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Abstract Short-term electricity forecasting has been studied for years at EDF and
different forecasting models were developed from various fields of statistics or
machine learning (functional data analysis, time series, non-parametric regression,
boosting, bagging). We are interested in the forecasting of France’s daily electricity
load consumption based on these different approaches. We investigate in this
empirical study how to use them to improve prediction accuracy. First, we show
how combining members of the original set of forecasts can lead to a significant
improvement. Second, we explore how to build various and heterogeneous forecasts
from these models and analyze how we can aggregate them to get even better
predictions.

1 Introduction

Electricity consumption forecasting is a crucial matter for electricity providers like
EDF to maintain the equilibrium between production and demand. Overestimating
the consumption leads to overproduction, which has a negative environmental
impact and implies unnecessary loss of benefits for the company. On the other hand,
underestimating the consumption may cause a shortage of energy and black outs.
In the past years EDF R&D has therefore developed several competitive forecasting
models achieving around 1.4 % error in MAPE (the average of percentage errors,
see (2) for a formal definition) at the daily horizon. However the electrical scene
in France is constantly evolving (nuclear power, electric cars, air conditioning are
developing for instance) and the opening of the electricity market induces potential

P. Gaillard (�)
EDF R&D, 1 av du Général de Gaulle, Clamart, France

GREGHEC, CNRS, Jouy-en-Josas, France
e-mail: pierre@gaillard.me

Y. Goude
EDF R&D, 1 av du Général de Gaulle, Clamart, France
e-mail: yannig.goude@edf.fr

© Springer International Publishing Switzerland 2015
A. Antoniadis et al. (eds.), Modeling and Stochastic Learning for Forecasting
in High Dimensions, Lecture Notes in Statistics 217,
DOI 10.1007/978-3-319-18732-7_6

95

mailto:pierre@gaillard.me
mailto:yannig.goude@edf.fr


96 P. Gaillard and Y. Goude

customer losses. Therefore the historical models have to be regularly reconsidered
and challenged. As daily forecasts are the main inputs for optimizing the production
units we consider in this paper the goal of improving short-term (daily) forecasting
of France’s electricity consumption.

As the historical French electricity provider, EDF has investigated the issue of
load forecasting for years and developed models from a wide range of statistical
or machine learning methods. Among many, we consider in this study three
approaches presented below. They were chosen for two main reasons. First, they
have a good forecasting accuracy. Second, they are derived from quite different
statistical frameworks, which results in a sort of heterogeneity. The first model
is a non-parametric model based on regularized regression on spline basis (see
Wood [28]). It will be referred to next as the generalized additive model (GAM).
This model has performed well on France’s load consumption signal (see Pierrot
and Goude [25]), on EDF portfolio data (see Wood et al. [29]) and was proven to
be a good competitor on US data (see Nedellec et al. [24]). The second model is
based on curve linear regression (CLR) via dimension reduction. It is introduced
and applied to electricity consumption forecasting in Cho et al. [10, 11]. The third
and last model, kernel wavelet functional (KWF), is detailed in Antoniadis et al. [2–
4]. It combines clustering functional data and detection of similar patterns in
functional processes based on a wavelet distance. These three approaches are based
on extremely different insights and we expect it can induce different behaviors that
an aggregation algorithm can take advantage of in some online fashion. The GAM
model captures non-linear relationships between electricity load and the different
covariates driving it (temperature, fare effects. . . ) and provides smooth estimates of
these transfer functions without any transformation of the original data. The CLR
model performs a data-driven dimension reduction as well as a data transformation
so that the relationship between the transformed data is linear and can be captured
by simple multivariate regression models. The KWF approach is non-parametric
and does not use any exogenous variable but the past consumption. It is particularly
robust to special days (bank holidays, holiday seasons) and meteorological forecasts
errors. In the GAM setting, observations (half-hourly electricity load and covariates)
are considered as finite dimensional whereas in the CLR and the KWF approaches,
daily electricity load is the realization of a functional process.

As we have at our disposal three forecasting models, a straightforward question
is how to combine them to produce accurate forecasts. The art of combining
forecasts has been extensively studied for the past four decades (see the review
of Clemen [12]) and the empirical literature is voluminous. However, few real-
world empirical studies consider the framework of individual sequences to design
the aggregation rules. Some of them include for instance climate prediction [23],
air-quality prediction [21, 22], quantile prediction of daily call volumes entering
call center [6], or electricity consumption [13]. The vast majority of these studies
focuses however on the aggregation rules and how to weight the experts. Little
consideration goes into designing the set of experts to include in the combination.
Aiolfi et al. in their technical report [1] studied the construction of a varied enough
set of experts by considering the combination of linear autoregressive models with
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non-linear models (logistic smooth transition autoregressive and neural networks).
They however did not consider the same aggregation rules as we do: because of the
small length of their time series, none of their rules had time to learn the weights
and the best results were obtained using uniform aggregation scheme.

