of
impolite beliefs and maximize the utilization of polite thoughts. Vague language
is for self-protecting and for protecting the hearer’s face.

Vague words are typical of informal discourse. They are usually associated with oral
language, not with writing language. Writing language is the language of science.
There is no doubt that science is important to the people life, but people spend most
time in prosaic themes than in those beyond the ordinary. And to communicate infor-
mal subjects uses mainly informal language. Our socialization facilitates a culture
we belong to. In society we are individuals and, above all, members of a group. This
important achievement depends largely on the extensive use of language, not on the
specific or particular use of it. Vague language is extensively used in conversation.

Grice’s Maxims (bellow, in cursive) collect the rational principles underlying
conversation based on cooperation. In a suggestive work, Channell [7] posited a
vague version of them (in bold) that matches, in a good extent, with the functions
assigned to vagueness in discourse:

• Maxim of Quantity: (Be as informative as required, but not too informative)—
Giving the right amount of information.

• Maxim of Quality: (Say what you believe to be true on the basis of adequate
evidence)—Persuading the reader even lacking specific information.

• Maxim of Relation: (Be relevant)—Be relevant, but if you can’t, please try to
communicate (underlined, my added)

• Maxim of Manner: (Avoid obscurity, ambiguity; be brief and orderly)—
Graduating, highlighting.

Vague language has an extensive presence in natural language, favoring commu-
nication and relationship between people, being more effective than precision in
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some tasks. Vagueness shows paradigmatically its usefulness in decision-making
process. Next wewill briefly exemplify this utility, largely explored since the paper of
R. Parihk [27].

In a previous section we have seen the persistence of vagueness in ordinary lan-
guage and even in formal language. Usually vagueness is linked to the limits of
the human capacities to perceive and to recall data from memory. Our daily life is
managed under these strong constraints that, however, don’t prevent us to continu-
ally take decisions founded on scarce information and poor data. If the vagueness
is so abundant in daily communication, it should have a role. A language feature
that is frequent but useless would be an anomaly in language evolution. Next, we
will see that vagueness improves solutions in environments where no accurate data
are available.

Truly, sometimes the use of vague words is not appropriate. If a pilot does not
receive specific instructions from the control tower on the runway location a foggy
day, he/she could have serious trouble landing. This is the Lipman’s thesis, advocated
in an unpublished paper from 2006 [22]: if precise information is available, there
is not a better pay-off function to rightly communicate. This thesis has motivated a
lot of papers mainly from the game theory field applied to decision making (f. ex.,
García-Serra et al. [14, 25]). But if crisp data are not free to use, vagueness shows
its usefulness.

Using an illustrative example R. Parikh showed that vagueness carry an advantage
for communication when the words used by two people to refer to the same entity
are vague. Parikh’s game is a coordination game. Next, we briefly describe it.

Renato and Ada works in a school. Ada teaches Computer Science and Renato
teaches Philosophy. One day Ada is in her office while Renato is working at home.
Next day Renato has to explain the ‘Philosophy of Wittgenstein’ and ask Ada to
bring the book entitled ‘Notebook Brown’, missed in his office. Ada knows nothing
of Philosophy, but she recognizes colors. Suppose that the Notebook Brown has the
cover of that color, an observational predicate shared by Ada and Renato, and that
Renato has no other brown book on his shelf. Ada tells him what is the book he is
asking for. Renato simply says: ‘it is brown’. If both agree onwhat ’brown’ refer, Ada
will surely find the book and her mission will end with success, but if ‘brown’ refers
differently for Ada and Renato, the book that is brown for Renato is not brown for
Ada and conversely. If this mismatch occurs, to help Renato Ada would inspect all
books in all shelves if the book is not among those she considers ‘brown’. If however
Renato and Ada think that each other have used ‘brown’ as a fuzzy term, Ada looks
for books that in her opinion are clearly brown and, if she thinks the book has not
founded, she reach among those that, not being clearly brown, are similar in color,
overlapping with some of which Renato would classify as brown. The overlap causes
to expand the chance to successfully satisfy the Renato request. Parikh demonstrated,
using a specific numerical example that, the larger is the overlap between themeaning
of ‘brown’ of Ada and Renato in proportion to the symmetric difference, the more
is reduced the search time employed by Ada to satisfy the Renato’s request. Moral:
in the context of game theory, Parikh’s game shows the utility of vague language
providing solutions to decision-making problems involving overlapping meanings.
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7.6 Concluding Remarks

Gossip is a remarkable approach to the study of the origin of language, as Dunbar
advanced. The argument based on gossip puts the initial selection pressure based
on social intelligence as the trigger of language. However, some primates show
advanced interaction practices having a rudimentary theory of mind that does not
result in the acquisition of language. Baboon monkeys, for example, are gathered
together into large units, but they have not replaced grooming by gossip. Then, it
is not explained why they don’t develop language skills, even primitive, as those
employed in gossiping. As Bickerton said, it is plausible to conjecture that gossip
don’t emerge until several hundred of words were available: in its earliest studies its
symbols were presumably enumerable in the single digits, and how many items of
gossip could you convey with a single set of nine words? [3, p. 514]. This remark from
Bickerton leads us to conjecture that gossip, perhaps, is not related primarily with
the origin of language, but with the immediate development of it. In the beginning
were perhaps the names (designating subjects and objects) and verbs (designating
actions). But once we have nouns and verbs, adjectives and adverbs emerged to refine
and make our communication more sociable, less aggressive or abrupt. Gossiping
we speak about a third part; thus, using vague language enables us to advance in
the careful use of language, moving forward in the process of civilization, in the
practices of cohabitation.

The functions of vague languagematch, in a good extent, with the utilities ascribed
to gossip in the origin of language. Gossip contributes to solve a major adaptive
problem in large groups, favoring friendship and mutual protection by exchanging
socially relevant information. In that task vague language seems to play an inevitable
role. Human communication is successful because is highly unspecific. Vague words
help maintain communication even referring not accurately. Without vague words,
communication would stop soon and silence abruptly emerges. Silence is useful for
meditation, but useless in action. Vague languagemakes possible cooperative actions
where consensus and deals, far from leading to optimal and permanent solutions,
suggest contextual and evolutionary approaches.

To perform an empirically investigation about the role of vague language in gossip
is still a challenge. Find a large sample of vague lexicon used in gossiping would
yield some other evidences about the enigmatic question of the origin of vague
language. If vague language is so abundant is because it had a prominent role in our
evolution. Language is governed by rules of economy, as paradigmatically the Zipf’s
law shows. If vague language were superficial or useless, it would have disappeared.
Vague language had a relevant role in our ascription as homo sapiens, because, as
gossip suggests, it is in the birth of our linguistic capabilities and of our ability to
socialize. To investigate the role of vague language in gossiping is an exciting task in
itself, but also a relevant project to show why vagueness is consubstantial with our
linguistic essence.
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Chapter 8
Fuzzy Natural Logic: Towards Mathematical
Logic of Human Reasoning

Vilém Novák

Abstract One of the often repeated proclaims appearing in the papers on fuzzy sets
and fuzzy logic is their ability to model semantics of some linguistic expressions so
that the inherent vagueness of the former is also captured. Recall that this direction
of research was initiated by L.A. Zadeh already in his early papers and since then,
most of the applications of fuzzy sets emphasize presence of natural language, at
least in hidden form. In this paper we argue that the potential of fuzzy set theory
and fuzzy logic is strong enough to enable developing not only a working model of
linguistic semantics but even more—to develop a model of natural human reasoning
that proceeds in natural language. We bring forward the concept of fuzzy natural
logic (FNL) that is a mathematical theory whose roots lay in the concept of natural
logic developed by linguists and logicians. Of course, this cannot be realized without
cooperation with linguists. On the other hand, it seems reasonable not to try to solve
all the problems raised by the linguistic research but rather to develop a simplified
model that would capture the main features of the semantics of natural language and
thus made it possible to realize sophisticated technical applications. In the paper,
we will show that basic formalism of FNL has already been established and has
potential for further development. We also outline how model of the meaning of
basic constituents of natural language (nouns, adjectives, adverbs, verbs) can be
developed and the human-like reasoning can proceed.
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8.1 Fuzzy Set Theory, Natural Language
and Human Reasoning

8.1.1 Motivation and History

Fuzzy set theory is the basis of methods that can be, in general, divided into two basic
classes: (a) methods with linguistic motivation, and (b) methods with non-linguistic
motivation. Typical example of (b) is fuzzy clustering (Cf. e.g., [16]), or the new and
very powerful fuzzy transform (See, e.g., [53]).

This paper is focused on methods (a) with linguistic motivation. We suggest, as
a possibility for future research, to focus on fuzzy natural logic (FNL)—the logic
of natural human reasoning for which it is typical to use natural language. Our
suggestion stems from the claim that fuzzy set theory has potential to serve as a good
tool for modeling of linguistic semantics. This was argued by L.A. Zadeh in many
of his papers since the very beginning (Cf. e.g., [63, 65, 66, 68]). It should also be
noted, that the first necessary steps towards FNL have already been done.

The problem, however, is not so easy and it requires close cooperation with lin-
guists. Zadeh suggested two simplified paradigms: computing with words (Cf. [69])
and precisiated natural language (See [70]). In the first case, it is assumed that we
should confine to a small number of special linguistic expressions. In the literature,
one can meet the term “linguistic label” (Cf. [23, 26, 64]). From the linguistic point
of view, these are expressions consisting of degree or evaluative adjective together
with (possibly) some hedge. This model, however, is oversimplified and one encoun-
ters quite often that the authors have in mind not the given linguistic expressions but
linguistically named linearly ordered evaluative categories that are used in various
kinds of questionaries. These are introduced to simplify the respondent’s work. For
example, instead of using the numbers 1–5, one is suggested to consider them as
typical examples of very small” (1), “small” (2), “medium” (3), “big” (4) and “very
big” (5). These categories are then taken as imprecise quantities whose meaning is
modeled using triangular fuzzy sets. We cannot speak in this case, though, that we
are using natural language.

The concept of a precisiated natural language is wider and it suggests to develop
a “reasonable working formalization of the semantics of natural language without
pretensions to capture it in detail and fineness.” The goal is to provide an acceptable
and applicable technical solution. The concept of PNL is based on twomain premises:

(a) much of the world’s knowledge is perception based,
(b) perception based information is intrinsically fuzzy.

It should be noted that the term perception is not considered here as a psycholog-
ical term but rather as a result of intrinsically imprecise human measurement. The
PNLmethodology requires presence of World Knowledge Database and Multiagent,
Modular Deduction Database where the former contains all the necessary informa-
tion, including perception based propositions describing the knowledge acquired by
direct human experience, which can be used in the deduction process. The latter
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contains various rules of deduction. Until recently, however, no exact formalization
of PNL had been developed and so, it should be considered mainly as a reasonable
methodology.

We are convinced that the potential of fuzzy set theory and fuzzy logic is strong
enough to enable developing a working model of linguistic semantics and, on the
basis of that, also a model of natural human reasoning. As has been convincingly
argued by many authors,1 vagueness is an unavoidable feature of natural language
semantics. We argue that the idea of fuzzy sets and fuzzy logic provides a reasonable
model of vagueness.2

Recall that in one of his early papers L.A. Zadeh [67]. suggested to model the
commonsense reasoning. The idea to develop a logical model of the commonsense
reasoning, however, is much older and has been proposed by J. McCarthy in 1959
[29] as a part of the program of logic-based artificial intelligence. Its paradigm is to
develop formal commonsense theories and systems using mathematical logics that
exhibit commonsense behavior. The reason is that commonsense reasoning is a cen-
tral part of human thinking and we cannot imagine a real intelligence without it. The
main drawback of the up-to-date formalizations of commonsense reasoning, in our
opinion, is that it neglects the vagueness present in the meaning of natural language
expressions (Cf. [5] and the citations therein). Therefore, a model of commonsense
reasoning based on fuzzy sets and fuzzy logic can be more realistic.

The above concept was initiated in AI. A related concept came from linguists: in
1970, G. Lakoff published a paper [21] in which he introduced the concept of natural
logic with the following goals:

• to express all concepts capable of being expressed in natural language,
• to characterize all the valid inferences that can be made in natural language,
• to mesh with adequate linguistic descriptions of all natural languages.

Natural logic is thus a collection of terms and rules that comewith natural language
and that allows us to reason and argue in it. According to G. Lakoff’s hypothesis,
natural language employs a relatively small finite number of atomic predicates that
take sentential complements (sentential operators) and are related to each other by
meaning-postulates that do not vary from language to language. The concept of
natural logic has been further developed by several authors.3

In the following subsection and further we will try to convince the reader that it
is reasonable to develop the concept of fuzzy natural logic (FNL) that continues the
mentioned concept of natural logic. We will show that a good portion of work has
already been done.

1Cf. e.g., [60].
2See, e.g., [39] where a well working mathematical model of the sorites paradox (a typical feature
of vagueness) has been proposed. It is also proved in this paper that the developed model copes
with the typical phenomenon of vagueness manifesting itself in the semantics of degree adjectives
(adjectives such as “tall, small”, etc.).
3See, e.g., [25, 58] and elsewhere.
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8.1.2 The Paradigm of FNL

If we put all the ideas above together, we come to the concept of the fuzzy natural
logic as a new theory that should be based on the results of linguists, logicians and
AI specialists in natural logic, logical analysis of natural language (See, e.g. [7].),
and commonsense reasoning. Our suggestion for the future is to develop FNL as an
extension of mathematical fuzzy logic. The partly elaborated constituents of FNL till
now can be summarized as follows:

(a) Formal theory of evaluative linguistic expressions.4

(b) Formal theory of fuzzy IF-THEN rules and approximate reasoning (derivation
of a conclusion) [8, 10, 36, 46, 47].

(c) Formal theory of intermediate and generalized quantifiers [9, 15, 37, 40].

Let us remark that there are some other papers whose topics relate to the topic of
FNL (Cf. [20, 62]). None of them, however, can be considered as a contribution to
the consistent development of FNL as a formal logical theory.

The essential constituent of FNL is amodel of linguistic semantics.Many logicians
and linguists (Cf. [27, 28, 57]) have argued that the first order logic is not sufficient
for this task. A suitable formal system has been chosen as the basis for further
development of FNL is higher-order fuzzy logic called the fuzzy type theory.

8.1.3 Fuzzy Type Theory—The Mathematical Tool for FNL

The main mathematical tool for FNL is the fuzzy type theory (FTT), that is a higher-
order mathematical fuzzy logic. There are more kinds of FTT that differ in the used
algebra of truth values. For FNL, the most important is the Łukasiewicz fuzzy type
theory (Ł-FTT) whose algebra of truth values is formed by an MV-algebra.

In this section we very briefly outline some of the main concepts of FTT. Details
and full proofs of all theorems can be found in the literature [35, 42, 43]. Let us
remark that FTT generalizes the classical type theory.

Syntax of Ł-FTT

The basic syntactical objects of Ł-FTT are classical (See [1].), namely the concepts
of type and formula. The types are special subscripts (denoted by Greek letters)
assigned to all formulas using which we distinguish kinds of objects represented
by formulas. The atomic types are ε representing elements and o representing truth
values. The set of all types is denoted by Types.

The language J of Ł-FTT consists of variables xα, . . ., special constants cα, . . .

(α ∈ Types), the symbol λ, and brackets. We will consider the following concrete

4[39]; see also [38].
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special constants: E(oα)α (fuzzy equality) for every α ∈ Types, C(oo)o (conjunction),
D(oo) (delta operation on truth values) and descriptions operator ιε(oε).

Formulas are formed of variables, constants (each of specific type), and the symbol
λ. As mentioned, each formula A is assigned a type (we write Aα). A set of formulas
of type α is denoted by Formα and a set of all formulas is Form = ⋃

α∈Types Formα.5

Recall that if B ∈ Formβα and A ∈ Formα then (B A) ∈ Formβ . Similarly, if
A ∈ Formβ and xα ∈ J , α ∈ Types, is a variable then (λxα A) ∈ Formβα.

The main connective is equivalence ≡ defined by λxαλyα(E(oα)α yα)xα for all
types α ∈ Types. As usual, we write (Aα ≡ Bα) instead of (≡ Aα)Bα. Note that
this is a formula of type o.

Further connectives are conjunction (∧∧∧ := λxoλyo(C(oo)o yo)xo), implication
(⇒⇒⇒ := λxoλyo (xo∧∧∧ yo) ≡ xo), negation (¬¬¬ := λxo(xo ≡ ⊥)), strong conjunction
(&&& := λxo(λyo(¬¬¬(xo ⇒⇒⇒ ¬¬¬yo)))), disjunction (∨∨∨ := λxo(λyo(xo ⇒⇒⇒ yo) ⇒⇒⇒ yo))
and delta (ΔΔΔ := λxoDooxo). The general (∀) and existential (∃) quantifiers are also
defined as special formulas [35].

The fuzzy type theory has 17 logical axioms. Most of them are introduced to char-
acterize properties of the considered algebra of truth values. For FNL, the considered
algebra is MV-algebra. There are also inference rules:

(R) Let Aα ≡ A′
α and B ∈ Formo. Then infer B ′ where B ′ comes from B by

replacing one occurrence of Aα, which is not preceded by λ, by A′
α.

(N) Let Ao ∈ Formo. Then, from Ao inferΔΔΔAo.

The inference rules of modus ponens and generalization are derived rules in Ł-FTT.
The concepts of provability and proof are defined in the same way as in classical
logic. A theory T over Ł-FTT is a set of formulas of type o (T ⊂ Formo). By
T � Ao we mean that Ao is provable in T. Many theorems characterizing syntactical
properties of FTT were proved including deduction theorem and other ones.

Semantics of Ł-FTT

The truth values form an MV-algebra (See [4, 49].) extended by the delta operation.
It can be seen as the residuated lattice [13, 35] L = 〈L ,∨,∧,⊗,→, 0, 1,Δ〉. An
important special case is the standard Łukasiewicz MVΔ-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉 (8.1)

where

∧ = minimum, ∨ = maximum,

a ⊗ b = max(0, a + b − 1), a → b = min(1, 1 − a + b),

¬a = a → 0 = 1 − a, Δ(a) =
{
1 if a = 1,

0 otherwise.

5In type theory, all syntactical objects including variables and connectives are taken as formulas.
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We will also consider the operation a ⊕ b = min(1, a + b). This algebra generates
the variety of MV-algebras. Therefore, the MV-operations ⊗,⊕ are often called
Łukasiewicz conjunction and Łukasiewicz disjunction, respectively.

Let J be a language of Ł-FTT and (Mα)α∈Types be a system of sets called basic

frame such that Mo, Mε are sets and for each α,β ∈ Types, Mβα ⊆ M Mα
β , i.e. it is a

set of functions from Mα to Mβ .6 The general frame is a tuple

M = 〈(Mα,=α)α∈Types ,LΔ〉 (8.2)

so that the following holds:

(i) The LΔ is a structure of truth values (i.e., an MV-algebra). We put Mo = L and
assume that the set Moo ∪ M(oo)o contains all the operations from LΔ.

(ii) =α is a fuzzy equality on Mα and =α∈ M(oα)α for every α ∈ Types.

A general model is a general frame M such that for every Aα, α ∈ Types inter-
pretation Mp gives

Mp(Aα) ∈ Mα

where p is an assignment of elements from the sets Mα to variables (depending on
the given type). This means that each set Mα from the frameM has enough elements
so that the interpretationMp(Aα) is always defined. A general modelM is a model
of a theory T , M |= T , if M(Ao) = 1 holds for all axioms of T . If Ao is true in
the degree 1 in all general models of T then we write T |= Ao.

Let T be a theory. A formula Ao is true in the degree a ∈ L in T , if

a =
∧

{Mp(Ao) | M |= T, p ∈ Asg(M)}. (8.3)

In this case, will write T |=a Ao. If a = 1 then we omit the subscript.
The following completeness theorem was proved (See [35, 43]).

Theorem 1 (completeness)

(a) A theory T is consistent iff it has a general model M.
(b) For every theory T and a formula Ao

T � Ao ⇐⇒ T |= Ao.

The completeness theorem is an important result assuring us that FTT is a well
founded mathematical tool that can be used for the development of FNL.We are thus
able to formulate many results syntactically and, at the same time, to be sure that
our results hold in all models. Hence, FNL is very powerful and encompasses most
results in fuzzy set theory obtained semantically. Consequently, we should always
try to formulate our problem syntactically and then use it in semantic interpretation.

6By currying, we may consider only unary functions.
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8.1.4 Future Prospects of Fuzzy Set Theory
in Linguistic Modeling

As one possible direction in the future development of the fuzzy set theory and fuzzy
logic we suggest to focus on fuzzy natural logic. This logic should be developed as
an extension of the mathematical fuzzy logic in narrow sense.

The work on FNL consists of two tasks: (a) development of mathematical model
of linguistic semantics and (b) characterization of fundamental reasoning schemes
of human mind. Both tasks require close cooperate with linguists and logicians.

Natural language, however, is extremely complicated structure with many sub-
tleties and exceptions. Even simple linguistic units, such as evaluative adjectives (e.g.,
“good, interesting”, etc.) can be used in many contexts and ways, their meaning may
depend on the position within topic-focus articulation (Cf. [14]) and so, at present
stagewe can hardly hope to be able to develop amathematical model of the semantics
of natural language that would capture all the details. It is therefore, questionable
whether we should struggle for complete capturing semantics of natural language. It
seems reasonable to relax our requirements and in line with the paradigm of Zadeh’s
precisiated natural language focus on smaller parts of natural language and try only
to capture their essential properties, of course, with the perspective to improve and
deepen continuously the model in parallel with the increase of linguistic knowledge.
Our temporary goal should be to develop the model to such an extent that would
make it possible to apply it in various technical and economical problems.

8.2 Linguistic Semantics and FNL

In this section, we will outline some aspects of linguistic semantics and relate them
to the existing results in FNL. Let us remark that the model of semantics of FNL
stems from the ideas presented in the book [33] on the Alternative mathematical
model of linguistic semantics (AML).

Wewill turn our attention to a selection of specific linguistic units and phenomena,
namely nouns, adjectives, adverbs, hedging and simple noun phrases and other ones.
Our goal is to remind wealth and complexity of natural language and outline some
of the problems and results of linguistic studies. In each case we at the same time
outline how FNL, in its present state, copes with some of the discussed linguistic
phenomena.

We will use the means of fuzzy type theory. Recall that FTT assigns a type to each
formula. To make the notation more readable and transparent, we often introduce the
type of a given formula only in the first occurrence and then write it without the type
assuming that the reader still keeps it in mind.
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8.2.1 Nouns and Objects

Nouns are names of objects. More specifically, they denote persons, places, things,
events, substances, qualities, quantities, etc. Nouns are original, e.g., “house, horse,
square”, etc. and derived, namely from adjectives, e.g. “redness, beauty, simplicity”,
or verbs (we speak about postverbal nouns), e.g. “jumping, walk, writing”, etc. There
are also proper nouns denoting one specific object, e.g., “Earth, Saturn, Russia” and
common ones that denote a class of objects, e.g., “planet, mammal, street”, etc.

Countable nouns are common nouns that can take a plural, can be combined with
numerals or counting quantifiers (e.g., one, two, several, every, most), and can take
an indefinite article such as “a” or “an” (in languages which have such articles).
Examples of count nouns are “chair, nose, occasion”. Mass nouns or uncountable (or
non-count) nouns differ from count nouns in precisely that respect: they cannot take
plurals or combine with number words or the above type of quantifiers. For example,
it is not possible to refer to a “furniture or three furnitures”. Depending on the kind
of objects, we can also distinguish concrete (e.g., “horse, table, house”, etc.) and
abstract nouns (e.g., “work, idea, feeling, happiness”, etc.).

Objects are entities that can have very complicated properties. In general, an object
is a phenomenon to which we concede its individuality that makes it distinct from
its surrounding. In fact, we can construe arbitrary phenomenon as an object.

Till now, there is no more detailed model of nouns in FNL (or in general fuzzy
set theory). The problem is in finding a satisfactory model of real objects because
of too high complexity of them. It is possible to model some very special objects,
such as 2-D or 3-D geometrical shapes, or so. But in full generality that includes also
abstract objects such as those considered in postverbal nouns is this task so far too
complicated.

In FNL, we suggest a simplification that can work in various AI applications and
elsewhere. Namely, note that each object can be characterized by various kinds of
features (characteristics), for example, “height, nationality, age, weight, strength,
shape, intelligence”, etc. Therefore, we can identify objects with sets of values of
features. Semantically, an object can be represented by a tuple

o = 〈v1, v2, . . . , vn〉 (8.4)

where i = 1, . . . , n are various features characterizing the object and vi are their
values. The n can in principle be even infinity. For example, if i is a feature “length”
then, for example, vi = 1.2m. We can see that the values can be real numbers, or
some other kinds of characteristics. Since the set of real numbers is rich enough to
represent all kinds of values, we will in practice usually take vi ∈ R.

A fuzzy set of objects o in (8.4) forms an extension of a noun if it is determined
with respect to a certain context (possible world). Then an intension of a noun is
represented by a function from the set of all contexts into a set of all objects.

The objects and nouns can be expressed in the syntax of FTT as follows. First,
we must introduce special types:
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(a) ϕ—features of objects. Any formula Aϕ represents some specific feature. Given
a model, the interpretation M(Aϕ) ∈ Mϕ is a unique object representing one
specific feature. In (8.4) it is a given i ∈ {1, . . . , n}.

(b) α—valuesof concrete features.Asmentioned above, in themodelwewill usually
take Mα = R.

(c) Given a feature, it may attain various values dependently on its local context.
Therefore, we will introduce a special type ω for local context of values of
one specific feature. Recall that this type may even be itself more complex, for
example, we may put ω := αo.

(d) ωϕ—global context which covers all features and can be taken as a context of
the whole noun. We will use the variable wωϕ for global contexts. In a model
M, the interpretationM(wωϕ) ∈ Mωϕ is a function that assigns to each feature
from Mϕ a context w ∈ Mω .

(e) (αω)ϕ—type of objects that are elements of an extension of a noun. The objects
are represented by sets of values of features in a global context. We will use
the variable h(αω)ϕ for objects. In a model M, the interpretation M(h(αω)ϕ) ∈
M(αω)ϕ is the tuple of the form (8.4). For example,M(h(αω)ϕ) can be a Swede.

(f) ((oα)ω)ϕ—type of a noun. Any formula S((oα)ω)ϕ represents a formal way how
a noun is construed. Its interpretation in a modelM is a function which assigns
to each feature from Mϕ its intension.

Semantics of nouns

In accordance with the results of analysis done in linguistics and logic, semantics of
expressions of natural language is characterized by the concepts of possible world,
intension and extension. Then, we can formalize semantics of nouns in FNL as
follows.

LetS((oα)ω)ϕ be a formula representing aNoun. For example,Noun can beSwede,
plate, house, etc. Intension of Noun is defined by

Int(Noun) := λwωϕ λh(αω)ϕ · (∀cϕ)(Sc (wc)(hc(wc))). (8.5)

Thus, in a modelM, intension (8.5) of Noun is interpreted by a function assigning
to each global contextM(w) a fuzzy set of objectsM(h). It can be seen from (8.5)
that each feature M(cϕ) is in a local context M(wc) assigned a value M(hc(wc))
which also depends on the context M(wc).

It follows from (8.5) that extension of Noun in a (global) context w is

Extw(Noun) := λh(αω)ϕ · (∀cϕ)(Sc(wc)(hc(wc))). (8.6)

Clearly, in a model M it is a fuzzy set of elements M(h(αω)ϕ).
In this model, we easily obtain semantics of “a Noun” and “the Noun”,7 for

example, “a Swede” and “the Swede”. In the former case, for a given context, the

7We speak about indefinite and specifying grammateme of a noun, respectively, cf. [33, 57].
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interpretation is an element from the kernel of the fuzzy set (8.6) and in the latter
case it is one specific object taken from its support (see below).

8.2.2 Adjectives

Adjectives are names of properties of objects.We can distinguish proper and derived
adjectives. Example of the former are “red, tall, good”, the latter are derived from
other types of words, namely nouns (e.g., wood–wooden, grease–greasy) or verbs
(deverbal adjectives), for example e.g., “smiling, washing.

We can distinguish also are other specific classes of adjectives. Important are (See
[3].) gradable adjectives [2] (also called degree adjectives), for example “hot”“small,
tall”, evaluative adjectives [59], for example “good, awful, fantastic, disasterous”,
andabsolute (non-gradable) adjectives “green, freezing, dead, nuclear”. The gradable
adjectives can still be divided (See [19].) into absolute, for example “bent, straight”
and relative gradable adjectives such as “expensive, tall, strong”, etc.

The accepted hypothesis is that gradable adjectives denote functions that map
objects onto representations of the degree to which they posses some gradable prop-
erty. Hence, gradable adjectives may differ with respect to their scales. This corre-
sponds with our model of objects in FNL outlined above.

Another specific feature of gradable but also of evaluative adjectives [56] are
existence of pairs of antonyms, for example “short–long, clean–dirty, complete–
incomplete”. Antonymous pairs of gradable adjectives can be complementary and
non-complementary. Complementary adjectives are pairs of antonymous adjectives
that are furthermore eachother’s negationon their domain, e.g. complete–incomplete.
Non-complementary adjectives may have an xtension gap which corresponds to the
set of objects that the predicate is neither true nor false of in a particular context
of utterance. This gives rise to what is called in FNL: the fundamental evalua-
tive trichotomy that is a triple of expression consisting of the nominal adjective, its
antonym and a middle member, for example “weak–medium (strong)–strong”, etc.
—see below. Crucially, the positive and negative extensions and the extension gap of
a gradable predicate may vary across contexts of use, becoming more or less precise.
In FNL, we propose a model covering both gradable as well as evaluative adjectives
including also hedging discussed in the next subsection.

A special phenomenon is existence of the comparative and superlative of adjec-
tives. The comparative is a name of a relation that does not necessarily corresponds
with the given adjective. For example, bigger is a name of a relation ≥ that does
not correspond with the adjective “big”. Clearly, if “John is small” and “Charles is
bigger”, it does not imply that “Charles is big” (both John and Charles can be very
small men). The comparative has degrees since we can say, for example, “much big-
ger, a little smaller”, etc. The superlative is derived from comparative and, in fact,
it corresponds to result of maximization (in mathematical sense). No satisfactory
model of comparative and superlative phenomena is in FNL so far suggested.
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8.2.3 Hedging

Hedging is a linguistic phenomenon that is used to specify more or less closely the
topic of utterance. In the theory of fuzzy sets, we learned about hedges being special
adverbs (such as “very, roughly”). However, hedging is a wider phenomenon that
can be expressed by more complex expressions.

Examples of hedging are expressions such as “to some respect, in a sense, a sort
of” but also “very roughly, approximately, more or less, about, almost”. The most
important in hedging is a class of adverbs called intensifying ones, among them we
rank “very, extremely, typically, roughly”, etc.

The concept of hedging was in linguistics in more detail analyzed first by
G. Lakoff [22]. He also noticed that the general effect of hedging is either in inceras-
ing fuzziness (widening effect) or decreasing fuzziness (narrowing effect). Thus,
hedging is an important tool of natural language that enables us to specify more
concretely what we have in mind. We may distinguish narrowing hedges (very,
extremely, significantly, etc.), widening hedges (more or less, roughly, very roughly,
etc.) and specifying hedges (approximately, about, rather, precisely, etc.).

8.2.4 Evaluative Linguistic Expressions in FNL

The analysis of nouns, adjectives and hedges gives rise to a more general concept.
Namely, we can introduce a special class of linguistic expressions called evalua-
tive ones. When putting together properties of gradable and evaluative adjectives
discussed in the literature, we can specify evaluative linguistic expressions as spe-
cial expressions of natural language using which people evaluate phenomena around
them.

They include them the following classes of linguistic expressions:

(i) 〈TE-adjective〉, that belong to a class of special adjectives (TE stands for “tri-
chotomic evaluative”) that include gradable adjectives (big, cold, deep, fast,
friendly, happy, high, hot, important, long, popular, rich, strong, tall, warm,
weak, young), evaluative adjectives (good, bad, clever, stupid, ugly, etc.), but
also adjectives such as left, middle, medium, etc. The TE-adjectives can usually
be grouped to form a fundamental evaluative trichotomy that consists of two
antonyms and a middle member, for example low, medium, high; clever, aver-
age, stupid; good, normal, bad, etc. The triple of adjectives small, medium, big
will further be taken as canonical. An exception are complementary adjectives
mentioned above that lack the middle member.

(ii) Fuzzy numbers. These include all linguistic expressions containing some num-
ber that is often completed by some hedge, for example “three hundred, roughly
one hundred, about twenty five, approximately two million”, etc.

(iii) Simple evaluative linguistic expressions (possibly with signs). They have a
general form
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〈linguistic hedge〉〈TE-adjective〉. (8.7)

From the logical point of view, it is reasonable to introduce also empty hedge.
Then we can consider as simple evaluative expressions also pure adjectives.
Hence, examples of simple evaluative expressions are “small, rather medium,
very big, more or less weak, medium strong, strong, quite silly, normal,
extremely intelligent”, etc. Note that from grammatical point of view simple
evaluative expressions are adjective phrases. Note also, that we cannot apply
the same hedgewith all adjectives. For example “verymedium” has nomeaning
and so, it is not an evaluative expression.

(iv) Compound evaluative expressions (roughly small ormedium, small but not very
(small), etc.). These expressions are formed fromsimple ones using connectives.
However, these expressions never form a boolean structure since there aremany
combinations that have no sense. For example, the expression “very small or
medium and extremely big” has no meaning.

(v) Negative evaluative expressions (not small, not very big, etc.). The use of nega-
tion is problematic and one encounters here a special linguistic phenomenon
called topic-focus articulation (Cf. [14]). Namely, the particle “not” can act at
least in two ways—either on the whole evaluative expression or only on the
hedge. For example, not very small has (at least) two different meanings: either
“(not very) small” where “very is negated” so that we deal with a new hedge
“not very”, or “not (very small)” where the whole expression “very small” is
negated.

In the applications of fuzzy logic, evaluative linguistic expressions occur in the
expressions of the form

X is 〈evaluative expression〉 (8.8)

where X is a variable whose values are the values of some measurable feature of the
noun andA is an evaluative expression. They are a simplified from of a special class
of verb phrases that are called evaluative linguistic predications. From linguistic
point of view they are simple phrases of the form

〈noun〉 is 〈evaluative expression〉 (8.9)

where “is” is a copula—the verb “to be”. Examples are “temperature is low, very
intelligent man, more or less weak force, medium tension, extremely long bridge,
short distance and pleasant walk, roughly small or medium speed, etc.).

Evaluative predications semantically express a property of object(s) characterized
by the given evaluative expression. If noun is concretely specified (e.g., John, my
friend) then the meaning of (8.9) is a truth value. If it is general, e.g., “house is big”
(i.e., without specification, which house) then the meaning of (8.9) (and also of (8.8))
is extension of all objects having the property denoted by 〈evaluative expression〉. In
this case, the meaning of (8.9) is equal to the meaning of
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〈evaluative expression〉〈noun〉,

for example “big house”.
In more general way, evaluative linguistic expressions occur in the position of

adjective phrases characterizing features of some objects and are used either in pred-
icative or attributive role.

Example of the predicative use is “The man is very stupid”. Example of the
attributive one is “The very stupid man climbed a tree”. The purpose of the first
sentence is simply to communicate a particular quality of the sentence’s subject. The
purpose of the second sentence is primarily to tell us what the subject did i.e. climbed
a tree; that the subject is very stupid is a secondary consideration.

Semantics of evaluative expressions in FNL

Formalization of the semantics of evaluative expressions in FNL is based on the
standard assumptions of the theory of semantics developed in linguistics and logic
(Cf. [14, 27, 28]). Namely, the fundamental concepts to be formalized are possible
world, intension, and extension. This task is in FNL solved by introducing a special
theory T Ev that is a special formal theory of Łukasiewicz fuzzy type theory (Ł-FTT).
This theory8 formalizes certain general characteristics of the semantics of evaluative
expressions.

Let us remark that the model of semantics of evaluative expressions is very suc-
cessful in applications. One of the reasons is that this semantics is based on the theory
of ordered sets that is a well elaborated part of mathematics and it is relatively easy
to construct the necessary models.

On e of essential concepts in the theory of semantics of natural language expres-
sions is that of possible world. This concept can be traced back to Leibniz and in
modern conception toCarnap aswell as logicians such asQuine,Wittgenstein, Lewis,
Kripke and many others.

In the theory of evaluative expressions, we will speak about context instead of a
possible world. The latter is usually taken as a state of the world at a given point in
time and space. It is very difficult to formalize such a definition. However, in [39], it
is argued that extensions of evaluative expressions are classes of elements taken from
some scale representing. Therefore, we can introduce a simplified concept of context
that is a nonempty, linearly ordered and bounded set, in which three distinguished
limit points can be determined: a left bound vL , a right bound vR , and a central point
vS . Hence, each context is identified with an ordered triple

w = 〈vL , vS, vR〉

where vL , vS, vR ∈ U . A straightforward example is the predication “A town”, for
example “small town”, “very big town”, etc. Then, the corresponding context for
the Czech Republic can be 〈3 000, 50 000, 1 000 000〉, while for the USA it can be
〈30 000, 200 000, 10 000 000〉.

8The detailed presentation and an informal justification of T EV can be found in [39].
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We introduce a set W of contexts. Each element w ∈ W gives rise to an interval
w = [vL , vR] ⊂ U .

Intension Int(A) of an evaluative expression A is a property that attains various
truth values in various contexts but is invariant with respect to them. Therefore, it is
modeled as a function

Int(A) : W → F(U ) (8.10)

where F(U ) is a set of all fuzzy sets over U . Note that of an evaluative expression
or predication A is obtained as interpretation of a formula λw λx (Aw)x (in the
language of Ł-FTT) in a special model M.

Extension Extw(A) of an evaluative expressionA in the contextw ∈ W is a fuzzy
set of elements

Extw(A) = Int(w)(A) ⊂∼ w.

In our example, the truth value of a “small town having 30 000 inhabitants” could
be, for example, 0.7 in the Czech Republic and 1 in the USA.

In the theory T Ev, the extension of an evaluative expression is obtained as a shifted
horizon where the shift corresponds to a linguistic hedge, which is thus modeled by
a function L → L . A graphical scheme of such an interpretation in a specific context
can be seen in Fig. 8.1.

Recall also our discussion above about gradable adjectives. We can distinguish
absolute and relative ones. What is the difference between them? From our point
of view, the solution is simple: absolute gradable adjectives have only one context
and so, their intension coincides with their extension while the relative ones have
(infinitely) many of contexts and so, their intension is the function (8.10).

Fig. 8.1 Graphical scheme of a construction of extensions of evaluative expressions in a given
context. Each extension is obtained as a composition of a function representing a respective horizon
LH, MH, RH (in the figure, it is linear because of the use of Ł-FTT) and the deformation function
νa,b,c whose graph is for convenience depicted turned 90◦ anticlockwise
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8.2.5 Linguistic Quantifiers and Determiners

A special phenomenon in natural language is a huge and apparently messy collection
of expressions such as “not just every and some, but most, few, between five and
ten, a lot of”, and many others. These expressions occur in typical sentences, for
instance:

(a) Few (both, enough, at lest ten, all but five) students attended the party.
(b) More male than female students attended the party
(c) John’s mother arrived.
(d) Every student attended the party.

These sentences have the following standard syntactic structure:

The Det is a determiner that is a generalized (linguistic) quantifier. The NP is noun
phrase. In our case it is a quantified noun phrase, also called determiner phrase.

In linguistic semantics, a generalized quantifier is an expression that denotes a
property of a property (a higher-order property).

In linguistics, a determiner phrase (DP) is a type of phrase posited by some theories
of syntax. The head of a DP is a determiner, as opposed to a noun. For example in
the phrase “the car”, “the” is a determiner and “car” is a noun; the two combine to
form a phrase, and on the DP-analysis, the determiner “the” is head over the noun
“car”.

8.2.6 Intermediate (Fuzzy) Quantifiers in FNL

In logic, the linguistic quantifiers are modeled using the concept of generalized
quantifier [18, 24, 31, 54, 61]. These were in fuzzy set theory generalized under
the name fuzzy (generalized) quantifiers. The first paper in this topic was written by
L.A. Zadeh [68]. His theory has been further elaborated by several authors (See, e.g.,
[9, 12, 15, 17]).

The theory, in the mentioned papers is focused on computation rather than on
linguistics. The suggestion that took into account linguistic side and thus contributes
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to the theory of FNL was introduced by Novák [40]. This theory was inspired by
the theory of intermediate quantifiers studied in detail by Peterson [55]. These are
linguistic quantifiers whose meaning layes between classical and existential quan-
tifiers. The basic idea consists in the assumption that these quantifiers are classical
general or existential quantifiers for which the universe of quantification is modified
and the modification can be imprecise.

We introduce a theory T IQ which is a special theory of Ł-FTT extending the
theory T Ev of evaluative linguistic expressions introduced in the previous section by
few more axioms, namely those for the measure function (see below).

The theory T IQ is obtained from T Ev by extending the latter by the concept of
measure of fuzzy sets. In the frame of Ł-FTT, it can be introduced syntactically.
Namely, the measure is represented by a special formula μ ∈ Formo(oα)(oα) whose
interpretation is a function Mα → L , i.e. values of the measure are taken from the set
of truth values.9 Moreover, the measure is noremed with respect to some reference
fuzzy set (recall that a formula of type oα represents a function Mα → L , i.e. a fuzzy
set). Namely,

μ(zoα)xoα

represents a measure of a fuzzy set xoα normed with respect to the fuzzy set zoα

(i.e., xoα is proportional to zoα). Its properties properties (and interpretation) can be
found in the cited literature.

Definition 1 Let Ev ∈ Formoo be intension of some evaluative expression, A, B ∈
Formoα be formulas and z ∈ Formoα and x ∈ Formα variables where α ∈ S. Then
a type 〈1, 1〉 intermediate generalized quantifier interpreting the sentence

“〈Quantifier〉 B’s are A”

is one of the following formulas:

(Q∀
Ev x)(B, A) ≡ (∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(z x ⇒⇒⇒ Ax))

∧∧∧ Ev((μB)z)). (8.11)

(Q∃
Ev x)(B, A) ≡ (∃z)((ΔΔΔ(z ⊆ B)&&&(∃x)(z x ∧∧∧ Ax))

∧∧∧ Ev((μB)z)). (8.12)

For some syllogismfigure, also presupposition requiring that only non-empty (fuzzy)
subsets of B are considered.

9This is quite natural because the set of truth values is assumed to be MV-algebra, namely the
Łukasiewicz one whose support set is [0, 1].
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Note that each formula above consists of three parts:

(∃z)((ΔΔΔ(z ⊆ B)
︸ ︷︷ ︸

“the greatest” part of B’s

&&&

(∀x)(z x ⇒⇒⇒ Ax))
︸ ︷︷ ︸

each of B’s has A

∧∧∧

Ev((μB)z))
︸ ︷︷ ︸

size of z is evaluated byEv

Thus, the concrete quantifiers are obtainedwhen specifying the evaluative expression
Ev.

Below are introduced several specific intermediate quantifiers based on the analy-
sis provided by Peterson (Cf. [55]).

A: All B are A := Q∀
BiΔΔΔ(B, A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E: No B are A := Q∀
BiΔΔΔ(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P: Almost all B are A := Q∀
Bi Ex(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ (Bi Ex)((μB)z)),

(extremely big part of B has A)

B: Few B are A := Q∀
Bi Ex(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ (Bi Ex)((μB)z)),

(extremely big part of B does not have A)

T: Most B are A := Q∀
Bi Ve(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ (Bi Ve)((μB)z)),

(very big part of B has A)

D: Most B are not A := Q∀
Bi Ve(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ (Bi Ve)((μB)z)),

(very big part of B does not have A)

K: Many B are A := Q∀
¬¬¬(Sm ν̄νν)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

(not small part of B has A)

G: Many B are not A := Q∀
¬¬¬(Sm ν̄νν)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax)) ∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

(not small part of B does not have A)

I: Some B are A := Q∃
BiΔΔΔ(B, A) ≡ (∃x)(Bx ∧∧∧ Ax),

O: Some B are not A := Q∃
BiΔΔΔ(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).
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Remark 3 (i) The evaluative expressions used in the definition of the quantifiers
above are considered in the abstract context woo and so, the variable woo is
omitted in the corresponding formulas.

(ii) The quantifier B is, in fact, defined as “Almost all B are not A”.
(iii) The quantifier “most” is considered in its shifted meaning as “relatively close

to all” and not as “simple majority”.
(iv) The quantifiers with the hedge ΔΔΔ are equivalent to the corresponding classical

ones.

8.2.7 The Meaning of Noun Phrases and Simple Sentences

Using the formalmeans of FNL,we can construct themeaning of simple noun phrases
or simple sentences. Our construction in this section will be syntactical. However,
after defining a model, it is straightforward to construct the concrete fuzzy relations
representing the meaning of the given noun phrase or a sentence.

Wewill first demonstrate our construction on a simple example of the noun phrase
Very tall Swedes.

Special types

Let us first introduce the following special types:

(a) β—features (characteristics) of objects. These can be, for example, “height,
nationality, age, weight”, and many other ones. In this section, we will consider
only the first two ones.

(b) α—values of concrete features. These are often real numbers, or some other
kinds of characteristics.

(c) αβ—objects (people), i.e. people are in our model identified with sequences of
values of features.

Special constants and variables

Recall that nouns are identified with functions fαβ that can be seen as sets of val-
ues of features. Each feature cβ is a assigned some value vα via the function fαβ .
Iterpretation of fαβ in any model M can be seen as the set

M( fαβ) = {〈c, v〉, 〈c′, v′〉, . . .} (8.13)

where c, c′, . . . ∈ Mβ, . . . are various features and v, v′, . . . ∈ Mα . . . are their
values. The sets (8.13) represent people in this model. Furthermore:

(i) The constant hβ is the feature of height.
(ii) The constant nβ is the feature of nationality. Of course, this is a simplification.

Instead, we could consider a set of several specific characteristics, such as
mother tongue, hair, skin, etc. We do not need such a complicated model in this
example.
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(iii) The variable νννoo is a linguistic hedge. It is used as a general variable standing
for specific hedges (very, roughly, etc.).

(iv) The variable wαo is a context (possible world). Its interpretation is a function
from the set of truth values into a set Mα of typeα. This trick enables to transfer
ordering properties of the algebra of truth values into the set Mα.

Every Swede is a human being and so, we must first introduce the property “to
be human”:

Int(Human) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc))) (8.14)

where H(oαω)ϕ is a formula representing people.
Among all features cϕ we may distinguish also a feature of nationality nϕ and

height vϕ. Let the nationality of Swedes nϕ be determined by the value (constant)
dα. Then intension of “to be Swede” is

Int(Swedes) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc)))&&&(hn(wn) ≡ dα).

(8.15)

Thus, intension of Swedes assigns to each context wωϕ a fuzzy set of people whose
nationality hn(wn) in the context wn corresponding to nationality has the value dα,
i.e. the nationality of Swedes.

To express intension of Very tall Swedes, we must consider the height vϕ and
characterize the truth of the proposition the height is very big in the context wv:

Int(Very tall Swedes) := λwωϕ λh(αω)ϕ · (∀cϕ)(Hc(wc)(hc(wc)))&&&

(hn(wn) ≡ dα)&&&(Bi Ve)(wv)(hv(wv)). (8.16)

Thus, this intension is a function assigning to each (global) context a fuzzy set of
people whose nationality is to be Swede and whose height hv(wv) in the context wv

is very big (i.e., they are very tall).
Now we can also construct the meaning of a simple sentence10:

〈Quantifier〉 Swedes are tall.

Firstwewill introduce the formulaSwedeusingλ-conversion: Swede ≡ Int(Swedes)
wh. Then intension of the proposition (sentence) “All Swedes are very tall” is

λwωϕ · (∀h(αω)ϕ)Swedewh ⇒⇒⇒ (Bi Ve)(wv)(hv(wv)).

Its interpretation in a modelM is a function which assigns to each context (possible
world woα) a truth value. We thus obtain intensions of various kinds of propositions,
such as “All Swedes are extremely tall ”, “All Swedes are more or less tall ”, etc.

10This sentence is often discussed by L.A. Zadeh in his lectures.
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Finally, we will analyze the proposition Most Swedes are tall. Using our theory
of intermediate quantifiers, we obtain intension of this proposition as follows:

λwωϕ · (∃zo((αω)ϕ)(ΔΔΔ(z ⊆ Swede w))&&&

(∀h(αω)ϕ)(zh ⇒⇒⇒ Bi(wv)(hv(wv)))&&&Bi Ve((μ(Swede w)z)). (8.17)

Thus, interpretation of this formula in a model M is a function assigning to each
(global) context wωϕ a truth value which is obtained as a minimum of the truth that
the greatest fuzzy set z of tall Swedes in the context w is very big (in the sense of the
measure μ).

8.2.8 Verbs and Other Linguistic Phenomena

Verbs that are the most complicated units of natural language. They vary by type,
and each type is determined by the kinds of words that follow it and the relationship
those words have with the verb itself. There are six types of verbs: intransitive (to run
how, to speak how), two kinds of transitive (to read what, to consider what), to-be
verbs, linking (seem, become) and two-place transitive (to give whom what).

Verbs stay in the core of sentences and can have varying number of arguments
(this is called valency) depending on the complexity of sentence. Furthermore, they
are characterized by other features, namely by tense (present, future, past), modality
(necessity, indicative, possibility), aspect (perfective, imperfective, continuous, etc.),
direction of speech, gender and other ones. More about verbs can be found in an
extensive literature (See, e.g., [6, 30, 57].)

The model of the meaning of verbs must cope with the problem of changing
valency. This mathematically means that verbs behave as relations with changing
arity. A possible model of the meaning of verbs can interpret them, for example, as a
union of fuzzy sets of fuzzy relations of different arities that depends on time. Hence,
we may construct intension of a verb as a function

Int(verb) : W × T →
K⋃

n=1

F(F(U n))

where T is time (we can put T = R), W is a set of possible worlds (contexts), U
a universe and K is a possible valency of the verb. The universe should consist of
various kinds of elements that can be named by noun phrases. In syntax of FTT, we
can express the meaning of verbs as a formula



8 Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning 157

λw λt
K∨

n=1

Ao(oαn)

where αn = α · · · α︸ ︷︷ ︸
n−times

and ∨ is a disjunction.

Till now, no model of the meaning of verbs using the means of fuzzy logic was
suggested. A detailed and careful elaboration in cooperation with linguists is needed.

There are also other phenomena that need to be captured by themodel of linguistic
semantics. Among them let us recall the topic–focus articulation and de dicto/de re
usage. The topic–focus articulation is a phenomenon that extremely extends expres-
sive power of natural language. Roughly speaking, each more complex linguistic
expression can be divided into two parts: the topic that is the known part and focus,
the new information. Each expression is thus ambiguous and the meaning of it can
be clear only after specifying both parts. For example, “John goes to the cinema”
says either that JOHN goes to the cinema (and not somebody else), or that John goes
to the CINEMA (and not to the theater), etc.11

The de dicto/de re distinction relates to the distinction about occupied office (e.g.,
that we speak about president—de dicto) or about Mr. Obama (de re). This problem
seems to be well captured by the means of FTT since it enables us to distinguish
between functions Aεε and objects Bε and manipulate with them (Cf. [7]).

8.3 Reasoning in FNL

Since FNL claims to be a logic of human reasoning, it must also suggest its model.
Till now, two main inference models are available. The first is inference on the basis
of linguistic description consisting of fuzzy/linguistic IF-THEN rules. The second
are reasoning schemes with generalized quantifiers. The most elaborated part are
intermediate syllogisms.

8.3.1 Fuzzy/Linguistic IF-THEN Rules

The theory of fuzzy IF-THEN rules is the most widely discussed and most powerful
area of fuzzy logic, which has a wide variety of applications. Recall the general form
of a fuzzy IF-THEN rule:

IF X is A THEN Y is B, (8.18)

11More about this phenomenon can be found, e.g., in [14].
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where X is A, Y is B are evaluative predications.12 A typical example is

IF temperature is small THEN the amount of gas is very big.

From the linguistic point of view, this is a simple conditional clause, i.e. a conditional
sentence with a clear structure consisting of the antecedent and consequent.

In FNL, we call a (finite) set of rules (8.18) a linguistic description. The rules
(8.18) (and the linguistic descriptions) apparently characterize some kind of relation
between values of X and Y . In the fuzzy set theory, these rules are usually construed
as special fuzzy relations. This is purely extensional approach and the rules, in fact,
are not treated as sentences of natural language. Let us remark that this method
of interpretation of fuzzy IF-THEN rules is very convenient when we need a well
working tool for approximation of functions but it is less convenient as a model of
human reasoning. Therefore, it does not fit the paradigm of FNL.

In FNL, the rules (8.18) are taken as genuine conditional clauses of natural lan-
guage and the linguistic description is taken as a text characterizing some situation,
strategy of behavior, control of some process, etc. The goal of the constructed FNL
model is to mimic the way how people understand natural language. Then, a formal
theory of Ł-FTT is considered so that intension of each rule (8.18) can be constructed:

Int(R) := λw λw′ · λx λy · EvA wx ⇒⇒⇒ EvC w′y (8.19)

where w,w′ are contexts of the antecedent and consequent of (8.18), respectively,
EvA is the intension of the predication in the antecedent and EvC the intension
of the predication in the consequent. The linguistic description is interpreted as a
set of intensions (8.19).13 When considering a suitable model, we obtain a formal
interpretation of (8.19) as a function that assigns to each pair of contextsw,w′ ∈ W a
fuzzy relation among objects.14 It is important to realize that in this case,we introduce
a consistent model of the context and provide a general rule for the construction of
the extension in every context.

When amodel of a linguistic description is given, wemust be able tomodel human
reasoning on the basis of it, given a perception in the form ‘X is A0’ whereA0 may
differ slightly from all the A1, . . . ,An . The well elaborated method is perception-
based logical deduction (See [36, 47].) whose main idea is to consider the linguistic
description as a specific text, which has a topic (what we are speaking about) and
focus (what is the new information).15 Each rule is understood as local but vague
information about the relation between X and Y . The given predication ‘X is A0’ is
taken as a perception of some specific value of X . On this basis, the most proper rule
from the linguistic description is applied (fires), and the best value of Y with respect
to this rule is taken as a result. Hence, despite the vagueness of the rules forming the
linguistic description, the procedure can distinguish among them

12For simplicity, we consider only one variable in the antecedent.
13See [38, 46] for the details.
14Note that for specific elements assigned to x, y, the intension (8.19) provides a truth value.
15For the detailed linguistic analysis of these concepts, see, e.g., [14].
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The rule of perception-based logical deduction can be formally expressed as

rPbL D : LPercLD(x0, w) = Int(X is Ai0), LD

Eval(ŷi0 , w
′,Bi0)

,

where LD is a linguistic description, and ŷi0 is the resulting best value of Y , provided
that the perception of x0 in the context w is the linguistic expression Ai0 and the
dependence between X and Y is locally characterized by LD.

The perception-based logical deduction is a powerful reasoning method that well
models the way of human reasoning and has a lot of various kinds of applications
(See [44]).

8.3.2 Syllogistic Reasoning

In this section, we will discuss syllogistic reasoning on the basis of sentences con-
taining intermediate quantifiers. We suppose to deal with the formal theory T IQ

mentioned above.
By a valid syllogism we understand a triple16 of formulas 〈P1, P2, C〉 such that

T IQ � P1&&& P2 ⇒⇒⇒ C

(equivalently, if T IQ � P1 ⇒⇒⇒ (P2 ⇒⇒⇒ C)). Note that, if a syllogism is valid then
the inequality

M(P1) ⊗ M(P2) ≤ M(C) (8.20)

holds in every model M |= T IQ.
Let Q1, Q2, Q3 be intermediate quantifiers and X, Y, M ∈ Formoα be formulas

representing properties. Analogously as in classical logic, we will consider four
figures of syllogisms:

Figure I
Q1 M is Y

Q2 X is M
Q3 X is Y

Figure II
Q1 Y is M

Q2 X is M
Q3 X is Y

Figure III
Q1 M is Y

Q2 M is X
Q3 X is Y

Figure IV
Q1 Y is M

Q2 M is X
Q3 X is Y

Peterson in his book [55] demonstrated that there are 105 intermediate syllogisms
that are valid. All these syllogisms contain the above introduced intermediate quanti-
fiers. Validity of them is proved syntactically in FNL (See [32].) (in the formal theory
T IQ) that is a very strong result assuring us that the inequality (8.20) holds in every
model. For example, below is the list of valid intermediate syllogisms containing the
intermediate quantifiers almost all (P), few (B), most (T, D), and many (K, G):

16In fact, we only need the number of formulas to be finite and reasonably small.
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Figure I Figure II Figure III Figure IV
AAP AEB (∗P)AI AEB
APP ABB E(∗P)O (∗P)AI
APT ABD (∗B)AO E(∗P)O
APK ABG A(∗P)I
API A(∗B)O P(∗P)I
EAB EAB T(∗P)I
EPB EPB (∗K)PI
EPD EPD (∗P)TI
EPG EPG P(∗K)I
E(∗P)O E(∗P)O B(∗P)O

D(∗P)O
G(∗P)O
B(∗T)O
B(∗K)O

(the letters refer to the concrete quantifiers introduced introduced above and the
asterisks denote quantifiers with presupposition of non-emptiness of the universe).

Examples of valid syllogisms are the following:

ATT-I : All women are well dressed Most people in the party are women

Most people in the party are well dressed

ETO-II : No lazy people pass exam Most students pass exam

Some students are not lazy people

PPI-III : Almost all old people are ill Almost all old people have gray hair

Some people with gray hair are ill

TAI-IV : Most shares with downward trend are from energy industry All shares of energy industry are important

Some important shares have downward trend

8.3.3 A Model of Commonsense Human Reasoning

Finally, we will also demonstrate the power of FNL in a more complex model of
human reasoning. This was shown on an example of reasoning of a detective Lt.
Columbo based on one episode from the famous TV series.17 Let us emphasize that
the presented method can be taken as a more general methodology that has a variety
of other specific applications (Cf. [11]).

17For the details, see [45].
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The story:

Mr. John Smith has been shot dead in his house. He was found by his friend, Mr. Robert
Brown. Lt. Columbo suspects Mr. Brown to be the murderer.

Mr. Brown’s testimony:

I have started from my home at about 6:30, arrived at John’s house at about 7, found John
dead and went immediately to the phone booth to call police. They came immediately.

Evidence of Lt. Columbo:

Mr. Smith had a high quality suit and a broken wristwatch stopped at 5:45. There was no
evidence of a hard blow to his body. Lt. Columbo touched the engine of Mr. Brown’s car and
found it to be more or less cold.

Lt. Columbo concluded that Mr. Brown lied because of the following:

(i) Mr. Brown’s car engine is more or less cold, so he must have been waiting long
(more than about 30min). Therefore, he could not have arrived and called the
police (who came immediately).

(ii) A high quality wristwatch does not break after not too hard blow. A man having
high quality dress and a luxurious house is supposed to also have a high quality
wristwatch. The wristwatch of John Smith is of low quality, so it does not belong
to him. It does not display the time of Mr. Smith’s death.

The reasoning of Lt. Columbo based on FNL is modeled by means of a combina-
tion of logical rules, world knowledge and evidence with the help of non-monotonic
reasoning.

The world knowledge includes common sense knowledge of the context and
further knowledge, which can be characterized using linguistic descriptions applied
in specific context for the included variable, e.g., drive duration to heat the engine,
temperature of engine, etc. The used linguistic descriptions are, e.g., the following:

• Logical rules that are hereditary valid, for example

IF X is Smν THEN X is¬¬¬ Bi,

IF X is Biν THEN X is¬¬¬ Sm.

where Sm, Bi are linguistic expressions “small, big” and ν is some linguistic hedge.
• Common sense knowledge from physics:

IF drive duration is Bi THEN engine temperature is Bi,

IF drive duration is Sm THEN engine temperature is ML Sm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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• Common sense knowledge of customs of people:

IF quality of x’s suit is Bi AND quality of x’s house isVe Bi

THEN wealth of x is Bi,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Some other kinds of common sense knowledge, for example, properties of prod-
ucts, etc.

On the basis of a formal analysis which includes the use of the perception-based
logical deduction, Lt. Columbo concludes that the two special constructed theo-
ries are contradictory. Since his perceptions and the evidence cannot be doubted,
Mr. Brown is lying, so he had an opportunity to kill Mr. Smith. It is important to
emphasize that the contradictory theories were constructed as nodes of a graph rep-
resenting the structure of non-monotonic reasoning.

8.4 Conclusion

In this paper, we suggest to focus more deeply on the proclaimed ability of fuzzy
sets—to enable to model the semantics of natural language expressions. Our idea is
to develop a special branch of mathematical fuzzy logic that we call Fuzzy Natural
Logic as a generalization of an older classical concept of Natural Logic. Its paradigm
is to model natural human reasoning that is based on the use of natural language.
Therefore, it is necessary to have also a model of semantics of natural language
at disposal. We argue that FNL should be developed in a close cooperation with
linguists and logicians.

We gave a brief overview of some units and phenomena of natural language and
outlined problems connected with their semantics. In parallel, we also outlined ways
how their semantics can be modeled inside FNL. In the second part, we also outlined
some of possible human reasoning schemes that can be modeled using FNL.

One can see that still many problems and open questions have to be solved and
answered before we can say that FNL is a well developed theory that reached its
goal—to model natural human reasoning. Even at this stage of research, though,
there are various interesting and quite well working applications of FNL. Let us
mention few of them:

• Identification of rock sequences on the basis of expert geologists’ knowledge [34].
• Linguistic control of technological processes [41, 51].
• Multi-criteria decision-making (without need to define weights of criteria) [48].
• Forecasting of the trend-cycle of time series [50, 52] and linguistic evaluation of
is trend (i.e., “steep increase/decrease, stagnating, rough increase/decrease”, etc.).
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seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39, 305–328 (2010)
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Chapter 9
From Lattice Valued Theories to Lattice
Valued Analysis

Irina Perfilieva and Alexandr Šostak

Abstract Weclaimand justify that the future of a fuzzy logic is in the interconnection
of various well-developed theories. We are focused on a lattice valued analysis that
unifies the treatments of atomic elements, sets of atomic elements, functions between
sets of atomic elements and their properties. We clarify the relationship between a
fuzzy function and its ordinary core. We discuss the property of continuity of a fuzzy
function in a lattice valued topology.

9.1 The Future of the Fuzzy Logic

Fuzzy logic and corresponding to it calculus gave birth to various lattice valued theo-
ries, such as fuzzy relation equations and inequalities, fuzzy measures and integrals,
fuzzy operation research, fuzzy topology and many others. The development of each
particular theory is more or less independent on others. The only common tool is a
lattice ordered algebra. As a consequence of this, we have that similar results appear
under different names.

In our opinion, the future of a fuzzy logic in a broader sense (by this we mean
not only [0, 1]-valued structures, but lattice ordered ones) is in the interconnection
of various well-developed theories. Let us explain this vision in more details.

