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Abstract In this paper we provide a prediction method, the prediction box, based
on a sparse learning process elaborated on very high dimensional information,
which will be able to include new — potentially high dimensional — influential
variables and adapt to different contexts of prediction. We elaborate and test this
method in the setting of predicting the national French intra day load curve,
over a period of time of 7 years on a large data basis including daily French
electrical consumptions as well as many meteorological inputs, calendar statements
and functional dictionaries. The prediction box incorporates a huge contextual
information coming from the past, organizes it in a manageable way through the
construction of a smart encyclopedia of scenarios, provides experts elaborating
strategies of prediction by comparing the day at hand to referring scenarios extracted
from the encyclopedia, and then harmonizes the different experts. More precisely,
the prediction box is built using successive learning procedures: elaboration of a
data base of historical scenarios organized on a high dimensional and functional
learning of the intra day load curves, construction of expert forecasters using a
retrieval information task among the scenarios, final aggregation of the experts. The
results on the national French intra day load curves strongly show the benefits of
using a sparse functional model to forecast the electricity consumption. They also
appear to meet quite well with the business knowledge of consumption forecasters
and even shed new lights on the domain.
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1 Prediction Box: Forecasting the Electrical Consumption

This paper is the result of a cooperation between industrial and academic research.
RTE, the French electricity transmission system operator, is responsible for oper-
ating, maintaining and developing the high and extra high voltage network. RTE
is required to guarantee the security of supply, so anticipating French electricity
demand helps to ensure the balance between generation and consumption at all
times, and directly influences the reliability of the power system.

Demand forecasts are carried out for several different timeframes: for the long-
term, in the form of the Generation Adequacy Report or network development
studies, for the medium-term (annual, monthly and weekly forecasts) and lastly on
a day-ahead basis.

From a short term point of view, electricity demand fluctuates depending on
cycles (annual, weekly and daily), on temperature and cloud cover (to take into
account variations in the outside temperature affecting the use of heating equipment
in winter and air-conditioning in summer), and on other factors such as economic
activity (e.g. holiday periods), demand response offers or daylight saving time
changes. Note that the French load curve is very sensitive to temperatures, it
contributes to half of the European thermo-sensitivity.

Today RTE uses a complex nonlinear parametric regression model with around
one thousand coefficients estimated twice a year, and also a SARIMA model.
These decision-making tools cannot predict exceptional events which may disrupt
the demand profile (heavy snow fall, sporting events, strikes), and final day-ahead
forecasts are provided by the French national dispatchers (see: http://www.rte-
france.com/en/sustainable-development/eco2mix/electricity-demand).

If this process currently provides good forecasts, the context of the smart grids
and the energy transition will lead to more variability in the load curve. Moreover,
the aim is not only to obtain a low mean error but also to avoid big forecast errors
which have a direct influence on the reliability of the power system.

Taking into account new explanatory variables (e.g. wind, new tariffs, electricity
prices), economic uncertainties (e.g. economic crisis), new innovative heating
systems (e.g. heat pumps) requires to work with more adaptive and dynamic
models. Many models and approaches have already been considered, from the
robust SARIMA [5, 13] to the semi-parametric model MAVE [10] or functional
regression using wavelets [2, 3].

Referring to this context, in this paper, we address the following program:

(i) Construct a prediction method, the prediction box, based on a sparse learning
process including high dimensional information, which will be able to include
new — potentially also high dimensional — influential variables or to adapt to
different settings of prediction in terms of time ahead (one day ahead, 48-h
ahead, medium-term) or geographical context (European, or at the opposite
regional or even more local) and eventually to more general situations of
forecasting.


http://www.rte-france.com/en/sustainable-development/eco2mix/electricity-demand
http://www.rte-france.com/en/sustainable-development/eco2mix/electricity-demand
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(i) Elaborate and test this method in the setting of predicting the national French
intraday load curve, over a period of time of 7 years on a large data basis
including daily electrical consumption as well as many meteorological inputs,
calendar statements and functional dictionaries, described in the next subsec-
tion.

Figure 1 illustrates the observed dissimilarity between some daily consumption
signals. For instance electrical consumption is mostly higher and more active in
winter than in summer and is characterized by two large peaks of consumption.
However some winter public days may show weak consumption with unusual
pattern, and spring days can reach high consumption with also specific features
characterized by a unique peak of consumption.