We now describe the methodology followed in this study. We aim first at
designing a set of base forecasting methods (henceforth referred to as experts)
by using the three models described above. We show how an aggregation rule
that sequentially outputs forecasts of the electricity consumption for the next
instances can significantly improve upon these experts. The aggregation rules and
the framework of prediction with expert advice is detailed in Sect. 2. Then, we
propose different strategies to design a larger set of experts from the three initial
experts and give a detailed analysis of the corresponding combined forecasts.

2 Sequential Aggregation of Experts

The content of this section reviews the framework of sequential prediction with
expert advice, a setting which received considerable attention in the past 20 years
(see the monograph by Cesa-Bianchi and Lugosi [9]). It considers an online learning
scenario in which a forecaster has to guess element by element future values of an
observed time series. To form its prediction it receives and combines before each
instance the opinions of a finite set of experts. This framework makes possible to
consider several stochastic models with extremely different assumptions in a single
approach. To do so, it adopts the deterministic and robust point of view of the
literature of individual sequences. It is thus particularly adapted to our application.

2.1 Mathematical Context

We now present the mathematical setting of prediction with expert advice. We
suppose that at each time instance t D 1; : : : ; T the next outcome yt of a sequence of
observations y1; : : : ; yT , like half-hourly electricity consumptions, is to be predicted.
We assume that the observations are all bounded by some positive constant B,
so that yt 2 Œ0; B�. Before each time instance t, a finite number K of experts
provide forecasts xt D .x1;t; : : : ; xK;t/ 2 Œ0; B�K of the next observation yt. A
forecaster is then asked to form its own prediction with knowledge of the past
observations yt�1

1 D y1; : : : ; yt�1 and of the past expert advice xt
1 D x1; : : : ; xt.

Let denote by � the inner product in R
K . Formally the forecaster forms a mixture

Opt D . Op1;t; : : : ; OpK;t/ 2 R
K and predicts Oyt D Opt � xt D PK

kD1 pk;txk;t by linearly
combining the predictions of the experts.

The accuracy of a prediction x proposed by an expert or by the aggregation rule
at time instance t for the outcome yt is measured through a convex loss function `t.
In this paper, we consider the special case of the square loss `t.x/ D .yt � x/2. The
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analysis can however be easily extended to any convex loss function. On instance
t, expert k suffers loss `t.xk;t/ D .yt � xk;t/

2 and the aggregation rule incurs loss
`t.Oyt/ D .yt � Oyt/

2. The goal of the forecaster is to design aggregation rules (that
is, applications A W .xt

1; yt�1
1 / 7! Opt) with small average error. The latter can be

decomposed as

1

T

TX

tD1

.yt � Oyt/
2 , inf

q2S

(
1

T

TX

tD1

.yt � q � xt/
2

)

C RT ; (1)

where S is some closed and bounded subset of RK ; and this defines the regret RT .
As we explain next this decomposition highlights the well-known trade-off between
approximation error and estimation error. Because these two terms add up to the
error incurred by the aggregation rule they act as two opposing forces.

The first term in (1) is the error encountered by the best constant weight vector
chosen in hindsight in a closed and bounded set S � R

K . This best mixture is
called an oracle. Its performance is the target that the aggregation rule intends to
reach and is thus used as a benchmark value to be compared to the performance
of an aggregation rule. Several oracles can be defined according to the set S the
aggregation rule aims at competing with. We can list several oracles: the best expert
oracle suffers minkD1;:::;K

PT
tD1.yt�xk;t/

2; the best convex weight vector corresponds

to the best element in S D �K , fq 2 R
KC W Pi qi D 1g; and finally the best linear

oracle is defined by S D BK.r/ the ball of radius r in R
K . The larger the set S

we aim at competing with, the smaller the first term in (1) is, but the harder it is
for the aggregation rule to remain competitive. The second term grows in general.
This approximation error is closely related to the expert forecasts. It decreases with
increasing heterogeneity of the expert set.

The second term RT is the estimation error. It evaluates the ability of the
aggregation rule to retrieve online the oracle, i.e., the best possible mixture. If
the aggregation rule is well designed, RT will vanish to 0 as the length T of the
experiment grows to infinity.

We assume in this paper that we have an efficient aggregation rule and we focus
on reducing the approximation error; indeed many efficient aggregation rules are
already well-known—see Sect. 2.2, but the approximation error is often left out of
the debate.

