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Abstract
The notion that gut factors produced in
response to nutrient ingestion are capable of
stimulating the endocrine pancreas and conse-
quently reducing glycemic levels was intro-
duced more than 100 years ago. These gut
factors were subsequently called incretins,
and the augmented insulin response to nutrient
given orally compared to nutrient administered
intravenously was named “incretin effect.”
This chapter focuses on the mechanisms of
the synthesis and actions of the incretin pep-
tides, glucagon-like peptide 1, and glucose-
dependent insulinotropic polypeptide. In addi-
tion, alteration in incretin axis in type 2 diabetes
and therapeutic relevance of these peptides will
be highlighted. Finally, the role of incretin axis
in diabetes remission after gastrointestinal sur-
geries for treatment of obesity will be briefly
discussed.
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The Glucose Tolerance and b-Cell
Response

The blood glucose concentration is highly regu-
lated, so that the increase in glycemic levels after a
large carbohydrate meal consumption in a healthy
individual is minimal and short-lived as glycemic
levels rise only 50% of basal values and return to
premeal levels in 1–2 h. The size of glucose
response to meal ingestion is determined by a
balance between the rate of carbohydrate entry
into the gut and splanchnic glucose uptake.
While gastric emptying plays a major role in var-
iation in peak and nadir glucose levels [1],
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carbohydrate assimilation is mainly dependent on
the tight regulation of pancreatic β-cell response
to nutrient ingestion. A large body of evidence has
indicated that the insulin response to meal inges-
tion is controlled by a gut-pancreas (enteroinsular)
axis that integrates inputs from glycemic levels as
well hormones and neural signaling initiated by
eating, leading to a rapid decline of postprandial
glucose levels without causing hypoglycemia.
This enteroinsular axis activity is regulated as
part of a feed-forward system which allows an
anticipatory β-cell response to nutrient ingestion
based on observation that postprandial insulin
secretion that is pronounced earlier than the max-
imum glucose levels is reached after eating [2].

Postprandial glycemia contributes to overall
glycemic control [3]; therefore, many dietary and
pharmacological strategies for treatment of type
2 diabetes (T2DM) have been developed to mod-
ify the glycemic excursion by restraining gastric
emptying or augmenting the enteroinsular axis.

The Enteroinsular Axis
Activity (Incretin Effect)

The idea that factors from the gut stimulate pan-
creatic endocrine secretion was first proposed
after discovery of secretin. This concept was
tested by Moore and his colleagues who demon-
strated that administration of gut extract improved
glycosuria in patients with diabetes [4]. Shortly
after development of insulin assays, a number of
investigators reported that circulatory insulin con-
centrations are greater when glucose is given
orally than that after intravenous glucose admin-
istration despite similar glycemic levels (Fig. 1)
[5]. These observations confirmed the earlier
hypothesis that the gut factors released in
response to carbohydrate ingestion stimulate insu-
lin release. These factors were collectively named
incretins, a term that was originally used to refer to
endogenous factors stimulating internal secretions
in the body based on studies in which intestinal
extracts free of secretin lowered glucose levels in
dogs [6]. The relatively larger insulin response to
oral vs. a matched IV glucose infusion was called
incretin effect. Subsequently, it was recognized

that the incretin effect accounted for 30–70% of
insulin secretion after meal ingestion [7].

In healthy individuals with normal glucose
tolerance, glycemic excursion after ingestion of
25–100 g of glucose is almost identical. The abil-
ity to maintain postprandial glycemia within a
narrow range despite fourfold increase in glucose
intake is due to a progressive increase in postpran-
dial insulin secretion and the incretin effect in
proportion to the amount of carbohydrate ingested
[7]. Thus, while the glucose level is an important
stimulus for β-cell response, the incretin effect
controls the proportional increase in insulin out-
put based on the amount of nutrient ingestion.

Findings from numerous studies over years
demonstrated that two major peptides, glucagon-
like peptide 1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP), act as incretins
and collectively account for up to 70% of post-
prandial insulin secretion [7, 8]. These peptides
are secreted by specialized cells in the intestinal

Fig. 1 Blood glucose (a) and plasma insulin (b) response
to intrajejunal and intravenous glucose administration.
Augmented insulin secretion elicited by intrajejunal (solid
line, closed circle) as compared to intravenous (dashed
line, open circle) administration of glucose despite similar
glycemia is called incretin effect (Reproduced with permis-
sion [5])
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mucosa in response to nutrient ingestion dose
dependently and act through specific G-protein-
coupled receptors expressed on islet cells and
other tissues [9].