A crucial step in the forecasting process is the modeling. It is commonly admitted
that many variables are influential for the prediction in this context. On the other
hand, it is well known that a model relying on a small number of well chosen
predictors is more robust and efficient than a model without variable pre-selection.
The challenge here is then for each day to produce a small number of predictors,
after considering all the variables which can be potentially significant.

The prediction box will provide three drawers of unequal sizes using different
learning procedures at each different scale:

(a) The first drawer contains a smart encyclopedia of scenarios coming from the
observed past. A smart encyclopedia is a very large but very well organized
structure. For each day of the past sample, the encyclopedia provides the
background of the day measured by a large (but manageable) number of
significant explanatory variables. It also contains, associated to the background
of the day, a sparse approximation of the consumption of the day (using much
fewer explanatory variables than the number of initial variables).

(b) The second drawer contains a bunch of experts. Each of them provides a strategy
of prediction for the load curve after consulting the referred encyclopedia. Each
expert essentially bases its strategy on comparing the day at hand to referring
scenarios extracted from the backgrounds of the past. This step allows to find a
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day in the past which is closest (according to the expert) to the day at hand. The
prediction then uses the sparse approximation of this closest day.

(c) The final action of the box will be to harmonize the experts using an aggregation
process.

In the following section we describe the data basis. Section 3 is devoted to the
construction of the encyclopedia. This section is crucial and will especially describe
the choice of variables for the backgrounds as well as the sparse approximation.
Section 4 details the experts, their respective performances and the aggregation
process. The last section is devoted to analyze the results of the prediction box as
well as the perspectives of the method.

2 The Data Basis

2.1 Electrical Consumption

The French national electrical consumption has been recorded every half hour from
January 1st, 2003 to August 31st, 2010 and stored in a database. We focus our study
on daily recording signals. For this period of time, the global consumption signal is
split into N,p; = 2,800 sub signals (Y1,...,Y,, ..., Yy, ). ¥; € R" defines the intra
day load curve for the rth day of size n = 48. These intra day signals will constitute
our data basis to approximate and then to forecast the daily consumption.

Figure 2 shows a week of electrical consumption defined by seven successive
intra day curves.
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Fig. 2 Electrical consumption week from Monday January 25th to Sunday January 31st 2010
regrouping seven successive intra day load curves of size n = 48
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Fig. 3 Temperature and cloud cover (leff) measurement stations. Wind strength network available
points (right)

2.2 Meteorological Inputs

For this study, available meteorological inputs are recorded each half hour on the
same period of time, from January 1st, 2003 to August 31st, 2010:

Temperature: T* for k = 1,...,39 denotes the temperatures measured in 39
weather stations scattered all over the French territory as indicated in Fig. 3 (left).
Cloud Cover: N* for k = 1,...,39 is an indicator of the cloud cover which

is also measured in the same 39 weather stations. The cloud cover is a fraction
between O (free of clouds sky) and 80 tenths of octas (completely clouded sky).
Cloud cover are nowadays built on satellite based observations on the same
meteorological stations than temperature.

Wind: W¥ for k' = 1,...,293 denotes the 100 m wind speed analyses available
at the 293 network points scattered all over the French territory (see Fig. 3, right).

As the electrical consumption, the meteorological inputs (temperature, cloud
Cover and wind) are sampled each half hour and available for the same time period.
Every day, for each meteorological input and weather spot, a n = 48 signal can be
extracted as shown in Fig. 4.

T,k (resp. Nf, Wr"/) denotes the daily temperature (reps. cloud cover, wind) for
day 7, 1 < r < 2,800, and station k with 1 < k < 39 or network point ¥’ with
1 <k <293.

Figure 4 illustrates the variability of weather conditions in France. Temperature,
cloud cover and wind signals are chosen in three different meteorological spots
localized in West (Brest), North (Lille) and South (Marseille) of France. In
Marseille, large variations of temperature can be observed during this day, with a
stationary high cloud cover and an increasing wind. On the opposite during the same
day, stationary temperature and wind can be observed in Brest with a decreasing
cloud cover. All these meteorological factors are known to have an impact on the
electrical regional consumption which has been established for the French PACA
and Bretagne regions for instance.
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Fig. 4 Temperature (left), cloud cover (middle) and wind (right) intra day signal for the 3rd
February 2010 in Brest (blue line), Lille (red line) and Marseille (green) cities

In this study, a total of 371 (= 2x39 4 293) raw meteorological variables are
available. Both types of data (surface weather points and grid points) are used which
constitutes a new way of integrating meteorologic data into a load curve modeling.

