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Abstract In this chapter we first review recent developments in the use of copulas
for studying dependence structures between variables. We discuss and illustrate the
concepts of unconditional and conditional copulas and association measures, in a
bivariate setting. Statistical inference for conditional and unconditional copulas is
discussed, in various modeling settings. Modeling the dynamics in a dependence
structure between time series is of particular interest. For this we present a
semiparametric approach using local polynomial approximation for the dynamic
time parameter function. Throughout the chapter we provide some illustrative
examples. The use of the proposed dynamical modeling approach is demonstrated
in the analysis and forecast of wind speed data.

1 Introduction

When the aim is to model the dependence structure between d random variables,
denoted by Y1; : : : ;Yd, we can distinguish between several approaches. In a
regression approach, one is interested in how a variable of primary interest, say
Yd, and called the response variable, is influenced on average by Y1; : : : ;Yd�1, the
covariates. A general regression model is of the form

Yd D g.Y1; : : : ;Yd�1/C " ;

where g W Rd�1 ! R is a .d � 1/-dimensional function of the covari-
ates, and where the error term " has conditional mean E ."jY1; : : : ;Yd�1/
equal to zero. Consequently, the conditional mean function of Yd given the
covariates Y1 D y1; : : : ;Yd�1 D yd�1, with .y1; : : : ; yd�1/ 2 Rd�1 equals
E .YdjY1 D y1; : : : ;Yd�1 D yd�1/ D g.y1; : : : ; yd�1/. For the mean regression
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function g one can either assume some known parametric form, or leaving its form
fully unspecified (and to be determined from the data), in respectively parametric
and nonparametric regression. An alternative is a semiparametric modeling in
which the influence of some covariates might be modeled parametrically, whereas
the influence on average of other covariates on Yd might be described via an
unknown function (a nonparametric functional part). In a general approach, the
dependencies between the various components in the random vector .Y1; : : : ;Yd/

are fully described by the joint distribution of .Y1; : : : ;Yd/, i.e. by the d-variate
cumulative distribution function of .Y1; : : : ;Yd/ denoted by PfY1 � y1; : : : ;Yd �
ydg. From this one can calculate for example the conditional mean function
E .YdjY1 D y1; : : : ;Yd�1 D yd�1/.

Denote the marginal cumulative distribution function of Yj, by Fj, for j D
1; : : : ; d. According to Sklar’s Theorem [34] there exists a copula function C defined
on Œ0; 1�d such that

PfY1 � y1; : : : ;Yd � ydg D C .F1.y1/; : : : ;Fd.yd// 8.y1; : : : ; yd/ 2 Rd :

In case the marginal distribution functions, F1; : : : ;Fd, are continuous, the copula
function C is unique. See [28]. The copula function couples the joint distribution
function to its univariate margins F1; : : : ;Fd. The dependence structure between the
components of .Y1; : : : ;Yd/ is fully characterized by the copula function C.

Note that a copula function is nothing but a joint distribution function on
Œ0; 1�d with uniform margins. Based on a joint distribution function, we can study
conditional distribution functions derived from it, as well as characteristics of these
(e.g. moments, medians, . . . ). Translated into the copula context this leads to various
concepts for describing dependence structures.

The aim of this chapter is to first provide a review of copula modeling concepts,
and statistical inference for them in various settings (parametric, semiparametric
and nonparametric). This is done in a setting of independent data in Sects. 2 and 3.
For simplicity of presentation, we restrict throughout the chapter to the setting of
bivariate copulas (the case d D 2). In Sect. 4 we turn to the dynamical modeling
of the dependence between time series, extending existing approaches of local
polynomial fitting to this setting. We conclude the chapter by an illustration of the
use of the method in a practical forecasting application in Sect. 5.

2 Global Dependencies and Unconditional Copulas

2.1 Population Concepts

Consider two random variables Y1 and Y2, with joint distribution function H, and
continuous marginal distributions functions F1 and F2 respectively. There then exists
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a (unique) bivariate copula function C, such that

H.y1; y2/ D PfY1 � y1;Y2 � y2g D C .F1.y1/;F2.y2// .y1; y2/ 2 R2 : (1)

It is common practice to measure the strength of the relationship between Y1
and Y2 via a so-called association measure. There are various statistical association
measures. Among the most well-known are: Pearson’s correlation coefficient,
Kendall’s tau, Spearman’s rho, Gini’s coefficient, and Blomqvist’s beta. See [4,
16, 17, 27] and [25], among others. Pearson’s correlation coefficient, defined as
Cov.Y1;Y2/=

p
Var.Y1/Var.Y2/, only exists if the second order moments of both

margins Y1 and Y2, exist, and equals ˙1 in case Y2 is a (prefect) linear transform of
Y1. Gini’s coefficient and Blomqvist’s beta, are often used in economical sciences
(for example, as a measure of inequality of income or wealth). Several well-known
association measures can be expressed as functionals of the copula function. Denote
by .Y 0

1;Y
0
2/ and .Y 00

1 ;Y
00
2 /, two independent copies of .Y1;Y2/. For the following

association measures we give their definitions followed by an expression in terms
of the copula function (for some measures alternative expressions in terms of C
exist).

• Kendall’s tau:

�Y1;Y2 D P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ > 0

� � P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ < 0

�

D 4

ZZ

Œ0;1�2
C.u1; u2/dC.u1; u2/ � 1 : (2)

• Spearman’s rho:

�Y1;Y2 D 3
�
P
˚
.Y1 � Y 0

1/.Y2 � Y 00
2 / > 0

�� P
˚
.Y1 � Y 0

1/.Y2 � Y 00
2 / < 0

��

D 12

ZZ

Œ0;1�2
C.u1; u2/du1du2 � 3:

• Gini’s coefficient:

�Y1;Y2 D 2E .jF1.Y1/C F2.Y2/� 1j � jF1.Y1/� F2.Y2/j/

D 2

ZZ

Œ0;1�2
.ju1 C u2 � 1j � ju1 � u2j/ dC.u1; u2/:

• Blomqvist’s beta:

ˇY1;Y2 D 2P
˚
.Y1 � F�1

1 .0:5//.Y2 � F�1
2 .0:5// > 0

�� 1 D 4C

�
1

2
;
1

2

�
� 1 ;

where F�1
j .0:5/ is the median of the margin Fj, for j D 1; 2.
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See [28] for an overview of association measures, their basic properties, and their
interrelationships.

When talking about unraveling the dependence structure between Y1 and Y2, it is
transparent from (1) that informations about the copula function C as well as about
the two margins F1 and F2 are of importance. We illustrate the impact of these
elements with some examples in Sect. 2.2.

2.2 Illustration: Examples

The copula function and the marginal distributions together determine the joint
distribution function (see (1)), and consequently all of the population characteristics.
This is reflected in, among others, the typical observed scatter plots and the different
values for the association measures.