While the endocrine component of the
enteroinsular axis, which is the focus of this chap-
ter, has been better characterized, incretin effect
also includes direct nutrient effect as well as neu-
ral stimulation [10]. The role of autonomic ner-
vous system activation of the β-cell has been
investigated during the preabsorptive phase of
insulin secretion [11] and as an anticipatory
response to food intake or to oral nutrient sensory
stimulation [12]. However, in addition to premeal
insulin secretion, parasympathetic nervous sys-
tem (PNS) activation has been shown to make an
important contribution to the β-cell response to
food intake [13, 14].

Glucagon-Like Peptide 1

GLP-1 (7–36), a 30-amino acid peptide and a prod-
uct of proglucagon gene, is secreted from intestinal
endocrine L-cells located throughout the gastroin-
testinal (GI) tract but primarily in the lower small
intestine and colon [15], within minutes after car-
bohydrate and fat ingestion [16]. Plasma levels of
GLP-1 parallel those of insulin with the highest
levels within 30–60 min after eating [17] and pro-
portionate to the meal size [18].

The mechanism of nutrient-L-cell coupling is
not completely understood, but it has been
suggested that upstream sensors activate distally
located L-cells through hormonal or neural factors
rather than direct nutrient sensing [19] since
GLP-1 is secreted much earlier than expected
arrival time of nutrient in the distal gut. While
the carbohydrate is the strongest stimulator of
GLP-1 secretion, ingested fat and protein as well
as the nutrients combined increase L-cell products
in both individuals with and without T2DM [20].

Once released from L-cells, GLP-1 is rapidly
metabolized by a ubiquitous protease, dipeptidyl
peptidase 4 (DPP-4), located in the circulation
as well as on capillary endothelium, resulting
in a half-life of 1–2 min in the circulation
[21]. DPP-4 cleaves the two N-terminal amino

acids from GLP-1 leaving GLP-(9–39) with no
insulinotropic activity [22].

GLP-1 actions are mediated through a single
G-protein-coupled receptor, GLP-1 receptor
(GLP-1r), which is expressed in a variety of tis-
sues, including pancreatic islet cells, as well as the
specific brain areas (hypothalamus, hindbrain,
and midbrain), vagal afferent nerves, stomach,
lung, heart, and kidney [23].

The classic action of GLP-1 in β-cells is to
increase glucose-stimulated insulin output [7],
although GLP-1 also enhances the insulin biosyn-
thesis [24]. Studies of mice with a targeted dele-
tion of the GLP-1r gene (GLP-1r �/�) have
supported a significant role for GLP-1 signaling
in normal glucose homeostasis. Insulin secretion
in these mice is reduced, and glucose tolerance is
abnormal compared to control mice [25]. Islets
from GLP-1r �/� mice are more susceptible to
the toxic effects of streptozotocin [26], and they
lack compensatory capacity to grow following
partial pancreatectomy [27].

Activation of GLP-1r in pancreatic β-cells initi-
ates intracellular signaling mediated by activation
of cAMP/ protein kinase A (PKA) system. It
appears that acute effects of GLP-1 on β-cells,
such as glucose-stimulated calcium oscillation,
membrane depolarization, and insulin exocytosis,
are mainly mediated by the cAMP/PKA system.
However, chronic effects of GLP-1 on β-cells, such
as anti-apoptotic and proliferative effects, are more
likely mediated through phosphatidylinositol-3
kinase activity (PI-3K) [23].

Beyond the insulin secretagogue action of
GLP-1, this peptide plays a significant role in
normal islet development. GLP-1 signaling pro-
motes the expansion of β-cell mass by direct stim-
ulation of β-cell growth and replication [28], by
differentiation of pancreatic duct cells into insulin
producing cells [29], and by inhibiting β-cell
apoptosis [30].

It has also been hypothesized that glycemic
reducing effects of GLP-1 are partly mediated by
its inhibitory effects on α-cell during both fasting
and fed states. The inhibitory effect of GLP-1 on
glucagon seems to be a major cause for glucose-
induced glucagon suppression [31]. Along the
same line of evidence, glycemic reduction of
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GLP-1 in both diabetic and nondiabetic individual
during fasting state is attributed to the
glucagonostatic effects of this peptide [31].