2.3 Calendar Statements

Asillustrated in Figs. 1 and 2, the intra day load curves are quite different, depending
on the day and on the season. Qualitative variables are introduced in order to
characterize days and seasons.

Variable D takes seven modalities characterizing the type of day { 1:Monday, .. .,
7:Sunday }.

As in [22], C is a qualitative variable, taking one of the 20 modalities depending
on the 5 groups of days (Monday, Friday, Saturday, Sunday and the others)
subdivided by the four seasons Winter, Spring, Summer and Autumn.

D, and C, describe the modalities of both variables for day ¢.

3 Building the Smart Encyclopedia

Electrical consumption, meteorological inputs and calendar statements contributes
to the elaboration of the smart encyclopedia, recording the historical data base.

The encyclopedia proposed in this work has been considered as a smart ency-
clopedia since part of its elements are built using a learning process. In particular,
the encyclopedia contains sparse approximations of the intra day load curves which
can be considered as a ‘clever’ and significant representation of the consumption
signals; the choice of the dictionary being a key point.

Parts of the construction of the encyclopedia use different steps interesting by
themselves which are described in [17]. We just recall here the principal ones and
refer to [17] for more details.
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3.1 Patterns of Consumption

It is well known that intra day load curves can be explained using two types of
variables: on one hand specific patterns of consumption (also called endogenous
variables), on the other hand meteorological variables (also called exogenous
variables) [6, 18, 19]. Patterns of consumption are usually built using calendar
information and it is important to address the problem of determining which
calendar information will be used to best represent the curves, with the serious
issue that some choices can lead to representation which are highly correlated with
meteorological variables and very often will disappear in sparse representations.

In most applications, in order to integrate calendar information, the set of days
is split on deterministic statements. Taylor [22] uses a partition of size 20 already
mentioned in Sect. 2.3. To study the Spanish consumption, [14] uses Kohonen maps
to build adaptive groups of consumption.

Our point of view is slightly different and consists in providing typical patterns
of consumption using a three step pre-processing: we first provide a sparse modeling
of the profiles of daily electrical consumption as functions of the time. Then, using
the sparse representation of each load curve, clusters of consumption are defined. A
final interpretation of the clusters yields typical profiles, the group centroids or it
patterns of consumption that will be time variables entering into the final model, in
addition to meteorological variables. More precisely,

1. The first task is defined by the compression of the intraday load curves Y; using a
nonparametric regression on a dictionary of functions of the time variable, with
the help of the sparse algorithm LOLA described in Table 1 [12, 15, 17].

In other words, the intraday signals Y; are treated as functions of the time [20]
and sparsely represented in a dictionary, which has to be well adapted to produce
a full reduction of the problem. A combination of Fourier basis and Haar basis
has been chosen as dictionary for this task.

Table 1 Description of LOLA Algorithm

Step 1: Selection by thresholding
A first thresholding procedure allows to reduce the dimensionality of the problem
in a rather crude way by a simple inspection of the empirical correlations
between the signal and each element of the dictionary.
This first threshold is data driven and is chosen adaptively [15].
Step 2: OLS
Ordinary Least Square method is then used on the linear sub-model obtained
by considering the variables retained after the first step.
Step 3: Denoising by thresholding
A second thresholding is performed on the estimators of the parameters of the sub-model.
This second step is more refined and corresponds to a denoising phase of the algorithm.
As the first one, the second threshold is also data driven and is chosen adaptively [15].
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Table 2 Groups, 1...8, are Months
defined using a calendar

interpretation of clusters from Days |1 ]2 ]3 |4 567 |8 |9 |10 |11 |12
Monday (day 1) to Sunday 1 718 15(3 13|33 |1|3]3 5 7
(day 7) and from January 2 78533 /3|3 /|1 (3|3 5 7
(month 1) to December 3 7181513131313 11 131 3 5 7
(month 12) computed form 4 7181513131313 113 3 5 7
January Ist to August 31st
[17] 5 71853 (3/3 (3|13 3 5 7
6 6 |8 4 |4 2|2 21|22 2 4 6
7 6 |6 4 421|222 2|2 4 6
Cluster 1, day Cluster 1, month Cluster 2, day Cluster 2, month
30 100
90
25 8 50
20 70 40
60
15 50 0
40
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0 0 0
12 3 45 6 7 1234567891012 12 3 45 6 7 123456789101112

Fig. 5 Illustration of the calendar repartition of days and months for the two clusters 1, 2

2. The second task consists in clustering the previous sparse representations of the
signals. The K-means algorithm is here chosen for its simplicity. An additional
investigation [17] shows that the clustering end up with 8 different groups, as
described in the following Table 2.

