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Abstract We address the problem of forecasting a time series meeting the Causal
Bernoulli Shift model, using a parametric set of predictors. The aggregation
technique provides a predictor with well established and quite satisfying theoretical
properties expressed by an oracle inequality for the prediction risk. The numerical
computation of the aggregated predictor usually relies on a Markov chain Monte
Carlo method whose convergence should be evaluated. In particular, it is crucial
to bound the number of simulations needed to achieve a numerical precision of
the same order as the prediction risk. In this direction we present a fairly general
result which can be seen as an oracle inequality including the numerical cost of the
predictor computation. The numerical cost appears by letting the oracle inequality
depend on the number of simulations required in the Monte Carlo approximation.
Some numerical experiments are then carried out to support our findings.

1 Introduction

The objective of our work is to forecast a stationary time series Y D .Yt/t2Z taking
values in X � R

r with r � 1. For this purpose we propose and study an aggregation
scheme using exponential weights.

Consider a set of individual predictors giving their predictions at each moment t.
An aggregation method consists of building a new prediction from this set, which
is nearly as good as the best among the individual ones, provided a risk criterion
(see [17]). This kind of result is established by oracle inequalities. The power and
the beauty of the technique lie in its simplicity and versatility. The more basic and
general context of application is individual sequences, where no assumption on the
observations is made (see [9] for a comprehensive overview). Nevertheless, results
need to be adapted if we set a stochastic model on the observations.
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The use of exponential weighting in aggregation and its links with the PAC-
Bayesian approach has been investigated for example in [5, 8] and [11]. Dependent
processes have not received much attention from this viewpoint, except in [1] and
[2]. In the present paper we study the properties of the Gibbs predictor, applied to
Causal Bernoulli Shifts (CBS). CBS are an example of dependent processes (see
[12] and [13]).

Our predictor is expressed as an integral since the set from which we do
the aggregation is in general not finite. Large dimension is a trending setup
and the computation of this integral is a major issue. We use classical Markov
chain Monte Carlo (MCMC) methods to approximate it. Results from Łatuszyński
[15, 16] control the number of MCMC iterations to obtain precise bounds for the
approximation of the integral. These bounds are in expectation and probability with
respect to the distribution of the underlying Markov chain.

In this contribution we first slightly revisit certain lemmas presented in [2, 8]
and [20] to derive an oracle bound for the prediction risk of the Gibbs predictor.
We stress that the inequality controls the convergence rate of the exact predictor.
Our second goal is to investigate the impact of the approximation of the predictor
on the convergence guarantees described for its exact version. Combining the PAC-
Bayesian bounds with the MCMC control, we then provide an oracle inequality
that applies to the MCMC approximation of the predictor, which is actually used in
practice.

The paper is organised as follows: we introduce a motivating example and several
definitions and assumptions in Sect. 2. In Sect. 3 we describe the methodology
of aggregation and provide the oracle inequality for the exact Gibbs predictor.
The stochastic approximation is studied in Sect. 4. We state a general proposition
independent of the model for the Gibbs predictor. Next, we apply it to the more
particular framework delineated in our paper. A concrete case study is analysed in
Sect. 5, including some numerical work. A brief discussion follows in Sect. 6. The
proofs of most of the results are deferred to Sect. 7.

Throughout the paper, for a 2 R
q with q 2 N

�, kak denotes its Euclidean norm,
kak D .

Pq
iD1 a2

i /
1=2 and kak1 its 1-norm kak1 D Pq

iD1 jaij. We denote, for a 2 R
q

and � > 0, B .a; �/ D fa1 2 R
q W ka � a1k � �g and B1 .a; �/ D fa1 2 R

q W
ka � a1k1 � �g the corresponding balls centered at a of radius � > 0. In general
bold characters represent column vectors and normal characters their components;
for example y D . yi/i2Z. The use of subscripts with ‘:’ refers to certain vector
components y1Wk D . yi/1�i�k, or elements of a sequence X1Wk D .Xt/1�t�k. For a
random variable U distributed as � and a measurable function h, �Œh.U/� or simply
�Œh� stands for the expectation of h.U/: �Œh� D R

h.u/�.du/.

2 Problem Statement and Main Assumptions

Real stable autoregressive processes of a fixed order, referred to as AR.d/ processes,
are one of the simplest examples of CBS. They are defined as the stationary solution
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of

Xt D
dX

jD1

�jXt�j C ��t ; (1)

where the .�t/t2Z are i.i.d. real random variables with EŒ�t� D 0 and EŒ�2
t � D 1.