Administration of GLP-1 or GLP-1r agonists at
high pharmacologic doses has also been shown to
reduce postprandial glucose excursion by
delaying gastric emptying [32] as a result of
altered autonomic nervous system activity [33].

The physiologic actions of endogenous GLP-1
on glucose metabolism have been studied using
continuous infusion of a potent GLP-1r antago-
nist, exendin-(9–39) in human. Blockade of
GLP-1r causes postprandial hyperglycemia indi-
cating that the endogenous GLP-1 is essential for
regulation of glucose [31]. However, interpreta-
tion of the effect of GLP-1r blockade on insulin
response to glucose or meal ingestion is con-
founded because of simultaneous hyperglycemia
caused by exendin-(9–39) infusion. The effect of
endogenous GLP-1 on islet cell hormone secre-
tion independent of glycemic levels has been
studied using combined hyperglycemic clamp
and meal ingestion. Using this setting, infusion
of GLP-1r antagonist suppressed postprandial
insulin secretion by 30–40% and enhanced gluca-
gon secretion in healthy individuals [34]. Findings
from these studies and others also indicated that
endogenous GLP-1 (unlike pharmacological con-
centrations of GLP-1) has a minimal effect on
gastric emptying; therefore, the insulinotropic
property of this peptide at physiologic levels is
not mediated by alteration in the rate of nutrient
passage [34–36].

Glucose-Dependent Insulinotropic
Polypeptide

GIP is a 42-amino acid peptide processed from
prepro-GIP exclusively by endocrine K-cells that
are located mostly in duodenum and upper jeju-
num, an ideal place to sense the nutrient arrival to
the gut [23]. The presence of nutrient in the gut
lumen does not seem to be the sole factor to
trigger GIP release as conditions interfering with
carbohydrate digestion or uptake have been
shown to diminish GIP secretion [37]. Similar to

GLP-1, all macronutrients stimulate K-cells pro-
portionally to the size of nutrient intake [18],
although adding fat and protein to glucose has a
synergistic effect on GIP secretion in contrast to
GLP-1 secretion [20].

Similarly to GLP-1, the full-length GIP has a
short (5–7 min) circulatory half-life. Once it is
released into circulation, GIP is rapidly metabo-
lized by DPP-4, which cleaves GIP specifically
between residues 2 and 3 leaving GIP-(3–42) with
no insulinotropic activity [23].

All physiologic actions of GIP are mediated
through a single specific G-protein-coupled
receptor, GIP receptor (GIPr), which has
some homology with GLP-1 and glucagon
receptors. The GIPr is expressed in both α-
and β-cells of the pancreatic islet, the foregut,
adipocytes, adrenal cortex, pituitary, and some
brain regions [23]. GIP signaling in the β-cell
is relatively similar to GLP-1. Binding to its
receptor on β-cell, GIP activates adenylyl
cyclase and increases intracellular cAMP, but
also acts through PI3 kinase and growth factor
pathways [23].

In rodent models, using a GIPr antagonist or
eliminating circulating GIP by immunoneutra-
lization method leads to glucose intolerance as a
result of reduced insulin secretion [38, 39]. Also,
targeted gene deletion of the GIP receptor in mice
resulted in abnormal glucose intolerance and insu-
lin secretion in these animals despite normal
fasting glucose levels and normal insulin
responses to intraperitoneal glucose administra-
tion [40]. These findings are indicative of incretin
properties of GIP. GIP signaling, however, also
has been shown to promote obesity. Elimination
of endogenous GIP effects in mice by deletion of
the GIP receptor (GIP �/�) [41]or by infusion of
GLP-1r antagonist [42] or by ablation of GIP
secreting endocrine cells [43] protects animals
against weight gain induced by high-fat diet or
overeating secondary to leptin deficiency. These
leaner mice have better glucose tolerance than
their fat littermates.

Beyond the insulin secretagogue effect, GIP
promotes proliferation of β-cell lines and protects
against apoptosis [44].
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Despite the insulinotropic property of GIP in
healthy humans, administration of pharmacologi-
cal doses of GIP in persons with T2DM fails to
increase insulin secretion [45]. Additionally, GIP
(in contrast to GLP-1) has stimulatory effect on
α-cell secretion [46] which in turn is an undesir-
able effect for glucose control in patients with
T2DM.

