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Abstract In this paper, we discuss the problem of short-term electricity load
forecasting by regarding electricity load on each day as a curve. The dependence
between successive daily loads and other relevant factors such as temperature, is
modelled via curve linear regression where both the response and the regressor are
functional (curves). The key ingredient of the proposed method is the dimension
reduction based on the singular value decomposition in a Hilbert space, which
reduces the curve linear regression problem to several ordinary (i.e. scalar) linear
regression problems. This method has previously been adopted in the hybrid
approach proposed by Cho et al. (J Am Stat Assoc 108:7–21, 2013) for the same
purpose, where the curve linear regression modelling was applied to the data after
the trend and the seasonality were removed by a generalised additive model fitted
at the weekly level. We show that classifying the successive daily loads prior to
curve linear regression removes the necessity of such a two-stage approach as well
as resulting in reducing the forecasting error by a great margin. The proposed
methodology is illustrated using the electricity load dataset collected between 2007
and mid-2012, on which it is compared to the hybrid approach and other available
competitors. Finally, various ways for improving the forecasting performance of the
curve linear regression technique are discussed.
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1 Introduction

While there are means for storing and discharging electricity, they cause extra
costs as well as being limited to a small capacity compared to the overall electric
power consumption. Therefore, it is of great importance for electricity providers
to model and forecast electricity loads accurately over short-term (from 1 h to
1 month ahead) and middle-term (from 1 month to 5 years ahead) horizons. The
electricity load forecast is an essential entry to the optimisation tools adopted by
many energy companies for power system scheduling, and a small improvement in
load forecasting can bring in substantial benefits from reducing production costs.
Besides, there are further advantages to be gained in the electricity trading market,
especially during the peak periods.

The French energy company Électricité de France (EDF) manages a large panel
of production units across Europe, which includes water dams, nuclear plants,
wind turbines, coal and gas plants. Figure 1 shows the electricity consumption
of their customers measured over half an hour intervals between 2007 and mid-
2012. Note that for confidentiality, we only report the ratio between the load over
each half-hour interval, and the maximum load during the period throughout the
paper. Based on the vast knowledge on French electricity consumption patterns
accumulated over 20 years, EDF has developed a forecasting model which consists
of complex regression models based on past loads, temperature, date and calendar
events, coupled with classical time series models such as the seasonal ARIMA
(SARIMA) [4]. This operational model performs very well, attaining about 1.4 %
mean absolute percentage error (see (8)) in forecasting the consumption of EDF
customers over one day horizon. Due to its complexity, however, the model may
not be well-adapted to constant changes in electricity consumption habits resulted
from the opening of new electricity markets, technological innovations and social
and economic changes, to name a few.
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Fig. 1 Electricity consumption of the French customers of EDF measured every half an hour
between 2007 and mid-2012
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Cho et al. [6] recognised the strategic importance of a forecasting model
which was more adaptive to ever-changing electricity consumption environment.
Electricity loads exhibit several interesting features at more than one level, as can
be seen in Fig. 1, and addressing such multi-level nature of the data, they proposed
a hybrid approach which consisted of the following two building blocks:

• Modelling the overall trend and seasonality in the data by fitting a generalised
additive model (GAM) to the weekly averages of the load, with meteorological
factors (e.g., temperature and nebulosity) as explanatory variables;

• Modelling the dependence across successive, de-trended daily loads via curve
linear regression, where both the response and the regressor are functional
(curves), with the load curve on the next day as the response and that on the
current day, jointly with the temperature forecast, as the regressor.

By regarding each daily load and temperature as a curve, the proposed curve linear
regression modelling takes advantage of the continuity of the curve data in statistical
modelling. Moreover, it embeds some nonstationary features, such as daily patterns
of electricity loads (see Fig. 2), into a stationary framework in a functional space. Its
key ingredient is the dimension reduction based on the singular value decomposition
in a Hilbert space, which effectively reduces the curve linear regression problem
to several ordinary linear regression problems. Compared to the EDF operational
model, the hybrid method does not incorporate much of the data-specific knowledge,
while maintaining competitive prediction accuracy when applied to the French
electricity consumption data.

While the hybrid approach represents a determined effort in developing an
adaptive and widely-applicable forecasting model, it is conceivable that the two-
stage procedure may carry over the estimation and the forecasting errors from the
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Fig. 2 Electricity loads on Mondays–Tuesdays in January and December (solid), Mondays–
Tuesdays in June and July (dashed) and Saturdays–Sundays in June and July between 2007 and
2012 (dotted)
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first stage to the next stage, and thus lead to greater forecasting errors. Besides, even
after the trend and the seasonality are removed at the weekly level, the daily loads
exhibit dependency on calendar variables, such as the corresponding days of a week
and the months of a year, both in their profiles and the covariance structure between
successive loads. As a solution, [6] proposed to classify the pairs of daily loads into
(approximately) homogeneous sub-groups prior to fitting a curve linear regression
model, which, as we show, renders the weekly level modelling unnecessary.