As an illustration we consider the following examples:

Example 1.

Y1 � N.0; 4/; Y2 � Exp.2/

C.u1; u2/ D �
max

�
u��
1 C u��

2 � 1; 0���
1
� ; � D 1 ;

where the copula belongs to the Clayton copula family.

Example 2.

Y1 � Exp.2/; Y2 � Beta.1; 4/

and with the same copula as in Example 1.

Example 3.

Y1 � Student.5; 3/; Y2 � Ex.0:2/

C.u1; u2/ D exp

�
� �.� log u1/

� C .� log u2/
�
� 1
�

�
; � D 3 ;

where Student.�; �/ is a noncentral Student distribution with � degrees of freedom
and noncentrality parameter �, and where the copula belongs to the Gumbel copula
family.

Example 4.

Y1 � Exp.2/; Y2 � Beta.1; 4/

and the same copula as in Example 3.
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In Fig. 1 we present a typical sample ..Y11;Y21/; : : : ; .Y1n;Y2n// from .Y1;Y2/
(with n the sample size) from the above models (left column of pictures) together
with their pseudo-observations, defined as .F1.Y1i/;F2.Y2i//, for i D 1; : : : ; n, (right
column of pictures). Due to the probability integral transformation, the pseudo-
observations Fj.Yji/ are uniformly distributed (for each j D 1; 2). For Examples 1
and 2 the marginal distribution functions are different, but the dependence structure
(the copula) is the same. In the left panels of rows one and two of Fig. 1 we depict
scatter plots based on random samples of sizes 700 and 400 from, respectively,
Examples 1 and 2. The scatter plots look quite different for the samples from the
two models, but notice the similarity between the plots for the pseudo-observations
(right panels). We can observe a mild positive dependence everywhere with a higher
concentration in the lower tails (the lower left corner of the plots). In Example 3,
both the margins and the copula are different, and the scatter plots based on a sample
of size n D 700 from that model looks very different from the previous examples.
Here, there is clearly more positive dependence visible, and we also notice heavier
right tail characteristics. When comparing the plots for samples from Examples 3
and 4 (rows three and four in Fig. 1) we can observe similarities in the scatter plots
of the pseudo-observations (the right panels), due to the fact that these examples
share the same underlying copula. Furthermore, looking at scatter plots of typical
observations from Examples 2 and 4, we can see the impact of changing a copula
while keeping the same marginal distributions.

In Table 1 we present the values of some association measures for the four
examples. Note the equality of the measures for Examples 1 and 2 on the one
hand, and for Examples 3 and 4, on the other hand, since these examples share the
same copula (i.e. have the same dependence structure). The values of the association
measures only depend on the underlying copula function and not on the marginal
distributions.

2.3 Statistical Inference

Suppose now that ..Y11;Y21/; : : : ; .Y1n;Y2n// is a sample of size n of independent
observations from .Y1;Y2/, and the interest is in estimating the copula function
in (1). Once an estimator for the copula function is available, the way is open to
obtain estimates for association measures that can be expressed as functionals of the
copula, as those for example listed in Sect. 2.1.

According to available information on either the copula and/or the margins
we distinguish between different situations in the modeling aspects. In the fully
parametric setting the copula function is assumed to be known, up to some
parameters, and the same for the distribution of the margins. Other settings are listed
in Table 2. We briefly review statistical inference under each of these settings.
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Fig. 1 Typical samples for Examples 1–4 (top row to bottom row); left columns: scatter plot of the
observations, right columns: scatter plots of the pseudo-observations
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Table 1 Association measures for Examples 1–4

Example Kendall’s tau Spearman’s rho Gini’s index Blomqvist’s beta

1 & 2 0:333 0:478 0:382 0:333

3 & 4 0:667 0:849 0:725 0:670

Table 2 Situations for
statistical inference

Copula Margins Approach

Parametric Parametric Fully parametric

Parametric Nonparametric Semiparametric

Nonparametric Parametric Semiparametric

Nonparametric Nonparametric Fully nonparametric

2.3.1 Fully Parametric Approach

In a fully parametric approach one starts by assuming a specific parametric model
for the copula function as well as for the margins. More formally, suppose that the
copula C.�; �/ D C.�; �I �C/, and that Fj.�/ D F.�I �j/, for j D 1; 2, where �C, � j, for
j D 1; 2 are the respective parameter vectors, taking values in parameter spaces	C ,
	1 and 	2 respectively. These parameters spaces can have nonempty intersections,
in other words, the parameter vectors �C and � j can have common elements.

Assume for simplicity that the density of the copula function exists, i.e. the
second order partial derivative of the copula function exists

c.u1; u2I �C/ D @2C.u1; u2I �C/

@u1@u2
8.u1; u2/ 2 Œ0; 1�2 :

If in addition the corresponding densities fj of Fj, for j D 1; 2, exist, then the joint
density of .Y1;Y2/ is given by (see (1))

h.y1; y2/ D c .F1.y1/;F2.y2// f1.y1/f2.y2/ 8.y1; y2/ 2 R2 :

Keeping this in mind, the logarithm of the likelihood function then equals

`n.�1;�2;�C/ D
nX

iD1
log .c.F1.Y1iI �1/;F2.Y2iI �2/I �C/ f1.Y1iI �1/f1.Y2iI �2// ;

(3)

which needs to be maximized with respect to .�1;�2;�C/. Denote this maximizer
by . O�1; O�2; O�C/.

An estimator for, for example, the associated Kendall’s tau is then obtained via
(2)

O�Y1;Y2 D 4

ZZ

Œ0;1�2
C.u1; u2I O�C/dC.u1; u2I O�C/� 1 :
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2.3.2 Semiparametric Approach

Suppose now that the margins F1 and F2 cannot be parametrized, but are fully
unknown. For the copula function, on the contrary, we still believe that a parametric
model C.�; �I �C/ is a reasonable assumption. In this case, we thus need to estimate
the margins from the available data. The log-likelihood in (3), where the margins F1
and F2 are unknown, is replaced by the pseudo log-likelihood

`n.�C/ D
nX

iD1
log .c.F1n.Y1i/;F2n.Y2i/I �C// ; (4)

where the unknown margins F1 and F2 are replaced by the estimates

F1n.y1/ D 1

n C 1

nX

iD1
IfY1i � y1g F2n.y2/ D 1

n C 1

nX

iD1
IfY2i � y2g ;

with Ify 2 Ag the indicator function on a set A, i.e. Ify 2 Ag D 1, if y 2 A and
Ify 2 Ag D 0, if y … A. In the empirical estimates, it is recommended to use
the modified factor .n C 1/�1 instead of the usual factor n�1, because by using
.n C 1/�1 the values Fjn.Yji/ are in the set f 1

nC1 ; : : : ;
n

nC1g instead of in the set
f 1n ; : : : ; n�1

n ; 1g, and hence by using this modified factor, one stays away from both
boundary points, 0 as well as 1. Note that this modification has no effect on the
(asymptotic) properties of the resulting estimates. See, for example, [15].