We dispose of several efficient estimates for the parameter � D �
�1 : : : �d

�0

which can be calculated via simple algorithms as Levinson-Durbin or Burg algo-
rithm for example. From them we derive also efficient predictors. However, as the
model is simple to handle, we use it to progressively introduce our general setup.

Denote

A .�/ D

2

6
6
6
6
6
6
4

�1 �2 : : : : : : �d

1 0 : : : : : : 0

0 1 0
: : : 0

::: 0
: : :

: : :
:::

0 : : : 0 1 0

3

7
7
7
7
7
7
5

;

Xt�1 D �
Xt�1 : : : Xt�d

�0
and e1 D �

1 0 : : : 0
�0

the first canonical vector of Rd. M0
represents the transpose of matrix M (including vectors). The recurrence (1) gives

Xt D � 0Xt�1 C ��t D �

1X

jD0

e0
1Aj .�/ e1�t�j : (2)

The eigenvalues of A .�/ are the inverses of the roots of the autoregressive
polynomial � .z/ D 1 � Pd

kD1 �kzk, then at most ı for some ı 2 .0; 1/ due to
the stability of X (see [7]). In other words � 2 sd .ı/ D f� W � .z/ ¤ 0 for jzj <

ı�1g � sd .1/. In this context (or even in a more general one, see [14]) for all
ı1 2 .ı; 1/ there is a constant NK depending only on � and ı1 such that for all j � 0

ˇ
ˇe0

1Aj .�/ e1

ˇ
ˇ � NKı

j
1 ; (3)

and then, the variance of Xt, denoted �0, satisfies �0 D �2
P1

jD0 je0
1Aj .�/ e1j2 �

NK2�2=.1 � ı2
1/.

The following definition allows to introduce the process which interests us.

Definition 1 Let X 0 � R
r0

for some r0 � 1 and let A D .Aj/j�0 be a sequence of
non-negative numbers. A function H W .X 0/N ! X is said to be A-Lipschitz if

kH .u/ � H .v/ k �
1X

jD0

Ajkuj � vjk ;

for any u D .uj/j2N; v D .vj/j2N 2 .X 0/N.
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Provided A D .Aj/j�0 with Aj � 0 for all j � 0, the i.i.d. sequence of X 0-
valued random variables .�t/t2Z and H W .X 0/N ! X , we consider that a time series
X D .Xt/t2Z admitting the following property is a Causal Bernoulli Shift (CBS)
with Lipschitz coefficients A and innovations .�t/t2Z.

(M) The process X D .Xt/t2Z meets the representation

Xt D H .�t; �t�1; �t�2; : : :/ ; 8t 2 Z ;

where H is an A-Lipschitz function with the sequence A satisfying

QA� D
1X

jD0

jAj < 1 : (4)

We additionally define

A� D
1X

jD0

Aj : (5)

CBS regroup several types of nonmixing stationary Markov chains, real-valued
functional autoregressive models and Volterra processes, among other interesting
models (see [10]). Thanks to the representation (2) and the inequality (3) we assert
that AR.d/ processes are CBS with Aj D � NKı

j
1 for j � 0.

We let � denote a random variable distributed as the �ts. Results from [1] and [2]
need a control on the exponential moment of � in 	 D A�, which is provided via the
following hypothesis.

(I) The innovations .�t/t2Z satisfy 
.	/ D E
�
e	k�k� < 1.

Bounded or Gaussian innovations trivially satisfy this hypothesis for any 	 2 R.
Let �0 denote the probability distribution of the time series Y that we aim to

forecast. Observe that for a CBS, �0 depends only on H and the distribution of �.
For any f W XN

� ! X measurable and t 2 Z we consider OYt D f
�
.Yt�i/i�1

�
, a

possible predictor of Yt from its past. For a given loss function ` W X � X ! RC,
the prediction risk is evaluated by the expectation of `. OYt; Yt/

R . f / D E

h
`
� OYt; Yt

�i
D �0

h
`
� OYt; Yt

�i
D
Z

X Z

`
�

f
�
. yt�i/i�1

�
; yt
�

�0 .dy/ :

We assume in the following that the loss function ` fulfills the condition:

(L) For all y; z 2 X , ` . y; z/ D g . y � z/, for some convex function g which is
non-negative, g .0/ D 0 and K- Lipschitz: jg . y/ � g .z/j � Kky � zk.