Therefore, we focus on the curve linear regression method and its application
to the one-day ahead forecasting problem in conjunction with the daily load clas-
sification, and investigate whether this simplified approach improves the accuracy
and the adaptivity of the forecasting model when compared to the hybrid approach.
Besides, the ways of further enhancing its forecasting performance are discussed,
such as aggregating several forecasting models resulting from varying choices for
the curve regressor.

The rest of the paper is organised as follows. In Sect. 2, we describe the
dimension-reduction based curve linear regression technique in a generic setting.
Section 3 discusses the application of the proposed approach to electricity load
modelling, including the problem of classifying the successive daily load curves.
We conduct a comparative study in Sect. 4, where our method and other competitors
are applied to predict the daily electricity consumption of EDF customers in France.
Finally, we conclude the paper with some remarks on the future research.

2 Curve Linear Regression via Dimension Reduction

Every day at noon, EDF forecasts the half-hourly consumption of electricity for
the next 24 h. Viewing that the 48 half-hourly loads are sampled from a curve, we
may regard the loads for the next 24 h from the noon of day i as a curve response
(� Yi.�/), and let the curve regressor (� Xi.�/) contain information such as the loads
observed up to the noon of the same day, as well as observed and predicted daily
temperature. Then the following curve linear regression model can be adopted to
model the dependence between such Yi.�/ and Xi.�/:

Yi.u/ D �Y.u/C
Z
I2

fXi.v/ � �X.v/gˇ.u; v/dv C "i.u/ for u 2 I1; (1)

where �Y.u/ D EfYi.u/g, �X.v/ D EfXi.v/g and I1 and I2 denote the supports of
Yi.�/ and Xi.�/, respectively. The linear operator ˇ is a regression coefficient function
defined on I1 � I2, and "i.�/ is noise satisfying Ef"i.u/g D 0 for all u 2 I1.

The conventional approach to the linear regression problem in (1) is based
on decomposing Yi.�/ and Xi.�/ using the Karhunen-Loève expansion, which has
been featured predominantly in the functional data analysis literature for dimension
reduction. Then the terms from such expansions are modelled using simple linear
regression, which is equivalent to the dimension reduction based on principal
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component analysis in multivariate analysis. For further references on functional
linear models, see e.g. [20, 25] and [12].

Since the principal components do not necessarily represent the directions in
which Xi.�/ and Yi.�/ are most correlated, [6] presented a novel approach where the
singular value decomposition (SVD) in a Hilbert space was adopted to single out
the directions upon which the projections of Yi.�/ were most correlated with Xi.�/.
While closely related to the functional canonical regression method proposed in
[15], this approach focuses on regressing Yi.�/ on Xi.�/ and thus the two curves are
not treated on an equal footing which is different from, and much simpler than, the
latter method. In what follows, we lay out the details of the SVD-based curve linear
regression method in a generic setting.

Let fYi.�/;Xi.�/g; i D 1; : : : ; n, be a random sample where Yi.�/ 2 L2.I1/,
Xi.�/ 2 L2.I2/, and let I1 and I2 be two compact subsets of R. We denote by
L2.I / the Hilbert space consisting of all the square integrable curves defined on
the set I , which is equipped with the inner product hf ; gi D R

I f .u/g.u/du for
any f ; g 2 L2.I /. For now, it is assumed that EfYi.u/g D 0 for all u 2 I1 and
EfXi.v/g D 0 for all v 2 I2. The covariance function between Yi.�/ and Xi.�/ is
denoted by ˙.u; v/ D covfYi.u/; Xi.v/g. Under the assumption

Z
I1

EfYi.u/
2gdu C

Z
I2

EfXi.v/
2gdv < 1; (2)

˙ defines the following two bounded operators between L2.I1/ and L2.I2/,

f1.u/!
Z
I1

˙.u; v/f1.u/du 2L2.I2/ and f2.v/!
Z
I2

˙.u; v/f2.v/dv 2L2.I1/

for any fl.�/ 2 L2.Il/; l D 1; 2.
Performing the SVD on ˙ , we obtain a triple sequence f�j; 'j.�/;  j.�/g; j D