The pseudo log-likelihood estimate O�C of �C is then obtained by maximizing the
pseudo log-likelihood in (4) with respect to �C.

See [33] for a study on semiparametric efficient estimation in case of Gaussian
copulas with unknown margins.

2.3.3 Fully Nonparametric Approach

We now turn to the fully nonparametric approach where one can neither for C nor
for the margins (F1 and F2) propose an appropriate parametric model. Hence C, F1
and F2 are fully unknown.

Nonparametric estimation of a copula goes back to the early seventies. In the
paper [10] the empirical copula estimator was introduced and studied. The basic
idea behind this estimator is very simple. As can be seen from (1), C.�; �/ is in fact
nothing else but the joint cumulative distribution function after the margins have
been transformed, via the probability integral transformation

U1 D F1.Y1/ and U2 D F2.Y2/ :

In other words, C.�; �/ is the joint cumulative distribution function of .U1;U2/.
If independent observations ..U11;U21/; � � � ; .U1n;U2n// from .U1;U2/ would be
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available, then the cumulative distribution function could be estimated via the

usual bivariate empirical distribution function
1

n

nX

iD1
I fU1i � u1;U2i � u2g. Since

we have no observations from F1.Y1/ and F2.Y2/ we simply replace the unobserved
Uji D Fj.Yji/ by a pseudo-observation, its ‘slightly modified’ rank Fnj.Yji/ in the
original sample, and obtain the empirical copula estimator

Cn.u1; u2/ D 1

n

nX

iD1

I
˚ QU1i � u1; QU2i � u2

� QU1i D F1n.Y1i/ QU2i D F2n.Y2i/ :

(5)

This estimator was also studied further in [14] and [32], among others.
Obviously, the estimator in (5) is a step function, which might not be very

desirable, when the function C.�; �/ is continuous or even differentiable.
Nonparametric estimation methods that lead to smooth estimators for the copula

C have been derived. Among these are kernel estimators. See, for example, [6, 18]
and [29]. Kernel estimators of the copula C are essentially obtained by replacing the
non-smooth indicator function If QU1i � u1; QU2i � u2g D If QU1i � u1g If QU2i � u2g in
(5) by a smooth kernel function. The non-smooth function If QUji � ujg is replaced by

the smooth function K
	

uj� QUji

hn



, where K.y/ D R y

�1 k.t/dt is the kernel distribution

function associated with the kernel k, a symmetric density function, with support
the interval Œ�1; 1�, and hn > 0 is a bandwidth parameter. The bandwidth parameter
determines the size of the neighbourhood in which the jump in the indicator function
is ‘smoothed out’. An example of a kernel function k is the Epanechnikov kernel
k.x/ D 3

4
.1 � x2/Ifjxj � 1g. As an illustration we depict in Fig. 2 the indicator

function If0:6 � ug as well as a smooth version of it, namely K
	

u�0:6
hn



, with K

based on the Epanechnikov kernel, for two different values of the bandwidth hn. The
larger the bandwidth, the larger the neighbourhood over which the jump is ‘smeared
out’.

Such a simple replacement of the indicator part by a smooth part, leads to the
kernel estimator

1

n

nX

iD1
K

 
u1 � QU1i

hn

!

K

 
u2 � QU2i

hn

!

:

Since the copula C is defined on the interval Œ0; 1�2 (a compact support) special
attention however is needed to obtain a kernel estimator that shows the same nice
asymptotic properties at the boundaries of Œ0; 1�2 as in the interior of that support.
The aim is to obtain kernel estimators for which the convergence rate is the same
on the interior of the square Œ0; 1�2 as well as on the edges of it. This can be done
for example, by using a reflection type of method, which consists of reflecting each
pseudo-observation . QU1i; QU2i/ with respect to all four corner points, and all four
edges of the interval Œ0; 1�2, resulting into an augmented data set of size 9n, from
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Fig. 2 The indicator function If0:6 � ug and its smooth version K
	

u�0:6
hn



, using the Epanech-

nikov kernel, and bandwidths hn D 0:04 (dashed-dotted curve) and hn D 0:20 (dashed curve)

which the kernel estimator is defined. See Fig. 3 for an illustration of a data point
and the eight points resulting from reflections of the given point with respect to all
corners and edges of the unit square Œ0; 1�2.

This leads to the kernel Mirror-Reflection type estimator introduced and studied
in [18]:

OCMR
n .u1; u2/ D 1

n

nX

iD1

9X

`D1

"

K

 
u1 � QU.`/

1i

hn

!

� K

 
� QU.`/

1i

hn

!#

�
"

K

 
u2 � QU.`/

2i

hn

!

� K

 
� QU.`/

2i

hn

!#

;

where

f. QU.`/
1i ;

QU.`/
2i /; i D 1; : : : ; n; ` D 1; : : : ; 9g

D f.˙ QU1i;˙ QU2i/; .˙ QU1i; 2 � QU2i/; .2 � QU1i;˙ QU2i/; .2 � QU1i; 2 � QU2i/; i D 1; : : : ; ng:

and K is the integral of the considered kernel k, as mentioned above.
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Fig. 3 A data point (indicated by a “�” in the unit square), and the reflected points (indicated by
a “�”) with respect to all corners (see the dashed lines) and edges (see the dotted lines) of the unit
square

An alternative approach to deal with the boundary issue is by using local linear
fitting, and its implicit boundary kernel. This was done by [6], and resulted in the
kernel Local Linear estimator:

OCLL
n .u1; u2/ D 1

n

nX

iD1
Ku1;hn

 
u1 � QU1i

hn

!

Ku2;hn

 
u2 � QU2i

hn

!

;

where Ku;hn is the integral of the modified boundary kernel

ku;h.x/ D k.x/ .a2.u; h/� a1.u; h/x/

a0.u; h/a2.u; h/� a21.u; h/
Ifu � 1

h
< x <

u

h
g;

where

a`.u; h/ D
Z u

h

u�1
h

t`k.t/dt for ` D 0; 1; 2 :

Note that nonparametric methods such as the above kernel methods, involve the
choice of a bandwidth parameter. This issue is not discussed here. See for example
[29] (Section 3.2 in that paper), and references therein, for some discussion on
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bandwidth choice. One could also use other smoothing methods than the kernel
method. We do not discuss these.