Fuzzy logic as a theory provides other theories and applications with a generic
language for various descriptions of objects and relations and formulation of results.
The structure of this language is similar to the structure of a tree (or a forest): one or
several basic notions (fuzzy sets, relations, partitions, etc.), relations and operations
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over them. From this point of view, the future of the fuzzy logic is in preserving the
fundamental structure and developing on its base other (specialized) theories.

We consider the fuzzy logic as a mathematical discipline, which means that once
a new notion is formulated, it opens a door for a new direction (branch) where this
notion becomes fundamental. On the other hand, in order to obtain a first-class theory,
its local branches should intertwine and enrich each other.

Nowadays, there are many specialized theories (branches) that stemmed from
the fuzzy logic, but do not influence each other. It is the right time to take them
as basic tools and develop a higher level theory on their common framework. This
contribution is an example of how it can be done.

9.2 Introduction

We are focused on what can be called as Lattice Valued Analysis—the name which
we use instead of ordinarymathematical analysis. It develops foundations in the sense
of a unified approach to the treatment of atomic elements, sets of atomic elements,
functions between sets of atomic elements and their properties. The structure of
the proposed lattice valued analysis mimics the way, how the modern mathematical
analysis is presented.

We demonstrate that joint efforts of already established lattice valued theories,
such as residuated algebraic structures, fuzzy relation equations and fuzzy topology
lead to a calculus of fuzzy points and singletons (atomic units), fuzzy sets (collec-
tions of atomic units) and fuzzy functions (points-to-fuzzy sets mappings). In this
contribution, we do not go beyond the notion of a continuous fuzzy function which
we formulate in languages of the mentioned above lattice valued theories. Our pre-
sentation is given on rather elementary level in order to keep an interest of the reader
to the proposed topic. We do not give a wide overview of achieved results, but trace
the development of principal notions and ideas. The main attention is paid to the
notion of fuzzy function, because it is crucial for many other areas and applications.
We are focused on a relational representation of a fuzzy function (important for fuzzy
IF-THEN rules models), fuzzy function properties, connection to an ordinary “pro-
totype” (we call it a core) of a fuzzy function and its continuity. Below, is a short
overview of various approaches to this notion.

Fuzzy function has at least two different meanings in fuzzy literature. On the one
side (see e.g., [2–4, 6, 7, 14]), a fuzzy function is a special fuzzy relation with a
generalized property of uniqueness. According to this approach, each element from
the ordinary domain of thus defined fuzzy function is associated with a certain fuzzy
set. Thus, a fuzzy function establishes a “point”-to-“fuzzy set” correspondence.

On the other hand (see [10–14]), a fuzzy function is a mapping between two
universes of fuzzy sets, i.e. establishes a “fuzzy set”-to-“fuzzy set” correspondence.
This approach is implicitly used in many papers devoted to fuzzy IF-THEN rule
models where the latter are actually partially given fuzzy functions.
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In this contribution, we show that both viewpoints can be connected by a natural
generalization of the Extension Principle of L. Zadeh [15]. In details, a fuzzy function
as a mapping is an extension of a fuzzy function as a relation to the domain of
fuzzy sets. The similar approach is used in mathematical analysis where an image
(pre-image) of a set under a function is commonly defined.

In order to establish the above mentioned extension, we introduce various spaces
of fuzzy objects with fuzzy equivalence relations on them. We show that similar to
the classical case, a (fuzzy) set is a collection of (fuzzy) points or (fuzzy) singletons.

We analyze a relationship between a surjective fuzzy function and its ordinary
core function. The similar study has been attempted in [2] for a perfect fuzzy function
and in [7] for one particular example of a fuzzy function. We propose a solution in
the general case.

Last, but not least, we develop the notion of a continuous fuzzy function on the
basis of a lattice valued topology, which is an extension of classical topology. Our
goal is to extend the definition of a continuous (ordinary) function between two
fuzzy topological spaces to the case where a function is fuzzy. Moreover, we analyze
continuity of both surjective fuzzy function and its core with respect to the same
fuzzy topological spaces.

The contribution is organized as follows. InSect. 9.3,wegive preliminary informa-
tion about extension principle, residuated lattices, fuzzy sets and fuzzy spaces. Fuzzy
functions and two approaches to this notion are discussed in Sect. 9.4. Section9.5
contains main results about continuity of a surjective fuzzy function. We included
proofs of some new statements to demonstrate how powerful are tools of involved
lattice valued theories.

9.3 Preliminaries

9.3.1 Extension Principle and Its Relational Form

An extension principle has been proposed by L. Zadeh [15] in 1975 and since then it
is widely used in the fuzzy set theory and its applications. Let us recall the principle
and propose its relational form which will be used later on in a correspondence with
the notion of fuzzy function.

Assume that X, Y are universal sets and f : X → Y is a function with the
domain X . Let moreover, F(X),F(Y ) be respective universes of fuzzy sets on X
and Y identified with their membership functions, i.e. F(X) = {A : X → [0, 1]}
and similarly, F(Y ). By the extension principle, an image of a fuzzy set A ∈ F(X)

under f is fuzzy set f →(A) on F(Y ) such that

f →(A)(y) = sup
y= f (x)

A(x). (9.1)



170 I. Perfilieva and A. Šostak

Let R f be a binary relation on X × Y which corresponds to the function f , i.e.

R f (x, y) = 1 ⇔ y = f (x).

Then it is easy to see that (9.1) can be equivalently represented by

f →(A)(y) =
∨

y∈Y

(A(x) · R f (x, y)), (9.2)

where · is the multiplication on [0, 1].
Expression (9.2) is the relational form of the extension principle. The meaning

of expression (9.2) will be more general, if we consider A as an L-fuzzy set (see
Definition 3), binary relation R f as a fuzzy relation, andmultiplication · as amonoidal
operation (see Sect. 9.3.2). In Sect. 9.4, we will discuss this generalization and its
relationship to fuzzy functions.

9.3.2 Residuated Lattice

Let residuated lattice be a basic algebra of operations.

Definition 1 A residuated lattice is an algebra

L = 〈L ,∨,∧, ∗,→, 0, 1〉.

with a support L and four binary operations and two constants such that

• 〈L ,∨,∧, 0, 1〉 is a lattice where the ordering ≤ defined using operations ∨,∧ as
usual, and 0, 1 are the least and the greatest elements, respectively;

• 〈L , ∗, 1〉 is a commutative monoid, that is, ∗ is a commutative and associative
operation with the identity a ∗ 1 = a;

• the operation → is a residuation operation with respect to ∗, i.e.

a ∗ b ≤ c ⇐⇒ a ≤ b → c.

A residuated lattice is complete if it is complete as a lattice.
The following is a binary operation of biresiduation on L:

x ↔ y = (x → y) ∧ (y → x).

The well known examples of residuated lattices are: boolean algebra, Gödel,
Łukasiewicz and product algebras. In the particular case L = [0, 1], multiplication
∗ is a left continuous t-norm.

From now on we fix a complete residuated lattice L.
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9.3.3 L-fuzzy Sets, Fuzzy Relations and Fuzzy Spaces

Below, we recall definitions of principal notions in the fuzzy set theory.

Fuzzy sets with crisp equality

Let X be a non-empty universal set, L a complete residuated lattice. An L-fuzzy
set A of X (fuzzy set, shortly) is a map A : X → L that establishes a relationship
between elements of X and degrees of membership to A.

Fuzzy set A is normal if there exists xA ∈ X such that A(xA) = 1. The (ordinary)
set Core(A) = {x ∈ X | A(x) = 1} is a core of a normal fuzzy set A. The (ordinary)
set Supp(A) = {x ∈ X | A(x) > 0} is a support set of fuzzy set A.

The class of L-fuzzy sets of X will be denoted L X . The couple (L X ,=) is called
an ordinary fuzzy space on X . The elements of (L X ,=) are fuzzy sets equipped with
the equality relation, i.e. for all A, B ∈ L X ,

A = B if and only if (∀x ∈ X) A(x) = B(x).

In (L X ,=), we strictly distinguish between fuzzy sets even if their membership
functions differ in one point. On (L X ,=), we can define the structure of residuated
lattice using pointwise order relation ≤ and operations over fuzzy sets. Due to this
convention, we have inclusion, union and intersection of two fuzzy sets A, B ∈ L X

as follows:

A ⊆ B if and only if (∀x ∈ X) A(x) ≤ B(x),

(A ∪ B)(x) = A(x) ∨ B(x),

(A ∩ B)(x) = A(x) ∧ B(x).

The lattice 〈L X ,∪,∩, 0, 1〉 is complete, where the bottom 0 and the top 1 are constant
fuzzy sets, whose values are 0 and 1, respectively.

A class of normal L-fuzzy sets of X will be denotedN (X). The space (N (X),=)

is a subspace of (L X ,=).
By identifying a point u ∈ X with a fuzzy subset Iu : X → L such that Iu(u) = 1

and Iu(x) = 0 whenever x �= u we may view X as a subspace of (L X ,=) and as a
subspace of (N (X),=).

Space with fuzzy equivalence. Fuzzy points

Let X , Y be universal sets. Similarly to L-fuzzy sets, we define (binary) (L)-fuzzy
relations as fuzzy sets of X × Y . The class of L-fuzzy relations of X × Y will be
denoted L X×Y . If X = Y , then a fuzzy set of X × X is called a (L)-fuzzy relation
on X .
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Fuzzy relation E on X is called fuzzy equivalence on X (see [1, 5, 8])1 if for all
x, y, z ∈ X , the following holds:

1. E(x, x) = 1, reflexivity,
2. E(x, y) = E(y, x), symmetry,
3. E(x, y) ∗ E(y, z) ≤ E(x, z), transitivity.

If fuzzy equivalence E fulfills

1. E(x, y) = 1 if and only if x = y,

then it is called separated or a fuzzy equality on X .
Fuzzy equivalence E assigns a degree of coincidence to any two elements from X .
Let us remark that fuzzy equivalence E creates fuzzy sets on X , we will call them

E-points2 of X . Every E-point is a class of fuzzy equivalence E of just one point of
X . In more details, if t ∈ X , then E-point Et is a fuzzy set Et : X → L such that
for all x ∈ X , Et (x) = E(t, x). It is easy to see that Et is a normal fuzzy set and
t ∈ Core(Et ).

The set of all E-points of X will be denoted by

PE
X = {Et | t ∈ X}.

Obviously, (PE
X ,=) is a subspace of (L X ,=). If E is a fuzzy equivalence on X ,

then it may happen that some element, say Et from (PE
X ,=) has more than one

representation, i.e. there exists u ∈ X such that Eu = Et . It can be shown that this
holds true if and only if E(t, u) = 1, or u ∈ Core(Et ).

On the other side, if E is a fuzzy equality on X , then the core of every E-point
consists of just one element and thus, a representation of any E-point in the form Et

is unique.

Fuzzy singletons and sub-singletons

Let us equip space X with fuzzy equality E and denote it by (X, E). In this space, we
are able to distinguish degrees of coincidence E(t, u) of any two elements t, u from
X . As we discussed above, crisp and fuzzy equalities put into the correspondence
with each element t of X its characteristic function It and its E-point Et . Both are
normal fuzzy sets in L X with the same one-element core. Let us consider fuzzy sets
St ∈ L X , that are in between It and Et , i.e. for all x ∈ X ,

It (x) ≤ St (x) ≤ Et (x). (9.3)

We will call them E−singletons. In [7], fuzzy singletons were introduced as normal
fuzzy sets St ∈ L X with {t} as a one-element core, i.e. St (t) = 1, and such that for
all x, y ∈ X ,

1Fuzzy equivalence appears in the literature under the names similarity or indistinguishability as
well.
2This notion was introduced in [7].
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St (x) ∗ St (y) ≤ E(x, y), (9.4)

where ∗ is the monoidal operation from the chosen residuated lattice L . It is easy to
show that this is equivalent to our characterization (9.3). Indeed, if St fulfills (9.3),
then it is normal, it has {t} as a one-element core, and for all x, y ∈ X ,

St (x) ∗ St (y) ≤ E(t, x) ∗ E(t, y) ≤ E(x, y).

On the other side, if St has {t} as a one-element core and fulfills (9.4), then for all
x ∈ X , It (x) ≤ St (x) and

St (x) = St (x) ∗ St (t) ≤ E(t, x) = Et (x).

From (9.4) and the discussion above it follows that E-point Et is the greatest
E-singleton with the one-element core {t}. The space of all E-singletons will be
denoted by SE

X . Obviously, SE
X ⊆ L X and (SE

X ,=) is a subspace of (L X ,=).
Let us discard normality in the characterization (9.3) of E-singleton and define

E-sub-singleton as a fuzzy set U ∈ L X , that fulfills the following property:

(∃t ∈ X)(0 < U (t))&(0 < U (x) ≤ Et (x)). (9.5)

In order to stress that an E-sub-singleton is connected with a certain point t , we
will denote it as Ut . Similarly to the above, we can prove that any E-sub-singleton
fulfills (9.4). The space of all E-sub-singletons will be denoted by U E

X . Obviously,
SE

X ⊆ U E
X ⊆ L X and (U E

X ,=) is a subspace of (L X ,=).

Extensional hulls

Let (X, E) be a space with fuzzy equivalence. Similarly to the above, we can define
notions of E-singleton and E-sub-singleton. However, different to the above, this
notions refer to t as to a certain, but not necessarily unique element of the core of Et .

We remind [7] that fuzzy set A is extensional (with respect to E) or E-extensional,
if for all x, y ∈ X ,

A(x) ∗ E(x, y) ≤ A(y).

The smallest extensional fuzzy set AE containing fuzzy set A is called the extensional
hull of A. It is not difficult to prove the following representation of AE .

Lemma 1 The extensional hull AE of every fuzzy set A ∈ L X can be represented
as follows:

AE (y) = sup
x∈X

A(x) ∗ E(x, y). (9.6)

Representation (9.6) has been obtained in many papers (see e.g., [5]).
Lemma 1 has two important corollaries.

Corollary 1 Extensional hull of element t ∈ X identified with It is equal to
E-point Et .
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Corollary 2 Extensional hull of E-singleton St ∈ L X , t ∈ X, is equal to the
corresponding E-point Et .

Decomposition of a fuzzy set into E-sub-singletons

The purpose of this paragraph is to show that a fuzzy set can be decomposed into
a collection of “atomic” singletons or sub-singletons and afterwards, can be repre-
sented as a union of these atomic elements. The proposed representation is similar
to that in the theory of sets where a set is a collection of pairwise different elements.

In the below given text, we assume that atomic elements are defined in a space
(X, E), where E is a fuzzy equivalence on X .

Theorem 1 Let A ∈ L X be a non-zero fuzzy set. Then A can be represented by
unions of E-sub-singletons U A

t or E-sub-singletons W A
t , i.e.

A =
⋃

t∈Supp(A)

U A
t =

⋃

t∈Supp(A)

W A
t , (9.7)

where
U A

t (x) = A(x) ∧ Et (x), x ∈ X, (9.8)

and
W A

t (x) = A(x) ∗ Et (x), x ∈ X. (9.9)

9.4 Fuzzy Functions

The notion of fuzzy function has many definitions in the literature, see e.g., [3, 4, 7,
11]. In [3, 4, 7], a fuzzy function is considered as a special fuzzy relation. Below, we
remind the notion of fuzzy function as it appeared (independently) in [3, 6, 7]. We
will use this definition in our analysis due to the following reason: it is based on the
definition of a function as a special binary relation with the property “single value
condition”.

Definition 2 Let E , F be fuzzy equivalences on X and Y , respectively. A fuzzy
function is a binary fuzzy relation ρ on X × Y such that for all x, x ′ ∈ X , y, y′ ∈ Y
the following axioms hold true:

FF.1 E- extensionality – ρ(x, y) ∗ E(x, x ′) ≤ ρ(x ′, y),
FF.2 F- extensionality – ρ(x, y) ∗ F(y, y′) ≤ ρ(x, y′),
FF.3 single value condition – ρ(x, y) ∗ ρ(x, y′) ≤ F(y, y′),

A fuzzy function is called perfect [2], if it additionally fulfills

FF.4 for all x ∈ X , there exists y ∈ Y , such that ρ(x, y) = 1.



9 From Lattice Valued Theories to Lattice Valued Analysis 175

Semantically, ρ(x, y) is a truth degree of the assertion: “y is a functional value of
x”. Axiom FF.4 characterize the property of being certainly defined on X .

A fuzzy function is called (strong) surjective [2], (see also [6, Sect. 4.2]) if

FF.5 for all y ∈ Y , there exists x ∈ X , such that ρ(x, y) = 1.

Actually, fuzzy function ρ is a point-to-fuzzy set mapping between X and LY such
that for all x ∈ X , ρ(x, ·) is a fuzzy set on Y . In other words, it is a fuzzy-valued
function. If for all x ∈ X , ρ(x, ·) is a normal fuzzy set then ρ is perfect, and there
is an ordinary function g : X → Y such that for all y ∈ Y , ρ(x, y) = F(g(x), y)

(see [3]). This means that every F-fuzzy point Fg(x) of Y determined by g(x) is a
fuzzy value of ρ at x ∈ X .

In our study, we will consider the case where ρ is surjective and defined on X , i.e.

(∀x ∈ X)(∃y ∈ Y ) ρ(x, y) > 0. (9.10)

In this case, we will propose an analytic representation of ρ and use ρ in the general-
ized extension principle. Moreover, we will discover a relationship between a fuzzy
function, its ordinary core function and its extension to a mapping over the domain
of fuzzy sets.

9.4.1 Fuzzy Function and Its Core

In this section,wewill show that each surjective fuzzy functionρ on X×Y determines
a corresponding ordinary core function g : X ′ → Y , where X ′ ⊆ X consists of all
those points x ′ ∈ X that guarantee surjectivity of ρ as it is expressed in axiom FF.5.
Let us give more details to the construction of X ′.

We assume that X is equipped with fuzzy equivalence E , Y with fuzzy equality
F and ρ is a surjective fuzzy function. For every y ∈ Y , let us choose the set X y =
{xy | xy ∈ Core(ρ(·, y))} and show that for different y1, y2 ∈ Y , X y1 ∩ X y2 = ∅.
Indeed, if on contrary, there is x ∈ X y1 ∩ X y2 , then ρ(x, y1) = 1 and ρ(x, y2) = 1,
so that by axiom FF.3, we arrive to F(y1, y2) = 1 and thus, to y1 = y2.

To finish the construction of X ′, we choose one (arbitrary) element xy ∈ X y and
put it into X ′, so that X ′ = {xy | xy ∈ X y, z ∈ Y }. We will refer to X ′ as to the
ρ(−1)(Y ).

The proofs of the below given Theorems 2 and 3 are in [12].

Theorem 2 Let fuzzy relation E be a fuzzy equivalence on X and F a fuzzy equality
on Y . Let fuzzy relation ρ on X ×Y be a surjective fuzzy function and X ′ = ρ(−1)(Y ).
Then the following fuzzy relation on X

E ′(x, x ′) =
∧

y∈Y

(ρ(x, y) ↔ ρ(x ′, y)), (9.11)
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is a fuzzy equivalence E ′ such that

1. E ≤ E ′ and ρ is a fuzzy function with respect to fuzzy equivalences E ′ and F,
2. for all x ∈ X, y ∈ Y ,

ρ(x, y) = E ′(x, xy), (9.12)

3. for all y, y′ ∈ Y ,
E ′(xy, xy′) = F(y, y′), (9.13)

4. the mapping g : X ′ → Y such that g(xy) = y is surjective and extensional with
respect to E ′ and F, i.e. for all x, t ∈ X ′,

E ′(x, t) ≤ F(g(x), g(t)). (9.14)

Corollary 3 Fuzzy equivalence E ′, given by (9.11), is the greatest one (in the sense
of ≤) that makes ρ to be a fuzzy function with respect to E ′ and F.

Corollary 4 Fuzzy equivalence E ′, given by (9.11), covers X, i.e. for all x ∈ X
there exists xy ∈ X ′ such that E ′(x, xy) > 0.

The meaning of the assertions below is that a surjective fuzzy function ρ is indeed
a fuzzified version of its core function g : X ′ → Y , where X ′ ⊆ X . If x ∈ X , then
the fuzzy value of ρ(x, ·) is a “linear”-like combination of F-fuzzy points Fg(x ′)(·).
In particular, if x ′ ∈ X ′ - domain of g, then the fuzzy value of ρ(x ′, ·) is equal to the
corresponding F-fuzzy point Fg(x ′)(·).
Theorem 3 Let fuzzy relations E, E ′, F, ρ and function g : X ′ → Y where X ′ =
ρ(−1)(Y ) fulfil assumptions and conclusions of Theorem 2. Then

1. for all x ∈ X, y ∈ Y ,

ρ(x, y) =
∨

x ′∈X ′
(E ′

x ′(x) ∗ Fg(x ′)(y)), (9.15)

2. for all t ∈ X ′, y ∈ Y ,
ρ(t, y) = Fg(t)(y). (9.16)

On Fig. 9.1, we see an illustration of some surjective fuzzy function and its ordi-
nary core function.

9.4.2 Generalized Extension Principle and Image
of a Fuzzy Set

In this section, we show how an image of a fuzzy set under a fuzzy function can
be computed. We propose the “Generalized extension principle”, which defines an
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Fig. 9.1 Example of a
surjective fuzzy function and
its core (black line on the
coordinate plane)
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image of a fuzzy set under a fuzzy function. We will be based on the “Extension
principle” of L.A. Zadeh [15] in the relational form (9.2), where we replace the
ordinary relation R f by fuzzy function ρ.

Definition 3 (Generalized extension principle) Let L be a complete residuated lat-
tice and (L X ,=), (LY ,=) fuzzy spaces. Let E , F be fuzzy equivalences on X and
Y , respectively, and fuzzy relation ρ ∈ L X×Y be a fuzzy function. Then the ρ-image
f →
ρ (A) of a fuzzy set A ∈ L X is a fuzzy set in (LY ,=) such that

f →
ρ (A)(y) =

∨

x∈X

(A(x) ∗ ρ(x, y)). (9.17)

Below, we will show that the image of a fuzzy set under a fuzzy function is a
union of corresponding images of constituting fuzzy sub-singletons, or in particular,
of E ′-fuzzy points.

Theorem 4 Let E be a fuzzy equivalence on X, F a fuzzy equality on Y and ρ ∈
L X×Y a fuzzy function. Then for any A ∈ L X ,

f →
ρ (A) =

∨

t∈Supp(A)

f →
ρ (W A

t ), (9.18)

where W A
t is a fuzzy sub-singleton (9.9) in the space (X, E ′).

In particular, if ρ is surjective, E ′ is a fuzzy equivalence given by (9.11) and fuzzy
set A is a union of fuzzy points E ′

t , i.e. A = ⋃
t∈Supp(A) E ′

t , then

f →
ρ (A)(y) =

∨

t∈Supp(A)

f →
ρ (E ′

t )(y) =
∨

t∈Supp(A)

ρ(t, y). (9.19)
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Proof By Theorem 1, A can be represented as a supremum of fuzzy sub-singletons
W A

t , t ∈ Supp(A), where W A
t (x) = A(x) ∗ E ′

t (x), x ∈ X . Thence,

f →
ρ (A)(y) =

∨

x∈X

(A(x) ∗ ρ(x, y)) =

=
∨

x∈X

⎛

⎝
∨

t∈Supp(A)

W A
t (x)

⎞

⎠ ∗ ρ(x, y) =
∨

t∈Supp(A)

∨

x∈X

W A
t (x) ∗ ρ(x, y) =

∨

t∈Supp(A)

f →
ρ (W A

t )(y).

To prove (9.19), we first decompose

f →
ρ (A)(y) =

∨

t∈Supp(A)

f →
ρ (E ′

t )(y),

then choose t ∈ Supp(A) and continue with the following chain of equalities

f →
ρ (E ′

t )(y) =
∨

x∈X

(E ′
t (x) ∗ ρ(x, y)) =

=
∨

x∈X

E ′
t (x) ∗

∨

x ′∈X ′
(E ′

x ′(x) ∗ Fg(x ′)(y)) =

∨

x ′∈X ′

(
∨

x∈X

E ′
x ′(x) ∗ E ′

t (x)

)

∗ Fg(x ′)(y) =

=
∨

x ′∈X ′
E ′

x ′(t) ∗ Fg(x ′)(y) = ρ(t, y),

where we made use of representation ρ by (9.15). Finally,

f →
ρ (A)(y) =

∨

t∈Supp(A)

ρ(t, y).

The following properties of fuzzy set images are analogous to their classical
prototypes. Let Ai ∈ L X , i ∈ I , be any collection of fuzzy sets, then

• f →
ρ (

⋃
i∈I Ai ) = ⋃

i∈I f →
ρ (Ai ),

• f →
ρ (

⋂
i∈I Ai ) ⊆ ⋂

i∈I f →
ρ (Ai ).
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9.4.3 Pre-image of a Fuzzy Set

The aim of this section is to define a pre-image of a fuzzy set under a fuzzy function.
Our goal is to find a definition that allows to show that properties of fuzzy set pre-
images are analogous to their classical prototypes.

Definition 4 Let L be a complete residuated lattice and (L X ,=), (LY ,=) fuzzy
spaces. Let E , F be fuzzy equivalences on X and Y , respectively, and fuzzy relation
ρ ∈ L X×Y be a fuzzy function. Then the ρ-pre-image f ←

ρ (B) of a fuzzy set B ∈ LY

is a fuzzy set in (L X ,=) such that

f ←
ρ (B)(x) =

∧

y∈Y

(ρ(x, y) → B(y)). (9.20)

The following properties of fuzzy set pre-images are analogous to their classical
prototypes. Let A, Ai ∈ L X , i ∈ I , be any collection of fuzzy sets, then

• f ←
ρ ( f →

ρ (A)) ⊇ A;
• f ←

ρ (
⋂

i∈I Ai ) = ⋂
i∈I f ←

ρ (Ai );
• f ←

ρ (
⋃

i∈I Ai ) ⊆ ⋃
i∈I f ←

ρ (Ai ).

9.5 Continuous Fuzzy Functions

In Sect. 9.4, we have remarked that fuzzy function is a point-to-fuzzy set mapping
or fuzzy valued function. The latter notion is widely used in the correspondence
with fuzzy numbers and their applications in various numeric methods with fuzzy
data. Continuous fuzzy valued functions are defined in the literature with the help of
alpha-cuts and an adaptation of ordinary epsilon-delta definition.

In this contribution, we are focused on lattice valued fuzzy sets and therefore, the
notion of a continuous fuzzy function should be defined with the help of a lattice
valued topology (L-topology or fuzzy topology), which is an extension of classical
topology. Let us remind that an L-topology [9] on a set X is a subset τ of L X

closed with respect to finite intersections and arbitrary unions. (X, τ ) is called an
L-topological space (fuzzy topological space). A (ordinary) function f : (X, τ ) →
(Y, ν) between two fuzzy topological spaces is called continuous if f ←(B) = B f ∈
τ for each B ∈ ν.

Our goal is twofold: to extend the definition of a continuous function between two
fuzzy topological spaces to the case where a function is fuzzy and to show that any
surjective fuzzy function is continuous with respect to particular fuzzy topological
spaces. To meet this goal, we extend the definition of a continuous function above by
replacing the pre-image of an ordinary function by the pre-image of a fuzzy function.
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Definition 5 Let (X, τ ) and (Y, ν) be two fuzzy topological spaces, and ρ ∈ L X×Y

be a fuzzy function. ρ is called continuous with respect to (X, τ ) and (Y, ν), if for
each B ∈ ν, f ←

ρ (B) ∈ τ , where f ←
ρ (B) is given by (9.20), i.e.

f ←
ρ (B)(x) =

∧

y∈Y

(ρ(x, y) → B(y)), x ∈ X.

The example of a fuzzy topology in a space with fuzzy equivalence is given in
Lemma 2. This particular fuzzy topology will be used in the below theorems where
we show that a surjective fuzzy function and its core are continuous with respect to
the same fuzzy topological spaces.

Lemma 2 Let (X, E) be a space with fuzzy equivalence. The class �(E) of all
E-extensional L-fuzzy sets is a fuzzy topology.

We say that (X, �(E)) is a fuzzy topological space of E-extensional L-fuzzy sets.
In Theorem 5, we prove that a core function of any surjective fuzzy function is

continuous with respect to fuzzy topological spaces that are constituted of fuzzy sets
that are extensional with respect corresponding fuzzy equivalences.

Theorem 5 Let E be a fuzzy equivalence on X and F a fuzzy equality on Y . Let fuzzy
relation ρ on X ×Y be a surjective fuzzy function with the core function g : X ′ → Y ,
where X ′ = ρ(−1)(Y ). Let moreover, E ′ be the greatest fuzzy equivalence on X (in
the sense of ≤) that makes ρ a fuzzy function with respect to E ′ and F. Then function
g between fuzzy topological spaces (X ′, �(E ′)) and (Y, �(F)) is continuous.

Proof The proof is based on Theorem 2 and especially on equality (9.13), that states
E ′(xy, xy′) = F(y, y′), where xy, xy′ ∈ X ′, y, y′ ∈ Y .

Let B ∈ �(F), i.e. B is extensional with respect to F . We shall prove that
g←(B) ∈ �(E ′), where g←(B) = Bg. In other words, we shall prove that Bg is
extensional with respect to E ′. This follows from

B(g(xy)) ∗ E ′(xy, xz) = B(y) ∗ F(y, z) ≤ B(z) = B(g(xz)),

where xy, xz ∈ X ′ and z, y ∈ Y are corresponding elements. Thus, g←(B) ∈ �(E ′)
and g is continuous. �

In Theorem 6, we prove that any surjective fuzzy function is continuous with
respect to fuzzy topological spaces that are constituted of fuzzy sets that are exten-
sional with respect corresponding fuzzy equivalences.

Theorem 6 Let the assumptions of the Theorem 5 be fulfilled. Then fuzzy function
ρ is continuous with respect to fuzzy topological spaces (X ′, �(E ′)) and (Y, �(F)),
where X ′ = ρ(−1)(Y ).

Proof The proof is based on Theorem 2 and especially on the two equalities: rep-
resentation (9.12), i.e. ρ(x, y) = E ′(x, xy), and equality (9.13), i.e. E ′(xy, xy′) =
F(y, y′), where xy, xy′ ∈ X ′, y, y′ ∈ Y .
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Let B ∈ �(F), i.e. B is extensional with respect to F . We shall prove that
pre-image f ←

ρ (B) given by (9.20), is extensional with respect to E ′ , i.e. f ←
ρ (B) ∈

�(E ′). At first, we show that for all x ∈ X ′, f ←
ρ (B)(x) = Bg(x). Let x ∈ X ′, so

that there exists z ∈ Y , such that x = xz . Then

∧

y∈Y

(ρ(x, y) → B(y)) =
∧

y∈Y

(E ′(xz, xy) → B(y)) =
∧

y∈Y

(F(z, y) → B(y)) = B(z) = B(g(xz)) = B(g(x)).

The proof that Bg is extensional with respect to E ′ is the same as at the end of the
previous theorem. �

9.6 Conclusion

Our vision about the future of a fuzzy logic is in the interconnection of various
well-developed theories. In this contribution, we were focused on the lattice valued
analysis that unifies approaches to the treatment of atomic elements, sets of atomic
elements, functions between sets of atomic elements and their properties.We demon-
strate that joint efforts of already established lattice valued theories lead to a calculus
of fuzzy points and fuzzy functions. We showed that similarly to the classical case,
any fuzzy function can be extended to the domain of fuzzy subsets and this exten-
sion is similar to the Extension Principle of L. Zadeh. We clarified the relationship
between a fuzzy function and its ordinary core function. We developed the notion
of a continuous fuzzy function on the basis of a lattice valued topology and proved
continuity of a surjective fuzzy function.
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Chapter 10
Applying Fuzzy Mathematics to Empirical
Work in Political Science

John N. Mordeson, Terry D. Clark and Mark J. Wierman

Abstract This paper discusses the effort that scholars have been engaged in to
develop the necessary theoretical basis for political scientists to apply fuzzy logic to
empirical analysis in social choice. This paper discusses the many successes scholars
have had in this endeavor. It also provides direction for future work in answering
questions that have yet to be resolved adequately.

10.1 Past Work

Since 2006, Terry D. Clark (political science), John N. Mordeson (mathematics)
and Mark J. Wierman (computer science) have been engaged in an effort to develop
the necessary theoretical basis for political scientists to apply fuzzy logic to empir-
ical analyses in social choice. We have been supported in that task by a goodly
number of undergraduates and graduate students. Despite the fact that political sci-
entists have made increasing resort to mathematics in the last two decades, relatively
few articles making use of fuzzy approaches have appeared in the discipline’s jour-
nals. Claudio Cioffi-Revilla [16] first argued that fuzzy set logic might offer some
utility to research in international relations. In response, Taber [78] and Seitz [75]
employed fuzzy expert systems to simulate decision-making in international relations
and Koenig-Archibugi [43], Arfi [2], and Sanjian [68–73] used fuzzy mathematics
to test hypotheses concerning decision-making in international relations.
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Charles C. Ragin subsequently advanced a method for applying fuzzy mathemat-
ics in other subdisciplines of political science. In [65], he reformulated his earlier
work [66] in which he argued that Boolean logic could be applied to test for multiple
paths of causality across a modest number of nation-states. In his reformulation,
Ragin abandons crisp sets required by Boolean logic (yes-no membership in a set) in
favor of fuzzy set membership. He then demonstrates how fuzzy logic can be used
to argue for necessary or sufficient conditions as well as multiple paths of causal-
ity between a set of conditions and an outcome. Few political scientists have taken
Ragin up on the challenge to employ fuzzy mathematics. An exception is Penning
[63]. The reticence of political scientists to employ Ragin’s fuzzy approach owes
largely to the property ranking problem, a problem related to the assignment of
membership values, see [76, 79–82]. While Cioffi-Revilla [16] notes in his seminal
article that statistical analyses constitute an approach frequently marked bymeasure-
ment problems, data validity issues, and random error, the argument persists among
political scientists that the primary methods for establishing correlations in fuzzy
data (measures of subsethood) are particularly sensitive to whether the dimensions
on which the data are coded are comparable [65, 66]. To correct for this, Ragin [65]
suggests that researchers “adjust” measures to see if the test of necessity or sufficient
is reached by doing so. While he cautions scholars to carefully consider these adjust-
ments in light of theory, the fact that theory remains largely unspecified significantly
reduces its ability to serve as a guide to such adjustments. In effect, Ragin’s method
is largely an inductive data mining approach that permits models to remain relatively
poorly specified. Hence, scholars risk arriving at conclusions that are little more than
consequences of how the data are measured.

Theoretical efforts attempted to deal with this problem are addressed by the
authors in [53] with a follow-on empirical piece in [51]. These efforts were informed
by the proposition that what are needed are fuzzy approaches and mathematical
procedures that provide an estimate of the correlations among hypothesized vari-
ables derived from the models instead of measuring the degree to which one is a
subsethood of another. It seemed that one promising avenue was offered by using
the transitive closure [42], which permits the analyst to estimate the degree to which
variables “belong” in the same set. The procedureworkswith themax-min product of
matrices containing the values for dependent and independent variables. The result-
ing matrix provides an indirect estimate of the degree to which causal variables are
inter-correlated as well as the degree to which each is correlated with the dependent
variable. The latter permits re-analysis of correlations based on aggregating highly
inter-correlated variables. The estimates are not dependent onmeasuring subsethood,
an approach highly sensitive to the property ranking of data. Another approach con-
sidered was fuzzy clustering [9, 40], which categorizes variables on the basis of their
degree of similarity. It too focuses on estimating the degree of correlation between
variables.

Ultimately, however, muchmore fertile ground for fuzzy approaches was found in
social choice, a highly formal and dynamic research agenda at the boundary of polit-
ical science and economics that has drawn substantial scholarly attention for several
decades. In spite of substantial criticism from Pena and Piggins [64] social choice



10 Applying Fuzzy Mathematics to Empirical Work in Political Science 185

theory has informed a goodly number of formal models. These models typically
assume that political actors are rational and that they possess perfect information
(they know their own political references as well as that of others). Thus, political
actors’ preference orderings possess the mathematical property of comparability:
given any set of choices, she can state definitely whether she prefers one to the other
or she is indifferent between them. Crisp approaches, however, effectively minimize
the latter possibility or result in its being ignored. Thus, an alternative in relation
to another is either strictly preferred or not preferred by a political actor. While this
reduction in ambiguity makes it easier to apply Euclidean distance in spatial models
to argue that all points within a circle (or ellipse) whose center is at the ideal point
are preferred to those outside of the circle (only the set of options lying precisely on
a circle or ellipse about the ideal point being equally preferred to one another), the
conclusions derived from the models are significantly effected. The most important
consequence is that in multi-dimensional models, there is no maximal set (a set of
alternatives that is strictly preferred to all others). In formal terms, a maximal set is
defined [4] as follows:

M(R, X) = {x ∈ X | x Ry for all y ∈ X}, (10.1)

where X is a set of alternatives and R is a binary relation on X.

It seemed that a fuzzy approach might deal with this problem, among others, in
social choice. The contours of a fuzzy approach to modeling thick indifference were
laid out by the authors in [17]. The approach permits the calculation of a maximal
set with relative ease under assumptions of non-separability. The approach eschews
the conventional approach to fuzzy spatial modeling, which begins with fuzzy pref-
erence relations, see [9, 10, 12, 39, 40, 58, 60, 61] and follows instead the lead
of Nurmi [59] by beginning with individual preferences. This raises a substantial
number of issues related to how to derive fuzzy preference relations from fuzzy indi-
vidual preferences, but the fact that social science data typically measures individual
preferences rather than preference relations commends the approach. Moreover, in a
subsequent published work it is demonstrated that one can determine the existence
of a maximal set with relative ease no matter how irregular the geometric shape or
number of dimensions individual preferences might take [52].

Since the intent of our efforts is to produce approaches that are usable for empirical
analyses in political science, we demonstrated the empirical utility of this approach in
[13, 18]. Despite the demonstrated utility of our fuzzy spatial models, it nonetheless
remains that it merely reduces the likelihood of an empty majority maximal set. In
what is our most important paper in this series, we demonstrate [50] that in all but a
limited number of cases, the maximal set is empty in an n-dimensional spatial model
if and only the Pareto set contains a union of cycles. Thus, while a fuzzy approach
is far more likely to result in a maximal set than is a crisp approach, the problem
persists. This is a decidedly negative result if one hopes to predict political ulotomies
on the basis of the existence of a maximal set. That is, we expect that social choice is
constrained by collective social preferences. The argument is vacuous in the absence
of a maximal set.
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Predictions concerning voting outcomes in crisp spatial models rely heavily on
the existence of a core, in the absence of which political players choosing among a set
of alternatives by majority rule will not be able to arrive at a stable choice. No matter
which option theymight initially choose,most voting ruleswill permit another option
to defeat the previously chosen one. Such problems particularly plague majority rule
spatial models at dimensionality greater than one. Mordeson, Bhutani and Clark [47]
shown that a fuzzy core is more likely in two or more dimensions as the number of
players increases. However, many of the results depend on fuzzy preferences which
are bounded away from 0.

Let X be a set and P∗(X) the set of all nonempty subsets of X. A choice function
C of P∗(X) into itself such that C(S) ⊆ S for all S ∈ P∗(X). A choice function
C is called rationalizable if there exists a binary relation R on X such that for all
S ∈ P∗(X),

C(S) = M(R, S); (10.2)

in which case C is said to be rationalized by R. If C is rationalizable by R, then
the choices determined by C are consistent with the maximization relative to R. A
set of consistency conditions for choice functions is studied in the crisp case. These
conditions take the form of restrictions on how a choice function behaves as the
subset of feasible alternatives is varied. Since human preferences are fuzzy in nature,
Orlovsky [61] first considered them as fuzzy relations for drawing conclusions in
decision making problems. Since then many researchers have studied them from
different points of view. It is shown by Mordeson et al. [47] that if strict preferences
are partial, then many of the crisp results carry over to the fuzzy case. In Barrett et al.
[8], several rules for generating exact choices from fuzzy weak preference relations
are introduced and the extent to which choice sets are generated by these rules satisfy
weak rationality conditions is studied It is shown that max-min transitivity is crucial
to obtaining a positive result. In Banerjee [6], conditions under which a fuzzy choice
function is rationalizable by a fuzzy revealed preference relation satisfying certain
regularity conditions is investigated. In this paper attention is confined to the case
where the domain of the choice function consists of all crisp finite subsets of the
universal set of alternatives. Two sets of weak and strong axioms of fuzzy revealed
preference (WAFRP) and (SAFRP) are stated. In both cases it is shown that WAFRP
is not equivalent to SAFRP and SAFRP does not characterize rationality. In the case
where every set of available alternatives has at least one element which is unambigu-
ously chosen,WAFRP is equivalent to SAFRP, but SAFRP still does not characterize
rationality. A fuzzy congruence condition, stronger than SAFRP is proposed and is
shown to be necessary and sufficient for rationality. Desai and Chaudhari [14], intro-
duce weak fuzzy T -congruence axiom in order examine the full rationality of a fuzzy
choice function. They characterize full rationality of fuzzy choice functions in terms
of this axiom and the Chernoff axiom. They prove that G-rational choice functions
with transitive rationalization satisfying the Chernoff axiom characterizes their full
rationality.Desai [21] examines rationality of fuzzy choice functionswith rationaliza-
tion reflexive, complete, and quasi-transitive. Fuzzy path independence and the fuzzy
Condorcet property are used. Chaudhari and Desai introduce two axioms called the
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fuzzy direct revelation axiom (FDRA) and fuzzy transitive-closure coherence axiom
(FTCCA). They provide interrelations between full rationality, G-rationality, fuzzy
congruence axiom, weak fuzzy congruence axiom, Fα, Fβ, FDRA and FTCCA. In
Wu et al. [83], the authors consider rationality conditions of fuzzy choice functions,
includingWeak (Strong) Fuzzy Congruence Axiom,Weak (Strong) Axiom of Fuzzy
revealed Preference, fuzzy versions of the crisp conditions α, β, γ, δ and so on,
in the framework of the Banerjee choice function. The relationships between these
conditions under the assumption that every involved choice set is normal and verify
some equivalence results for arbitrary t-norms. A fuzzy version of Arrow-Sen theo-
rem is presented. Various types of transitivity play important roles in Arrowian type
results. In Dasgupta and Deb [20], many types of transitivity are compared. These
types include probabilistic-sum transitivity, min-max transitivity, weighted mean
transitivity, max-min transitivity, weak max-min transitivity, max-product transitiv-
ity,max-Λ transitivity, and IPreference sensitive transitivity. The notion of choice and
transitivity have many different possible interpretations in the theory of choice with
fuzzy preferences, very often, depend significantly on the definitions of choice set
and of transitivity. In this paper, the authors analyze these two concepts to determine
their appropriateness. In Georgescu [33], the degree of dominance of an alternative
with respect to an available fuzzy set of alternatives is introduced. Interpreting an
available fuzzy set of alternatives as a criterion in decision making the degree of
dominance establishes a hierarchy of alternatives with respect to this criterion. With
the degree of dominance new congruence axioms for fuzzy choice functions are for-
mulated. Georgescu [35] has written an interesting book devoted entirely to fuzzy
choice functions. The book has the goals (taken from the author’s introduction):

1. to develop the main themes of revealed preference theory (rationality, revealed
preference, congruence, consistency) for a large class of fuzzy choice functions;

2. to explore new topics (degree of dominance, similarity, indicators of rationality)
specific to a fuzzy approach to choice functions;

3. to show the manner in which some problems of multicritical decision making
problems can find natural solutions in fuzzy revealed preference theory.

The research on Arrow’s Impossibility Theorem [48] expands upon the existence of
a maximal set. In what many consider to be the single most important theorem in
social choice, Arrow [3] identifies a conundrum associated with the aggregation of
individual weak fuzzy preference relations: there is no aggregation rule that results
in a collective social preference order that meets several well-known rationality and
reasonableness conditions while simultaneously guaranteeing against dictatorship.
The rationality conditions taken together (completeness and minimally acyclicity)
assure the existence of a maximal set. The work by Mordeson and Clark [48, 50]
seeks to identify fuzzy rationality and reasonableness conditions that might avoid
this result.

In [55], an attempt to apply a fuzzy approach to Black’s Median Voter Theorem
[11] was made. It was found that a maximal set exists when strong restrictions are
placed on the preference profile of a collective set of players. As is the case with
Arrow’s Impossibility Theorem, our work demonstrates that while a fuzzy approach
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reduces the problem of a lack of a maximal set, it does not guarantee against it
[61]. Black’s Median Voter Theorem is among the more useful mathematical tools
available to political scientists for predicting choices of political actors based on their
preferences over a finite set of alternatives within an institutional or constitutional
setting. If the alternatives can be placed on a single-dimensional continuum such that
the preferences of all players descend monotonically from their ideal point, then the
outcome will be the alternative at the median position. In [19] it is demonstrated that
the Median Voter Theorem holds for fuzzy preferences when strict preferences are
of the type now sometimes called partial. The work in [37] extends the analysis of
voting and simple rules in the fuzzy framework. They relax previous assumptions
about strict preferences and by illustrating that Black’s Median Voter Theorem does
not hold under all conceptualizations of the fuzzy maximal set. Strict preferences
here are regular.

Faced with these results, the Gibbard-Satterthwaite Theorem (G-S) was consid-
ered in [36, 74].G-S states that a social choice function over three ormore alternatives
that does not incentivize individuals to misrepresent their sincere preferences must
be dictatorial. It follows that voters in collective choice institutions will manipulate
the voting procedure to obtain a more preferred social outcome by reporting insin-
cere preferences. One major effort by social choice scholars to avoid this conclusion
involves an application of Black’sMedianVoter Theorem,which restricts the domain
of individual preferences to single-peaked profiles, under which there exists a strict
ordering of all possible alternatives, individuals possess a single ideal alternative,
and strict preference decreases monotonically in both directions from an ideal point.
Under these assumptions, the augmented median rule emerges as a non-manipulable
and non-dictatorial choice function [7, 15, 59, 77]. However, Penn et al. [62] extend
the G-S results to a general case by demonstrating that even though individuals
possess single-peaked preferences, there exist opportunities to manipulate the social
choice when individuals report insincere preferences that violate the natural ordering
of the alternatives. The crux of their argument rests on the empirical observation that
no real-world voting rule actually has a ballot restriction that forces individuals to
submit single-peaked preferences to the social choice function; hence, individuals
will submit insincere, non-single-peaked preferences when it manipulates the social
choice. Under these assumptions, a strategy-proof rule must be dictatorial. See also
Moulin [56].

In many social decision-making contexts, a manipulator has incentives to change
the social choice in his favor by strategically misrepresenting his preference.
Gibbard [36] andSatterthwaite [74] have shown that anynon-dictatorial voting choice
procedure is vulnerable to strategic manipulation. Abdelaziz et al. [1] extend their
result to the case of fuzzy weak preference relations. Three generalizations of the
Gibbard-Satterthwaite theorem to the fuzzy context are provided. In Perota-Pena and
Piggins [64], the structure of fuzzy aggregation rules which, for every permissible
profile of fuzzy individual preferences, specify a fuzzy social preference is exam-
ined. It is shown that all fuzzy aggregation rules which are strategy-proof and satisfy
a minimal range condition are dictatorial. That is, there is an individual whose fuzzy
preferences determine the entire fuzzy social ranking at every profile in the domain of
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the aggregation rule. This result is proven by showing that all fuzzy aggregation rules
which are strategy-proof and satisfy the minimal range condition must also satisfy
counterparts of independence of irrelevant alternatives and the Pareto condition.

10.2 Where Do We Go from Here?

Welayout in this section someof the questions that haveyet to be resolved adequately.
Abdelaziz et al. [1] introduce three new definitions of fuzzy manipulability were

proposed. Under these definitions, it was proven that Gibbard and Satterthwaite’s
negative result remains true. It is stated that further research should be carried out to
examine the validity of the G-S’s theorem under other domains of fuzzy weak choice
functions and to determine the minimum requirements for fuzzy strategy-proofness.

Spatial models dealing with infinite sets of alternatives provide an important
research area for the future for those interested in applying fuzzy techniques. This
area has received much less attention than that of spatial models dealing with finite
sets of alternatives. The most interesting situation is that when the set of feasible
alternatives is a subset of Euclidean space Rk for k ≥ 2. For k = 1, the assumption
of single peaked preferences generated nonempty cores for voting rules. However
this is not the case for k ≥ 2. Some results are known concerning core existence [49,
55]. However much work is needed on characterizing the core. One reason for the
slow progress may be that an easily usable fuzzy calculus is not available. A possible
approach might be use the techniques of Dubois and Prade [24–26], where ordinary
calculus is used, but functions are evaluated at fuzzy points. Necessary restrictions
on sets of gradient vectors at a point for the point to be in the core include the Plott
conditions. Examining the Plott conditions provide a possible direction for those
interested in applying fuzzy techniques.

A closely associated set of issues concerning instability and chaos (McKelvey
[45, 46]) have hardly been touched as well by the fuzzy approach. In the crisp case,
cores may not exist for relatively large sets of preferences. In the crisp case, questions
such as how likely is it that the core of a simple rule is nonempty? For issue spaces of
sufficiently large dimension, the likelihood of the core being nonempty is negligible.
Hence for relatively large dimensions of the issue space, one cannot expect there to
exist any one alternative which is at least as good as all others. Another question
is, how badly behaved is the preference relation when the core fails to exist? It has
been shown that social cycles fill the space in the crisp case [45, 46]. It would be
an important research problem to determine to what extent fuzzy techniques could
salvage the situation. It is also known that noncollegial simple rules can only be
rational, in that core outcomes exist in high enough dimensions, only in very special
circumstances. When the core outcomes fail to exist, collective preferences may
appear almost anywhere in space, a well known chaos theorem. There are many
ideas for the fuzzy researcher to consider.

The existence of a majority rule maximal set was determined in arbitrary n-
dimensional spatial models by Mordeson and Clark [50]. It was assumed that each



190 J.N. Mordeson et al.

player was a fuzzy subset of the first quadrant of the plane and took on values from
T = {0, .25, .50, .75, 1}. Some partial results on the top cycle set were obtained.
The complete characterization of the top cycle set would be of interest. It would also
be of interest to replace T by an arbitrary finite set with 0, 1 ∈ T .

A good deal of the results concerning fuzzy choice functions [14, 21, 35, 47]
have made use of a very special strict fuzzy preference relation associated with a
fuzzy preference relation ρ. This strict fuzzy preference relation π is defined as
follows: ∀x, y ∈ X , π(x, y) = ρ(x, y) if ρ(x, y) > ρ(y, x) = 0 and π(x, y) = 0
otherwise. This strict fuzzy preference relation is associated with the drastic conorm
in a factorization of ρ involving π as a component. A further research project would
be to determine the extent to which the results involving this π could be extended
using other types of fuzzy strict preference relations. In the dissertation of Georgescu
[34], eight open problems are presented and discussed.

A fuzzy version of Arrow’s Theorem is proved in [48]. Under the definition in this
paper and using a partial strict fuzzy preference relations Arrow’s theorem remains
intact even if levels of intensity of the players and levels of membership in the set
of alternatives are considered. Fuzzy versions of Arrow’s Theorem involving rep-
resentation rules, oligarchies, and veto players is also considered. Richardson [67]
has shown that with an alternative factorization of fuzzy weak preferences into sym-
metric and antisymmetric components, a fuzzy analogue of Arrow’s Impossibility
Theorem can be proved when the transitivity requirements on individual and social
preferences are very weak. The notion of strong connectedness is needed here. How-
ever if strong connectedness is not assumed, another factorization of fuzzy weak
preferences yields nondictatorial fuzzy aggregation rules satisfying weak transitiv-
ity. Additional results on factorization of fuzzy preference relations can be found in
Llamazares [44] and Herr and Mordeson [38].

In [37, 55], an analysis of voting and simple rules in the fuzzy framework was
undertaken. It was shown that Black’s Median Voter Theorem does not hold under
all conceptualizations of the fuzzy maximal set. Given that simple and voting rules
are often used in spatial modes and given the more generalized fuzzy definitions
presented here allow for strict preferences, further research is needed to investigate
whether these models are as poorly behaved in two or more dimensional space, i.e.
is the fuzzy maximal set under these rules generically empty in the spatial model?

In Dutta [28], it is shown that the impossibility result can be avoided by using
fuzzy preferences having particularly weak versions of transitivity. Dutta states that
further work needs to be done on the relationship between rationalizable choice
functions and fuzzy preferences. Banerjee [5] shows that the choice of definitions
for indifference and strict preference, given a fuzzy weak preference can also have
Arrowian implications. Banerjee demonstrates that with fuzzy social preference rela-
tions, it is possible to distinguish between different degrees of power of the dictator.
The power increases with the strength of the transitivity requirement. The conditions
used to derive Dutta’s version of strict preference imply a restriction on how fuzzy
the original weak preference can be, namely that the fuzzy weak preference relation
must be strongly connected. Richardson shows that without this restriction Dutta’s
conditions imply a third version of strict preference for which Dutta’s possibility
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result under weak transitivity still holds. If strong connectedness is required for it
to be valid, Richardson shows Dutta’s dictatorship theorem can be strengthened to
cover any version of transitivity for preferences no matter how weak and further that
this dictatorship result holds for regular formulation of strict preference, including
the one originally used by Dutta.

Duddy et al. [27] consider max-∗ transitivity in their study of Arrow’s impos-
sibility Theorem, where ∗ is a t-norm [42]. They restrict their attention to fuzzy
aggregation rules that satisfy counterparts on unanimity and independence of irrele-
vant alternatives. They characterize the set of triangular norms that permit preference
aggregation to be nondictatorial. They show that this set contains exactly those norms
that contain a zero divisor. In Fono and Andjiga citeFono:2005:FSP, some classical
factorizations of a fuzzy relation into a symmetric component (Indifference) and an
asymmetric and regular component (regular fuzzy strict preference) are generalized.
Two properties of a fuzzy strict preference of a max-∗ transitive relation, which are
used to obtain new versions of Gibbard’s oligarchy theorem and Arrow’s impossi-
bility theorem. In Fono et al. [31], appropriate properties of fuzzy preferences and
fuzzy aggregation rules are introduced. They are used to provide fuzzy counterparts
ofMalawski and Zhou andWilson’s impossibility results concerning the aggregation
of individual preferences which do not assume the Pareto principle. By weakening
conditions on fuzzy social preferences a possibility result is obtained. In [54], sev-
eral new definitions of independence of irrelevant alternatives were introduced and
shown that they can be profitably used in the examination of Arrow’s theorem. Some
known nondictatorship results are generalized. Future research could be to determine
how the various definitions of independence of irrelevent alternatives can be used to
further study fuzzy Arrow’s theorem.

Dutta states that social fuzzy preferences must ultimately be used to define exact
social choice. Dutta also states that further work needs to be done on the relationship
between rationalizable choice functions and fuzzy preferences and that a problem
to consider is the derivation of restrictions imposed on choice functions by ratio-
nalizability in terms of general max-star transitive binary relations. Dutta further
states that if these restrictions are mild, then it might be possible to define reason-
ably acceptable aggregation rules which map n-tuples of fuzzy individual preference
orderings into exact social choices.

Another paper that is pertinent to the avoidance of the impossibility result is
Garcia-Lapresta and Llamazares [32]. Aggregation rules which assign an aggregate
fuzzy binary relation to each profile of reciprocal fuzzy binary relations are consid-
ered. The aggregate fuzzy binary relation does not necessarily have to be reciprocal,
but it is desirable for it to be so. When this relation is reciprocal, collective deci-
sions can be taken with different levels of qualification, depending upon the ordinary
preference relation that is considered based on the aggregate fuzzy relation. Here
neutral aggregation rules are characterized through functions from powers of [0, 1]
in [0, 1]. In addition, a class of neutral aggregation rules based on arithmetic means
associated with functions of [0, 1]. These rules are characterized through two prop-
erties:decomposability and anonymity. It is stated that when the set of alternatives
has a group structure, then every group Chichilnisky n-rule (group homomorphism,
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anonymous and unanimous aggregation rule) is a convex mean. In order to bring the
power of abstract algebra to bear, it would be of interest to examine Arrowian-type
results when the set of alternatives has a group structure.

Finally, Fono et al. [29] establish by means of a large class of continuous t-
representable intuitionistic fuzzy t-conorms, a factorization of an intuitionistic fuzzy
relation (IFR) into a unique indifference component and a family of regular strict
components. This result generalizes a previous factorization obtained in Dimitrov
[22, 23] with the (max, min) intuitionistic fuzzy t-conorm. In this paper, a character-
ization of the T -transitivity of an IFR for a continuous t-representable intuitionistic
fuzzy t-norm.This allows for the determination of necessary and sufficient conditions
on a T -transitive IFR ρ under which a strict component of ρ satisfies pos-transitivity
and negative transitivity. In Nana and Fono [57], the characterizations in Fono et al.
[29] are used to obtain some intuitionistic fuzzy versions of Arrow’s impossibility
theorem. By weakening requirement to social preferences, they provide an exam-
ple of a non-dictatorial intuitionistic fuzzy aggregation rule. They also establish
an intuitionistic fuzzy version of Gibbard’s oligarchy theorem. Not much has been
done along these lines, i.e., the study of spatial models for fuzzy intuitionistic fuzzy
preference relations. Consequently, these papers may be cornerstone papers for the
development of intuitionistic fuzzy relations in spacial models. However, one must
be wary of the following situation. Consider an intuitionistic fuzzy preference rela-
tion 〈ρμ, ρν〉. Many the results concerning 〈ρμ, ρν〉 involve two proofs, one for ρμ

and one for ρν . The proofs are often dual in nature. That is, having one proof, the
other proof can be mimicked from the other. It is possible to formalize this fact by
use of an involutive complement of [0, 1].

10.3 A New Direction?

Our own efforts to extend a fuzzy approach to G-S have not reduced the problem
significantly enough for political scientists to place sufficient confidence in social
preference orders as a means to predict political outcomes.

Social choice theorists have turned to institutional design to provide the means
to predict outcomes. Scholars have considered both formal voting rules as well as
informal “rules of the game.” The latter efforts have typically focused on game theory
to capture the essence of the design of such institutions. We believe that social
network analysis (SNA) offers a better vehicle for doing so. A newly emerging
analytical approach based on graph theory, SNA permits scholars to consider an
actor’s choices within the full set of relations defining its environmental context.
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Appendix

In order to give a flavor for the concepts discussed above and given the importance of
Arrow’s Theorem, we offer the following formalizations for consideration in future
research.

Let N = {1, 2, . . . , n}with n ≥ 2.Let X denote a set with three ormore elements.
The support of a fuzzy subset μ of X is defined to be the set, Supp(μ) = {x ∈ X |
μ(x) > 0}.
Definition 1 Let ρ be a fuzzy binary relation on X and ∗ a t-norm. Then:

1. ρ is called reflexive if ∀x ∈ X, ρ(x, x) = 1;
2. ρ is called complete if ∀x, y ∈ X, ρ(x, y) > 0 or ρ(y, x) > 0;
3. ρ is calledmax-∗ transitive or simply transitive if∀x, y, x ∈ X, ρ(x, y)∗ρ(y, z) ≤

ρ(x, z);
4. ρ is called partially transitive if ∀x, y, z ∈ X, ρ(x, y) > 0, ρ(y, z) > 0 implies

ρ(x, z) > 0.

If ρ satisfies (1), (2), and (4), then ρ is called a fuzzy weak order on X .

Definition 2 Let ρ be a fuzzy binary relation on X. Define the fuzzy subsets π, ι of
X × X as follows: ∀x, y ∈ X,

ρ(x, y) =
{

ρ(x, y) if ρ(x, y) > 0,
0 otherwise.

(10.3)

and
ι(x, y) = ρ(x, y) ∧ ρ(y, x). (10.4)

Let FR denote the set of all fuzzy weak orders on X. A fuzzy preference profile on
X is a n-tuple of fuzzy weak orders ρ = (ρ1, . . . , ρn). Let FRn denote the set of all
fuzzy preference profiles. Let FB denote the set of all reflexive and complete fuzzy
binary relations on X .

Definition 3 A function f : FRn → FB is called a fuzzy preference aggregation
rule.

Definition 4 Let f be a fuzzy aggregation rule. Then

1. f is said to be non-dictatorial if it is not the case that ∃i ∈ N such that ∀ρ ∈ FRn ,
∀x, y ∈ X , πi (x, y) > 0 implies π(x, y) > 0;

2. f is said to be weakly Paretian if ∀ρ ∈ FRn , ∀x, y ∈ X , ∀i ∈ N , πi (x, y) > 0
implies π(x, y) > 0;

3. f is said to be independent of irrelevant alternatives if ∀ρ, ρ′ ∈ FRn , ∀x, y ∈ X ,

Supp(ρi |{x,y}×{x,y}) = Supp(ρ′
i |{x,y}×{x,y}) (10.5)

∀i ∈ N implies
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Supp( f (ρ)|{x,y}×{x,y}) = Supp( f (ρ′)|{x,y}×{x,y}) . (10.6)

Theorem 1 (A Fuzzy Arrow’s Theorem) Let f be a fuzzy aggregation rule that
is partially transitive, weakly Paretian, and independent of irrelevant alternatives.
Then f is dictatorial.

Definition 5 Let ρ be a fuzzy binary relation on X. Then

1. ρ is called quasi-transitive if ∀x, y, z ∈ X,π(x, y) ∧ π(y, z) ≤ π(x, z);
2. ρ is called partially quasi-transitive if∀x, y, z ∈ X,π(x, y)∧π(y, z) > 0 implies

π(x, z) > 0;
3. ρ is called acyclic if ∀x1, x2, . . . , xk ∈ X,π(x1, x2) ∧ · · · ∧ π(xk−1, xk) ≤

ρ(x1, xk);
4. ρ is calledpartially acyclic if ∀x1, x2, . . . , xk ∈ X,π(x1, x2)∧· · ·∧π(xk−1, xk) >

0 implies ρ(x1, xk) > 0.

Definition 6 Let f be a fuzzy aggregation rule. Then

1. f is called quasi-transitive if ∀ρ ∈ FRn, f (ρ) is quasi-transitive;
2. f is called partially quasi-transitive if ∀ρ ∈ FRn, f (ρ) is partially quasi-

transitive;
3. f is called acyclic if ∀ρ ∈ FRn, f (ρ) is acyclic;
4. f is called partially acyclic if ∀ρ ∈ FRn, f (ρ) is partially acyclic.

Theorem 2 Let f be a fuzzy aggregation rule. If f is partially quasi-transitive,
weakly Paretian, and independent of irrelevant alternatives, then it is oligarchic.

Theorem 3 Suppose |X | ≥ n. Let f be a fuzzy aggregation rule. If f is partially
acyclic and weakly Paretian, then f is collegial.