2.2 Aggregation Rules

Experiments are performed by considering four different aggregation rules: the
exponentially weighted average forecaster (EWA), the fixed share forecaster (FS),
the ridge regression forecaster (Ridge), and the polynomially weighted average
forecaster with multiple learning rates (ML-Poly). EWA, FS, and Ridge are
described in the book of Cesa-Bianchi and Lugosi [9] for constant values of their
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learning parameters. Devaine et al. [13] already applied EWA and FS to short-term
load forecasting. They suggested in Sect. 2.4 an empirical tuning of the learning
parameters which comes with no theoretical guarantees but works empirically
well. It consists of optimally choosing the learning parameters on adaptive finite
grids. Except for ML-Poly which already comes with its own learning parameter
calibration rule, the parameters are tuned online following the method of Devaine
et al. [13].

The exponentially weighted average forecaster (EWA) is an online convex
aggregation rule introduced in learning theory by Littlestone and Warmuth [20] and
by Vovk [27]. At time instance t, it assigns to expert k the weight

Opk;t D e��
Pt�1

sD1 `s.xk;s/

PK
iD1 e��

Pt�1
sD1 `s.xi;s/

;

which is exponentially small in the cumulative loss suffered so far by the expert.
When the learning parameter � is properly tuned, it has a small average regret

RT D O
�
1=

p
T
�

with respect to the best fixed expert oracle—see Cesa-Bianchi

and Lugosi [9].

The fixed share forecaster (FS) is due to Herbster and Warmuth [18]. It has the
property to compete not only with the best fixed expert but with the best sequence of
experts that may change a small number of times. It is particularly interesting when
dealing with non stationary environments, in which the best expert should regularly
be reconsidered. The fixed share forecaster considers a learning parameter � as well
as a mixing parameter ˛ 2 Œ0; 1� that evaluates the number of changes in the oracle
sequence of experts we are competing with.

We now provide a short mathematical description of the fixed share aggregation
rule. The initial weight distribution is uniform Op1 D .1=K; : : : ; 1=K/. Then, at each
instance t, the weights are updated twice. First, a loss update takes into account the
new loss incurred by each expert,

Ovk;t D Opk;t�1e��
Pt�1

sD1 `s.xk;s/

PK
iD1 Opi;t�1e��

Pt�1
sD1 `s.xi;s/

:

Second a mixing-update ensures that each expert gets a minimal weight ˛=K by
assigning

Opk;t D .1 � ˛/ Ovk;t C ˛=K :

This update captures the possibility that the best expert may have switched at time
instance t. The fixed share forecaster was proven to have nice theoretical properties
and vanishing average regret RT with respect to sequences of experts with few shifts.
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Algorithm 1: The polynomially weighted average forecaster with multiple
learning rates (ML-Poly)

Initialization: p1 D .1=K; : : : ; 1=K/ and R0 D .0; : : : ; 0/

For each instance t D 1; 2; : : : ; T

0. pick the learning rates

�k;t�1 D 1=

 

1 C
t�1X

sD1

�
`s.Oys/ � `s.xk;s/

�2
!

1. form the mixture Opt defined component-wise by

Opk;t D �k;t�1

�
Rk;t�1

�
C

= �t�1 � .Rt�1/
C

where x
C

denotes the vector of non-negative parts of the components of x
2. output prediction Oyt D bpt � xt

3. for each expert k update the regret

Rk;t D Rk;t�1 C `t.Oyt/ � `t.xk;t/

For more details about the fixed share aggregation rule the reader is referred to
Cesa-Bianchi and Lugosi [9, Section 5.2].

The polynomially weighted average forecaster with multiple learning rates
(ML-Poly) is obtained via a version of the polynomially weighted average fore-
caster detailed in Cesa-Bianchi and Lugosi [8], see also Cesa-Bianchi and Lugosi [9,
Section 2.1]. The multiple learning rate version is due to Gaillard et al. [17] whose
implementation is recalled in Algorithm 1. Gaillard et al. [17] proved the regret
bound RT D O

�
1=

p
T
�

with respect to the best fixed expert. ML-Poly is particularly
interesting since despite the theoretical tuning of the learning parameters, it achieves
as good performance as the other ones. It runs also much faster than the empirical
tuning described by Devaine et al. [13] and used for the other rules which needs to
run as many times the aggregation rule as the size of the parameter grid.

The ridge regression forecaster (Ridge) is presented in Algorithm 2. It was
introduced in a stochastic setting by Hoerl and Kennard [19]. It forms at each
instance the linear combination of experts minimizing a L2-regularized least-square
criterion on past data. It was first studied in the context of prediction with expert
advice by Azoury and Warmuth [5] and Vovk [26] and was proved to enjoy nice
theoretical properties, namely a regret bound RT D o.1/ as T ! 1 with respect to
the best linear oracle. Once again, the learning parameter � of the ridge regression
aggregation rule has to be calibrated online. This tuning can be done using the
methodology detailed in Devaine et al. [13, Section 2.4].