3. The last step defines the group centroid variables or patterns of consumption
as the mean signal inside each group. This yields eight signals Sj,...,Ss
summarizing the typical behavior of each cluster.

An analysis is then performed in order to retrieve a correspondence between
clusters and calendar statements. For an illustration of the different calendar
statements extracted between the clusters, Fig.5 provides, as an example, the
occurrences observed between days and months, for two clusters. For cluster 1, a
large majority of load curves are week-days (1-5) for the month of August (8). For
cluster 2, a large majority of load curves are week-ends (6—7) for months from May
to October (5-10). It should be noted that, at this stage, no specific treatments have
been done for bank holidays or other special days. Interpretation for all clusters is
available in [17].

The pattern variable G is a variable taking eight (functional) modalities and
assigning each day 7 to the center of the group where it belongs: Se(), where g(7) is
simply the labeling function of the calendar situation of ¢, according to Table 2.

During our preliminary study an additional pattern variable emerged and
appeared to be as well a key endogenous variable, defined by the intra day load
curve, Y;—7, recorded 1 week before. This signal can be considered as a general
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trend for Y; and provides also indirectly some calendar information related to the
type of day (Sunday, Monday, ...) and seasons.

The endogenous variables are then defined by these two patterns and will
represent the consumption signal as a function of the time, denoted in the sequel
by P, = [G; Yi—1].

3.2 Meteorological Variables

In this study, the target variable is the French national electrical consumption,
which is impacted by all the meteorological conditions of the French territory, but,
of course, with different contributions regarding each region. Inside each group
of temperatures {T¥,1 < k < 39}, cloud cover {N*,1 < k < 39} or winds
{W"/, 1 < k' <293}, variables appear to be highly correlated and show strong scale
effect. A first non linear pre-processing is applied to build meteorological indicators,
both to sum up the information as well to reduce the redundancy between the
meteorological variables as already observed in [9] for instance. The new following
standard indicator variables are then computed.

For each label U € {T, N, W}, we introduce four non linear transformations of
the meteorological inputs computed each half hour for the set of ny = 39 stations
for (T, N) and for the set of ny = 293 network points for W:

. Uit = min(U', ..., U™)

o UM — max(U, ..., UW)

o U = median(U',..., U")
o U= /Var(U!,..., Uw)

These standard indicators provide a non linear sum-up of the variations and sizes
of temperature, cloud cover or wind all over the French territory. Hence, 12 = 4 x 3
indicators are computed, half-hourly sampled, and stored from January 1st 2003 to
August 31st 2010.

With a slight abuse of notation, for each label U € {T,N, W}, we denote now
by U = [U™", Ume, ymed, %] the reduced meteorological variable, where U™,
ymax, ymed s gre the standard indicators defined previously.

Finally, piling up all the days, a total of 12 indicators defines the meteorological
process M = [T N W] over the time. The meteorological conditions for day 7 are
defined then by M, = [T;N,W,], which is a 48 x 12 matrix.

Even if at this step of reading, the forecasting methodology has not been yet
presented, we should say a brief remark in order to justify, at this stage, the choice of
these four indicators. During this project, different methods have been investigated
to forecast intra day load curves. One of them investigated to model the intra day
load curves with a high dimensional model using all 371 meteorological available
variables (371 = 273 + 2*39). As the fit of the intraday load curves was extremely
accurate, the performance of the forecast was quite poor. This is explained by the
fact that the global consumption, as we have already said, is actually composed
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of various regional consumptions. In this study, we did not have access to the
regional consumptions which are known additionally to show quite high variability
in space and in time. For a forecasting point of view, the method which sums up the
meteorological data using four indicators performs the best at this stage.

3.3 Sparse Approximation of Intraday Load Curves

For each day ¢, we model the daily electrical consumption signal Y; in a linear way
using the following equation

Y, = Zt.Bt + u; (1)

where the unknown parameter f; (so depending on the day f) belongs to R” with p =
14 and where the variable Z, = [P, M;] = [G; Y;—7 T; N; W,] is the concatenation
of the pattern variables and meteorological variables previously described. G; is the
pattern variable previously defined. G, takes eight modalities (Table 2) depending
on days (variable D;) and months of the year. The size of Z; is (n x p) = (48 x 14).

B; is estimated using the LOLA algorithm especially chosen to produce a sparse
representation: ,3, = LOLA(Z,, ;).