Chord and Discord Among GLP-1
and GIP

GLP-1 and GIP as well as their receptors share
some sequence homology. They both are secreted
in response to eating and proportionally to the
amount of nutrient intake and metabolized and
inactivated by DPP-4 upon secretion. They both
function as incretins by activating some common
intracellular signaling after binding to their spe-
cific receptors on β-cells. More importantly, the
insulin secretagogue effect of these gut hormones
is only present when glucose levels are higher
than fasting values (5–6 mmol/l) [47–49]. These
similarities between the two peptides have raised a
question about a redundancy in the enteroinsular
system, whose presence has been supported by
studies reporting that one incretin can compensate
for the lack of function of the other [50, 51].

Of note, there are several key differences in the
site of synthesis and mechanism of secretion,
mechanism of action, and extra-pancreatic effects
between the two peptides despite apparent over-
lap. GLP-1 is secreted in the small intestine, but
the largest concentrations of L-cells are in the
ileum and colon [15], while GIP is made mainly
in the duodenum and jejunum [37]. In addition,
given the timing of GLP-1 peak after meal, vagal
neural stimulation has been proposed to be
involved in GLP-1 secretion [19, 52], while GIP
secretion seems to be more stimulated by
substrate-K-cell interaction [37]. Postprandial
GIP concentrations rise greater than those of
GLP-1 (5- vs.1.5-fold), and GIP has a slightly
longer circulatory half-life (5–7 vs. 1–2 min).
Therefore, endocrine properties of GLP-1 have
been questioned. In fact, data indicate that

GLP-1 actions are mediated through a neural
mechanism initiated by sensors in the hepatic
portal vein that would have access to relatively
larger concentrations of GLP-1 compared to sys-
temic levels [53, 54].

Finally, extra-incretin actions of these peptides
are significantly different. GIP seems to be
involved in promoting obesity as well as triglyc-
eride storage in adipocytes [42–44] as well as in
increasing glucagon secretion, which collectively
worsen glucose homeostasis. On the contrary,
GLP-1 suppresses glucagon secretion [31], delays
gastric emptying [55, 56], causes satiety [57], and
suppresses hepatic glucose production [58] – all
of these effects promoting improved glucose
metabolism. Apart from metabolic effects of
GIP, recent data suggest that GIP signaling is a
critical regulator of optimal bone mass and
structure [59].

Taken together, a large body of evidence sup-
ports the notion that GLP-1 and GIP have unique
physiologic actions that are complementary.

Enteroinsular Axis Activity and Type
2 Diabetes

Using the classic method for measuring the
incretin effect, a 2-day study with an oral glucose
tolerance test on day 1 followed on day 2 by a
glycemic-matched IV glucose infusion [7]
reported a significant impairment of the incretin
effect in patients with type 2 diabetes
[60–62]. However, in a group of patients with
type 2 diabetes with better glycemic control,
incretin effect, measured using 1 day study of a
meal tolerance test during hyperglycemic clamp,
was similar to that in healthy controls
[36]. Among the diabetic patients in this cohort,
fasting glucose and A1C levels were inversely
correlated with the measured incretin effect [36],
suggesting that poor glycemic control is associ-
ated with lower incretin effect. Diminished
incretin effect has also been reported in
nondiabetic individuals with abnormal glucose
tolerance test [63], nondiabetic critically ill
patients [64], and in heart and liver transplant
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recipients taking immunosuppressive known to
affect the β-cell [65]. Impaired incretin effect has
been also reported in adolescents with type 2 dia-
betes or impaired glucose tolerance [66],
suggesting that the incretin abnormalities are pre-
sent in the early stage of diabetes.

These findings raised the question whether the
incretin secretion or effectiveness are fully pre-
served in persons with T2DM. Postprandial
plasma levels of GLP-1 have been reported to be
increased [67, 68], decreased [69], or unchanged
[70] in persons with T2DM compared with
healthy controls. Furthermore, there is no evi-
dence of reduced GIP secretion in diabetes; in
fact, patients with diabetes seem to have higher
GIP response to glucose challenge than those
without [71, 72]. Therefore, it is unlikely that
GLP-1 or GIP deficiency plays a major role in
β-cell dysfunction in type 2 diabetes.