1; 2; : : : which satisfies

˙.u; v/ D
1X

jD1

q
�j 'j.u/  j.v/; (3)

where f'j.�/g is an orthonormal basis of L2.I1/, f j.�/g is that of L2.I2/, and the
squared singular values f�jg are ordered in a decreasing manner as

�1 � �2 � � � � � 0:

Further, it holds that for u 2 I1; v 2 I2 and j D 1; 2; : : :,

Z
I1

M1.u; u
0/ 'j.u

0/ du0 D �j 'j.u/;
Z
I2

M2.v; v
0/  j.v

0/ dv0 D �j  j.v/;
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where Ml; l D 1; 2 are non-negative operators defined on L2.Il/ as

M1.u; u
0/ D

Z
I2

˙.u;w/˙.u0;w/ dw; M2.v; v
0/ D

Z
I1

˙.w; v/˙.w; v0/ dw:

It is clear from the above that �j is the j-th largest eigenvalue of M1 and M2, with
'j.�/ and  j.�/ as the respective eigenfunctions. See [23] for further discussion on
the SVD in a Hilbert space.

Since f'j.�/g and f j.�/g are the orthonormal bases of L2.I1/ and L2.I2/, we
may write

Yi.u/ D
1X

jD1
�ij'j.u/; Xi.v/ D

1X
kD1

�ik k.v/; (4)

where �ij and �ik are random variables defined as �ij D hYi; 'ji and �ik D hXi;  ki.
From (3), it is straightforward to derive that

cov.�ij; �ik/ D E.�ij�ik/ D
� p

�j when j D k;
0 when j ¤ k:

(5)

The dimensionality of the functional data has been defined in various contexts,
e.g. see [13] and [2]. A correlation dimension between the two curves Yi.�/ and Xi.�/
was defined in [6] with the squared singular values �j.

Definition 1 If �r > 0 and �rC1 D 0, the (linear) correlation between Yi.�/ and
Xi.�/ is r-dimensional.

When the correlation between Yi.�/ and Xi.�/ is r-dimensional, it follows from (5)
that covf�ij; Xi.v/g D 0 for all j > r and v 2 I2, from which we can conclude that
the curve linear regression model (1) has an equivalent representation by r (scalar)
linear regression models, as summarised in the following theorem.

Theorem 1 (Theorem 1 of [6]) Let the linear correlation between Yi.�/ and Xi.�/
be r-dimensional. Assume that

• The regression coefficient operator ˇ is in the Hilbert space L2.I1 � I2/, and
• "i.�/ are i.i.d. with Ef"i.u/g D 0 and EfXi.v/"j.u/g D 0 for any u 2 I1; v 2 I2

and i; j � 1.

Then the curve regression model (1) may be represented equivalently by

�ij D P1
kD1 ˇjk�ik C "ij for j D 1; : : : ; r;

�ij D "ij for j D r C 1; r C 2; : : : ;
(6)

where "ij D R
I1
'j.u/"i.u/du, and ˇjk D R

I1�I2
'j.u/ k.v/ˇ.u; v/dudv.
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The above theorem implies that the SVD-based approach provides a framework to
define and exploit the correlation dimension between a pair of curves, and to model
the functional linear regression relationship between the pair using a finite number
of ordinary (scalar) linear regression models. In this framework, as described in
Sect. 3.2 below, the prediction is achieved directly from the estimated ordinary linear
regression models.

Taking into account the fact that var.�ik/ ! 0 as k ! 1 (see (2) and (4)),
we may include only the first Q terms �ik; k D 1; : : : ;Q in the r multiple linear
regression models, and obtain the ordinary least squares (OLS) estimator of the
finite number of linear coefficients. Note that, while the OLS estimator of ˇjk is
unbiased, its variance tends to increase with Q in finite sample performance. That
is, if Q is selected too large, we may end up with a model which fits the data too
closely but performs poorly in prediction.

As noted in [6], Theorem 1 holds for any valid expansion Xi.v/ D P
k �ik k.v/,

provided f�ijg are obtained from the SVD. Let Xi.�/ be of finite dimension in
the sense that its Karhunen-Loève decomposition has q terms only, i.e. Xi.v/ DPq

kD1 �ik�k.v/ where q.� r/ is a finite integer, f�k.�/gq
kD1 are q orthonormal func-

tions in L2.I2/ and �i1; : : : ; �iq are uncorrelated random variables with var.�ik/ > 0.
Then, decomposing Xi.�/ with respect to f k.�/gq

kD1 from the SVD of ˙ , the
corresponding f�ikg satisfy cov.�ik; �il/ D 0 for any k ¤ l. This, together with
(5) and (6), implies that ˇjk D 0 for all j ¤ k and thus (6) is reduced to r simple
linear regression problems