If X is a subset of R, ` . y; z/ D jy � zj satisfies 1 with K D 1.
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From estimators of dimension d for � we can build the corresponding linear
predictors f� . y/ D � 0y1Wd. Speaking more broadly, consider a set � and associated
with it a set of predictors f f� ; � 2 �g. For each � 2 � there is a unique d D d .�/ 2
N

� such that f� W X d ! X is a measurable function from which we define

OY�
t D f� .Yt�1; : : : ; Yt�d/ ;

as a predictor of Yt given its past. We can extend all functions f� in a trivial way
(using dummy variables) to start from XN

�

. A natural way to evaluate the predictor
associated with � is to compute the risk R .�/ D R . f�/. We use the same letter R
by an abuse of notation.

We observe X1WT from X D .Xt/t2Z, an independent copy of Y. A crucial goal of
this work is to build a predictor function Of T for Y, inferred from the sample X1WT and
� such that R. Of T/ is close to inf�2� R .�/ with �0- probability close to 1.

The set � also depends on T, we write � � �T . Let us define

dT D sup
�2�T

d .�/ : (6)

The main assumptions on the set of predictors are the following ones.

(P-1) The set f f� ; � 2 �Tg is such that for any � 2 �T there are b1 .�/ ; : : : ;

bd.�/ .�/ 2 RC satisfying for all y D . yi/i2N� ; z D .zi/i2N� 2 XN
�

,

jj f� .y/ � f�.z/jj �
d.�/X

jD1

bj.�/
ˇ
ˇ
ˇ
ˇyj � zj

ˇ
ˇ
ˇ
ˇ :

We assume moreover that LT D sup�2�T

Pd.�/
jD1 bj .�/ < 1.

(P-2) The inequality LT C 1 � log T holds for all T � 4.

In the case where X � R and f f� ; � 2 �Tg is such that � 2 R
d.�/ and f� .y/ D

� 0y1Wd.�/ for all y 2 R
N, we have

j f� .y/ � f�.z/j �
d.�/X

jD1

ˇ
ˇ�j

ˇ
ˇ
ˇ
ˇyj � zj

ˇ
ˇ :

The last conditions are satisfied by the linear predictors when �T is a subset of the
`1-ball of radius log T � 1 in R

dT .
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3 Prediction via Aggregation

The predictor that we propose is defined as an average of predictors f� based on the
empirical version of the risk,

rT .� jX / D 1

T � d .�/

TX

tDd.�/C1

`
� OX�

t ; Xt

�
:

where OX�
t D f�

�
.Xt�i/i�1

�
. The function rT .� jX / relies on X1WT and can be

computed at stage T; this is in fact a statistic.
We consider a prior probability measure �T on �T . The prior serves to control

the complexity of predictors associated with �T . Using �T we can construct one
predictor in particular, as detailed in the following.

3.1 Gibbs Predictor

For a measure � and a measurable function h (called energy function) such that
� Œexp .h/� D R

exp .h/ d� < 1 ; we denote by � fhg the measure defined as

� fhg .d�/ D exp .h .�//

� Œexp .h/�
� .d�/ :

It is known as the Gibbs measure.

Definition 2 (Gibbs predictor) Given  > 0, called the temperature or the learning
rate parameter, we define the Gibbs predictor as the expectation of f� , where � is
drawn under �T f�rT .� jX /g, that is

Of ;T . y jX / D �T f�rT .� jX /g Œ f� . y/� D
Z

�T

f� . y/
exp .�rT .� jX //

�T Œexp .�rT .� jX //�
�T .d�/ :

(7)

3.2 PAC-Bayesian Inequality

At this point more care must be taken to describe �T . Here and in the following we
suppose that

�T � R
nT for some nT 2 N

� : (8)

Suppose moreover that �T is equipped with the Borel �-algebra B.�T/.
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A Lipschitz type hypothesis on � guarantees the robustness of the set
f f� ; � 2 �T g with respect to the risk R.

(P-3) There is D < 1 such that for all �1; �2 2 �T ,

�0

�ˇ
ˇ
ˇ
ˇ f�1

�
.Xt�i/i�1

�� f�2

�
.Xt�i/i�1

�ˇ
ˇ
ˇ
ˇ
� � Dd1=2

T jj�1 � �2jj ;

where dT is defined in (6).