Ridge forms linear mixtures. The weights may be negative and not sum to one,
while the other three aggregation rules restrict themselves to convex combination
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Algorithm 2: The ridge regression forecaster (Ridge)
Parameter: � > 0

Initialization: Op0 D .1=K; : : : ; 1=K/

For each instance t D 1; 2; : : : ; T

1. form the mixture Opt defined by

Opt D argmin
u2RK

(
t�1X

sD1

.ys � u � xs/
2 C � ku � p0k2

2

)

2. output prediction Oyt D Opt � xt

of experts. In other words they only propose weight vectors Opt 2 �K where �K D
fx 2 R

KC W Pi xi D 1g. While linear aggregation rules might have more flexibility
to detect correlation between experts and therefore often reach better performance,
convex aggregation offers easy interpretation and safe predictions. Indeed convex
weight vectors only assign non-negative weights to experts and their predictions
always lie in the convex hull of experts predictions. Thus if all the experts are known
to perform well, the aggregation rule will do so as well.

The gradient trick In the versions described above, EWA, FS, and ML-Poly
compete only with the best fixed expert oracle. In Eq. (1) they cannot per se ensure
vanishing average regret RT with respect to the best fixed convex combination (i.e.,
S D �K). But it exists a standard reduction from the problem of competing with
the best convex combination oracle to the goal of competing with the best fixed
expert. This reduction is a well-known trick in the literature of individual sequences
and is known as the gradient trick. The theoretical proof of this reduction is beyond
the scope of this empirical research and is detailed in Cesa-bianchi and Lugosi [9,
Section 2.5].

We only provide a brief description of the gradient trick. For each time instance t,
we denote by ft W p 2 �K 7! `t.p � xt/ 2 RC the function which evaluates the losses
incurred by the weight vectors at time instance t. When the loss functions `t are
convex and (sub)differentiable, the functions ft are convex and (sub)differentiable
over �K . That is the case for instance for the square loss. We denote by rft the
(sub)gradient function of ft. The gradient trick relies then in not directly running the
aggregation rule with the loss functions `t but with modified gradient loss functions
Qft W p 2 �K 7! rft.Opt/ �p. In other words, the aggregation rules are run the same way
by replacing the loss `t.Oyt/ incurred by the algorithm by Qft.Opt/ and the loss `t.xk;t/

suffered by expert k by Qft.ık;t/, where ık 2 �K is the Dirac mass on k. Experiments
of the next section are run using the gradient trick.
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3 Experiments

We now describe the data we are dealing with and how we intend to build new
experts from the three forecasting models described in the introduction. We then
report the results obtained by mixing the different sets of experts as well as the
performance of three reference oracles (best experts, best convex combination, best
linear combination). As explained in Sect. 2 the performance of these oracles cor-
responds to the one aggregation rules hope to reach. Remember that the fixed share
aggregation rule does not only compete with the best fixed convex combination but
has a more ambitious goal. It aims at coming close to the performance of the best
sequence of convex combinations that vary slowly enough. The results obtained by
this more complex oracle will however not be reported in this research and we will
only compare the performance of the fixed share aggregation rule to the best fixed
convex combination of experts.

3.1 Presentation of the Data Set

We consider an electricity forecasting data set which corresponds to an updated
version of the one analyzed by Devaine et al. [13]. It contains half-hourly measure-
ments of the total electricity consumption of the EDF market in France from January
1, 2008 to June 15, 2012, together with several covariates, including temperature,
cloud cover, wind, etc. Our goal is to forecast the consumption every day at 12:00
for the next 24 h; that is, for the next 48 time instances.

Atypical days are excluded from the data set. They correspond to public holidays
as well as the days before and after them. Besides, the data set is cut into two subsets.
A training set of 1;452 days from January 1, 2008 to August 31, 2011 is used to build
the forecasting methods. The performance of the methods is then measured using
the testing set of 244 days between September 1, 2011 to June 15, 2012. Prediction
accuracy is measured in megawatts (MW) by the root mean squared error (RMSE)

v
u
u
t 1

T

TX

tD1

.yt � Oyt/2

and by the absolute percentage of error (MAPE)

1

T

TX

tD1

jyt � Oytj
yt

: (2)

Operational forecasting purposes require the predictions to be made simultane-
ously at 12:00 for the next 24 h (or equivalently for the next 48 half-hourly time
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Fig. 1 (left) The observed half-hourly electricity consumptions between January 1, 2008 to June
15, 2012. An overall trend as well as a yearly seasonality can be pointed out in the data.
The electrical heating in winter has a major impact in France on the electricity consumption.
Approximately the last year is used to test the methods. (right) The observed half-hourly electricity
consumptions during a typical week. A weekly pattern can be observed with a reduction of
consumption during the week-end

instances) (Fig. 1). Aggregation rules can be adapted to this constraint via a generic
extension detailed in Devaine et al. [13, Section 5.3].