Definition 7 Let f be a fuzzy aggregation rule. The f is called neutral if ∀ρ, ρ′ ∈
FRn,∀x, y, u, v ∈ X, P(x, y; ρ) = P(u, v; ρ′) and P(y, x; ρ) = P(v, u; ρ′)
imply f (ρ)(x, y) > 0 if and only f (ρ′)(u, v) > 0.

Theorem 4 Suppose |X | > n. Let f be a fuzzy aggregation rule. If f is partially
acyclic, weakly Paretian, and neutral, then there exists i ∈ N such that i has a veto.

Independence (I): For all (ρ1, . . . , ρn), (ρ′
1, . . . , ρ

′
n) ∈ Hn and for all x, y ∈

X, ρ j (x, y) = ρ′
j (x, y) for all j ∈ N implies ρ(x, y) = ρ′(x, y).

Unanimity (U): (ρ1, . . . , ρn) ∈ Hn and for all x, y ∈ X and for all t ∈
[0, 1], ρ j (x, y) = t for all j ∈ N implies ρ(x, y) = t .

Let H denote the set of all fuzzy binary relations that are reflexive, max-∗ transitive,
and satisfy the condition that for all x, y ∈ X, ρ(x, y) = 0 implies ρ(y, x) = 1,
where ∗ is a t-norm.

Theorem 5 Let f : Hn → H be a fuzzy aggregation rule. If ∗ has no zero divisor,
then any fuzzy aggregation rule satisfying I and U is dictatorial. Moreover, if ∗ has
a zero divisor, then there exists a non-dictatorial fuzzy aggregation rule that satisfies
I and U.
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Let FR∗ denote the set of all binary relations on X with nonempty supports and
FP∗ the set of all fuzzy subsets of X with nonempty supports.

Definition 8 Define M : FR∗ × FP∗ → FP∗ by ∀(ρ,μ) ∈ FR∗ × FP∗,
M(ρ,μ)(x) = ∨{t ∈ [0, 1] | μ(x) ≥ t and ρ(x, y) ≥ t∀y ∈ Supp(μ)} for all x ∈ X.

Then M(ρ,μ) is called the fuzzy maximal subset associated with (ρ,μ).

Theorem 6 Let ρ ∈ FR∗ be reflexive and complete. Then Supp(M(ρ,μ)) �= ∅ if
and only if ρ is partially acyclic.

Let C : FP∗ → FP∗ be such that C(μ) ⊆ μ∀μ ∈ FP∗. Then C is called a fuzzy
choice function on X .

Definition 9 Let C be a fuzzy choice function on X Let ρ ∈ FR∗. Then C is called
rationalizable with respect to ρ if C(μ) = M(ρ,μ) for all μ ∈ FP∗.

Definition 10 Let ∗ be a continuous t-norm.

1. Define M : FR∗ × FP∗ → FP∗ by ∀(ρ,μ) ∈ FR∗ × FP∗, M(ρ,μ)(x) =
μ(x) ∗ ∧{μ(y) ∗ ρ(y, x) → ρ(x, u)|y ∈ X} for all x ∈ X.

2. Define G : FR∗ × FP∗ → FP∗ by ∀(ρ,μ) ∈ FR∗ × FP∗, G(ρ,μ)(x) =
μ(x) ∗ ∧{μ(y) → ρ(x, y)|y ∈ X} for all x ∈ X.

Let B be a nonempty family of non zero fuzzy subsets of X which contain charac-
teristic functions of all singleton and two-element subsets of X. In the following let
C : B → FR∗.

Definition 11 Suppose C : B → FR∗. Define the fuzzy revealed preference rela-
tions ρ and ρ on X as follows: ∀x, y ∈ X,

ρ∗(x, y) = ∨{{C(μ)(x) ∧ μ(y)|μ ∈ B}, (10.7)

ρ(x, y) = C([x, y])(x),

where [x, y] denotes the characteristic function of {x, y} in X .

Definition 12 A fuzzy choice function C is said to be G-rational if there exists a
fuzzy preference relation ρ on X such that C(μ) = G(μ, ρ) for all μ ∈ B. The fuzzy
preference relation ρ for which the fuzzy choice function is G-rational is called a
rationalization for C. The fuzzy choice function C is full rational if C is G-rational
with reflexive, complete and transitive rationalization.

Theorem 7 If a choice function C defined on base domain is G-rational with ratio-
nalization ρ, then ρ∗ ⊆ ρ.

Fuzzy T-congruence axiom: For all x, y, z ∈ X and for all μ ∈ B, ρ∗(x, y) ∧
ρ∗(y, z)C(μ)(z) ∧ μ(x) ≤ C(μ)(x).

Theorem 8 A fuzzy choice function C defined on base domain is full rational if and
only if C satisfies the fuzzy T-congruence relation relation.
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Fuzzy Chernoff axiom: For allμ1,μ2 ∈ B and for all x ∈ X, I (μ1,μ2)∧μ1(x)∧
C(μ2)(x) ≤ I (μ1 ∩ C(μ2), C(μ1)).

Theorem 9 If a fuzzy choice function defined on base domain satisfies the Chernoff
axiom, then ρ∗ = ρ.

Weak Fuzzy T-congruence axiom: For all x, y, z ∈ X and for all μ ∈ B,

ρ(x, y) ∧ ρ(y, z) ∧ C(μ)(z) ∧ μ(x) ≤ C(μ)(x). (10.8)

Theorem 10 A fuzzy choice function C defined on the base domain B is full rational
if and only if it satisfies the weak fuzzy T-congruence relation and the Chernoff axiom.

Fuzzy Arrow Axiom (FAA): For all μ1,μ2 ∈ B and for all x ∈ X,

I (μ1,μ2) ∧ μ1(x) ∧ C(μ2)(x) ≤ E(μ1 ∩ C(μ2), C(μ1)). (10.9)

It can be shown that full rationality does not imply FAA on base domain.

Definition 13 Let A = {(x, y)|x, y ∈ X, x �= y}. A fuzzy aggregation rule is said
to satisfy the minimal range condition if and only if for all (x, y) ∈ A, there exists
(ρ1, . . . , ρn), (ρ′

1, . . . , ρ
′
n) ∈ Hn such that ρ(x, y) = 0 and ρ′(x, y) = 1.

Theorem 11 Any strategy proof fuzzy aggregation rule which satisfies the minimal
range condition is dictatorial.
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Chapter 11
Crisis’ Origin’s Causes. Contributions
from the Fuzzy Logic in the Sustainability
on the Socio-Economic Systems

Anna M. Gil-Lafuente and Alexandra Balvey

Abstract The deep economic crisis where we are immersed, together with the
recuperation perspectives, intensifies the efforts in the socioeconomic field to find
new solutions to prevent the current involution process. One of the key factors to
achieve this goal is based in rationalization and the outlay containment. But obvi-
ously, this purpose is not enough by itself, and will not make the real economy
improve (the one which is perceived by all citizens, which becomes permeable in
all social layers, and the one which allows a permanent welfare), and will never stay
up longer than a short term. It is important to accompany these scarifying measures
imposed to the citizenship with adequate politics, depending on the selected objec-
tives. Just like that, we need to prioritize the expenses and inversions, which could
generate wide multiplying effects in the economy.

11.1 From the Current Uncertainty to Tomorrow’s Hope

As European citizens, we find ourselves immersed since some years in a crisis which
is causing important disorders, affecting unequally every social layer, but with no
exception. The reactions launched by the governments are not only late but impro-
vised, unconnected and short-termed, as a result of politics and inappropriate strate-
gies. The culmination of studies for the global adoption of measures capable to face
the imbalances, which have caused a more or less intense depression in the European
socio-economic systems, have been missed.

Even though, conscious about this situation, we may discern the future with great
uncertainty,we strongly believe the solutionwill come.AsRaymondBarre, exPrimer
Minister of France and convinced pro-European, said: “Europe will built up herself
… even if sometimes it may have to go backwards … to take a breath and continue
going on.”
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But to achieve this, it’s necessary for absolutely all of us to recognize that this so
called crisis is not only and economical and financial crisis … Its effects are much
wider and deeper because they include typical aspects from the social, human and
cultural dimension of our nation.

We are convinced we are going to sprout from this depressive situation, and we
are sprouting by being stronger and solidly reinforced, as long as the first causes
of the crisis’ outbreak are approached with seriousness and firmness. In order to
achieve this, a detailed itinerary through those rough paths of the thinking will be
necessary; rough paths where the decision making is originated, in order to achieve
the knowledge about why have we made so many mistakes.

We are going to draw in a brief way a plan of this itinerary, to make it possi-
ble to explain the rounds of the thinking “through the human mind with all of its
shortcuts, mistakes, defective wiring and abundant traps” [7]. This can help at find-
ing acceptable solutions, taking advantage of our formidable system of evolutionary
adaptation, which allows us to talk about a summary of rationality and emotionality
in every single moment.

11.2 Theoretical Bases of the Mistakes

It’s already been more than three decades that the uncertainty school has been pro-
claiming the deficiency of the schemes traditionally used in the social sciences, based
only on the Cartesian rationality. It has proposed a new principle able to enshrine the
incidence of the Subjective in human decisions too at the same time.

From another point of view but still in the same direction, Kahneman togetherwith
the inestimable collaboration of Amos Tversky, has structured our decision-making
architecture in two systems. Let’s remember it very briefly1: Kahneman considers
our decisions are a consequence of how system 1 and system 2 run, as he refers to as.

• System 1 is the one which “thinks fast”: it is unconscious, intuitive and easy to use,
effortless. It is the one which adds “black” when we say “white and …” without
even needing to switch on the neurones. It is the one which decides “in the blink
of an eye”. System 1 recognises the patterns in series and answers questions in a
tenth of second … although not always correct.

• System 2 is, on the other hand, the one which “thinks slowly”: it is rational, needs
effort and energy. It is deliberative, slow and suspicious. It considers, evaluates,
reasons in hard stages and finally takes a decision which will be able to justify in
all its extensions. It really knows why it takes it.

In the social sciences’ field, it has been accepted in general terms that the human
decisions are only product of system 2, that reasonable and wise friend, when we
actually depend on both systems. According to what Kahneman said, system 2 and 1

1This abstract has been extracted from Daniel Kahneman’s speech for his joining in the Royal
Academy of Economic and Financial Sciences of Spain. Madrid, 14th of June 2012.
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weight he same at the decision-making, even when the decision is taken by the most
rationalist scientist.

With all respect, we dare dissenting from this last affirmation, as we are convinced
that different moments and circumstances lead to different decisions taken by the
same person, propelled by a major or minor incidence of the emotional component.
The percentage of each component’s weight, then changes.

If we accept this licence, we find evidence in the fact that the original hypothesis
of the social sciences and its orthodoxy, dominant until recently and defending we
are basically rational beings and therefore predictable, is usually imprecise and false
in many occasions.

Indeed, “the homo economicus, rationality’s base in the social sciences, doesn’t
exist in the real world. The school where we belong has firmly defined since already
a pretty lot of years that the decider subject doesn’t only act rationally like a robot
would, and that’s why social sciences will never be exact sciences either. Social
sciences will never be able to predict with accuracy the behaviour of the agents who
act in their own bosom. Finances, for example, which are full of an econometric
and statistic equipment, will always be conditioned by the human choices, again and
again, in their decisions. And therefore, finances will always be fuzzy and hardly
predictable, as we, people, are” [6].2

Neither we are rational nor predictable, because the subjectivity component which
coats the human decisions also penetrates in the models we elaborate. The result is,
we have always committed, commit and will always commit mistakes.

Failing is effectively human, but does the human fail always in the same way?
We can’t give an accurate answer relating to the mistake’s cause, but in the other
hand, the behaviour science seems to admit their effects happen to meet, for now.
We tend to make the same errors again and again even though the circumstances and
their appearance may change. That’s why the effects of our economic crisis are also
recurrent. If this is it, the moment where establishing a relation of cyclic mistakes
can be possible, must come. The mistakes will be then repeated in the origins of
every crisis.

From this relation on, we would discover which the mechanisms that cause the
decisive mistakes are. Coming to the current situation, we observe the same behav-
iours are detected both in the origin and development of the crisis, and theDutch tulips
crisis aged of four hundred years. Same happens with the 1929’s crisis or 1892’s one.
Themistakes done, considered as effects, are the same. The only significant variables
are their magnitude and length.

In all cases it’s about the consequences of a different behaviour to the strictly ratio-
nal one, owned by a mix of intuition and reason; prejudice and sanity; feeling and
rationality. Nevertheless, we wish in all we just pointed out one thing to stay clear:
we don’t pretend a rotund sentence of the Cartesian in what it owns as pure rational-
ization, but to incorporate in it what we could call intuition, ambition, emotionalism
and all those other singularities which cause in the human being a non-total rational
behaviour. Their decisions are, finally, a subtle dance between reason and feelings.

2Gathered by J. Gil-Aluja’s answer at Daniel Kahneman’s speech, see footnote 1.
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11.3 The Change in the Basis of the Crisis’ Study

The acceptance of this approach would allow us to collaborate in the job of giving
an “end to the old dichotomy between emotion and reason, between intuition and
reasoning. We are built up from both of them; we are complex creatures, resulting
from a biologic evolution which chose the survival path between all the possible
ways, which not always meant the straightest one” [6].3 This is the ultimate reason
why we support the crisis’ study must go on from that premise, and not from the
false supposition which states we are robots and we take predictable decisions.

Webelieve themoment of formulating one of the fundamental questions has come;
howdo rationality and feelings integrate themselves in a unique formal system,which
forms, in a certain way, a cause of subjectivity? The answer to this question cannot be
as obvious as we would wish. The scientists who investigate in the social sciences’
field exert themselves at understanding better, explainingmore suitably and deal with
harshness the most complex social phenomena, which mix with reason and emotion.

It seems like themoreweget closer to the goal, the bigger the feeling of a necessary
epistemological change is. A change related to the research lines which have been
followed by the social sciences intellectuals, practically from their origins, when
they used to focus on those physicians who used to observe the universe. They hoped
to find enough elements to discover the future scenarios in which it was believed
would occur the social activity. In this way, social laws followed nature laws. And
also in the same way physicians used to wonder about the meaning of reality and
the existence of time, the researchers of the social phenomena wondered about the
existence of the happening in their environment, and how the forces which caused
them, worked.

Reality and time in physics, on one side, and social phenomenawith deep changes,
on the other side, used to shape the worries of the scientists in this two plots of the
knowledge.

The question which then imposes is: are concepts also parallel in both study
spheres? In the social sciences field the current phenomena usually associate between
themselves. The past has stopped “being”, and the future “is not yet”. It seems that
our reasoning moves in a way where tomorrow’s uncertainty

A lot of irreversible phenomena exists in the social sciences field. One could
understand that an asymmetry of the objects in time does exist, although not an
asymmetry in time. In this sense, therefore, asymmetry is a characteristic of the
objects, not time’s.

However, this essential perception directly crashes against rationality, with what
physicians assume the concept of time. For them, a temporal landscape exists, where
there were found all the events of the past, present and future. The time doesn’t move,
the objects do move in time. The time doesn’t pass by, it merely is. Time’s flow is
unreal, what is real, is time. The eternity is present in all its infinite dimension.

3See footnote 2.
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The mailing sustained by the last years of Michele Besso’s and Albert Einstein’s
life appears to be revealing. Facing the persistent question fromBesso:What is time?
What is irreversibility? Albert answers “irreversibility is an illusion”. Einstein wrote
a letter to Besso’s sister and son as a matter of his passing, which contained the
following words: “Michelle has overtaken me at leaving this strange world. It lacks
of importance. For us, convinced physicians, the difference between past, present
and future is only an illusion, as persistent as it might be” [2].

Facing the possibility of abandoning the almost secular mechanism, which has
informed the social sciences, we wonder if it is possible to find a doctrine body able
to sustain the theoretical and technique elements, both sensitive at representing the
new social realities, increasingly being more complex and uncertain.

Facing this challenge [6] we have turned back to the past until stopping in the
middleXIXth century, when a new adventure beginswith the publication ofDarwin’s
fundamental work in 1859, The Origin of Species. Two elements are combined in
it: fluctuations and irreversibility. Fluctuations in species of the nature, thanks to the
environment’s selection, lead to an irreversible biologic evolution. This is the way
how an auto organisation of systems with an increasing complexity takes place from
the association between fluctuations (which comprehends the idea of chance, as we
would call it “uncertainty”) and irreversibility.

However, how does this structure creation take place, in other words, this auto
organisation? Given the entropy of a system, if it is disturbed in a way a certain
state stands still close enough to the balance, the system responds establishing the
initial situation: we talk about a stable system. But if a certain state is brought
far enough from the balance, it enters an unstable situation directly related with
perturbation. In this context, the determinism doesn’t allow to predict which way
will be chosen between the possible ones. In many cases, an interruption of the
symmetry is produced. We can say, then, that even though symmetry can exist in the
equations which formalize the process, it doesn’t usually appear in the solutions. The
complexity of these processes makes unfeasible its comprehension and explication
through single determinist laws.

In the social sciences field, new approaches which could possibly provide an
answer to this big challenge have been sought.We point out the so called theory of the
fuzzy subsets, whose epicentre is placed in a quarrel which ismore than two thousand
years old. Indeed, Aristotle (384–322 a. C.) used to tag: “A simple affirmation is the
first kind of what we call simple preposition, and a simple negotiation is the second
kind of them…Referring to the present or past things, the propositions, either positive
or negative, are necessarily true or false. And the ones which remain contradictory,
one will be true, and the other one, false” [1, pp. 258–260]. In this same line used to
be placed the stoical thinking, particularly in one of their central characters, Crisipo
de Soli (≈281–208 b. C.). The formulation of the so called law of the excluded
middle (a preposition is true or false) was assigned to him. The epicurean answered
vigorously this law, tagging that it is only acceptable if a third possibility is not given,
tertium non datur (excluded middle). Even though its materialism, Epicure believed
in willpower’s freedom, even suggesting the atoms are free and move from time to
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time, with total spontaneity. This idea has evident connotations with Heisenberg’s
indeterminacy law.

Twenty two centuries must pass by for Łukasiewicz [9, pp. 372–373] to point out,
returning to the epicurean idea that some prepositions, which are neither true nor
false, but indeterminate, do exist. This allows him to formulate it valence law (each
preposition has a truth value). He originally assigned three truth values: true (1), false
(0) and indeterminate (0, 5). He then generalized to n values, for n same or major
than 2. The development of the so called multivalent logics has begun.

At the SIGEF International Congress of Buenos Aires, professor Gil-Aluja [3]
tried to establish the epicurean position of the new coordinates arisen from Zadeh’s
discovery [11] formulating the gradual simultaneity law (every preposition can be
true and false at the same time, only if a truth and untruth degree is added to it).
Before and after, a great number of scientists have been placing stone by stone the
basis of what could be a new knowledge building.4

11.4 Restoration of the Forgotten Effects in the Crisis

In 1988, Professors Kaufmann and Gil-Aluja [8] elaborated the Forgotten Effects
Theory, departing from the wide and deep studies about the incidence or causality
relations which take place at all levels in the natural or social structures. The models
built up from this theory allow us to obtain all the direct and indirect relations with no
mistake possible through a series of processes based in the matrix operative. It allows
us to get back all the elements which could have been partially or totally forgotten at
the origin. In this approach, the facts, events and phenomena in our surroundings take
part in a sort of system or subsystem; in other words, we can assure that practically
every activity stays submitted to some kind of cause-effect incidence. Despite of the
existence of a good control system, the possibility of not considering or forgetting any
causality relation which not always happen to be explicit is always there, whether
voluntary or involuntary, as evident they may be. These are usually not directly
discerned.

It is usual for these incidence relations to stay hidden when they happen to be
effects over effects, causing then an accumulation of causes which provoke them.
The human intelligence needs to be supported by tools and models which are able to
create a technique base. It must be possible to work on this base with all information,
and also to contrast them with the ones obtained, in order to make all the direct and
indirect causality relations surface.

The concept of incidence [5] could be associated to the idea of function, and it is
present in all the actions of the living beings. Indeed, in all these sequential nature’s
processes, where the incidences communicate in a chained way, it is usual to forget a
stage, whether voluntary or involuntary. Every oversight brings up secondary effects
which affect the while net of incidence relations, in a sort of combinatory process.

4More details in this subject can be found in: [4, pp. 14–17].
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The incidence in the social field owns an eminently subjective component, usually
hard to measure, but its analysis allows to increase the reasoning at the decision
taking. We will expose in rough lines, how the Forgotten Effects Theory works. In
order to do so, we will briefly go into its methodological basis. So we depart from
two sets of elements:

A = {
ai

∣
∣i = 1, 2, . . . , n

}

B = {
b j

∣
∣ j = 1, 2, . . . ,m

}

We will say there is an incidence of ai over b j if the characteristic function of
property of the (ai , b j ) pair is valuated in [0, 1], that is:

∀ (
ai , b j

) ⇒ µ
(
ai , b j

) ∈ [0, 1]

The ensemble of the valuated element pairs will define what we call direct inci-
dence matrix, which shows the cause-effects relations which produce with differ-
ent degree between the elements from the A (causes) set and the ones from the B
(effects) set:

This matrix can also be represented by an associated incidence graph. If the
characteristic function of pertinence for a pair of elements was non-existing, the arch
which joins the element from the A set with the element from the B set would be
eliminated:
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The group of incidences which is shown by the first of the two forms of pre-
senting the cause-effect relations between the two groups of elements is known as
direct incidences matrix (also called first order ones). It’s about those who have been
considered in the beginning of establishing the consequences that some elements
have over some others. Indeed, it forms the first step of the built model in order to
get back the incidence levels between the elements which haven’t been detected, or
simply forgotten at the beginning. But what if a third subset of elements appears?

C = {
ck

∣
∣k = 1, 2, . . . , z

}

A subset which if formed by elements which are effects then the elements of the
B set act as causes, meaning:

Wewould obtain twomatrixes of incidences, whichwould have the elements from
the B set in common:



11 Crisis’ Origin’s Causes. Contributions from the Fuzzy Logic … 209

The incidence graphs associated to each of the two matrixes would be the
following:

There are two relations of incidence:

M ⊆ A × B and N ⊆ B × C

The mathematical operator which, for example, we would use to establish the
incidences of A overC , is themax-min composition one. In fact, when three uncertain
incidence relations are brought up:

M ⊆ A × B , N ⊆ B × C and P ⊆ A × C

The product of the composition is:

M ◦ N = P

where the ◦ symbol precisely represents the max-min composition. The composition
of two uncertain relations is:

µ (ai , cz)M◦N = ∨bj
(
µM

(
ai , b j

) ∧ µN
(
b j , cz

))
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Therefore, we can state that the P incidence matrix defines the causality relations
between the elements of the first A set and the elements of the third C set, within
the intensity or level which considering the elements from the B set as intermediates
entails.

After this brief analysis about the methodology used to know the incidence rela-
tions, considering three sets of elements, we decide to set out a powerful method-
ology, which, considering the indirect and indirect causality relations, will allow to
acknowledge the cause-effect relations which stay hidden.

We start our approach [5] with the existence of a direct incidence relation; in other
words, an uncertain cause-effect matrix defined by two sets of elements:

A = {
ai

∣
∣i = 1, 2, . . . , n

}
, which act as causes,

B = {
b j

∣
∣ j = 1, 2, . . . ,m

}
, which act as effects,

In addition, a M causality relation defined by the matrix:

[
M

] = {
µai b j ∈ [0, 1]∣∣i = 1, 2, . . . , n; j = 1, 2, . . . ,m

}

where µai b j are the belonging characteristic functions from each of the elements
from the

[
M

]
matrix (formed by the corresponding rows of the elements from the

A-causes-set and columns of the elements from the B-effects-set).
Therefore, it can be said that the

[
M

]
matrix is composed by the estimations carried

out relating to all the effects which the A elements apply over the B elements. The
more meaningful is this incidence relation, the higher will be the assigned valuation
to each of the elements in the matrix. Supposing this situation, we understand that
the higher is the incidence relation, the closer to 1 will result its valuation, as we have
departed from the fact that the characteristic function of pertinence must belong to
the [0, 1] interval. And on the contrary, the weaker a causality relation between the
elements is considered, the closer its valuation will be to 0. We must underline the
fact that this initial

[
M

]
matrix is elaborated since the direct cause-effect relations,

that is, first generation relations.
Our aim is to obtain a new incidence matrix which reflects not only the direct

causality relations, but also the indirect ones, called second generation relations.
To reach this goal it is necessary to establish the dispositive which will be able

to make possible to represent the fact that the different causes can have an effect
over themselves, as well as some effects can also have a certain incidence over
themselves at the same time. For this reason it will be necessary to build up two
additional causality relations, which will collect the possible derived effects from
relating causes with causes, and effects with effects. These two auxiliary matrixes
are defined as:

[A] = {
µai a j ∈ [0, 1]∣∣i, j = 1, 2, . . . , n

}

[B] = {
µbi b j ∈ [0, 1]∣∣i, j = 1, 2, . . . ,m

}
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The [A] matrix collects the incidence relations which can be originated in one
of the elements acting as causes, and the [B] matrix will respectively do so with
the elements acting as effects. Both [A] and [B] matrixes are squared matrixes, and
reflexive at the same time, so we have:

µai a j = 1
∣
∣i, j = 1, 2, . . . , n

µbi b j = 1
∣
∣i, j = 1, 2, . . . ,m

which expresses the fact that a certain element, whether cause or effect, influences
the major presumption over itself.

In return, neither [A] nor [B] are symmetric matrixes:

µai a j 
= µa j ai ,
∣
∣i, j = 1, 2, . . . , n

µbi b j 
= µb j bi ,
∣
∣i, j = 1, 2, . . . ,m

Once
[
M

]
, [A] and [B] matrixes are built up, the establishment of direct or indirect

incidences must be processed; in other words, the incidences where some interposed
cause or effect takes part at the same time. In order to do so, a max-min composition
of the three matrixes is realized:

[A] ◦ [
M

] ◦ [B] = [
M*

]

The order in the composition must allow to always make the number of the
elements in the row from the first matrix to meet with the number of elements in
the column from the second matrix. The result will be a new

[
M∗]

matrix, which
collects the first and second generation incidences between causes and effects, in
other words, the initial causal relations, with the possible interposed incidence of a
cause and/or effect, added. In this sense, we obtain:

The difference between the first and second generation effects’ matrix and the
initial direct incidences matrix will allow to know the level in which some causality
relations have been forgotten or omitted:

[
O

] = [
M*

]
(−)

[
M

]



212 A.M. Gil-Lafuente and A. Balvey

It is also possible to know, since the forgotten level of any incidence, the element
(whether cause or effect) which links them.We only have to follow the steps realized
from the max-min composition of the last matrixes, in a graphic perspective, in order
to obtain it:

It can finally be said that the higher is the value of the characteristic function
of pertinence in the

[
O

]
matrix, the higher is the forgotten level in the initial inci-

dence relation. This is translated as a wrong acting, caused by a lack of the right
consideration of the incidences, or a wrong estimation of their intensity and their
influence.

The Forgotten Effects Theory brings, as the causes which lead to a crisis and
their effects are studied, a model of sequential nature which allows to introduce the
incidence relations in the cyclic processes of the economic systems. The generated
mix between the different elements which act in a direct or indirect way in the origin
of the crisis, provokes causes which lead to effects with an accumulated intensity
level, which is necessary to deal with in an appropriate way.

The last approaches exposed have been previously applied in various researches
[6] where it is shown in which measure the economic cooperation between different
countries can be used as a stimulus to revert the current economic process.We believe
its use can be extended to the economic cycles’ study.

These studies leaded to a series of conclusions which have been used as a base
for the elaboration of other researches. Those researches were based in the incidence
relations and aggregation operators, in order to establish inwhichmeasure, and under
which criteria, the economic cooperation between countries through the developed
actions of their enterprises, could be possible.
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The approached tools show how the little moves in the whole working of the
enterprises and institutions from the involved countries can generate, not only directly
but basically indirectly, a multiplying effect over different economic fields in the
society, and reach an economic value which can be a driving force to the growth and
welfare.

These last years the efforts at looking for determinate actions addressed to finding
new solutions for the current economic and social situation have been focussed.
In the industrialized countries which take part of this situations, some of the most
affected economies are gobbled in a spiral, where the increasing unemployment,
the deficit and the damage of the public investment in strategic sectors, such as
health and education, find themselves in a constant feedback which seriously affects
their economy, society and welfare. It’s important to make scientists’ abilities and
potentialities meet, as well as business men’s and politicians’, in order to create job
places, values and wealth.

The goal of these approaches is to point out how punctual actions made by spe-
cific sectors can generate an added value, both directly in the related activities and
indirectly, like the rest of socioeconomic activities from the so considered urgent
sectors. It could be said that every recuperation process stays strengthened if a multi-
plying effect with clear beneficial effects exists. These effects echo on both economic
sectors which receive inversions and economic sectors which generate inversions,
because of the entailed feedback. So in this way, positive effects are generated and
extended like a net, affecting all the socioeconomic agents.

11.5 The Underlying Reality: A Social Crisis of Humanism

The deep economic crisis where we are immersed, together with the recuperation
perspectives, intensifies the efforts in the socioeconomic field to find new solutions
to revert the current involution process. One of the key factors to achieve this goal
is based in rationalization and the outlay containment. But obviously, this purpose
is not enough for itself, and won’t make the real economy improve (the one which
is perceived by all citizens, the one which becomes permeable in all social layers,
and the one which allows a permanent welfare), and will never stay up longer than
a short term.

It’s important to accompany thesemeasures of sacrifice imposed to the citizenship
with adequate politics depending on the objectives selected. In these austere budgets
it is necessary to prioritize those expenses and inversions which could generate wide
multiplying effects in the economy. In other words, make a part of the resources
received by the first addressee circulate to a second addressee, and successively,
causing the effects to maximize in wideness and quantity, to make them arrive to the
major number possible of socioeconomic agents.

In this process the sustainable long-term growth germ is found, and it is only
possible to generate a healthy economy with it, an economy with stable levels of
social welfare. The ones which hold the reins of the biggest socioeconomic decisions
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usually get trapped in the short-term compromises’ nets. With adequate studies,
supported by adequate management techniques based on the uncertainty treatment,
it is possible to make the short-term and long-term goals compatible.

But as long as our scientists are providing new research lines, able to supply useful
instruments (which allow the decision taking in the new cohabitation map about to
come) to the social sciences, the depressive and recessive process of an important part
of the economic systems is contributing to a wide cry of intellectuals, politicians and
business men, asking for urgent measures to the government’s responsible people,
destined to make a shortcut to our misfortunes.

The answers, almost all of themmeeting the classical mechanismwith its Boolean
logic, have been placed in one of the two ends: sanitations or expansion, accepting
for each of them the two shy positions and ineffective concessions to the other one.
There hasn’t been much improving since the most orthodox doctrine, typical from
the XXth century origins, the golden era of the mechanism.

Aswe have pointed out, the new age, with is high evolutionism charge, is requiring
the use of new concepts, models and algorithms, different from the used ones, held
in too many occasions in the linearity and differential equations. Our offers are
supported by the whole instrumental born in the Fuzzy Logic, which are reaching
an enormous prominence. Looking for the maximization of the expansion with a
minimum of sanitation, or minimizing the sanitations with the maximum expansion
possible, are two options (between many others) which are placed in the approached
schemes.

An equal order of ideas results with the paradox behaviour of the studious and
analysts of the crisis when placing the causes of the current situation in the heavy
acting of the economical deciders. They don’t consider that these causes, serious
indeed, are not the real causes, but the effects of a deep change operated in the
mentality, habits and values of the new society, build up by all of us. Actually, the
first causes of many of our problems is the existence of a social crisis of humanism.

In any case, and at each citizen’s level, we observe that the looks are always leaded
towards those effects, bringing up repeatedly two questions: when will the crisis end
(meaning of course the effects of the crisis)? And, which measures to make the way
shorter to this moment should be taken (meaning, how to appease the effects of the
crisis)?

Relating to the first of these two questions, the end of the crisis isn’t the one which
will originate the recuperation, but the one where the recuperation will be overcome,
and the economic system will be installed in a new and different welfare at the same
time.

The answer to the second question requires certain considerations which will be
briefly summarized right below.

In first place, special attention is earned by a repeated process and clearly and
empirically validated: an economic system can only be fully efficient as long as
it proportionally rewards its agents with the benefits their activities provide. This
hasn’t been the principle which has precisely ruled the previous period of the crisis.
The intense activity of the economic agents and the lack of valid criteria requested to
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assign a value to their acting, have worsened andmademore visible the disagreement
between retribution and efficiency.

In second place, we repeatedly observe that in the origin of the crisis, the scorn
towards the economic limitations to face the outlay and inversion are not acceptable.
Occident Europe’s big dilemma is prisoner in huge public debts, and limited by
a lack of growth: can we adjust, cut, reduce the debts and grow up at the same
time? Can we avoid the fitting from slowing down the growth? Can we increase the
taxation system in order to find a better redistribution of the income without setting
back the productive activity? Our emphatic answer is: yes. And we shelter from this
clear and defined affirmation, where it’s necessary and unavoidable to change our
principles, methods and operators. This will require the transition of the geometric
conception to theDarwinian conception in the social sciences. It is necessary to reject
the typical mechanism of the economic science which has left the habit of thinking
and acting following the Boolean logic: yes-no; clack-white; fitting-growth. It makes
up themost genuine application of the alreadymentioned law of the excluded middle.
Fortunately, we are able to adopt optimal decisions in intermediate positions. Basing
on the gradual simultaneity law [3] it has already been possible to stabilize the social
knowledge over the Darwinian thinking.

In third place, we validate that the idea of spending money on anything has dom-
inated the citizen’s habits. It is necessary to bring the negative consequences of the
dripping theory,5 to the general public opinion. This theory shows how even if the
inversions are not well placed, they will always end by benefiting someone. The ulti-
mate reason of our position is that the market is much less efficient when the money
is introduced in an inadequate way in it, resulting more difficult to create welfare.

In fourth place, in the current depressive situation, the fact that all the countries
involved by the crisis are being shaken by the same trembling, has been considered,
so a common politic is enough.

In fifth place, we believe (as Stiglitz also does), that another world will be possible
after this long recessive period. The immediate effects of the crisis happen to need an
urgent correction if successfully starting a new stage in the economic and financial
activity is desired. To achieve so, we need: a correct and adequate fiscal politic; a
macro prudential regulation of the financial institutions; a major public investment to
innovation, investigation and education; efficient encouragements towards earning
for the middle citizen; an extension of the European Central Bank’s mandate to
stimulate the employment creation; the establishment of a New Deal [10] and a deep
change in the citizen’s soul, in order to demand a wise government, based in our
human needs.

Finally, in sixth place, the hunt of the activities capable of generating a multi-
plying effect in local levels, results to be non-negotiable, avoiding in this way the
stimulus of the great operations which externalize certain sources; sources which
return to the circulation in a very dubitative way. Only in this way we will be able

5Gathered by Gil-Aluja, J.’s answer at Joseph E. Stiglitz’s speech in his joining in the Royal
Academy of the Economic and Financial Sciences: The price of inequality, RACEF 2012, p. 38.
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to regenerate the economic tissue, refusing the speculative processes. The opposite
means a degradation in the society at middle and long terms.

Those six reflexions are a sample of the wrong path followed by the leaders of
our society since some decades. All of them take part in the necessary change to
give sense to the human being, immersed in a pluriconnected and interdependent
economic system.

Webelieve anotherworld is possible, andwe stand up to intensify the collaboration
and cooperation efforts in the scientific research field. Absolutely all of us must be
implicated with the social justice and the desired equality of opportunities. Only with
this, the economic efficiency will be possible.

We are convinced that, helped by the public and private institutions, we will reach
the highest success’s overlooks, as we work on bringing our community towards a
future of sustainable social progress.
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Chapter 12
Advanced Computing with Words: Status
and Challenges

Jerry M. Mendel and Mohammad Reza Rajati

Abstract In this chapter, we focus on the status ofAdvancedComputingwithWords
(ACWW) and the challenges that it may encounter in the future. First, we elaborate
on the notion of Computing with Words (CWW) and its various subareas. Then we
present some non-engineering ACWW problems and connect them to more realis-
tic engineering problems, after which we provide a roadmap for solving ACWW
problems, and show how the Generalized Extension Principle (GEP) can be used to
formulate their solutions. We also propose a syllogistic approach to solving ACWW
problems that also uses the Extension Principle but in a different way. Finally, we
discuss present and future challenges to ACWW, i.e. we explain what challenges
ACWW encounters given the current trend of data abundance and widespread use
of Internet for dealing with questions posed in natural languages.

12.1 Introduction: Computing with Words and Advanced
Computing with Words

Computing with Words (CWW or CW) [11, 29, 34, 66, 69, 70, 75, 91, 104, 109,
142, 144, 147, 154] was probably conceived as the main area of application of
fuzzy logic [132] when the field was originated. It is a methodology of computation
whose objects are words rather than numbers, although those words are linked to
numbers and classical calculations that can be carried out by computing machinery,
via membership functions of fuzzy sets associated with words. To do that, a process
called precisiation of meaning [152] is essential, which, in a nutshell, is determining
membership functions of the fuzzy sets that model the words.

Zadeh distinguishes two subareas for CWW:

1. Basic Computing with Words (BCWW), which mainly deals with descriptions of
complex systems in terms of fuzzy IF-THEN rules [134]. Soft constraints are gen-
erally possibilistic, i.e. they describe (physical) attributes like speed, temperature,
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pressure, color, etc. The soft constraints are assigned explicitly by the IF-THEN
rules. BCWW mainly deals with the function approximation properties of fuzzy
systems [47, 107], and has been applied to engineering problems [63] such as
modeling [38, 98], control systems design [78, 105], clustering [79] and data
mining [106, 108].

2. Advanced Computing with Words (ACWW) [70, 152], which deals with the
assignment of soft constraints through complicated natural language statements.
Its related problems are closer to natural languages, in that the assignments of
soft constraints are usually implicit, e.g. in the statement “Most Swedes are tall,”
the soft constraint “Most” is implicitly assigned to the proportion of Swedes who
are tall. Besides possibilistic soft constraints, ACWW deals with veristic and
probabilistic [148, 149] soft constraints. World Knowledge1 or Common Sense
Knowledge plays a pivotal role in solving ACWW problems.

The fuzzy logic community has mainly focused on the function approximation
applications of fuzzy logic, especially after the seminal work of Mamdani and
Assilian [58], which uses an interpretation of fuzzy systems that is particularly suit-
able for function approximation. Such an interpretation is different from the natural
language aspect of fuzzy logic and from the idea of building computational machin-
ery that is fed with words, computes with words, and communicates solutions of
problems in terms of words.

Nevertheless,CWWhaswitnessed a resurrection through its application to various
real-world problems including analysis of complex systems [102], control [59, 156],
risk assessment [54], decision-making [21, 31, 35, 36, 40, 62, 65, 115], classification
[1], website quality assessment [37], reinforcement learning [157], text processing
[155], object oriented programming [5], information retrieval [4, 48], expert systems
[45, 46, 77, 97], reputation systems [131], and natural language generation [41].

Many theoretical approaches have been proposed to formalize CWW, among
which are: 2-tuple models [34], rough sets [80], concept algebra [111], fuzzy arith-
metic [14], voting model semantics [49], ontologies [32, 90], Turing Machines [81,
103], fuzzy automata [130], formalization of the Generalized Constraint Language
(GCL) [44] (GCL was proposed by Zadeh [143, 145, 148]), fuzzy Petri nets [10],
meta-linguistic axioms [101], approximate reasoning [122], and Perceptual Com-
puting (Per-C) [64, 65, 68, 74].

It is not surprising that different people have different viewpoints on CWW [70].
In many of the above contributions, the term CWW has been used inclusively, in
the sense that any application of fuzzy logic for reasoning with words has been con-
sidered as an instance of CWW. While there is no problem with such a viewpoint
(especially since the founding father even classifies rule-based function approxima-
tion applications of fuzzy logic as BCWW), we prefer to view CWW as a methodol-
ogy of computation whose inputs, reasoning procedures, and outputs involve natural
language words, phrases, and propositions rather than just numeric values. Neverthe-
less, the boundaries of CWW seem to be fuzzy themselves. In fact, there are CWW

1World Knowledge means information either given in the statement of a problem or needed to solve
the problem.



12 Advanced Computing with Words: Status and Challenges 219

applications for which the assignments of soft constraints are not implicit [112],
and are even performed through fuzzy IF-THEN rules [114], but still the inputs
and outputs are natural language words. Those applications also usually do not deal
with linguistic truth, possibility, or probability, something that is expected from
ACWW problems. On the other hand, there are applications of fuzzy logic for func-
tion approximation that deal with linguistic truth [28, 92] and linguistic probability
[25, 50, 51, 99].

We adhere to two tests2 for calling a computational method CWW [68] both of
which we suggest must be passed or else the work should not be called CWW. A
third test is optional but is strongly suggested. The tests are:

1. A word must lead to a membership function rather than a membership function
leading to a word.

2. The output from CWW must be at least a word and not just a number.
3. Because words mean different things to different people, they should be modeled

using at least Interval Type-2 Fuzzy Sets (IT2 FSs).

Test number 3 is “optional” so as not to exclude much research on CWW that uses
Type-1 Fuzzy Sets (T1 FSs), even though we strongly believe that this test should
also be a requirement for CWW, since a T1 FS cannot simultaneously capture intra-
personal and inter-personal uncertainties about a word, whereas an IT2 FS can.3

Although Zadeh has partitioned CWW into only BCWW and ACWW, we feel
that CWW should be partitioned into BCWW, Intermediate CWW (ICWW) and
ACWW, as depicted in Fig. 12.1, which is our schema of the viewpoint of Fuzzy
Logic = Computing with Words. To avoid confusion, in this chapter we call the func-
tion approximation applications of fuzzy logic, BCWW; they dealwith fuzzy systems
that have numerical outputs, like fuzzy rule-bases, fuzzy classifiers, and fuzzy clus-
tering. We reserve the name ICWW for those CWW problems that involve simple
assignments of attributes, including the usage of IF-THEN rules [116] or aggregation
operators such as Ordered Weighted Averages (OWAs) [125], Fuzzy Weighted Aver-
ages (FWAs) [20, 30, 52] or Linguistic Weighted Averages (LWAs) [112], but whose
outputs are linguistic. In Linguistic summarization, data lead to a model that may
involve simple assignments of attributes through IF-THEN rules as well as implicit
assignments of attributes through linguistic quantifiers (e.g., most people who aren’t
exposed to sunlight have serious vitamin D deficiency). Thus, linguistic summariza-
tion seems to have some features of ACWW, but those features appear in the answer
that it yields, not necessarily in the world knowledge that it deals with, which is why
we have located it in ICWW. Observe in Fig. 12.1 that fuzzy IF-THEN rules occur in
both BCWW and ICWW problems. ACWW problems involve intricate assignments

2Detailed discussions about these tests are given in [68, pp. 312–313].
3Another test appears in [68]: Numbers alone may not activate the CWW engine (e.g., IF-THEN
rules). Numbers are modeled as singleton FSs and there is nothing fuzzy about them. Jon Garibaldi
(Univ. of Nottingham) has pointed out (in a conversation with the first author) that in e.g., a medical
application, patient data may all be numbers, rules are used, and then outputs are not defuzzified, but
instead are mapped into a linguistic output (with similarity). We agree with this, and have therefore
dropped this test.
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Fig. 12.1 Fuzzy Logic =
Computing with Words:
BCWW, ICWW, and
ACWW (The focus of this
figure is the applied facet of
fuzzy logic; it excludes other
aspects of it, such as the
logical and pure
mathematical aspects)

of truth, probability, and possibility. Observe that the Perceptual Computer (Per-C)
methodology can address both ICWW and ACWW problems, which is illustrated in
Fig. 12.1 by showing an overlap between Per-C and both ICWW and ACWW.

In this chapter, we focus mainly on ACWW and provide a roadmap for solving
ACWW problems. We briefly review how truth, probability, and possibility can be
dealt with in the framework of ACWW, and sketch methodologies for solving some
selected ACWW problems by different methodologies, and provide a perspective of
the status, challenges and future of ACWW.

12.2 Some ACWW Problems

Zadeh has introduced some ACWW problems that involve everyday reasoning and
decision making by linguistic probabilities [143, 145, 146, 150, 152]. Some of
those problems are given in Table12.1. To demonstrate how such problems occur
for more realistic statements, we show, in Table12.2, the Engineering versions of
the problems for the first four rows of Table12.1. We do this because we strongly
believe that for ACWW to be taken more seriously, its problems must be shown to
be of more practical relevance.
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Table 12.1 Some of Zadeh’s ACWW problems involving linguistic probabilities and linguistic
quantifiers

World knowledge Problem statement

• Most Swedes are tall • What is the average height of Swedes?

• Probably John is tall • What is the probability that John is short/very
tall/not very tall?

• Most Swedes are much taller than most
Italians

• What is the difference between the average
height of Swedes and the average height of
Italians?

• Usually Robert leaves the office at 5 p.m.
everyday and usually it takes him about an hour
to get home

• At what time does Robert get home? What is
the probability that he is home before
6:15 p.m.?

• Vera has a son in mid-twenties and a daughter
in mid-thirties. Usually mother’s age at birth of
a child is between approximately 20 and
approximately 40

• What is Vera’s age?

• Most Swedes are tall, and most tall Swedes
are blond

• What is the probability that Magnus (a Swede
picked at random) is blond?

• Usually, most United flights from San
Francisco leave on time. I am scheduled to take
a United flight from San Francisco

• What is the probability that my flight will be
delayed?

• Usually several cars are stolen every day in
Berkeley

• What is the average number of cars stolen per
month in Berkeley?

• X is a real-valued random variable. Usually
X is much larger than approximately a and
usually X is much smaller than
approximately b

• What is the probability that X is
approximately c, where c is a number between
a and b?

• A and B are boxes, each containing 20 balls
of various sizes. Most of the balls in A are
large, a few are medium and a few are small;
and most of the balls in B are small, a few are
medium and a few are large. The balls in A and
B are put into box C

• What is the number of balls in C which are
neither large nor small?

• A box contains about 20 balls of various sizes
and there are many more large balls than small
balls

• What is the number of small balls?

12.3 A Roadmap for Solving ACWW Problems

In this section, we provide a high-level roadmap for solving ACWW problems.
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Table 12.2 Engineering versions of some of Zadeh’s ACWW problems

World knowledge Problem statement

• Most of the products of Company X have
somewhat short life-times

• What is the average life-time that is expected
from the products of Company X?

• Probably product X is highly reliable • What is the probability that the reliability of
X is low?

• Most of the products of Company X have
much lower maintenance costs than most of the
products of Company Y

• What is the difference between the average
maintenace costs of the products of Company
X and the average maintenace costs of the
products of Company Y?

• Usually Product I lasts for about 3years and is
then replaced by a refurbished one, and usually,
the refurbished Product I lasts for about 2years

• What is the probability that a new Product I is
not needed until the seventh year?

12.3.1 Modeling of Words

Because any ACWW problem involves words, the first step in the solution to an
ACWW problem is to model those words. As was mentioned earlier, the process of
assigning fuzzy sets to words is called precisiation (of meaning) [140, 146]. Mendel
in [66] argues that a correct first order model for a word is an Interval Type-2 Fuzzy
Set [9, 67, 135], since words mean different things to different people.4 In other
words, a fuzzy set model for a word should represent both the intra-uncertainty and
the inter-uncertainty associated with that word. Intra-uncertainty is the uncertainty
that an individual has about the meaning of the word, whereas inter-uncertainty is
the uncertainty about the word that exists across a group of individuals. Both types
of uncertainties cannot be modeled by T1 FSs, which is why the words need to be
modeled using at least IT2 FSs.

Interestingly, Zadeh anticipates that fuzzy sets of higher type will play a central
role in ACWW in the future [69].

The philosophy of precisiation in the Per-C is to build a vocabulary of IT2 FS
models of words using data collected in the form of intervals from subjects by the
Interval Approach (IA) [53] or the Enhanced Interval Approach (EIA) [117]. Those
methods build IT2 FS models of words by processing data using various statistical
tools; therefore, they can be seen as highly nonlinear transformations of the data that
are collected in the form of intervals from subjects. This process of precisiation is
called encoding in the Per-C language [3].

When data about words are collected from a group of subjects and are processed
using probability and statistics, then the fuzzy set models are random, i.e. the ran-
domness of the data does not disappear, but is propagated through the nonlinear
transformations into the fuzzy set models.

4If one knows how to model a word using a general T2 FS [6, 7], that model can be called a
second-order uncertainty model [3].
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To implement solutions to ACWWproblems, their veristic, probabilistic, and pos-
sibilistic constraints have to be modeled using data collected from subjects. In [85]
linguistic probabilities and linguistic quantifiers (which are mathematically equiva-
lent to linguistic probabilities [139]) were modeled by the EIA. A similar effort is
needed to model linguistic truth values, usualities, and possibilities, so as to have a
more complete collection of IT2 FS models of soft constraints for ACWW.

It was pointed out in [3] by Mendel, that for an ICWW problem, the linguistic
answer depends on the size of the vocabulary that is selected for the output. This is
also true for ACWW. If, e.g., height is described only by three terms (short, medium,
and tall) then the output of an ACWW problem about height may be linguistically
different from the output that is based on seven terms (very short, short, moderately
short, medium, moderately tall, tall, and very tall). It may happen that, when the
fuzzy set models in the two vocabularies are compared in terms of similarity, some
of the terms from the three-word vocabulary will be quite similar to those in the
seven-word vocabulary, so that they can be interchanged with one another. But, in
general, the solution to an ACWW problem depends on the size of its vocabulary.

Although we are strong advocates of using IT2 FS models of words, to the best
of our knowledge, the main tools pertinent to solving ACWW problems have only
been developed for T1 FSs. Consequently, we explain the solutions to the ACWW
problems using T1 FSs. Nevertheless, we still advocate obtaining those T1 FSs by
using data collected from subjects because this reflects the intra- and inter- personal
uncertainties about a word to some extent. One way to do this is to use the Upper
Membership Functions (UMFs) of the IT2 FSs synthesized by the EIA (those UMFs
will depend on the size of the vocabulary).

12.3.2 Computing Solutions to ACWW Problems

The second step in the solution of anACWWproblem is to carry out the computations
that are pertinent to the problem. In this step, the calculi of fuzzy sets are used
to derive generalized (soft) constraints [148] on some variables of interest, given
the generalized constraints on some other variables for which World Knowledge is
available. The variables of interest can be described as functions of the variables
on which World Knowledge is available, and consequently soft constraints provided
by World Knowledge can be propagated to the variables of interest. The main tool
of fuzzy logic for performing such calculations is the Extension Principle and its
extended version, theGeneralizedExtensionPrinciple (GEP) [142, 152]. This second
step is called the CWW engine in the Per-C.

Fuzzy IF-THEN rules can play the role of a computational engine For ICWW,
but they assign attributes directly, so they may not have a role in ACWW in their
conventional form. For ICWW and ACWW, many other mathematical tools may be
needed in the computations, such as antonyms and negations [13, 100], syllogisms
[74, 84, 94, 141], and aggregation operators [35, 86, 125, 127].
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Because, in ACWW problems, the assignment of the soft constraints are implicit,
and the information is described in intricate phrases drawn from natural languages,
the following framework of the GEP is of crucial importance [142]. Assume that
f1(·), . . . , fm(·) and g(·) are real functions, i.e.

f1, . . . , fm, g : U1 × U2 × · · · × Un −→ V (12.1)

The world knowledge or information pertinent to an ACWW problem gives some
generalized constraints on the functions f1(·), . . . , fm(·). The goal is to derive the
generalized constraint on g(·), given such information, i.e.:

f j (X1, X2, . . . , Xn) is A j , j = 1, . . . , m

g(X1, X2, . . . , Xn) is B

where Ai , (i = 1, 2, . . . , m) and B are T1 FSs. The Ai ’s induce B as follows:

μB(v) =
{

sup
u|v=g(u)

min
(
μA1( f1(u)), . . . ,μAm ( fm(u))

) ∃v = g(u)

0 � ∃v = g(u)
(12.2)

where u is shorthand for (u1, u2, . . . , un) ∈ U1 × U2 × · · · × Un . This is the GEP.
Examples of f j and g for some ACWW problems are given in Sect. 12.6.

When f j (X1, X2, . . . , Xn) = X j , the GEP reduces to the Extension Principle
[132, 135].

Equation (12.2) is a complicated (functional) optimization problem that is difficult
to solve. To the best of our knowledge, [87] offers the only published effective
methodology to carry out the calculations related to this optimization problem.

12.3.3 Translating the Solution Back into Words

The third step in the solution of an ACWW problem is to map the results from
the second step back into a word. This process is called linguistic approximation
by Zadeh [136], retranslation by some other authors [61, 124], and decoding in
Perceptual Computing. Subsethood and similarity measures [60, 68, 113] are often
used to do this.

Some approaches to CWW, especially the 2-tuple approach [34, 35, 104, 110],
circumvent the problem of information loss due to linguistic approximation by a
symbolic approach. They process the input linguistic information using some aggre-
gation operators that yield the index of a fuzzy set representing a word in an output
vocabulary. The aggregation operators may not always yield an integer, in which
case the output is rounded so that it represents the index of a word in the output
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Fig. 12.2 A Perceptual Computer for ACWW

vocabulary. The rounded output along with the difference between the index yielded
by the aggregation operator and the rounded one are reported as a 2-tuple (a word
associated with the rounded integer and a number in the interval [−0.5, 0.5) that
can represent the information loss).

12.3.4 Observation

A block diagram of the Per-C is given in Fig. 12.2. Our discussions in Sects.
12.3.1–12.3.3 have demonstrated that solutions to ACWW problems fall exactly
into the Per-C structure. What are different for ACWW from other applications of
the Per-C is the use of World Knowledge and the ACWW engine, which uses the
GEP. See [68] for other engines that are used in ICWW applications of the Per-C.

12.4 Dealing with Truth, Probability, and Possibility

In Zadeh’s ACWW problems (see Table12.1) words such as “probably”, “most”,
and “usually” are used. Truth, possibility, and probability qualification principles
are the main tools for handling linguistic truth, linguistic probability, and linguistic
possibility in natural language statements [137].5

Assume that A is a fuzzy set, and τ is a linguistic truth value for which μτ :
[0, 1] → [0, 1]. The truth qualification principle is [137, 153]:

χ is A → μA(x)

χ is A is τ → χ is B, μB(x) = μτ (μA(x))

This principle gives a framework to deal with linguistic truth in ACWW problems
through modification of the membership function of A to have a new soft constraint
B on χ.

Dealing with probability constraints is very important for solving ACWW prob-
lems. It relies on the definition of the probability of a fuzzy event [133]. Assume

5Truth and possibility qualification principles modify fuzzy sets. Truth qualification principle is a
functional relationship that acts on the membership function of the fuzzy set that is associated with
a truth value. Possibility qualification principle modifies the fuzzy set that is associated with it into
an IT2 FS. This in turn calls for extension of ACWW methodologies to IT2 FSs.
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that C is a fuzzy event in U and p(·) is a probability distribution function on U . The
probability of the fuzzy event C is then defined as:

Prob(C) =
∫

U
μC (u)p(u)du (12.3)

Assume that λ is a fuzzy probability (e.g., Probable, Likely, Somewhat Improb-
able), μλ : [0, 1] → [0, 1]. The probability qualification principle starts from the
following:

χ isC → μC (x)

χ isC isλ → Prob(C) isλ

Consequently, since Prob(C) = ∫
U μC (u)p(u)du, the probability qualification prin-

ciple becomes

∫

U
μC (u)p(u)du isλ → μλ

(∫

U
μC (u)p(u)du

)

The probability qualification principle is used very frequently for solving ACWW
problems. When a soft constraint is assigned to the probability of an event, it
is used by the GEP in (12.2). Therefore, saying that “the lifetime of a product
is probably short” means we assign the soft constraint A j = Probable to the
function f j (l(·)) = ∫

T μShort (t)l(t)dt (which is a function of the pdf l(·)), and
μProbable(

∫
T μShort (t)l(t)dt) appears in the expression of the GEP, according to the

probability qualification principle.
The possibility qualification principle is:

χ is A → μA(x)

χ is A isβ−possible → x is B̃, B̃ = A ∪ �̃β, μ�̃β
(x) = [0, β]

The possibility qualification principle weakens the statement that is qualified by
taking the union6 of A and an IT2 FS �̃β, μ�̃β

(u) = [0, β] which represents some
level of indeterminacy (total indeterminacy occurs when β = 1), i.e. the membership
value of each member of the universe of discourse U may be any number in the
interval [0, β].

12.5 A General Guide for Formulation of ACWW Problems

Based on the above discussions the following framework is provided for solving an
ACWW problem [87]:

6Zadeh uses the bounded sum t-conorm T (a, b) = min(1, a + b) as the union operator.
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1. Determine the soft constraints and identify all of the words that are used for
linguistic probability, quantifiers, usuality, truth, and possibility.

2. Model all of the words associated with the soft constraints using fuzzy sets (this
is where the size of vocabulary is important).

3. Use truth qualification and possibility qualification principles to modify the soft
constraints in the problem.

4. From the linguistic description of the problem, determine which quantities (e.g.,
numeric probabilities) are constrained by the words that were found in the pre-
vious step and how this occurs. This may be needed because such words may be
implicitly assigned to the quantity (e.g.,Most is assigned to the portion of Swedes
who are tall, Probable is assigned to the probability that John is tall, etc.).

5. Formulate the numeric probabilities in the previous step:

(a) Use definite integrals involving indicator functions of non-fuzzy events or
membership functions of fuzzy events and the (generally unknown) proba-
bility distribution functions pertinent to those events (continuous case); or,

(b) Use the fraction of the cardinality of the fuzzy event over the cardinality of
the whole population (discrete case). Like the continuous case, for which the
probability density functions might be unknown, some quantities related to
the population (e.g., the average height of a population or the variance of the
height of a population) may be unknown.

6. Formulate the quantity on which a fuzzy constraint must be calculated, in terms
of the unknowns (e.g., probability distributions) of Steps 5a or 5b. This quantity
may be an average, a numeric probability, or a function of some averages, etc. To
do this, the calculi of fuzzy sets are needed.

7. Apply the GEP: knowing the soft constraints on the quantities formulated in Step
5, determine the soft constraint on the quantity that was formulated in Step 6. The
sup of theGEP is taken over all possible unknowns of Steps 5a or 5b. For example,
if a probability distribution is not known, or if the height of the individuals in a
population is unknown, the sup is taken over all admissible probability distribu-
tions or admissible heights of individuals. The word “admissible” is crucial and
implies that additional problem-specific World Knowledge is needed.

8. Carry out the calculations related to the GEP according to the algorithms that
were presented in [87] to derive the membership function of the fuzzy constraint
yielded by the GEP.

9. Decode the Step 8 solution back into a word (a numerical solution may also be
provided). Similarity plays an important role in this step.
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12.6 Two Examples

In this section,7 we provide partial solutions8 to two of Zadeh’s ACWW problems,
one of which involves linguistic probabilities, and the other linguistic quantifiers.

12.6.1 Tall Swedes Problem (AHS)

The Tall Swedes problem9 is about the average height of Swedes (AHS), and is
(see Table12.1): Most Swedes are tall. What is the average height of Swedes? This
problem involves a linguistic quantifier (Most) and an implicit assignment of the
linguistic quantifier to the portion of tall Swedes (Step 4). The portion of Swedes
who are tall is equivalent to the probability of the fuzzy event Tall, and is calculated
as (Step 5):

Prob(T all) =
∫ b

a
μT all(h)pH (h)dh (12.4)

in which a and b are the minimum and maximum possible heights and pH is the
probability distribution function of heights which clearly satisfies:

∫ b

a
pH (h)dh = 1 (12.5)

The soft constraint “Most” is assigned to Prob(T all). On the other hand, the
average height of Swedes is calculated as (Step 6):

AH =
∫ b

a
pH (h)hdh (12.6)

To derive the soft constraint imposed on AH by the fact that Prob(T all) is con-
strained by “Most”, one needs to use the framework of the GEP (Step 7):

In the Tall Swedes problem, f (pH ) = Prob(T all), where

f : X[a,b] −→ R (12.7)

in which X[a,b] is the space of all possible height probability distribution functions
on [a, b]; and, g(pH ) = AH , where

7Most of the material in this section is taken from [87].
8We are actually only setting up the ACWW engine (i.e., Steps 4 to 7, in our Sect. 12.5 procedure).
Numerical solutions can be found in [87].
9We do not use the acronym “TSP” because it is already widely used for the famous Traveling
Salesman Problem.
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g : X[a,b] −→ R (12.8)

The GEP then implies that the soft constraint on the average height of Swedes is
computed, as:

μAH (v) = sup
pH |v=∫ b

a pH (h)hdh
∫ b
a pH (h)dh=1

μMost

(∫ b

a
pH (h)μT all(h)dh

)

(12.9)

It is worth noting that other approaches to solving the Tall Swedes problem have
been offered in [74, 89].

Assuming that the MFs for Most and T all are determined by the precisiation
process, to solve (12.9), the family of probability distributions over which the sup
is taken has to be determined. The distribution of heights of men can be considered
normal. The ranges of the parameters of those distributions are also part of theWorld
Knowledge that has to be available. A comprehensive approach to solving problems
involving the GEP is in [87].

12.6.2 Swedes and Italians Problem (SIP)

The Swedes and Italian problem is (see Table12.1): Most Swedes are much taller
than most Italians. What is the difference between the average height of Swedes and
the average height of Italians? Zadeh formulates the solution to SIP (see Table12.1)
using generalized constraints, as follows. Assume that the population of Swedes
is represented by {S1, S2, . . . , Sm} and the population of Italians is represented by
{I1, I2, . . . , In}. The height of Si is denoted by xi , i = 1, . . . , m, and the height of
I j is denoted by y j , j = 1, . . . , n. Let:

{
x ≡ (x1, x2, . . . , xm)

y ≡ (y1, y2, . . . , yn)
(12.10)

Much taller is defined as a fuzzy relation on Hm
S × Hn

I , in which Hm
S and Hn

I
are respectively the spaces of all possible heights of m Swedes and n Italians, and
the degree to which Si is much taller than I j is hi j , (i = 1, . . . , m; j = 1, . . . , n),
i.e.:

hi j ≡ μMuch taller (xi , y j ) (12.11)

The cardinality ci of the set of Italians in relation to whom a Swede Si is much
taller can be calculated using the following �-count [139]:
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ci =
n∑

j=1

μMuch taller (xi , y j ) =
n∑

j=1

hi j (12.12)

The proportion of Italians in relation to whom Si is much taller, ρi , is then (Step 4):

ρi ≡ ci

n
(12.13)

Using a T1 FS model for the linguistic quantifier Most , the degree ui to which a
Swede Si , is much taller than most Italians, is (Step 5):

ui = μMost (ρi ) (12.14)

The proportion of the m Swedes who are much taller than most Italians can be
derived via the division of the �-count of those Swedes by m:

v = 1

m

m∑

i=1

ui (12.15)

Consequently, the degree to which v belongs to the linguistic quantifier Most is
determined by:

Q(x, y) = μMost (v) (12.16)

in which the fact that v is a function of x and y is emphasized in the argument of Q.
The difference in average height of Swedes and the average height of Italians, d,

is calculated as (Step 6):

d = 1

m

∑

i

xi − 1

n

∑

j

y j (12.17)

To derive the linguistic constraint imposed on d by (12.16), one exploits the GEP
(Step 7). Zadeh’s approach states that there is a soft constraint “Most” on v, the
�-count of Swedes who are much taller than most Italians, given by (12.15), and
requires the calculation of the soft constraint on d, given by (12.17). Therefore, in
(12.2), f (x, y) = v and:

f : Hm
S × Hn

I −→ R (12.18)

Also, g(x, y) = d = 1/m
∑

i xi − 1/n
∑

j y j , and:

g : Hm
S × Hn

I −→ R (12.19)
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The GEP implies that the soft constraint D on the difference in average heights, d,
is characterized by the following membership function:

μD(d) = sup
(x,y)∈Hm

S ×Hn
I

d= 1
m

∑
i xi − 1

n
∑

j y j

μMost

⎛

⎝ 1

m

m∑

i=1

μMost

⎛

⎝1

n

n∑

j=1

μMuch taller (xi , y j )

⎞

⎠

⎞

⎠

= sup
(x,y)∈Hm

S ×Hn
I

d= 1
m

∑
i xi − 1

n
∑

j y j

Q(x, y) (12.20)

in which (x, y) belongs to Hm
S × Hn

I , the space of all possible heights that Swedes
and Italians can have. The sup is taken over this space since we have no information
on the height distributions among these two nationalities.