Linear predictors satisfy this last condition with D D �0 ŒjX1j�.
Suppose that the � reaching the inf�2�T R.�/ has some zero components, i.e.

supp.�/ < nT . Any prior with a lower bounded density (with respect to the
Lebesgue measure) allocates zero mass on lower dimensional subsets of �T .
Furthermore, if the density is upper bounded we have �T ŒB.�; �/ \ �T � D O.�nT /

for � small enough. As we will notice in the proof of Theorem 1, a bound like the
previous one would impose a tighter constraint to nT . Instead we set the following
condition.

(P-4) There is a sequence .�T/T�4 and constants C1 > 0, C2; C3 2 .0; 1� and
� � 1 such that �T 2 �T ,

R .�T/ � inf
�2�T

R .�/ C C1

log3 .T/

T1=2
;

and �T ŒB .�T ; �/ \ �T � � C2�
n

1=�
T ; 80 � � � �T D C3

T
:

A concrete example is provided in Sect. 5.
We can now present the main result of this section, our PAC-Bayesian inequality

concerning the predictor Of T ;T .� jX / built following (7) with the learning rate
 D T D T1=2=.4 log T/, provided an arbitrary probability measure �T on
�T .

Theorem 1 Let ` be a loss function such that Assumption (L) holds. Consider a
process X D .Xt/t2Z satisfying Assumption (M) and let �0 denote its probability
distribution. Assume that the innovations fulfill Assumption (I) with 	 D A�; A�
is defined in (5). For each T � 4 let f f� ; � 2 �Tg be a set of predictors meeting
Assumptions (P-3), (P-4) and (P-3) such that dT , defined in (6), is at most T=2.
Suppose that the set �T is as in (8) with nT � log� T for some � � 1 and we let
�T be a probability measure on it such that Assumption (P-4) holds for the same � .
Then for any " > 0, with �0-probability at least 1 � ",

R
� Of T ;T .� jX /

�
� inf

�2�T

R . f� / C E log3 T

T1=2
C 8 log T

T1=2
log

�
1

"

	

;



250 A. Sanchez-Perez

where

E D C1 C 8 C 2

log 2
� 2 logC2

log2 2
� 4 logC3

log 2
C 8K2

�
A� C QA�

�2

QA2�
C KDC3

8 log3 2

C4K
.A�/

log 2
C 2K2
.A�/

log2 2
; (9)

with QA� defined in (4), K, 
 and D in Assumptions (L), (I) and (P-3), respectively,
and C1, C2 and C3 in Assumption (P-4).

The proof is postponed to Sect. 7.1.
Here however we insist on the fact that this inequality applies to an exact

aggregated predictor Of T ;T .� jX /. We need to investigate how these predictors are
computed and how practical numerical approximations behave compared to the
properties of the exact version.

4 Stochastic Approximation

Once we have the observations X1WT , we use the Metropolis – Hastings algorithm
to compute Of ;T .� jX / D R

f� .� jX / �T f�rT .� jX /g .d�/. The Gibbs measure
�T f�rT .� jX /g is a distribution on �T whose density �;T .� jX / with respect to
�T is proportional to exp .�rT .� jX //.

4.1 Metropolis: Hastings Algorithm

Given X 2 X Z, the Metropolis-Hastings algorithm generates a Markov chain
˚;T .X/ D .�;T;n.X//n�0 with kernel P;T (only depending on X1WT ) having the
target distribution �T f�rT .� jX /g as the unique invariant measure, based on the
transitions of another Markov chain which serves as a proposal (see [21]). We
consider a proposal transition of the form Q;T .�1; d�/ D q;T.�1; �/�T.d�/ where
the conditional density kernel q;T (possibly also depending on X1WT ) on �T � �T is
such that

ˇ;T .X/ D inf
.�1;�2/2�T ��T

q;T .�1; �2/

�;T .�2 jX /
2 .0; 1/ : (10)

This is the case of the independent Hastings algorithm, where the proposal is i.i.d.
with density q;T . The condition gets into

ˇ;T .X/ D inf
�2�T

q;T .�/

�;T .� jX /
2 .0; 1/ : (11)

In Sect. 5 we provide an example.
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The relation (10) implies that the algorithm is uniformly ergodic, i.e. we have a
control in total variation norm (k � kTV ). Thus, the following condition holds (see
[18]).