3.2 Combining the Three Initial Models

From each of the three forecasting models described in the introduction, one expert
is obtained: one from the generalized additive model (GAM), one from the curve
linear regression (CLR) and a last one from the kernel approach based on wavelets
(KWF). The experts are trained using the total training set from January 1, 2008
to August 31, 2011 described in the previous section. We calibrate the methods as
presented in [4, 11, 25]. This starting set of three experts is denoted in the rest of the
paper by E0.

Table 1 reports the performance obtained by mixing the three experts in E0. It
describes also the reference results of the corresponding benchmark oracles: the
best expert in E0, the best convex combination and the best linear combination. The
best convex combination and the best linear combination obtain similar results with
RMSEs of 629 MW. Due to confidentiality constraints, we cannot provide detailed
characteristics of the observed electricity consumptions. The relative performance
of the methods can be enjoyed by noting that MAPEs are around 1 %. A significant
improvement in performance can be noted in comparison to the best expert which
obtains 744 MW. This motivates the necessity of mixing these models whose
forecasts bring different information.
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Table 1 Performance of
oracles and aggregation rules
using the set of experts E0:
GAM, CLR, and KWF

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best expert 744 1:29

Best convex combination 629 1:06

Best linear combination 629 1:06

EWA 624 1:07

FS 625 1:05

ML-Poly 626 1:05

Ridge 638 1:06

EWA, FS, and ML-Poly are designed to compete with the best convex combina-
tion of experts while Ridge aims at approaching the performance of the best linear
combination. The latter suffer RMSEs between 624 and 638 MW, which corresponds
to reductions of the RMSE of approximatively 15 % compared to the best expert
RMSE.

To quantify if our improvements are significant, we computed the dispersion of
the errors among time instances of the aggregation rules and of the oracles—see
technical report from Gaillard et al. [16, Section 1.2] for details. The dispersion is
measured by the 95 % standard error

Ost D

v
u
u
u
t

1
T

PT
tD1

�
.yt � Oyt/2 � 1

T

PT
tD1 .yt � Oyt/

2
�2

4
T

PT
tD1 .yt � Oyt/

2
;

that is, the half-width of the 95 % symmetric confidence interval of the error around
the RMSEs reported in Tables 1–6. The 95 % standard error of the RMSEs are around
10 MW while the 95 % standard error of the MAPE are approximatively 0:02 %.
Hence any reduction of the RMSE of more than 10 MW can be considered significant
in the following.

Figure 2 reports the time evolution of the weights formed by ML-Poly and Ridge.
The weight vectors created by Ridge converge but that is not obvious with ML-Poly.
Stability is beneficial in an industrial context where weights have to be interpreted
and understood by human beings. The weights formed by EWA and FS behave
similarly to the ones of ML-Poly and are thus not reported here.

In the next section we will investigate how more experts can be designed based
on these three models in order to improve further the predictions (Figs. 3 and 4).

3.3 Creating New Experts

We aim now at reducing the approximation error in Eq. (1), i.e., at improving the
performance of the oracles, by adding new experts to our initial set E0. If the new
experts are not different enough from the base ones, the approximation term will
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Fig. 2 Time evolution of the weight vectors formed by ML-Poly (top) and Ridge (bottom). We
remark that the weights assigned by ML-Poly are always non-negative and sum to 1. Ridge can
form negative weights
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Fig. 3 Time evolution of cumulative residual of the three experts in E0 and of the considered
aggregation rules. The aggregation rules have smaller gradient in comparison to the experts.
Besides it can be noticed that Ridge behaves very differently when compared to the other
aggregation rules

not decrease; and worse, the right-most term in (1), the sequential estimation error,
may increase, as the aggregation rule will have to face more experts. Note that none
of the newly constructed experts will significantly outperform the performance of
the best expert in E0, which achieves a RMSE of 744 MW and a MAPE of 1:29 %.
The benchmark performance of the best expert oracle thus remains the same for all
considered extended sets of experts in this study.
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Fig. 4 Hourly and monthly RMSE of the first three experts and two aggregation rules described
in Table 6. Because they obtain similar results to the ML-Poly aggregation rule, the EWA and the
fixed share aggregation rules are not reported here

3.3.1 Bagging

The first method that we investigate is inspired from bagging, a machine learn-
ing method that combines bootstrapping with aggregating. It was introduced by
Breiman [7] in order to improve the stability and the accuracy of a forecasting
model. As most averaging methods it is known to reduce the variance and to avoid
over-fitting. We aim at creating new experts by bootstrapping and at averaging
online the newly constructed set of experts by running the aggregation rules.