Assuming that the MFs for Most and Much taller are determined in the process
of precisiation of meaning, to solve (12.20), Hm

S and Hn
I have to be determined as

the World Knowledge, i.e. the set of all possible heights of Swedes and Italians,
respectively.

12.7 A Syllogistic Approach to ACWW Problems

Webelieve that there can bemore than oneway to solve anACWWproblem, because
World Knowledge can be used in different ways.We have already seen that to use the
GEP requiresWorld Knowledge that is not stated explicitly for a problem, e.g. pdf of
height of Swedes, Italians, etc. In this section, we explain a syllogistic approach to
solving ACWW problems [82–84, 88, 89]. Those solutions use the Extension Prin-
ciple in a different way, namely by applying it to the calculation of Novel Weighted
Averages (NWAs)10 [68, 86]. To begin, we need to translate the ACWW problems
into a form suitable for NWAs.The following syllogism [151] is used for handling
the probability words and linguistic quantifiers in the ACWW problems:

The probability that χ is A is P

The probability that χ is A′ is ¬P

in which A′ is the complement of the fuzzy set A, characterized by:

10NWAs refer to Interval Weighted Averages (IWAs), Fuzzy Weighted Averages (FWAs), and
Linguistic Weighted Averages (LWAs) [68].
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μA′(u) = 1 − μA(u) (12.21)

and ¬P is the antonym of the fuzzy set P , whose membership function is given
by11 [13]:

μ¬P (u) = μP (1 − u), u ∈ [0, 1] (12.22)

Using the above syllogism, we create the following linguistic belief structure for
each linguistic probability:

BP = {
(A, P), (A′,¬P)

}
(12.23)

in which A and A′ are focal elements ofB and P and¬P are fuzzy probability mass
assignments forB. The difference between these belief structures and those that are
studied in e.g., [55, 118, 128, 129] is that the probability mass assignments are now
words rather than numeric values.

Belief structures with fuzzy-valued probability mass assignments were first intro-
duced by Zadeh [138]; however, they have not been in the mainstream of research
in the evidential reasoning community. In the past two decades, there has been some
research on belief structures with interval-valued probability mass assignments [16,
26, 27, 72, 123]. As a natural extension of this, some studies formulate fuzzy-valued
probability mass assignments [12, 17].

The belief structure represented in (12.23) can be used to infer an average [120]
or a probability [118, 138]. In the following, we explain how the probability of an
event as well as an expected value can be inferred from a belief structure with fuzzy
focal elements (Ai ’s) and fuzzy mass assignments (Mi ’s).

If the probability of an event must be calculated, it is known [15] that only lower
and upper probabilities can be infered from non-fuzzy belief structures. Assume that

B = {(A1, m1), . . . , (An, mn)} (12.24)

is a non-fuzzy belief structure, forwhich Ai ⊆ U are focal elements, and 0 < mi ≤ 1,
are probability mass assignments that satisfy

∑
i mi = 1. Such a belief structure can

be seen as the generalization of a pdf to the casewhen probabilitymasses are assigned
to sets rather than to points. The lower and upper probabilities P− and P+ of an
event B ⊆ U (which is not necessarily one of Ai ’s) can be calculated as [15]:

{
P− = ∑

i |Ai ⊆B mi

P+ = ∑
i |Ai ∩B �=∅ mi

(12.25)

The concepts of lower and upper probabilities can be extended to belief structures
with fuzzy focal elements and fuzzy mass assignments. Assume that the following
belief structure represents some knowledge about a variable χ:

11There are other ways to define the antonym of a fuzzy set, which are less common [100].



12 Advanced Computing with Words: Status and Challenges 233

B = {(A1, M1), (A2, M2), . . . , (An, Mn)} (12.26)

where Ai are fuzzy sets over U and Mi are fuzzy sets over the unit interval of
probabilities [0, 1] (e.g. {(T all, Probable), (not T all, I mprobable)}). In order to
infer LProb−(B) and LProb+(B) [the lower and upper probability that χ is B (e.g.,
John is short)] from B, the following normalized sums [86], which are extensions
of (12.25), have to be calculated:

⎧
⎪⎨

⎪⎩

μLProb−(B)(z) = sup z=∑n
i=1 mi xi∑n

i=1 mi =1

min
(
μM1(m1),μM2(m2), . . . ,μMn (mn)

)

μLProb+(B)(z) = sup z=∑n
i=1 mi yi∑n

i=1 mi =1

min
(
μM1(m1),μM2(m2), . . . ,μMn (mn)

)

(12.27)

In (12.27) xi = I(Ai , B) is a measure of inclusion of Ai in B, or more generally,
a pessimistic compatibility measure, and yi = O(Ai , B) is a measure of overlap
between Ai and B, and more generally, an optimistic compatibility measure.

Given the statement “The probability that χ is A is P”, one can infer a belief
structure like the one in (12.23), and then apply (12.27) to calculate the probability
that χ is B. It was shown in [86, pp. 138–139] that the optimization problems in
(12.27) may have no solutions and that one can instead use the following FWAs to
calculate LProb−(B) and LProb+(B):

⎧
⎪⎨

⎪⎩

μLProb−(B)(z) = sup
z=

∑n
i=1 mi xi∑n
j=1 m j

min
(
μM1(m1),μM2(m2), · · · ,μMn (mn)

)

μLProb+(B)(z) = sup
z=

∑n
i=1 mi yi∑n
j=1 m j

min
(
μM1(m1),μM2(m2), · · · ,μMn (mn)

)

(12.28)

When the average of χ has to be inferred from the belief structure B that describes
it, one can calculate its expected value E{B} as:

μE{B}(z) = sup
z=∑n

i=1 mi ai∑n
i=1 mi =1

min

(
μM1(m1),μM2(m2), · · · ,μMn (mn),

μA1(a1),μA2(a2), · · · ,μAn (an)

)

(12.29)

If the information about a variable χ is represented in more than one linguistic
belief structure, combination rules for belief structures [18, 22–24, 95, 96, 121,
128] have to be extended to linguistic belief structures. It was shown in [84] that a
combination rule for linguistic belief structures can be devised using an aggregation
operator called Doubly Normalized Linguistic Weighted Average (DNLWA).

To solve an ACWW problem involving linguistic probabilities, using the syllo-
gistic approach, the following steps have to be performed:

1. Determine the soft constraints and identify all of the words that are used for
linguistic probability, quantifiers, usuality, truth, and possibility.
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2. Model all of the words in the problem using fuzzy sets.
3. Determine the linguistic probabilities and linguistic quantifiers in the problem.
4. Use a syllogism for each linguistic probability to derive a linguistic belief structure

like the one in (12.23).
5. Inference:

(a) To calculate the average of the variable that the belief structure describes, use
(12.29) that is computed by applying the α-cut decomposition theorem and
KM algorithms [52].

(b) To calculate the lower and upper probabilities of an event, choose the mea-
sures of inclusion and overlap and then use (12.28).

(c) To combine several belief structures or to calculate a belief structure describ-
ing a function of variables described by several linguistic belief structures use
DNLWA [84]. For inference from the combined linguistic belief structures,
use (12.28) that is computed by applying the α-cut decomposition theorem
and KM algorithms [52].

6. Decode the solution back into aword (a numerical solutionmay also be provided).
Similarity plays an important role in this step.

12.8 Advanced Computing with Words: Status, Challenges,
and Future

Zadeh [152] gives three rationales for CWW. He begins first with the following
three premises: (a) Words are less precise than numbers; (b) Precision carries a cost;
and (c) Numbers are respected, words are not. He then proceeds with the following
rationales:

(a) Use words when numbers are not known or are too costly to obtain.Use of words
is a necessity.

(b) Words are good enough. Numbers are known but there is a tolerance for impre-
cision which can be exploited by employing words in place of numbers, aiming
at a reduction in cost and achieving simplicity. Use of words is advantageous.

(c) Linguistic summarization. Words are used to summarize numerical information.
Use of words is expedient.

These rationales provide a guideline to identify the current status and challenges
of ACWW, as well as its future. In this section, we provide a constructive critique of
Zadeh’s rationales.

The first rationale can be interpreted as being about the cost of obtaining data;
it might still be valid in some cases, but is somehow losing its importance with the
recent advances in information technology resulting in the abundance of data [8, 56],
especially with the conversion of the Internet into the source of data [33] for almost
everything.
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We believe that the phrase “Computing With Words” carries the connotation of
“the way in which a person (or people) solves a problem.” This connotation raises the
following very interesting question: Howwould a person solve an ACWWproblem?
To the best of our knowledge no answers to this question have been published. We
feel that obtaining answers to this question is very important because they will shed
light not only on how a person obtains a solution to an ACWW problem but also on
the statement of the problem itself. To do this, we propose that research be conducted
jointly with psychologists.

In many of the prototype problems that Zadeh provides (see Table12.1), his bits
of expert knowledge or World Knowledge (e.g., “Most Swedes are tall”, “Usually
Robert leaves the office at about 5 p.m.”, and “Usually, several cars are stolen
daily at Berkeley”) are given. These bits of knowledge often replace the knowl-
edge about probability distributions of some variables (e.g., height of Swedes, the
time that Robert leaves his office, and the number of cars that are stolen daily in
Berkeley.). However, in these examples, all of those probability distributions can
easily be obtained by collecting data, from data on the Internet, or are already avail-
able on the Internet.When ACWWproblems were initially posed the Internet did not
exist and so easy access to much World Knowledge did not exist. This has changed
dramatically, and we feel it cannot be ignored. Ask someone a question today and
if they don’t know the answer they go to the Internet. Of course, one can argue that
some of the information on the Internet is wrong, but this is changing and arguably
does not deter a person from using the Internet.

The implications of using the huge amount of data available through the Internet
are very profoundonACWW.Consider theTall SwedesProblemas a simple example.
Today it is possible to find the answer to the question “What is the average height
of Swedes” on the Internet (e.g., [19]). The fact that “Most Swedes are tall” is no
longer relevant to this question. Interestingly, the same may or may not be true for
the engineering version of this problem (Table12.2) because a particular company
may not make the relevant data available on the Internet; but, that will not deter a
person from looking for the answer on the Internet because for a person to answer
such a question they need some sort of data, numerical or linguistic, e.g., to answer
the question: “What is the average lifetime of an ipad” see [57] (there are many more
sites that can also be used.)

In some problems whose intents are to implement everyday decision making
using human knowledge, the posed questions can be answered without referring
to the provided World Knowledge, by collecting data or performing observations.
Examples of such problems are about risk, reliability, or lifetime of products for
which it is safer to rely on collecting data about those variables than to rely solely on
the knowledge of some experts. This argument does not totally refute the plausibility
of using ACWW for assessing the reliability or lifetime of a product, because the
lifetime of a product may be so long, or the product may be so expensive and rare
that collecting data is not practical, in which case the best one may be able to do is
to rely on expert knowledge. In that case, the credibility of the results may then be a
matter of question.
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It is true that Zadeh’s problems are only prototypes of what can be addressed
by ACWW, but given the advancements in data collection and information retrieval
methodologies, we question whether one can justify using expert knowledge about
probabilities instead of obtaining the exact or approximate probability distributions.
We have already shown that moreWorld Knowledge is needed than is stated in order
to solve an ACWW problem, e.g. the kind of pdf that is associated with a specific
problem. Having such probability distributions, the answer to some of the prototype
problems reduces to calculating the probability of a (fuzzy) event e.g., “What is
the probability that Robert is home before 6:15” can be answered by collecting
data about Robert’s arrival times. Today, one can easily find what the travel time
is between two addresses during a particular hour on the Internet (e.g., on Google
Maps), without the need for expert knowledge. Focusing again on the Tall Swedes
Problem, in order to solve the optimization problem in (12.9) one needs the density
function pH (h). It is not reasonable to use arbitrary density functions, because pH (h)

should be tied to the distribution of the heights of Swedes. But are these Swedish
men, women or both?MoreWorld Knowledge is needed. In fact, height distributions
may be bimodal (see [93]). In any event, by going to the Internet (there are many
sites about the heights Swedes) it is possible to arrive at a family of pdfs that can
be used for pH (h). The same is true for the engineering version of this problem
where one needs to choose pdfs that are commensurate with a reliability lifetime
problem. The site [71] is a good starting point. This argument may leave us with
fewer instances for which ACWW is applicable, e.g., prediction of the probabilities
of a future event or judgments about the probability of an event about which data
collection is extremely difficult or impossible (a conceivable example is a social, or
economic or political process taking place in a very closed country about which little
information is available except expert knowledge/judgment).

Not using data (numerical or linguistic) to solve an ACWW problem is, to us,
analogous to providing an a priori probability distribution about something, i.e. it
provides a starting answer but one that gets replaced by answers that are based on
facts (a posteriori distributions). Hopefully, as one acquires enough data, the answers
converge to afixed answer. Solutions toACWWproblems should experience a similar
behavior.

We therefore feel that the time is right for experimentalwork to be done to establish
how people solve ACWW problems and to modify or eliminate the ones whose
solutions either can be found entirely on the Internet or be found by collecting data
very easily.

This discussion leads us to two more questions: (1) “What does one do with the
answer to an ACWWproblem?” (2) How does one validate the answer to an ACWW
problem?

The second question may be easier to answer than the first one, i.e. we believe
that the answer to an ACWW problem can only be validated by acquiring more data,
because without data the answer is speculative, even if it has been obtained by using
the GEP or syllogistic reasoning. Speculative answers may be okay, but they lead to
the first question, which may sound facetious, but it is not.
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Mendel [66] claims that a Turing-type test can be used to validate a solution to a
CWW problem. In a Turing-type test, a human is required to provide an answer to
the CWW problem; however, ACWW problems are so complex that a human might
be unable to provide an answer. It is clear from our discussions in Sects. 12.5–12.7
that there are many steps required to solve an ACWW problem, after which it seems
natural to us to ask: Is the solution “correct”? We know of no simple way to answer
this question. In [87] we have suggested a relatively simple way to check whether
or not the numerical solution to an ACWW problem may be correct. Our suggestion
is to formulate a special version of the ACWW problem for which a human can
provide the answer, and see if the numerical solution to that problem agrees with the
human’s answer. For example, “Probably John is Tall. What is the probability that
John is tall?” Common sense says that the answer is “Probable,” i.e., “It is probable
that John is tall.” An ACWW methodology must yield the answer “Probable” for
this problem. It was shown in [87] that sometimes the discrepancy between the
ranges of parameters of the family of distributions (which is World Knowledge) and
the membership functions of the probability words leads to the failure of such a
validation process. Further research is needed to address this issue.

One answer to the first question may be: “I don’t really care, because what I am
really interested in is learning how amachine can provide a solution to this problem.”
To us, this is where the present state of ACWW is (e.g., [87]). There is nothing wrong
with this because by learning how a machine can provide a solution to an ACWW
problem one may discover new things, and that’s what research should be about.

Another answer to this questionmaybe: “I need the answer to theACWWquestion
in order to make a decision.” For example, if I am designing a home in Sweden I
will need to know how tall a doorway should be; or, if Robert’s wife has prepared
a surprise birthday dinner party for him she will need to know around what time to
start cooking so that the food is not over-cooked. So, the intended use of the answer
to the ACWW question informs the solution to the question (feedback is present).
The builder of the home in Sweden cannot accept the answer: “The average height
of Swedes is pretty tall;” he needs numbers. Similarly, Robert’s wife may not be able
to accept the answer: “Robert will be home somewhat close to 6:15;” she also needs
numbers. Of course, such numbers can also be provided to them, but this requires
that the World Knowledge involving “pretty tall” and “somewhat close” be accurate
enough. Also, it is still unclear why one needs to use the given World Knowledge
when the answer to some questions can be found on the Internet.

Zadeh’s second rationale, Words are good enough, also loses its importance when
data can be collected about a fact. Collecting data about many real-life events is
becoming cheaper and more accessible, leaving us with less instances for which
relying on intervals and words is necessary; however, words may be good enough
or even unavoidable for problems that deal with subjective issues, e.g. assessing the
quality of an article submitted for publication, or the desirability of an option, or
the possibility of something to occur. On the other hand, when data can be collected
about an event and the probability of that event is considered, we question whether
it is practical to adhere to this rationale and rely only on subjective judgment about
the probability of that event.
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Zadeh’s third rationale, (the need for) Linguistic summarization, is valid almost
always when something has to be reported to a human. No matter how knowledge-
able or expert someone is, one needs to communicate their ideas to other people
in natural language, which introduces the issue of imprecision of the words. This
rationale suggests that the subject of linguistic summarization [39, 73, 116, 119] is
an important topic for ICWW. How to formulate linguistic summarizations so that
they are also a part of ACWW is also an important direction for future research.

We have already mentioned that the GEP is an essential aggregation tool for
ACWW, especially when dealing with probability constraints. Nevertheless, analytic
solutions for the optimization problem in the GEP are in general presently hopeless
when probability constraints are involved, and existing numerical algorithms (e.g.,
α-cut decomposition) are not directly applicable. In [87], some of Zadeh’s challenge
problems that involve linguistic probabilities are solved using a novel algorithm for
implementing the GEP. A limitation of this algorithm is that it includes “exhaustive
search” on the space of the parameters involved in the problem. Implementing the
GEP without exhaustive search is another challenge for future research.

As stated in Sect. 12.7, we also believe that there is more than one way to solve
ACWW problems, e.g., GEP, and syllogistic reasoning. Syllogistic reasoning does
not needWorldKnowledge about probability distributions, but it needsWorldKnowl-
edge about the domains of variables involved in the problems (e.g., time and height).
It also uses the Extension Principle, but in a different way from the GEP. Moreover,
it involves the challenge of choosing appropriate compatibility measures [82], and
may require multiple computational methodologies for fusion of inconsistent infor-
mation [84]. Much more research is needed about this approach to solving ACWW
problems.

Because the GEP is the main tool for manipulating Z-numbers [2, 42, 43, 76,
126, 151], the connections between ACWW and computing with Z-numbers is also
an interesting topic for future research.

The reader may not agree with many aspects of the discussions that we have
just presented above; but that’s okay, because we have made them to provoke new
thinking about ACWW. We believe that the time is right for shaking the tree of
ACWW to see what golden apples fall from it.
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Chapter 13
Informal Meditation on Empiricism
and Approximation in Fuzzy Logic and Set
Theory: Descriptive Normativity, Formal
Informality and Objective Subjectivity

Jordi Cat

Abstract The paper defends the view that the application and construction of
mathematics may prove to be empiricist, subjective, approximative, contextual and
normative. These elements are both inseparable and central to the possibility and
success of mathematical practice. The cases of fuzzy set theory and fuzzy logic
illustrate and support this account. In turn, the framework the account offers also
brings out the particular ways in which the noted elements distinctively characterize
these related fuzzy projects. Their future will benefit from understanding them more
critically and creatively.

13.1 Application and Interpretation of Mathematics:
Scientific Empiricism

Whatmakes fuzzy set theory and logic distinctively empirical, normative, contextual,
subjective and approximate? I will sketch an answer to this question by considering
how the application of mathematics more generally exhibits the five dimensions as
inseparable, complicated and with diversity of significance. I will draw attention
to standards of empiricism, objectivity and precision and emphasize the role of
normative and pragmatic elements and the variety of interpretations and uses at
work. Unlike other scientific projects, especially in applied mathematics, the project
of application and combination of fuzzy logic and set theory does not measure its
formal and empirical success and progress in terms the complete elimination of
subjectivity and approximation.

A result of this factual empirical approach is what might seem a puzzling juxtapo-
sition of two general methodological consequences: an enhanced power of empirical
representation (see [39]) and the radical incompleteness of objective and precise
representation. In the case of logic, I will note the issues that arise in the context of
empiricism with a comparison to discussions of quantum logic. The fuzzy project is
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a typical instance of empirical inquiry, with a distinguishing feature: it must face the
challenge to acknowledge and represent informality, contextuality, imprecision and
subjectivity, while retaining a sufficient degree of scientific objectivity and precision.

These dimensions are the properties that explain how the fuzzy project can take
on the challenges of exceeding the bounds of classical semantic monism. The future
of the fuzzy project passes through the critical appreciation and exploitation of the
particular aspects I will note of these dimensions. The discussionwill enrich a general
picture of these issues in scientific practice more broadly, especially as a picture of
the application of mathematics.

Classical semanticmonismmaybe characterized as follows:By classical semantic
monism I mean the commitment to axioms of bivalence and excluded middle and
the existence of a natural, plausible, correct, universal, exact and unique truth value
assignment for predications about any given objects (in the most general sense of
subjects of prediction, whether individual objects, events or states).

Themost basic challenges1 the so-called problems of artificial precision or vague-
ness (boundary nature) and semantic indeterminacy (boundary location).

• Problem of artificial precision or vagueness: failure of mechanisms of fixation of
interpretation—meaning or designation—to establish the complete satisfaction of
predication or the exact truth of corresponding propositions. No fact or indicator
suffices to establish any such assignation. The assignation of ANY particular,
unique, precise numerical truth value, even a number between0 and1, is considered
the artificial, that is, incorrect, unnatural, implausible or counterintuitive. This
difficulty concerns the nature of the boundary between predicates or corresponding
truth values.

The first problem may be solved by providing a vague interpretation, and this is
precisely what fuzzy models or degrees of truth do. They represent vague predicates
with a subset of the extension modeled by a function from the subset of members
to the interval [0, 1]. Each case can thus be assigned a single value of degree of
membership and of truth.2 The objective semantics of the assigned degree of truth
cannot be identified with a measurement value or degree of a quality on a scale
(see [41, p. 215]). It is about the degrees, the precise measures are the members of
the fuzzy set, the extension of the vague predicate that categorizes them, e.g., the
function that assigns degrees of warmth to precise temperature measures. Below I
will raise the issues of reduction and the joint objective and subjective dimensions
of fuzzy semantics.

• Problem of semantic indeterminacy, intended interpretation or plurivaluation: The
facts, data or indicators acting as mechanisms of fixation of interpretation for a
predicate or proposition is not unique, it is underdetermined. The problem affects
both classical and vague semantics and concerns the location of the boundary
between predicates or truth values.

1Here I follow [41], esp. Chap.6.
2See [16, 26, 45], etc.
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The second problem may be solved by introducing constraints on the set of
interpretations a community will deem acceptable. Both problems apply to lan-
guage and categorization and, by implication, to reasoning. The fuzzy solution to
both problems and their particular significance are matters of empiricism, subjectiv-
ity, contextuality, normativity and approximation. But rather that doing so against a
standard of scientific practice defined by precision, objectivity, unity and universal-
ity, I suggest that the opposite is the norm, and only within that alternative picture
we can identify and individuate the distinguishing features of fuzzy theory.

So I turn, first, to a brief and more general discussion of this alternative picture
and its dimensions.

13.2 Scientific Empiricism: Subjectivity, Contextuality
and Normativity

I consider a naturalized sense of the empirical and factual in terms of attention to
scientific and more ordinary practices as they are the case; these include practices
of reliable production and acceptance of factual information. Empiricism cannot be
held to a standard that enforces a reduction or else exclusive attention to some form of
perceptual information as a source ofmeaning andwarrant. Expositions sinceZadeh’s
earliest texts on the subject have noted that fuzzy set theory and logic are empirically
discovered, justified and applied formalisms. It’s an empiricist project. It formalizes
facts about formalizing practices; one of them, categorization or predication, is itself
an empirical practice, the application of linguistic terms in the conceptualization of
facts. Also, at the empirical root of the cognitive practices, as fuzzy theory describes
them, lie the roles of context and subjectivity.

Empiricism as naturalistic belief about matters of fact, about the world and epis-
temic practices is often opposed to logical and normative claims. The history of
empiricism is based on distinctions endorsed as philosophical dichotomies (exhaus-
tive binary classifications): analytic/synthetic and fact/value (or convention).3 The
a priori analytic kind has been long associated with classical logic and even mathe-
matics (Frege). While both formal sciences and factual knowledge alike have been
long touted to be universally valid, it is the analytic domain of logic that has been the
locus of necessity, even objectivity, without reference to any kind of transcendental
ontology. The necessity of the formal claims, especially analytic a priori claims of
logic, is often cashed out in terms of the role of the rules of inference (what follows
necessarily), and, connectedly, in terms of two cognitive conditions: (1) analyticity

3Synthetic judgments as statements of fact, ampliative and describing and testable only matters
of experience (not pure subjective phenomenological states alone); opposed to analytical ones,
relations of ideas, explicative and decidable only by rules or conventions (for Fregemathematicswas
analytic and analyticitywas ampliative and grounded on derivation from basic logical principles, not
explicative or revealed by self-contradicting negations as on theKantian view; for logical empiricists
mathematics was both analytic and explicative).
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as the formal inconsistency or else the unintelligibility or inconceivability of the
negation of truths or propositions; and (2) aprioricity as the internal, formal condi-
tions of constructability and revisability of the different claims and the system they
form. The only external source is the standard of cognitive intelligibility, in this case
internal to the mind, its commitments and constraints, including adopted social con-
ventions. Factual claims and their systems rely on the external sources of the revision
linked to empirical reality. Necessity and objectivity have, since Kant, relativized to
context and convention at the expense of universality (and uniqueness). Also revis-
ability, even by empirical standards. The rejection of the dichotomies is suggested
by judgments or sentences that aren’t true by either fact or convention alone.

Here are general tenets of what we might call sophisticated empiricism and nat-
uralism ([37], Chap. 7):

• Knowledge of (particular) facts presupposes knowledge of theories (connections
and generalizations).

• Knowledge of theories presupposes knowledge of (particular) facts.
• Knowledge of facts presupposes knowledge of values: objective and indispensable
in justification.

• Knowledge of values presupposes knowledge of facts. Additional source of objec-
tivity and factual relevance and applicability.

Empirical science is about empirical objectivity, not transcendental objectiv-
ity. Empirical objectivity can be interpretive objectivity, objectivity of products, or
methodological objectivity, objectivity of process. Empiricism has long been linked
to considerations of subjectivity and objectivity about the formation and evaluation
of hypotheses. Equally, subjectivity and objectivity have long been thought without
any assumptions of metaphysical realism, without transcendent subjects and objects
and truth about forever hidden or ideal facts and entities.

One step back from transcendent realism lies empirical objectivity, the objectiv-
ity of empirical objects as described within a relevant scientific theory, formalism
or conceptual scheme. Objective truth will be the corresponding truth about them.
This is the semantic objectivity of truth values and what they represent (not just
what they are). This is objectivity of interpretation, or product. It is different, but
not independent, from the objectivity of process, the methodological objectivity of
formation and evaluation (and, a fortiori, of final endorsement or acceptance). In
the case of mathematics, the structural objectivity of product relies on the method-
ological objectivity of rules and conditions involved in construction, calculation and
proof. To each sense of objectivity corresponds a different but also related notion of
subjectivity.

The variety of operative notions of objectivity suggests that objectivity is not
just a feature of objects. It’s about objects, objectives and objecting. Objectivity and
other so-called epistemic considerations have become normative ideals (norms or
prescriptions range from values to standards and conventions); and it is a condition
of objective representations, without transcendent facts, that they be recognizable or
(cognitively) accessible. Objectivity, even truth, are not alwaysmodes of description,
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more generally, they stand at least for forms ofwarranted assertability and deniability,
and warranted appraisability or criticism (see [37], Chap. 6). To a weaker sense of
objectivity corresponds an equally weaker sense of truth. Truth, in this sense, is an
expression of commitment, both to the belief in fact that answers to true sentences,
but to the system of language and categorization that make them possible and the
evaluation criteria and procedures. Again, this sense of truth, and realism, extends
to mathematical statements. For the case of formal conditions, abstract hypotheses
and general principles, I want to add the distinction between the warrant of construc-
tion and the warrant of application. Two corresponding considerations of objectivity
follow. For the weaker notion of truth to apply, standards of warrant and criticism
had better be in place. This picture of empirical research endorses fallibilism and
revisability, not skepticism: it seeks warrant for belief and doubt, certainty and uncer-
tainty.

Judgments of fact and of value may be taken to be both relative and objective.4

Schemes of categorization and classification demarcate facts through considerations
of values (norms and standards) for instance prioritizing as more relevant and signif-
icant particular kinds of similarities over others. These systems are true and accurate
to the extent that they are successfully calibrated against preferred known instances
adopted as standards. It is not a requirement (as fuzzy-set schemes show) that the
categories in a scheme have sharp boundaries and that their application be always
applicable without indeterminacy. They must be also adequate, or right, to the extent
that they can contribute to realize our objectives (ibid., p. 191). The informing val-
ues express or serve the interests that identify and motivate the particular kind of
inquiry, including epistemic access to the instances (see also [5]). In the application
of concepts and hypotheses, values and standards are inevitable (see [29]). Matters
of fact are mainly theory-informed valuable phenomena; empiricism is not just about
valuable (also constructed) data (see [4]).

Facts then are relative to value, because truth, conformation and objectivity of
their representations are too. This is, I think, the sense in which answering ques-
tions and settling matters of application of conceptual schemes or language games
require evaluation, not just non-cognitive judgments and their non-cognitive appli-
cation of standards of correspondence and agreement, whether by model-theoretic
correspondence, isomorphism or reliable causal connection; and this make truth—
and objectivity—a normative notion (see [37, pp. 77–78]).

Objectivity is then secured by the criteria and techniques of evaluation adopted for
the formulation and application by every system. And for empirical objectivity and
objectivity of empirical application, this is objectivity enough. When one disregards
the ontological sense of objectivity in terms of transcendental truth and inaccessi-
ble objects, the next best thing is the achievement of intersubjectivity—or, more
precisely, cross-subjectivity: Generalizable independence from any personal or indi-
vidual conditions concerning the constitution or choice of a concept or judgment.

4Elgin makes the case: “factual judgments are not objective unless value judgments are; and value
judgments are not relative unless factual judgments are,” in [17, p. 176].
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Like subjectivity, objectivity without objects rests on a negative characterization;
often relative to each other, as the denial of one or more associated more specific
indicators.

The two related forms of the intersubjectivity, without reference to transcendental
reality, are mechanical and formal modes of methodological and interpretive objec-
tivity. Both involve the reliance on relations or operations. The mechanical criterion
is based on the ethos of operations or manipulations, material or formal, that does
not depend on exclusive individual contributions in their execution and testing. It is
an independence criterion. Significantly, it applies to the outcomes of technological
instruments and it includes pictorial representations (see [13]). The more purely for-
mal one, so-called structural objectivity, depends on the application of a structure
or set of formal relations established in terms of the conceptual manipulation of
symbols.

Formal objectivity is not automatically empirical objectivity, the symbolic, for-
mal or conceptual determination of empirical objects. Conceptual determinations—
precise situations on conceptual maps—of empirical data that categorize, unify and
distinguish empirical objects and, more generally, any form of objective empirical
knowledge onwhich it is based rely on this notion of objectivity—or objective empir-
ical reality. Since Kant, a long tradition of thought has grappled with the doctrine
that the logical objectivity or constitution of concepts and the experience of partic-
ulars under those conceptual representations are understood as generally valid and
unifying coherent configurations, structures of relations in or between judgments,
according to “universal” functions, laws or rules.5

The constitutive rules may be internal conventions or definitions determining a
formal concept, as in formal precision or in formal fuzziness as its negation; or in
relation to the semantic rules of empirical application of the formal concept to par-
ticular cases. The problem of empirical application that grants empirical objectivity
to the prior formal objectivity of autonomous mathematical structures is the prob-
lem of coordination. And this involves a problem of construction and selection of
application conditions.

The question for the case of fuzziness is whether the objectivity of empirical repre-
sentation requires precision and universality or else it canmake do with contextuality
and approximation. Formal characterizations of fuzziness suggest that representa-
tions of approximation may be objective, without their objectivity itself being an
approximate matter of degree, unlike truth. This formal notion makes compatible
formal precision with an objective epistemic interpretation (the normative rational
basis of probability and decision theory).

From the perspective of a particular scheme or practice of inquiry, some such
values may be deemed unwanted biases, brought out in a broader context of social
diversity alongside alternative biases. This scenario is the main motivation behind

5Ernst Cassirer, Rudolf Carnap, Moritz Schlick and Hans Reichenbach were early 20th-century
champions of accounts of knowledge and objectivity by means of formal conceptual determination
by mathematical structures of relations and, especially Cassirer, invariants.
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Longino’s critical and social account of objectivity in terms of the recognition of the
irreducible diversity of scientific and social values in a community.6

But in the account of empirical knowledge I am presenting not any concept or
system is constructible (formal objectivity), applicable (empirical objectivity) or
worth applying (empirical objective). While pluralism and relativism are valuable,
they are so also to the extent that they are limited in range. The role of facts in
motivating, challenging or bearing out a scheme, concept or value help establish the
objectivity of the adopted values. Values may me assessed more generally in terms
of objectives, that is, of their roles defining or implementing standards of warrant
and reasonableness.7 Objectivity itself, in its different forms, is a value in the same
sense.

Other objectives constrain and inform scientific the production and assessment
of representations giving way to the empirical practice of modeling, data and phe-
nomena. Distinctive of modeling is its reliance on idealization, abstraction and sim-
plification. In an general way, modeling is driven by simplification from the set of
possible variables, parameters of values characterizing an assumption of different
and more complex features, states and processes. Representation, in that sense, of
phenomena has both a positive and negative dimensions and values, two faces of the
same coin. The negative aspect of simplification is a commitment to a particular cri-
terion of economy, a kind of compromise in form of qualitative approximation with,
in mathematical cases, consequences in the form of quantitative approximation. The
positive dimension on which the negative depends is guided by a criterion of rel-
evance, interest and value: it expresses and is guided by a commitment to a given
interest in selected variables or parameter or their values. The interest is relevant to
goals of research and standards of intelligibility, explanation, prediction, promise,
etc. The virtues, norms, conventions in place define a community that by upholding
them also takes them for granted. They defend and define, for instance, objectivity.

Such a dependence of empirical modeling on specific conditions constitutes not
just a form of normativity and approximation; it is also a form of relativity or con-
textuality. The contextual dimension is a double rejection of universality: it depends,
in a way both principled and pragmatic, on limited resources and limited domain of
applicability. It is expressive of a limited set of specific commitments to and appli-
cation of specific standards of construction and evaluation. Moreover, the empirical
application of models depend on the strings attached, on assumptions that specify
in more or less detail the limited conditions of their relevance and validity. Finally,
as a result of the precision of the embedded limits, many models involve theoreti-
cal inconsistencies in the assumptions involved in their construction or application.8

Neither precision, universality or consistency constitute a reasonable standard for
the construction, use, objectivity and credibility of models and generalizations in
actual scientific practice. Objectivity, contextuality and imprecision—in theoretical
and experimental approximation—are not incompatible. Rather than undermining

6[29] An over-idealized alternative is negative talk of neutrality; see [15].
7See Putnam’s pragmatist position, above.
8On the limits of modeling and their approximative and inconsistent application see [7].
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modeling as empirical practice, normativity, limited objectivity, contextuality and
approximation characterize and enable it.

Semantics has its place in this picture; some connecting remarks will help apply
dimensions and issues I am raising with the picture to the case fuzzy theory. It’s
a widespread doctrine that logic and a set theory have in their core an algebra of
functions, or operations, onmembers of ordered sets of truth values. The set-theoretic
operations correspond to logical relations or connectives. A semantic interpretation
of a language involves a model domain and a function that assigns values from a
set of truth values to symbols for propositional constants and objects to symbols for
individual constants. Interpretations will map sets of symbols onto sets of valuations
and truth values, discrete and in degrees, and sets of objects and their properties
satisfying them.

The classical semantic picture is based on an algebra with a two-element set
of truth values and three connectives for operations/functions, union/disjunction,
intersection/conjunction and complementation/negation. On this picture, vagueness
and vague reasoning are epistemic matters of ignorance about the truth values about
the assignation of predicates/properties to objects. Truth values get their objective
interpretation from the properties they represent or “measure” in the objects satisfying
the true or false, interpreted propositions.

Classical semantics, as a theory of how language relates to the world, also rests on
metaphysical assumptions. One may speak of semantic realism, then. The relation
between our terms and propositions and the world is one of reference and truth. Typ-
ically, one relation is considered primary, whether reference (reference-first seman-
tics) or truth (truth-first semantics) (see [41, p. 46]). The ontology of classical mod-
els is based on the distinction between objects and properties, and the assumption
that objects hold properties or relations precisely, univocally; either objects possess
a property or they don’t. We may call this view, correspondingly, classical meta-
physics. The interpretation of language they provide is ideally unique and it supports
the application of the classical logical principles of bivalence and excluded middle.
One may speak in this case of classical semantic realism.

Truth in this combination of classical semantic and metaphysical pictures leaves
little room for vagueness. But it may form a class of equivalent situations cognitively
indistinguishable for us and, as a consequence, may determine vague meaning as a
matter of use. This is a typical epistemic interpretation of vagueness.

The version I have outlined of the classical semantic picture might be weakened
through two additional features: (1) partiality of scope of language towhich it applies;
(2) variability or contextuality of truth value or meaning for the same linguistic units
and (3) plurality (in any context), so-called plurivaluation.

The radical alternative is the rejection of semantic realism and to deny the reality
of either truth or reference (or both). As in the interpretation of theoretical elements
in science, there is a corresponding semantic antirealist attitude that any notions
beyond linguistic practice is instrumental or pragmatic, not intending any claim about
the existence of anything else in the world and its properties. Different particular
rejections lead to corresponding pictures often labeled as anti-representationalist.
Realism emphasizes model theory, partly for methodological reasons, as a matter of
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clarity and precision; although the use of model theory doesn’t necessarily indicate
realism. I want to suggest that in general these realist-antirealist distinctions do not
map neatly onto any distinction between objectivity and subjectivity, but rather often
involve distinctions between different kinds of objectivity, empirical (realistic) and
formal (structural, methodological or mechanical).

One such alternatives is a proof-theoretic approachwithout any reliance on seman-
tic models. That is, on matters of reasoning, the approach adopts the assumption that
vague predicates are undecidable and statements are accepted as true only by the
practical success of getting away with asserting them. Proof-theoretic approaches
are instances of a mechanical or formal form of objectivity.

My interest in the objectivity and subjectivity in empirical research concedes the
role of mixed semantics. This is part of the picture I sketch here of fuzzy theory, in
language and reasoning; and I consider non-semantic aspects too. But there is more
than one picture of mixed semantics. The objectivist pictures come in different kinds,
some more or less realists, some not at all. Moreover, there are mixed kinds where
objective and subjective conditions entwine. The relevant kind of subjectivity is the
subjectivity of interpretation.

Vagueness in language and reasoning can be modeled within the objectivity of
semantic realism in terms of non-classical semantics, of indeterminacy. And this
may rest on a picture of the world language relates to according to the semantic
picture expressed by non-classical models or metaphysics. Fuzzy theory is a the-
ory of vague but decidable predicates and reasoning, whose semantics rests on a
fuzzy metaphysics: It is a collection of models of intrinsically vague properties—not
vague objects—in the world, properties objects can possess in intermediate degrees
[41, p. 122].

The picture of empiricism will not be complete without taking seriously the place
of subjectivity and approximation. Subjectivity and approximation are not just the
absence of objectivity and precision as the sole active factors in empirical research.
As I noted for the case of modeling practices, limitations in objectivity, universality
and precision are enabling factors. Subjectivity too is part of the picture.

In order to locate the place and role of subjectivity side by side objectivity, I
distinguish three related views of subjectivity: onto-psychological, interpretive and
functional-methodological and volitional. Theymake a residual appearance and play
a residual role in scientific practice according to some of its characterizations, such
as fuzzy set theory.

The first kind include such negative notions of the subjective are ontological and
psychological.

• Ontological subjectivity without functional methodological or interpretive role:
one may point to two capacities of the I. One is an active capacity, the other is a
phenomenological one. The first has been identified as the site of will and mental
spontaneity (intentional, emotional, intellectual, etc.). The second is perspectival,
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the center of perspectival self-consciousness,with self-attribution, self-knowledge.
This is the domain of themind as the domain of the irreducibly internal andprivate.9

• Psychological subjectivity with a methodological cost: subjectivity understood as
condition of individual attachment (subjection) in the form of either impulse or
rigidity, cognitive or emotional. The form of the negative value of subjectivity is
associated with both aspects, the form of the attachment and the personal individ-
uality. The attachment, whether as rigidity or arbitrariness, without consistency, is
considered to undermine the possibility of objectivity in the empirical realist sense
of truth to systems considered real precisely in terms of the sufficient independence
of their representation and empirical reality from attachments (a residual level of
relativity may be formal or material, as all our concepts or representations are
ultimately forms of relativity, as are material connections, especially those whose
empirical status is linked to cognitive access). At the same time, attachments are
considered obstacles to objectivity in so far as they are indexed to a single and
exclusive personal or particular individual source (as the extreme form of cogni-
tive contextuality, regardless of additional considerations of privacy). Attachments
may be found equally unacceptable insofar as their nature, individual or shared,
are not amenable to revision or justification to any others. In this picture, subjec-
tivity is the enemy, not the source of the normativity of reasons and reasoning that
warrants information or representation.

For instance, the objectivity of expert judgment or analysis has been assessed in
relation to the normative cognitive standard of rationality rather than a realist, fac-
tual norm (see [11]). For Cooke, expert opinion involves subjective assessment or
analysis, e.g., of risk and uncertainty. The interpretation remains subjective, and the
form of the subjectivity of interpretation is uncertainty in degree of belief. Instead,
the methodological criterion of objectivity is formed by the conditions of intersub-
jective, rational consensus. This becomes, next, a problem of introducing conditions
of aggregativity of expert opinion. Cooke’s a set of minimal methodological guide-
lines: reproducibility (an independence condition), accountability (ability to track
personal or institutional sources of expert subjective probabilities), empirical control
(conditions of revisability), neutrality (true opinion), fairness (assumption of equal
reliability of all experts). From this standpoint, Cooke claims that fuzzy methodol-
ogy lacks a systematic criterion for revising uncertainty measures in the light of new
information and a normative standard of evaluation of subjective opinion.

This notion of subjectivity connects with the broad issue of built-in or acquired
individual biases and constraints, whether subpersonal—unconscious—or else
allowed as internal representations and beliefs acting as means or guiding goals.
In the formal and mechanical senses, one might distinguish between rule-following
and rule-governing objectivity. One involves conscious self-represented symbolic
rules followed to achieve, for instance, our cognitive states and performances; the
other, which we might call embedded objectivity, involves functional forms of rigid-
ity acquired or developed in interaction with our environment, such as automatic

9It is, in Roger Scruton’s words, “the organizing principle of first-person awareness”; [42].
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operations, habits or routines causally constraining or determining those processes
and performances. These might be unstable, modifiable and contextual.

The embedded domain is a murky domain of the implicit or tacit. Objectivity
and subjectivity can be found here, so do the factual and the normative: Objectiv-
ity of the factual, without normativity, and normative subjectivity. Do we consider
embedded, subpersonal objectivity objective in the mechanical sense if we iden-
tify a stable and reliable, even if black-boxed, mechanisms? This is the functional
objectivity of an instrument or technique relative to an end. It is a condition of the
mechanical objectivity of procedures and representations. Computations carried out
bymachinesmay not involve explicit self-representation or self-monitoring. But such
causal processes involve known, explicitly representable routines; rule-governing
may embody in material and causal forms, is mappable onto, endorsed forms of
rule-following, rules in reliable relation to certain commitments, norms, standards or
desired goals. This is the context for addressing the ethical dimension of the behavior
autonomous machines such as robots. Embedded normativity is implemented, vicar-
ious normativity; at least some of it. In science, a naturalistic attitude will endorse
habits and norms pragmatically in light of accepted empirical and formal results and
methods.

Not everyone will agree that norms are explicit rules, rather than embedded and
operative in implicit forms. Embedded objectivity might lack the normative force
that justifies our judgments except in terms of functional reliability and indepen-
dence from any individual cognitive subject. Collective subjectivity, supervening on
individual dependence, is a spurious form of consensus or uniformity. Collectiv-
ity is compatible with subjectivity understood as form of individualism. Objectivity
requires more than accidental or contextual consensus, like causality requires more
than correlation. Embedded objectivity may be an individual mechanism without
being individualistic or personal, subjective. It is the mystery of embedded norma-
tivity. Tacit knowledge depends on reliably acquired skills, habits and values that help
perform tasks (play the piano, riding a bike, etc.) and, more abstractly and socially,
train in and conduct scientific practice, as Michael Polanyi and Thomas Kuhn noted,
without being reduced to the explicitly articulated content and rules.

Indeed, objectivity in the normative explicit sense may itself be relative and con-
textual, ex., relativity to conditions and constraints, even to those adopted only within
a particular community in evolving sciences, such as sets of norms in methods and
categorization schemes, as used in modeling, etc. Modeling is contextualization and
condition-dependence. As forms of approximation to themore complex and themore
general, relativity and contextuality alone do not entail subjectivity.

The overlapping functional notion of subjectivity, we may call it methodologi-
cal subjectivity, emphasizes the explanatory and pragmatic functions of subjectivity
within the negative limits just noted in the negative, normative, inter-subjective char-
acterization. It appears as part of the characterization of the formal project. One
positive role may be accommodated, like that of values, in terms of attributions of
a function of tie breaking, but only after the relevance and value of alternatives has
been otherwise established, that is, objectively; just like considerations of values are
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often considered as tie breakers in the face of empirically equivalent hypotheses,
even if their role is far more diverse, fundamental and pervasive.

There is another functional sense in which one may speak of subjectivity, voli-
tional subjectivity. It is a precondition for the application of taste, the execution of
arbitrary preference, the adoption of convention and judgment, commitment, crite-
ria and values that will motivate or warrant other judgments. Another role is more
productive or constitutive. Beyond the theoretical and technological complexity and
construction of descriptions, the mechanical ideal of objectivity has become supple-
mented with the practice of subjective expert judgment ([11, 13]). This is a mixed
case.

What’s the relation between subjectivity and expertise? Is tacit knowledge, rooted
in training, practice and skill, a distinctive source of subjective judgment? Here lies
the elusive difference between the cognitive role of intuition as a kind of embedded
rigidity at the root of decision-making, and a heuristic, an objective representation
and transferability of a constraint that is cognitively informed and with methodolog-
ical value. Intuition is subjective insofar it lacks public representation and transfer-
ability. Yet it may be developed and adapted contextually through its exercise in
repeated interaction with the environment and in the light of a record of feedback,
uncertainty and external goals (in science, sports, crafts, policy, design, manage-
ment, etc.). Intuition has embedded objective expression as an exercise of instru-
mental contextual rationality relative to cognitive and practical goals in situations of
uncertainty. This is the performative and embodied nature of expertise or skill. The
self-represented version with intersubjective expression is a heuristic normatively
justified as an expression of objectivity derived from rationality, in this case known
as ecological rationality.10

Subjectivity, without any mystifying ontological or cognitive meaning, may be
considered as a negativemethodological place, the eye of the hurricane of public prac-
tice. Its methodological value derives from its volitional expression and its boundary
representation and control by means of external objective constraints, embedded or
public. By negativity I mean both the uncertainty and the resistance to formal objecti-
fication in theory or method of the volitional necessary in method and practice for the
purpose of adopting, selecting, deciding or accepting (besides elements of symbolic
recognition or self-representation). It may have the effect of providing a rigid obsta-
cle to the pursuit of goals but also a reliable source of action, cognitive and practical.
This negativity, not just as activity, may be considered a form of valuable source of
wiggle room or plasticity, whose valuable function may involve both creativity and
reliable sensitivity to varying contexts, situations, goals.

Unsurprisingly, the most relevant and valuable applications and developments of
fuzzy set theory have focused onprocess and projects featuring explicitly a role for the
human factor, namely, cognitive and volitional exercises of subjectivity such as expert
judgment, control and decision making, and, as a consequence, systems dependent
on human elements of judgment, perception, etc., that Zadeh has called humanistic
systems. As I have noted before, the role of judgment in scientific expertise, for

10See for instance [21].
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instance, in risk evaluation, is perceived in need of constraining by the systematic
application of objectifying criteria [11].

A third, related kind of subjectivity is what I have called interpretive subjectivity.
It expresses individual psychological, cognitive or epistemic states providing the
basis for a corresponding interpretation of formalism, ex. probabilities asmeasures of
subjective or individual epistemic states of uncertainty, lack confidence or ignorance,
especially as the theory first developed in the context of gambling and errors in
astronomical observations. The formal articulation suggests a formalized subjectivity
that may be reduced away to either an empirical psychological model or a normative
model of rationality of belief (ex. rational betting strategies). The situation should
recall measures of individual utility value and their role in rational decision-making.
Uncertainty has come to be distinguished from (known) objective risk and associated,
instead, with unknown factors. As a result this negative aspect suggests a mixed kind
of semantics.

Fuzzy logic and fuzzy-set semantics, like decision theory, depend theoretically
on the formal and quantitative modeling of subjective states. Formal subjectivity has
received formal objective representation as a measure of uncertainty; and it has been
given relabeled in terms of possibility, with formal properties different from the ones
characterizing probabilities, a form of epistemic modality situated between logical
and physical possibility, combining the psychological and the normative. From the
normative methodological standpoint, interpretive subjectivity might pose a conflict
with methodological and interpretive, semantic objectivity: it is the challenge of its
apparent indistinguishability from error.

The different roles of subjectivity in scientific practice may be considered effective,
acceptable or irreducibly detrimental, depending on how each role is understood to
serve prior commitments or values.

This conclusion points to a valuable tension within the fuzzy set theory and logic
projects: between (1) the scientific project qua scientific, guided by the methodolog-
ical desideratum, among others, of objectivity (in terms of more specific criteria) and
(2) the scientific project as empiricist or factual, aiming to extend the formal concepts
in set theory and logic on the grounds aiming to represent actual modalities of human
reasoning and categorization which include a role for subjectivity—the empiricist
project yields the added methodological benefit of extending mathematical theory
and, with it, empowering the formal methods in empirical sciences and technology.

Similar remarks can be made, on similar grounds, about approximation. The
fuzzy project, one might argue, aims both to represent and to reduce, if not elimi-
nate, approximation. However, the implicit methodological tension is dispelled by
jettisoning the commitment to precision. There is no inconsistency in accepting a
certain degree or kind of approximation in the representation of approximation.

My claim is that the fuzzy project includes an implicit but valuable methodological
tension between representing and eliminating subjectivity. We can ask, then, the
following question: under what conditions can logic and set theory be empirical
and, as a consequence, also subjective? Implicit in the project is the possibility
to distinguish between the descriptive and the methodological contexts, and roles,
of subjectivity. In the methodological context, as part of the application of fuzzy
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formalism as a formal instrument of representation and calculation, it adopts a more
negative and residual expression, more constrained and also more precise, carved
smaller on the procrustean altar to objectivity. In both contexts, the reference to
a residual presence of subjectivity represents also a factual and methodological
condition of application of these formalisms; that is, to the extent that they are
claimed to be, at least partly, discovered, justified and applied on factual grounds.
It’s a valuable resource besides adequate factual information.

Empiricism, approximation and subjectivity are inseparable: the approximative
character of fuzziness derives from the description and prescription of actual prac-
tices that are based on subjective conditions and actual epistemic interpretations. The
project requires, by its own standards, the connected tasks describing the normative,
formalizing the informal and objectifying the subjective, while eliminating neither.
Above, I have noted the implicit methodological tension between representing and
eliminating subjectivity. As in the case of vagueness, we have here a project not of
elimination of the personal or subjective, but of its empirical and theoretical acknowl-
edgment within the formalism and theory (and not the exclusion and elimination from
it found in classical logic and set theory), capturing its objective situation within the
objective constraints, and identifying its explanatory role in categorization, reason-
ing and intervention. I suggest that representation and understanding of subjectivity,
contextuality and approximation may be not just factual and ineliminable features
of description, but also a useful resource in explanation and application.

13.3 From Empiricism to Approximation

Empiricism is approximation. As I noted above, subjectivity and approximation are
not just the absence of objectivity and precision as the sole active factors in empirical
research. In modeling practices, limitations in objectivity, universality and precision
are enabling factors. Approximation too is an enabling part of the empiricist picture.

Can representation and explanation be satisfying, can objectivity be objectiv-
ity enough when they are all generally a matter of degree? Where does that leave
references to the residual but ineliminable role of subjectivity? Can residual subjec-
tivity, especially in its methodological role, be given any degree of epistemic value,
for instance, degrees of fallibility and falsifiability that would establish a negative
measure of approximation with testing significance? Can there be any significant dif-
ference between degree of membership, even understood subjectively as uncertainty,
and degree of error? What issues, aims or means of research rest on considerations
of approximation?

Part of fuzzy theory is the assumption of the formal idea of logical approximation
and that it rests on semantic idea of set-theoretic approximation. To approximate
meets the standard of success in empirical representation: fuzzy sets are told to
“bear an approximate relation to the primary data” [46] and “fuzzy sets and fuzzy
set operations are also employed, in general, as approximators of meanings of rele-
vant linguistic terms in given contexts” [26, p. 281]. Therefore, determining which
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“operations on fuzzy sets best represents the intended operations” is equivalent to
determining which “operations on fuzzy sets beat approximate the intended mean-
ing” (ibid. pp. 280 and 281). On the same grounds, fuzzy logic provides “a model
for approximate rather than precise reasoning” [3]. Zadeh elaborates: “Informally,
by approximate or, equivalently, fuzzy reasoning we mean the process or processes
by which a possibly imprecise conclusion is deduced from a collection of imprecise
premises” [47].

Consideration of approximation raises questions about the notion of fuzziness,
its roles and significance, and similarly for (naturalistic) empiricism. In turn, con-
siderations of fuzziness and empiricism raise questions about, and sheds light on,
the notion of approximation, its complexity, roles and significance. From the objec-
tive standpoint of realist semantics, one recent characterization of vagueness has the
form familiar from fuzzy theory, in terms of degrees of truth. The core conception
is a closeness condition: a predicate F is vague just in case it for objects x and y it
satisfies the condition that, if x and y are very close in F-relevant respects (not in
respect of F!), the predications “Fa” and “Fb” are very close in respect to truth [41,
p. 147].

There is still more to understanding fuzziness and fuzzy theory than this semantic
picture. Judgments of closeness do not involve just an order relation, or a topology,
but a criterion of distance, a metric [41, p. 149]. It’s then a kind of approximation
relation. The relation of being very close can be applied empirically only in relation
to a fixed choice of standard, which should be prescriptive or at worst pragmatic, but
it will be at best contextual or relative. The choice’s objectivity might have different
sources and forms, naturalized—say, the accuracy or power of discrimination of
someone’s cognitive capacity—constrained by the mechanics of fixed procedures,
numerical form or motivating reasoning; or else subjective.

The truth-closeness part of the condition motivates introducing a role for numer-
ical truth degrees. They can be found in fuzzy model theory, but then, for any two
numerical values, establishing closeness will require also precise numerical stan-
dards. Their role is the semantic counterpart to that of standards of significance in
the empirical application of statistics, another formal calculus, or an empirical stan-
dard in the application of a theory. The general dimensions I wish to introduce in
the discussion of fuzzy theory start becoming relevant: Empiricism, contextuality,
normativity, subjectivity and approximation.

It is in the context of empirical justification and application of formal structures
that dimensions and issues concerning the significance of approximation arise. Then
they can be compared to ones identified in the construction and application of non-
fuzzy and fuzzy mathematical and logical formalisms.

Subjectivity as well as objectivity, in their transcendental metaphysical senses,
suggest a qualitative virtual sense of approximation, towards a virtual focus, the real,
something indeterminate existing outside the symbolic map, external to the formal
framework and language of the theory and the representation of the data, phenomena
or system, something off-metric.

The metaphysical virtual approximation must be contrasted with two other cases.
The contrast helps bring out some of the more relevant dimensions of approximation.
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Virtual approximation differs from the case of an asymptotic approximation, where
the limit lies within the boundary of the formal metrical structure. It differs also from
the empirical approximation that is part of the problem of coordination through mea-
surement of the formal structure of “theory” and the structure of empirical data, the
latter establishes and determines conceptually and mathematically—quantitatively
or graphically—the empirical system as empirical; the coordination adds the theo-
retical determination (with predictive, unifying, explanatory or other value).

Empirical approximation involves two notions of approximation associated with
the idea of exactness. The mathematical structure of the theoretical provides the
basis for the internal notion of precision. The theoretical here extends to the repre-
sentation of instruments of detection or measurement. The structure involved in the
representation of data and its coordination with the model or theory is the basis for
the empirical, ‘external’, notion of accuracy. The structure that enables the modeling
of data is the context also of talk of margin of error.

Approximation is a measure of closeness and is, then, clearly a relation; but it
is, like a degree of truth, a conceptual relation—i.e., degree—not even a semantic
relation such as truth value simpliciter, between the conceptual and the world, index
and indexed, sign and signified. The relation of approximation is in turn, relative
to a relation of identity. The formal character of approximation gives it the sort of
conceptual precision or determinateness that establishes judgments of objectivity
also understood in formal, rule-based terms.

The issue becomes whether truth value can be in itself an extreme form of approx-
imation only to facts under particular representations. Even introducing a formal
structure to talk of degrees of truth might not render the semantic relation a matter
of approximation. Even the notion of approximation to full truth doesn’t make truth
itself a matter of approximation. The notion of approximate truth, and degrees of
truth, is intelligible only in terms of truth of formal approximation, within the math-
ematical structure in which the proposition is embedded (precision); otherwise, in
relation to truth of empirical approximation, in terms of its corresponding structure.

Like approximation, also normativity and contextuality are forms of relativity,
namely, to standards, conventions, goals, limits, etc. They act as formal conditions of
construction and application—as connection or restriction. They apply to relations
of approximation in this role. No notion of approximation relation is meaningful
outside the framework fixed by the constraints from normative and constructive con-
siderations, formal, epistemic and practical. They work as qualitative conditions of
approximation insofar as they are effective conditions of any possible determination.
The further moments of definition and application will depend on the so-called sub-
jective act of fixation of standards, judgments of similarity, etc. reflecting the absence
of an ideal absolute metric and its precise mechanical application.

The normative dimension of approximation resides not only in assessing and
defending degrees of approximation always within the negative perspective of failure
to achieve precision. In fact, the values of approximation often express different forms
of preferability to precision as a universal absolute value and goal or standard. In
many contexts, relative to our effective goals, approximation is valuable precisely at
the expense of the possibility of precision. Projects of cognition or intervention are
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determined by reference to more than one standard, aim or value; within the plural
set, they often form trade-offs and demand compromises. From that perspective,
precision presents different kinds of costs that different kinds of approximations
can elude. Curve-fitting is a notorious example; the exactness of fit by a complex
function often undermines not just auxiliary values or constraints such as tractability,
but also predictive power. Description—or explanation—and prediction cannot be
simultaneously maximized. Completeness of detail in mapping may also conflicts with
applicability. We cannot handle the whole truth. In the cognitive world of optimization
and compromise, the value of approximation trumps the ideal of (absolute) precision.
The value of precision is a matter of context and degree.

13.4 Approximation to Approximations: Kinds, Uses,
Constraints and Significance

In this section I aim to sketch out and motivate a picture of approximation as con-
cept, value and practice that is general, multidimensional and contextual. Approxi-
mation is amatter of construction, interpretation and application of formal structures.
The concepts, values and practices of precision already have proven to have a rich
history—with diverse interpretations such as truth, rationality, certainty or objectiv-
ity (see [44]). This case suggests a similarly complicated and contextual account of
approximation.

Approximation appears in the context of approximative reasoning in calculation
and construction. In earlier Greek literature, its contexts of significance had been
philosophical and mathematical, and they concerned the abstract metaphysical rela-
tion between early concepts of finite and infinite quantities—especially in terms of
analysis of wholes and parts—ex., in Zeno, Aristotle, Euclid, Archimedes, Eudoxus
and Pappus. From a calculational point of view, the mathematical context of sig-
nificance was the problem of calculating properties—ex., area—of one geometrical
figure—ex., the circle, with an infinite number of sides—in terms of another—ex. a
polygon, with a finite number. This problem of calculation is also a practical prob-
lem of empirical representation or measurement. This practical geometrical problem
became central to cartography, geodesy and astronomy, evenmechanics, and inmod-
ern times provided a more abstract foundational and methodological significance.

Here is my picture for an epistemology of approximation in a nutshell: The for-
mal representation of approximation relations requires standards (of constitution,
application and evaluation), an asymmetric structure (metric criterion), a target that
establishes the direction of asymmetry (approximation to what), and significance
(generalization, reduction, scope of validity, precision, accuracy, evidence, measure
of degree of objective (ontological or empirical) relational properties of a system or
of epistemic cognitive states, etc.), with a standard that connects to the context of
significance and helps apply its norms and goals. My general picture of approxima-
tion and objectivity is thus not a theory of representation per se, or based on such a



264 J. Cat

semantic theory of truth and its absolutist or essentialist companion talk of reality.
But particular applications can simulate, so to speak, some such and weaker views of
truth, knowledge and science. It is a matter of context, perspective and significance.
And so, as a matter of a naturalistic theory of reasoning and linguistic behavior,
fuzziness and degrees of truth are relatively easy to accommodate and distinguish.

To accommodate the complexity, I propose a set of mutually compatible prop-
erties. (1) The construction of approximation can be qualitative or, in addition,
quantitative. (2) The interpretation of approximation can be conceptual, internal
to the particular formal structure, or applied, external to it, in relation to particu-
lar empirical representations (data or phenomena, not without generalizations and
theoretical assumptions attached). (3) Approximation can receive additional sig-
nificance or consideration: in the form of evaluation, constraint or use, all within
different kinds of contexts of perspective on research and application and according
to different commitments, interests or purposes; the internal context is defined by
empirically extended system of formal rules, tasks and relations; the external level
can be either epistemic, ontological or pragmatic. The epistemic described cognitive
states and their warrant; the ontological describes the contents of knowledge in a real
world, and they overlap in the treatment of empirical systems (objects, phenomena);
the pragmatic introduces external purposes of application. Each context of perspec-
tive includes corresponding kinds of regulative aims and standards, or conventions,
and with these formulate and address different sorts of projects and problems. The
specifics of each context sometimes differ by disciplines, sometimes by empirical
situations or interests (in some cases connectedly, in others separately).