�ij D ˇjj�ij C "ij for j D 1; : : : ; r;
�ij D "ij for j D r C 1; r C 2; : : : :

2.1 Estimation

Given the observed pairs of curves fYi.�/; Xi.�/g; i D 1; � � � ; n, let

Ȯ .u; v/ D 1

n

nX
iD1

fYi.u/� NY.u/gfXi.v/ � NX.v/g;

where NY.u/ D n�1 P
i Yi.u/ and NX.v/ D n�1 P

i Xi.v/. Performing the SVD on
Ȯ .u; v/, we obtain the estimators f O�j; O'j.�/; O j.�/g for f�j; 'j.�/;  j.�/g; j D 1; 2; : : :

in (3). Note that the SVD can be achieved by performing eigenanalysis on the non-
negative operators

OM1.u; u
0/ D

Z
I2

Ȯ .u;w/ Ȯ .u0;w/dw and OM2.v; v
0/ D

Z
I1

Ȯ .w; v/ Ȯ .w; v0/dw;
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which may be transformed into the eigenanalysis of non-negative definite matrices,
see Section 2.2.2 of [2].

Adapting Theorem 1 of [2] to the current setting, we can show the consistency of
O�j. We first assume that

• fYi.�/;Xi.�/g is strictly stationary and -mixing with the mixing coefficients .k/
satisfying the condition

X
k�1

k .k/1=2 < 1:

• EfRI1
Yi.u/2du C R

I2
Xi.v/

2dvg2 < 1.
• �1 > � � � > �r > 0 D �rC1 D �rC2 D � � � .

Then we have j O�k � �kj D Op.n�1=2/ for 1 � k � r, and j O�kj D Op.n�1/ for k > r,
as n ! 1.

This result implies that the ratios O�jC1= O�j for j < r are asymptotically bounded
away from 0, while O�rC1= O�r ! 0 in probability. Therefore, one way of determining
the correlation dimensionality is to employ the following ratio-based estimator

Or D arg max
1�j�d

O�j= O�jC1;

where d is a pre-specified upper bound on r. However, this estimator should be
used with caution as different components of the SVD can have different degrees
of “strength” in the sense that, there may exist some k < r for which non-zero
�j ¤ 0; j > k are considerably smaller than �j0 ; j0 � k. Further discussion on this
point in the framework of factor analysis can be found in [17]. Heuristically, we may
estimate r as

Or D maxf1 � j � d W O�j= O�jC1 > Mg; (7)

for sufficiently chosen M to avoid neglecting such smaller non-zero eigenvalues.
Alternatively, [6] proposed the following information criterion based on the

estimated eigenvalues, which extended the information criterion introduced in [14]
for high-dimensional time series analysis:

IC.q/ D log

0
@c� C 1

d2

dX
kDqC1

O�k

1
A C �q � g.n/;

where c�; � > 0 are constants and g.�/ is a function of n satisfying n � g.n/ ! 1
and g.n/ ! 0 as n ! 1. While IC.�/ was shown to be consistent in identifying
r asymptotically, the choices of � and g.�/ played a significant role in finite sample
performance. Therefore, it was proposed to fix g.n/ as g.n/ D n�1=2, obtain q� D
arg minq IC.qI �/ over a grid of values for � , and choose r as the most frequently
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returned among q�. For the full description of this majority voting scheme, see
Section 3.2 of [6].

3 Application to Electricity Load Modelling

In this section, we discuss applying the proposed curve linear regression method to
electricity load modelling and forecasting. The load data example (plotted in Fig. 1)
contains electricity loads consumed by the French customers of EDF between 2007
and mid-2012. We first highlight some time-varying features exhibited by the daily
electricity load curves, which makes it difficult to assume that the entire data can be
modelled as being stationary. Then, we introduce a simple classification rule which
divides the pairs of load curves into homogeneous sub-groups, such that the curve
linear regression modelling is applicable to each sub-group separately. Finally, the
combined procedure of classification and curve linear regression is illustrated using
a real electricity load forecasting example.