Given a forecasting model, a bootstrapped expert is obtained by estimating the
model on a random training strict subset S0

0 (that does not include the whole training
set S0 of n D 1;452 days). The training set S0

0 is generated by sampling n days from
S0 uniformly and with replacement. As the sampling is performed with replacement,
some days may be present multiple times in S0

0. Breiman [7] pointed out that it leaves
out e�1 � 37 % of the days.

The bootstrap procedure is repeated 20 times using each of the three models at
hand: GAM, CLR, and KWF. We name E1 the set of 60 new experts, thus created.
In our experiments we used 20 bootstrapped replicates of each model. This does
not mean that more or fewer replicates would have led to worse performance. We
wanted to add enough replicates to get sufficient variety but in the other hand we did
not want to have too many bootstrapped experts in comparison to the experts we will
build in the following sections. We tested several values and 20 expert replicates for
each model seemed to be a reasonable trade off.

The performance of aggregation rules and oracles on E0 [ E1 is reported in
Table 2. The best linear combination oracle achieves a RMSE of 571 MW, which



Forecasting Electricity Consumption by Aggregating Experts 107

Table 2 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E1: GAM, CLR, KWF
as well as the 60 bootstrapped
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 601 1:01

Best linear combination 571 0:99

EWA 614 1:01

FS 619 1:03

ML-Poly 612 1:02

Ridge 629 1:05

is a slightly better performance than the one of the best convex combination oracle,
that equals 601 MW. This can be explained by two facts. First, the new experts
might be biased. As their weights do not need to sum to one, linear mixtures correct
better such bias. Second, as many experts are built using the same method, there
are important correlations between them that can be better modeled using negative
weights. However Ridge seems to have a hard time estimating the linear oracle
and the performance is not much improved compared to Table 1. The empirical
gain is about 10 MW for all aggregation rules. The improvement is thus not really
significant.

3.3.2 Specialization

We start this section with the intuition that we need variety in our set of experts.
We try to reuse the idea of bootstrapping to create new experts by modifying
the training set. However, instead of sampling days uniformly in the training set
E0, we aim at assigning weights to training days with the goal to maximize the
variety among themselves. To do so, we choose weights according to the values
of the corresponding covariates (temperature, nebulosity, wind, type of day, . . . ).
Specialized experts are created this way to some specific scenarios like heatwave,
cold spell, sunny days or cloudy days. Hopefully if we choose different enough
scenarios, these experts may catch different effects in the consumption that we might
combine by aggregating them.

We now describe how to design such new experts. We suppose that we have
at our disposal a forecasting model such that, during the training of the model,
we can assign different weights to the elements of the training data. This is the
case for GAM, CLR, and KWF for example. We assume that we also have access
to an exogenous variable Z 2 Œ0; 1� like the temperature or the nebulosity which
was normalized in Œ0; 1�. Given this model and this exogenous variable Z, we
build two specialized experts: the first one by assigning to the day d the weight
.1 � Zd/2, the second one with the choice Z2

d . We thus get one expert focusing
on high values of Z, and another one focusing on low values. The form of these
weights was set empirically but we might want to replace it by many other forms.
For instance, we had first looked at weights in f0; 1g so as to select days according
to a threshold on Z. However this led to unstable experts and poor performance. We
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Table 3 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E2: GAM, CLR, KWF
as well as the 24 specialized
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 604 1:02

Best linear combination 582 0:99

EWA 609 1:01

FS 610 1:02

ML-Poly 602 1:00

Ridge 613 1:01

chose four covariables all based on temperature scenarios: the average, maximum,
and minimum temperature of the day, and the variation of temperature with the
previous day. We thus got 8 .D 4 scenarios � 2 experts: hight and low) specialized
experts by using each of the three models: GAM, CLR, and KWF. We call E2 this
set of 24 .D 8 experts � 3 methods) experts. The performance obtained by mixing
the experts in E0 [ E2 is reported in Table 3. We observe a better performance for
all aggregation rules with respect to bagging although we consider fewer additional
experts.

Note that we showed the interest of specialized experts when they are combined
with initial experts. The individual performance of specialized experts is often poor.
They do not necessarily perform better than initial experts even when they are
evaluated only on the data they should be specialized to.