In order to bear the features distinguished above and to accommodate the various
broader contexts, the practice of approximation rests on aminimal structure involving
the following elements: structure,metric target and standard. The standards concern,
often connectedly, constitution, calculation, evaluation and application; their role is
informed by the context of significance or perspective.

As I suggested above, one basic interpretation is conceptual and internal to the
mathematical formalism.Approximative reasoning in the application ofmathematics
depends on a level of approximative formal representation. For instance, mathemati-
cal functions receive infinite expansion representations, ex. algebraic representation
in Taylor series and geometric representation in Fourier series. Series expansions,
then, provide a formal structure that introduces specific meaning and measure in the
idea of approximation. The structure provides the formal basis for a metric that helps
determine a measure of approximation, that is, a countable degree of proximity or
closeness.

Attention to proximity and closeness is more specific than generic considerations
of basic distance. Reference to partial ordering relation is necessary but insufficient.
The quantitative requirements of additivity and transitivity and the specific structure
of a measure function will contribute towards a metric structure that imposes on the
formal relations a criterion and measure of distance.

But outside the internal context of formal interpretation a concept of metric is
necessary but still insufficient. In the application of formal structures, considera-
tions of approximation, assume additional conceptual structure, although often it is



13 Informal Meditation on Empiricism and Approximation … 265

not explicitly formalized. Proximity is not distance. Proximity, like distance, is a
symmetric relation involving each term in the series. But the formulation and the
interpretation of approximative claims typically assume at least two connected con-
straints: one of restricted range, the other of centeredness.

The implied restriction on the relevant range that fixes the bounds of proximity is
typically left unspecified. The assumption is that, while the domain of proximity may
in principle be indefinitely large, in practice it is assume to be a smaller interval of
values or a subset of terms—e.g., in an ordered series. And it characterized relative
to a fixed reference. The fixed reference may lie outside the proximity range; this
is the case for asymptotic limits. Indeed, all partial approximations, embedded in a
metric ordering or structure, share an effective reference point, which may be a value
of a variable, a form of a function, etc. This reference imposes a preferred order and,
relative to it, determines the intended measure of degree. This reference is what I call
the target of approximation; it constitutes the standard of exactness and introduces
an asymmetry in the relation of approximation. Note that there might be more than
one target; for instance, bounds of an interval might provide separate significant
references for description and evaluation.Thepotential structural or formal symmetry
of those cases does not eliminate the descriptive or interpretive asymmetries of the
approximation relations introduced.

At the target, the relation of approximation becomes a relation of identity. For-
mally, the inclusion of the target in the formal structure that establishes it as a fixed
term in the approximation relationmust be secured; this is done by definition or proof
of a formal relation of order, limit or identity. For instance, the equality sign marks
the warranted formal equivalence and bridge between an analytical function and its
series expansion. Proofs of the relevant identities involve proving convergence for
the approximation of algebraic polynomials to continuous functions (Weierstrass) or
summability for the approximation of trigonometric polynomials (Fourier series) to
certain periodical functions (Féjer and Hermite). In practice, explicit considerations
of what constitutes relevant range and relevant target involve additional contexts of
interpretation and significance, in relation to standards and perspectives.

Generally speaking, a value of variable or a function of a variable, etc. may be
the target of more than one approximation relation. When the target is shared by
a set of values or functions sharing the same measure of proximity to the target
and standing in a symmetrical, inverse relation to each other relative to the target,
we might call the target the center of that set, to which the members satisfy the
asymmetry of approximation relation. The elements sharing a target stand in an
equivalence relation of approximation and form an equivalence class. Examples of
targets are exact measurement outcomes, or the true value, and analytical functions.
Given the symmetry of equivalence relations, it is the target and its significance
that establishes the asymmetry relation and its interpretation in broader contexts.
The target plays the role of center of the approximation range. In the interpreted,
applied context, it is sometimes a typically symmetric range around a designated
center that is of relevance. In the positivist context of measurement, margins of
measurement error, or degrees of accuracy, formequivalence classes relative to shared
empirical target values. In the formal context of representation, analytical functions or
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curves provide the exact target of approximation by polynomials or series expansions;
and continuous ordering or real numbers establish the representation of limiting or
asymptotic behavior.

It’s worth distinguishing further between two kinds of metric notions of approxi-
mation, if only because they signal different possible perspectives: (1) positive, whose
semantic base may be either representational or constructional (computational), but
it represents a commitment to meaningful, substantive, cumulative consideration of
degrees of the relevant property, e.g., as an ordering of parts, subsets or quantitative
degrees of the significant target such as exact or maximum truth or the maximum
value of a variable, or as a measure of (in)completeness of performance of calcu-
lation or of conditional descriptions of the world as a unitary complex system only
conceptually divisible or analyzable (this is the qualitative approach in idealization
or modeling, often based on a picture of the world in terms of metaphysical holism
or complexity); and (2) negative, based on the epistemic assumption that some rel-
evant property is only available in absolute unitary form, e.g., degrees of negative
distance as separation from the target, such as measures of error, uncertainty or prob-
ability, featured in Popper’s notion of verisimilitude as degrees of falsehood without
corresponding degrees truth.

The scope of the fuzzy project demands that reasoning or calculation be explicitly
listed next to representation or categorization in discussions of approximation. For-
mally speaking, approximation isn’t a relation that applies exclusively in the context
of formal representation. It applies to the context of reasoning or calculation, but
it does so in additional dimensions, beyond the semantic considerations of preci-
sion of premises and conclusions. To compute, it is said, is to approximate.11 The
number of terms operates, in turn, as measure of computation tasks or steps. Even
representation often rests on calculation; meaning depends on construction The cog-
nitive significance of this kind of approximation derives from its methodological
computational role as a problem-solving strategy. Analytical functions provide the
target of approximation as analytical solutions. Least-squares values provide sta-
tistical targets of approximation of error distributions. Discretization techniques in
numerical approximations or simulations are approximations to analytical solutions
of differential equations at discrete points on a grid. Calculations, rigor standards
and solutions in theory provide targets for calculations, rigor standard and solutions
in practical application. Negatively or positively, different perspectives will evaluate
reasoning approximations beyond their representational outcomes. For instance, at
the practical level, the negative perspective will look negatively at increased numbers
of steps or terms of approximation insofar as they constitute a measure of computing
time.

The application and interpretation of approximation relations implies a kind of
higher-order approximation. I mean that it implies no unified, universal absolute
framework.Eachpartialmodel of approximationmaybe considered as an approxima-
tion to a more abstract, general higher-order picture of approximation, like different
models are relative to the complexity attributed to a phenomenon; and many of these

11See, for instance, [43, p. vi].
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contexts may be even ordered relative to a higher-order target notion. Approximation
relations receive different use, value and meaning through their relation to different
external standards and associated contexts of significance, that is, in relation to vary-
ing kinds of situations and perspectives.

A standard, a baseline or threshold, is typically related to a context of significance
as its condition of application of significant aims and constraints. The relevant per-
spective will incorporate additional standards or norms that provide the normative
source of significance.

What are examples of the different contexts of significance in our understanding
and use of approximations? Each kind illustrates a perspective, situation and asso-
ciated values and purposes. Next I list a considerable variety of cases in order to
emphasize the contextuality and diversity of perspectives (in the interest of length,
I’ll omit technical details and most references).

13.4.1 Formal Conceptual Contexts

Within the context of the mathematical formalisms, one can distinguish and assess a
variety of situations characterized by the formal behavior of the structures that char-
acterize and measure approximations. For instance, when the structures of approxi-
mation take the form of limits, onemay distinguish between singular and nonsingular
behaviors; I havementioned above the case of asymptotic behavior. The formal impli-
cations of the distinction depends on the situation and purpose of the assessment,
e.g., conceptual classification or proof.

The entangled objectivity and rationality of definitions and theorems that char-
acterize construction and justification in formal contexts rely on the application
of formal constraints: rules and conditions applying formal values and standards
adopted in the specific context at hand, e.g., uniqueness of choice, convergence, con-
tinuity, differentiability, etc. Often increasingly more abstract formal contexts are
introduced in order to secure rational objectivity of particular structures. Geometry
has become grounded on analysis and algebra; another source of abstract redescrip-
tion has been category theory; and theories are more generally identified and unified
by axiomatic systems.

13.4.2 Formal Calculational Contexts

Whether in theoretical inquiry or in application, the formal character of approxima-
tionmaybe approached from the perspective of calculation.Onemay then distinguish
a purely static formal view of structural relation from a dynamical view from the
perspective of a process. From that perspective, approximation involves a method-
ological act and a strategy prior to any consideration of metric relations [40].
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Approximations may be evaluated in terms of stability conditions: the evaluation
of difference in functional performance relies on applying transformations and eval-
uating if the mapping of an expression onto another preserved the desired behav-
ior within error bounds [28]. The desired behavior and the bounds are, of course,
contextual choices. A strategy for approximating solutions to differential equations
often rests on considerations of tractability and the choice to sacrifice continuity
assumptions, for instance in the choice of numerical over algebraic approximations
to analytical solutions. Numerical models of solution might, thus, involve a dis-
cretized approach based on calculating the solutions at different points on a lattice
(this is the basis of many simulations of systems such as fluid behavior without
intractable analytic solutions to the differential equations they ideally satisfy in the
theoretical model).

13.4.3 Applied Conceptual Contexts

Whenmathematical structures are applied to the expression of a theoretical or empir-
ical concept—i.e., to the representation of its corresponding system or property—the
context of application provides a different dimension of approximation. It is deter-
mined by comparisons between different possibilities and the corresponding range
of the structures involved. This is the case, I have suggested already, of modeling:
modeling as simplification by idealization (value selection and approximation) and
abstraction (variable selection and approximation). The contextual understanding
provides depends on the specific selection of particular variables and relations they
obey for the construction of the model. Each choice can be considered a form of
approximation in the sense of a counterfactual idealization. The comparison in the
range of variables or their values determines assessments of their approximate char-
acter.

There is a more general sense in which every model presents an approximative
character. Everymodel is considered a qualitative simplification basedon the negative
choices involved in its construction relative to the range of concepts established by
a theory or from a broader one from the range of theories concerning a system, or a
sense of qualitative complexity of conceptualization independent of any theory.

The selective and partial nature of the models responds to cognitive and practical
choices based on perspectives, interests and standards considered relevant in the
context. The difference between different map scales or between geological, political
and thermal maps of the same geographical region illustrates the point [20]. The
conceptual content identifying aphenomenon sufficiently distinguishes the success of
a qualitative approximation to the kind of situation represented by a particular concept
or variable in a given context and application from the quantitative approximation
with merit in other contexts and applications [25].

By parity of reasoning, one may argue that as a selective targeted strategy of
representation and understanding, modeling is a conceptual form of exactness insofar
as it achieves conceptual isolation, it identifies an entity or an active factor in causal
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explanation. In that sense, idealization is not distorting simplification. The positive
dimension of corrections (terms with empirical contextual meaning) compensate for
the negative dimension of construction (idealization and abstraction). This context of
isolation is typically delimited by so-called ceteris paribus conditions that identify the
empirical or theoretical conditions of application of themodel. They are a placeholder
for the often unspecified (and unspecifiable) set of disturbing causal factors or simply
requiring a blanket absence of other elements.

In that conceptual situation, approximation becomes a form of contextual exact-
ness and accuracy. Exactness, conceptual and empirical, qualitative and quantitative
is relative and limited to contexts at the expense of the universality of the alleged
applicability of a so-called law, whether an empirical generalization or an abstract
principle. It is the unqualified, decontextualized generalization that becomes, by
contrast, approximate and cognitively deficient.

The approximative nature of theoretical or empirical concepts requires standards
prior to their application to a given system; they are not necessarily part of the model.
In that context and in the different situations over which it will vary, one may speak
of benchmarks of categorization. The choice of benchmarks is as contextual as it is
normative. This is part of the general phenomenon of categorization, subject to con-
textual constraints such as varying rules, generalizations, choices of prototypes, etc.

13.4.4 Experimental Contexts

Experimental contexts concern the production, assessment and treatment of data. The
application of measurement instruments–or instruments whose application involves
measurement–incorporates two separate levels and meanings of approximation, pre-
cision and accuracy. Measurement precision, like the internal rule-based formal pre-
cision of mathematical relations, is embedded in the construction of the instrument,
it’s a type of built-in bias, constraint or rigidity, an instance of it is lack of calibration,
with a deviation (often systematic) in mapping that applies the scale values onto the
relevant property of the system (an indication of imprecision is the mapping of a null
state onto a measurement value different from the null). Another is the instrument’s
sensitivity, the smallest different than receives numerical amplification and expres-
sion. The accuracy of the instrument, the measurement error away from the assumed
true value is not reducible to the systematic degree of precision.

As a matter of contextuality of values, reference must be made to experimental
concerns over the conditions of trade-offs involved in instrument design; for instance,
controversy over the conflict between maximum accuracy and sensitivity of Kelvin’s
reflecting galvanometer for non-uniform fields.12

Measurement assessments rely on an additional statistical dimension of accuracy,
that is, approximation in the context of populations of cases, relative to the popula-
tion size: large numbers don’t eliminate biases (imprecision) but increase accuracy

12For a discussions of the episode, see [22].
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with the canceling out of average chance error so that average measurement value
approaches the true value (relative to the description of error).

Part of the application of this empirical perspective in measurement is the nor-
mative standard as to what counts as an acceptable margin of error. Again, this is as
normative as it is contextual, subject to a number of contingent conditions.

Within this context we encounter the epistemic, often described as subjective,
interpretation of objectivity, not as a matter of error, or statistical distributions, but
of ignorance. This is one interpretation of probability and its (misleading) asso-
ciated talk of uncertainty. The subjective reading connects with the next kind of
epistemic context.

13.4.5 Evidentiary Contexts

In evidential contexts considerations of approximation respond to demands for war-
rant, for indications of truth, credibility, reliability or acceptability of hypotheses.

In relation with measurement statistics, mentioned above, a different kind of
benchmark is required in addition to the semantic one for the purpose of catego-
rization. In the new context and in relation to the new goals, one such constraint
is the standard of statistical significance. It establishes when a hypotheses tested
by the measured effect is least likely to be false, compared to the null hypothesis
(chance event or correlation). In this context, the normative standard is doubly con-
textual, since the specific value required for its application to specific numbers needs
additional determination and warrant, e.g., 0.05.

More generally, approximations themselves may receive justifications of different
kinds, formal and empirical. In the empirical case, it is a matter of context and
interpretation what is acceptable (see below).

An expression of this problem in general extends to the individual as well as sta-
tistical version of the problem of significance. It is the question of when an approxi-
mation ceases to support a hypothesis or instantiate a generalization, when the law is
no longer stretched, but broken. Is the data negative evidence? or it can be dismissed
as not even instantiating the relevant category necessary for evidentiary status? Here
practice often has recourse to conditions of application or validity of the hypothesis
or model in question.

The dynamical view of calculation mentioned above extends by application to the
case of testing and the evaluation of evidence. The validity of precision of approx-
imate calculation depends on reliability or justifiability of procedure [31, 40]. One
proposal is testing andconfirmation through stability (monotonic linearity) of approx-
imate hypotheses: more accurate initial conditions lead to more accurate predictions
[28]. Within any bounds adopted for the purpose at hand, approximative reasoning is
a form of conditional reasoning. For instance, if, on one interpretation, the accuracy
of hypotheses is considered a matter of probable truth, the probable truth of the cal-
culated predictions and the generalization they support is dependent on the degree
of precision of the initial or boundary conditions.
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A more serious challenge is the language-dependence of accuracy of prediction.
Approximation as closeness to truth associated with a target value of a relevant
parameter is a relation with evidentiary use in comparative contexts for competing
hypotheses. But for different hypotheses and parameters, the degree of predictive
accuracy and the asymmetry of the relation may not be preserved under certain
formal inter-translations [32].

13.4.6 Theoretical Contexts, Interpretive and Explanatory

In this context, the defining issue is the objective interpretation, also referred to as the
realist or ontological meaning or implication of approximations. That kind of status
depends on the corresponding interpretation of the concepts, relations and hypotheses
they involve, taken to be representingworldly entities and relations (whether in theory
or experience). Examples abound.

First, one can distinguish between realist, fictionalist and positivist interpreta-
tions of approximation. Realism is often associated with the exact solution as its
mathematical standard. Non-limiting physical approximations such as asymptotic or
infinite or zero limits are often considered convenient fictions serving tractability and
separate physical adequacy (idealizations may be no longer considered approxima-
tions). In the positivistic interpretation, the only objective significance is the empirical
meaning attached to the structure or computational value; degrees of approximation
with ranges or margins of error in measurement are grouped together in class of
empirically equivalent values sharing the same interpretation.

In certain series approximating a function or dependent variable, dominant terms
involving independent variables are interpreted as measures of dominant causal fac-
tors in the explanation of the dependent variable; other terms are declared correction
terms and interpreted nonrealistically, as random noise.

More cases distinguish between computational and the realist physical interpre-
tation. Zero or infinite limit are taken as formal idealizations contributing to compu-
tational simplicity or tractability but lacking literal realistic physical meaning, e.g.
infinite potential, infinite limit of large numbers in populations sizes, frequencies,
or infinite population size and volume in the thermodynamic limit. Yet, it’s not that
clear cut; in certain applications of the thermodynamic limit, the order of limits in
the thermodynamic approximation alters physical interpretation; bulky macroscopic
matter requires infinite volume limit [27]. Boundary problems are often denied phys-
ical interpretation and the approximations involved are granted only computational
value, e.g., the discontinuity of expansions on opposite sides of a boundary layer and
catastrophic limits at boundary layers [2, 24].

By contrast, linear approximations for the sake of computational simplicity obey
superposition, which is nevertheless given material interpretation in terms of com-
positions of independent entities or causal factors. In small angle approximations,
in which x can substitute for sin x, the substitution is used to eliminate interference
terms in, for instance, quantum superpositions. In quantum field theory, Feynman
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diagrams assign to each term in the decomposition physical descriptions in terms
of processes involving particles, their propagation and interactions, which receive
either realistic or fictional status. Finally, the application of differential equations
often motivates the introduction of continuous models of discontinuous structures:
the stress-based dynamical explanation of incompressible fluids and elastic solids in
continuum mechanics; or the use of continuous limits of stress levels to represent
discontinuous transition from elastic cohesion to fracture.

An important theoretical use of approximation relations concerns the structure
of science, its evolution and its interpretation. I am referring to the representation
of relations of reduction between empirical theories. Approximation between con-
cepts or quantities in different theories as model of reduction has explanatory and
interpretive significance.

The asymmetry associated with reduction is projected onto an asymmetry in the
understanding of approximation; and ultimately the asymmetry depends on assump-
tions of epistemological and ontological fundamentality, e.g., the reducing concepts
and generalizations are more fundamental by virtue of being more explanatory and
more “real”, while the reduced representations appear as redescriptions with con-
textual value, higher scale in terms of size or organization, more empirical, familiar,
tractable, relevant or useful.

In the more radical versions, reduced theories are meant to be revised and even-
tually eliminated and replaced, at least in the context of validity of the reduction.
Local, partial revisions, however, are not as threatening as ones with universal scope.
For this reason, talk of emergence–of entities, properties, etc.—signals a degree of
conceptual autonomy beyond the merely instrumental value.13

Besides hierarchies of decomposition into smaller spatial and temporal parts,
the form of reductive approximation is logical, but the logical derivation depends on
mathematical derivation as the form of the relation between statements from different
theories or models (the approximation relation), and bridge or translation principles,
the identity conditions between properties that secure the semantic soundness of the
derivation, with universal or contextual validity.

Examples: The limit of vanishing velocity is meant to show—and prove—the
reduction of Newtonian mechanics to relativistic mechanics; the thermodynamic
limit of infinite volume and infinite number of molecules to reduce thermodynamics
to statistical mechanics; the infinite limit for energy levels (and number of particles)
to reduce quantum to classical physics. The reduced and reducing theories must be
formally (sufficiently) identical at the designated boundaries as contact points (i.e.,
at the limiting parameter values). Similar logical relations are formulated for theories
such as genetics and molecular biology, psychology and neurobiology, etc. (see [9]).

13For instance: Local field operator expansions of effective, lower-energyfield theory, are considered
approximations to real, high-energy exact theories, whether known (top-down approximation) or
unknown (bottom-up approximation); then, a higher interpretive autonomy and realism is assigned
to bottom-up approximations.
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A weaker relation is marked relations of generality and inclusion, that the scope
of phenomena explained by one theory (i.e., the reducing one) includes the scope of
the other (i.e., the reduced).

As I will briefly discuss below, also this context and this issue are relevant to the
possible understanding of approximations in relation to fuzziness and fuzzy logic.

13.4.7 Disciplinary Contexts

This kind of context captures differences in interests and standards corresponding to
different kinds of projects associated with different disciplines or communities.

The main distinction of this kind is probably between foundational and applied
contexts: in foundational projects generalizability and rigor becomevaluable; in prac-
tical projects of computation and application, a measure of degree of approximation
as a representation of functions corresponding to measures of practical cost of time,
energy, money.

An example is due to Poincaré, as an illustration of the difference in approaches
and standards between mathematicians and astronomers: [35, p. 1] the convergent
or divergent status of a power series is relative to disciplinary interests and con-
straints. Mathematicians, interested in theoretical evaluation, will consider relevant
as many terms as can be possibly identified. Astronomers, by contrast, interested
in numerical calculation and its facilitation, will consider relevant a smaller initial
subset especially if the convergence or divergence appears pronounced. This way,
Poincaré argued, they might reach different conclusions, declaring the same series
convergent or divergent.

Another examples concerns empirical disciplines. Since their introduction in the
early 20th century, standards of statistical significance have not been consistent over
time across disciplines. The 0.05 standard can be traced to publication requirements
in experimental psychology. Physics has aimed at smaller values.

13.4.8 Practical Contexts

Despite the connections between all the kinds mentioned thus far, one may point to
a broad practical meaning of conventions in the role of standards of significance or
thresholds.

For different contexts of practical application, technological, medical, political,
legal, etc., and a purpose P in each, the general form of the approximative assessment
is this: X is sufficiently precise for P , or a degree of approximation sufficient for P ,
where sufficient condition is fixed by a convention C .
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13.5 Fuzziness Is Empirical, Contextual, Approximative,
Subjective and Objective in Construction and
Application

In this section I sketch a brief discussion of the specificway each the themes presented
above, empiricism, contextuality, approximation, subjectivity and objectivity, appear
and play a role in the construction and application of fuzzy theory. I deal with set
theory first and in the following section I will consider fuzzy logic. While each
section and subsection will focus on a single theme for emphasis, it will become
obvious, as I have suggested in the previous sections, that each theme overlaps
with the others. Throughout the theme of normativity will appear as well. It is the
connection between the general account I have presented and the specific fact and
form fuzzy theory exemplifies it that I am contributing and can inform new reflection
and motivate future conceptual and empirical research.

13.5.1 Fuzziness as Empirical

As I emphasized at the beginning, the fuzzyprojectwas born as an empirical project of
formal scientificmodelingwith broader empirical and technological application. The
fuzzy membership function is meant to be a good model of the way people actually
perceive and apply categories, and reason with them [16, p. 255]. Another empirical
dimension of fuzzy set theory (and confirmation of its empirical validity) is the
more controversial experimental evidence for the success of fuzzy set operators—for
experimentally set fuzzy membership values—modeling the structure of subjective
human judgments as well as technological applications (for measurable input-output
systems).14

As in the case of any empirical model, we can distinguish between the empiri-
cal grounds of construction, testing and the grounds of application. Application and
construction, however, cannot be neatly separated. Often, the application of the for-
malism depends on the assignation of values understood in terms of construction of
the model. The empirical grounds correspond to the human linguistic behavior con-
ceptually identified as involving a distinctive element of vagueness. The grounds of
empirical testing are, as is characteristic of empiricist methodology, the experimental
cases that test the limits of empirical validity.15

The empirical grounds of application, independently of any additional evidence
they provide, are the growing domain of phenomena towhich the formalism is applied

14For a still adequate discussion of the human case, see also [16, pp. 261–263].
15As with any data-based testing of formal models, the evidentiary context might also challenge the
empirical support. Thus claims to the effect that the empirical linguistic evidence doesn’t support
the fuzzy predication of truth by analogy with paradigmatic modified predicates and their opposites,
[23, pp. 244–246].
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and the technological developments that are guided by the formal possibilities and
empirical opportunities (especially in human interfaces) the formal theory suggests.

The empirical grounds of construction share their enabling role with relatively
a priori resources: the precise standards, rules and relations in the formal context
that constrain possible constructions in mathematical formalism (regardless of any
empirical roots of their own in turn). The non-factual sources establish the par-
tially a priori status of fuzzy models. It’s from this formal perspective that the
characteristic set membership function for fuzzy subsets can be constructed as a
generalization of the classical mapping, from the universal set to the pair {0, 1},
to the interval [0, 1]. For the same reason operations on the set members can be
defined and the resulting theory can be embedded within the algebraic structure of
lattices that supports logical systems (via isomorphisms between structures of set-
theoretic operations—complement, union, intersection—and the structures of logical
connectives—negation, and, or—).

The formal constraints on the construction of fuzzy structures can be said to pro-
vide formal justification, the context of internal normativity or necessity, even if by
convention. In addition, they provide a valuable methodological service informing
and guiding empirical application. The formalism underpins the fuzzy conceptual
scheme within which vagueness and other properties, the empirical facts about lin-
guistic and reasoning behavior, become intelligible, normative and empiricallymean-
ingful.

One of the constraints is to embed fuzzy set theory in the framework of algebraic
and methodological resources that also help define classical set theory: Normative
standards of derivation and organization, concepts schema from set theory such as
concepts of classical set membership and operations, or related algebraic concepts
from group theory such as commutativity and other properties of set-theoretic oper-
ations, or more general underlying concepts from function theory and analysis.

Standards of justification and resources of construction do not just include the
rule-based standards of proof and the axiomatic derivational structure; they also
include the commitment to justifying (deriving) with consistent and sufficient con-
ditions the uniqueness of the choice of specific definitions for the basic set-theoretic
operators union—as maximum membership value—or intersection—as minimum
membership value.

Formal construction, then, actually involves the justifying application of prior
rules and concepts. You might think of the process and the resulting structure to
involve a sort of ordering in which each level of application is more formally revis-
able and more factually justifiable and revisable. The empirical roots of formal revi-
sion are neither simple nor direct; they are contextual, constrained by broader com-
mitments, a situation often considered a pragmatic matter as much as formal and
factual.16 For the sake of formal, pragmatic or empiricist commitments, there is
still an ordering of priorities as to what merits a firmer commitment. In the face of

16Carnap and Quine are standard references drawing conclusions about the challenge to formulate
the conditions of factual meaning and justification.
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an accepted factual hypothesis, not all formal statements or structures—logical or
mathematical—relevant to modeling it are equally readily revisable.

This situation is the mirror image of the sort of formal holism that characterizes
the meaning and justification of factual claims. Empirical testability involves not
just a designated factual claim, but a variety of associated theoretical and formal
assumptions, concepts, rules and commitments that make the testing both possible
and significant. Background conditions concern both the system studied and the
experimental or measurement conditions. In the light of a negative test result, all
these assumptions appear in principle revisable, but, in a given context, not equally
so, and some not at all. Their a priori character gets then established, but only relative
to context. The limited factual status of fuzzy set theory is suggested also by the
feature that the factual motivation behind formal construction and model application
is stronger than their factual revision.

Logical and mathematical a priori propositions, as independent of factual justi-
fication and refutation, have been characterized also as being distinctively analytic.
But the application of the concept can be traced to two criteria: (1) the exclusively
logical or non-factual principles of justification, by virtue of the application of rules
and definitions, and (2) the relation of contradiction that derives from the application
of negation. With only the necessity of context and a priori choice, many statements
are analytic merely by construction and convention.

If the distinction between analytic and synthetic has been hard to clarify and
defend for classical cases, it is even more so in the fuzzy framework. Contradictory
statements require special conditions supporting a disjunctive form in the absence of
the principle of excluded middle. Then, negation, tautology and contradiction can be
applied defined in terms of functions of degrees of truth. It seems then that analyticity,
as a predicate in meta-language, turns out also fuzzy.

The picture of complex empiricism that fits scientific practice quite generally
includes the introduction of claims, concepts, and rules that are contextually a priori
or empirical. They provide the normative, constitutive and interpretive conditions
of application formal model. One example is the a priori construction of causality
criteria, which constraints, guides and adds interpretation to the empirical applica-
tion of formal models (see [8]). Other examples are the concepts of information
and entropy. Another, this kind of complex coordination in application is one of
the contexts of application approximation, for calculation (constructive, normative
constraint), interpretation and evaluation.

Mathematical claims in set theory and logic are justified by reference to both kinds
of sources: factual information about human linguistic and reasoning behavior and
formal general prior constraints—concepts, rules, standards and commitments, etc.

13.5.2 Fuzziness as Subjective and Objective

Since Zadeh’s early texts, presentations and discussions of fuzzy theory have been
made repeated references to subjectivity like no other scientific literature (except,
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perhaps, discussions of themystery of consciousness).17 Although it has increasingly
turned away from acknowledging this aspect in order to emphasize the formal objec-
tivity ofmathematical results and the equallymechanical objectivity of technological
application. I have suggested above that the different roles of subjectivity in scientific
practice may be considered effective, acceptable or irreducibly detrimental, depend-
ing on how each role is understood to serve prior commitments or values. To try to
situate this case within my discussion of subjectivity and objectivity it will help here
too to begin by keeping in place the distinction between the moments or contexts
of construction, justification and application (and interpretation), also to note their
inseparability.

What is subjective in fuzzy set theory? The following is a two-part list of elements
recognized in different presentations: (1) subjective concept, subjective category,
subjective observation, subjective event, subjective belief; (2) subjective method
of construction, subjective guess, subjective judgment, subjective choice, subjective
decision, subjective determination, subjective assignment, subjective assessment and
subjective evaluation.

Each list concerns a type of dimension of subjectivity I have noted in my general
picture. The list (1) classes together instances of subjective interpretation, personal
states associated with a linguistic expression. List (2) classes together instances of
subjective method or process; they involve construction, decision and evaluation.

Underlying both types is a no less important one, volitional subjectivity, sub-
jective activity, spontaneity and will. The background subjectivity appears through
a methodological supporting role of active voluntary subjectivity in episodes of
construction, consideration and choice (selective decision). It helps contribute the
practices and products that will be submitted to further use and evaluation relative
to purposes, interests and norms at hand. It is both the background condition of con-
sideration of ideas and commitment to ideals, where ideas and ideals get their hold
on us. A modern tradition in psychology of mathematics going back to Poincaré and
Haddamard (reluctant heir to the Kantian transcendental tradition) has stressed the
active role of the mind in construction suggestion and justification—unconscious
role in construction—often referred to as intuition.

In the technological context, talk of subjectivity ultimately resides in the human
factor in construction and application. In the absence of the human factor, ametaphor-
ical generalized notion could be introduced referring to technological models of
embedded subjectivity. Might the notion of control an example? In more cognitive
terms, an expert system aims to inform, constrained subjectivity into judgment as
intelligent judgment and intelligent decision. The positive role of subjectivity has
been incorporated, although not explored, to the extent that it has mechanically—
formally and technologically—modeled, by modeling in effect subjective behav-
ior, that is, its observable expressions or effects, e.g., particular assignments and

17I have counted 15 references in [16] and 19 in [26]. See also [33].
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evaluations.18 The picture I’m offering here is one of scientific practice that is
centered on a methodologically normalized and naturalized subjectivity.19

What is what we may call the scandal of subjectivity? It’s a noted deficiency and
failure: a conflict with endorsed aims of knowledge and method, especially in sci-
ence, oriented towards a real, empirical world, whose reality and its cognitive access
are understood in terms of their public dimension, their independence from any
single individual. Subjectivity is the failure to serve that aim, and value, by adopt-
ing a suspect self-oriented, self-dependent, internal and individual perspective—
psychologically and even intellectually. The challenge of science, in that sense,
is that humans are individual sources of cognitive and normative perspective and
agency, ultimately it is they who are individually responsible for acting and under-
standing; yet the objects, processes and products of science are hoped to be de-
individualized. That’s the challenge of inter-subjectivity, as minimum objectivity
condition, in the context of science understood today as human practice, by and for
human individuals—as opposed to science without humans, by and for technologi-
cal others.

A normative deficiency of the subjective character is indicted by the association
with references to an element of arbitrariness of choice, bias and intuition. A trade-off
is sensed between the volitional role and the epistemic role of warrant, in the sense
that what valuable volitional role subjectivity plays also fails to provide objective
warrant. But objective warrant is not warranting objectivity. The relation between
rationality and objectivity is something like this: the objectivity of reasoned processes
of construction and selection is coextensive with the reasoned form of objectivity.

More precisely, objectivity is normative as an aim and value in its own right, but
that normative force does not depend directly on, much less is identical with, the nor-
mative character of justification processes, methods or rules per se, that is, as forms
of warrant—e.g., think of proofs. It depends directly only on these conditions’ inter-
subjective character, which is contributed by the applicability and recognition of the
justifications. It is not surprising, then, that objectivity conditions are often grounded
on rationality conditions. It is a further matter that the source of that potentially
intersubjective recognition and applicability is shared normative commitments.

At the very least, then, intersubjectivity is expected to explain and secure suf-
ficient agreement among scientists (hence rationality as the normative mechanism
that justifies and explain agreement); at most it is expected to warrant a reliable
representation of an independent objective world.

Objectivity conditions or constraints serve typically the joint functions of con-
struction and justification. Two kinds of such normative rules, objectively justified
construction and objectively justified application. Raising the issue should drawmore
critical and creative attention to the standards, constraints and purposes of fuzzy
theory.

18See, for instance, [33, pp. 319–320].
19A related discussion of Norbert Wiener’s early cybernetic model of the enemy airplane pilot as
subject can be found in [18].
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Two different conceptual levels in fuzzy theory concern the notion of uncertainty.
In fuzziness, uncertainty is conceptual or linguistic indeterminacy, as in the case of
vagueness and its semantic expression in terms of membership functions and degrees
of truth. The application of any rules for assigningmembership grades or truth-values
is considered an attempt to curb, but never quite eliminate the subjective as a matter
of informed judgment.

Construction relies on the formal constraints from the larger scope of mathemat-
ical theory to which fuzzy theory is attached. Application and evaluation of formal
structures—especiallymodels—get their element of objectivity throughmethodolog-
ical mechanical rules. Again, application and construction are not neatly separated.
Often, the application of the formalism depends on the assignation of values under-
stood in terms of construction of themodel. At any rate, membership assignation, one
can read, “is not totally arbitrary.” The arbitrariness may be limited quantitatively
(limits in the base concept such as percentage of something) or qualitatively by the
motivated and informed choice of one or more standard assignations that constrain
the full spectrum of application.

It’s not a matter of artificial precision where numbers replace vague predicates.
As a matter of semantics in terms of degrees of truth, the problem of assignation
of membership degrees may concern precisely the application of vague predicates,
e.g., “warm”, to precise numbers, e.g., 70F , in a base range. Fuzzy numbers provide
a semantic tool to quantify—represent and apply—linguistic variables (including
relations as n-tuples of variables). Another formal strategy applies objective inter-
pretations through abstract redescription, for instance, within category theory.

Objectivity of application is linked to the warrant and rationality that informs the
context of justification. The form of this approach is the idea of a method. We are
speaking of strategies for warranted application with the aim of reducing the negative
cognitive and methodological meaning of subjectivity as both irrational and inaccu-
rate. That is, at work is the aim to reduce and replace a declared negative cognitive
rigidity or bias, in contrast to positive rigidities, e.g., formal and methodological
constraints in construction (see above), or the warranted and warranting heuristics
and commitments in application.

So, one finds distinctions between methods, direct and indirect (see [16, 26]).
One type involves a single cognitive subject (and agent), or expert; the other involves
multiple experts. Indirect methods are less liable to “biases of subjective judgement”
[26, p. 282].

First I give brief consideration to direct methods with one expert. A general
strategy is based on a complete mathematical definition of a membership function
for concepts based on two conditions: selective exemplification and similarity rela-
tions. Members are expected to present selective exemplification of the universal
set or ideal prototypes; however, the determinating role of this criterion may be
limited by the ideal prototype’s location outside the category or the availability of
many and incomparable prototypes. The compatibility relations to prototypes can
be ordered and expressed mathematically by a similarity function representing a
measure of degrees of similarity for compatible elements. The similarity functions
must also incorporate, or be accompanied by, error functions. The standard of ideal
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prototype is also a benchmark for the standard of zero error (an instance of perfectly
straight line).

A related criterion of membership construction is the representation of objective
preferences. Unlike subjective preferences, objective preferences assign member-
ship grades to input parameters according to degrees of objective property measure-
ments in relation to a quantitative value or objective, for instance in the evaluation
of properties of materials and designs in mechanical engineering. The objectivity, to
any degree, of the approach resides in the objectivity of the mathematical represen-
tation of the information about objective material properties and the formal rules of
evaluation all in relation to equally quantitative objectives (ex., minimum risk, cost
or weight, etc.).

The following are a few additional examples of estimation methods: prototype,
exemplification, deformable prototypes, implicit analytical definition, statistics, rel-
ative preference, subset comparison, filter function. In each method one may easily
identify conditions of objectivity, approximativity and normativity, also the form and
sources of residual subjectivity.

• Prototype theory: This influential model of categorization centers on a preferred
member of the set selected often relative to the cognitive agent’s own value of the
category in question. Similarity judgments underdetermine the units and values of
particular membership values. The preference is clearly contextual and normative.

• Exemplification: It emphasizes a broad range of exemplifications, as one would
need to design a scale, including maximum and minimummatching cases, justify-
ing true and false predication statements. The matching judgments re contextual
and subjective in terms of the application of the contextual partial ordering, since
the ordering underdetermines the values and the conventionality of units.

• Deformable prototypes:The relevant typeof prototypes canbedeformedbymanip-
ulating and modifying a set of parameters in order to achieve a maximum match
with a given object. Dissimilarity judgments are quantified in terms of a distance
metric and a so-called energy of deformation, or weighted distortion function. But
assignation of values to each might involve a residual subjectivity for instance
from the matching judgments.

• Statistics: Membership functions constructed from sample data, for instance, as
measures of the statistical proportion of positive full answers to predication or
membership questions in polls and normalized histograms

• Neural networks: It is another method of construction from sample data, from
learning algorithms such as back-propagation. This method depends on pre-
selectionof functions andparameter values—activation functions, relativeweights,
etc.—that establish the properties of the neuron network that will help structure
the membership function.

• Relative preferences: Categorization judgments are contextualized to different ele-
ments, without a prototype, with the semantic condition that the higher the relative
membership value the higher the individual membership of an element compared
to the other.
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• Comparison of subsets: A set is induced from the fuzzy set if it’s a subset of the
power-set of the universe with elements from the fuzzy set. One induced set will
match the fuzzy set better or worse to the degree that the average membership
function of one subset’s members is greater than the other’s.

• Filter function: A S-shaped functionmodels the distribution of membership values
between 0 and 1 of the members of a fuzzy set. The function has a transition fuzzy
zone centered around a neutral point at membership value 0.5 with an interval
around it of size.

Multiple factors may be conjoined for complex concepts by a vector represen-
tation based on multiple scales and associated membership functions. The role of
multiple experts requires the introduction of an interval and function for aggregat-
ing judgments. Indirect methods integrate calculations of membership functions for
multiple dimensions of a concept performed by multiple experts: interpolation, least
squares, neural networks,. . .

Uncertainty may be a cognitive, subjective form of indeterminacy beyond error
and probability. It exemplifies at least two of the kinds of subjectivity I have listed,
namely of application and its evaluation [16, pp. 126 and 144]. It is also an instance of
subjective interpretation. The formal constructions are formally constrained, there-
fore with an element of objectivity; a more factual element of objectivity comes
from its roots in empirical reality. But if we take the interpretation as a multidimen-
sional vector, another element is irreducibly subjective in its dependence on personal
cognitive states. It is a representation of human perceptions.

Degree of possibility is a truth-functional additive measure of a perception-based
assessment. It’s not about how likely it is that the room temperature has a specific
value T (subjective probability relative to missing information, or perception of
objective random variables or chance for equally possible values for random sets,
modeled by objective frequencies). Connectedly, it’s also different from the epistemic
uncertainty of measurement as error, whether room temperature is actually exactly
T (accuracy or margin or error in a statistical distribution of data). It’s not about how
true it is a given precise room temperature belongs is the fuzzy range corresponding
to warm (fuzziness and fuzzy sets). Possibility measure is about how possible it is
that an unknown temperature is perceived to belong in a fuzzy range corresponding
to warm.

The interpretation of measures of uncertainty in terms of fuzziness and possi-
bility is contextual. In the abstract, meaning gets its formal objectivity of quantifi-
cation and axiomatization; in the context especially of technological modeling of
human processes, it’s perception-based. The subjective interpretation of possibil-
ity distributions identifies this dimension as the key general feature; it is Zadeh’s
original view, cited by several presentations: in Zadeh’s own familiar words, “Intu-
itively, possibility relates to our perception of the degree of feasibility or ease of
attainment whereas probability is associated with a degree of likelihood, belief,
frequency or proportion.”20 Nguyen and Walker refer to the view as the primitive
subjective concept of the interpretation [33, p. 258], Degrees of possibility may be

20In [16, p. 137].
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operationalized in terms of degrees of similarity, closeness, to a prototype, either by
objective measurement procedures or subjective expert judgment. But measures on
possibility distribution measure “uncertainty in subjective evaluations” [33, p. 319].

13.5.3 Fuzziness as Approximative

Empiricism, I have suggested, is approximation, in form, method and target of repre-
sentation. For fuzzy theory, one can read, “fuzzy sets and fuzzy set operations are also
employed, in general, as approximators of meanings of relevant linguistic terms in
given contexts” [26, p. 281]. Therefore, determining which “operations on fuzzy sets
best represents the intended operations” is equivalent to determining which “opera-
tions on fuzzy sets beat approximate the intended meaning” (Ibid., pp. 280 and 281).
In this section I try to give briefly a sense for the complexity and diversity of approx-
imation I have suggested in the general picture, above. In that regard, a productive
perspective should recognize fuzzy theory to be both typical and distinctive.

It is important to beginwith a distinctionbetweendifferent levels of representation.
Fuzziness as approximation isn’t the same as fuzzy approximation, or a fuzzy model
of a particular approximation relation. In the latter sense, relations of approximation
may be generalized to a fuzzy relation. What about the construction, application or
evaluation of fuzzy formalism?

Formal construction relies on the resources that help define the distinctive concepts
of fuzzy set theory and develop its structure. In this context, formal conditions of
fuzziness may be interpreted as formal models of approximation relations. Take the
notion of a fuzzy subset as a set of membership mappings onto the interval [0, 1].
The metric structure of an approximation relation—ordering, additivity, measure,
etc.—may be trivially imposed on the real interval. The classical values {0, 1} provide
formal reference targets and associated partial asymmetric relations.Despite the dual-
reference structure, distance from value 1, the classical standard of full membership
and predication, may be considered setting a dominating asymmetry.

Also the so-called fuzzy numbers, more complex derivative formal constructs,
are discussed in approximative terms: “should capture our intuitive conceptions of
approximate numbers or intervals, such as ‘numbers that are close to a given num-
ber’ or ‘numbers that are around a given interval of real numbers.” Such concepts
are essential for characterizing states of fuzzy variables and, consequently, play
an important role in many applications, including fuzzy control, decision making,
approximate reasoning, and statistics with imprecise probabilities.”21

In addition, one may mention two discrete types of approximations to the fuzzy
membership function: (1) alpha and strong alpha-cuts forming binary crisp sets,
subsets of the support sets, linked to fixed points; and (2) discrete approximations
of a membership function for a predicate in the form of discretized coarse-grained
version of the range or argument of the fuzzy membership function.

21[26, p. 97].
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Alpha-cuts provide a bridge concept between fuzzy and crisp sets and their
respective ranges of membership values. A fuzzy set can be represented by a decom-
position in terms of crisp subsets set by alpha-cuts fixing the characteristic mem-
bership function(a1, a2, a3, . . .). The set is represented in terms of the collection of
membership assignations to its members A = a1/x1+a2/x2+a3/x3 . . .Cardinality
measures provide a related metric, with probability distributions involving sets of
cardinality 1. In addition, so-called extension principle for functions between sets
provides an extending rule for mapping power sets and establishing fuzzified sharp
functions between corresponding fuzzy sets defined on the original sets.

The context of application provides additional dimensions with occasions for
applying approximative ways of thinking e.g., the semantic and the methodological.
At the semantic level, we must recall the empirical aspect of fuzzy theory. It is this
role that the words quoted above echo; as any scientific model, fuzzy formalism aims
to model a target empirical phenomenon. The representation relation associated with
modeling, in this sense, iswhat I have called an instance of conceptual approximation,
qualitative and quantitative.

It involves features I have associated with modeling, abstraction and idealization:
an asymmetric target, a standard of maximum representation–reality or truth-, a
conceptual and empirical sense of conceptual and quantitative idealization, a concrete
standard of relevant conceptualization in the context of necessary limitation that
establishes the strength of the model, a sense of purpose that justifies the relevant
selection, and a corresponding sense of accuracy—or faithfulness—of description
and prediction. For the purposes of system modeling, for instance, in this spirit we
can read that “the problem is to construct a mathematical description of the system,
based upon available information, so that it will represent faithfully the ‘true’ system”
[33, p. 235].

Another semantic dimension, in a narrowermodel-theoretic sense, is the objective
interpretation ofmembership degrees in terms of degrees of truth. These are specified
by the numerical models of membership or truth degrees. It is understood that the
interpretation is objective in the sense that its intended target is some property of the
system at hand.

Alternatively, as degrees of epistemic uncertainty they are generalizations of (clas-
sical and) probability measures. Probability (additive) measures are the intersection
of plausibility (sub-additive)measures and belief (super-additive)measures, all types
of fuzzy measures.

The methodological dimension of application illustrates what I have called the
dynamical approach. It provides structures and techniques to inform the empirical
application of the mathematical formalism as a process and a practice. Beyond the
mere formal structure established by the range of membership degrees, one may pay
attention to the objectifying techniques that constraint the application of the formal
structure and inform the construction of the concrete model. I have listed a number
of such methods. One, and most basic and intuitive, is the use of prototypes and
similarity relations. It is based on a contextual and normative choice of standards,
the prototypical member, that constitute the target reference for approximation rela-
tions that similarity relations help determine. A related method is deformation and
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similar notions of proximity to target prototypes. In other contexts, the
representational strategy requires techniques and structures to re-connect with pre-
cise representations of the target system beingmodeled, i.e., so-called defuzzification
procedures (more generally, strategies for the application of empiricalmodels involve
regulated deidealization procedures such as correction terms, etc.).

Approximation appears also in themethodological context of evaluation of applied
formalism in two different dimensions: empirical testing and organization (unity
and generality).

What is the basic empirical level of fuzzy description? Can a fuzzy model tested
by an empirical support structure constituted by fuzzy data or does it require pre-
cise data? Basic conditions of empirical testability by precise data require coarse-
graining and defuzzification procedures. This strategy requires contextual applica-
tion of standards; but then it provides a structure of approximation that allows for
the uniform—standardized—comparison between fuzzy models or between fuzzy
and sharp models. Finally, one must introduce standards of significance that will
establish for a given context whether the degree of proximity is good enough for the
purpose at hand (analogous to the case of statistical benchmarks and standards of sig-
nificance). The evaluation will be both normative and contextual, and the acceptable
generality limited.

Alternatively, one must explain what fuzzy models of data look like and enable
the testing of fuzzy models—or even sharp ones. Insofar as their semantic structure
has the form of degrees of truth as a representation of degrees of an empirical prop-
erty of the system, the challenge consists in distinguishing between degree of truth
and error. This challenge is particularly challenging in cases of overlapping fuzzy
models or fuzzy models with overlapping ranges—hot, warm, medium, cool, cold,
etc.—informing their application to sharp data—temperatures values. As before, the
coordination between fuzzy data models and the fuzzy or sharp theoretical models
to be tested or constructed will require coarse-graining and defuzzification.

Also, in the context of evaluation, possibility theory models evidential claims. It
involves a nesting of structures with an ordering centered around a focal element that
plays the natural role of a target relative to which one can define a metric relation of
length and approximation.

Onemethodological perspective on approximation will motivate the next. Assess-
ment is often comparative also between alternative hypotheses or theories (or models
or . . .); testing is a selective matter. In that situation, revision or rejection of a theory
is involves assumptions about how different theories are related. Those assump-
tions effectively provide an ordering and organization of knowledge, assessing the
theories’ relative fundamentality and generality. This dimension of methodological
assessment extends to formal theory as well as its application; and the strictest form
it takes is a special unifying relation of reduction sought between these theories and
between their concepts. From a formal standpoint, it effectively amounts to a rela-
tion of approximation, and it applies to the relevant context of application, local or
global and more fundamental, like classical and quantum mechanics, or Newtonian
and relativistic mechanics.
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The approximation at stake is the relation of reduction between classical and
fuzzy theories or concepts. In the empirical domain of application, fuzzy set theory
revises and replaces classical set theory. It is said that one generalizes the other
and in that sense approximates it. Does that mean that fuzzy set theory revises or
replaces classical theory globally as the more fundamental theory? The justification
for that claim might be its local empirical success; and the domain of validity of the
claim might rest on a claim about fuzzy theory’s more general domain of empirical
application. In the shared domain of application, one can be said to reduce to the
other to the point of identity; elsewhere it approximates it. But at the theoretical level
this claim is formal, about an extended structure fixed by formal rules, definitions
and justifications.

By analogy with empirical theories, one should be able to articulate, descriptively
or normatively, the way in which fuzzy set theory reduces classical theory as more
general and fundamental. Give my claims above, the fundamental and general status
of fuzzy theory will not amount to a more marked analytic or a priori character of
the claims of fuzzy set theory and its application. The relation between both theories
does not seem to carry the ontological and explanatory significance that one can find
in models of reduction of empirical theories. But determining the formal relation will
contribute further to the task of clarifying the richness of the notion of approximation
and its roles in fuzzy theory. In addition in interpretive contexts, the asymmetry of
the relation proves significant beyond its purely formal features.

So, what is this reductive relation of approximation or, equivalently, the approx-
imative relation of reduction? What characterizes and explains the difference in
generality. Answering these questions require answering this one too, what are the
relevant terms in the relation?

If we distinguish between the whole of a formal theory (relative to a given individ-
uation criterion) from parts thereof, we can talk about inter-concept approximation
upon which the relation between theories will depend, whether by mere inclusion or
by formal integration. Parts may be concepts and axioms containing them.

Generalizationmodels the relation of approximation. It supports not just themetric
structure but also the additional asymmetry that characterizes its use in normative
or interpretive contexts. The sense of generalization that applies to the notion of
fuzzy set itself: “a fuzzy set is actually a generalized subset of a classical set” [16,
p. 10]. Here formal generality of construction may be distinguished from empirical
generality of application and evaluation. The latter depends on the former. That is, as
a matter of empiricism, does fuzzy logic cover more cases and covers them better?

The universe from which fuzzy subsets get their members is represented by the
classical concept of set. The formal generalization depends on generalizing the clas-
sical concept of membership or characteristic function: a subset is identified by a
membership function as mapping from subset to valuation interval [0, 1]. Relations
based on boundary conditions, e.g., at {0, 1}. The role of boundary conditions might
be considered as a result of relation of inclusion of {0, 1} in [0, 1]. A metric measure
for approximation may be defined over a partial ordering of membership grades,
such as Hamming distance.
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The boundary relation may be expressed as one of interchangeability at the
boundaries. The criterion of approximation is the boundary condition, or set thereof,
of value-identity for membership degrees 0 and 1. I specify value-identity because
there is a sense in which the concepts remain different given their general theoretical
definitions.

The generalization of the membership enables the generalization of operations.
The standard elementary fuzzy operations of complement, union and intersection
extend classical set operations for membership grade ranges generalized from {0, 1}
to [0, 1], union (A, B) as max {A(x), B(x)} (smallest of the fuzzy unions based on
membership grades) and intersection (A, B) as min {A(x), B(x)} (the largest of the
fuzzy intersections based on membership grades). Boundary conditions for the crisp
values 0 and 1 are multiple. Ex., fuzzy intersection i(a, 1) = a, which implies in
turn (withmonotonicity and commutativity) the following set of boundary conditions
i(1, b) = b and i(a, 0) = i(0, b) = 0, and i(1, 0) = i(0, 1) = 0, i(1, 1) = 1 and
i(0, 0, ) = 0.

From the boundary constraints one could find a representation for the approxi-
mation relation in terms of concepts from fuzzy theory itself. One possibility is an
algebraic limit relation; another is an inclusion relation. The difference consists in
the fact that the first is shared by both fuzzy and classic theories, while the second
must be proven first to be sufficiently shared, not just at the boundary. Which inclu-
sion operation is sufficient for the job? If we consider the classic operation, we need
to prove its applicability to elements of fuzzy theory, but this means that the first
approximation is relative to a second, and, worse, this also pushes the conceptual
problem back to the task of establishing the approximation relation between inclu-
sion operations, on pain of a regress. How is the second relation to be established?
the problem becomes that the second depends on itself, or alternatively we use the
weaker criterion of the boundary condition.

A more elaborate approach is a logical relation based on the semantics of truth
degrees for propositions containing the relevant set-theoretic predicates. The rele-
vant propositions would be corresponding axioms introducing the relevant concepts
in each theory. A concept of logical implication available from truth functions of
logical connectives associated with fuzzy sets; classical logic should do. Now, of
course, the condition of applicability of the implication connective becomes even
more demanding because it involves a reduction or approximation relation that mod-
els the generalization relation between fuzzy and classical logics. Each logic involves
a different implication connective. The connective in multivalent logics may be, for
instance, Łukasiewicz’s, with v(p, q) = (1, 1 − v(p) + v(q)). If we want to apply
approximate reasoning theory, the relevant connective will be a t-norm.

The richer relation requires placing the related concepts in the context of the for-
mal theory. The approximation must involve different set theories that include those
concepts. For theoretical approximation the relevant units may be set theories in the
form of lattices based on a set of fuzzy subsets of members of classical universe, with
a partial ordering, operations of them (union, intersection, inclusion and complemen-
tation), satisfying a number of properties. The reductive approximation relation may
connect poorer and richer embedded algebraic structures, Boolean lattices. We may
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say that fuzzy theory approximates the narrower target of classical theory if the basic
concepts of subset and the operations do—as suggested.

The properties satisfied by the operations cannot be axioms in the theory or count
as part of the algebraic structure or even of their definition; otherwise principles such
as the principle of excluded middle will not naturally emerge by implication from
classical theory or classical concepts.

The asymmetry of the approximation can be models different interpretations. On
the semantics of truth degrees is, it models the approximation to sharp truth by
degrees. The same classical target can model the epistemic interpretation of vague-
ness, in which the vagueness as indeterminacy of ignorance approximates the reality
of features represented by sharp classical sets. In this context, the classical target of
approximation clearly is granted normative value as the standard of truthful repre-
sentation.

13.5.4 Fuzziness as Contextual

Along the way I have been drawing attention to the role of context. The relevance
of the role becomes amplified by the diversity of kinds. Each kind informs the sig-
nificance of the concepts with a perspective, an issue, an interpretation, a norm or
standard, etc.

In the context of application, for instance, one objectivity-driven mechanism ren-
ders the application of fuzzy concepts as local, specific or contextual: tallness pred-
icated of people and of buildings involves different standards—different criteria &
associated prototypes. The primary termassignment is specific to a set of propositions
andmay vary for another. Context dependence of application, or contextual meaning,
is linked through standard(criteria)-dependence to standard(exemplar)-dependence.

In the same context, I have also mentioned cases of descriptive, interpretive con-
ventions, such as causal criteria: they extend construction and constraint and enable
the application of the formalism. Their relevance is particularly contextual; it is
clearly a matter of limited, revisable descriptive and normative perspective, with its
aim (explanation or control), standard (the criteria of causal relation), justification
(formal and empirical grounds of the criterion) and interpretation (causal) of empir-
ical reality. Approximation criteria share these kinds of features. They are the more
contextual part of the theory’s construction but their role is to provide contextual
conditions of its application.

The picture I suggest of empirical practices with mathematical formalisms avoids
the old view that applying a formalism is to given empirical interpretation to variables
of a rigorous universal empty symbolic calculus. Part of the process of application is
what I call preparation of the formalism; it involves formal and interpretive tailoring,
and it is widely contextual in its relativity to descriptive and normative constraints
from different situations, domains, problems, projects or, as the Poincaré example of
approximations illustrates, disciplines. The formalism is often, as also the history of
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the calculus and fuzzy theory illustrates, made rigorous, purified, generalized after
initial prototypical applications.

Empirical application is complicated at the level of application. The membership
relation is not fixed just by convention, intentionally, beforehand. There is no fixed
crisp “the concept” as conceptual gauge however operationalized, but by empiri-
cal judgment relative to contextualized standards embodying the predicate to some
degree, max or min (relevant contextual sub-range). The sub-ranges characterizing
each membership function lack cut-off points that are fixed, as in crisp variables, and
are specified in overlapping, contextual, standard-dependent, but not in a completely
arbitrary way.

The appeal to coarse-graining, defuzzifying, techniques and standards is a form
of simplification; but based on a new kind of simplicity as conceptual, epistemic and
pragmatic virtue. If thinking is a form of patterning by cutting or shaving, classical
simplicity is shaving along the boundaries sharplywithOccam’s razor; fuzzy thinking
is more like trimming, careful but not arbitrary.

In the context of assessment, then, we encounter the question of empirical eval-
uation and interpretation. Here a distinction between conditions of forced uncer-
tainty and opted uncertainty differ in significance. Forced uncertainty includes mar-
gins of measurement error. Opted uncertainty introduces so-called task-relevance or
decision-relevance summary conditions that eliminate unnecessary precision rela-
tive to pragmatic considerations of a cognitive or practical goal. It is misleading to
draw the difference in terms the enhanced empirical significance at the expense of
measures of fallibility: “Although the usual quantization of variables is capable of
capturing limited resolutions of measuring instruments, it completely ignores the
issue of measurement errors. While representing states of a variable by appropri-
ate equivalence classes of its values is mathematically convenient, the ever-present
measurement errors make this representation highly unrealistic. It can be made more
realistic by expressing the states as fuzzy states” [26, p. 328].

Testability depends on defuzzification standards introduced externally, by means
of a convention informed by contextual purposes and contextual exemplars. Testa-
bility depends on a dual translation or coordination. The constraints must translate
fuzziness as conceptual approximation into empirical approximation, and degree of
membership or truth into degree of measurement. The latter helps also assess the
degree of error or accuracy. Only in this way, even contextually, the application of
fuzzy formalism is empirical and fallible.

13.6 Fuzzy Logic Is Empirical, Subjective, Objective,
Approximative and Contextual

In this final section, I sketch out an even briefer survey of how the same issues appear
in relation to fuzzy logic. Needless to say, the kind and form of the issues is in many
cases an extension or a replication derivative from their occurrence in set theory,
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warranted by the isomorphism between the lattice structure on fuzzy sets as sets
of valuation mappings with operations on them and the lattice of propositions and
connectives.

13.6.1 Fuzzy Logic as Empirical: The Case of Quantum Logic

The issue of the empirical or factual status of logic has long been considered even
more consequential (no pun intended) than the case of mathematics. From Frege and
Poincaré to the logical empiricist philosophers it was recognized that, as Duhem has
noted, the effective methodological—motivating and justifying—role of experience
depended on rules, concepts and additional background knowledge that could not be
immediately reduced to factual information linked to some form of perception (or
equivalent factual mechanisms of interaction with the our environment). Above all
are normative standards of reasoning that secure agreement in science and beyond
and warrant the objectivity of their procedures and products. This emphasis connects
with a long tradition that has privileged rationality, the so-called faculty of reason and
its ways as cognitively—evenmorally—superior to any other. The kind of knowledge
it yields was distinctively a priori and its claims analytic, independent of perception
for the purposes of intelligibility and justification.

Needless to say, by way of a qualification, it is a related but separate issue whether
empirical logic is not just empirical (and inwhat sense) but a logic (and inwhat sense).

A logic or logical system might be characterized as follows: a theory of conse-
quence and validity in closed axiomatic systems of (deductive) inferences between
propositions with a model-theoretic semantics of algebraic models or syntactic mod-
els of proof. Logic can be understood as a language or calculus characterized by a set
of propositions (well formed formulas related by connectives) and a set of conditions
and rules on them (axioms and rules of inference) [34].

For finite number of propositions or logical formula, classical logic is isomorphic
to set theory and Boolean algebra; this is the source of the focus on the mathematical
structure of Boolean lattices as common formal framework.

Classical logic is characterized by propositions that are semantically decidable
(laws of excludedmiddle and non-contradiction), theirmeanings are sharp and unam-
biguous, and behave compositionally [10, p. 127].

Fuzzy logic (and Brouwer-Zadeh logic including fuzzy and intuitionistic axioms)
and fuzzy set theory are an extension of quantum logic and set theory in which non-
contradiction and excluded middle are violated by fuzzy negation (double negation
satisfied). Quantum logic is a weaker extension of classical logic without distributive
laws. In particular, quantum (computational) logic violates only weak distributivity,
as well as laws of excluded middle and non-contradiction (and idempotence, so not
a proper lattice); and it may be considered a fuzzy logic.

Logical principles are, then, at least quasi-tautologies,with truth value greater than
0, and in classical logic always 1. One may speak, accordingly, of quasi-analyticity,
in the sense I have noted in my discussion of set theory. Quasi-analyticity opens the
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door to the relevance of empirical grounds to motivate or justify generalized logical
principles.

As in set theory, also in fuzzy logic the project of fuzzy theory is a naturalistic one,
and its normative force derives from its empirical relevance and pragmatic adequacy.
It aims to represent factual information about behavior, human and technological (the
theory has since been applied to an extended domain including useful descriptions of
natural phenomena). To speak of naturalism and factual knowledge helps avoid the
reductivemisinterpretation of empiricism as a radical matter of pure experience. This
is not the kind of naturalistic empiricism that I claim applies to the fuzzy project. I
emphasize, instead, the realistic, complicated understanding of human and scientific
practices.