3.1 Classification of Daily Electricity Load Curves

In electricity load data, there exist systematic discrepancies in the profiles and the
variability of daily load curves observed on different days of a week or in different
months. Figure 2 shows that, while successive daily loads on Mondays–Tuesdays
in June and July behave similarly, they are distinctively different from those
observed on Saturdays–Sundays in June and July, and also from those observed
on Mondays–Tuesdays in January and December. Those profile discrepancies are
reflected predominantly in the locations and magnitudes of daily peaks. Typically
in France, daily peaks occur at noon in summer and in the evening in winter, due to
economic cycle as well as the usage of electrical heating or cooling and lighting.
Hence, the profiles and (presumably) the dynamic structure of successive daily
curves vary over different days within a week, and also over different months within
a year. It has been noted that these systematic discrepancies persist even after the
weekly level de-trending step of the hybrid approach (see Section 4.1 of [6]), which
implies that the classification of daily loads is an essential step prior to curve linear
regression modelling with or without the weekly level modelling.

According to the experts at EDF, in the case of French electricity consumption
data, load curves on the same day of a week tend to have similar profiles. Therefore it
is reasonable to assign a day type (DT) to each daily load as summarised in Table 1.

Table 1 Daily classification
of daily load curves

Day type 0 1 2 3 4 5 6

Day of a week Mon Tue Wed Thu Fri Sat Sun
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1 2 53 4 6 7 8 9 10 11 12

Fig. 3 Boxplots of O�i1 from different months

Table 2 Seasonal classification of daily load curves

Seasonal class 1 2 3 4 5 6 7 8

Month Jan–Feb, Nov–Dec Mar Apr May Jun–Jul Aug Sep Oct

To gain an insight into the possible seasonal variation present in the covariance
between successive daily loads, as well as in their profiles, we decompose the daily
load curves (denoted by Zi.�/ for the loads on the i-th day) as follows. Performing
the SVD on the sample covariance function between successive daily curves ZiC1.�/
and Zi.�/, we obtain the first left singular function O�1.�/ and decompose each ZiC1.�/
as O�i1 D hZiC1; O�1i; see Fig. 3. We note that each Zi.�/ has been de-meaned with the
mean curve obtained by averaging out all the observations of the same DT. If the
dependence structure between the pairs of curves undergoes seasonal changes, we
expect such seasonality to be reflected in the behaviour of O�i1 over the span of 1 year.
Indeed, this is the case as observable in the boxplots of O�i1 from different months
and based on this, we choose to create 8 seasonal classes (SC) as in Table 2.

Combining the two classification rules, we classify each pair of successive
daily loads into sub-groups of (approximately) homogeneous dependence structure,
according to the corresponding DTs and SCs. While it lacks rigorous statistical
ground, the forecasting models estimated within such sub-groups perform well as
demonstrated in Sect. 4. Besides, the problem of classifying electricity load curves
and functional data in general can stand alone as an independent research problem,
and it has attracted considerable attention, see e.g. [5, 21, 22] and [16] for functional
data clustering, and [1] for that in the context of electricity loads classification.
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3.2 An Illustration

We illustrate the application of curve linear regression with an example where our
aim is to predict the electricity load curve for the next 24 h (48 half-hours), denoted
by Y.�/, at the noon of Tuesday 12 June 2012. Note that in (1), Yi.�/ and Xi.�/ are
allowed to have different supports as I1 and I2, such that we have flexibility in the
choice of the curve regressor. Therefore we consider the following three choices:

• X.1/.�/: load curve for the 24 h up to the midday of 12 June 2012.
• X.2/.�/: X.1/.�/ joined with the temperature forecast (� TF.�/) for the next 24 h.
• X.3/.�/: X.2/.�/ joined with the temperature curve (� T.�/) observed over the same

24 h interval as X.1/.�/.
We have used the temperature forecasts from meteoFrance in our study. As
discussed in Sect. 3.1, fYi.�/;X.m/i .�/g; m D 1; 2; 3 are collected as all the observed
pairs of curves corresponding to f(DT 1, SC 5), (DT 0, SC 5)g between 1 January
2007 and the midday 12 June 2012. In total, there are n D 38 observations, which
are plotted in Fig. 4 along with their respective mean curves. It may be noted
that, due to the classification step, the regressor curves fX.1/i .�/; i D 1; : : : ; ng
and the response curves fYi.�/; i D 1; : : : ; ng do not satisfy the relationship
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Fig. 4 The n curve observations Yi.�/ (top left), X.1/i .�/ (top right), Ti.�/ (bottom left) and TF
i .�/

(bottom right), together with their respective mean curves (filled circle) as well as Y.�/, X.1/.�/,
T.�/ and TF.�/ (empty circle)
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X.1/iC1.�/ D Yi.�/. Hence, even with Xi.�/ � X.1/i .�/, the curve linear regression model
(1) is distinguished from the autoregressive Hilbertian process of order 1 (ARH(1))
proposed in [3].