On the other hand, incretin-induced β-cell
secretion is diminished in persons with type 2 dia-
betes [73]. The pathogenesis of reduced effective-
ness of incretins in diabetes is not completely
understood, although it is plausible that abnormal
β-cell function in general contributes to reduced
incretin effect and β-cell responsiveness to
incretins. Supporting this hypothesis are the data
demonstrating that improved glycemic control
with medical intervention for 4 weeks can recover
the β-cell response to GLP-1 and GIP, likely due
to improved overall β-cell function [74]. It is
worth to mention that the relative contribution of
the GLP-1 effect to postprandial insulin secretion
was shown to be similar in patients with well-
controlled T2DM and matched healthy controls
[36], even though the β-cell function in the dia-
betic individuals was reduced.

Despite reduced β-cell sensitivity to GLP-1 in
individuals with T2DM [73], administration of
pharmacologic amounts of GLP-1 normalizes
fasting glucose levels [75–77], mainly due to
increase insulin secretion and partly to glucagon
suppression [78–81]. In contrast, in patients
with diabetes and moderate glycemic control,
administration of GIP at higher doses has trivial
glycemic or insulinotropic effect [45, 76, 77, 82].
The mechanisms underlying reduced GIP

effectiveness in diabetes are largely unknown, but
GIP deficit can be the culprit for the overall reduced
incretin effect in the affected individuals.

Enteroinsular Axis Activity and
Bariatric Surgery

Most commonly performed weight-loss surgeries,
gastric bypass surgery (GB) and sleeve gastrec-
tomy, are known to induce diabetes remission
independent of weight loss [83–85]. One of the
early hypotheses proposed to explain weight-loss-
independent glycemic effects of gastric bypass
surgery was that rerouting the GI tract leads to
direct rapid delivery of nutrients into the distal gut
enhancing secretion of insulinotropic gut hor-
mones and improved glycemic control. Now it is
known that gastric bypass results in a larger glu-
cose excursion after meal ingestion earlier [85],
along with an earlier and higher peak of insulin
and incretin (GLP-1 and GIP) secretion [86–89]
(Fig. 2). In contrast, restrictive weight-loss pro-
cedures such as adjustable gastric band have no
effect on postprandial glucose excursion or insu-
lin and GI hormone responses [90] (Fig. 2).

Altered glycemic excursion after GB has been
attributed in part to more rapid nutrient passage
from the small gastric pouch into the gut [93–95]
leading to the markedly enhanced secretions of
incretins [96]. Sleeve gastrectomy appears to have
similar effects on glucose, insulin, and GLP-1
responses to meal ingestion as GB, although the
magnitude seems to be smaller [91] (Fig. 2).

It is also recognized that improved β-cell sen-
sitivity to glucose in subjects with gastric bypass
is exclusively postprandial since insulin secretion
in response to intravenous glucose, which has no
effect on the release of GI factors, is similar
before and after surgery or when compared to
non-operated individuals [97, 98]. While the role
of enteroinsular axis function in glycemic control
after sleeve gastrectomy remains to be under-
stood, postprandial hyperinsulinemia after GB is
typically attributed to the combined effects of
elevated glucose [94, 99] and a greater incretin
effect [88, 89, 97] (Fig. 3).
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The role of GIP or nonhormonal components
of enteroinsular axis after GB is also not known,
but a large body of data shows that blockade of the
GLP-1r has a disproportionately greater effect on
meal-induced insulin release and β-cell glucose
sensitivity in GB subjects compared to controls
[97, 100, 101] (Fig. 3).

Taken together, the two most commonly
performed procedures for weight loss, gastric
bypass surgery [83], and, to a lesser extent,
sleeve gastrectomy [102], lead to diabetes
remission immediately after surgery, encourag-
ing the consideration of these procedures for
treatment of diabetes in affected mildly obese
individuals [103, 104]. The weight-independent
effects of GB to improve diabetes have been
mostly attributed to altered postprandial
glucose metabolism and islet function as a result
of changes in enteroinsular axis function
[88, 89].