As before here it helps to distinguish between the different, but related, contexts
of empirical construction, application and evaluation. Testing involves all three but
its significance lies in the third. Empirical testing has a dual character: a positive,
support, and a negative, revisability. If logic, not just mathematics, is in any sense
empirical, as a logic of the world, it’s only partially, contextually, a priori and its
analytic character provides no only partial, contextual immunity against revisability.
It cannot be universally and exclusively true. As in the case of set theory, empirical
grounds exist to motivate construction and provide a measure of support; but formal
constraints in terms of pre-available concepts, rules, standards and commitments,
are equally, if not more, determining, both constructively and normatively. From
Poincaré to Carnap, Quine, Putnam and Haack, the matter of revisability of logical,
mathematical and empirical claims is a relative, contextual and also a pragmatic
matter.22

Again, one can identify two kinds of empirical grounds for fuzzy and approximate
reasoning: So-called informal behavior and scientific or empirical natural results.
Informal grounds, as in the case of fuzzy set theory, involve formalizing concepts
expressed in natural language and rules involved in informal reasoning. By virtue
of its relation to language and categorization, it rests on empirical and conceptual
elements of fuzzy set theory. In Zadeh’s words: “Informally, by approximate or,
equivalently, fuzzy reasoning, we mean the process or processes by which a possibly
imprecise conclusion is deduced from a collection of imprecise premises. Such rea-
soning is, for the most part, qualitative rather than quantitative in nature and almost
all of it falls outside of the domain of applicability of classical logic.”23

Additional empirical grounds mentioned are scientific, based on a historical con-
nection of multi-valued logics to physics: “It is known that truth values of certain
propositions in quantummechanics are inherently indeterminate” [26, p. 217]. By the
internal standards of our best representations of the factual world, classical and fuzzy
logics are logic, and classic and fuzzy set theories are mathematical in the same way
that Euclidean and non-Euclidean geometries are theories of geometry. This anal-
ogy has interpretive implications for the issue of empirical dimension of fuzzy logic

22See, for instance, [23, 38]. About Putnam, more below.
23Cited in [16, p. 173].
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(and set theory). What’s the privileged empirical status of quantum propositions
that distinguishes them from the domain of application of fuzzy formalism? How
can quantum theory add any degree of motivation or warrant to the general fuzzy
project?

In the history and philosophy of quantummechanics, the attention to its relevance
to logic goes back to Hans Reichenbach, the physicist and empiricist philosopher
proponent of three-valued logic. Two related commitments are in place here; that
quantum physics is more general, that is, that in the same way as Zadeh notes about
fuzzy logic, the domain of applicability and justification of quantum theory extends
beyond the classical domain. Revisability is not a matter of local empirical success.
Fuzzy theory ismore general on the assumption that fuzzy logic, like fuzzy set theory,
generalizes—and, thus, it also includes—classical theory. One is in that sense an
approximation to the other. But generality is not the sole virtue. Quantum theory is
also taken to be more fundamental; in part because the reduction is not just a matter
of empirical generality, but of material and spatial decomposability.

The normative commitment is, besides empiricism, reductionism (Reichenbach
and Quine leading the way); for some, such as Putnam (Reichenbach’s student and
Quine’s colleague), it is realism about theories as well. Features of fundamental
theories carry superior exemplary force; on that strength and interpretation, they are
adopted as methodological standards. The question of revisability, its grounds and
scope, of classical theory is linked, then, to its relation to its alleged generalization,
quantum or fuzzy and to their ontological and methodological interpretation.

The meaning of set-theoretic operations and logical connectives alike and the
methodological status of claims that rest on them become a matter of normative
approximation, a relation between classical and non-classical theories. The two issues
are inseparable.

The analogy to the case of quantum logic is instructive for another reason. The role
of the normative methodological commitments–empiricism, naturalism pragmatism,
conventionalism, reductionism, realism, etc.–is, by virtue of their contextual diversity
and contingency, not trivially or generally determining. I have noted two opposite
views: one, that logic is a priori and analytic and, therefore, unrevisable, empirically
immune; and, the other, that alternative logical theories are in fact suggested and
supported by empirical theory such as quantum mechanics (as general relativity
theory does in geometry). On the second view, this is amatter of empiricism: Because
empirical theory is not methodologically and structurally independent of formal
claims, the application principles of classical logic to experimental propositions lead
in the mathematical formalism of quantum mechanics to paradoxes.

The second position as a defense of alternative logics and the role of empirical
theory has been challenged too. One extreme version of the challenge agrees, with
Quine and others, that classical logic is not an unrevisable theory, but disagrees with
Reichenbach and others that this is a matter of physical theory; instead, the claim
is grounded on the diversity of formal alternatives—as it was once the reaction to
non-Euclidean geometries. Quantum theory is unnecessary and insufficient for the
job, and, in in fuzzy theory, to the extent that it is empirical, it is an empirically
inadequate formal model of human behavior and technology that applies it but not
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a logic.24 They provide local challenges, such as the alleged paradoxes, but ground
no global reform in logic in the presence of less radical correcting adjustments.

The other, empiricist, version of the challenge is illustrated by Putnam’s evolv-
ing positions on the issue. For Putnam and others on his footsteps, quantum logic
prevents the formulation or derivation of paradoxes based on classical logic in the
organization of quantum statements and reasoning, mathematical formalism of quan-
tum mechanics (Hilbert vector spaces and probability calculus) [1, 14, 19, 36]. As a
result, quantum logic could be considered an empirical calculus, much as probability
theory can, namely, as a convenient abstraction from physical models—set of exper-
imental propositions and statistical operators—of possible physical events defined
on quantum phase space, suitably formalized; [12] or else as sets of “empirical”
propositions of physical theory.

As an empirical matter of ontological interpretation, for Putnam it was neither
a form of logical instrumentalism nor of realism. It was similar to the adoption
of conventions, but not reducible to them. Logic and geometry are revisable but
empirical, not purely conventionalmatters. For Putnam empirical claimsmay involve
conventions, but these are neither empirical conventions (operationalism) nor pure
conventions as definitions in disguise (radical conventionalism).

But theoretical and ontological commitments in interpretation may vary, and Put-
nam and others’ later different views suggest that the argument about quantum logic
depends on them.Different commitments lead to different positions.One such variant
position, the global rejection of classical logic requires a rejection of any instrumen-
tal interpretations of quantum propositions, including Bohr’s version of the Copen-
hagen interpretation. The justification of the empirical claim in favor of quantum
logic depends, rather, on interpretations of quantum mechanics such as Everett’s
many-worlds interpretation [1].

In other interpretations classical logic will do, and hence arguably it may still
be considered more fundamental: in de Broglie-Bohm, with the postulation of hid-
den variables, a conventional choice that preserves classical logic through physical
hypotheses like Euclidean topology can be preserved in gravitation theory with addi-
tional physical hypotheses; or through a necessary complement (suited to the kine-
matics) for describing the non-standard dynamics of quantum states (spontaneous
collapse) in terms of classical disjunctions. In those cases quantum logic cannot pro-
vide an alternative foundation for classical logic and its connectives. So the empirical
matter is restricted to non-empirical grounds for the choice of interpretation (Ibid.).

For Putnam it is the commitment to realism that justifies a rejection of instrumen-
talist and Bohrian quantum interpretations and an endorsement of hidden-variable
theories obeying classical physics with joint sharp, determinate values of those
dynamical variables (despite any causal and other ontological anomalies concerning
non-locality and non-separability) [38]. At the expense of (Reichenbach’s) the com-
mitment to standards of representation such as locality, empirically well-supported
hidden-variable theories are nevertheless consistent with classical logic (with laws

24This is Haack’s view in [23].
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of excluded middle and distributivity organizing the description of the two-slit
experiment).

It is normativematter of commitments and their orderedpriorities in the contexts of
methodology—naturalism, physicalism—interpretation—realism—and evaluation
—sophisticated empiricism. If logic is the logic of the world—naturalism—our best
theories about it and our preferred interpretations thereof, in the light of our commit-
ments, lead Putnam to conclude that quantum theory supports classical logic. But,
ironically, this also leaves quantum logic, as a matter of comparative evaluation, as
an empirical hypothesis.

There is a lesson for semantics and set theory here as well. Putnam understands
the empirical argument to be a matter of inference or proof, but not of semantics. The
principles characterizing the properties of logical connectives, such as distributivity,
may undergo modification without implying in turn a modification in the underlying
semantics, other than, perhaps, indeterminacy—as in Reichenbach’s third truth value
in quantum logic and in intuitionism, as in Putnam’s views on reasoning with vague
predicates. Putnam denies that physicalism, even without his earlier reductionism,
and quantum theory have anything to do with semantics. So he claims to avoid a
commitment to a specific semantics based on his commitment to quantum realism.
But one might challenge his assumption about the meaning of connectives; more-
over, his two commitments become effectively coextensive as his quantum realism
supports the sharp bivalent semantics of classical logic.25

The lesson for the empirical—or naturalist—status of fuzzy logic is this: once one
adopts a naturalistic attitude towards logic and a sophisticated empiricist approach
to methodology, the choice of fuzzy logic, like that of set theory, is a matter of
commitments and as fallible, revisable and contextual as classical logic itself. From
the same standpoint of a sophisticated methodological empiricism, if it is fallible,
it can be a priori or analytic only in a contextual way and in relation to alternative
empirical hypothesis.

13.6.2 Fuzzy Logic as Subjective and Objective

In this section I can only add a point of emphasis concerning fuzzy logic. To the extent
that it rests on set-theoretic semantic assumptions, the features presented in the earlier
section carry over to logic case. The chief difference is that objectivity here relies
more centrally on the mechanical formal rules that aim to constraint and represent
what effectively is a descriptive and prescriptive model of human rationality.

25For an imprecise quantum set theory with references to Takeuti’s non-extensive quantum sets
and Da Costa’s and Krause’s quasi-sets see, for instance, [12]. Quantum logics will generally have
semantic set-theoretic realizations or models that violate also the law of non-contradiction and even
of excluded middle.
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13.6.3 Fuzzy Logic as Approximative

Fuzzy operations enable approximate reasoning. What is approximate about
approximate reasoning? It is approximate at least in the sameway, but with a different
function, that fuzzy set theory is approximate. The aim of fuzzy logic is inference,
not just linguistic categorization or truth; a higher-order cognitive process.

Testability and empirical character rest on considerations of a comparative assess-
ment, and hence the assumption of a reductive approximation to classical logic. The
same consideration applies to set theory. Fuzzy logic, like quantum theory, assumes
the character of a more general and more fundamental alternative to its classical
counterpart. As in the case of set theory, there is a matter of what form the relation
of reductive approximation is and what assumptions, contexts and norms may apply.
One issue is the form of the relevant kind of relation between concepts or axioms and
then, by inclusion or integration, the corresponding relation between logical systems.

As before, two connected relations require consideration: generalization and
implication. How do fuzzy logical connectives generalize classical ones? Which
implies the other? And, how? And what does it mean? Is there any asymmetry
imposed by judgments of construction, application or evaluation?

As in set theory, formal generality of construction may be distinguished from
empirical generality of application and evaluation. The latter depends on the former.
That is, as a matter of empiricism, does fuzzy logic cover more cases and covers
them better? The approximation in terms of formal generalization relies, as in set
theory, on the relation of inclusion of a set of values, {0, 1} in another, [0, 1], which is
larger: “All fuzzy implications are obtained by generalizing the implication operator
of classical logic. That is, they collapse to the classical implication when truth values
are restricted to 0 and 1” [26, p. 308]. The measure of approximation is parametrized
by the ordered set of truth values. But boundary conditions must apply. In particular,
as an a matter boundary conditions on which the inclusion relies, satisfaction for
all values in the interval can be proven: the only necessary conditions, by Gaines’
theorem, are set by the trivalent identity at {0, 1/2, 1}.

For implication connectives, the challenge arises within fuzzy theory. There is no
unitary linear partial ordering for the family of connectives, which form a lattice with
a partition between two equivalent classes.26 Formal boundary conditions between
classical and fuzzy rules such as modus ponens do not fix the form of the fuzzy impli-
cation connective uniquely.Moreover, validity itself acquires a continuous numerical
representation missing in classical logic. Validity is replaced by a generalization by
degrees.

At the level of implication, formally or truth-functionally, it is simpler to consider
how fuzzy connectives will reduce, that is, approximate and imply, classical ones by
taking the limit to the reduced bivalent set. The other direction poses new challenges:
the possible consequences and mappings are not uniquely fixed, especially t-norms.
The family itself yields no unitary ordering sequence of implications. Formally, then,

26See ibid., Fig. 11.2.
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the relation of approximation is not symmetric.Also, as in set theory, one also requires
to prove that classical implication will be satisfied in the fuzzy system, for each
t-norm, for instance. So, as a difficulty, one finds that the relation between connectives
already requires a larger structure, and is not independent from the relation between
the corresponding logical systems.

In terms of axioms, to prove the both directions of implication is tricky too, since
some principles, such as bivalence or excluded middle, do not have a counterpart in
fuzzy logic, except in the form of their violation. So one would have to start from
a reconstruction that already includes statements of the classical axioms and their
violation. For the same reason, reduction of the classical theory by derivation ab
initio is unrealistic, as it also is in the absence of auxiliary conditions coordinating or
translating terms from different theories and specifying the conditions of the relevant
relations of reduction. The theory or system with a higher generality of applicability
does not, structurally speaking, contain the reduced or approximated one. In fact it’s
the reverse; the relation to the classical system is of sub-structurality, as the number
of rules and axioms in the fuzzy one is reduced.

13.6.4 Fuzzy Logic as Contextual

The relativity, locality and more broadly limited aspect of fuzzy theory and its uses
constitute its contextual character. The elements that inform the different contexts,
the diversity and interrelatedness of the contexts all provide the very conditions of
possibility of the formal and empirical successes of fuzzy theory.

Perspectives for understanding the formalism of fuzzy logic, as well as set the-
ory, include the contexts of construction, application, evaluation, interpretation, etc.
Those roles are both distinctive and interrelated.

For instance, as in the case of set theory, the construction of the generalized
formalism is constrained and justified by relations to classical resources and non-
classical ones. But the justification of generalization by construction is different
from the case of generalization in application. The former, with the extension to
a broader set of truth values, is a condition of the latter, but the latter has its own
additional particular empirical sources of motivation and testing, e.g., the contexts
of human reasoning modeling, technological application and decision making, with
specific and different aims and standards of representation and regulation. Here we
encounter the pragmatic considerations of the external practical context.

The most direct source of contextuality derives directly from the same local,
limited constraints imposed on the subjective source of fuzzy concepts and claims.

The same contextuality and normativity characterizes the question of appropriate
choice of the fuzzy implication connective for reasoning in the different empirical
situations. The form of fuzzy implication, like the value assignation of a membership
function, isn’t uniquely determined, or general across all relevant empirical contexts:
“To select an appropriate fuzzy implication for approximate reasoning under each
particular situation is a difficult problem. Although some theoretically supported
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guidelines are now available for some situations, we are still far from a general
solution to this problem” [26, p. 312]. Meaningful criteria vary by context and
purpose.

Another examples is the contextual character of the application of fuzzy validity.
The fuzzy standard of sufficient validity rests conceptually on the contextual fuzzy
notion of sufficient truth. Valid enough in a given context is relative to a standard
selected for a purpose at hand, e.g., 0.5, but not arbitrarily [41, p. 221]. The appli-
cation and normative roles depend on a particular choice; a logical equivalent to the
evaluative role of benchmarks for statistical significance in empirical testing.

Contextuality is expressed in the formulation and implementation of normative
criteria of admissibility such as Gaines’: good enough means that no simpler or
equally simple model is a better approximation to the data. Without such criteria one
must simply opt for sacrificing one standard to a conflicting one, and in fuzzy dynamic
systems, for instance, Zadeh warned with his principle of incompatibility that in
the study of complex systems, significance or relevance is sacrificed to precision
[16, p. 189].

The standard is also a form of precisification or defuzzification that connects
with classical logic; in the same way that standards of significance contribute to the
testability of empirical hypotheses against precise measurement results. This kind
of complex coordination in application is also one of the contexts of application
approximation, for calculation (constructive, normative constraint), interpretation
and evaluation.

The contextuality of fuzzy logic, more than the contextuality of fuzzy set theory,
stands in contrast with the case of classical logic as the normative ideal of precise and
universal rationality and reasoning. It involves, then, a revision of normative ideals
and standards.

Finally, taking seriously the contextuality of approximate as an enabling condition,
rather than a negative limitation, of its conceptual and methodological force, will
invite critical attention to the limits of generality as an aim of science. New lessons
may still be learned, for instance, from recent criticisms of the generality or ecological
validity of the causal and evidentiary conclusions of randomized control trials and
of other statistical and probabilistic models [6, 30].

Fuzzy set theory has been applied to the classification of images as well as to the
application ofwords associatedwith categorization.However,modeling approximate
informal reasoning has neglected the diversity of roles images play in reasoning,
ordinary and scientific, alongside recognition and representation. Fuzzy logic can
extend the scope of its application to visual thinking, with images or about them.

13.7 Conclusion

I have examined fuzzy set theory and fuzzy logic broadly from a non-formal per-
spective and as a practice of application of mathematics. The present and future
of the fuzzy project requires its critical and creative understanding. Sometimes
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the understanding exceeds the bound of formalism. This may be helpful because
relevant intellectual considerations within and outside the technical practices lie also
outside the formalism, both conceptually and technologically. It is another example
of situational character or contextuality of real science.

The intellectual framework I have introduced to situate fuzzy theory focuses on
several issues or dimensions: empiricism, subjectivity, approximation, contextuality
and normativity. These issues are inseparable. My aim has been to integrate and
differentiate fuzzy theory within this framework, to determine it in those terms,
illustrating them, while pointing to its particularities. As a result, I have complicated
both levels of exploration: amore complicated intellectual picture of the fuzzy project
emerges, while the broad brushstrokes of my discussion should help inform and
enrich the general picture of scientific practice in turn. From the more complicated
particular picture of fuzzy theory emerges a model of formal practices that centers on
the complex roles and value of subjectivity and approximation, radically contextual,
relative to standards and goals.

A contextual and complex empiricism, as I endorse, requires the role of elements
functioning contextually a priori and empirically; that is, a locally constructive and
constraining source and function of concepts and rules, normative and interpretive. In
application, this kind of complex coordination of formalism and factual information
is one of the contexts of application approximation, for calculation (constructive,
normative constraint), interpretation and evaluation. Approximation here is more
complicated and general a concept that typically presented. This is part of my picture
of the application ofmathematics as involving contextual preparation of a constrained
and often interpreted symbolic structure.

For the fuzzy project, this is critical and constructive contextualism: approxima-
tion, subjectivity and context should be perceived critically and creatively, as instru-
ments and opportunities, not obstacles, in the pursuit of science and technology. They
constitute sources of methodological plasticity that helps adjust in different contexts
and to different and revisable goals and standards without fear or arbitrariness. Fuzzy
logic andmathematics are not just true of technological systems; their truth and status
are constructive also as formal technologies.
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Chapter 14
Formalizing the Informal, Precisiating
the Imprecise: How Fuzzy Logic Can
Help Mathematicians and Physicists
by Formalizing Their Intuitive Ideas

Olga Kosheleva, Renata Reiser and Vladik Kreinovich

Abstract Fuzzy methodology transforms expert ideas—formulated in terms of
words fromnatural language—into precise rules and formulas. In this paper, we show
that by applying this methodology to intuitive physical and mathematical ideas, we
can get known fundamental physical equations and known mathematical techniques
for solving these equations. This fact makes us confident that in the future, fuzzy
techniqueswill help physicists andmathematicians to transform their imprecise ideas
into new physical equations and new techniques for solving these equations.

14.1 Fuzzy and Physics: Past and Present

Fuzzy methodology: main objective. Fuzzy methodology has been invented to
transform expert ideas—formulated in terms of words from natural language—into
precise rules and formulas, rules and formulas understandable by a computer (and
implementable on a computer); see, e.g., [6, 10, 12].

Fuzzy methodology: numerous successes. Fuzzy methodology has led to many
successful applications, especially in intelligent control [6, 10].

What is fuzzy methodology good for? Traditional viewpoint. When are soft fuzzy
techniques mostly used now? Let us take, as an example, control, which is one of
the major success stories of fuzzy methods.

In control, if we know the exact equations that describe the controlled system,
and if we know the exact objective function of the control, then we can often apply
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the optimal control techniques developed in traditional (crisp) control theory and
compute the optimal control.

Even in these situations, we can, in principle, use soft computingmethods instead:
e.g., we can use simpler fuzzy control rules instead of (more complicated) traditional
techniques. As a result, we may get a control that is much easier to compute but that
it somewhat worse in quality.

However, themajor application of fuzzymethodology in control is to the situations
when we only have partial knowledge about the controlled system and about the
objective functions and in which, therefore, traditional optimal control theory is not
directly applicable. Here is where all known success stories come from: utilities like
washing machines or camcoders, car parking automation, and other applications all
share one thing: they all have to operate in a partially known environment.

From this viewpoint, as we gain more and more knowledge about a system, a
moment comes when we do not need to use fuzzy techniques any longer: when we
have accumulated enough knowledge, we will then be able to use traditional (crisp)
techniques.

From this viewpoint, fuzzy techniques look like a (successful but still) interme-
diate step, “poor man’s” data processing techniques, that need to be used only if we
cannot apply “more optimal” traditional methods.

Physics and applied mathematics as application areas. When we study the phys-
ical world, our first objective is to find the physical laws, the equations that describe
how the values of physical quantities change with time.

Once we have found these equations, the next task is mathematical: we need to
solve these equations to predict the future values of physical quantities.

Both tasks are not easy. In both tasks, we start with informal ideas, and gradually
move to exact equations and exact algorithms for solving these equations.

Current use of fuzzy techniques in physics and applied mathematics. The current
use of fuzzy techniques in physics and applied mathematics following the similar
lines as other applications to fuzzy methodology: fuzzy techniques are useful when
we do not know the exact equations describing the corresponding system; see, e.g.,
[3, 6, 10, 11] and references therein.

Once we know these equations, more traditional (crisp) techniques can be used
to solve these equations.

14.2 Fuzzy and Physics: Towards the Future

A natural new idea of using fuzzy techniques. As we have mentioned, physics
research has two main objectives:

• to find the physical laws, the equations that describe how the values of physical
quantities change with time, and
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• to solve these equations, so that we will be able to predict the future values of
physical quantities.

In both tasks, we start with informal ideas, and gradually move to exact equations
and exact algorithms for solving these equations.

But transforming informal ideas into exact ones, their precisiation is exactly what
fuzzy techniques have been invented for. It is therefore reasonable to use fuzzy
techniques for this precisiation.

In this section, we will show that fuzzy logic techniques can indeed help in trans-
forming informal ideas into exact equations and algorithms.

Comment. Preliminary versions of some of the results from this section first appeared
in [5, 7, 8]; similar results are also presented in [9].

14.2.1 Case Study: Newton’s Physics

Let us start our analysis with the simplest example of physical equations: namely,
with the equations of Newton’s physics.

Newton’s physics: informal description. Let us consider a simple case when we
have a single body in a potential field V (x). It is a commonsense knowledge that a
body usually tries to go to the points x where its potential energy V (x) is the smallest.
For example, a rock left at the top of the mountain, when it starts moving, it may
sometimes move up (due to the original push), but mostly it tries to go down.

If we take friction into account, then a body also tries to stop. In the idealized case
when there is no friction, there is a conservation of energy: the sum of the potential

energy V (x) and the kinetic energy K = 1

2
·m ·

3∑

i=1

(
dxi

dt

)2

is constant. Thus, when

the body minimizes its potential energy, it thus tries to maximize its kinetic energy.

What we plan to do. The above text does not sound like a very accurate description
of a physical system. However, we will show that when we apply the usual fuzzy
methodology to this description, we get a very precise formulation—all the way to
Newton’s equations

m · d2xi

dt2
= −∂V

∂xi
. (14.1)

We will perform this derivation step-by-step.

First step: selecting a physically meaningful membership function correspond-
ing to “small V (x)”. The body tries to get to the areas where the potential energy
V (x) is small. “Small” is an imprecise word from natural language. For such words,
the fuzzy methodology recommends to select a membership function μ(V ) describ-
ing, for each possible value V , to what extent this value V is small.
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How membership functions are determined: one of the possible ways. For each
individual value V , the value μ(V ) can be obtained, e.g., by polling several (n)

experts and assigning, as μ(V ), the ratio μ(V ) = n(V )

n
, where n(V ) is the number

of experts who answered that this value V is small.

Specifics of a physical system. In assigning the appropriate membership function,
we must take into account the specifics of the physical system. One of the features
of this physical system (see, e.g., [4]) is that the potential energy has no absolute
numerical value. All we know is the relative potential energy relative to some level. If
we change that level by some value V0, then all the numerical values of the potential
energy get shifted, from V to V + V0.

Crudely speaking, this means that the numerical values V and V + V0 may rep-
resent the exact same value of the potential energy—but measured in comparison to
different levels.

How to describe these physical specifics: first try. A seemingly natural formal-
ization of this idea is to simply require that the degrees to which the values V and
V + V0 are small should be the same: μ(V ) = μ(V + V0).

The first try does not work. However, this formalization does notwork: ifwe require
that this equality holds for all V and V0, then for every two real numbers V and V ′,
by taking V0 = V ′ − V , we would be able to conclude that μ(V ) = μ(V + V0) =
μ(V ′)—and thus, that the resulting membership function is simply constant. This
does not make intuitive sense, since we know that the smaller the value V , the larger
should be our confidence that V is small.

A better idea. We therefore cannot simply require that the functions μ(V ) and
μ(V + V0) corresponding to two different levels are identical. However, we should
require that these two membership functions be, to some extent, equivalent to each
other.

How to formalize this idea: re-analyzing the polling method. How can we for-
malize this idea? To do that, let us go back to the polling method of determining a
membership function.

Our objective is to find the value μ(V ) as accurately as possible. It is known that
in the poll, the more people we ask, the more accurate is the resulting opinion. Thus,
a natural way to improve the accuracy of the poll is to ask more experts. However,
there is a catch. When at first, we could only afford to poll n people, we thus selected
top experts in the field. Now that we add m extra folks, these folks may be too
intimidated by the original experts to voice their opinions—especially in case the
original experts disagree. With the new experts mute, we still have the same number
n(V ) of experts who believe that the value V is small—but now we have to divide it
not by the original number n, but by the new number n + m. As a result, instead of

the original value μ(V ) = n(N )

n
, we get a new value μ′(V ) = n(N )

n + m
. It is easy to

see that μ′(V ) = c · μ(V ), where c = n

n + m
.
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Thus, for the exact same opinion, by selecting two different numbers of experts
n and n + m, we get two numerically different membership functions: μ(V ) and
c · μ(V ). These two membership functions represent the same expert opinion and
are, thus, equivalent in some reasonable sense.

Resulting formalization of the physical intuition. Now, we have a meaningful
interpretation of the requirement that the membership functions μ(V ) and μ(V +
V0)—corresponding to two different starting levels for measuring potential energy—
are equivalent: that for every V0, there should be a value c(V0) for whichμ(V +V0) =
c(V0) · μ(V ).

Resulting selection of the membership function. This functional equation is known
(see, e.g., [1]). Its only monotonic solution is a function

μ(V ) = a · exp(−k · V ).

So we will use this exponential function to describe the fact that potential energy
should be small.

Comment. Since, as we have mentioned, the membership function is determined
modulo a factor c, we can, for simplicity, set a to 1 and get an even simpler formula
μ(V ) = exp(−k · V ).

Second step: selecting a membership function corresponding to “large value of
kinetic energy K ”. As we have mentioned, kinetic energy tends to increase, i.e.,
should be large.

Instead of starting a derivation from scratch, let us use the fact that we already
have a physically meaningful membership function for “small”. Intuitively, a value
K is large if −K is small.

So, the statement “kinetic energy K is large” is equivalent to saying “the value
−K is small”. By using the above membership function for small, we thus conclude
that the membership function describing our intuition about the kinetic energy is
μ(K ) = exp(−k · (−K )) = exp(k · K ).

Third step: selecting a physically meaningful t-norm (“and”-operation). We
want to describe the intuition that the potential energy is small and that the kinetic
energy is large and that the same is true at different moments of time. Accord-
ing to fuzzy methodology, we must therefore select an appropriate “and”-operation
(t-norm) to combine our degrees of certainty in individual statements into a single
degree describing the degree to which we believe in the composite statement.

Let us use physical intuition to select such a t-norm f&(a, b).

Specific of the physical system. In principle, if we have two completely independent
systems, we can consider them as a single system. Since these systems do not interact
with each other, the total energy E of the combined system is simply equal to the
sum E1 + E2 of the energies of the components.
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Using the physical specifics. Intuitively, if both component energies are small, then
the resulting total energy should also be small. We can therefore estimate the small-
ness of the total energy in two different ways:

• first, we can simply apply the above membership function “small” to the total
energy E = E1 + E2, and get the value μ(E1 + E2);

• second, we can first estimate the degrees μ(E1) and μ(E2) to which each of the
components is small, and then use a t-norm f&(a, b) to combine these degrees
into a degree that E1 is small and E2 is small: f&(μ(E1),μ(E2)).

In view of the above motivation, it is reasonable to require that these two estimates
should coincide, i.e., that we should have μ(E1 + E2) = f&((μ(E1),μ(E2)). We
know that μ(E) = exp(−k · E), thus, we conclude that the following equality should
hold for all E1 and E2:

exp(−k · (E1 + E2)) = f&(exp(−k · E1), exp(−k · E2)).

This requirement enables us to uniquely determine the corresponding t-norm.
Namely, to find the value f&(a1, a2), we must first find the values Ei for which
exp(−k · Ei ) = ai . For these values, we then have

f&(a1, a2) = exp(−k · (E1 + E2)) = exp(−k · E1) · exp(−k · E2) = a1 · a2.

Resulting selection of a t-norm. Thus, the physically meaningful t-norm is the
algebraic product f&(a1, a2) = a1 · a2.

Resulting model. Now, we are ready to estimate to what extent a given trajectory
x(t) satisfies the intuitive ideas that the potential energy be small and the kinetic
energy be large at all moments of time t1, . . . , tN . We know the degrees to which
each of these requirements is satisfied at each moment of time, so to get the overall
degree, we can simply multiply all these degrees. As a result, we get the following

product:
N∏

i=1
exp(−k ·V (ti ))·

N∏

i=1
exp(k ·K (ti )). Since, as we have alreadymentioned,

exp(−k · a) · exp(−k · b) = exp(−k · (a + b)),

this expression can be reformulated as exp(−k · S), where S
def=

N∑

i=1
(V (ti ) − K (ti )).

It is reasonable to select, as the most reasonable, a trajectory for which our degree of
confidence that this trajectory is reasonable is the highest. To find such a trajectory,
we must maximize the value exp(−k · S). Since the function exp(−k · S) is strictly
decreasing, this is equivalent to minimizing S.
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So, we arrive at the requirement that we should minimize the sum S. In reality,
the number of moments of time is infinite, so instead of a sum, we get an integral
S ∼ ∫

L dt, where we denoted

L = V (t) − K (t) = V (t) − 1

2
· m ·

3∑

i=1

(
dxi

dt

)2

.

This model leads to Newton’s equations. In modern physics, most physical laws
are formulated in terms of the Principle of Least Action, according to which the
trajectory is selected in such away that the action S = ∫

L dt is the smallest possible.
In particular, for Newtonian physics, the exact same expression S—as we came up
with based on fuzzymethodology—leads exactly to Newton’s laws; see, Appendix 1.

Comment. With the fuzzy approach, we not only get the most reasonable Newton’s
trajectory, we also get the degree exp(−k · S) with which all other trajectories are
reasonable. In Newton’s physics, only one trajectory is possible, but in quantum
physics, non-Newtonian trajectories are also possible, and the “amplitude” of each
trajectory is determined by exactly this formula exp(−k · S), albeit with a complex
value k. This fact makes the above derivation even more interesting.

14.2.2 Beyond the Simplest Netwon’s Equations

Need to go beyond Newton’s equations. In our analysis of the Newton’s equations,
we assume that the expression for the potential energy V (x) is given. However, in
reality, this expression also needs to be determined. The potential energy represents
a field—e.g., electrostatic, gravitational, etc.—so, in addition to mechanics, we must
also find the equations that describe the corresponding field.

Gravitational field: main idea. Let us consider the simplest case of a gravitational
field. We will consider it in the Newtonian approximation, where it is described by
a scalar function V (x).

Themain physical property of the gravitational field is that it changes very slowly:
gravitational pull of the Earth, for example, is caused by the Earth as a whole, so if
we move a little bit, we still feel approximately the same gravitation. It is a known
empirical fact that the differences in the gravitational field at different earth locations
are very small (but, by the way, very important for geophysics, because they provide
a good overall understanding of what is located below the Earth surface).

Thus, all the components ∂V ∂xi of the gradient of the gravitational field must be
small. This situation is similar to kinetic energy and different from potential energy
in the sense that we want these values to be close to 0. Similarly to the case of kinetic
energy, this is equivalent to requiring that the squares of the derivatives be small.
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Derivation of the resulting model. Thus, we arrive at the condition that for all
locations x , all squares of partial derivatives must be small. For each location and
for each i , the corresponding requirement that the square of the derivative is small

can be described by the degree exp

(

−k ·
(

∂V

∂xi

)2
)

. By using the product t-norm

to combine these values, we get the expression
∏

x

3∏

i=1
exp

(

−k ·
(

∂V

∂xi

)2
)

. As in

the Newton’s case, this expression can be represented as exp(−k · S), where S =
∑

x

3∑

i=1

(
∂V

∂xi

)2

. Taking into account that we have infinitely many spatial locations

x , we get an integral instead of the sum: S = ∫
L dx , where L(x) =

3∑

i=1

(
∂V

∂xi

)2

.

This model leads to Newton’s formulas for the gravitation force. It is known that

minimizing this expression leads to the equation
3∑

i=1

∂2V

∂x2i
= 0, that leads toNewton’s

gravitational potential V (x) ∼ 1

r
that, in turns, leads to the known expression for

the gravitational force F ∼ r−2.

Comment. Similar arguments can lead to other known action principles and thus, to
other fundamental physical equations.

14.2.3 From Equations to Solutions: Fuzzy Techniques Help
to Deal with Divergent Series

Small-parameter method. Once we know the equations that describe the dynamics
of the corresponding particles and/or fields, a natural next step is to solve these
equations under the given information—and thus, predict the future values of the
corresponding physical quantities. The equations are often complex, and in many
situations, no analytical solution is known, so we have to consider approximate
methods.

The complexity of solving a system of complex equations is often eased by the
fact that our knowledge is usually incremental. At any given moment of time, we
have a model which is a reasonably good approximation to reality, and then we find
a new model which is even more accurate. The ideas behind the new model may be
revolutionary—as they were for quantum physics or relativity theory—but in terms
of predictions, the new theories usually provide a small adjustment to the previous
known one. For example, General Relativity was confirmed when it turned out that
it better describes the bending of light near the Sun—better by 1.75 arc-seconds.
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Usually, by the time new complex equations appear, we already know how to
solve previous equations. Thus, we can use the solution x0 to the previous equations
as a first approximation to the solution x of the new equations.

The difference x −x0 between these solutions can be characterized by some small
parameter q. The original solution x0 (to the previous theory) corresponds to taking
into account only the 0th order term in the Taylor expansion of x into a series in
terms of q. To get a better approximation, we can take into account terms which are
linear in q, terms which are quadratic in q, etc. Ideally, we thus get an expression for
x as an infinite power series; see, e.g., [4]:

x =
∞∑

i=0

qi · xi = x0 + q · x1 + q2 · x2 + · · · (14.2)

In practice, as an estimate for x , we compute the first few terms in this sum

sk
def=

k∑

i=0

qi · xi . (14.3)

In general, the more terms we take—i.e., the larger cutoff value k we use—the more
accurate is the resulting estimate.

The Taylor series method also provides us with a reasonable estimate of the
accuracy of the next approximation, i.e., of the approximation error

Δxk
def= x − xk =

∞∑

i=k+1

qi · xi ;

namely, since we assume that the terms decrease with k, the first ignored term qk+1 ·
xk+1 provides a reasonably accurate description of the approximation error.

This method often works well. In many cases, this idea works very well [4]. It
works, e.g., in celestial mechanics, when the two-body problem—which describes
e.g., how the Earth goes around the Sun—has an explicit analytical solution, and
we would like to analyze how the presence of the Moon affects this solution. In
this problem, the Moon is much lighter than the Earth, so the ratio of these mass
mMoon/mEarth is the desired small dimensionless parameter q.

Sometimes, this method leads to divergent series. In some other cases, the small-
parameter method only works for small k: we get a good approximation s0, a more
accurate approximation s1, an even more accurate approximation s2, etc.—until we
reach a certain threshold k0. Once this threshold is reached, the approximation accu-
racy decreases. In other words, the series (2) diverge. This is, e.g., of Taylor series
corresponding to quantum electrodynamics (see, e.g., [2, 4]): the first few terms of
the expansion in the weak interaction constant α ≈ 1/137 lead to very accurate
predictions, but the whole series diverge.



310 O. Kosheleva et al.

Divergence is one of the main problems of quantum field theory. The above
divergence is one of the main challenges preventing physicists from coming up with
exact mathematical formulations of quantum field theory.

Fuzzy techniques can potentially help in solving this problem. Divergence is
largely a theoretical problem; in practice, physicists use semi-heuristic methods to
come up with meaningful predictions. Formalizing imprecise semi-heuristic ideas is
one of the main reasons why fuzzy techniques were invented in the first place. Let
us therefore try to use fuzzy techniques to formalize the physicists’ reasoning.

How physicists use divergent series. Let us describe how physicists come up with
answers when the series converge.

When the series representing the answer are divergent, physicists usually consider
only the approximations until the remaining term sk+1 − sk starts increasing. In
other words, the last approximation they consider is the one for which the difference
sk+1−sk is smaller than both the previous difference sk −sk−1 and the next difference
sk+2 − sk+1.

Usually, the difference is in the orders of magnitude—just like for Taylor series
in general, so we have sk+1 − sk � sk − sk−1 and sk+1 − sk � sk+2 − sk+1.

Challenge. The divergent character of the corresponding series presents a mathe-
matical challenge: how do we formalize the idea that while the series diverge, its first
terms serve as a good approximation?

Let us show that fuzzy logic allows us to come up with a mathematically rigorous
formalization of this idea.

Towards a fuzzy solution to the challenge. Since the series (2) diverge, the corre-
sponding sum makes no mathematical sense, so we cannot formulate equation (2)
in the literal form. Instead, let us formalize exactly what the physicists are doing:
they are claiming, in effect, that, for every k, x ≈ sk with an accuracy proportional
to the next ignored term, i.e., to the difference sk+1 − sk . In other words, instead of
the equation (2), we have a sequence of infinitely many imprecise rules of the type

x ≈ x0 + q · x1 + q2 · x2 + · · · + qk · xk, with accuracy qk+1 · xk+1,

or, equivalently,
x ≈ sk with accuracy sk+1 − sk . (14.4)

How to describe the relation “x is approximately equal to a, with accuracy of
order σ”. We want to describe, for every three real numbers x , a, and σ > 0, the
degree μ(x, a,σ) to which x is approximately equal to a with an accuracy of order σ.

First natural condition. Intuitively, when one of these values changes a little bit, this
degree should also change only a little bit. Thus, this function should be continuous.
To a with an accuracy of order σ.
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Second natural condition. This degree should be equal to 1 when x = a and it
should strictly decrease to 0 as x increase up from a or strictly decrease to 0 as x
decreases down from a.

Third natural condition. We want to apply this function to values of physical
quantities. The numerical value of a physical quantity depends on the choice of a
measuring unit and on the choice of a starting point. It is reasonable to require that the
degreeμ(x, a,σ) should not change if we simply re-scale the corresponding physical
quantities by using a new measuring unit or a new starting point for measuring this
quantity.

Changing units. If we replace a measuring unit by a new unit which is λ times
smaller, then the numerical value increases by a factor of λ: x → λ · x . For example,
if we replace meters with centimeters which are λ = 100 times smaller, then a length
of x = 2 m becomes x ′ = 200 cm.

Since accuracy is measured in the same units, in the new units, we have σ′ = λ ·σ.
To a with an accuracy of order σ.

So, invariance relative to selection of ameasuring unit means that for every λ > 0,
we should have μ(λ · x,λ · a,λ · σ) = μ(x, a,σ).

Changing sign. Sometimes, the sign of a physical quantity is also arbitrary, so it
can change x → −x . For example, the direction of a spatial coordinate is a pure
convention. It is also a pure convention that we consider electrons to be negatively
changed and protons positively changed; all the formulas of electrodynamics remain
the same if we simply change the signs of all the electric charges.

Accuracy σ describes the absolute value |x − a| of the difference x − a, so the
value ofσ does not change if we simply change the sign of the corresponding physical
quantity. To a with an accuracy of order σ.

Changing starting point. Also, if we replace the original starting point with a new
starting point which is x0 units lower, then all numerical values are increased by
x0: x → x + x0. Since the accuracy σ estimates the value of the difference x − a,
the value of σ does not change under this transformation. To a with an accuracy of
order σ.

Fourth natural condition. Finally, often, we have several estimates of this type; we
should be able to combine them into a single estimate. In other words, for every finite
set of values ai and σi , we should describe the “and”-combination of all the rules of
these types by a single rule of a similar type. We have already argued that algebraic
product is a good way to formalize “and”. To formulate this requirement in precise
terms, we need to take into account that we are usually interested in normalized
membership functions, for which max

x
μ(x) = 1, but the product of two or more

membership functions is not necessarily normalized. Thus, we need to normalize
this product.



312 O. Kosheleva et al.

Proposition 1 Let μ(x, a,σ) be a [0, 1]-valued continuous function with the fol-
lowing properties:

• for any a and σ, μ(a, a,σ) = 1;
• for any a and σ, the value μ(x, a,σ) strictly decreases for x ≥ a and strictly

increases for x ≤ a, and tends to 0 as x → ±∞;
• for every x, a, σ, and λ > 0, we have μ(λ · x,λ · a,λ · σ) = μ(x, a,σ);
• for every x, a, σ, we have μ(−x,−a,σ) = μ(x, a,σ);
• for every x, a, σ, and x0, we have μ(x + x0, a + x0,σ) = μ(x, a,σ);
• for every a1, . . . , an, σ1, . . . ,σn, there exist values a, σ, and C for which, for all

x, we have μ(x, a1,σ1) · . . . · μ(x, an,σn) = C · μ(x, a,σ).

Then, μ(x, a,σ) = μ0

(
x − a

σ

)

, where μ0(z) = exp(−β · z2) for some β > 0.

Comment. For readers’ convenience, all the proofs are placed in the Appendix.

Back to our problem. Proposition 1 shows that a natural interpretation of the
phrase “x ≈ a with accuracy σ” is provided by a membership function μ(x) =
exp

(

−β · (x − a)2

σ2

)

. So, the degree to which each rule is satisfied for a given

k is equal to exp

(

−β · (x − sk)
2

(sk+1 − sk)2

)

. The degree to which the 1st rule is satis-

fied, and the 2nd rule is satisfied, …, can be found by applying the corresponding
“and”-operation (i.e., the product) of the above degrees. If we use the product as an
“and”-operation, then the degree to which all the rules are satisfied is equal to

∞∏

k=0

exp

(

−β · (x − sk)
2

(sk+1 − sk)2

)

= exp

(

−β ·
∞∑

k=0

(x − sk)
2

(sk+1 − sk)2

)

.

An infinite product can be zero, so we have to consider products corresponding to
large N and then tend N to infinity in the resulting formulas. For a finite value N ,
we get

μN (x) =
N∏

k=0

exp

(

−β · (x − sk)
2

(sk+1 − sk)2

)

= exp

(

−β ·
N∑

k=0

(x − sk)
2

(sk+1 − sk)2

)

. (14.5)

If we need to select a single value x , it is reasonable to select a value for which the
corresponding degree of belief is the largest possible. Since the function μN (x) is
of the form exp(−zN ) for some zN , and the function exp(−z) is strictly decreas-
ing, its maximum is attained at a point X N at which zN attains its minimum:

N∑

k=0

(x − sk)
2

(sk+1 − sk)2
→ min . Differentiating this expression with respect to x , we
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conclude that X N =

N∑

k=0
sk · (sk+1 − sk)

−2

N∑

k=0
(sk+1 − sk)−2

. The actual solution corresponds to

N → ∞. Thus, we arrive at the following conclusion.

The resulting solution: a formal definition. In the general case of a series (conver-
gent or divergent), we select

x = lim
N→∞

N∑

k=0
sk · (sk+1 − sk)

−2

N∑

k=0
(sk+1 − sk)−2

. (14.6)

Comment. It is worth mentioning that if, instead of using fuzzy techniques, we use
probabilistic techniques and assume that x ≈ sk with Gaussian approximation error
of 0 mean and standard deviation proportional to |sk+1 − sk |, we get the exact same
estimate.

Analysis of the resulting formula. Let us show that the above covers both the case
of a convergent series—in which case it coincides with the limit lim sk—and of the
divergent series.

Case of divergent series. For divergent series, the analysis is simple. If we have

|s1 − s0| 
 |s2 − s1| 
 · · · 
 |sk − sk−1| 
 |sk+1 − sk | � |sk+2 − sk+1| � · · · ,

then
(s1 − s0)

−2 � (s2 − s1)
−2 � · · · � (sk − sk−1)

−2 


(sk+1 − sk)
−2 
 (sk+2 − sk+1)

−2 
 · · ·

Thus, in the numerator N of the formula (6), the main term is the term N ≈ sk ·
(sk+1−sk)

−2 corresponding to the smallest possible difference |sk+1−sk |. Similarly,

the denominatorD is approximately equal toD ≈ (sk+1 − sk)
−2. Thus, the ratio

N
D

is approximately equal to sk—which is exactly what physicists conclude now.

Comment. To be more precise, the physicists use the next value sk+1, which, within
the accuracy sk+1 − sk , is the same as sk .

Case of convergent series. For a convergent series, the result is the same as the limit:

Proposition 2 When sk → x, then the expression (6) coincides with the limit x.

Comment. To provide a better understanding of the formula (6), in Appendix 4, we
provide an example of applying this formula to the diverging geometric series

∑
zi

with |z| ≥ 1.
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General comment. The membership function corresponding to the approximation
based on the first N + 1 sums has the form

μN (x) = exp

⎛

⎜
⎜
⎜
⎝

− (x − xN )2

N∑

k=0
(sk+1 − sk)−2

⎞

⎟
⎟
⎟
⎠

.

Thus:

• For the case when sk → x , the sum
N∑

k=0
(sk+1 − sk)

−2 tends to infinity. So, the

membership value μN (x) tends to 1 for this x and to 0 for all other x . Thus, in the
limit N → ∞, we have a crisp conclusion.

• In contract, in the divergence case, the sum is approximately equal to the value
(sk+1 − sk)

−2 corresponding to the smallest difference |sk+1 − sk |.
Thus, the limit values μN (x) remain non-zero within a neighborhood of size ≈
|sk −sk+1|—which reflects the fact that in this case, we do not have a precise value
of x , we can only determine this value with the accuracy |sk+1 − sk |.

14.3 Fuzzy and Physics: Promising Future

Fuzzy techniques will help to derive new physical equations. In the previous
section, we showed that fuzzy techniques can transform informal physical ideas into
exact physical equations, and that in this way, we can derive many known physical
equations. From the viewpoint of practical applications, from the viewpoint of being
able to predict new physical phenomena, we have not yet achieved anything new: all
we did was found a new justification for the already known equations.

However, the fact that the existing fuzzy methodology enables us to transform
informal (“fuzzy”) description of physical phenomena into well-known physical
equations makes us confident that in the future, when new physical phenomena will
be discovered, fuzzy methodology may help generate the equations describing these
phenomena.

Fuzzy techniques will help to solve physical equations. Similarly, the fact that
fuzzy techniques can lead to an explanation of the known heuristic methods for
solving physical equations makes us confident that in the future, similarly fuzzy
techniques will help to transform informal ideas into new successful mathematical
techniques.

Instead of conclusion: the future is fuzzy. People often say “the future is fuzzy”
meaning that it is difficult to predict the future exactly. But, based on what we
observed, we can claim that “the future is fuzzy” in a completely different sense:
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that the future will see more and more applications of fuzzy techniques, including
applications to areas like theoretical physics andnumericalmathematics, areaswhere,
at present, there are not many applications of fuzzy. The future is fuzzy!

Acknowledgments This work was supported in part by the National Science Foundation grants
HRD-0734825, HRD-124212, and DUE-0926721.

Appendix

Appendix 1: Variational Equations

General derivation. Let us recall how we can transform the Least Action Principle
into a differential equation. Let us first do it on the example onNewton-type situation,
where we need to find a function x(t) that minimizes the following expression:
S = ∫

L(x, ẋ) dt → min. Minimizing means, in particular, that if we take any
function Δx(t) and consider a function S(α) = x + α · Δx , then this function must
attain its maximum for α = 0. Thus, the derivative of S(α) at α = 0 must be 0.
Differentiating the expression

S(α) =
∫

L(x + α · Δx, ẋ + α · Δẋ) dt

and equating the derivative to 0, we conclude that

∫ (
∂L

∂x
· Δx + ∂L

∂ ẋ
· Δẋ

)

dt =
∫ (

∂L

∂x
· Δx

)

dt +
∫ (

∂L

∂ ẋ
· Δẋ

)

dt = 0.

Integrating the second term by parts, we conclude that

∫ (
∂L

∂x
− d

dt

(
∂L

∂ ẋ

))

· Δx dt = 0.

This must be true for every function Δx(t), in particular for a function that is equal
to 0 everywhere except for a small vicinity of a moment t , For this function, the

integral is proportional to the value of the expression
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)

at the point

t . Since the integral is 0, this expression must also be equal to 0:

∂L

∂x
− d

dt

(
∂L

∂ ẋ

)

= 0.

The resulting equations are known as Euler-Lagrange equations.
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Case of Newton’s laws. In particular, for the Newton’s case, when

L = V (x) − 1

2
· m ·

3∑

i=1

(
dxi

dt

)2

,

for each of the components xi (t), we have
∂L

∂xi
= ∂V

∂xi
and

∂L

∂ ẋi
= −m · dxi

dt
. Thus,

Euler-Lagrange’s equations lead to
∂V

∂x
+ m · d

dt

(
dxi

dt

)

= 0, i.e., to Newton’s

equations m · d2xi

dt2
= −∂V

∂xi
.

General case. In the general case, Euler-Lagrange equations take the form
∂L

∂ϕ
−

3∑

i=1

∂

∂xi

(
∂L

∂ϕ,i

)

= 0, where ϕ,i
def= ∂ϕ

∂xi
.

Appendix 2: Proof of Proposition 1

1◦. Let us first apply the condition μ(x + x0, a + x0,σ) = μ(x, a,σ) with x0 = −a.
Then, we get μ(x, a,σ) = μ(x − a, 0,σ), or, equivalently,

μ(x, a,σ) = μ1(x − a,σ),

where we denoted μ1(z,σ)
def= μ(z, 0,σ).

2◦. In terms of the function μ1, the condition μ(λ · x,λ · a,λ · σ) = μ(x, a,σ) takes
the formμ1(λ·(x−a),λ·σ) = μ1(x−a,σ). Let us apply this condition forλ = σ−1.

Then, we conclude that μ1(z,σ) = μ1

( z

σ
, 1

)
, or, equivalently, μ1(z,σ) = μ0

( z

σ

)
,

where we denoted μ0(z)
def= μ1(z, 1).

Substituting this expression for μ1(z,σ) in terms of μ0 in the expression for μ in

terms of μ1, we conclude that μ(x, a,σ) = μ0

(
x − a

σ

)

.

3◦. Substituting the expression forμ in terms ofμ0 into the conditionμ(−x,−a,σ) =
μ(x, a,σ), we conclude that μ0(−z) = μ0(z). Thus, μ(x, a,σ) = μ0

( |x − a|
σ

)

.

4◦. For a1 = a2 = 0 and σ1 = σ2 = 1, the fusion condition implies that

μ0(x) · μ0(x) = C · μ0

(
x − a

σ

)
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for some a, C , and σ. The left-hand side attains its maximum (=1) at x = 0, the
right-hand side attains its maximum (which is equal to C) for x = a. Since these
two sides are one and the same function, we conclude that a = 0 and C = 1, i.e.,
that μ2

0(x) = μ(k2 · x) for some constant k2 (= 1/σ). For an auxiliary function

�(x)
def= ln(μ0(x)) we conclude that 2 · �(x) = �(k2 · x).

Similarly, if we consider 3, 4, etc. terms, we conclude that 3 · �(x) = �(k3 · x),
4 · �(x) = �(k4 · x), etc.

4◦. The function μ0(x) for x > 0 is monotonously decreasing from 1 to 0. Therefore,
�(x) is monotonously decreasing from 0 to−∞. Sinceμ (and thus,μ0) is continuous,
the function �(x) is also continuous, and hence, there exists an inverse function
i(x) = �−1(x), i.e., such a function that i(�(x)) = x for every x .

For this inverse function, the equality n · �(x) = �(kn · x) turns into i(n · �(x)) =
i(�(kn · x)) = kn · x = kn · i(�(x)). So, if we denote �(x) by X , we conclude that
for every n, there exists a kn such that i(n · X) = kn · i(X).

If we substitute Y = n · X , we conclude that i(Y ) = kn · i

(
Y

n

)

, and therefore,

i

(
Y

n

)

= 1

kn
· i(Y ).

From these two equalities, we conclude that i
(m

n
· X

)
= 1

kn
· i(m · X) =

km

kn
· i(X). So, for every rational number r , there exists a real number k(r) such that

i(r · X) = k(r) · i(X). Therefore, the ratio
i(r · X)

i(X)
is constant for all rational r .

5◦. Since i(X) is a continuous function, and any real number can be represented

as a limit of a sequence of rational numbers, we conclude that the ratio
i(r · X)

i(X)
is

constant for real values of r as well. Therefore, for every real number r , there exists
a k(r) such that i(r · X) = k(r) · i(X).

We have thus arrived at a functional equation for which all monotonis solutions
are known: they are i(X) = A · X p for some A and p; see, e.g., [1]. Therefore, the
inverse function �(x) (x > 0) also takes the similar form �(x) = B · xm for some B
and m. Taking into consideration that μ0(x) and hence �(x) are even functions, we
conclude that �(x) = B · |x |m for all x .

6◦. Now, for every a1 > 0, if we take a2 = −a1 and σ1 = σ2 = 1, then the fusion

property implies thatμ0(x−a1)·μ0(x+a1) = C ·μ0

(
x − a

σ

)

for some a andσ. The

left-hand side of this equation is an even function, so the right-hand side must also be

even, and therefore a = 0. So, μ0(x − a1)μ0(x + a1) = C ·μ0

( x

σ

)
. For x = 0 we

get μ0(a1) ·μ0(a1) = C . Turning to logarithms, we conclude that for every a1, there
exists a k(a1) (= 1/σ) such that �(x − a1) + �(x + a1) = �(k(a1) · x) + 2 · �(a1).
If we substitute here �(x) = B · |x |m , and divide both sides by B, we conclude that
|x − a1|m + |x + a1|m = (k(a1))m · |x |m + 2 · am

1 .
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Let us show that this equality is satisfied only when m = 2.
7◦. When x > 0, and a1 is sufficiently small, then x + a1, x , and x − a1 are
all positive, and, therefore, (x − a1)m + (x + a1)m = (k(a1))m · xm + 2 · am

1 . If
we move 2 · am

1 to the left-hand side, and divide both sides by xm , we conclude that
(
1 − a1

x

)m +
(
1 + a1

x

)m −2·
(a1

x

)m = (k(a1))m . The left-hand side of the resulting

equality depends only on the ratio z = a1
x
, the right-hand side only on a1. Therefore,

if we choose any positive real number λ, and take a′
1 = λ · a1 and x ′ = λ · x instead

of a1 and x , then we can conclude that the left-hand side will be still the same, and
therefore, the right-hand side must be the same, i.e., (k(a1))m = (k(λ · a1))m . Since
λ was an arbitrary number, we conclude that k(a1) does not depend on a at all, i.e.,
that (k(a1))m is a constant. Let us denote this constant by k.

So the equation takes the form (1 − z)m + (1 + z)m = k + 2 · zm . When z → 0,
then the left-hand side tends to 2 and right-hand side to k, so from their equality we
conclude that k = 2, i.e., that (1 − z)m + (1 + z)m = 2 + 2 · zm .

The left-hand side is an analytical function of z for z close to 0. Therefore the
right-hand side must also be a regular analytical function in the neighborhood of 0
(i.e., it must have a Taylor expansion for z = 0). Hence, m must be an integer.

The values m < 2 are impossible, because for m = 0 our equality turns into a
false equality 2 = 3, and for m = 1 it turns into an equality 1 − z + 1 + z = 2 + z,
which is true only for z = 0. So m ≥ 2.

Since both sides are analytical in z, the second derivatives of both sides at z = 0
must be equal to each other. The second derivative of the left-hand side at z = 0
is equal to m · (m − 1). The second derivative of the right-hand side is equal to
2m · (m − 1) · zm−2.

If m > 2, then this derivative equals 0 at z = 0 and therefore cannot be equal to
m ·(m−1). Som ≥ 2, andm cannot be greater than 2. So,m = 2. Thus, �(x) = B ·x2,
and hence μ0(x) = exp(−β · x2) for some β > 0. The proposition is proven.

Appendix 3: Proof of Proposition 2

Let us assume that sk → x , and let us prove that in this case, the ratios

X N
def=

N∑

k=0
sk · (sk+1 − sk)

−2

N∑

k=0
(sk+1 − sk)−2

also tend to x , i.e., that for every ε > 0, there exists an n for which, for all N ≥ n,
we have |X N − x | ≤ ε.
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Since sk → x , there exists an integer n0 such that for all k ≥ n0, we have

|sk − x | ≤ x + ε

2
. In particular, this means that for such k, we have sk ≤ x + ε

2
. We

can represent the numerator N of the ratio X N as

N = N0 +
n0∑

k=n0+1

sk · (sk+1 − sk)
−2,

where N0
def=

n0∑

k=0
sk · (sk+1 − sk)

−2. Since sk ≤ x + ε

2
, we conclude that

N ≤ N0 +
(

x + ε

2

)
· Δ,

where we denoted Δ
defe=

N∑

k=n0+1
(sk+1 − sk)

−2. Similarly, for the denominator D of

the ratio X N , we get an expression D = D0 + Δ, where

D0
def=

n0∑

k=0

(sk+1 − sk)
−2.

Thus,

X N = N
D ≤

N0 +
(

x + ε

2

)
· Δ

D0 + Δ
.

The right-hand side of this inequality can be represented as

N0 +
(

x + ε

2

)
· Δ

D0 + Δ
= x + ε

2
+

N0 − D0 ·
(

x + ε

2

)

D0 + Δ
.

Here, |sk − x | ≤ ε

2
and |sk+1 − x | ≤ ε

2
implies that

|sk+1 − sk | ≤ |sk − x | + |sk+1 − x | ≤ ε

2
+ ε

2
= ε.

Thus, (sk+1 − sk)
−2 ≥ ε−2 and so, Δ ≥ (N − n0) · ε−2. When N → ∞, we have

Δ → ∞ and thus,
N0 − D0 ·

(
x + ε

2

)

D0 + Δ
≤ ε

2
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for sufficiently large N . For such N , we get Xn = N0

D0
≤ x + ε

2
+ ε

2
= x + ε.

Similarly, for sufficiently large N , we get X N ≥ x − ε. The proposition is proven.

Appendix 4: Example: Applying Formula (6) to the
Divergent Geometric Series

∑
zi for |z| ≥ 1

When |z| > 1, the series
∑

zi diverges. Here, s1 = 1, s2 = 1+ z, …, and, in general,

sk = 1 + z + · · · + zk = zk+1 − 1

z − 1
. Thus, sk+1 − sk = zk+2 − zk+1

z − 1
= zk+1. So,

the denominator D of the formula (6) has the form D =
N∑

k=0
z−2·(k+1). In the limit,

when N → ∞, we get D → z−2

1 − z−2 .

For the numerator, we similarly have

N =
N∑

k=0

zk+1 − 1

z − 1
· z−2·(k+1) = 1

z − 1
·
(

N∑

k=0

z−k+1 −
N∑

k=0

z−2·(k+1)

)

.

In the limit, when N → ∞, we get N → 1

z − 1
·
(

z−1

1 − z−1 − z−2

1 − z−2

)

. Thus,

x = lim
N→∞ X N = lim

N→∞
N
D =

1

z − 1
·
(

z−1

1 − z−1 − z−2

1 − z−2

)

z−2

1 − z−2

=

1

z − 1
·
(

z−1

1 − z−1 − z−2

1 − z−2

)

· 1 − z−2

z−2 .

Here,
1

z − 1
= 1

1

z−1 − 1
= z−1

1 − z−1 .

Therefore,

x = z−1

1 − z−1 ·
(

z−1

1 − z−1 − z−2

1 − z−2

)

· 1 − z−2

z−2 .

Adding two fractions in parentheses, we get
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z−1

1 − z−1 − z−2

1 − z−2 = z−1 · (1 + z−1) − z−2

1 − z−2 = z−1

1 − z−2 .

Thus,

x = z−1

1 − z−1 · z−1

1 − z−2 · 1 − z−2

z−2 .

The terms z−1, z−1, and z−2 cancel each other, as well as the terms 1 − z−2 in the

numerator and in the denominator. Thus, we get x = 1

1 − z−1 .

For example, for z = 2, we get x = 1 + 2 + 4 + · · · = 1

1 − 1/2
= 2.
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Chapter 15
Future Is Where Concepts, Theories
and Applications Meet (also in Fuzzy Logic)

Marco Elio Tabacchi and Settimo Termini

Abstract No one knows where the future lies, and the idea of serendipity in science
is now raised to something of a tropism.This does not impede ourwill to predict, if not
the exact events, at least the short–term trends in the disciplines we live and breathe,
and to point at the (subjective) glaring chances for a bright future. This volume
is a clear example of the need that any living scientific discipline has for constant
regrouping and redirection, in a never–ending process of consolidating results and
finding new paths. In this contribution we will try and focus on a number of areas
of fuzzy logic and, by extension, in the whole word of uncertainty, where (in our
opinion) a number of interesting future developments can andwill happen.While our
comments and ideas about the technical aspects of the evolution hereby forecasted
are proper to the realm of Fuzziness and much dependent on our previous work and
experience in the field, the knowledge we have amassed and our personal preferences
and quirks, the general remarks of a more epistemological nature interspersed and
concluding this paper should and could be applied, in our view, to the development
of any scientific endeavour.

15.1 Introduction

According to what the title of our present contribution explicitly states, we shall try
to focus on a few loci in which—we think—interesting future developments can
happen. Needless to say that for what regards the topics involved, our comments and
indications are strictly connected and biased by our previous work, knowledge, and
preferences. However, as it will be apparent soon, the majority of the pages which
follows will deal with very general epistemological remarks; and these last ones,
instead, should apply—in general—to the development of any field of investigation.
This, at least, has been the conviction, which grow up while fighting against the
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difficulty of understanding the dynamics and evolution of the concepts involved and
their ability/inability to generate useful and adequate formal theories. Let us try to
tell this better. While writing the paper, we had the impression that we should think
about the problems and questions generated by the attempt to answer to the starting,
initial question of looking at the future of fuzzy logic, by assuming a very general
point of view, otherwise—it seemed to us—it would be impossible to proceed in a
fruitful and satisfactory way.