Note that for X.2/i .�/ and X.3/i .�/ which join the observed loads with the tem-

perature, different components have different scales since X.1/i .�/ range in tens of
thousands (MW), while Ti.�/ and TF

i .�/ range in a far smaller scale between 6 and
33 (oC). Since the SVD-based method is not scale-invariant, we apply a simple
standardisation step to have different components of the regressor curves in a similar
scale.

From the observed curves, we estimate the sample covariance function

Ȯ .m/.u; v/ D 1

n

nX
iD1

fYi.u/� NY.u/gfX.m/i .v/ � NX.m/.v/g; m D 1; 2; 3;

and perform the SVD on Ȯ .m/.u; v/ to obtain f O�.m/j ; O'.m/j .�/; O .m/j .�/g; j D 1; 2; : : :.
Applying (7) to the estimated eigenvalues with M D 5, the correlation dimensions
are estimated as Or.m/ D 4 for all m D 1; 2; 3. Defining O�.m/ij D hYi � NY; O'.m/j i and

O�.m/ik D hX.m/i � NX.m/; O .m/k i analogously as O�ij and O�ik, the next step is to estimate the

linear coefficients ˇ.m/jk in the following scalar linear regression models

O�.m/ij D
QX

kD1
ˇ
.m/
jk O�.m/ik C "

.m/
ij

for m D 1; 2; 3. We set Q D 15 to preserve the prediction accuracy by having
sufficient number of terms, while attaining the numerical stability of the OLS
estimator of ˇ.m/jk . Then the predictor of Y.u/ takes the following form

OY.m/.u/ D NY.u/C
Or.m/X
jD1

O�.m/j O'.m/j .u/;

where O�.m/j are predicted as

O�.m/j D
QX

kD1
Ǒ.m/
jk O�.m/k ; j D 1; : : : ; Or.m/;

with O�.m/k D hX.m/ � NX.m/; O .m/k i.
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For each m, we obtain two other predictors besides OY.m/.�/, the oracle and the
base predictors. The oracle predictor is of the form

QY.m/.u/ D NY.u/C
Or.m/X
jD1

Q�.m/j O'.m/j .u/;

which is similar to OY.m/.u/ except that O�.m/j are replaced by Q�.m/j D hY � NY; O'.m/j i.

We use the term “oracle” to emphasise the fact that Q�.m/j require the prior knowledge
of Y.�/ and thus are unavailable in practice. The base predictor is set simply as
NY.m/.�/ D NY.�/, ignoring the dynamic dependence between the response and the
regressor curves.

To evaluate the performance of different predictors, we employ the following two
error measures

RMSE D
(
1

N

NX
tD1
.Oft � ft/

2

) 1=2

and MAPE D 1

N

NX
tD1

ˇ̌
ˇ̌
ˇ
Oft � ft

ft

ˇ̌
ˇ̌
ˇ ; (8)

where Oft and ft denote the predicted and the true loads in the t-th half-hour interval
and N denotes the forecasting horizon (N D 48 in this case). The MAPE and RMSE
for the above predictors are reported in Table 3.

As expected, the oracle predictors return smaller prediction errors than the SVD-
based predictors, and the base predictor returns the largest error. Based on this, we
can conclude that (a) there is much to be accounted for by the dependence between
the regressor and the response curves, as observable from the poor performance of
NY.�/, and (b) the reduced dimension captures such dependence structure well, as
demonstrated by the superior performance of QY.m/.�/.

OY.m/.�/ perform as competitively as QY.m/.�/, attaining RMSE as small as 292 MW
without any prior knowledge on the true load Y.�/. This fact is also confirmed in
Fig. 5, where all OY.m/.�/ and QY.m/.�/ are quite close to Y.�/ throughout the forecasting
horizon. Among the three OY.m/.�/; m D 1; 2; 3, the choice of X.2/.�/ returns the best
forecast.

Finally, when the aim is to produce multi-step ahead forecasts, we simply replace
the curve regressor X.1/.�/ by one of the forecasts OY.m/.�/ and repeatedly apply the
above procedure until the desired multi-step ahead prediction is achieved. Note that
the corresponding multi-step ahead temperature forecast may not be available and in
such a case, X.1/.�/ is the only possible choice as a regressor curve. Thus-produced

Table 3 RMSE and MAPE of the different predictors

Predictor OY.1/ OY.2/ OY.3/ QY.1/ QY.2/ QY.3/ NY
RMSE (MW) 361 292 327 189 218 220 2,440

MAPE (%) 0.77 0.64 0.73 0.41 0.46 0.46 6.65
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Fig. 5 Different predictors against the true load curve (grey, solid) for the next 24 h at noon 12
June 2012

two-day ahead predictor at the noon of 12 June 2012 attains 464 MW RMSE and
1.20 % MAPE, with X.1/.�/ replaced by OY.2/.�/.