(A) Given ; T > 0, there is ˇ;T W X Z ! .0; 1/ such for any �0 2 �T , x 2
X Z and n 2 N, the chain ˚;T .x/ with transition law P;T and invariant
distribution �T f�rT .� jx /g satisfies

ˇ
ˇ
ˇ
ˇ
ˇ
ˇPn

;T .�0; �/ � �T f�rT .� jx /g
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
TV

� 2
�
1 � ˇ;T .x/

�n
:

4.2 Theoretical Bounds for the Computation

In [16, Theorem 3.1] we find a bound on the mean square error of approximating one
integral by the empirical estimate obtained from the successive samples of certain
ergodic Markov chains, including those generated by the MCMC method that we
use.

A MCMC method adds a second source of randomness to the forecasting process
and our aim is to measure it. Let �0 2 \T�1�T , we set �;T;0 .x/ D �0 for all
T;  > 0, x 2 X Z. We denote by �;T .� jX / the probability distribution of the
Markov chain ˚;T .X/ with initial point �0 and kernel P;T .

Let �;T denote the probability distribution of .X; ˚;T .X//; it is defined by
setting for all sets A 2 .B.X //˝Z and B 2 .B.�T//˝N

�;T .A � B/ D
Z

�A .x/�B .�/ �;T .d� jx / �0 .dx/ (12)

Given ˚;T D .�;T;n/n�0, we then define for n 2 N
�

Nf ;T;n D 1

n

n�1X

iD0

f�;T;i : (13)

Since our chain depends on X, we make it explicit by using the notation Nf ;T;n .� jX /.
The cited [16, Theorem 3.1] leads to a proposition that applies to the numerical
approximation of the Gibbs predictor (the proof is in Sect. 7.2). We stress that this is
independent of the model (CBS or any), of the set of predictors and of the theoretical
guarantees of Theorem 1.

Proposition 1 Let ` be a loss function meeting Assumption (L). Consider any
process X D .Xt/t2Z with an arbitrary probability distribution �0. Given T � 2,
 > 0, a set of predictors f f� ; � 2 �Tg and �T 2 M1C .�T /, let Of ;T .� jX / be
defined by (7) and let Nf ;T;n .� jX / be defined by (13). Suppose that ˚;T meets
Assumption (A) for  and T with a function ˇ;T W X Z ! .0; 1/. Let �;T denote
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the probability distribution of .X; ˚;T .X// as defined in (14). Then, for all n � 1

and D > 0, with �;T- probability at least maxf0; 1 � A;T =.Dn1=2/g we have
jR. Nf ;T;n .� jX // � R. Of ;T .� jX //j � D, where

A;T D 3K
Z

X Z

1

ˇ;T .x/

Z

X Z

sup
�2�T

ˇ
ˇ
ˇ f� .y/ � Of ;T .y jx /

ˇ
ˇ
ˇ�0 .dy/ �0 .dx/ : (14)

We denote by �T D �T ;T the probability distribution of .X; ˚;T .X// setting
 D T D T1=2=.4 log T/. As Theorem 1 does not involve any simulation, it
also holds in �T - probability. From this and Proposition 1 a union bound gives us
the following.

Theorem 2 Under the hypothesis of Theorem 1, consider moreover that Assump-
tion (A) is fulfilled by ˚;T for all  D T and T with T � 4. Thus, for all " > 0 and
n � M .T; "/, with �T- probability at least 1 � " we have

R
� Nf T ;T;n .� jX /

� � inf
�2�T

R . f�/ C
�

E C 2

log 2
C 2

	
log3 T

T1=2
C 8 log T

T1=2
log

�
1

"

	

;

where E is defined in (9) and M .T; "/ D A2
T ;TT=."2 log6 T/ with A;T as in (14).

5 Applications to the Autoregressive Process

We carefully recapitulate all the assumptions of Theorem 2 in the context of an
autoregressive process. After that, we illustrate numerically the behaviour of the
proposed method.

5.1 Theoretical Considerations

Consider a real valued stable autoregressive process of finite order d as defined
by (1) with parameter � lying in the interior of sd .ı/ and unit normally distributed
innovations (Assumptions (M) and (I) hold). With the loss function ` . y; z/ D
jy � zj Assumption (L) holds as well. The linear predictors is the set that we test;
they meet Assumption (P-3). Without loss of generality assume that dT D nT . In the
described framework we have Of ;T .� jX / D fb�;T .X/

, where

O�;T .X/ D
Z

�T

�
exp .�rT .� jX //

�T Œexp .�rT .� jX //�
�T .d�/ :
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This O�;T .X/ 2 R
dT is known as the Gibbs estimator.