Incretin-Based Therapies
for Treatment of Type 2 Diabetes

Over the last two decades, the enteroinsular axis
components, especially those targeting GLP-1
signaling, have been the focus of development of
therapeutic options for diabetes. The early studies
demonstrated that the insulinotropic effects of
GLP-1, unlike GIP, are preserved in patients
with T2DM [77–79], invigorating drug develop-
ment efforts around GLP-1r signaling rather than
GIP [105]. Furthermore, GLP-1 was recognized
to have a broad range of actions promoting
improved glucose metabolism, including stimu-
lating insulin secretion [7] and biosynthesis [24],
inhibiting glucagon release [31, 106], delaying
gastric emptying [107], and suppressing hepatic
glucose output [58, 108]. However, there were
limitations to the use of this peptide as a

Fig. 2 Blood glucose (a), insulin (b), and GLP-1 (c)
response to liquid meal or oral glucose ingestion in
nonsurgical healthy controls and those after adjustable

gastric band (AGB), sleeve gastrectomy (SG), and gastric
bypass (RYGB) surgeries. Data adjusted for baseline
values (Reproduced with permission [92])
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therapeutic option given its extremely short
half-life in the circulation. Two strategies
designed to circumvent the rapid degradation
of GLP-1 by DPP-4 were developed. One
involved modified GLP-1 or GLP-1r agonists
that are less susceptible to DPP-4 metabolism.
The other focused on the development of mole-
cules that inhibit the action of DDP-4. The first
approach led to the class of drugs that promote
GLP-1r signaling using pharmacological con-
centrations of these compounds and adminis-
tered subcutaneously and the second to a group
of small molecules that increase the circulatory
levels of endogenous GLP-1 and are adminis-
tered orally. Due to glucose dependency of
GLP-1 action on insulin and glucagon secretion
[48], hypoglycemia is not associated with nei-
ther of these drugs unless other insulin secreta-
gogue or insulin is co-administered with these
drugs [109–114]. While DPP-4 inhibitors share
the insulin and glucagon effect of GLP-1r ago-
nists, they have minimal effect on gastric emp-
tying [115]. Similarly increasing endogenous
GLP-1 as a result of DPP-4 inhibitors seems to
have no effect on body weight, whereas GLP-1r
agonists in pharmacologic doses have been
shown to induce weight loss along with glyce-
mic improvement [116].

Exenatide (Byetta) was the first GLP-1r ago-
nist to be approved in the USA in 2005 and
sitagliptin (Januvia) the first DPP-IV inhibitor in
2006. Thus far, liraglutide (Victoza), exenatide

long-acting release (LAR, Bydureon), dulaglutide
(Trulicity), and albiglutide (Tanzeum) from the
class of GLP-1r agonists and saxagliptin
(Onglyza), linagliptin (Tradjenta), and alogliptin
(Nesina) from the class of DPP-4 inhibitors have
been approved for treatment of T2DM in the USA
as an add-on to metformin, thiazolidinediones,
sulfonylureas, and basal insulin or a combination
of these drugs. Lixisenatide, a short-acting
GLP-1r agonist, is approved in Europe and is
under review for FDA approval in the USA.
A long list of compounds or combination products
based on incretin physiology is currently in devel-
opment. The recommendation by the ADA/ESD
guidelines [117] is to use GLP-1-based drugs as
second-line agents after metformin mainly due to
weight loss with GLP-1r agonist or weight neu-
trality with DPP-4 inhibitors as well as lack of
hypoglycemia despite glycemic improvement.

Altogether, GLP-1-based drugs have gained
popularity in a short period of time mainly due to
their safety, efficacy, and extra-pancreatic bene-
ficial effects, suggesting that they can be used in
the early treatment of diabetes according to the
international guidelines. Both incretin and
non-incretin effect of GLP-1r agonists contribute
to glycemia-reducing effect of this peptide as
administration of GLP-1 in persons with
T1DM, and no residual β-cell function has been
shown to normalize hyperglycemia [106,
118]. To date, the use of these drugs is restricted
to the treatment of T2DM.

Fig. 3 Incretin effect (a) and GLP-1 contribution to post-
meal insulin secretion rates (ISR) (b) during hyperglyce-
mic clamp in subjects after gastric bypass (n = 24, black

bar) and non-operated healthy controls (n = 11, white
bar), *p < 0.05 compared to gastric bypass surgery [97]
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