3 Local Dependencies and Conditional Copulas

3.1 Population Concepts

Suppose now that the interest is in the relationship between the random variables Y1
and Y2 but that both random variables are possibly influenced by another random
variable, say X. A first interest is then in studying the conditional dependence
between Y1 and Y2 given a specific value for X, say X D x. Instead of simply looking
at the joint distribution between Y1 and Y2, as in Sect. 2, we now focus on the joint
distribution of .Y1;Y2/ conditionally upon X D x:

Hx.y1; y2/ D PfY1 � y1;Y2 � y2 jX D x g :
Applying Sklar’s theorem to this conditional joint distribution function results into

Hx.y1; y2/ D Cx .F1x.y1/;F2x.y2// .y1; y2/ 2 R2 ; (6)

where

F1x.y1/ D PfY1 � y1 jX D x g and F2x.y2/ D PfY2 � y2 jX D x g ;
denote the marginal cumulative distributions functions of Y1 and Y2, respectively,
conditionally upon X D x. The main difference between (1) and (6) is that the copula
function Cx changes with the fixed value of X (X D x), as well as the margins Fjx (for
j D 1; 2). We refer to Cx as the conditional copula function. This notion was first
considered by [30] in the specific context of modeling the dynamics of exchange
rates, where the conditioning variable is related to time. See also Sect. 4.

Analogously to the case of the (unconditional) copula C in Sect. 2, the strength
of the dependence relationship between Y1 and Y2, but now conditionally upon the
given value of X D x, can be measured using an association measure. For simplicity
of presentation, we just focus on the Kendall’s tau association measure. Denote by
.Y 0
1;Y

0
2;X

0/ an independent copy of .Y1;Y2;X/. Then the conditional Kendall’s tau
function is defined as

�.x/ D P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ > 0

ˇ
ˇX D X0 D x

�

�P
˚
.Y1 � Y 0

1/.Y2 � Y 0
2/ < 0

ˇ̌
X D X0 D x

�

D 4

ZZ

Œ0;1�2
Cx.u1; u2/dCx.u1; u2/� 1 : (7)

For not making the notation too involved, we dropped the superscript fY1;Y2g
to indicate that we are interested in the dependence structure between Y1 and Y2
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(conditionally upon X D x). See for example [20], for illustrations and examples of
use of conditional association measures.

Note from (6) that the conditional dependence of Y1 and Y2 (conditionally given
X D x) may be different for different values taken by X, i.e. the dependence
structure, as well as its strength, may change with the value taken by the third
variable X. This possible change in the strength of the relationship is reflected in
the fact that Kendall’s tau is now a function of x.

It is often noticed that in applications, one uses the following simplification:
the dependence structure itself, captured by the copula function, does not change
with the specific value that X takes, and the dependence on x only comes in via the
conditional margins, i.e.

Hx.y1; y2/ D C .F1x.y1/;F2x.y2// .y1; y2/ 2 R2 :

In, for example, the literature on C-vine and D-vine copulas this assumption is
inherently present. See [24] and [3], among others. See also the chapter (and its
discussion) by [36], in which the dependence structure is assumed to stay constant
in time.

3.2 Illustration: Examples

We now illustrate the concepts of Sect. 3.1 with some examples. A first example,
Example 5, is an extension of Examples 1 and 2 of Sect. 2.2: instead of a bivariate
Clayton copula we start from a three-variate Frank copula. In a second example,
Example 6, we modify Example 3 of Sect. 2.2 by allowing the parameter of the
copula and the marginal distribution of the second component to change with the
random variable X. More precisely, the examples are as follows.

Example 5.

Y1 � N.0; 4/; Y2 � Exp.2/; X � Beta.1; 4/

C.u1; u2; u3/ D � 1
�

log

 

1C
�
e��u1 � 1� �e��u2 � 1

� �
e��u3 � 1

�

�
e�� � 1

�2

!

; � D 3 :

Example 6.

Y1 � Student.5; 3/; Y2jX � Exp.0:2.10X C 1//; X � U.0; 1/

Cx.u1; u2/ D exp

�
� �.� log u1/

�.x/ C .� log u2/
�.x/
� 1
�.x/

�

�.x/ D 2 sin.2˘x/C 3 ;

with X independent from .Y1;Y2/.
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Fig. 4 Scatter plots based on a typical sample of size n D 800 from Example 6
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Fig. 5 Conditional Kendall’s tau function for Examples 5 (left panel) and 6 (right panel)

In Fig. 4 we present the pairwise scatter plots for a typical sample of size
n D 800 from Example 6, revealing the independence between Y1 and X, but the
dependence between Y2 and X. In the bottom right panel of Fig. 4 we plot F1Xi.Y1i/

versus F2Xi.Y2i/, for each i D 1; : : : ; n. Each of these FjXi.Yji/ should be (close
to) uniformly distributed. In Fig. 5 we plot the conditional Kendall’s tau function
for Examples 5 and 6. Note that in Example 5 there is a mild positive dependence
between Y1 and Y2, conditionally upon X D x, but that the dependence increases
with x. In Example 6 the dependence switches from very positive via independence
back to strongly positive dependence.
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3.3 Statistical Inference

Suppose now that ..Y11;Y21;X1/; : : : ; .Y1n;Y2n;Xn// is a sample of size n of inde-
pendent observations from .Y1;Y2;X/. The interest is in estimating the conditional
copula function Cx. As in Sect. 2, one can distinguish between different modeling
settings, depending on what is known on possible appropriate parametric forms for
Cx on the one hand and Fjx on the other hand. For convenience of the reader, we
discuss similar modeling settings as in Sect. 2, but in a different order.

3.3.1 Fully Parametric Approach

In a fully parametric approach, we model Cx.�; �/ via C.�; �I �C.x// where �C.x/ is
a known parametric function of x, for example a polynomial of degree p: �C.x/ D
�C;1 C �C;2x C : : : �C;pxp. We denote the corresponding parameter vector by �C D
.�C;1; : : : ; �C;p/. Similarly, the conditional margins can be modeled via

Fjx.�/ D Fj.�I �j.x// with a parametric function �j.x/ :

For example, the functions �j.x/ could be polynomial functions or any other given
parametric functional form. Denote the resulting parameter vectors by �1 and �2
respectively. For example, if �1.x/ is a cubic function of x, then the dimension of �1
is 4.

With these parametrizations, we are again in a setting that is quite similar to that
of Sect. 2.3.1. Indeed, considering the second order partial derivative of Cx.u1; u2/
with respect to its arguments, we obtain

cx.u1; u2/ D @2C.u1; u2I �C.x//

@u1@u2
8.u1; u2/ 2 Œ0; 1�2 ;

which due to the structure can be written as c.u1; u2I �C.x//. Analogously denote the
marginal densities by f1.�I �1.x// and f2.�I �2.x//.

A data point .Y1i;Y2i;Xi/ contributes to the likelihood with the factor

c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi// f1.Y1iI �1.Xi//f2.Y2iI �2.Xi// :

Finally, we get to the logarithm of the likelihood function

Q̀
n.�1; �2; �C/

D
nX

iD1

log .c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi// f1.Y1iI �1.Xi//f2.Y2iI �2.Xi///
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D
nX

iD1

log .c .F1.Y1iI �1.Xi//;F2.Y2iI �2.Xi//I �C.Xi///

C
nX

iD1

log .f1.Y1iI �1.Xi//f2.Y2iI �2.Xi/// ; (8)

which needs to be maximized with respect to .�1;�2;�C/. From that point on we
proceed as in Sect. 2.3.1. Denote the maximizer of (8) by . O�1; O�2; O�C/.