Remark that, by (2) and the normality of the innovations, the risk of any O� 2 R
dT

is computed as the absolute moment of a centered Gaussian, namely

R
�

f O�
� D R

� O�
�

D

�

2
� O� � �

�0
�T

� O� � �
�

C 2�2

	1=2

�1=2
; (15)

where �T D .�i;j/0�i;j�dT �1 is the covariance matrix of the process. In (15) the vector
� originally in R

d is completed by dT � d zeros.
In this context arg inf�2RN� R .�/ 2 sd.1/ gives the true parameter � generating

the process. Let us verify Assumption (P-4) by setting conveniently �T and �T . Let
�d� > 0 be such that B .�; �d�/ � sd.1/.

We express �T D SdT
kD1 �k;T where � 2 �k;T if and only if d .�/ D k. It

is interesting to set �k;T as the part of the stability domain of an AR.k/ process
satisfying Assumptions (P-3) and (P-4). Consider �1;T D s1.1/ � f0gdT�1 \
B1 .0; log T � 1/ and �k;T D sk.1/ � f0gdT�k \ B1 .0; log T � 1/ n�k�1;T for k � 2.
Assume moreover that dT D blog� Tc.

We write �T D PdT
kD1 ck;T�k;T where for all k, ck;T�k;T is the restriction of �T to

�k;T with ck;T a real non negative number and �k;T a probability measure on �k;T .
In this setup ck;T D �T Œ�k;T � and �k;T ŒA \ �k;T � D �T ŒA \ �k;T � =ck;T if ck;T > 0

and �k;T ŒA \ �k;T � D 0 otherwise. The vector
�
c1;T : : : cdT ;T

�
could be interpreted

as a prior on the model order. Set ck;T D ck=.
PdT

iD1 ci/ where ck > 0 is the k-th term
of a convergent series (

P1
kD1 ck D c� < 1).

The distribution �k;T is inferred from some transformations explained below.
Observe first that if a � b we have sk.a/ � sk.b/. If � 2 sk.1/ then

�
��1 : : : �k�k

�0 2
sk.1/ for any � 2 .�1; 1/. Let us set

�T.�/ D min




1;
log T � 1

k�k1

�

:

We define Fk;T.�/ D �
�T.�/�1 : : : �k

T.�/�k 0 : : : 0
�0 2 R

dT . Remark that
for any � 2 sk.1/, kFk;T.�/k1 � �T.�/k�k1 � log T � 1. This gives us
an idea to generate vectors in �k;T . Our distribution �k;T is deduced from:

Algorithm 1: �k;T generation

input an effective dimension k, the number of observations T and Fk;T ;
generate a random � uniformly on sk.1/;
return Fk;T .�/

The distribution �k;T is lower bounded by the uniform distribution on sk.1/.
Provided any � � 1, let T� D minfT W dT � d� ; log T � d1=22dg. Since sk.1/ �

B.0; 2k � 1/ (see [19, Lemma 1]) and k1=2k�k � k�k1 for any � 2 R
k, the constraint

k�k1 � log T � 1 becomes redundant in �k;T for 1 � k � d and T � T�, i.e.
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�1;T D s1.1/�f0gdT�1 and �k;T D sk.1/�f0gdT�kn�k�1;T for 2 � k � d. We define
the sequence of Assumption (P-4) as �T D 0 for T < T� and �T D arg inf�2�T R.�/

for T � T�. Remark that the first d components of �T are constant for T � T� (they
correspond to the � 2 R

d generating the AR.d/ process), and the last dT � d are
zero. Let �1� D 2 log 2 � 1. Then, we have for T < T� and all � 2 Œ0; �1��

�T ŒB .�T ; �/ \ �T � � c1;T �1;T
�
B .0; �/ \ s1.1/ � f0gdT�1

� � c1

c� � :

Furthermore, for T � T� and � 2 Œ0; �d��

�T ŒB .�T ; �/ \ �T � � cd;T�d;T
�
B .�T ; �/ \ sd.1/ � f0gdT�d

� � cd

2d2c� �d :

Assumption (P-4) is then fulfilled for any � � 1 with

C1 D max




0; .R .0/ � inf
�2�T

R .�//T1=2 log�3 T; 4 � T < T�
�

C2 D min




1;
c1

c� ;
cd

2d2c�

�

C3 D min f1; 4�1�; T��d�g :

Let q;T be the constant function 1, this means that the proposal has the same
distribution �T . Let us bound the ratio (11).