So, we complemented and integrated what can be considered the natural bulk of
a typical paper of the requested kind with many premises and digressions of general
type, more epistemological in nature. We shall also present some specific comments,
judgements—and also forecasts—in fields and territories of investigation which are
not exactly those in which we have worked. All this, we now realise—at the end
of the process of writing this paper—comes out from the fact that, before thinking
about which specific developments are possible and desirable in fuzzy logic, in the
back of our mind, there always was a more fundamental question: “Which future is
possible for fuzzy logic in itself”.

We can also anticipate another point: we shall present only very general and
qualitative ideas. They will refer, and in a certain sense will also have a very strong
reference to specific arguments of fuzzy logic, but wemade the choice of not entering
too much in the detail, for a very simple reason: we tried to interpret literally the title
of the book. But if interpreted literally, “towards the future” is something very, very
challenging and acknowledging this may cause many reasons for being perplexed.

15.1.1 A Perplexity

Before proceeding further, let us confess: it is difficult to accept an invitation to speak
about the future, although the future to be envisaged is limited to a tiny fragment of
reality, as in our case—the development of a scientific theory. However the invitation
was a serious one as well as the project. So we had to switch our mind with respect to
the perplexity. Perhaps, the name of the project is a little bit risque from a scientific
point of view. One could also askwhy such an impressionistic namewas given to it. A
simple answer could be: it is brilliant—from the point of view of communication—
and it is synthetic. We agree that it works from the point of view of communication.
Let us, then, look at the second qualification. If it is synthetic that means that it is able
to put together different things; but which are the elements that are synthetised? To
ask what—presumably—will be the future of a certain field of investigation means
to have a vision of the most innovative questions that the same field has posed and
asked in relationship with (or with respect to) the answers that have been already
given to the same questions in the same field as well as, maybe in different forms,
in adjacent, related fields. Have the answers completely and fully “answered” the
posed questions? If not, which is the quality of what remains to be answered? What
is needed is a more general answer or we must only fill up specific cases which had
remained outside the answers already obtained? Did the partial answers which were
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obtained modify the general conceptual scheme holding before these same partial
answers were provided? Let us now consider the case in which the development of a
certain field has allowed to completely and satisfactorily answer the questions asked.
It seems that in this case there is nothing to say, unless to recognise a “cumulative”
progress at least in the sense that both to the adjective and to the noun is usually
assigned by the “canons” of a positivistic view of science.

15.1.2 We Will Go Along This Path, Anyway

Let us try to look again at the problem just considered in this volume. The vantage
point of taking into account the obtained results—the already obtained results—in
the light of future developments. But developments of what? Now a complete and
definitive answer to some open questions is very important since it allows to see the
problem asked in a global and compactway and forwhat regards future developments
it is useful to have some problems definitely solved and archived, since this allows
to concentrate on new problems. But now—thinking to the theme of future—an
interesting question arises. Did the solution of some open problems contribute to the
birth of new interesting questions? In the case of an affirmative answer we can testify
both the progress in the development of a certain area of investigation and its vitality:
new questions to be answered related to, and generated from the old questions. In
the contrary case we can only register the progress done but not the vitality of the
field. Its vitality can be witnessed by new questions arisen in other regions of the
same theory or discipline and not where the solution of some open problems and
questions has, simply, been the purely technical solution of the problems without
generating any new conceptual or technical question. The previous (very simple and
trivial) remark, apply in general to every theory and discipline. But can we affirm
something additional which specifically refer to new theories or disciplines having
a strong innovative content at a conceptual level? In this case the situation is both
plenty of interesting potentialities and more complex to analyze. The reason for
that—in our view—resides in the fact that a mature discipline and a new field of
investigation strongly differ in what could be called the level of “stabilization”. Let
us clarify what we intend, what we mean with this term. Let us limit ourselves now
to providing the following observation. A theory can be considered stable if its basic
notions are robust enough with respect to possible “perturbations” caused by the
same development of the theory which produces an enrichment of the concepts and
deep theorems involved without modifying its overall structure in a meaningful way.
Now, it is clear that—in general—an old theory or discipline is by far more “stable”
than a new emerging field. However, to clarify the origin of these kind of questions it
is useful to remember Carnap’s analysis of explication procedure illustrating it with
examples taken from information sciences.
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15.1.3 A Detour on Carnap’s Explication Procedure

According to the well known analysis done by Rudolf Carnap on the notion of
explication, in the process of the construction of a scientific theorywe borrow notions
and concepts from the natural language as it is used daily having in mind a more
specific use. So, the informal notion, the explicandum, is transformed in amore or less
formalised one, the explicatum. In doing this transformation from one side we obtain
a more refined tool while on the other side we lost many other aspect of the informal
notion. In general we welcome the loss of many aspects which are present in the too
general informal use in everyday language of a certain notion, but must regret that
we are not able—in some cases—to preserve in a certain formalization aspects of the
informal notionwhich could play a role in the newborn theory butwhich are not easily
handled in the proposed formalization. A consequence of this fact is that we can have
different—non equivalent—formalizations of the same informal notion. In Carnap’s
terminology, we can have different explicata of the same explicandum; the fact that
they are not equivalent correspond to the fact that the different formalizations, the
various explicata, capture different. aspects, various facets of the informal notion.
We could conclude: so many theories, so much better! And this is assured at a
certain level. It is surely a positive result when we are able to discriminate aspects
of the informal nature which are really very far apart and only a general linguistic
legacy and tradition has preserved the use of one and the same word for different
things. Just to clarify what I have in mind, let me consider the concept of nearness.
The use (and the meaning looked for) in topology is very different from the one in
colloquial language for expressing—for instance—the fact that one person is sharing
the sorrow of another person. The informal concept is the same, seen at very different
levels of abstraction and in different contexts; it is natural, however, that doing many
additional specifications when regimenting the concept for the specific use and the
needs of topology produces also the results of picking up specific features which are
not relevant applicable (and may look out of place) when the concept of nearness—
the adjective near of the colloquial language—is used to express the participation, our
tuning with something unpleasant that has occurred to another person. A completely
different situation is, however, the one occurred with the notion of information. In
this case we have different formal theories each of which captures a different aspect
of the informal notion. The situation seems similar to the one discussed above but it
is not. We have different theories, hence we are unable to construct a unique theory
which is comprehensive of the various different aspects. On the case of “nearness”
we do not deem useful (before considering it feasible or affordable) the building of a
“theory of nearness” so general that it would be applicable both in subtle questions of
mathematics and in thedaily useof the term. In the latter instancewe feel that a general
theory, inwhich the aspects ofmeasurement, lossless transmission, interpretation and
other related go hand in hand as different facets out of one and the same concept,
would be useful and desirable. The different and non equivalent explicata of the
informal notion of information are different theories which we have been unable to
unify. The analogy with the previous case of nearness would be to consider the use



15 Future Is Where Concepts, Theories and Applications Meet (also in Fuzzy Logic) 327

of the term information for what is conveyed by the press and the media (in Italy the
expression “mezzi di informazione” is used). It is obvious that we are not looking for
a general theory of information, able to explain not only the flux of information but
what happens in the world of media. In general, to an explicandum corresponds more
than one explicatum not only when we compare—so to say—extreme uses of the
involved notions but also whenwe try to formalise or at least to construct quantitative
(mathematical) theories capturing very similar aspects of the informal notion. What
was written above for the notion of information could be repeated verbatim for the
notion of complexity. Also in this case we are able to pick up specific aspects of the
informalmotionwhich are suitably represented by formal/mathematical theories, but
we have to see the different aspects as different specifications of one and the same
notion, although leaving out the colloquial, everyday use of the word complexity.
This happens to all the possible notions—with one well know and notable exception:
the notion of computation. We shall not touch upon this question here, except for
remembering that elsewhere it has been done the hypothesis that, perhaps, the reason
why information sciences are correctly classified as hard sciences although for many
aspects one could describe them in terms more similar to social sciences (due to
their lack of solid and direct groundings in Nature) can be connected to the existence
of one notion that is more stable than the other ones. But we have to recognise and
admit that we have done a too long detour although in very nice areas rich of beautiful
places to see. Let us assure the reader: we have not forgotten that the main theme of
the volume (and of the paper) was fuzziness and its future. This long detour was only
a preparation for having enough stuff to think about what can be seen as one crucial
question in this discussion: How does the notion of fuzziness behave with respect
to Carnap’s procedure of explication? We shall take this question and the possible
answers in the back of our mind. But now it is time to turn our attention back to
the problem of the “stabilisation” of the theories. When a theory develops, enriching
itself with many results, deep theorem, internal and external connections (with other
deep results internal to the theory, as well as with strong results of other theories),
it loses the necessity of referring back to its origin, to the original explicandum
(or, explicanda, in the case of complex and sophisticated theories in which at the
same time many different notions play a central role). The justification of the theory
is provided by the corpus of all the results obtained and their connections. And in
this sense it is stable enough to perturbations coming from different questions arising
from the “outside world”.When this happens one can say that the theory is stabilised.
Let us however observe that if a theory is stabilised this does not necessarily mean
that it is very productive, full of interesting questions, rich of future developments.
Stable theories can be subsumed into more general theories, unified with others or
simply remain there after having reached an important development. A theory is vital
when it is able to ask new questions or ask again old questions in a different way
or with more or less slight slippages of meaning of some of its defining terms. This
statement is not as strange as it can appear since it is what has happened, for instance,
for such a crucial concept as the one of function, as it is superbly illustrated by Imre
Lakatos in his “Conjectures and Confutations”. So the vitality of a theory is given
by its capability of asking new questions (an act prior to the one of answering them)
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and this can happen in different situations. In some cases, also when it is stabilised
enough, it can happen that one for same reasons one looks back to the basic notions,
to their basic definitions and to a scrutiny of the origin of the explicatumused, looking
for possible extensions starting from the informal notion. This is the reason why we
maintain at the beginning of this contribution that particularly interesting situations
are provided by all the new disciplines with a strong innovative content. In this case,
in fact, the relationship with the informal notion is more strict than in other cases
and this fact helps us in constructively thinking about our questions.

15.1.4 Let’s Finally Focus on a Few Topics

We have travelled half of our journey and have not provided yet any indication of
technical developments or of interesting innovative applications.This at least couldbe
a not too critical comment of the attentive reader who has till now patiently followed
our considerations in a participatory way. Probably many other readers have stopped
following our considerations long before. Well, let us say that we have not reached
the end of our journey but only the end of the (fuzzy) limits of the length of the paper
and of the (sharp) deadline for giving the manuscript (in a more or less final shape).
Secondly and, perhaps, more importantly—let us affirm that only apparently we have
not provided any technical indications. Firstly, all the epistemological and conceptual
observations summed up in the previous pages grow out of our efforts and attempts
of “imagining” what meaningful innovative developments could reasonably happen
alongside paths and avenues without “smoothing” the innovative force, disruptive
strength of the notion of fuzziness, by bringing back them inside the “channel” of
existing streams. And at the same time without remaining an isolated republic. It
is not productive (although it is obviously possible) either to construct “fuzziness
in only one country” or to publicly hold the flag of fuzziness while in practice
accepting a complete “normalisation”. So, the general considerations of the present
pages come out from real dialogues between the authors on specific questions as
well as out of thought dialogues and imagined conversations with the editors of
the volume and other fuzzy friends and scholars. In what follows, we shall briefly
refer to a few topics in which the general considerations spread out in the paper as
well as what was behind the written words, can apply. Let us add that, conversely
and symmetrically, the reader can—perhaps—have the intuition of why and how
the considerations we present emerged from our analysis. Let us, then, present some
“concrete” themes. In Sect. 15.2 we shall list a few topics “inside” FSTwhich present
interesting unsolved questions, whilst in the subsequent Sect. 15.3 we shall present
a few ideas of a possible very useful cross–fertilisation with Cognitive Sciences.
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15.2 And What About the Future?

All the points in the following list refer to arguments in which a strong interaction
among theoretical analysis, conceptual clarifications and applications not only can be
useful but is a condition to benecessarily fulfilled for having a real advancement of our
knowledge in the field along innovative directions. For each of these points we shall
provide a few succinct commentsmaking reference to other papers inwhich our ideas
have been presented in amore detailedway. The treated topics are the following ones.
The crucial theme of “Computing with words”, in the first place. Secondly we refer
to the idea of considering FST as an “experimental science”. Measuring fuzziness
could play a new important role in two directions. By analyzing in general, the notion
of “sharpened order” and by looking at various families of measures introduced in
a unitary way trying to develop the notion of infodynamics of fuzzy sets. Finally,
by considering a crucial point for future developments the way in which fuzziness
interact with other notions, we shall pinpoint differences of the interaction—with a
standard theory like quantum logic (QL) or with new notions like “trust”. As already
observed, the subsequent Section will afford the problem of an interdisciplinary
cross fertilization with cognitive sciences, outlining possible ways for solving past
difficulties. But let us briefly consider the previous points with more detail.

15.2.1 Computing with Words

For what has to do with CWW let us say something which can appear too radical.
CWW is one of the most innovative ideas of the last decades, it is visionary in the
good sense of the word: it is able to connect very distant concepts in a possible com-
mon framework. The concepts are really very distant. The simple act of computing
has to do since its inception with numbers and, originally, with natural number. The
“word”, literally, comes from “another world”, the one of religion, of myth and of the
affirmation of unicity of man in Nature. Needless to remember that it is the crucial
starting point of Saint John’s Gospel, and similar considerations could be made with
respect to the Veda. Also today to speak has to do with human sciences while com-
puting is something typical of the scientific enterprise. A dialogue between a great
linguist and a great physicist on the relationships between Science and Humanities
not yet translated into English is entitled “Contare e raccontare”, or Counting and
telling (stories) [3]; it is interesting that in italian “contare” can also be a synonym of
“raccontare”. So, the simple idea of putting together these two very distant notions
is of the utmost importance, a very brave operation. It really opens new horizons
and the possibility of exploring new worlds. However, we must recognise that after
twenty years no new crucial and meaningful ideas have been added to the visionary
presentation of Zadeh [33].What has been done, in the field, is certainly of very good
quality, but the quality (as well the quantity) has to do with the variety of techniques
and procedures that has been keenly envisaged. No really big steps have been done
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for really understanding what means to convert into a scientific theory, to find an
explicatum of the explicandum “computing with words”. We should dare to confront
us, for instance, with the validity of Church-Turing Thesis (see [24]). Can we envis-
age a real model of computation which is based on words, in the sense of items of a
natural language? And how can we connect these kinds of procedures to more tradi-
tional and usual ones? Here we have a situation that shows some contact points with
the problem of computation over the reals. Also in this case we have the conundrum
of confronting the results of the computation with the reading of the result which
cannot but be a rational number (with the very limited exception provided by those
reals which have a “name”, like π and e) but with specific additional very difficult
(and unusual) conceptual questions.

15.2.2 FST as an Experimental Science

We mainly refer to our recent joint paper for IPMU 2014 [20] which develops a
personal analysis on the topic, limiting here to observe that an attitude like the one
suggested by Trillas andMoraga [29] in which a particular attention is devoted to the
specificities of the system modelled and, as a consequence, to the “design” of fuzzy
sets representing meaningful features, in perfectly tuned with Zadeh’s distinction
between the two ways of considering the term “fuzzy logic” and—in its program-
matic attitude against any “mechanical” application of whatever technique and result
already obtained—allows to use all the richness and flexibility of the language of
FST.

15.2.3 “Sharpened Order” and Measuring Fuzziness, Today.

One of us wrote in [22] that “For what concerns the measures of fuzziness, in my
view, the basic kernel of the theory may be considered fairly complete now, after
the general classification of the various families of measures provided by Ebanks”.
Now one could rightly ask what is the reason for speaking of this theory again in a
volume which speaks about future developments? The reason why it is reasonable
to speak about measures of fuzziness again is related to two main questions. The
first (more general) has to do with the fact that in the general vision we have tried to
outline in the present paper, fuzziness should be considered in a dynamic way taking
into account new nuances of the informal notion or an enlargement—under suitable
conditions—of the ways in which the notion has been considered in the orthodox
interpretation. Among these possible extensions, let us refer to the construction of an
infodynamics, that is a theory that studies relationships existing among the different
kinds of measuring fuzziness that have been proposed along the years (entropies,
weighted cardinalities—energy, specificity), trying to find out (necessary) strong
connections (equations) existing among them. Another interesting point is that we
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can consider the notion of sharpened order as a crucial tool for analysing fuzziness,
independently from its use in the axiomatisation of the measures of fuzziness.

15.2.4 Relationships of Fuzziness with Other Emerging
Notions (like “Trust”)

As we have repeated “ad nauseam”, fuzziness is one of the (crucial) notions that
have emerged along the scientific development of last Century. We repeat the state-
ment here for the following two reasons. First, it would be better not using the verb
“to emerge” since the same notion of emergence has taken in the last years a spe-
cific technical sense. So, we could say, that it has “popped up” from the turmoil
of concepts and notions swimming in the primordial soup from which information
sciences sprung out. However, if we take seriously, as we do, this image—not only as
a metaphor but as a real indication of one of the ways in which science proceeds (at
least in new fields) we have to take into account also the ways in which these notions
arise and develop, thinking also to the fact that, in a darwinian vision, a few of them
will play a central role, others will disappear. More importantly, from the point of
view of the present paper, we must take into account their interactions (among the
new ones and with the more stabilised notions). In [23], pp. 47–51, the attempt was
done to study the similarity of the development of the notion of fuzziness and the
one of “trust”, which, recently and quickly developed into an interesting theory (see
[5]). We refer to the previously mentioned paper for detail, limiting ourselves here
to stress the importance for future developments of fuzzy sets theory to consider the
“popping up” of new notions and interacting constructively with them.

15.2.5 Relationships of Fuzziness with Very Developed
Different Theories (like QL)

What is specifically very interesting in the case of the relationship between FST
and QL is that one succeeds in completely reducing the specificities of QL to the
language and formalism of FST as it is today. So we can conclude, for this specific
case, that FST not only is a good and satisfactory theory and an adequate language
for expressing situations in which degrees of membership play an important role but
it is able to completely express also the specific properties another theory. As the
author writes already in an early paper [14] the possibility of reinterpreting QL as
a many valued logic “allows to explain the logical background of the wave-particle
duality exhibited in the double-slit experiment in a better way than it can be done
with the use of classical two-valued logic”. But he goes, as we wrote, well beyond
that.We refer to [15] where Pykacz summarizes the pathwhich led him to completely
reduce QL into FST. See some personal comments and remarks to this result from
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a conceptual point of view in [7]. Here we limit ourselves to stress that this result is
not discussed with the intensity it would deserve (maybe it is not sufficiently known
to a wide audience). In our view it is very important since it shows that FST in
its present formulation can be enough for completely represent other theories. And
among future possible developments one should take a particular care in looking for:

1. the (deep?) reasonswhich allowed this “complete” representation of QL into FST;
2. the possibility of doing the same for other theories;
3. the possibility of having such kind of representations but at the price of modifying

(or enriching) the present formalism of FST.

The previous suggestions did not arose in a vacuum, but having in mind the develop-
ment of Fuzzy topological spaces, which concludes our comments for this specific
point. It is well known that Chang proposed a generalisation of the definition of topo-
logical space already in 1968 [6]. Why such an early attempt at cross fertilisation did
not produce further results and additional interesting developments? Let’s observe
that conceptually, the basic ideas of topology seemmore akin to the central notions of
FST that the ones of QL.Why this topics did not rise the interest of other researchers?
Let stress that we are asking this question not for its possible sociological interest,
but from the point of view of possible interesting epistemological reasons (see Chang
interview [17]).

15.3 In the Future Everyone and Everything Will Be a Fuzzy
Set for Fifteen Minutes

The title of this section owes, apart from the obvious Warholian citation, to Eleanor
Rosch contribution [16] on the “On Fuzziness” volume. While we remain skeptic
about the conclusions and surprised by some details in the line of reasoning, the
paper and its predecessor [8], along with the specific volume [1] in which the former
is contained are a step forward toward some systematisation of categorisation in
cognitive science with a little help from FST.

The possible directions towards which Fuzzy Theory will move and expand in the
near and far future are limitless and probably unfathomable—whoever had tried to
forecast themost recent developments we have discussed here and elsewhere [18–21,
25] would have been quite surprised by the expansion in the direction of domains
usually destined to an exclusively qualitative analysis. Should we be pressed to pick a
research domain ripe to benefit from the injection of FST, Cognitive Sciences would
rank quite high in the shortlist.

The direction outlined by Zadeh with its Computing With Words paradigm [33]
lends beautifully to a massive exercise in reviewing many of the discussions dealing
with cognitive concepts through the light of a quasi–formal system imbued with the
ability to use as its constitutive elements the same reasoning units we, as cognitive
humans, employ, without the strict filtering of classical logic. This is a limit psy-
chologists and cognitive scientists alike have always highlighted in their struggle to
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formalise (or, for some, their refusal to do so1), but in order to further progress mod-
els with a strong ground in cognition should be devised and implemented. This is not
the place to discuss in its entirety the possible future relationships between Cognitive
Science and FST, but a fruitful example (where some work has been already carried
out) can be found in the link between Psychology of Concepts and FST. A recent
and thoroughly researched book, the already cited [1], contains a good description
of the state–of–the–art and clearly lists, especially through the chapters contributed
by Hampton [10, 11] and Rosch [16], a number of research problems still worth of a
deep and lengthy investigation. In the following we would like to outline a possible
roadmap for research in this field (after all this is a volume on the future of FST!),
with the only pretence to show the ampleness of the space for possible interactions
between FST and a very specific branch of Cognitive Science, and the tools we have
at our disposal.

1. The ecological view of concept, coupled with a systemisation of the different
kinds of prototypes, can lead to better modelling of concepts in cognition (and
refutation by counterexample rarely works well in cognition, as everything
there has the potential to be an exception). The presumed anomaly pointed by
Osherson and Smith [13]2 as well as the inability of FST to represent concepts has
been dissected and debunked at will (see eg. [2]), but still the goldfish example
(as well as the striped apple) is used as the sign of an anomaly and an indestruc-
tible barrier between the way concepts are treated in “cognitive” logic and how
they are treated by “formal” logic, a cauldron in which classical logic, different
families of graded logics and FST are often lumped together. This is not neces-
sary nor desirable. In an ecological view of concepts, a pet fish becomes a fish
(treated as a/considered a) pet, with the implicit part of the concept designation
coming from cultural, social and even memetic or genetic additional informa-
tion, possibly culled and categorised from the list of prototype types. Classical
logic would not be flexible enough to represent all the implicit knowledge and to
connect the intensional meaning to the extensional meaning—an operation nec-
essary to express the subtle nuances that are implicit in every human exchange
of information. Once again, the “alien perplexity” caution is to be observed here:
if you explain something to an alien and its degree of knowledge about the item
after the explanation is much different than yours, then some implicit information
is missing. Après Hampton [11], it is not a problem of choosing the right FST
function, but more to supplement the system with more background information,
up to a point where the right functions will emerge from the system itself. Is this
information problem connected to the use of a specific formal model (any formal

1Again in [16], Rosch explicitly states “Mathematical models as such have a poor track record in
psychology.”Weconcur, but the explanation given—“[...]models donot seem tohave the appropriate
level of abstraction (not too much, not too little) or the connection to psychological reality that is
generative of new knowledge in the field”— is a possible one amongst many, a set which includes
other possibilities related more to the social aspects of doing science.
2Thewell knowndebacle, detailed in [2], strongly points to the necessity of a strong interdisciplinary
link between hard and soft sciences [25], and an accurate assessment of each and any model lifted
from hard sciences and used in cognitive theories.
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model, for what matters) for representational purposes when the system we are
trying to represent has no formal model to speak of—for what we know—as a
base? We are not convinced: it is not clear what should take the place of any kind
of formal model in the description, and why statistics should represent something
different from mathematics or formal logic. A possibility would be to look at a
meta–level, as . . .

2. . . . intersection and other operators could be better modelled if fuzzy mod-
els are employed at the context level as well as at the term level. This is an
extension of the fuzzification of the concept of inclusion, and can be built on the
examples by Verkuilen et al. [32] and especially Hampton on conceptual combi-
nations [9]. The categories of nonitersective and intersective combinations alike,
being usually defined as a specific relationship between fuzzy concepts, can also
be affixed in a non–exclusive manner to a fuzzy graded membership functions
that depends heavily on contextual implicit information. Such an approach would
preserve the structure outlined by Hampton, adding more provisions for the treat-
ment of ambiguity (zebra as the animal vs the prototypical striped object). This
would require building a strong set of fuzzy ontologies (see eg. [4]), but this would
really be necessary anyway (FST or not), as once again, most of the information
we use to store and decode concepts come from data not directly present in the
explicit formulation. A system based on this premises will be both compatible
with an intensional approach to the theory of concepts (we are not even men-
tioning here the problem of vagueness and the aspects linked to semantics versus
syntax), and could also ease some of the apparent contradictions between the use
of logic connectives and quantifiers in classical inference such as . . .

3. . . . Tversky and Kahneman conjunction fallacy [31] (and a number of similar
inconsistencies where the attempt to extend a perfectly logical structure—that
gives nice and clean results when applied to theoretical dilemmas—to human
behaviour, preferences and desires gets foiled by creativity, overextension, analo-
gies and ambiguity). Many if not most of such fallacies are interesting discoveries
by themselves, but hardly surprising: when we transmit concepts, every bit of the
message is usually crafted in order to transmit very specific information. As such
choosing to explicitly state that Linda was a radical is a supplement of informa-
tion that inevitably reflects on the agreement on her being a feminist bank teller,
and choosing apples instead of fruits reinforces opinion about a subset more than
about a sub–subset. Jönsson and Hampton’s [12] intensional version is no more
or less intensional than the others—there seem to be no other ways of looking at
it that are not both intensional AND extensional. Hampton’s CPM model [9] can
be a good basis toward building an FST system of concepts, but there is another
way of looking at it:

4. holism may be the way forward: we can evolve a system of concepts start-
ing from scratch. Turing’s plan of how to build an AI system [30], a(nother)
stroke of genius largely forgotten by the following AI research programs, can
find a resource–hungry but powerful nonetheless application in the field of con-
cept research; the whole machinery can be based on a series of CWW elements
that include additional implicit information about the concepts itself, along with
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a number of evolutionary rules, again based on FST, leading to a detailed system
of concepts that includes all the different kind of prototypical types, and as much
as possible of the nuances expressed by the noun–noun and the adjective–noun
couples. Such evolutionary system may introduce new specifications for con-
jectual conjunctions that are not to be found in human cognition—after all an
evolutionary system should be able to take different evolutive paths in response
to different pressures—and research on cognitive treatment of concepts would
be also carried out using a comparative paradigm. Most of prototype research,
starting from Rosch’s seminal paper [8] has been carried out starting by words
and their relationships in canned sentences, and then working out by statistics and
counterexamples, in a way resembling disciplines such as physics at its inception
(experiment, measure, find exception, repeat). Models obtained as such are rarely
all–encompassing, and the same shift made with post–galileian physics should
also be afforded by cognition in general. Evolutionary systems, soft computing
techniques and flexible, more human–like data structures (such FST in general
and CWW in particular) could help in building better models, and also discover
more efficient ways of dealingwith concepts. It is obvious and necessary that such
models be too complicated to be explained in linear terms and just be contained in
a compact number of formulae, and we maintain that such kind of demand would
be unjust. The idea that language, cognition or for that matter most of the human
cognition epiphenomena could be expressed by simple rules or easily manage-
able systems of equations is dead and buried in the seventies, and there should
be no reasons to go grave–digging for the sake of complexity savings: we have
computers and big data for that, and what could come out from the machinery
can usually be parcelled, tokenised and visualised for further analysis.

In conclusion of this section, we want to stress the idea that methodologies such
FST and CWWare applicable (and will be applied!) to many different research fields
in Cognitive Science, as their flexibility and ability to adapt to the human ways of
reasoning andmaking inferences puts themone step above classical logic (see e.g. the
recent work of Trillas [26–28]); what is more, FST as a discipline has demonstrated
a level of adaptability which will render fruitful any exchange with soft sciences in
all their spectrum. The means and the methods are already there, albeit in a sketched
form. It is just a matter of implementation.

15.4 Conclusions

Before concluding the paper, let us point out that in our view, the real reason for
looking for important and crucial future developments enhancing the growth of the
theory, is not only the one of picking up reasonable specific points. This is something
which is not only feasible (as we have just shown), but can also provide useful
suggestions. It is patently clear that any suggestion cannot but be biased by what
one knows better or prefer, independently from a general vision of the development
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of the field as a whole, as a living whole. One could think that a comprehensive
vision can be provided by summing up the contributions of many people, giving a
specific weight to the most outstanding contributors in the last decades. This is only
partially and relatively true for at least two main reasons. First we must remember
what Max Planck wrote about the acceptance of new ideas: “A new scientific truth
does not triumph by convincing its opponents and making them see the light, but
rather because its opponents eventually die, and a new generation grows up that is
familiar with it.” The second reason is that a general vision, a Weltanschaung cannot
be obtained by summing up specific proposals and ideas, however interesting and
innovative they can be. This must be envisaged and shaped as such—also using
and starting from specifically argued topics and ideas, of course, but not seeing
them as a simple cluster, but as part of an organised structure. This is the point we
shall briefly discuss in the following paragraphs. Let us try to drive a few (very
preliminary) conclusions after this hard (we must confess) and tiring journey. We
strongly believe that fuzziness has been one of the most innovative concept of the last
Century (on the same foot of complexity, emergency, or Bohr’s complementarity)
and that in the few decades from its inception, it has not had the opportunity to fully
exploit its potentialities. In the previous pages we have also, implicitly, indicated
some of the reasons why this happened. Let us observe that also for the other notions
mentioned above something similar hold. Similar, but not identical. Each of these
notions (and other few) has particular features and a specific history which deserves
to be specifically analysed. In our view, among the things which is worthwhile to
take into account—surely for what regard fuzziness, but probably also for the other
notions—there are also two apparently minor aspects which played a crucial role
in establishing modes and times of (uncritical) rejection and refusal, of criticism,
of appreciation and acceptance. These are—on one side—the way in which the
community reacted to criticism and—on the other side—the fact that it did not
look for a constructive dialogue and a confrontation with other similar proposals
and the corresponding minoritarian communities. Fuzziness, in the very intuitive
formulation provided by Zadeh is a very good explicatum of the informal, linguistic
and philosophical notion of vagueness. It captures many interesting aspects and
nuances of the informal intuitive notion and it is not by chance that this “locally”
coincides (modulo the different languages used and the backgroundmotivations)with
the parallel proposal done, independently, a fewmonths later by Dieter Klaua and his
school while searching to build a “set–theoretic” counterpart of Łukasiewicz’s many
valued logics. However, this is the beginning and not the end of the story. The logical
paradigm, constructed starting from crucial questions arising with the foundations of
mathematics (seen, moreover, in the conceptual background of classical two–valued
logic) is not the only context (and perhaps, the most suitable one) in which the new
conceptual problems and questions can be posed, framed, and settled. More than
to see how and in which measure such crucial questions for classical logic such as
completeness, coherence, soundness can be studied and afforded in a world in which
vagueness (and fuzziness) are pervasive and can (and should) not be eliminated, the
crucial and most challenging questions—at least from the point of view of fuzziness
and vagueness—are how to find out new notions that could play in the new universe
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the role that completeness, coherence and soundness played classical logic. Not that
such logical studies has no contact at all with the construction of our brave newworld.
They are crucial for a profound understanding of many valued logic, for completing
and extending the towering enterprise started from Jan Lukasiewicz and other giants
of his level. However the relevance of these logical aspects will presumably affect
only locally and tangentially the newWeltanschaung, the new paradigm—if this will
be really able to largely develop and nurture new innovative concepts. In a sense
we could dare to affirm that fuzzy mathematical logic will remain a very important
province, extension and enrichment of mathematical logic but it will play no role at
all (at least not for what regards the conceptually innovative aspects) in the outlining
and building of a framework in which vagueness and fuzziness (and, possibly, other
different explicata of the informal notion of vagueness) will be the crucial pillars.
This in a sense is what Lotfi has tried to suggest in a very polite and diplomatic way
when distinguishing two senses of fuzzy logic. But we should be brave enough to
think that new ideas and avenues can probably, respectively, appear, in the future,
outside the view to which we are accustomed today. In this sense Trillas’ suggestion
of looking at the theory of fuzzy sets as an experimental science is crucial. We have
really to construct an entirely new framework of which the work done in these past
50years is only an anticipation, a tiny fragment of thewhole enterprise.More, in these
past years one had to fight a conceptual battle to see how to modify the received view
on many questions. Now we can begin to look for new questions to pose, before
trying to obtain the answers. In this way new really innovative developments can
take place. And among the new things it is probable that the scientific paradigm will
be enriched by new notions, put until now, outside the door. We intend what we
consider basic in the scientific vision of the world. For instance, some of the ideas
envisaged by Husserl should necessarily be reconsidered and taken into account in
some way, if the suggestions of Zadeh to start from perceptions (and compute with
words) will be taken seriously, as scientific indications to follow and not only as
interesting metaphors. If all these considerations looks verbose and abstract, we take
the blame: this is due to our inability to convey them in a palatable form and not
to the content of the suggestions by themselves. We are, in fact deeply convinced
that the informal idea of fuzziness is only at the beginning of its development. But
to really blossom it has to fight against many things, among which there are two
different—but equally terrible—enemies. One is the tendency to acknowledge every
small “translation” of whatsoever traditional results into the language of FL and FST
as something meaningful for them; the other is the subordination to the traditional
paradigms. A corollary of both is the fear to innovate, also with respect to what is
considered acceptable in the community, WRT to the orthodox paradigms of FL. We
must dare to profoundly innovate at all levels, and one of the ways to check that we
are moving in the right direction is to see if in the newly explored lands concepts,
theories and applications meet.
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Chapter 16
Graduated Conjectures

Adolfo Rodríguez de Soto

Abstract The study of the relationships between conjectures, hypotheses, refuta-
tions and speculations have been studied by Professor Enric Trillas and coworkers
in the classical case to the point of having well clarified its main properties in rather
general structures as the orthocomplemented lattices. In the framework of a possi-
bilistic interpretation of fuzzy logic, these models have been studied from the point
of view of a crisp reasoning. In this work these models defined by graduated conse-
quences relations are studied under a fuzzy algebraic structure general enough that
it can accommodate various common phenomena in natural language reasoning.

16.1 Introduction

Fuzzy logic, in the broad sense [18], tries to account for approximate reasoning
processes which involved graduates concepts, vague, or, generally, uncertain. These
concepts are used in common reasoning processes in natural language and, under
this vision, fuzzy logic attempts to explain some of the reasoning processes of com-
mon sense used by human reasoning. During the short but intense history of Arti-
ficial Intelligence, the goals of this branch of human knowledge has changed from
a very general research about “intelligence” with the objective to build intelligence
machines to a more narrow perspective, trying to solve concrete, more specific and
domain limited problems. Recently, many recognized researchers ([3–5], among oth-
ers) have expressed the wish that the Artificial Intelligence returns to its origins (see
also for example the series of conferences on Artificial General Intelligence) and
aim to build machines with the level and type of human intelligence. To walk in that
path, to give account for the common human reasoning processes and model them
is imperative if we want to continue with the goals of Artificial Intelligence in its
broadest sense.
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Deductive reasoning has been the most formalized reasoning in the history of
human thought. From Aristotle to Bertrand Russell, many great authors have been
devoted to describe, justify and clarify the mechanisms of deductive reasoning of
human thought. However thesemechanisms can not be justified in an absoluteway, as
we know from a tortoise friend of Lewis Carroll [1], but must simply be accepted by
humans as basic reasoning processes, free from excessive doubts. This is essentially
the process of justification of common sense reasoning, when a large majority of
people consider it an appropriate reasoning. Probably in the common sense reasoning
there are jumps, no monotonic changes due to changing information, situations that
may be difficult to justify step by step, but they must be nevertheless common to
the community, keeping some minimum level of consistency, without contradiction
inside them.

In spite of these efforts to justify deductive reasoning, the scientific method is
based largely on inductive reasoning to develop hypotheses and, from the work of
Popper [6] we know that a theory must be considered true until it is refuted. In
fact, in Mathematics, the paradigmatic deductive science, in the process to find out
new results, guessing and making conjectures play a crucial role. From this, not only
deductive processes represent human intelligence; establishing hypotheses, construc-
tion of refutations and overall ability to conjecture new propositions is essential in
human reasoning.

In several works ([2, 12–14]), Professor E. Trillas and colleagues have built a for-
mal model as general as possible to account for the sets of consequences, hypotheses,
refutations, conjectures or speculations in a framework near to commonsense reason-
ing. As it is said in [12], starting with general algebraic structures in a crisp context,
this model in ortholattices and DeMorgan algebras is almost complete [2, 10]. In the
work [16] a graduated case of these models is analyzed but the model is restricted to
a multivalued logic setting based on complete residuated lattices.

However, to reach the goal of building a commonsense reasoning model, work
with fuzzy sets can be imperative. According to Zadeh’s view of Computing with
Words [17] natural languages are essentially a mechanism to describe perceptions,
and for reasoning in natural languages, it will be necessary to be able to express
complex sentences in fuzzy logic. To reach these goals, first the fuzzy sets must
be included, but it is likely that many cases not considered in the theories of fuzzy
sets in its narrow sense should be taken into account. For instance, many reasoning
schemes show that the conjunction is not commutative, specially if time is involved,
and that’s something that is not usually considered. To covermore aspects of ordinary
reasoning, more general structures are required.

In [12], a general framework for a crisp form of reasoning with fuzzy sets using
models of “conjecturing + refuting” was given. In the setting of a basic and quite
general fuzzy algebra thesemodels are built,with the only restrictions of commutative
and associative conjunctions and a strong negation. However the model is a degree-
free model, it is crisp reasoning with fuzzy sets, without a degree between the steps
of the deductive paths, without a concept of “graduated consequences”. In this work
that task is addressed.
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16.2 A Basic Fuzzy Algebra

To formalize a frame to analyze the sets of ordinary reasoning we use a Basic
Fuzzy Algebra. The concept of Basic Fuzzy Algebra (BFA) was introduced in
[9] to define a very general algebra upon the class of fuzzy sets F(X) = {μ :
X −→ [0, 1]} on a given universe X . The standard framework for almost all
fuzzy logics, the Standard Fuzzy Algebra (F(X), T, S, N ), based on a continuous
t-norm T , a continuous t-conorm S and a strong negation N has many strong proper-
ties to give account of several basic phenomena in natural language [12]. In particular,
formal connectives in aBFAare not presumed to be functionally expressible, associa-
tive, commutative, distributive or dual. They try to be more general that any Standard
Fuzzy Algebra but they maintain a basic characteristic of fuzzy sets: having crisp
sets as a particular case. Hence Basic Fuzzy Algebras have as a basic requirement
that a boolean subalgebra isomorphic to (P(X),∩,∪,c ) must be exists inside them.

In their basic formulation, a BFA uses the pointwise ordering between fuzzy sets,
which of course is a crisp ordering between fuzzy sets. In this work to obtain a
graded relation between conjectures a more general ordering is defined. From now
�: F(X)×F(X) −→ [0, 1]will be a fuzzy relation between fuzzy sets. We usually
use an infix notation for the fuzzy relation� . The symbols=,≤,≥will be reserved
for the equality and ordering in grades and the symbol ≡ for the equality between
fuzzy sets.1

The relation μ � η represents a conditional relation between propositions μ, η

from the habitual interpretation in mathematical logic

μ � η = r ⇐⇒ μ → η to grade r.

Natural requirements for relations� are the reflexive property and the T -transitive
property. Specially last one gives the quite basic requirement of knowing some min-
imun level to which a reasoning with several propositions can be chained.

Several examples of graded T -preorders can be shown. Taking

−→
T (x, y) = arg supz∈X {T (x, z) ≤ y},

known as the residuum implication of the t-norm T, which always exists for left-
continuous t-norms. All operators defined by

μ � η = inf
x

−→
T (μ(x), η(x)), (16.1)

are T -preorders. In (16.1),
−→
T can be substituted for any T -transitive implication I ,

because the relation � inherites the transitive property.

1It will be the pointwise equally between fuzzy sets, but it is not strictly necessary.
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Another method to obtain graded T -preorders is to apply the representation the-
orem for T -preorders [15]. From a family F of functions fi : F(X) −→ [0, 1], the
operator defined by

μ � η = inf
i∈F

−→
T ( fi (μ), fi (η)) (16.2)

are graded T -preorders.
From the relation �, classical relations between fuzzy sets can be defined fixing

a threshold r :
μ �r σ iff μ � σ ≥ r.

In particular, the classical relation �1, called the kernel of �, is a classical preorder.

Definition 1 (Basic Fuzzy Algebra) A Basic Fuzzy Algebra is a five tuple � =
(F(X),�, ·,+,′ ), where, for μ, σ, ρ ∈ F(X), it holds:

1. �: F(X) × F(X) −→ [0, 1] is a T -preorder, with T a continuous t-norm, so

(a) for all μ ∈ F(X), μ �1 μ;
(b) for all μ, σ, ρ ∈ F(X), T (μ � σ, σ � ρ) ≤ μ � ρ.2

2. With the functions 0̂(x) = 0, and 1̂(x) = 1, for all x in X, the binary operations ·
and +, verifying

(a) μ · 0̂ ≡ 0̂ · μ ≡ 0̂; 1̂ · μ ≡ μ · 1̂ ≡ μ

(b) μ + 0̂ ≡ 0̂ + μ ≡ μ; 1̂ + μ ≡ μ + 1̂ ≡ 1̂.

3. The unary ′, and the preordering �, jointly verifying,

(a) 0̂′ ≡ 1̂; 1̂′ ≡ 0̂
(b) μ′ � σ ′ ≥ σ � μ

(c) 0̂ �1 μ and μ �1 1̂

4. for all μ, σ, ρ ∈ F(X), is:

(a) μ · ρ � σ · ρ ≥ μ � σ and ρ · μ � ρ · σ ≥ μ � σ ;
(b) μ + ρ � σ + ρ ≥ μ � σ and ρ + μ � ρ + σ ≥ μ � σ ;

5. The subset {0, 1}X , endowed with the restriction of the order and the three opera-
tions defined in�,�0 = ({0, 1}X ,min,max, 1−id), is isomorphic to the boolean
algebra P(X), the power set of X .

Observe that the properties of a BFA just establish 0̂ and 1̂ as the neutral element
and absorbent element to + and reciprocally as the absorbent and neutral element
to ·; the complementary relation between 0̂ and 1̂ with respect to the negation ′,
the reverse ordering relation between negate fuzzy sets with respect to the ordering
relation � and 0̂ and 1̂ as the minimun and maximun elements respectively. The
operations + and · are monotonic with respect the ordering relation � and finally
the restrictions of the operations and negation to P(X) is a boolean algebra.

2With T = min, the classical relations �r are reflexive and transitive relations.
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The relation � has as a particular case the pointwise ordering (pointwise order-
ing is a crisp reflexive and min-transitive ordering relation) and in [9] was proben
that, only with · = min and + = max BFAs are lattices, namely DeMorgan-Kleene
algebras, provided the negation is strong ((μ)′)′ = μ′′ = μ, for all μ ∈ F(X).

So, no BFA on F(X) is a boolean algebra, nor even an ortholattice [9]. It is clear
that standard algebras of fuzzy sets (F(X),≤, T, S,′ ), with ≤ the pointwise order-
ing, T a functional expressible conjunction by a t-norm, S a functional expressible
disjunction by a t-conorm, and ′ with a functional expressible negation by a unary
operation n : [0, 1] −→ [0, 1] which is a strong negation function [11] are particu-
lar cases of BFA. In fact, the boolean algebra of the crisp sets P(X), isomorphic to
({0, 1}X ,min,max, 1 − id) is also a BFA.

Thanks to the monotony of operations +, · with respect to the ordering relation �
and neutral and absorbent properties of 0̂ and 1̂ is always μ · η �1 μ and μ · η �1 η,

together with μ �1 μ + η and μ �1 μ + η.

16.3 Conjectures and Refutations in a BFA with a Graded
Ordering

The goal of BFAs is to create a mathematical framework as general as possible which
be capable to model ordinary reasoning connectives as conjunction ·, disjunction +
and negation ′ with a minimal set of properties. This framework is a possibilistic
view of Fuzzy Logic and the fuzzy sets represent sentences. The relation� represent
conditional information and μ � ρ means that ρ is derived from μ to the grade
r = μ � ρ.

As it is well known, the classical sense of the non-contradiction principle in
boolean logic, i.e. that the grade of truth of p ∧ pc is always 0, is not valid in
general in standard fuzzy logic algebras [8]. However in any human reasoning the
non-contradiction principle appears as a important principle, the relation of being
contradictory plays a fundamental role. Our reasoning goes well if, at least, there is
not a contradiction in it. In a BFA, a fuzzy setμ is said contradictory to degree r with
another fuzzy set ρ ifμ � ρ′ > r > 0.3 That means the negation of ρ is derived from
μ in some degree. When μ � ρ′ = 0, μ and ρ are said non-contradictories fuzzy
sets. A fuzzy set μ will be named self-contradictory if it is the case that μ � μ′ > 0.
The fuzzy set μ0 is self-contradictory because μ0 �1 μ1 ≡ μ′

0. In classical logic,
empty set is the unique self-contradictory set, but in Fuzzy Logic with a different
negation function can exist many self-contradictory fuzzy sets [11]. In fact, in any
BFA an expression of the principle of Non-contradiction is always valid because
μ · μ′ is self-contradictory, i.e.

μ · μ′ �1 (μ · μ′)′ (16.3)

3If the negation is strong, if μ is contradictory with ρ is equivalent to ρ is contradictory with μ

because 0 < r < μ � ρ′ ≤ ρ′′ � μ′ = ρ � μ′.
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because fromμ ·μ′ �1 μ it is valid that μ′ �1 (μ ·μ′)′ and with μ ·μ′ �1 μ′ results
(16.3).

16.3.1 Sets of Admissible Premises

Definition 2 (Admissible premises) In a BFA �, let’s consider those sets P =
{ρ1, . . . , ρn} ⊆ F(X), such that:

1. for all i, j ∈ 1, . . . , n ρi � ρ j = 0;
2. its résumé, ρP ≡ ρ1 · (ρ2 · (· · · (ρn−1 · ρn) · · · ), verifies ρ � ρ′ = 0, and

ρ′ � ρ = 0.4

Last definition tries to fix a kind of minimal precautions on the available informa-
tion from of which some conclusions should be extracted based on forbidding self-
contradictory information.5 Also note that in lack of associativity property, premises
must be numerated to properly define ρ.

In next sense, the résumé implies any premise.

Theorem 1 For all ρi ∈ P, it is ρ �1 ρi .

Proof By induction. For n = 2, from ρ1 �1 1̂, and property 3 of definition 1,
ρ1 · ρ2 � 1̂ · ρ2 ≥ ρ1 � 1̂, and 1̂ · ρ2 ≡ ρ2 so it results that ρ ≡ ρ1 · ρ2 �1 ρ2. The
same can be done for ρ1.

For the general case, let ρ ≡ ρ1 ·(ρ2 ·(· · · (ρn−1 ·ρn) · · · ) ≡ ρ1 ·ρ̂.By induction, it
is valid that ρ̂ �1 ρi for all i ∈ 2, . . . , n. Following the case n = 2 can be proved that
ρ1 · ρ̂ �1 ρ1 and ρ1 · ρ̂ �1 ρ̂. Thanks to the T-transitivity, it is valid that ρ1 · ρ̂ �1 ρi

for i ∈ 2, . . . , n. �

Corollary 1 In a set of admissible premises, no pair of contradictory premises can
exist.

Proof If ρi � ρ′
j > 0 for any pair of premises of a set P of admissible premises,

as ρ �1 ρi it follows ρ � ρ′
j > 0, and from ρ �1 ρ j it is valid that ρ′

j �1 ρ′
and it would result that ρ � ρ′ > 0, something impossible in an admissible set of
premises. �

4If P is clear from the context we use ρ instead of ρP to reference the résumé of P.
5Note that in a framework of a grade ordering relation, first condition is a strong one but necessary
to avoid self-contradiction.
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16.3.2 Sets of Consequences

Given a set of admissible premises P , consider next definition:

Definition 3 (Weak Consequences of grade r )

C r· (P) = {μ ∈ F(X) : ρ � μ ≥ r}

The set of sentences C r· (P) represents the notion of consequences of level r . These
sets are anti-monotonicwith respect to the grade r , i.e. if s > r thenC s· (P) ⊆ C r· (P).

Usually the concept of consequence is given by means a Tarski’ consequence
operator C [7] which satisfies three properties

1. extensibility property P ⊆ C(P),

2. monotony property P ⊆ Q ⇒ C(P) ⊆ C(Q), and
3. clousure property C(P) = C(C(P)).

Observe the sets of weak consequences are crisp sets, not fuzzy, and since C r· (P)

can be infinite, it results the impossibility to define C(C(P)). Following Corollary 1,
it can be shown that C r· (P) are consistent and it results they satisfie properties 1 and
2 of Tarsky Consequence Operators.

Theorem 2 (Extensitivity of operators Cr· ) It is always valid that P ⊆ C r· (P), for
any set P of admissible premises and any r ∈ [0, 1].
Proof ρ � ρi = 1 ≥ r for any r ∈ [0, 1]. �
Theorem 3 If P and Q are sets of admissible premises, and it is P ⊆ Q, then
C r· (P) ⊆ C r· (Q).

Proof Let P = {ρ1, . . . , ρn} and Q = P ∪ {ρn+1, . . . , ρm} be two addmisible sets
with P ⊆ Q. It is evident that ρn · (ρn+1 · · · · (ρm−1 · ρm) · · · ) �1 ρn . Adding
fuzzy sets by the left, it is valid that ρQ ≡ ρ1 · (· · · (ρn · (· · · (ρm−1 · ρm) · · · ) �1
ρ1 · (· · · (ρn−1 · ρn) · · · ) ≡ ρP , so ρQ �1 ρP .

Then, if for any μ ∈ F(X), is ρP � μ ≥ r by T-transitivity, T (ρP � μ, ρQ �1
ρP ) = ρP � μ ≤ ρQ � μ, so μ ∈ C r· (Q). �

The T -transitivity together with the two conditions ρ � ρ′ = 0 and ρ′ � ρ = 0
constitue, in the case of non-nilpotent t-norms, a strong condition. Using the first
one, T -transitivity and the basic property of the operator of negation, the relation

T (ρ � μ′, ρ � μ) ≤ T (ρ � μ′, μ′ � ρ′) ≤ ρ � ρ′ = 0, (16.4)

is always true for any fuzzy set μ, so either ρ � μ = 0, i.e. μ is not a consequence
of ρ to any level, or ρ � μ′ = 0, i.e. ρ is not contradictory with μ′. Of course, also
both cases are possible simultaneously.

Analogously, using the condition ρ′ � ρ = 0, for any μ, either ρ is not a
consequence of μ or it is not a consequence of μ′. Observe that it is not necessary
true for nilpotent t-norms. But in some cases a threshold could be establish between
the value of μ � ρ,μ′ � ρ, ρ � μ, and ρ � ρ′.
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16.3.3 Sets of Refutations

Operators C r· are, in the sense explain before, good candidates to represent conse-
quences. We consider now how to define good candidates to define set of graded
conjectures and refutations. In the crisp case, if ρ represents the résumé, a conjecture
is a propositions p whose negation p′ is not deduced from the résumé, i.e. ρ· �≤ p′.
That sense means that a conjecture is any proposition which is not contradictory with
the knowledge generate by the résumé, or which is compatible with that knowledge.
Or put anotherway, a conjecture is a candidate to increase the knowledge consistently
in someway. Refutations, on the contrary, are propositions which are in contradiction
to the current knowledge.

The set of refutations is defined as follows:

Definition 4 (C·-refutations of grade r )

Ref r· (P) = {μ ∈ F(X) : ρ � μ′ ≥ r}

The next theorem shows how with this definition, refutations introduce some level
of contradiction in the information given by the résumé.

Theorem 4 If μ ∈ Ref r· (P), then μ · ρ ≤ (μ · ρ)′ ≥ r.

Proof Because μ ∈ Ref r· (P), it is valid that

r ≤ ρ � μ′

= T (ρ � μ′, 1) = T (ρ � μ′, μ · μ′ � μ′)
≤ T (μ · ρ � μ · μ′, μ · μ′ � μ′)
≤ μ · ρ � μ′

= T (μ · ρ � μ′, μ · ρ � μ)

≤ T (μ · ρ � μ′, μ′ � (μ · ρ)′)
≤ μ · ρ � (μ · ρ)′.

�

So from 0 < r ≤ ρ � μ′ we obtain a level r of contradiction with 0 < μ · ρ �
(μ · ρ)′. It shows that a refutation added by the left to the set of premises causes a
level of contradiction in our knowledge.

Note that in case of a non-nilpotent t-norm T, a refutation never is a consequence
to any grade because

T (ρ � μ′, ρ � μ) ≤ T (ρ � μ′, μ′ � ρ′) ≤ ρ � ρ′,

and it is not possible to have ρ � μ′ > 0 and ρ � μ > 0, simultaneously. However
with nilpotent t-norms it can be the case that a refutation to some grade can be a
consequence to a non-zero grade. In particular we have
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Theorem 5 For a non-nilpotent t-norm T , if μ ∈ C r· (P), then μ′ �∈ C r· (P).

As the weak-consequences, the sets of refutations are a family of anti-monotonic
sets with respect to the grades r .

16.3.4 Sets of Conjectures

If the set of refutations contains contradictory fuzzy sets with the current knowledge
to some level, it is seems natural define the set of fuzzy sets which allows to increase
our knowledge, named conjectures, to some degree r as the complementary set

Conj r· (P) = {μ ∈ F(X) : ρ � μ′ < r}. (16.5)

μ is a conjecture to level r if it is the case than ρ is not contradictory with μ to level
greater or equal than r.

Obviously, F(X) = Conj r· (P) ∪ Ref r· (P) and ∅ = Conj r· (P) ∩ Ref r· (P). The
sets of conjectures are monotonic with respect to the grades, i.e. if r < s, then
Conj r· (P) ⊆ Conj s· (P).

The behavior of conjectures when the set of premises increase is the contrary of
the consequences.

Theorem 6 If P and Q are sets of admissible premises, and it is P ⊆ Q, then
Conj r· (Q) ⊆ Conj r· (P) for any r ∈ [0, 1]. It is said that the operators Conj r· are
anti-monotonic with respect to the set of premises.

Proof If any μ ∈ F(X) satisfies μ ∈ Conj r· (Q), then ρQ � μ′ < r. If it were that
ρP � μ′ ≥ r by T-transitivity

ρP � μ′ = T (ρP � μ′, ρQ �1 ρP ) ≤ ρQ � μ′,

giving a contradiction. �

Theorem 7 For any non-nilpotent t-norm T and any strong negation, any set of
admissible premises P and any r ∈ (0, 1] is C r· (P) ⊆ Conj r· (P).

Proof As

T (ρP � μ, ρP � μ′) ≤ T (ρP � μ,μ′′ � ρP ) ≤ ρP � ρ′
P = 0,

if T is non-nilpotent and ρP � μ ≥ r > 0 then ρP � μ′ = 0 and μ is a conjecture
to any level. �
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Theorem 8 Operators Ref r· are not extensive for any r ∈ (0, 1], and they are
monotonic.

Proof if it were P ⊆ Ref r· (P), from ρ �r ρ′
i and ρ �1 ρi , as ρ � ρi ≤ ρ′

i � ρ′,
thanks to T-transitivity of preorder � it would be ρ � ρ′

i = T (ρ � ρ′
i , ρ

′
i �1 ρ′) ≤

ρ � ρ′ something impossible.
If P ⊆ Q, from ρP �r μ and ρQ �1 ρP , it is valid ρQ �r μ, and then

Ref r· (P) ⊆ Ref r· (Q). �

Another interesting study would be what happens when the conjunction change.
For that, it is necessary to establish a relationship between the fuzzy preorder and
the conjunction given by min.

Definition 5 The T -preorder � preserves the min pointwise if for any μ, η, σ ∈
F(X) when μ �1 η and μ �1 σ then μ �1 min(η, σ ) defined pointwise.

The last definition can be described by the ordering principle: μ �1 η ⇔ μ(x) ≤
η(x) ∀x . Many T -preorders contains the pointwise ordering, in particular those
defined by residuation.

Another strong form to establish the last property could be

min(μ � η,μ � σ) ≤ μ � min(μ, σ ). (16.6)

Implications defined by residuation satisfy

min(
−→
T (x, y),

−→
T (x, z)) = −→

T (x,min(y, z))

so they give examples of T -preorder which satisfy (16.6).

Theorem 9 For all conjunction ·, and a T -preorder which preserves the min point-
wise is

1. Conj r· (P) ⊆ Conj r
min(P),

2. Ref r
min(P) ⊆ Ref r· (P),

3. C r
min(P) ⊆ C r· (P).

Proof Point 3 follows of ρ �1 ρmin, where ρmin is the résumé taking min as
the conjunction because � preserves the min pointwise. Point 2 follows from
μ ∈ Ref r· (P) ⇔ μ′ ∈ C r· (P) for any conjunction, and finally point 1 follows
by complementation of point 2. �

16.3.5 Sets of Hypothesis and Speculations

Take into consideration the difference-set:

Conj r· (P) − C r· (P) = {μ ∈ F(X) : ρ � μ < r & ρ � μ′ < r} (16.7)
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Remember that the set C r· (P) is not necessarily a subset of Conj r· (P), as it is shown
in Theorem6 and, in fact, Conj r· (P) can be empty. The set (16.7) represents the
conjectures, if they exist, that are not consequences.

Consider next two sets:

Hyp r· (P) = {μ ∈ F(X) : ρ � μ < r & ρ � μ′ < r & μ � ρ ≥ r},
Sp r· (P) = {μ ∈ F(X) : ρ � μ < r & ρ � μ′ < r & μ � ρ < r},

Theorem 10 If Conj r· (P) �= ∅, then Conj r· (P) = C r· (P) ∪ Hyp r· (P) ∪ Sp r· (P).

The conjectures, if they exist, are classifies in consequences, hypothesis and specu-
lations.

With respect to the grade r , if r ≤ r ′, Hyp r· (P) is incomparable with Hyp r ′
· (P),

it can be that the hypotheses grow or not. The set of conjectures increase with r but
the set of consequences decrease and the set of speculations increase as it is easy to
probe. For the set of hypothesis nothing can be said.

Theorem 11 It is satisfied that

μ ∈ Hyp r· (P) ⇒ ρ ∈ C r· ({μ}).

Proof If μ ∈ Hyp r· (P), then μ � ρ ≥ r and ρ � μ < r then ρ �= μ and
ρ ∈ C r· ({μ}). �

A natural requirement for a hypothesis is that explain the consequences, in par-
ticular, any consequence of a premise must be a consequence of a hypothesis. In our
case that depends of the t-norm because if σ ∈ Hyp r· (P) and μ ∈ C r· (P), then

T (r, r) ≤ T (σ � ρ, ρ � μ) ≤ σ � μ.

So μ is a consequence of σ to level T (r, r).

Theorem 12 For a fixed r, operators Hyp r· are anti-monotonic.

Proof From P ⊆ Q is ρQ �1 ρP , if μ ∈ Hyp r· (Q), from T (μ � ρQ, ρQ �1
ρP ) = μ � ρQ ≤ μ � ρP , follows μ � ρP ≥ r. Now if it were ρP � μ ≥ r, from
T (ρP � μ, ρQ �1 ρP ) = ρP � μ ≤ ρQ � μ, reaching a contradiction. The same
can be done for proving that ρP � μ′ < r, so μ ∈ Hyp r· (P). �

Operator Sp r· (P) are neither monotonic nor antimonotonic.

http://dx.doi.org/10.1007/978-3-319-18750-1_6
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16.4 Examples

A couple of examples show the relations between these sets in a graded context.

16.4.1 Example 1

First consider a T-preorder defined by residuation:

ρ �1 μ = inf
x∈X

−→
min(ρ(x), μ(x)) =

{
1 if ∀x ρ(x) ≤ μ(x)

inf x :ρ(x)>μ(x) μ(x) otherwise

(16.8)

That fuzzy ordering contains the pointwise ordering because ρ �1 μ = 1 ⇔
ρ(x) ≤ μ(x) ∀x . From now we consider that the set of premises contains only
a fuzzy set ρ and the fuzzy complement is given by the classical pointwise strong
negation 1 − id. We try to give an idea about the sets of consequences, refutations,
conjectures, hypotheses and speculations in that case.

To evaluate how is the set a consequences, a necessary condition for a fuzzy set
μ to belong to the set C r· (ρ) is that Supp(ρ) ⊆ Supp(μ), where Supp(μ) = {x ∈
X : μ(x) > 0}. When r = 0, the set of consequences will be the universal set of
fuzzy sets, and when r = 1, the set of consequences is just the fuzzy sets which are
pointwise greater than ρ.

With respect to the set of refutations, again a necessary condition for a fuzzy set
μ to belong to Ref r· (ρ) is that Supp(ρ) ⊆ Supp(1 − μ). The set Ref 0· (ρ) = F(X)

and Ref 1· (ρ) = {μ ∈ F(X) : ρ(x) ≤ μ(x) ∀x ∈ X}.
The set of conjectures for r ∈ (0, 1] can be expresed as follows:

Conj r· (ρ) = {μ ∈ F(X) : ρ �1 μ′ < r}
= {μ ∈ F(X) : Supp(ρ) ∩ Supp(μ′)c �= ∅} ∪
= {μ ∈ F(X) : Supp(ρ) ⊆ Supp(μ′) ∧ inf

x :ρ(x)>μ′(x)
(1 − μ(x)) < r}.

When r = 0, Conj 0· (ρ) = ∅, and Conj 1· (ρ) = {μ ∈ F(X) : ρ �≤ μ′ pointwise}.
A sufficient condition for a fuzzy setμ to belong to the set of hypotheses Hyp r· (ρ)

is that the support of ρ is neither included in the support of μ nor included in
the support of μ′ together that the support of μ is included in the support of ρ.

Speculations can be calculated in a analogous way and Fig. 16.1 shows an example
of elements of these sets for a triangular fuzzy set.
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Fig. 16.1 Examples of a consequence μ (blue ultrathin dashed line), a hypothesis η (green dashed
line), and a speculation σ (dotted line) with the ordering �1 for a triangular fuzzy set ρ (black solid
line)

16.4.2 Example 2

Consider now a probabilized boolean algebra L with a probability p. This is an
example of a BFA and the ordering on L given the expression

a �2 b = p(a′ + b) = 1 − p(a) + p(a · b), (16.9)

is an example of a W -preorder, with W the Lukasiewicz t-norm. Considering that
the set of premises is just one element a of L . It is possible to calculate the sets in
this case.