Note that LOLA is an algorithm providing good sparse approximation in very
high dimension (see [17] in the case of the intra day load curve) and very accurate
selection properties in medium high dimension (see [16]), which is the case here
(p = 14). The adjusted electrical consumption is then:

Y, = ZB, @)

To evaluate the quality of this preliminary fit, we report here the MAPE and the
RMSE errors, computed.

We observe that the selected covariables offer a quite high sparsity representation
(Table 3): in average, S = 2.5 non zero coefficients are used to approximate the 365
intra-day load signals, with an average MAPE error of 1.2 % (median 1 %).

Figure 6 shows the sparse approximations Y, = Z,,f?, of Y; for 4 days belonging
to different seasons. For each graph, the number of selected coefficients with LOLA

Table 3 Statistical indicators for the sparsity, the MAPE and the RSME between the daily signal
Y, and its fit signal v, computed from September 1st 2009 to August 31st 2010. Groups are
computed using previous years of available data

Statistical indicator Sparsity MAPE (%) RMSE
Mean 2.49 1.24 833
Median 2.00 1.05 695

Std 0.81 0.79 531
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Fig. 6 Spring, Summer, Autumn and Winter intra day signals (dashed line) are here approximated
using at most 3 coefficients selected by LOLA algorithm (solid line)

algorithm equals at most 3. Hence, we achieved here one step in our box: well
approximating intra day consumption signals for various shapes and sizes using
only few coefficients.

3.4 Smart Encyclopedia Contents

To summarize, the raw temporal data of electrical consumption as well as the
meteorological inputs, available on the given historical period of 7 years and an
half of data, have been daily processed as described in the previous subsections to
produce the Encyclopedia, &, providing for each day 7, 1 <t < 2,800:

* The daily electrical consumption Y,

* A qualitative description of ¢, given by calendar statements: D, C;,

* A qualitative description of ¢, defined after an adaptive clustering on the data: G,
* The meteorological indicators over the French territory M, = [T, N, W],

¢ The estimated coefficient ,é,,

* The approximation of the daily consumption Y, = Z,,é,.
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4 Intra Day Forecasting

We are now interested in the one day ahead forecast of the intraday load curve
Y;. Consumption and meteorological variables are then supposed to be known until
day r — 1, and we want to propose a forecast of the intraday load curve for the
next day ¢. In this case, it is obviously not possible to use for the forecast, the
approximated coefficient ,3,, since its computation involves the knowledge of the
electrical consumption Y; we precisely want to forecast.

To forecast the intra day load curve of the next day, called ¥;, we refer again to
the previous linear model and write:

17r =7 Bt

e The matrix Z, = [P, M,] is known at ¢.

P; = [G, Y,—7] defines the pattern of day ¢. Using the calendar interpretation
of the clusters described in Table 2, the centroid of G; is known as Y;_7 which
is the intra day load curve, one week ahead and can be easily computed.

* The meteorological variables M, are here supposed to be known. In real applica-
tions, these variables will be provided by Meteo France, the French company for
weather prediction. ~

¢ The main issue here is to provide ;.

Our approach will be to choose a “good candidate” for ,3,, among the set of
already estimated coefficients ﬁu with u < . This strategy is motivated by the fact
that the linear model introduced in Eq. (1) appears to be quite a good model to
approximate the intra day load curve. Moreover, this model is sparse and thus relies
only on a small number of coefficients.

In the forecast problem there is a typical balance to find between the need for
increasing the number of coefficients to better approximate (bias correction), and
the fact that each added coefficient increases the variability of the forecast, which
strongly justifies the use of a sparse methodology.

4.1 The Experts

The forecasting begins with an information retrieval task. As explained before, at
this stage, we will produce a variety of experts. Each expert essentially bases its
approach on comparing the day ¢ at hand to referring scenarios extracted from the
backgrounds of the past i.e. finding a day * in the past which is closest (according
to this expert) to the day .
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The motivation is that, for one day, similar causes of weather or calendar
conditions or identical groups of consumption should provide similar effects and
then a similar electrical consumption.

In order to retrieve r*, different strategies s are introduced. Each strategy, s, is a
function defined from .7 to .7 such that for any t € 7, s(t) = t* < t, where J
denotes the set of indices of the different days. A forecasting Expert is then simply
associated to a strategy s and provides a forecast of the intra day load signal of
the next day ¢ by plug-in the approximated coefficients ,3?(,) calculated at day s(r)
chosen by strategy s:

th = Zt,Bx(t)

How to choose the experts? Many factors are known to have a potential impact
on the electrical consumption and the next paragraph provides the 17 strategies
introduced here to potentially forecast the intra-day load curves. Of course, much
more strategies can be included but, for a sake a clarity we detail here some of the
simplest as well as most efficient ones (Table 4).