3.3.3 Temporal Double-Scale Model

Now we study another way of constructing new experts by considering a temporal
two-scale model. We follow the methodology detailed in Nedellec et al. [24] of the
team TOLOLO for the “Kagle Global Energy Forecasting Competition 2012: Load
Forecasting”.

To forecast the short-term load with the canonical generalized additive model
(GAM), the electricity consumption is usually explained by a single model including
all the covariates (meteorological, and calendar ones) together with the recent
consumption. The consumption Yt is here decomposed into two parts: a medium-
term part Ymt

t including meteorological and calendar effects and a short-term part Yst
t

containing what could not be captured in large temporal scales, Yt D Ymt
t C Yst

t . The
short-term part Yst

t basically consists of capturing local effects like extreme weather,
network reconfigurations and so on. The modeling approach is thus divided into two
estimation steps. First, we fit a mid-term generalized additive model including the
meteorological and calendar covariates only. Second, we perform a residual analysis
and we correct online the forecasts by using the observed consumptions of the last
30 days. This short-term readjusting is done by fitting another generalized additive
model on the residuals.

The set containing this new expert is called E3 and the performance obtained by
combining this new expert with the three experts in E0 is reported in Table 4. We
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Table 4 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E3: only four experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 596 1:00

Best linear combination 595 1:00

EWA 601 1:01

FS 599 1:00

ML-Poly 605 1:01

Ridge 605 1:00

observe RMSEs around 600 MW for all aggregation rules, which is a significant
improvement considering that we add only one expert. The extension to other
methods, like CLR and KWF, of this new way of creating experts is left for future
work.

3.3.4 Boosting

In this section we investigate a final method to create new experts. We take now
inspiration from boosting methods, like the AdaBoost algorithm of Freund and
Schapire [15], that aims at correcting the mistakes of weak learners (or experts).
The experts constructed in this section will be referred to as boosted experts.

Suppose that we have an expert that at an instance t of the training data estimates
the consumption yt by xt. We want to build another expert predicting x0

t. Then
reminding that our final aim is to aggregate well these predictions, it is irrelevant
wether the second expert does not predict well yt as soon as it counterbalances the
error made by the original expert xt. Improving the performance of the best convex
combination should indeed only improve the prediction of the mixture. We can thus
try to build the second expert so that the constant mixture �xt C .1 � �/x0

t performs
well for some � 2 Œ0; 1�. This can be done by training the second experts not directly
on the observed consumption yt but on the modified one y0

t D .yt ��xt/=.1��/. We
can create several new experts by considering different values for � 2 Œ0; 1�. Small
values might lead to experts too similar from the original one, while larger values
may create unstable experts.

We create 45 .D 5 � 3 � 3/ new experts by using � 2 f0:5; 0:6; 0:7; 0:8; 0:9g,
each of the three initial experts in E0 are used as the original expert xt and each of
the three models (GAM, CLR, and KWF) are used to create the modified experts x0

t.
We denote by E4 the set of 45 experts thus constructed.

We report in Table 5 the performance obtained by mixing experts in E0 [ E4.
We did not consider � < 0:5 because the created experts were too similar to
the original ones. Considering all � 2 f0:1; : : : ; 0:9g does not affect the results
(neither improve nor worsen them). The step size 0:1 of the grid was chosen
arbitrarily and the investigation of different values is left for future research. The
best convex combination oracle achieves a RMSE of 528 MW and the best linear
combination oracle suffers a RMSE of 543 MW. The performance of EWA and FS is
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Table 5 Performance of
oracles and aggregation rules
using the set of experts
E0 [ E4: GAM, CLR, KWF
as well as the 45 boosted
experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 543 0:93

Best linear combination 528 0:92

EWA 609 0:99

FS 609 0:99

ML-Poly 588 1:00

Ridge 578 0:98

Table 6 Performance of
oracles and aggregation rules
using the full set of experts
E0 [ E1 [ E2 [ E4 [ E3: all
the 133 constructed experts

Oracles and aggregation rules RMSE (MW) MAPE (%)

Best convex combination 521 0:95

Best linear combination 479 0:84

EWA 578 0:95

FS 581 0:95

ML-Poly 565 0:95

Ridge 557 0:95

not much improved compared to previous experiments. They both incur RMSEs of
609 MW. But ML-Poly and Ridge suffer rmses under 580 MW, which is a significant
improvement.

3.3.5 Combining the Full Set of Experts

Table 6 reports the performance obtained by mixing all the experts created in the
previous sections. We have now 133 experts at our disposal: 3 experts from in
the starting set E0, 60 bootstrapped experts in E1, 24 specialized experts in E2,
45 boosted experts in E4 and 1 temporal two-scale model in E3. The best linear
combination and the best convex combination perform better. But at the same time
it is harder to compete with them. Thus while the performance of aggregation rules
is improved, the gap between oracles and aggregation rules is increased as well.