An estimator for, for example, the associated conditional Kendall’s tau function
is then obtained by substituting Cx.�; �/ D C.�; �I �C.x// in (7) by its estimator
C.�; �I O�C.x//, where O�C.x/ is obtained by replacing the parameter vector �C in the
parametric form of �C.x/ by its maximum likelihood estimator O�C. For example, in
case �C.x/ D �C;1 C �C;2x C : : : �C;pxp, this is O�C.x/ D O�C;1 C O�C;2x C : : : O�C;pxp

based on O�C D . O�C;1; : : : ; O�C;p/. So, the estimator for the conditional Kendall’s tau
is then

O�.x/ D 4

ZZ

Œ0;1�2
C.u1; u2I O�C.x//dC.u1; u2I O�C.x//� 1 :

3.3.2 Fully Nonparametric Approach

An alternative expression for (6) is

Cx.u1; u2/ D Hx
�
F�1
1x .u1/;F

�1
2x .u2/

�
.u1; u2/ 2 Œ0; 1�2 ; (9)

where F�1
jx .�/ denotes the quantile function corresponding to Fjx.�/, for j D 1; 2.

From (9) it is transparent that we need to find estimators for the conditional
joint cumulative distribution function Hx.�; �/ as well as for the (quantiles of the)
conditional margins F1x.�/ and F2x.�/. Since these are conditional quantities, some
smoothing in the domain of X is needed. Nonparametric estimation of a conditional
distribution function using kernel methods has been well-studied in the literature.
See for example [23] and [38], among others. A general estimator is obtained by
‘smearing out’ the mass n�1 that is in the expression for a bivariate (unconditional)
empirical distribution function, in the covariate domain, using a weight function:

OHx.y1; y2/ D
nX

iD1
wni.x; bn/I fY1i � y1;Y2i � y2g ; (10)

with wni.x; bn/ � 0, a sequence of weights that ‘smooths’ over the covariate space.
Herein bn > 0 is a sequence of bandwidths. Since Hx.y1; y2/ is a distribution
function, the weights need to tend to 1 when y1 and y2 tend to infinity. This is
achieved by ensuring that the weights are such that

Pn
iD1 wni.x; bn/ D 1 (either
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exactly or asymptotically, as n ! 1). There are many scenario’s of appropriate
weight functions available in the literature. The simplest set of weights is given by
the Nadaraya-Watson type of weights defined as

wni.x; bn/ D kbn.Xi � x/
Pn

jD1 kbn.Xj � x/
;

with kbn.�/ D 1
bn

k.�=bn/ a rescaled version of k.�/. Alternative scenario’s of weights
are local linear weights, Gasser-Müller weights, etc.

From (10) we obtain estimators for the conditional marginal distribution func-
tions Fjx.�/ by simply letting the other argument in the estimated joint cumulative
distribution function tend to infinity:

OFjx.y/ D
nX

iD1
wni.x; bjn/I

˚
Yji � y

�
j D 1; 2 ; (11)

where the bandwidth sequences b1n > 0 and b2n > 0 (for estimation of the
conditional margins) do not need to be the same and/or do not need to be the same
as this for the joint estimation. For practical simplicity one can take bn D b1n D b2n.

Asymptotic properties for kernel type estimators of conditional distributions
functions have been established in [35, 37] and [39], among others. For a recent
contribution in the area, see [38].

Remark that in (10) and (11) one can again replace the indicator function by
a smooth function, if differentiability properties of the resulting estimators are of
importance.

From the estimators OFjx.�/ in (11), we obtain estimators for the quantile functions
F�1

jx .�/. From the estimators for Hx.�; �/ and F�1
jx .�/ one then derives an estimator for

Cx.�; �/ by replacing in (9) the former quantities by their estimators. In the literature
these and improved estimators are studied, also in more complex frameworks (of
multivariate or functional covariates). See, for example, [39] and [19].

3.3.3 Semiparametric Approach

There are at least a few semiparametric approaches, depending on the particular
modeling setting. We just discuss some major approaches.

Firstly, assume that the conditional margins are fully known, i.e. Fjx.�/, for j D
1; 2, are fully known for all x in the domain of X. Suppose that the conditional copula
function Cx.�; �/ depends on x through a parameter function �C.x/, i.e. Cx.�; �/ D
C.�; �I �C.x//, but contrary to Sect. 3.3.1 the function �C.x/ is fully unknown. This
setting has been studied by [22] and [2], among others. In the sequel we drop the
subscript C in �C and �C.x/ for simplifying the notation.

The parametric copula family C.�; �I �/ that serves as a starting point here (and in
fact also in Sect. 3.3.1, and before) of course has some restrictions on the parameter
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space 	 for � . For example, for a Gaussian copula: � 2 .�1; 1/; for a Clayton
copula � 2 .0;1/. Such restrictions on the parameter space of the parametric
copula C.�; �I �/ should in fact not be ignored. The same holds when looking at a
conditional copula modeled via Cx.u1; u2/ D C.u1; u2I �.x//, with corresponding
copula density c.u1; u2I �.x//.

Since the function �.x/ is fully unknown, we are going to approximate this
function locally, i.e. in the neighbourhood of x by, for example, a polynomial of
degree p say. But since a polynomial takes on values in R, we need to take care of
the restrictions on the parameter space 	 of the parametric copula family C.�; �I �/.
One therefore transforms the function �.x/, which takes on values in 	, via a given
transformation .�/, into the function


.x/ D  .�.x// ;

which takes on value in R.
In the sequel, we assume that the inverse transformation  �1.�/ exists, such that

we can obtain �.�/ from 
.�/:

�.x/ D  �1.
.x// ; (12)

which takes values in 	.
Consider now independent observations ..Y11;Y21;X1/; : : : ; .Y1n;Y2n;Xn// from

.Y1;Y2;X/. A data point .Y1i;Y2i;Xi/ then contributes to the (pseudo) log-likelihood
with

log c .F1Xi.Y1i/;F2Xi.Y2i/I �.Xi// D log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 .
.Xi//

�
:

(13)

For a data point Xi in a neighbourhood of x, we then can approximate 
.Xi/ using
a Taylor expansion, by


.Xi/ � 
.x/C 
0.x/.Xi � x/C � � � C 
.p/.x/.Xi � x/p

pŠ

	 ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p ;

where we denoted

ˇr D ˇr.x/ D 
.r/.x/

rŠ
r D 0; : : : ; p :

If Xi is near x, then the contribution in (13) to the (pseudo) log-likelihood, can be
approximated by

log c .F1Xi.Y1i/;F2Xi.Y2i/I �.Xi//

� log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 �ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

��
:
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This approximation is only valid for Xi near x, and this is taken care off by
multiplying this contribution in the log-likelihood by a weight factor khn.�/ D
1
hn

k. �
hn
/, with k.�/ as before, and hn > 0 a bandwidth parameter.