ˇ;T .X/ D inf
�2�T

q;T .�/

�;T .� jX /
D inf

�2�T

dTX

kD1

ck;T

Z

�k;T

exp .�rT .z jX // �k;T .dz/

exp .�rT .� jX //

�
dTX

kD1

ck;T

Z

�k;T

exp .�rT .z jX // �k;T .dz/ > 0 :

(16)

Now note that

ˇ
ˇxt � f�

�
.xt�i/i�1

�ˇ
ˇ � jxtj C

d.�/X

jD1

ˇ
ˇ�j

ˇ
ˇ
ˇ
ˇxt�j

ˇ
ˇ � log T max

jD0;:::;d.�/

ˇ
ˇxt�j

ˇ
ˇ : (17)

Plugging the bound (17) on (16) with  D T

ˇT ;T .x/ �
dTX

kD1

ck

Z

�k

exp .�TrT .z jx // �k .dz/ � exp

�

�T1=2

4
max

jD0;:::;dT

ˇ
ˇxt�j

ˇ
ˇ
	

;



Time Series Prediction via Aggregation: An Oracle Bound Including Numerical Cost 255

we deduce that

1

ˇT ;T .x/
�

dTX

kD0

exp

 
T1=2

ˇ
ˇxt�j

ˇ
ˇ

4

!

: (18)

Taking (18) into account, setting � D 1 (thus dT D blog Tc), using Assumption
(P-3), that K D 1 and applying the Cauchy-Schwarz inequality we get

AT ;T D 3K
Z

X Z

1

ˇT ;T .x/

Z

X Z

sup
�2�T

ˇ
ˇ
ˇ f� .y/ � f O�T ;T .x/ .y/

ˇ
ˇ
ˇ�0 .dy/ �0 .dx/

� 3 .dT C 1/ d1=2
T �0

�

exp

�
T1=2 jX1j

4

	

�0 ŒjX1j� sup
�2�T

jj�jj

� 6 log3=2 T�0

�

exp

�
T1=2 jX1j

4

	

�0 ŒjX1j� :

As X1 is centered and normally distributed of variance �0, �0 ŒjX1j� D .2�0=�/1=2

and �0Œexp.T1=2 jX1j =4/� D �0T1=2 exp.�0T=32/=4.
From n � M� .T; "/ D 9�3

0 T2 exp .�0T=16/ =.2�"2 log3 T/ the result of
Theorem 2 is reached. This bound of M .T; "/ is prohibitive from a computational
viewpoint. That is why we limit the number of iterations to a fixed n�.

What we obtain from MCMC is Nf T ;T;n . y jX / D N� 0
T ;T;n .X/ y1WdT

with
N�T ;T;n .X/ D Pn�1

iD0 �T ;T;i .X/ =n. Remark that Nf T ;T;n .� jX / D f N�T ;T;n.X/. The
risk is expressed as

R
� Nf T ;T;n .� jX /

� D
�
2
� N�T ;T;n .X/ � �

�0
� .Y/

� N�T ;T;n .X/ � �
�C 2�2

�1=2

�1=2
:

5.2 Numerical Work

Consider 100 realisations of an autoregressive processes X simulated with the same
� 2 sd .ı/ for d D 8 and ı D 3=4 and with � D 1. Let c.i/, i D 1; 2 the sequences
defining two different priors in the model order:

1. c.1/
k D k�2, the sparsity is favoured,

2. c.2/
k D e�k, the sparsity is strongly favoured.
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Fig. 1 The plots represent the 0:9-quantiles in data R. N�T ;T;n� .X// � .2=�/1=2�2 for T D
32; 64; : : : ; 4;096. The graph on the left corresponds to the order prior c.1/

k D k�2 while that

on the right corresponds to c
.2/
k D e�k. The solid curves were plotted with n� D 100, the dashed

ones with n� D 1;000 and as a reference, the dotted curve is proportional to log3 T=T1=2

For each sequence c and for each value of T 2 f2j; j D 6; : : : ; 12g we compute
N�T ;T;n� , the MCMC approximation of the Gibbs estimator using Algorithm 2 with
 D T .