Time-lags: Studies of historical intra day load curves typically show that the day
before as well as the day one week before are significantly influential,[6, 22].
Consequently, strategy Week recalls the approximated coefficients of the same

Table 4 The forecasting experts

Strategies Time lags impact

Yday r—1

Week t—17

Strategies Meteorological scenarios, s(f) = t* = ArgMin,sup||.||
T [T, — T

Tmed [T;ned _ T;ned]

T /N [0 = Td) with [N — N1, /IINy““]], < 2%
Tl | w [T = 1) with (| Wy — Wy, /Wyl < 2%
T [T, — T

T/G [T, — T;] with G, = G;

T/D [T, — T;] with D, = D,

T/C [T, — T;] with C, = C,

N [N, — Ni]

N/G [N, — N{] with G, = G;

N/D [Nmed — Nmed] with D, = D,

N/C [N;”"d — N,’""’d] with C, = C,

w (W, — Wi

w/G [W, — W,] with G, = G,

w/D [W[‘”ed - W,'”ed] with D, = D,

w/C [Wmed — Wmed) with C, = C,
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day, one week before, s(f) = ¢ — 7 and strategy Yday involves the “yesterday”
approximated coefficients, s(f) = ¢ — 1 (which is known to provide useful
information from Tuesday to Wednesday) [21].

Meteorological scenarios (MS): Temperature is commonly admitted to be an
important factor in France as, in winter, 80 % of the French heating comes from
electrical devices. So called windchill temperature, which is a more complex
phenomenon depending both on temperature, wind and cloud cover has also an
impact on electrical consumption.

The strategies we provide in this domain will be contextual and retrieve in the
past a day corresponding to the nearest neighbor, regarding meteorological intra
day signals (temperature, wind and/or cloud cover). Different metrics have been
investigated but the sup distance seems to be especially suitable. The distance is
measured taking into account the median signal or all the indicators (min, max,
med, std) of meteorological variables introduced in Sect. 3.2.

Strategy T (resp. T"?) refers to the day having the closest temperature indicators
(resp. the closest median temperature) among all the days in the past. Strategy N
(resp. W) refers to the day having the closest cloud cover (resp. wind) indicator.

Cloud cover and wind may have special effects, so we consider strategies that
specifically single out their effect.

Temperature constrained by cloud cover and wind: Strategy 7"/ /N refers to
the day having the closest median temperature given cloud cover. More precisely,
this means that we begin by selecting the days in the past which have a cloud cover
signal in a small vicinity of ‘today’, and among these ones we choose the day with
the closest 77,

In the same way, strategy 7"’ /W refers to the day having the closest median
temperature given the wind.

Impact of meteorological factors on electrical consumption also depends on day
type (week days, week end or public day).

MS constrained by groups: Clustering methods applied on historical consump-
tion data have exhibit specific groups of consumption [17]. Strategy T/G refer to
the day having the closest temperature indicator given the group of ¢. Strategy N/G
(resp. W/G) refers to the day having the closest cloud cover (resp. wind) indicator
given the group of day «.

MS of the day constrained by the type of day: [1] shows the importance of the
type of day. Strategy T/ D refers to the day having the closest indicators (min, max,
med, sd), given the kind of day of ¢ Strategy N/D (resp. W/D) refers to the day
having the closest cloud cover (resp. wind) indicator (min, max, med, sd) given the
kind of day of ¢.

MS of the day constrained by a calendar group: [21] introduced five calendar
groups to forecast (see Sect. 2.3). Strategy 7'/ C refers to the day having the closest
temperature indicators(min, max, med, std) for days belonging to the same calendar
group as t. Strategy N/C (resp. W/C) refers to the day having the closest cloud
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cover (resp. wind) indicators (min, max, med, std) for days belonging to the same
calendar group as ;.

Here a meaningful discussion could be engaged on the choice of the experts.
For instance, experts could integrate information about “special events” such as
announced strike, big soccer games. .. We did not include such experts in the present
study, since we observed in our data, that these events are at the same time rare and
with high variable responses, in such a way that the learning process on them did
not seem to show clear effects. Consequently we preferred to postpone this delicate
point to a further study.

4.2 Smoothing Parameter

In this approach, the approximated intra day load is computed day by day and up
to now, no continuity assumptions have been introduced between two consecutive
days. In this perspective, several approaches can be used. For sake of simplicity, we
chose to present here the simplest one.