This leads to the local log-likelihood

`n.ˇ/ D
nX

iD1

log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1

˚
ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

��

�khn .Xi � x/ ; (14)

which is a localized version of the (pseudo) log-likelihood function in the parametric
setting. Maximization of this local log-likelihood with respect to ˇ leads to the
estimated vector Ǒ D . Ǒ

0; : : : ; Ǒ
p/, and hence, in particular, an estimator for 
.x/ is

Ǒ
0. From (12) an estimator for �.x/ is

O�.x/ D  �1. Ǒ
0/ :

By maximizing the local log-likelihood (14) in a grid of x-values, one obtains
estimates of the unknown parameter function �.�/ in a grid of points.

We next turn to the setting where also the conditional margins are fully unknown,
i.e. Fjx.�/, for j D 1; 2, are fully unknown for all x in the domain of X. For Xi in a
neighbourhood of x, we then can replace the contribution

log c
�
F1Xi.Y1i/;F2Xi.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

��
khn.Xi � x/

in the log-likelihood function by

log c
�
F1x.Y1i/;F2x.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p

��
khn.Xi � x/ ;

and next we substitute the unknown quantities F1x.Y1i/ and F2x.Y2i/ by nonpara-
metric estimators, such as these provided in (11). This then leads to the local
log-likelihood

Q̀
n.ˇ/ D

nX

iD1
log c

	 OF1x.Y1i/; OF2x.Y2i/I �1 ˚ˇ0 C ˇ1.Xi � x/C � � � C ˇp.Xi � x/p
�


�khn.Xi � x/ ;

which needs to be maximized with respect to ˇ.
This estimation method is called a local polynomial maximum pseudo log-

likelihood estimation method. Properties of the resulting estimator have been
studied in [1]. That paper also contains a brief discussion on some practical band-
width selection methods, including a rule-of-thumb type of bandwidth selector and
a cross-validation procedure. For a general treatment of the use of local polynomial
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modeling in a maximum likelihood framework, see for example [13]. For a general
discussion on the choice of the degree of the polynomial approximation see [12].

4 Dynamics of a Dependence Structure and Copulas

When introducing copulas to the modeling of time series data different approaches
are possible. Following, for example, [9] copulas can be used to model the
inter-temporal dependence within one time series by specifying the transition
probabilities in a Markov process. See [8] for recent developments and further
references for such settings. In this section we focus on a different approach.

4.1 Dynamical Modeling of a Dependence Structure

Alternatively copulas can be used to model the spatial dependence of a bivariate
stochastic process Yt D .Y1;t;Y2;t/, t 2 Z. As time series analysis is naturally
formulated conditionally upon the history of the process we revert to the conditional
copula concept, now enlarging the conditioning from one variable as in Sect. 3
to the entire past of the process. This is done in a mathematical rigorously way
by conditioning upon the sigma-algebras generated by the past of the time series.
We opted for a more layman’s term presentation here. As first introduced by [30]
such a setting allows time dependent variation in the joint distribution of .Y1;t;Y2;t/
conditionally upon Wt D .Yt�k/k>0 via

PfY1;t � y1;Y2;t � y2jWt D wtg D Ct.F1;t.y1/;F2;t.y2// ; (15)

where Fj;t.yj/ D PfYj;t � yjjWt D wtg, j D 1; 2, and Ct.�; �/ D C.�; �jWt D wt/ is
the conditional copula implied by Sklar’s Theorem.

The conditional modeling in (15) can be readily combined with, for example, a
GARCH.r; s/ error structure for the two involved time series fY1;tg and fY2;tg. See
[5], for example, for a standard reference to Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) type of modeling. More precisely, we model the
marginal time series as

Yj;t D �j C "j;t; where "j;t D �j;t
j;t ; (16)

�2j;t D ˛j C
rX

`D1
ˇj;`�

2
j;t�` C

sX

mD1
�j;m"

2
j;t�m ; (17)
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where ˛j; ˇj;`; �j;m � 0, �j 2 R, r; s 2 N0 and .
j;t/t2Z is white noise with zero
mean and unit variance. GARCH models are designed to account for the time
varying and clustering volatility of shocks observed frequently, but not exclusively,
in financial time series. This is accomplished by relating the time t variance of "j;t

to the lagged r realized variances as well as to the lagged s realized shocks, where
it is noteworthy that the dependence on the lagged shocks makes the variance itself
stochastic (random). Combining (15) and (16) the marginal time series can now be
fused into a joint model by specifying its conditional joint distribution

YtjWt D wt � Ct.F1;t;F2;t/;

where the conditional mean and variance of Fj;t, for j D 1; 2, are only determined
by information from the past (up to time point t � 1) and are given as �j and
�2j;t. This framework combines autocorrelated shocks with a flexible modeling of
the conditional joint distribution. A detailed review of copula models in economic
time series can be found in [31]. For the purpose of this chapter, we focus on
applying a semiparametric approach as discussed in Sect. 3.3.3 to the time series
framework, with the difference that in the semiparametric approach described here,
we model the marginal time series via parametric GARCH models. For simplicity,
let t 2 N0, and denote by .Y1;t;Y2;t/TtD1 the available sample of size T (T 2 N0).
Furthermore, denote the observed (standardized) time points by t=T, so that all
observational points t=T are in the interval Œ0; 1�. The conditional copula is chosen
to be time dependent through an unknown parameter function �C.t�/ for t� 2 Œ0; 1�.
To obey restrictions in the parameter space we again consider a suitable one-to-
one transformation  such that 
.t�/ D  .�C.t�// 2 R and recover �C via
�C.t�/ D  �1.
.t�//. For a sample .Y1;t;Y2;t/TtD1 we can write the log-likelihood of
the overall joint density by successive conditioning in terms of the contributions of
the bivariate densities YtjWt D wt to the log-likelihood as

`T D
TX

tD1
log .c .F1;t.Y1;t/;F2;t.Y2;t// I �C.t=T//C

2X

jD1

TX

tD1
log

�
fj;t.Yj;t/

�

D `T;C C `T;1 C `T;2 :

See also (8) in Sects. 3.3.1 and 3.3.3. Following the so-called inference of margins
approach (a two-steps procedure), see [26], maximizing `T can be accomplished
by first separately maximizing `T;1 and `T;2, under our semiparametric setting by a
standard parametric maximum likelihood estimation method, and then maximizing
`T;C taking estimates of the previous step into account by replacing the distribution
functions Fj;t by their respective estimates OFj;t (for j D 1; 2). In order to maximize
`T;C we extend the local constant fitting approach of [22] to the local polynomial
approach discussed in Sect. 3.3.2. Asymptotic normality of the resulting estimator
in case of local constant fitting can be found in [22]. The study of the asymptotic
properties of the local polynomial dynamic copula estimator, presented in this
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section, is part of future research. Consider a fixed point t� 2 Œ0; 1�, and denote
by khn.�/ a rescaled kernel with bandwidth hn, as before. The local log-likelihood
for the problem considered is then given by

`T;C.ˇ/

D
TX

tD1
log c

�
OF1;t.Y1;t/; OF2;t.Y2;t/I �1

�
�
ˇ0 C ˇ1

	 t

T
� t�



C � � � C ˇp

	 t

T
� t�


p
��

� khn

	 t

T
� t�



; (18)

which needs to be maximized with respect to ˇ D .ˇ0; : : : ; ˇp/.