Ridge suffers in Table 6 a RMSE of 557 MW while it got 638 MW when mixing
only the three experts in E0 (see Table 1). The several refinement of the set of experts
thus reduced its RMSE by approximatively 13 %. Similarly, the errors of EWA and
FS were improved by about 7 % while ML-Poly got a 10 % reduction.

Figure 5 provides the RMSEs according to the number of experts aggregated with
ML-Poly and Ridge. The experts included in the mixture were chosen by induction
on the number of experts by following a forward approach. The induction was
initialized with the expert which performed the best (744 MW). Suppose we had a
set of K experts, the expert K C 1 was the one among the remaining experts that got
the best results when it was mixed with the K experts using the considered rule. The
procedure was stopped when all the 133 experts were used in the aggregation. The
symbols in the figures represent the category (bootstrapped, specialized, boosting,
etc.) of the last added expert.
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Fig. 5 Evolution of the performance according to the number of aggregated experts with ML-Poly
(top) and Ridge (bottom)

Figure 5 shows the usual trade-off between having enough experts and over-
fitting. If we could select a good subset of experts to include in the mixture we
could reduce the RMSE under the 530 MW bar by using Ridge (and approximatively
under 545 MW by using ML-Poly). A suitable number of experts seems to lie
between 15 and 90 experts. In future work, a pruning step, that would remove the
less important experts before combining the forecasts of the remaining ones, might
thus be a good option. Eban et al. [14] investigated in the framework of prediction
of individual sequences a setting with many experts and few prediction instances.
They remarked that trimming the worst experts often improves performance and
suggested a procedure to do so online.

Note that the weights formed by ML-Poly and Ridge were different enough in
Fig. 2. The aggregation rules might thus capture different information and we may
thus try to combine them in a second layer. The simple uniform average of the
forecasts of these two rules incurs a RMSE of 541 MW, while using one of the fancier
sequential aggregation rules for the second layer gets us around 548 MW.

Figure 6 plots the hourly and monthly RMSEs of the two best aggregation rules
and the RMSEs of the benchmark oracles described in Table 6. It shows that the
aggregation rules always outperform in average the best single expert at all 48 half-
hours of the day and at all 10 months of the testing set. In addition, we note a
significant improvement of the performance at 12:30. This can be explained by the
update of the weights, which occurs at noon. The best expert oracle, which is built
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Fig. 6 Hourly and monthly RMSEs of the three benchmark oracles and of ML-Poly and Ridge
described in Table 6

with a version of GAM, does not favor any hour of the day. The figure with monthly
averaged RMSEs shows that aggregation rules do not only focus in improving
forecasts when the task is easy. The best expert oracle is indeed outperformed
every month, including November or February, which are month that are notoriously
difficult to predict. Second, it illustrates that aggregation rules have a short learning
period. They indeed encounter almost no regret during September and October with
respect to all oracles although they just started to learn on September 1.

4 Conclusion

We presented in this paper an extensive application of aggregation rules from the
literature of individual sequences to short-term electrical consumption forecasting.
We focused on building an efficient set of experts from three initial ones, where
the efficiency is viewed in terms of what these new experts bring to the combined
forecasts. In other terms, we assumed that we had an efficient aggregation rule and
focused more on reducing the approximation error, that is, the first term in (1). We
noticed that despite the vast literature on combining forecasts (including empirical
studies) rare papers dealt with this important topic. We proposed different strategies
to generate experts from the three initial approaches: KWF, GAM, and CLR. We
then quantified the gains in terms of forecast accuracy of the combined forecasts
on the test set (about 10 month of half-hourly data). A summary of our results
is presented in Fig. 7 for the two best aggregation rules: ML-Poly and Ridge.
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Combining all the experts that we generated with four different strategies, we
achieved a 25 % gain over the best expert (around 200 MW in RMSE), which is a
significant gain considering that the three original experts had already been refined
and worked extremely well (they are not week learners as in classical boosting). This
gain can be decomposed into two parts: roughly half of it comes from combining
three heterogeneous initial experts, the other half is due to the construction of new
experts. Among the four proposed strategies, our boosting trick and what we call
specialized experts bring the most important improvements. We believe that these
strategies could be applied to other forecasting problems and there is still some work
to derive theoretical guarantees for these tricks. We also observe that aggregating
rules are quite robust to adding new experts, and it is clear in Fig. 5 that combining
forecasts does not suffer much from over fitting. Nevertheless, these results suggest
that there is a way for improving the aggregation rules accuracy by adding a pruning
step that could select the best set of experts in some online fashion.
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