In order to address this problem of introducing a regularity constraint between
days, a parameter called & reflecting the possible lag between day + — 1 and
prediction at day ¢ is introduced and maintain in a security zone: Y; <« Y3 + 87

In this application, where the forecast is computed for 24 h, we simply choose
8 =1() - f/f(l), and maintained it to be zero. Y;(1) (resp. I?f(l)) is the value of
the first point (00 : 30) of the load curve (predicted load curve using strategie s)
for day ¢. It means that the forecast is actually beginning each day at 00 : 30 for
the next 23 h 30’. When this method is used in other contexts (for a 36 h forecast for
instance), a more refined §; parameter can be computed.

4.3 Performances of the Various Experts

Table 5 presents the forecast performances, for the K = 17 experts considered
previously, for 1 year of data, from September 1st 2009 to August 31st 2010. The
historical set of data to retrieve the ,éf, contains 3 years of data, from September 1st
2006 to August 31st 2009.

For sake of comparison, an additional naive expert is introduced which forecasts
the daily electrical consumption of day ¢ by simply using the intra day raw
consumption signal of the previous day: Y, =Y.

An approximation expert (called “Apx”) is also introduced. The oracle expert
cannot be used in practice, but gives a benchmark of the method: in this case
,Bt = ,3t~

The difference between these two performances measures the gain that can be
expected with respect to a crude prediction.
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Table 5 MAPE Names | Average | Median | Std
performances for each expert

in forecasting 1 year of data Naive 0.0634 |0.0415 |0.0514
from September 1st 2009 to Apx 0.0170 10.0145 |0.0145
August 31st 2010 The experts:
Yday 0.0300 |0.0231 |0.0231
Week 0.0293 | 0.0236 |0.0236
Tmed 0.0315 |0.0261 |0.0261
Tmed /W |0.0351 |0.0252 |0.0252
T4 /N |0.0320 |0.0257 |0.0257

T 0.0311 |0.0238 |0.0238
T/G 0.0310 |0.0232 |0.0232
T/D 0.0321 |0.0262 |0.0262
T/C 0.0295 10.0249 |0.0249
N 0.0406 | 0.0293 |0.0293

N/G 0.0282 | 0.0210 |0.0210
N/D 0.0284 | 0.0220 |0.0220
N/C 0.0287 |0.0220 |0.0220
\ 0.0384 | 0.0294 |0.0294
W/G 0.0309 | 0.0241 |0.0241
W/D 0.0381 |0.0305 |0.0305
wi/C 0.0317 |0.0256 |0.0256

4.3.1 Detailed Performances of the Experts

The naive approach shows a 6.3 % MAPE error. Time lag strategies (Yday,
Week) behave well compared to the overall strategies (MAPE average of 3.0 % or
2.9 %). Forecast results are significantly improved by plug-in the sparse estimated
coefficients computed the day before instead of taking the raw intra day load curve
of the previous day. In order to stress the importance of variable selection, we
have computed ordinary Least Square regression (OLS), for theses two time lag
strategies. Compared to the LOLA algorithm actually used, no sparsity constraint
is introduced in the least square method. For the same period of analyze, the OLS
approach shows a MAPE average of 3.98 % for the Yday strategy and of 4.15 % for
the Week strategy. With no variables selection, the MAPE average error increases
of approximatively 30 %. Similar deteriorations of performances are observed using
OLS instead of LOLA for the other strategies.

These results strongly show the benefits of using a sparse functional model to
forecast the electrical consumption.

Using LOLA algorithm, strategies associated to the closest cloud cover con-
ditions with constraints (N/G, N/D, N/C), behave especially well, compared for
instance, to strategies only based on temperature (T), cloud cover (N) or wind
(W). The strategy retrieving the day relying on cloud cover given group information
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Yday Week Tm Tm/NTmW T T/g T/d Tikc N Ng Nd Nc W Wg Wd Wk

Fig. 7 Frequencies for the expert which perform at best computed for 1 year of data from
September 1st 2009 to August 31st 2010

provides, in average, the best MAPE error (mean: 2.82 %; median: 2.10 %). Hence,
these results strongly suggest that cloud cover seem to have a important impact in
the electricity consumption and then the forecast.

Figure 7 provides for each strategy, the frequency of hits, i.e. the frequency of
days over 1 year when the strategy performs at best.