4.2 Illustrative Example

We illustrate the presented methodology by simulating from a bivariate
GARCH(1,1) model, where the conditional marginal distributions are set to be
Normal distributions, and the conditional copula is assumed to be a student t copula
where the degrees of freedom are fixed to 4. The remaining free copula parameter
is a time varying parameter function �C.t/ D 2 sin.0:95�.2B.tI 2; 3/ � 1/=6/, with
B.tI a; b/ the cumulative distribution function of the Beta distribution. See [11] for a
reference on (student) t copulas. The remaining parameters are set to �1 D �2 D 0,
˛1 D ˛2 D 0:1 ˇ1;1 D ˇ2;1 D 0:4 and �1;1 D �2;1 D 0:4.

Figure 6 show the first and second marginal time series for a simulated trajectory
of the process, highlighting the volatility clustering inherent in the process. In Fig. 7
we show simulated scatter plots of the unconditional distribution at three different
time points. As expected the time varying conditional dependence structure carries
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Fig. 6 Marginal time series Y1;t (left) and Y2;t (right) of a simulated bivariate copula-GARCH(1,1)
model, t D 1; : : : ; 500
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Fig. 7 Simulated scatter plot of .Y1;50; Y2;50/ (left panel); .Y1;250; Y2;250/ (middle panel) and
.Y1;450; Y2;450/ (right panel). The scatter plots are based on 250 independently simulated trajectories
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Fig. 8 True (solid curve) and estimated curve using bandwidths hn D 0:01 (dashed) and hn D
0:02 (dotted). Left panel: true and estimated �.t�/. Right panel: true and estimated conditional
Blomqvist’s beta. Calculations are based on a simulated sample of size T D 500

over to the distribution of .Y1;t;Y2;t/, displaying a negative dependence at early time
stages, and gradually switching to a positive dependence later on (moving from the
left panel to the right panel).

To illustrate the local log-likelihood estimation of �.�/ we first obtain estimates
O�1, O�2, Ǫ1, Ǫ2, Ǒ

1;1, Ǒ
2;1, O�1;1 and O�2;1 by fitting a GARCH(1,1) model to each

of the marginal time series individually. From the estimates we can then recover,
for j D 1; 2, the conditional variances O�2j;t to find OFj;t.Yj;t/ D ˚..Yj;t � O�j/= O�j;t/,
where˚ denotes the standard normal distribution function. To perform the local log-
likelihood estimation in (18) we settle for a local approximation with a polynomial
of degree p D 1, i.e. performing local linear fitting. For a fixed point t� 2 Œ0; 1� we
then maximize `T;C.ˇ0; ˇ1/ as given in (18), where we choose  �1 W R ! .�1; 1/,
with  �1.x/ D tanh.x/.

In the left panel of Fig. 8 we show the true and estimated �.t�/ when using
different bandwidths hn in the estimation procedure. In the right panel of Fig. 8 we
also plot the true and estimated conditional Blomqvist’s beta as a function of time,
using the same bandwidths as for the estimation of �.�/.
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5 Dynamic Modeling via Copulas: Application in Forecasting

We consider wind speed data obtained by weather stations in Kennewick (southern
Washington) and Vansycle/Butler Grade (north-eastern Oregon), in the USA. The
raw data1 consist of average wind speeds (in miles per hour = mph) for intervals of
5 min. For the analysis here we restrict to the period between April 1 and July 1,
2013. A more detailed description and analysis of these data can be found in [21].
In this section, we illustrate how the discussed methods can be used for estimation
and for forecasting of wind speeds.

To fit the time series data we extend the model described in (16) and (17) to
include an autoregressive component, leading to an AR(q)-GARCH(r; s) model,
where (16) is replaced by (for j D 1; 2)

Yj;t D �j C
qX

`D1
j;`Yj;t�` C "j;t ; where "j;t D �j;t
j;t ; (19)

and (17) is kept. Herein j;` 2 R, q 2 N0. As in Sect. 4 the conditional marginal
distributions are Normal, and the marginal time series are coupled by a time
dependent copula to form a bivariate model.

As wind speed forecasts with a two-hour forecast horizon are needed to meet
practical demands (see [21]), we transform the raw data into the hourly averages,
shown in Fig. 9, and denote the sample by .Y1;t;Y2;t/

2;184
tD1 . In the next step we fit

an AR(1)-GARCH(1; 1) model, described by (19) and (17), to the marginal time
series in an one hour rolling window type fashion as follows. The first estimates
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Fig. 9 Hourly averages of wind speed (mph) at Kennewick (left) and at Butler Grade (right) from
April 1 to July 1, 2013

1Datasets can be obtained from the web site of the Bonneville Power Administration under http://
transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.

http://transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.
http://transmission.bpa.gov/Business/Operations/Wind/MetData.aspx.
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. O�j; Oj;1; Ǫ j; Ǒ
j;1; O�j;1/, j D 1; 2, are obtained by fitting the AR-GARCH model to

.Yj;t/
744
tD1. The second estimates are then based on the shifted data .Yj;t/

745
tD2 and

so forth. We repeat this process 240 times, yielding estimates covering a span of
10 days. By keeping the number of observations fixed at 744 all estimates are
effectively based on data of the last respective 31 days. The so obtained estimates
are plotted against the window shift in Figs. 10 and 11. While the mean and
AR coefficients (Fig. 10) are very comparable between both sites, the GARCH
parameters show a differing pattern: while the baseline variance and lagged realized
shock coefficients are generally higher in Kennewick than in Butler Grade (left and
right panels of Fig. 11), the situation is reversed considering the dependence on
lagged realized variances. See the middle panel of Fig. 11. The two weather stations
are on different altitudes, the difference being around 130 m. This could may be
explain the differences noticed.
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Fig. 10 Estimates of �j (left panel) and of j;1 (right panel), for j D 1; 2, for the 240 rolling
windows, based on 744 observations each
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Fig. 11 Estimates of ˛j;1 (left panel), of ˇj;1 (middle panel) and of �j;1 (right panel), for j D 1; 2,
for the 240 rolling windows, based on 744 observations each
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Fig. 12 Estimates of �.t�/ (left) and the conditional Blomqvist’s beta (right), by local-linear
fitting with h D 0:2, for a student t copula with 4 degrees of freedom based on the observations
.Y1;t; Y2;t/

744
tD1 (for the April period) and on the observations .Y1;t; Y2;t/

2;184
tD1;441 (for the June period).