For the consequences:

C r· (a) = {b ∈ L : a �2 b ≥ r}
= {b ∈ L : p(a · b) ≥ p(a) − (1 − r)}.

For the refutations:

Ref r· (a) = {b ∈ L : a �2 b′ ≥ r}
= {b ∈ L : p(a · b′) ≥ p(a) − (1 − r)}
= {b ∈ L : p(a · b) ≤ 1 − r},

where the equality p(a) = p(a · b) + p(a · b′) has been applied.
The set of conjectures is Conj r· (a) = Ref r· (a)c = {b ∈ L : p(a · b) > 1 − r}.
The hypothesis are characterizated by

Hyp r· (a) = {b ∈ L : 1−r < p(a ·b) < p(a)−(1−r)∧ p(b)−(1−r) ≤ p(a ·b)}.
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Finally, the set of speculations is given by

Sp r· (a) = {b ∈ L : 1 − r < p(a · b) < min(p(a) − (1 − r), p(b) − (1 − r))}.

16.5 Conclusions

In this work we have studied the models of conjectures, consequences, hypothesis
and speculation initiated by Professor Enric Trillas in various works for the case in
which we have a graded consequence relation given by a T-preorder, with T be a
t-norm, on an algebra of fuzzy sets. For this we have used a model of algebra of
fuzzy sets as general as possible named Basic Fuzzy Algebra in which the properties
required to the operations have been reduced as much as possible so that they may
account for the largest number of phenomena that occur in natural language reason-
ing. We prescinded from the commutativity of conjunction or its associativity, or it
has been considered weak negations, and yet interesting results that relate the sets of
propositions studied from a minimally coherent set of assumptions are obtained.

The results basically differ depending onwhether the selected t-normT is nilpotent
or not. When the t-norm is not nilpotent results resemble those obtained considering
a consequence relation given by the pointwise ordering between fuzzy propositions.
However with nilpotent t-norms weaker results are obtained because the thresholds
are not maintained and they can collapse to zero.
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Chapter 17
Fuzzy Concepts and Fuzzy Logic
in Historical and Genetic Epistemology

Rudolf Seising

Abstract This paper discusses epistemology in two variations: Genetic and Histor-
ical Epistemology. Historical Epistemology combines research in history and phi-
losophy of science to study developments in scientific research whereas Genetic
Epistemology is the study of the cognitive development in childhood. We consider
Kuhn’s theory of scientific paradigms and paradigm changes on the one hand and
Piagest’s Genetic Epistemology of cognitive development on the other. We present
parallels of these two structuralist approaches and we introduce “unsharp concepts”
into these views. Then the paper throws a glance at their fuzzy extensions. Because of
these “fuzzifications” wemake an argument for using fuzzy instead of crisp concepts
in Genetic and Historical Epistemology.

17.1 Introduction

Knowledge, its emergence and its developments are inherently interesting subjects
in science and research. In the 20th century slogans or buzz words were “knowledge
society” and “knowledge explosion” and the last turn of the century was called the
beginning of the “knowledge age”.

Knowledge, its emergence and its developments were under examination from
various perspectives and in this chapter I will near to these subjects from a historical
and philosophical point of view. The branch of philosophy that is concerned with
knowledge is named Epistemology.

The Stanford Encyclopedia of Philosophy defines “narrowly, epistemology is the
study of knowledge and justified belief. As the study of knowledge, epistemology
is concerned with the following questions: What are the necessary and sufficient
conditions of knowledge? What are its sources? What is its structure, and what are
its limits?” [46].
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To answer these questions ImmanuelKant (1724–1804) tried to unify the twomain
views in former philosophy of science, empiricism and rationalism. The rationalist
approach came to fundamental, logical and theoretical investigations using logics and
mathematics to formulate axioms and laws, however from the empiricist point of view
the source of our knowledge is sense experience and we have to use experiments to
find or prove or refute natural laws. In both directions—from experimental results
to theoretical laws or from theoretical laws to experimental proves or refutations—
scientists have to bridge the gap that separates theory and practice in science. In his
influential bookCritique of Pure Reason (Kritik der reinen Vernunft) Kant came from
the view that knowledge increases through, and that cognition starts from experience.
The “a priori forms of cognition” he named “concepts” and he proposed that these
concepts exist within the subject of cognition. On the other hand, he said, that the
object of cognition is established when the sensory content coming from the object
is put in order by the subject’s concepts.

The Stanford Encyclopedia of Philosophy differentiates at least between three
prevailing ways to understand what a concept is in contemporary philosophy [25]:

• Concepts as mental representations, i.e. entities that exist in the brain;
• Concepts as abilities, peculiar to cognitive agents;
• Concepts as abstract objects, where these objects are the constituents of proposi-
tions that mediate between thought, language, and referents.

In their book Concepts and Fuzzy Logic Belohlavek and Klir [1] use the concept
of concepts fromCognitive science and they refer to EdouardMachery: “In cognitive
science, concepts are the bodies of knowledge that are stored in long-term memory
and are used by default in the higher cognitive processes (categorization, inductive
and deductive reasoning, analogy making, language understanding, etc.)” [23]. In
this chapter we will argue that those concepts are unsharp or fuzzy and we will show
that those fuzzy concept are also fruitful in epistemology.

In Kant’s epistemology the human mind provides a structure that shapes all sen-
sory experience and thought. Perceptions and thoughts must conform into this struc-
ture in order to be representations. Kant says that humans have an active mind that
produces our conception of reality by acting as a filter, and also it is organizing and
enhancing. He continues that objective reality is made possible by the form of its
representation. Our minds structure includes space, time, and causation, they are
preconditions of our perceptions, and they are fundamental conditions for human
experience.

The construction of the system of science with a progression from the formal to
the most empirical phases Kant named an “Architectonic of Science”: “by the term
architectonic I mean the art of constructing a system. Without systematic unity, our
knowledge cannot become science; it will be an aggregate, and not a system. Thus
architectonic is the doctrine of the scientific in cognition, and therefore necessarily
forms part of our methodology” [16]. He also developed a system of physical nature
starting with “the most formal act of human cognition, called by him the transcen-
dental unity of apperception, and its various aspects, called the logical functions of
judgment. He then proceeds to the pure categories of the understanding, and then to
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the schematized categories, and finally to the transcendental principles of nature in
general” [7]. It is this concept of a “schema” that Kant used to both the structure of
human knowledge itself and the procedure by which the human mind produces and
uses such structures.

In the 20th century two different research programs in different academic disci-
plines became well-known under the name “epistemology”—Genetic Epistemology
was founded by the philosopher and psychologist Jean Piaget (1896–1980) to study
the cognitive development of children and Historical Epistemology was established
as a field of research in history and philosophy of science by the molecular biologist
and historian of science Hans-Jörg Rheinberger (born 1946).

Education science and Psychology as well as History and Philosophy of science
are concerned with preconditions, foundations, methods, implications and goals of
science; philosophers of science reflect scientific theories and their changes, edu-
cationists and psychologists want to know how human beings—especially young
human beings—learn. They develop and apply theories of human cognitive devel-
opments. In science of education pedagogues and psychologists are concerned with
the development of conceptual knowledge as individual mental processes of chil-
dren and students. In the 20th century parts of these two academic fields, history and
philosophy of science on the one hand and education science and psychology on the
other hand emerged approaches that adopted Kant’s concept of a “schema”—these
approaches have been called Structuralism.

Structuralism in education science and psychology was intended by the Swiss
developmental psychologist and philosopher Piaget who used the structuralism of the
Swiss linguist and semiotician Ferdinand de Saussure (1857–1913) as amethodology
in psychology. However, in Piaget’s view humans have adaptive mental structures.
These mental structures assimilate external events; humans convert these external
events to fit theirmental structures. Themost simple level of thesemental structures is
that of the so-called schema. Piaget introduced schemata as categories of knowledge
to describe mental or physical actions.

Philosophy of science concerns scientific explanations of real systems and phe-
nomena. Scientists connect these real systems and phenomena with theoretical struc-
tures and in modern science these structures are characterized in terms of logics and
mathematics. Therefore, these structures show a “mapping” from the real world to
the world of logics andmathematics. It is supposed that there is a connection between
the real world and the logical-mathematical world—otherwise it doesn’t make sense
to speak about empirical science. The German-US-American philosopher Rudolf
Carnap (1891–1970) proposed an approach to axiomatize scientific theories in a for-
mal language. In contrast to that theAmericanmathematician andphilosopher Patrick
Suppes (1922–2014) suggested to determine the mathematical structure of a theory
by use of informal set theory [47–49]. Thus, one is able to axiomatize theories in a
precise way without recourse to formal languages. This approach can be traced back
to the meta-mathematical programme of the French group Bourbaki [5] to include
the axiomatization of empirical theories in the metamathematical programme of the
French group Bourbaki [5].
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In the last third of the 20th century this approach in philosophy of science has
been elaborated and continued by JosephD. Sneed (born 1938),WolfgangStegmüller
(1923–1991), C. Ulises Moulines (born 1946) andWolfgang Balzer (born 1947) and
others. Their new developments act as a bridge between Philosophy of science and
History of science because they could reconstruct theory dynamic in the sense of
Thomas S. Kuhn’s (1922–1996) concept of paradigm and paradigm change, i.e.
scientific revolutions.

In the following we give brief surveys of the structuralist approaches in history of
science (Sect. 17.2) and in education science and psychology (Sect. 17.6).We outline
the different ways of looking at concepts—“sharp” and “unsharp”—and we show
that “unsharp” concepts play an important role in both of the two lines of episte-
mology (Sect. 17.4 and Sect. 17.6.3). We discuss parallels between the Kuhnian and
the Piagetian theories of knowledge development (Sect. 17.6.2) and because of these
parallels, after a brief introduction of our proposal for a fuzzy structuralism in phi-
losophy of science (Sect. 17.5), as future prospects we argue for a fuzzy structuralist
approach to Genetic and Historical Epistemology (Sect. 17.8).

17.2 An Architectonic for Science

Drawing our attention back to the philosophical topic of the gap between theoretical
and real entities in science we mentioned already Kant named his construction of the
system of science with a progression from the formal to the most empirical phases
an “Architectonic of Science”.

An Architectonic for Science was published as A structuralist program in 1987
by Balzer, Moulines and Sneed [3]. Their program was based on the structuralist
approach that was established by Suppes to axiomatize real physical theories in a
precise way without recourse to formal languages. In the 1970s, one of Suppes’
Ph D.-students, the US-American physicist Joseph D. Sneed (born 1938), developed
informal semantics meant to include not only mathematical aspects, but also appli-
cation subjects of scientific theories in the framework, based on this method. In [44]
he presented the view that all empirical claims of phys- ical theories have the form “x
is an S”, where “is an S” is a set-theoretical predicate (e.g., “x is a classical particle
mechanics”). Every physical system that fulfills this predicate is called a model of
the theory. For example, the class M of a theory’s models is characterized by empir-
ical laws that consist of conditions governing the connection of the components of
physical systems. Therefore, we have models of a scientific theory, and by removing
their empirical laws, we get the class Mp of so-called potential models of the theory.
Potential models of an empirical theory consist of theoretical terms, i.e. observables
with values that can be measured in accordance with the theory. This connection
between theory and empiricism is the basis of the philosophical “problem of theoret-
ical terms”. If we remove the theoretical terms of a theory in its potential models, we
get structures that are to be treated on a purely empirical layer; we call the class Mpp

of these structures of a scientific theory its “partial potential models”. Finally, every
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Fig. 17.1 Empirical and theoretical structural layers

physical theory has a class I of intended systems (or applications) and, of course,
different intended systems of a theory may partially overlap. This means that there
is a class C of constraints that produces cross connections between the overlapping
intended systems. In brief, this structuralist view of scientific theories regards the
core K of a theory as a quadruple K =<Mp, Mpp, M,C>. This core can be sup-
plemented by the class I of intended applications of the theory T =<K , I >. To
make it clear that this concept reflects both sides of scientific theories, these classes
of K and I are shown in Fig. 17.1. Thus we notice that Mpp and I are entities of
an empirical layer, whereas Mp and Mpp are structures in a theoretical layer of the
schema.

Stegmüller, Sneed, Moulines and Balzer also started to reconstruct the change
of theories, i.e. “scientific revolutions” or “paradigm shifts”, e.g. the change from
Ptolemy’s geocentric universe to Copernicus’ heliocentric world picture or from
Newtonian Mechanics to Einstein’s Special Relativity Theory by using the struc-
turalist program in philosophy of science. For this purpose they defined an interthe-
orical relation that is called “Approximate Reduction”. However, this “Approximate
Reduction” is—as its name says, an approximation of the “pure” intertheoretical
relation that is called “Reduction” (see Fig. 17.2) and it is defined as follows:

There are two theories, say Told and Tnew. Told reduces Tnew by the reduction
relation ρ if the following two conditions are fulfilled:

ρ ⊆ Mp(Told) × Mp(Tnew). (17.1)
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Fig. 17.2 Intertheoretical relation “Reduction”

∀x, x ′ : 〈
x, x ′〉 ∈ ρ and x ′ ∈ M(Tnew), then x ∈ M(Told) (17.2)

To sum up: the structuralist approach in philosophy of science is a way to describe
the logical structures and the dynamics of scientific theories.

However, from our point of view the version of the “approximate reduction” that
the “classical” structuralists in philosophy of science proposed is not the best choice
to represent theory changes due to scientific revolutions because paradigm shifts in
the sense of Kuhn are not pure rational changes and there is no one-to-one-relation
between the concepts of the old and the new theory. Moreover, Kuhn claimed that
scientists do not employ rules in reaching their decisions—however, his philosoph-
ical reviewers said that he claimed “that science is irrational” [4]. What he stressed
was that a paradigm shift is not a logically determinate procedure but a mixture
of processes that result from other reasons, e.g. sociological and psychological. An
example is his already five years earlier published analysis of the Copernican Revo-
lution [19]: he pointed out that in the beginning of this paradigm shift the new view
could not offer more accurate predictions of the positions of planets or stars in the
future than the old system of Ptolemy. But what made it more successful was that
the new system dangled better and simpler mathematical solutions.

We don’t say that these “external factors” are irrational but to respect these kinds
of “unsharpness” of concepts when modeling (or reconstructing) the “approximate
reduction” we need “a radically different kind of mathematics, the mathematics of
fuzzy or cloudy quantities which are not describable in terms of probability distrib-
utions.”1

However, whereas the “classical” structuralists proposed to reconstruct an
“approximative reduction” of scientific theories by methods within classical mathe-
matics, e.g. converging series of models of a theory or topological entities in spaces
of such models, we think that it is more suitable to define a different version of
the “approximative reduction” by using fuzzy sets and fuzzy relations. This “Fuzzy

1This is a quotation of Lotfi Zadeh’s paper [56] that appeared in 1962—three years before he
founded the theory of fuzzy sets!
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Reduction” is a fuzzy relation and in our opinion it fits as a fuzzy model for paradigm
changes in history of science!

17.3 Structures of the Scientific and the Cognitive
Development

Concerning the dynamics of scientific theories the US-American historian and
philosopher of science Thomas S. Kuhn (1922–1996) argued in The Structure of
Scientific Revolutions [18] that there is no linear accumulation of new knowledge
in the development of science. Moreover, he wrote that science undergoes periodic
revolutions and that there are conceptual changes—initially he called them “para-
digm shifts”—in history of science, in which the nature of scientific inquiry within a
particular field is transformed. Kuhn claimed that there are three different stages of
science: Prescience (also called the “pre-paradigm-phase”) lacks a central paradigm.
Later, when scientists attempt to enlarge the central paradigm by “puzzle-solving”
prescience is followed by normal science. Normal science reaches a crisis when
anomalous results build up. At this point a new paradigm can emerge, which sub-
sumes the old results along with the anomalous results into one framework. This new
paradigm is termed revolutionary science [18].

Among other elements (research techniques, sets of accepted data, theory, etc.)
a paradigm includes conceptual schemes. During a paradigm shifts therefore con-
cept are replaced by different concepts or—as the historian of science David Kaiser
recently explained: “Sometimes we do change our conceptual filters”. He continued:
“These radical ruptures, though rare, Kuhn thought, could really reshuffle the basic
facts of science” [6].

Kuhn also gave in his seminal book a hint to the work of Piaget: “A footnote
encountered by chance led me to the experiments by which Jean Piaget has illumi-
nated both the various worlds of the growing child and the process of transition from
one to the next” [18] and he referred to Piaget works [28, 29] in his own footnote.
Many years later he clarified that he “discovered Piaget” and especially the last men-
tioned book [28] when he read the important thesis on history of science, written by
American sociologist Robert Merton (1910–2003) [26]. He then thought that “these
children develop ideas just the way scientists do, except—and this was something I
felt Piaget did not himself sufficiently understand, and I’m not sure that I realized
it early—they are being taught, they are being socialized, in this not spontaneous
learning, but learning what it is that is already in place. And that was important” [17,
p. 279].

With reference to [20, p. 172f] also Nigerian philosopher Douglas I. O Anele says
that “Kuhn applied some of the insights revealed by Jean Piaget’s classic laboratory
experiments onhowchildren interpretedmotion in his analysis of howachild learns to
differentiate various kinds of birds in perceptual space through ameans of processing
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data into similarity sets or categories which does not depend on a prior answer to the
question: similar with respect to what” [2].

Nevertheless, the methods that the structuralists proposed to reconstruct the
“Approximative Reduction” are within classical mathematics, e.g. converging series
of models of a theory or topological entities in spaces of such models. In our view
it will be more suitable to define another “approximative” version of the interthe-
oretic relation of “reduction” by using fuzzy sets and fuzzy relations. The “Fuzzy
Reduction” that we propose to use is a fuzzy relation and in our opinion this fuzzy
reduction relation fits as a fuzzy model for paradigm changes in history of science!

17.4 Sharp and Unsharp Concepts in Epistemology

The German philosopher and mathematician Gottlob Frege (1848–1925) published
in 1879 his revolutionary book Concept Script (Begriffsschrift). When formaliz-
ing the mathematical principle of complete induction he confronted the problem of
vagueness: he saw that some predicates are not inductive, viz. they have been defined
for all natural numbers, but they result in false conclusions, e.g. the predicate “heap”
cannot be evaluated for all natural numbers [9]. Ten years later, when he revised the
basics of this book for a lecture to the Society of Medicine and Science in Jena at the
beginning year 1891, he reinterpreted concept functions and subsequently he intro-
duced these functions of concepts everywhere. He stated: If “x + 1” is meaningless
for all arguments x , then the function x + 1 = 10 has no value and no truth value
either. Thus, the concept “that which when increased by 1 yields 10” would have
no sharp boundaries. Accordingly, for functions the demand on sharp boundaries
entails that they must have a value for every argument [10]. This is a mathematical
verbalization of what is called the classical sorites paradox that can be traced back to
the old Greek word σoρoς (for ‘heap’) used by Eubulid of Alexandria (4th century
BC).

In his book Foundations of Arithmetic (Grundgesetze der Arithmetik) that
appeared in the years 1893–1903, Frege called for concepts with sharp boundaries,
because otherwise we could break logical rules and, moreover, the conclusions we
draw could be false [11] and later he wrote: “A definition of a concept (of a possi-
ble predicate) must be complete; it must unambiguously determine, as regards any
object, whether or not it falls under the concept (whether or not the predicate is truly
ascribable to it). […] We may express this metaphorically as follows: the concept
must have a sharp boundary” [11, Sect. 56].

Frege called for conceptswith sharp boundaries because otherwisewe could break
logical rules and,moreover, the conclusionswedrawcould be false [11] but about half
a century later Wittgenstein argued the converse in his Philosophical Investigations:

One might say that the concept ‘game’ is a concept with blurred edges. ‘But is a blurred
concept a concept at all?’ Is an indistinct photograph a picture of a person at all? Is it even
always an advantage to replace an indistinct picture by a sharp one? Isn’t the indistinct one
often exactly what we need? Frege compares a concept to an area and says that an area with
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vague boundaries cannot be called an area at all. This presumably means that we cannot do
anything with it. But is it senseless to say: ‘Stand roughly there’? [53, Sect. 71]

Thus, Wittgenstein had turned away from the epistemological system of the Trac-
tatus with its ideal mapping between the objects of reality and a logically precise
language. If we are not able to find such an exact logical language, then we have
to accept the fact that there is unsharp or vague linguistic usage in all languages.
Then the images, models, and theories that we build with the words and propositions
of our languages to communicate with them are and will also be unsharp or vague.
In other words, our conceptions, images, and symbols of external things or objects
are entities without sharp borders. They are fuzzy entities and it is time to establish
a “fuzzy epistemological system” to master these complex circumstances with an
appropriate theory of science!

17.5 Fuzzy Structuralism

Referring to The Structure and Dynamics of Theories [45] by the Austrian philoso-
pher of science Stegmüller, the Iranian-German philosopher and physician Kazem
Sadegh-Zadeh (born 1942) stated in his article “The Fuzzy Revolution: Goodbye to
the Aristotelian Weltanschauung” that concepts as Kuhn’s and his combatants “are
still too vague and inadequate to be useful”. [35, p. 3] He continued that

we may, nevertheless, learn from these studies that in contrast to our accustomed views on
the development of science and scientific knowledge, this very development is not a cumu-
lative process. Science does not progress continuously and by accumulating knowledge. It
does not add to an antecedent knowledge or theory Ti a subsequent knowledge or theory
Ti+1 of the same type such that one could reasonably consider science as the open ordered
series of related theories T1, T2, . . . , Ti+1. Scientific ideas, theories, and worldviews evolve
discontinuously in that a body of knowledge or theory Ti , which is held over a particular
period of time, is dislodged by another body of knowledge or theory Tj , because the discipli-
nary matrix2 within which the former theory Ti had grown, changes to another disciplinary
matrix which gives rise to the new theory, Tj , that is incompatible and incommensurable
with its predecessor Ti .

12 years later, in hisHandbook on Analytical philosophy of Medicine, he demands
an “overhaul” to adapt the structuralist approach in philosophy of science to fuzzy set
theory [34, p. 439f]. He requires “to render the metatheory applicable to real world
scientific theories, it needs to be fuzzified because like everything else in science,
scientific theories are vague entities and implicitly or explicitly fuzzy.” Then he lists
two ways of scientific theories’ explicit fuzzifications:

1. Introduction of the theory’s set-theoretical predicate as a fuzzy predicate (“x is a
fuzzy S” instead of “x is an S”).

2. In addition to 1. also any other component of the theory appearing in the structure
that defines the predicate may be fuzzified.

2In later times Kuhn used the term “disciplinary matrix” instead of “paradigm”.
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Unfortunately, Sadegh-Zadeh did not go into details at this point but he concludes
this section with an outlook: “Fuzzifications of both types will impact the application
and applicability of theories as well as the nature of the knowledge produced by
using them. This is true because fuzzification will change the conception of models;
potential models; partial, potential models; and the core and intended applications of
a theory, on the one hand; and the epistemological relationships between empirical
claims of the theory and the ‘real world’, on the other, e.g., support, confirmation,
falsification, etc.” At the end of this chapter he wrote: “The above considerations
suggest that the entities a theory is concerned with, be construed as vague entities.
For similar analyses and assessments he referred to [38, 39, 42]” [34, p. 441].

I name the gap between the “real” (or “empirical”) and the “theoretical layer” (see
Fig. 17.3) the “Fuzzy Space” of unsharp concepts or perceptions and I introduced
the variables Theoretization T and Empirization E of concepts to be more or less
in the class of theoretical entities or of real phenomena. A concept (or perception)
c with T(c) = 1 is completely theoretical and if T(c) = 0 then c is completely
empirical. Variable empirization E is the complement of variable theoretization T.
If E(c) = 1 then c is completely empirical and if E(c) = 0 then c is completely
theoretical. However, in most cases c’s T - and E-values lay between 0 and 1 because
our concepts are unsharp or fuzzy.

Fig. 17.3 The Fuzzy space between the empirical and the theoretical layer
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17.6 Genetic Epistemology

In the early 20th century history some psychologists became interested in the field
of child development, and in the subsequent decades in Developmental Psychology
mainly two doctrines are significant to date:

• In hisAnalyticPsychology (Psychoanalysis) SigmundFreud (1856–1939) stressed
the importance of childhood events and experiences. In his Three Essays on the
Theory of Sexuality he described child development as a series of ‘psychosexual
stages’ or phases: oral (ages 0–2), anal (2–4), phallic (3–6), latency (6-puberty),
and mature genital (puberty-onward). Each phase involves the satisfaction of a
libidinal desire and can later play a role in adult personality [13].

• When hewas a young scientist, the Swiss developmental psychologist and philoso-
pher Jean Piaget (1896–1980) was engaged in Psychoanalysis, but later he estab-
lished a very different stage theory of children’s cognitive development: Genetic
Epistemology. In his theory it is assumed that children think differently than adults
and they play an active role in gaining knowledge of the world. They actively con-
struct their knowledge!

17.6.1 Structuralism in Education Science and Psychology

The structuralist approach in education science and psychology was intended by
Piaget who used the structuralism of the Swiss linguist and semiotician Ferdinand de
Saussure as a methodology in psychology. Sassure used structuralism as a methodol-
ogy in psychology when he focused not on the use of language (parole), but rather on
the underlying system (structure) of language (langue). He called this theory semi-
otics. He was interested in how the elements of language are related to each other.
Piaget abstracted Saussure’s theory of structural organization. In his view, language
depends upon operational intelligence (logical structures) and, therefore, it is not
the grounding of cognition. However, in Piaget’s view humans have adaptive mental
structures. These mental structures assimilate external events; humans convert these
external events to fit their mental structures. The most simple level of these mental
structures is that of the so-called schema. Piaget introduced schemata as categories
of knowledge to describe mental or physical actions.

Piaget was the first psychologist to make a systematic study of cognitive develop-
ment. His contributions include a theory of cognitive child development, detailed
observational studies of cognition in children, and a series of simple but inge-
nious tests to reveal different cognitive abilities. Before Piaget’s work, the common
assumption in psychology was that children are merely less competent thinkers than
adults. Piaget showed that young children think in strikingly differentways compared
to adults.
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17.6.2 Parallels Between Piaget’s and Kuhn’s Theories

As a biologist by training Piaget was skilled to observe that organism adapted to their
environment. He then applied this model to cognitive development and in his theory
the mind organizes internalized regularities or operations into dynamic cognitive
structures. Piaged named these structures “schema”. Schemata are structured clusters
of concepts, that can be used to represent objects, scenarios or sequences of events or
relations between concepts. As we mentioned already (see Sect. 17.2), the original
idea was proposed by philosopher Kant as innate structures used to help us perceive
the world. Piaget’s concept of a schema covers category of knowledge and a process
to receive that knowledge. When we obtain new knowledge then our schema may
be modified or changed. In his view, the cognitive development (the adaption to the
environment) is a process of four aspects: schema, assimilation, accommodation,
and equilibrium.

• Schema: As we said already, humans develop “cognitive structures” or “mental
categories” that Piaget named schemata in order to name and organize, and to
make sense of life and reality [50, p. 10].

• Assimilation: An individual uses its existing schemata to make sense of a new
event. This process involves trying to understand something new by fitting it into
what we already know.

• Accommodation: Also existing schemata can change to respond to a new situa-
tion. If new information cannot be made to fit into existing schemata, a new, more
appropriate structure must be developed. There are also instances when an indi-
vidual encounters new information that is too unfamiliar that neither assimilation
nor accommodation will occur because the individual may choose to ignore it.

• Equilibration: This is the complex act of searching for the balance in organizing,
assimilating, and accommodating. On the other hand, it is the state of Disequilib-
rium that motivates us to search for a solution through assimilation or accommo-
dation.

In Psychogenesis and the History of Science—a co-authored and posthumous
published book of Piaget with the Argentinian physicist Rolando Garcia (1919–
2012), Piaget refers to Kuhn’s view of theory change in science as physicist Daniel
L. MacIsaac [24] quoted: “Our notion of epistemic framework ...”, which describes
“...an explanatory schema for the interpretation of the evolution of knowledge, both
at the level of the individual and that of social evolution”. Piaget further recognizes
the role of social construction in schemata, stating “... when language becomes the
dominating means of communication ... what we might call direct experience of
objects becomes subordinated ... to the system of interpretations attributed to it by
the social environment”.He claimed that there is a connection of the psychogenesis of
logico-mathematical thinking and historical development, he distinguished between
“prescientific” (other authors name it “immature”) (see Fig. 17.4) and “scientific”
periods in each field, he mentions “analogies” between ontogenesis and historical
development in both periods [27, p. 63].
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Fig. 17.4 Parallels between Piaget’s and Kuhn’s theories, see [24]

Following MacIsaac, Piaget believed that his notion of epistemic framework “...
includes that of paradigm ... but is simply different” (ibid). Paradigm belongs to the
sociology of knowledge rather than with epistemology (concerned with the acquisi-
tion of knowledge)” [24].

MacIsaac quotes the seminal Introduction for Students of Psychology and Edu-
cation into Piaget’s Theory of Cognitive Development by education scientist Barry
J. Wadsworth: “... the child’s active assimilation of objects and events results in the
development of structures (schemata) that reflect the childs’ concepts of the world or
reality. As the child develops these structures, reality or his knowledge of the world
changes” [51]. He concludes: “However, schema[ta] are not directly derived from
raw objects and events, but from operations. While schema[ta] are the highest-order
mental organizations, schema[ta] never appear alone; structures are always related to
other structures and many structures are substructures of larger structures [24, 51].

17.6.3 Unsharp Concepts in Genetic Epistemology

Piaget defined four stages of cognitive development:

1. Sensorimotor stage: Birth through ages 18–24 months.
“In this stage, infants construct an understanding of the world by coordinating
experiences (such as seeing and hearing) with physical, motoric actions. Infants
gain knowledge of the world from the physical actions they perform on it. An
infant progresses from reflexive, instinctual action at birth to the beginning of
symbolic thought toward the end of the stage” [37].
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2. Preoperational stage: 18–24 months—7 years.
The children do not yet understand concrete logic and cannotmentallymanipulate
information. They increase in playing but this is mainly categorized by symbolic
play and manipulating symbols. They still have trouble seeing things from dif-
ferent points of view. The children lack basic logic. An example of transitive
inference would be when a child is presented with the information “a is greater
than b and b is greater than c”. This child may have difficulty here understanding
that a is also greater than c [22, Chap. 3] [36, Chap.8].

3. Concrete operational stage: Ages 7–12 years.
In this stage children use logic appropriate. They start solving problems in a
more logical fashion but abstract, hypothetical thinking has not yet developed.
The children can only solve problems that apply to concrete events or objects.
They can draw inferences from observations in order to make a generalization
(inductive reasoning) but they struggle with deductive reasoning, which involves
using a generalized principle in order to try to predict the outcome of an event.
“The Children can not figure out logic, e.g., a child will understand A > B and
B > C , however when asked is A > C , the child might not be able to logically
figure the question out in their heads”.

4. Formal operational stage: Adolescence—adulthood.
Now, the person has the ability to distinguish between their own thoughts and
the thoughts of others. He or she recognizes that their thoughts and perceptions
may be different from those around them. The children are now able to classify
objects by their number, mass, and weight, they can think logically about objects
and events and they have the ability to fluently perform mathematical problems
in both addition and subtraction.

However, it was quite plain to Piaget that not all children may pass through the
stages at the exactly the same age. Also he acknowledged that children could show
at a given time the characteristics of more than one of the stages above. Neverthe-
less he emphasized that cognitive development always follows the sequence of the
enumeration above. No stage can be skipped, and every stage prepares the child with
new intellectual abilities and a more complex understanding of the world. Therefore,
in our view, Piaget’s four stages of cognitive development are unharp concepts. Also
MacIsaac’s analysis of the parallels between Piaget’s and Kuhn’s model leads to the
assumption that Piaget’s model comprises non-crisp concepts, e.g.: “Comparisons
between Kuhnian normal science and Piagetian assimilation reveal that assimilation
is amuchmore complex and fluid activity. There is a great deal of flexibility displayed
within assimilation, while normal science is rigidly constrained” [24].

17.7 Historical Epistemology and Fuzzy Set Theory

The Swiss historian of science and biologist Hans-Jörg Rheinberger proposed in
the last decade of the 20th century the program of “historical epistemology” as a
turnaround in philosophy and history of science. Hemade allowance for the situation
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that historians and philosophers of science in the 1980s and 1990s concentrated
their attention to experiments in science. Historical epistemology deals with the
concept of so-called “experimental systems”. What is an experimental system?—
Rheinberger illustrated: “This notion is firmly entrenched in the everyday practice
and vernacular of the twentieth-century life scientists, especially of biochemists and
molecular biologists. Scientists use the term to characterize the scope, as well as
the limits and the constraints, of their research activities. Ask a laboratory scientist
what he is doing, and he will speak to you about his ‘system’. Experimental systems
constitute integral, locally manageable, functional units of scientific research” [31,
p. 246].

Historical epistemology deals with the concept of so-called “epistemic things”—
“fluctuating objects”, “imprecise concepts”—as he also called them in his historical
work on “Gene Concepts”. He argued: “If there are concepts endowed with organi-
zing power in a research field, they are embedded in experimental operations. The
practices in which the sciences are grounded engender epistemic objects, epistemic
things as I call them, as targets of research. Despite their vagueness, these entities
move the world of science. As a rule, disciplines become organized around one or
a few of these “boundary objects” that underlie the conceptual translation between
different domains” [32, p. 220].

In Rheinberger’s epistemology we find again two parts of scientific research,
that he named epistemic and technical, respectively, but he emphasizes that there is
no sharp boundary between, moreover this boundary is vague or fuzzy. We follow
Rheinberger’s arguments to show that “epistemic things” are vague or fuzzy and
that they “move the world of science” [32, p. 220]. He considered these “fluctuating
objects” and “imprecise concepts”—as he also called them—in detail in his historical
work.

Rheinberger followed the gene as an “epistemic thing” in the history of biology
but there are many more of objects in other scientific disciplines too, that fluctu-
ate through their history: “For a long time in physics, such an object has been the
atom; in chemistry, the molecule; in classical genetics, it became the gene. It is the
historically changing set of epistemic practice that gives contours to these objects.
According to received accounts, that I need not question here in depth, the boundary
object of classical genetics has worked as a formal unit: That which, in an ever more
sophisticated context of breeding experiments, accounts for the appearance or dis-
appearance of certain characters that can be traced through subsequent generations”
[32, p. 220f]. Finally, Rheinberger summarized: “There has never been a generally
accepted definition of the ‘gene’ in genetics. There exist several, different accounts
of the historical development and diversification of the gene concept as well. Today,
along with the completion of the human genome sequence and the beginning of
what has been called the era of postgenomics, genetics is again experiencing a time
of conceptual change, voices even being raised to abandon the concept of the gene
altogether” [30].
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17.7.1 Fuzzy Sets and Fuzzy Systems

In the early 1960s Lotfi A. Zadeh, a professor of Electrical Engineering at the Uni-
versity of California at Berkeley “began to feel that complex systems cannot be dealt
with effectively by the use of conventional approaches largely because the description
languages based on classical mathematics are not sufficiently expressive to serve as a
means of characterization of input-output relations in an environment of imprecision,
uncertainty and incompleteness of information” [54]. In the year 1964 he discovered
how he could describe real systems as they appeared to people. “I’m always sort of
gravitated toward something that would be closer to the real world” [41]. “In order
to provide a mathematically exact expression of experimental research with real
systems, it was necessary to employ meticulous case differentiations, differentiated
terminology and definitions that were extremely specific to the actual circumstances,
a feat for which the language normally used in mathematics could not provide well.
The circumstances observed in reality could no longer simply be described using the
available mathematical means. These thoughts indicate the beginning of the genesis
of Fuzzy Set Theory” [58, p. 7]. In his first article “Fuzzy Sets” he launched new
mathematical entities as classes or sets that “are not classes or sets in the usual sense
of these terms, since they do not dichotomize all objects into those that belong to
the class and those that do not”. He introduced “the concept of a fuzzy set, that is a
class in which there may be a continuous infinity of grades of membership, with the
grade of membership of an object x in a fuzzy set A represented by a number f A(x)
in the interval [0, 1]” [43, 57].

Some years later Zadeh compared the strategies of problem solving by computers
on the one hand and by humans on the other hand. He called it a paradox that
the human brain is always solving problems by manipulating “fuzzy concepts” and
“multidimensional fuzzy sensory inputs” whereas “the computing power of the most
powerful, the most sophisticated digital computer in existence” is not able to do
this. Therefore, he stated that “in many instances, the solution to a problem need
not be exact”, so that a considerable measure of fuzziness in its formulation and
results may be tolerable. “The human brain is designed to take advantage of this
tolerance for imprecision whereas a digital computer, with its need for precise data
and instructions, is not” [55, p. 132].

17.7.2 Fuzzy Logic and Fuzzy Concepts

Zadeh had served as first reviewer and his Berkeley-colleague and mathematician
Hans-Joachim Bremermann (1926–1996), as second for the Ph.D. thesis of math-
ematician Joseph A. Goguen’s (1941–2006) entitled “Categories of Fuzzy Sets”.
Reference [14] Here, Goguen generalized the fuzzy sets to so-called “L-sets”. An
L-set is a function that maps the fuzzy set carrier X into a partially ordered set
L . The partially ordered set L Goguen called the “truth set” of the fuzzy set.
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The elements of L can thus be interpreted as “truth values”; in this respect, Goguen
then also referred to a “Logic of Inexact Concepts” [15].

Zadeh’s efforts to use his fuzzy sets in linguistics led to an interdisciplinary sci-
entific exchange between him and Goguen on the one hand and between Berkeley-
psychologist Eleanor Rosch (Heider) (born 1938) and the Berkeley-linguist George
Lakoff (born 1941) on the other. In her psychological experiments Rosch could show
that concept categories are graded. Consequently she argued that concepts are not
adequately represented by classical sets. Rosch developed her prototype theory on the
basis of these empirical studies. This theory assumes that people perceive objects in
the real world by comparing them to prototypes and then ordering them accordingly.
In this way, according to Rosch, word meanings are formed from prototypical details
and scenes and then incorporated into lexical contexts depending on the context or
situation. It could therefore be assumed that different societies process perceptions
differently depending on how they go about solving problems [33].

Lakoff referred to the fact that also statements in natural language are graded,
“that sentences of natural languages (at least declarative sentences) are either true or
false or, at worst, lack a truth value, or have a third value”. He argued “that natural
language concepts have vague boundaries and fuzzy edges and that, consequently,
natural language sentences will very often be neither true, nor false, nor nonsensical,
but rather true to a certain extent and false to a certain extent, true in certain respects
and false in other respects” [21, p. 458]. In this paper Lakoff wrote that Zadeh’s fuzzy
set theory is an appropriate tool of dealing with degrees of membership, and with
(concept) categories that have unsharp boundaries. Because he used the term “fuzzy
logic” he deserves the credit for first introducing this expression in the scientific
literature but based on his later research, however, he came to find that fuzzy logic
is not an appropriate logic for linguistics [40]. But for all that we think that fuzzy
logic is an appropriate logic for psychology and epistemology—in it’s genetic and
in its historical variation!

17.8 Outlook: Towards Fuzzy Epistemology

After Zadeh’s approach to generalize systems to fuzzy systems many concepts in
science—epistemic things—have been “fuzzified” already in engineering sciences
and in mathematics there exist a theory of fuzzy algebra, theories of fuzzy topology
and fuzzy probability. What is strongly needed is an epistemological foundation of
fuzzy concepts and a fuzzy set in its core. Rheinberger stressed “that the fruitfulness
of boundary objects in research does not depend on whether they can be given a
precise and codified meaning from the outset. Stated otherwise, it is not necessary,
indeed it can be rather counterproductive, to try to sharpen the conceptual boundaries
of vaguely bounded research objects while in operation. As long as objects are in
flux, too, the corresponding concepts must remain in flux, too”. In other words, he
wrote: “Boundary objects require boundary concepts” [32, p. 221] which we will
interpret as fuzzy objects require fuzzy concepts.
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Rheinberger accentuates the value of imprecision, vagueness or fuzziness in sci-
ence when he wrote: “Lofti Zadeh claims that ‘there is a rapidly growing interest
in inexact reasoning and processing of knowledge that is imprecise, incomplete, or
totally reliable. And it is in this connection that it will become more and more widely
recognized that classical logical systems are inadequate for dealing with uncertainty
and that something like fuzzy logic is needed for that purpose’”. Rheinberger went
back to the question “whether we need, in order to understand conceptual tinker-
ing in research, more rigid metaconcepts than those first-order concepts that we,
as epistemologists, analyze. I am inclined to deny this. Why should historians and
epistemologists be less imprecise, less operational, and less opportunistic after all,
than scientists?” [32, p. 236].

In analogy to our “fuzzification” of the structuralist approach in philosophy of
science that we presented in Sect. 17.5 and because of the parallelism between the
Kuhnian model of theory change and the Piagetian model of conceptual develop-
ment that we discussed in Sect. 17.6.2 we propose now to establish a “fuzzy” view on
Piaget’s Genetic Epistemology. In our view the concepts that Piaget named “schema”
are fuzzy concepts, Piaget’s processes of assimilation and accomodation are fuzzy
relations, and the stages in Piaget’s constitution of the series of the cognitive devel-
opment of children have no sharp borders but are fuzzy stages. This fuzzy approach
to Piaget’s structuralist theory, i.e. a “Fuzzy Genetic Epistemology” could be estab-
lished as follows:

Fuzzy structuralism uses fuzzy sets and fuzzy relations instead of usual sets and
relations. Fuzzy structures are models for concepts or perceptions that scientist use
to think on and to create new scientific theories. Fuzzy relations are appropriate to
model intertheoretical relations between fuzzy structures to model developments,
e.g. scientific revolutions or paradigm changes. A “Fuzzy Genetic Epistemology”
could be useful to fuzzy Piaget’s theory of conceptual development. Fuzzy structures
are suitable to build fuzzy models for unsharp concepts and perceptions (“fuzzy
schemata”) that children use to represent objects, scenarios or sequences of events
or relations between them. Fuzzy relations will model changes of fuzzy schemata
like Piaget’s “assimilation” and “accomodation”.

Acknowledgments Work leading to this paper was partially supported by the Foundation for the
Advancement of Soft Computing Mieres, Asturias (Spain).

References

1. Belohlavek, R., Klir, G.J. (eds.): Concepts and Fuzzy Logic. TheMIT Press, Cambridge (2011)
2. Anele, D.I.O.: Development in Thomas Kuhn’s theory of perception of similarity relationships

in science. Lumina 22(1), 1–25 (2011)
3. Balzer, W., Moulines, C.U., Sneed, J.D.: An Architectonic for Science. The Structuralist Pro-

gram. Reidel, Dordrecht (1987)
4. Bird, A.: “Thomas Kuhn”. Stanford Encyclopedia of Philosophy. Metaphysics Research Lab

at Stanford University. First published Fri Aug 13, 2004; substantive revision Thu Aug 11,



17 Fuzzy Concepts and Fuzzy Logic in Historical and Genetic Epistemology 375

(2011). http://plato.stanford.edu/entries/thomas-kuhn/, Accessed February 19, 2015
5. Bourbaki, N (pseudo.): Elements of Mathematics: Theory of Sets, Addison-Wesley, Reading

(1968)
6. Dizikes, P.: 3 Questions: David Kaiser on Thomas Kuhn’s paradigm shift. Scholars mark

50th anniversary of ‘The Structure of Scientific Revolutions’, MIT News Office, Decem-
ber 6, (2012). http://newsoffice.mit.edu/2012/3-questions-david-kaiser-on-thomas-kuhns-
paradigm-shift-1206 Accessed February 19, 2015

7. Ellington, J.W.: TheUnity ofKant’s Thought in his PhilosophyofCorporealNature, Philosophy
of Material Nature. Hackett Publishing Company, Indianapolis (1985)

8. Fölsing, A.: Heinrich Hertz. Hoffmann und Campe, Hamburg (1997)
9. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens, Halle a. S.: Louis Nebert, 1879. Translated as Concept Script, a formal language of
pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in J. van Heijenoort
(ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard Uni-
versity Press, Cambridge (1967)

10. Frege, G.: Funktion und Begriff, 1891. In: Patzig, G. (ed) Frege, G.: Funktion, Begriff, Bedeu-
tung, Vandenheoeck & Ruprecht, Göttingen, pp. 18–39 (1986)

11. Frege, G.: Grundgesetze der Arithmetik, vol. 2, Jena: Hermann Pohle, 1893–1903, Bd. II.
English translation: Basic Laws of Arithmetic, translated and edited with an introduction by
Ebert, P.A., Rossberg, M., Oxford University Press, Oxford (2013)

12. Frege, G.: Nachgelassene Schriften. Meiner, Hamburg (1969)
13. Freud, S.: Three Essays on the Theory of Sexuality VII, 1905, 2nd edn. Hogarth Press (1955)
14. Goguen, J.A.: Categories of fuzzy sets: applications of a non-cantorian set theory. Ph.D. Thesis.

University of California at Berkeley, June 1968
15. Goguen, J.A.: The Logic of Inexact Concepts. Synthese 19, 325–373 (1969)
16. Kant, I.: Critic of Pure Reason, Chapter III. The Architectonic of Pure Reason, The

Cambridge Edition of theWorks of Immanuel Kant, Cambridge University Press: 1998). http://
www.philosophy-index.com/kant/critique_pure_reason/ii_iii.php. Accessed 9.2.2015

17. Kuhn, T.S.: The road since structure: Philosophical essays, 1970–1993. In: Conant, J., Hauge-
land, J., (eds.) Chicago: University of Chicago Press (2000)

18. Kuhn, T.S.: The Structure of ScientificRevolutions, 1st edn, University of Chicago Press (1962)
19. Kuhn, Thomas S.: The Copernican Revolution: Planetary Astronomy in the Development of

Western Thought, Cambridge. Harvard University Press, Massachusetts (1957)
20. Kuhn, ThS: The Essential Tension, pp. 297–308. The University of Chicago Press, Chicago

(1977)
21. Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. J. Philos. Logic

2, 458–508 (1972)
22. Loftus, G., et al.: Introduction to Psychology, 15th Edn, London, Cengage, (2009)
23. Machery, E.: Concepts are not a natural kind. Philos. Sci. 72, 444–467 (2005)
24. MacIsaac,D.: ThePedagogical Implications of Parallels betweenKuhn’s Philosophy of Science

and Piagets’ Model of Cognitive Development. http://physicsed.buffalostate.edu/danowner/
kuhnpiaget/KP1.html

25. Margolis, E., Lawrence, S.: “Concepts”. Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab at Stanford University. First published Mon Nov 7, 2005; substantive revision
Tue May 17, (2011). Accessed February 19, 2015

26. Merton, R.: Science, Technology and Society in Seventeenth Century England. Osiris IV(2),
360–632 (1938)

27. Piaget, J., Garcia, R.: Psychogenesis and the History of Science. (H. Fieder, Trans.). Columbia
University Press, New York (1988). (Original published in 1983)

28. Piaget, J.: Les notions de mouvement et de vitesse chez l’enfant, Paris (1946)
29. Piaget, J.: The Child’s Conception of Causality, transl. by M. Gabain, London (1930)
30. Rheinberger, H.-J.: “Gene”, Stanford Encyclopedia of Philosophy. Available at: http://plato.

stanford.edu/entries/gene/. Accessed 10.2.2015

http://plato.stanford.edu/entries/thomas-kuhn/
http://newsoffice.mit.edu/2012/3-questions-david-kaiser-on-thomas-kuhns-paradigm-shift-1206
http://newsoffice.mit.edu/2012/3-questions-david-kaiser-on-thomas-kuhns-paradigm-shift-1206
http://www.philosophy-index.com/kant/critique_pure_reason/ii_iii.php
http://www.philosophy-index.com/kant/critique_pure_reason/ii_iii.php
http://physicsed.buffalostate.edu/danowner/kuhnpiaget/KP1.html
http://physicsed.buffalostate.edu/danowner/kuhnpiaget/KP1.html
http://plato.stanford.edu/entries/gene/
http://plato.stanford.edu/entries/gene/


376 R. Seising

31. Rheinberger, H.-J.: Experimental complexity in biology: some epistemological and historical
remarks. Philosophy of science. In: Proceedings of the 1996BiennialMeeting of the Philosophy
of Science Association, Supplement to, vol. 64(4), pp. 245–254 (1997)

32. Rheinberger, H.-J.: Gene Concepts. Fragments from the perspective of molecular biology. In:
Beurton, P., Falk, R., Rheinberger, H.-J. (eds.) The Concept of the Gene in Development and
Evolution. pp. 219–239, Cambridge, Cambridge University Press (2000)

33. Rosch, E.: Natural categories. Cogn. Psychol. 4, 328–350 (1973)
34. Sadegh-Zadeh, K.: Handbook of Analytical Philosophy of Medicine. vol. 113, Springer,

Dordrecht (2012). (Philosophy and Medicine)
35. Sadegh-Zadeh, K.: The fuzzy revolution: goodbye to the Aristotelian Weltanschauung. Artif.

Intell. Med. 21, 1–25 (2001)
36. Santrock, J.W.: Life-Span Development, 9th edn. McGraw-Hill College, Boston (2004)
37. Santrock, J.W.: A Topical Approach To Life-Span Development, pp. 211–216. McGraw-Hill,

New York (2008)
38. Seising, R.: Between empiricism and rationalism: a layer of perception modeling fuzzy sets

as intermediary in philosophy of science. In: Melin, P. et al. (eds.) Theoretical Advances
and Applications of Fuzzy Logic and Soft Computing. Proceedings of the IFSA 2007 World
Congress Theory and Applications of Fuzzy Logic and Soft Computing,CancunMexico, 2007.
Berlin, Springer (Advances in Soft Computing 42, LNCS, vol. 4529), pp. 101–108 (2007)

39. Seising, R.: Fuzzy sets and systems and philosophy of science. In: Seising, R., (ed.) Views on
Fuzzy Sets and Systems. pp. 1–35, Springer, Berlin (2009)

40. Seising, R.: Interview with G. Lakoff, August 6, 2002, UC Berkeley, Dwinell Hall
41. Seising, R.: Interview with L. A. Zadeh, July, 26, 2000,UC Berkeley, Soda Hall, see [40]
42. Seising, R.: Scientific theories and the computational theory of perceptions: a structuralist view

including fuzzy sets. In: Stepnika, M, et al. (eds.) NewDimensions in Fuzzy Logic and Related
Technologies. Proceedings of the 5th EUSFLAT Conference, Ostrava, Czech Republic, vol. 1,
pp. 401–408 ( 2007)

43. Seising, R.: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial
Applications—Developments up to the 1970s, Springer, Berlin (2007)

44. Sneed, J.D.: The Logical Structure of Mathematical Physics. Reidel, Dordrecht (1971)
45. Stegmüller, W.: The Structure and Dynamics of Theories. Springer, New York (1976)
46. Steup, M.: “Epistemology”, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition).

http://plato.stanford.edu/archives/win2013/entries/epistemology/. Accessed 9.2. 2015
47. Suppes, P.: A set of independent axioms for extensive quantities (1951). See: http://suppes-

corpus.stanford.edu/browse.html?c=mpm&d=1950
48. Suppes, P.: Some remarks on problems and methods in the philosophy of science (1954). See:

http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950
49. Suppes, P.: Introduction to Logic. Van Nostrand, New York (1957)
50. Wadsworth, B.: Piaget’s Theory of Cognitive Development: An Introduction for Students of

Psychology and Education. David McKay & Company, NewYork (1971)
51. Wadsworth, B.: Piaget for the Classroom Teacher. Longman, New York (1978)
52. Wittgenstein, L.: Tractatus logico-philosophicus. Routledge & Kegan Paul, London (1922)
53. Wittgenstein, L.: Philosophical Investigations. Blackwell Publishing, Oxford (1953)
54. Zadeh, L.A.: Autobiographical note, undated type-written manuscript. after 1978
55. Zadeh, L.A.: FuzzyLanguages and their relation to human andmachine intelligence. In:Marois,

M, (ed.) Man and Computer. Proceedings of the First International Conference on Man and
Computer, Bordeaux, June 22–26 1970. Basel: Karger, S., 1972, pp. 130–165

56. Zadeh, L.A.: From circuit theory to systems theory. Proc. IRE 50, 856–865 (1962)
57. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
58. Zadeh, L.A.: My life and work—a retrospective view. Appl. Comput. Math. 10(1), 4–9 (2011)

http://plato.stanford.edu/archives/win2013/entries/epistemology/
http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950
http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950
http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950

	Preface
	Contents
	Editors and Contributors
	1 On Reasoning with Words and Perceptions
	1.1 Introduction
	1.2 Words, Words, Words
	1.2.1 Some Historical Background
	1.2.2 On Speakers and Listeners, Writers and Readers
	1.2.3 On Reference and Linguistic Variables

	1.3 On Perception
	1.3.1 An Interpolation on Rules
	1.3.2 Perception Resumed

	1.4 Envoi
	References

	2 Language, Fuzzy Logic, Metalogic
	2.1 Language
	2.2 Logic
	2.3 Fuzzy Logic
	2.4 Metalogic

	3 On What I Still Hope from Fuzzy Logic
	3.1 Introduction
	3.2 Predicates, Collectives, and Their States
	3.3 The Case of Singular Statements/Events
	3.4 Towards an Algebraic Structure for the Analysis  of Ordinary Reasoning
	3.5 Conjectures and Refutations
	3.6 An Important Open Problem
	3.7 Conclusion
	References

	4 Fuzzy Logic and Modern Economics
	4.1 Introduction
	4.2 Fuzzy Preferences and Rationality
	4.3 Empirical Techniques
	4.4 Relationship with Modern Economics
	4.4.1 Behavioral Economics
	4.4.2 Institutional Economics
	4.4.3 New Theories of Justice
	4.4.4 Complexity and Agent-Based Models

	4.5 Conclusions
	References

	5 Linguistic Summaries of Time Series: A Powerful and Prospective Tool  for Discovering Knowledge on Time  Varying Processes and Systems
	5.1 Introduction
	5.2 Linguistic Data Summaries: A Static and Dynamic Case
	5.3 Examples of Applications
	5.3.1 Linguistic Summarization of Investment (Mutual)  Fund Quotations
	5.3.2 Linguistic Summarization of Web Server Logs

	5.4 Concluding Remarks
	References

	6 Granular Geometry
	6.1 Introduction
	6.2 Background
	6.2.1 Motivation
	6.2.2 Granulated Space in Geographic Information Science
	6.2.3 Fuzzy and Granular Geometries

	6.3 The Granular Geometry Framework
	6.3.1 Similarity Logic
	6.3.2 The Granular Geometry Framework

	6.4 Towards an Approximate Tolerance Geometry
	6.4.1 Step 1: Choose an Axiomatization
	6.4.2 Step 2: Define the Intended Interpretation
	6.4.3 Step 3: Define Truthlikeness 
	6.4.4 Step 4: Fuzzification

	6.5 Granular Geometries and Zadeh's Restriction-Centered Theory ...
	6.6 Conclusions and Outlook
	6.6.1 Summary
	6.6.2 Limitations
	6.6.3 Further Work

	References

	7 Inquiry About the Origin and Abundance  of Vague Language: An Issue for the Future
	7.1 Introduction: Vagueness in Syntax, Semantics  and Pragmatics
	7.2 The Pervasiveness of Vagueness: Vagueness  in both an Empirical and a Formal Discourse
	7.3 Vagueness and Related Phenomena: The Vocabulary  of Vagueness
	7.3.1 Placeholders (whatsisname, thingy)
	7.3.2 General Extenders (and son forth, something like that)
	7.3.3 Approximators (approximately, more that, roughly)
	7.3.4 Vague Quantifiers (few, many, most)

	7.4 Gossip Language and Gossip Roles
	7.5 The Usefulness of Vague Language
	7.6 Concluding Remarks
	References

	8 Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning
	8.1 Fuzzy Set Theory, Natural Language  and Human Reasoning
	8.1.1 Motivation and History
	8.1.2 The Paradigm of FNL
	8.1.3 Fuzzy Type Theory---The Mathematical Tool for FNL
	8.1.4 Future Prospects of Fuzzy Set Theory  in Linguistic Modeling

	8.2 Linguistic Semantics and FNL
	8.2.1 Nouns and Objects
	8.2.2 Adjectives
	8.2.3 Hedging
	8.2.4 Evaluative Linguistic Expressions in FNL
	8.2.5 Linguistic Quantifiers and Determiners
	8.2.6 Intermediate (Fuzzy) Quantifiers in FNL
	8.2.7 The Meaning of Noun Phrases and Simple Sentences
	8.2.8 Verbs and Other Linguistic Phenomena

	8.3 Reasoning in FNL
	8.3.1 Fuzzy/Linguistic IF-THEN Rules
	8.3.2 Syllogistic Reasoning
	8.3.3 A Model of Commonsense Human Reasoning

	8.4 Conclusion
	References

	9 From Lattice Valued Theories to Lattice Valued Analysis
	9.1 The Future of the Fuzzy Logic
	9.2 Introduction
	9.3 Preliminaries
	9.3.1 Extension Principle and Its Relational Form
	9.3.2 Residuated Lattice
	9.3.3 L-fuzzy Sets, Fuzzy Relations and Fuzzy Spaces

	9.4 Fuzzy Functions
	9.4.1 Fuzzy Function and Its Core
	9.4.2 Generalized Extension Principle and Image  of a Fuzzy Set
	9.4.3 Pre-image of a Fuzzy Set

	9.5 Continuous Fuzzy Functions
	9.6 Conclusion
	References

	10 Applying Fuzzy Mathematics to Empirical Work in Political Science
	10.1 Past Work
	10.2 Where Do We Go from Here?
	10.3 A New Direction?
	References

	11 Crisis' Origin's Causes. Contributions  from the Fuzzy Logic in the Sustainability  on the Socio-Economic Systems
	11.1 From the Current Uncertainty to Tomorrow's Hope
	11.2 Theoretical Bases of the Mistakes
	11.3 The Change in the Basis of the Crisis' Study
	11.4 Restoration of the Forgotten Effects in the Crisis
	11.5 The Underlying Reality: A Social Crisis of Humanism
	References

	12 Advanced Computing with Words: Status and Challenges
	12.1 Introduction
	12.2 Some ACWW Problems
	12.3 A Roadmap for Solving ACWW Problems
	12.3.1 Modeling of Words
	12.3.2 Computing Solutions to ACWW Problems
	12.3.3 Translating the Solution Back into Words
	12.3.4 Observation

	12.4 Dealing with Truth, Probability, and Possibility
	12.5 A General Guide for Formulation of ACWW Problems
	12.6 Two Examples
	12.6.1 Tall Swedes Problem (AHS)
	12.6.2 Swedes and Italians Problem (SIP)

	12.7 A Syllogistic Approach to ACWW Problems
	12.8 Advanced Computing with Words: Status, Challenges, and Future
	References

	13 Informal Meditation on Empiricism  and Approximation in Fuzzy Logic and Set Theory: Descriptive Normativity, Formal Informality and Objective Subjectivity
	13.1 Application and Interpretation of Mathematics: Scientific Empiricism
	13.2 Scientific Empiricism: Subjectivity, Contextuality  and Normativity
	13.3 From Empiricism to Approximation
	13.4 Approximation to Approximations: Kinds, Uses, Constraints and Significance
	13.4.1 Formal Conceptual Contexts
	13.4.2 Formal Calculational Contexts
	13.4.3 Applied Conceptual Contexts
	13.4.4 Experimental Contexts
	13.4.5 Evidentiary Contexts
	13.4.6 Theoretical Contexts, Interpretive and Explanatory
	13.4.7 Disciplinary Contexts
	13.4.8 Practical Contexts

	13.5 Fuzziness Is Empirical, Contextual, Approximative, Subjective and Objective in Construction and Application
	13.5.1 Fuzziness as Empirical
	13.5.2 Fuzziness as Subjective and Objective
	13.5.3 Fuzziness as Approximative
	13.5.4 Fuzziness as Contextual

	13.6 Fuzzy Logic Is Empirical, Subjective, Objective, Approximative and Contextual
	13.6.1 Fuzzy Logic as Empirical: The Case of Quantum Logic
	13.6.2 Fuzzy Logic as Subjective and Objective
	13.6.3 Fuzzy Logic as Approximative
	13.6.4 Fuzzy Logic as Contextual

	13.7 Conclusion
	References

	14 Formalizing the Informal, Precisiating  the Imprecise: How Fuzzy Logic Can  Help Mathematicians and Physicists  by Formalizing Their Intuitive Ideas
	14.1 Fuzzy and Physics: Past and Present
	14.2 Fuzzy and Physics: Towards the Future
	14.2.1 Case Study: Newton's Physics
	14.2.2 Beyond the Simplest Netwon's Equations
	14.2.3 From Equations to Solutions: Fuzzy Techniques Help to Deal with Divergent Series

	14.3 Fuzzy and Physics: Promising Future
	References

	15 Future Is Where Concepts, Theories  and Applications Meet (also in Fuzzy Logic)
	15.1 Introduction
	15.1.1 A Perplexity
	15.1.2 We Will Go Along This Path, Anyway
	15.1.3 A Detour on Carnap�s Explication Procedure
	15.1.4 Let's Finally Focus on a Few Topics

	15.2 And What About the Future?
	15.2.1 Computing with Words
	15.2.2 FST as an Experimental Science
	15.2.3 �Sharpened Order� and Measuring Fuzziness, Today.
	15.2.4 Relationships of Fuzziness with Other Emerging Notions (like �Trust�)
	15.2.5 Relationships of Fuzziness with Very Developed Different Theories (like QL)

	15.3 In the Future Everyone and Everything Will Be a Fuzzy Set for Fifteen Minutes
	15.4 Conclusions
	References

	16 Graduated Conjectures
	16.1 Introduction
	16.2 A Basic Fuzzy Algebra
	16.3 Conjectures and Refutations in a BFA with a Graded Ordering
	16.3.1 Sets of Admissible Premises
	16.3.2 Sets of Consequences
	16.3.3 Sets of Refutations
	16.3.4 Sets of Conjectures
	16.3.5 Sets of Hypothesis and Speculations

	16.4 Examples
	16.4.1 Example 1
	16.4.2 Example 2

	16.5 Conclusions
	References

	17 Fuzzy Concepts and Fuzzy Logic  in Historical and Genetic Epistemology
	17.1 Introduction
	17.2 An Architectonic for Science
	17.3 Structures of the Scientific and the Cognitive Development
	17.4 Sharp and Unsharp Concepts in Epistemology
	17.5 Fuzzy Structuralism
	17.6 Genetic Epistemology
	17.6.1 Structuralism in Education Science and Psychology
	17.6.2 Parallels Between Piaget's and Kuhn's Theories
	17.6.3 Unsharp Concepts in Genetic Epistemology

	17.7 Historical Epistemology and Fuzzy Set Theory
	17.7.1 Fuzzy Sets and Fuzzy Systems
	17.7.2 Fuzzy Logic and Fuzzy Concepts

	17.8 Outlook: Towards Fuzzy Epistemology
	References