The different strategies seem quite competitive and we observe that all of them
performs at best at least 2 % of the days. Strategies based on finding the closest day
regarding temperature, cloud cover given the group of day performs in general well
(N/G: 9 % of hits), as it was already observed in Table 5. Time dependent strategies,
Yday or Week seem also quite competitive with hit frequencies equal to 10 % or
9 %.

These quantitative forecasting results seem to reflect quite well the opinion of the
human experts of the discipline.

4.4 Aggregation of Experts

If we were able to find each day the best strategy to apply regarding the MAPE error,
the oracle MAPE average error over 1 year would be equal to 1.44 % (standard
deviation 0.74 %), as presented in Table 6. This is similar to the approximation
MAPE error (Table 4, Apx: 1.70%) and quite a good performance for these
prediction experts which purpose are, as explained before, more adaptation to high
dimensional information.

As seen in the previous part, the experts perform successively well depending
on days, or meteorological issues. But no one among them achieves the best
performance most of the time. There is an obvious need to combining them.
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Table 6 MAPE

] Names Average | Median | Std
performances in % for Oracl Laa 129 0.74
aggregation method racle : : :
Exponential weights |2.25 1.92 1.24

In the recent years, many interesting theoretical results as well as practical
simulations have been obtained using aggregation and especially exponential
penalization: see [4, 7, 8, 11, 23]. These techniques will be for us a good source
of inspiration. However, a crucial problem then is to find a weighting, learning the
performances of each expert and optimizing them. In this context of prediction, this
is quite a challenging issue which can give rise to very sophisticated procedures.

For sake of simplicity we present here a very understandable and manageable
one, which only records the approximation properties of each expert and penalizes
those with poor approximation results. More precisely, let us recall that ./ is the set
of strategies introduced above, and Y* the expert forecast computed with the strategy
s.

The aggregated expert is a weighted sum of all the forecast consumptions
provided by the different experts:

¥, = et W?Y}Y
ZA‘E% Wlé‘
where w; are positive weights depending on the day ¢ and the strategy s.
As explained above, our procedure penalizes by putting small weights, on the
strategies which were not able to well approximate the signal at s(f): e.g. the weights
wy depend in an exponential way on the /, error of || Y — fv(,) |13:

w) = exp(—||Ysy — Yo [3/6)

6 > 0 is a standard tuning parameter (also called temperature parameter with
reference to statistical physics). In the performances presented in the Table 6, this
parameter was chosen using cross validation on the past. Using aggregation with
exponential weights, we observe that the MAPE decreases to 2.25 % in average and
to 1.92 % in median, with a standard deviation of 1.20 %. This error is much smaller
than the different errors computed for each individual experts, presented in Table 4
showing the benefits of the different contributions.

Figures 8 and 9 give a graphical illustration of forecast for two different
weeks chosen in winter and spring. We observe that forecasts are more accurate
during spring periods than winter periods. In Fig.9, local maxima seem to be
overestimated, while local minima are underestimated.
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Fig. 8 Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a
winter week from Monday February Ist to Sunday January 7th 2010

x 10*
6
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Fig. 9 Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a
spring week from Monday June 14th to Sunday June 21st 2010

5 Conclusion and Perspectives

The method described above will be implemented in a short-term consumption
forecasting platform, aggregating various models, which is currently tested at RTE.

This collaboration between academics and industrials provides results which,
although coming from automatic statistical methods, happen to agree surprisingly
well with the business knowledge of RTE. In fact, they go further and shed new
lights:

— The differences between the performances of OLS predictions and the sparse
method approach if they were expected from a theoretical point of view, happen
to be surprisingly striking (30 % !), strongly motivating for going in this direction
in the future.

— The approach for the construction of the experts (searching for similar days
in the past) which has been established using a mathematical perspective is
finally quite close to the strategies of the RTE forecasters. If we refer for
instance to the comparison between the expert performances, some results
are common sense (the lag-expert performances for instance). However, the
impressive performances of cloud cover experts were a little more difficult to
predict, but already observed by RTE forecasters.
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The competitiveness of these experts, also expected from the RTE forecasters,
have been highlighted and quantified. In the near future, more experts will be
introduced. As well, the method of aggregation will be diversified according to
the feedback of the short term consumption forecasting platform.

Due to forecasting operational needs, different adaptations of the forecasting box
will be provided. Particularly, the horizon forecast will be extended to 48 h, or more
and the method will be adapted to choose the delivery time of prediction, according
to business constraints. In this perspective, the smoothing parameter will be refined
to integrate nonparametric regularization methods as well as designed strategies of
RTE forecasters.
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