Solid line: April period; Dotted line: June period

The conditional dependence structure between the marginal time series is
modeled by a student t copula with 4 fixed degrees of freedom, where the remaining
parameter � is allowed to vary as a smooth function of time, as explained in
Sect. 4. In Fig. 12 (left panel) we show the estimated conditional copula parameter
function for observations .Yj;t/

744
tD1 (the solid curve) using the previously estimated

AR-GARCH parameters, and applying local linear fitting with bandwidth h D 0:2

(see Sect. 4). We repeat the procedure also based on the very last 744 observations
.Yj;t/

2;184
tD1;441 (i.e. the June period) and show the results in the left panel of Fig. 12

(the dotted curve). We also present the corresponding results for the estimated
conditional Blomqvist’s beta in the right panel of Fig. 12. As can be seen, the
dependence structure (between the observations from the two stations) varies within
the periods (April and June), but also seems to be different for the two periods
examined (early spring and summer period).

Turning towards forecasting we compute for each set of rolling window estimates
the conditional copula parameter at t� D 1, i.e. O�.744/ for the first window, O�.745/
for the second and so on. This yields successive estimates . Ǒ

0; Ǒ
1/ that we use to

predict the one hour ahead forecast and, respectively, the two hours ahead forecast
of �.t/ by Q�.T C k/ D  �1. Ǒ

0 C k Ǒ
1=744/, with k D 1, respectively k D 2,

where  �1 is the link function as in Sect. 4 and T denotes the last time point of the
respective rolling window sample. The obtained 2 h ahead forecast of � is shown in
the left panel of Fig. 13.
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Fig. 13 Left: Two hours ahead prediction of �.�/ for the rolling windows, based on 744
observations. Right: Realized minus two hours ahead predicted wind speeds in Kennewick for
the rolling windows

Concerning the marginal time series we use the point estimates of the parameters
as one and two hours ahead forecasts of the parameters. This allows to compute
point forecasts of the wind speed by (see (19))

QYj;TC1 D E
�
Yj;TC1jYj;T�`; ` � 0

� D �j C j;1 Yj;T

QYj;TC2 D E
�
Yj;TC2jYj;T�`; ` � 0

� D �j C j;1
�
�j C j;1Yj;T

�

for j D 1; 2.
To assess the forecast quality we compute the square root of the mean squared

error of the predicted to the realized values for the 240 forecasts, denoted by RMSE.
For one hours ahead forecasts we obtain: RMSE = 2:9485 for the Kennewick station,
and RMSE = 3:0026 for the Butler Grade station. For the two hours ahead forecasts
these are: RMSE = 4:4725 for Kennewick and RMSE = 4:8190 for Butler Grade.
The right panel of Fig. 13 depicts the differences of realized to predicted two hours
ahead forecasts at Kennewick.

Having predictions of the marginal time series, as well as the conditional
dependence between them allows to go beyond point forecasting and to predict
their joint behaviour. In Fig. 14 we show contours of the predicted two hours ahead
joint distribution for the first rolling window, and then 5.5 days later, in respectively
the left and right side panels. As shown by the figure, not only the mean of the
distribution, represented by the wind speed point forecasts, but also the shape
changes as implied by the prediction of �.�/.

To further visualize the impact of the time varying association we forecast the
probability of Y1;TC2 and Y2;TC2 staying jointly below their conditional ˛ � 100%
quantiles. Within a copula framework this probability equals C.˛; ˛I �.T C 2//.
See [7] for an application in economics. For example based on the first rolling
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Fig. 14 Two hours ahead prediction of the conditional joint density of .Y1;746; Y2;746/ (left) and the
conditional joint density of .Y1;877; Y2;877/ (right) based on the first rolling window, respectively on
rolling window 132
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Fig. 15 Two hours ahead prediction of C.˛; ˛I �.T C 2// for the rolling windows, based on 744
observations

window we compute the conditional two hours ahead 40% quantiles as 10:1487 (for
Kennewick) and 6:1633 (for Butler Grade). This yields a prediction of PfY1;746 �
10:1487;Y2;746 � 6:1633g D 0:1777. Figure 15 shows the obtained predictions for
different values of ˛.

Acknowledgements The authors thank the organizers of the “Second workshop on Industry
Practices for Forecasting” ( WIPFOR 2013) for a very simulating meeting. This research is
supported by IAP Research Network P7/06 of the Belgian State (Belgian Science Policy), and
the project GOA/12/014 of the KU Leuven Research Fund. The third author is Postdoctoral Fellow
of the Research Foundation – Flanders, and acknowledges support from the foundation.



Flexible and Dynamic Modeling of Dependencies via Copulas 145

References

1. Abegaz, F., Gijbels, I., & Veraverbeke, N. (2012). Semiparametric estimation of conditional
copulas. Journal of Multivariate Analysis, Special Issue on “Copula Modeling and Depen-
dence”, 110, 43–73.

2. Acar, E. F., Craiu, R. V., & Yao, F. (2011). Dependence calibration in conditional copulas: A
nonparametric approach. Biometrics, 67, 445–453.

3. Acar, E. F., Genest, C., & Nešlehová, J. (2012). Beyond simplified pair-copula constructions.
Journal of Multivariate Analysis, Special Issue on “Copula Modeling and Dependence”, 110,
74–90.

4. Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals
of Mathematical Statistics, 21, 593–600.

5. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31, 307–327.

6. Chen, S. C., & Huang, T.-M. (2007). Nonparametric estimation of copula functions for
dependence modelling. The Canadian Journal of Statistics, 35, 265–282.

7. Cherubini, U., & Luciano, E. (2001). Value-at-risk trade-off and capital allocation with copulas.
Economic Notes, 30, 235–256.

8. Cherubini, U., Mulinacci, S., Gobbi, F., & Romagnoli S. (2011). Dynamic copula methods in
finance. New York: Wiley.

9. Darsow, W. F., Nguyen, B., & Olsen, E. T. (1992). Copulas and Markov processes. Illinois
Journal of Mathematics, 36, 600–642.

10. Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Académie Royale
de Belgique, Bulletin de la Classe des Sciences, 5e Série, 65, 274–292.

11. Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. International Statistical
Review, 73, 111–129.

12. Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London:
Chapman and Hall.

13. Fan, J., Farmen, M., & Gijbels, I. (1998). Local maximum likelihood estimation and inference.
Journal of the Royal Statistical Society, Series B, 60, 591–608.
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