4 Forecasting Daily Electricity Consumption of EDF
Customers

In this section, we perform one-day ahead forecasting for daily electricity loads
consumed by the French customers of EDF from 1 September 2011 to 15 June
2012. As with the example in Sect. 3.2, the forecast is produced every day at noon.
Hence, when forecasting the load curve for the next 24 h on day t, we assume the
accessibility of the load and the temperature observations from 1 January 2007 up to
the noon of day t, as well as the temperature forecast for the next 24 h. During this
period, there are certain days (e.g., bank holidays) on which the load observations
have not been validated and excluding such days, load forecasts are produced for
234 days in total. Also, when the temperature forecast (TF

i .�/) is not available, we
assume that the true one-day ahead temperature (TiC1.�/) is known for convenience.

Recalling the notations from Sect. 3.2, we denote the forecasting models with the
three regressors X.m/.�/; m D 1; 2; 3 by P1–P3, respectively, and the corresponding
oracle forecasting models by O1–O3. We also consider the predictors from the
hybrid approach ([6], H1–H3), where we employ the same regressors at the curve
linear regression stage. At the weekly GAM stage, the explanatory variables are
lagged weekly average load, weekly average temperature, weekly average cloud
cover and two calendar variables representing the yearly trend and the seasonality.
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Table 4 RMSE and MAPE of the daily electricity load forecasts between 1 September 2011 and
15 June 2012

P1 P2 P3 P4 O1 O2 O3 Base H1 H2 H3 GAM

RMSE (MW) 1,250 853 872 804 336 312 312 6,164 1,917 1,812 1,813 832

MAPE (%) 1.97 1.47 1.50 1.37 0.53 0.50 0.51 10.75 2.91 2.72 2.75 1.40
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Fig. 6 RMSE from P1–P4, O3, H1–H3 and GAM with respect to different months

Finally, the results from the GAM model provided by the EDF R&D department are
presented (“GAM”) for comprehensive comparative study.

Additive models for short-term electricity load forecasting have been studied e.g.,
in [19] and [11], where the proposed models were shown to be well-adapted to non-
linear behaviour of the electricity load. The GAM included in our study models the
relationship between each half-hour interval load and several explanatory variables
such as the lagged load, calendar events, temperature and cloud cover forecasts. For
further information, see [24] and [18]. The EDF operational model is not included
in our study. In practice, the true consumption of the EDF customers is not known in
real time unlike our assumption above, and therefore the operational model cannot
be compared with other models on an equal footing.

The RMSE and the MAPE from different models are reported in Table 4, and
Fig. 6 shows the plot of RMSE averaged within each month. For brevity and
better representation, only O3 is included among the oracle predictors and the base
predictor is omitted.

Overall, the forecasting performance of any model considered, including the
oracle predictors, is better in summer than in winter as can be seen in Fig. 6. The
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relative difficulty of forecasting French electricity loads in winter has been noted
in [9, 10] and [7]. This may be accounted for by higher variability among the daily
loads in winter, which is markedly greater than that in summer as demonstrated in
Fig. 2.

Also, it is observable from Fig. 6 that among P1–P3, different models outperform
the others in different months. For instance, in June and September, P1 performs as
well as P2 and P3 or even slightly better, but its performance is considerably worse
during colder seasons. In general, the efficacy of having temperature included in
the regressor is likely to depend on the homogeneity of the observed temperature
curves within each class and the quality of the temperature forecasts. Therefore, we
may achieve improved forecasting performance by combining these predictors in
an adaptive way, either by selecting one predictor out of the three, or by assigning
some data-driven weights to the three predictors on each day. Indeed, by selecting
the best forecast out of the three a posteriori (i.e. assuming that the true future load
is known), we can reduce the overall RMSE to 660 MW.

Without attempting to be theoretically rigorous, we produced a new predictor
(P4) by averaging two out of the three each day, where the two predictors were
chosen as those two closest to each other. This additional step can be achieved
without any prior knowledge of the future load, yet succeeds in reducing prediction
errors by a considerable margin as reported in Table 4. Also, P4 universally
outperforms P1–P3 in terms of RMSE in any month of a year. We note that there
is a growing interest in the problem of aggregating multiple expert advices in the
context of short-term electricity load forecasting. For example, [8] investigate this
problem by sequentially updating the convex weights applied to various forecasting
models based on the past performance.

The performance of hybrid approaches (H1–H3) is substantially worse than that
of their simplified counterparts (P1–P3). It can be explained by the fact that the
errors from fitting and predicting the weekly average loads at the weekly level
modelling (see Fig. 7), are carried over to the daily level curve linear regression
modelling. We note that the electricity load dataset studied here covers the consump-
tion of the customers of EDF only, rather than that of the entire French population
as in [6]. Therefore its weekly average loads are more prone to digress from the
overall trend or the seasonality estimated from the past observations due to e.g., the
departure and the arrival of customers. This leads to greater variance in modelling
the linear relationship between O�ij and O�ik; k D 1; : : : ;Q (see Fig. 8), even when
the same classification rule has been applied to the daily loads, and thus to worse
prediction models.

The superior performance of P1–P3 to H1–H3 indicates that the classification
of successive daily loads effectively handles the dependency of the trend and
the seasonality of electricity load data on the calendar variables. While we have
used a simple classification rule combining the DT and the SC in this study,
existing functional data clustering methods such as [5] may be applied to divide
the successive daily loads into sub-groups of homogeneous profiles and covariance
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structure in a more data-driven way, rather than relying on any prior knowledge on
electricity consumption patterns which may change over time.

Also, there are certain factors which are known to have substantial influence
on daily electricity loads yet have not been incorporated into our forecasting
framework. An example of such factors is the special tariff options offered by EDF
to large businesses on certain days in January–March and November–December,
with the purpose of reducing heavy electricity consumption during winter. This
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scheme is known to affect not only the daily consumption on the special tariff days
but also that on the days preceding and following. A data-driven classification tool
may be able to identify such influence of the scheme without being furnished with
the exact dates or any other information on the load patterns on the relevant days,
and thus further improve the quality of forecasts.

According to the overall prediction errors, GAM performs better than P2 and
worse than P4 by a small margin, and the breakdown of RMSE with respect to differ-
ent months in Fig. 6 does not reveal any patterns so as to the relative performance of
our method and GAM in different months. The oracle predictors attain the minimum
errors throughout the year, which further validates the previous statement that the
SVD-based dimension reduction method is successful in capturing the dependence
between the regressor and the response curves. It also supports our observations
that there is a scope for improvement, e.g. via adaptive aggregation of different
forecasting models and data-dependent classification of successive daily loads.

5 Conclusions

In this article, we addressed the problem of daily electricity load forecasting
via curve linear regression, with emphasis on the adaptivity of the proposed
method to ever-changing electricity consumption environment. The curve linear
regression technique was introduced in a generic setting, where the singular value
decomposition in a Hilbert space reduced the curve linear regression model to a
finite number of scalar linear regression models.

Although it had previously been proposed by [6] as the second stage of the
hybrid method for daily load forecasting, we showed that the curve linear regression
technique could be applied directly to the data without any preliminary trend and
seasonality modelling, based on the following rationale.

• The trend and the seasonality depend on the calendar variables which can be used
as classification criteria, and when equipped with such a classification step, the
weekly level modelling is redundant.

• In the hybrid approach, the prediction error from the first stage is carried over to
the second stage, which leads to the increased variance in curve linear regression
modelling and thus to significantly deteriorated prediction performance.

Also, the reduced approach requires less human intervention and is more adaptive to
the time-varying nature of the data, and its superior prediction performance has been
demonstrated with a real data example. Besides, within the reduced framework, it
is more straightforward to carry out further statistical analysis such as obtaining
a prediction interval around the forecast. By focusing exclusively on curve linear
regression, some interesting topics for further improving the methodology have been
made clearer throughout the real data analysis.

Firstly, as seen in Sect. 3.1, clustering the daily loads into homogeneous sub-
groups, in terms of both their profiles and dependence structure, plays a key role in
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electricity load data analysis. Data-driven classification of the successive daily loads
can greatly improve the forecasting results, as well as providing interesting insights
on the data itself. There is an active interest on developing functional data clustering
techniques, and adapting these methods to electricity load data is a problem which
requires our immediate attention.

Further, since the curve linear regression framework allows flexible choice of
regressor, we can have a number of forecasting models with different regressors.
Therefore, it is of interest to see whether we can achieve improved forecasting
performance by adaptively aggregating multiple forecasts. As briefly explored in
Sect. 4, a simple adjustment in this direction can enhance the prediction performance
substantially. Also on a more general note, an automatic selection of the regressor
in curve linear regression may be widely adopted as a functional data analysis tool
beyond the context of electricity load forecasting.
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