Algorithm 2: Independent Hastings Sampler
input the sample X1WT of X, the prior c, the learning rate , the generators �k;T

for k D 1; : : : ; dT and a maximum iterations number n�;
initialization �;T;0 D 0;
for i=1 to n� � 1 do

generate k 2 f1; : : : ; dTg using the prior c;
generate �candidate 	 �k;T ;
generate U 	 U.0; 1/;
if U � ˛;T;X.�;T;i�1; �candidate/ then

�;T;i D �candidate else
�;T;i D �;T;i�1;

return N�;T;n� .X/ D Pn��1
iD0 �;T;k .X/ =n�.

The acceptance rate is computed as ˛;T;X.�1; �2/ D exp.rT.�1 jX / � rT

.�2 jX //.
Algorithm 1 used by the distributions �k;T generates uniform random vectors on

sk .1/ by the method described in [6]. It relies in the Levinson-Durbin recursion
algorithm. We also implemented the numerical improvements of [3].

Set " D 0:1. Figure 1 displays the .1 � "/-quantiles in data R. N�T ;T;n� .X// �
.2=�/1=2�2 for c.1/ and c.2/ using different values of n�.
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Note that, for the proposed algorithm the prediction risk decreases very slowly
when the number T of observations grows and the number of MCMC iterations
remains constant. If n� D 1;000 the decaying rate is faster than if n� D 100 for
smaller values of T. For T � 2;000 we observe that both rates are roughly the
same in the logarithmic scale. This behaviour is similar in both cases presented in
Fig. 1. As expected, the risk of the approximated predictor does not converge as
log3 T=T1=2.

6 Discussion

There are two sources of error in our method: prediction (of the exact Gibbs
predictor) and approximation (using the MCMC). The first one decays when T
grows and the obtained guarantees for the second one explode. We found a possibly
pessimistic upper bound for M.T; �/. The exponential growing of this bound is the
main weakness of our procedure. The use of a better adapted proposal in the MCMC
algorithm needs to be investigated. The Metropolis Langevin Algorithm (see [4])
gives us an insight in this direction. However it is encouraging to see that, in the
analysed practical case, the risk of Nf T ;T;n� .� jX / does not increase with T.

7 Technical Proofs

7.1 Proof of Theorem 1

The proof of Theorem 1 is based on the same tools used by [2] up to Lemma 3. For
the sake of completeness we quote the essential ones.

We denote by M1C .F/ the set of probability measures on the measurable space
.F;F/. Let �; � 2 M1C .F/, K .�; �/ stands for the Kullback-Leibler divergence of
� from �.

K .�; �/ D

 R

log d�

d�
.�/ � .d�/ , if � 
 �

C1 , otherwise .

The first lemma can be found in [8, Equation 5.2.1].

Lemma 1 (Legendre transform of the Kullback divergence function) Let
.F;F/ be any measurable space. For any � 2 M1C .F/ and any measurable
function h W F ! R such that � Œexp .h/� < 1 we have,

� Œexp .h/� D exp

0

@ sup
�2M1

C
.F/

.� Œh� � K .�; �//

1

A ;
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with the convention 1 � 1 D �1. Moreover, as soon as h is upper-bounded on
the support of �, the supremum with respect to � in the right-hand side is reached
by the Gibbs measure � fhg.

For a fixed C > 0, let Q�.C/
t D max fmin f�t; Cg ; �Cg. Consider QXt D

H. Q�.C/
t ; Q�.C/

t�1; : : :/.
Denote QX D . QXt/t2Z and by QR .�/ and QrT

�
�
ˇ
ˇ QX � the respective exact and

empirical risks associated with QX in � .

QR .�/ D E

h
`
�
bQX�

t ; QXt

�i
;

QrT
�
�
ˇ
ˇ QX � D 1

T � d .�/

TX

tDd.�/C1

`
�
bQX�

t ; QXt

�
;

wherebQX�
t D f�.. QXt�i/i�1/.

This thresholding is interesting because truncated CBS are weakly dependent
processes (see [2, Section 4.2]).

A Hoeffding type inequality introduced in [20, Theorem 1] provides useful
controls on the difference between empirical and exact risks of a truncated process.

Lemma 2 (Laplace transform of the risk) Let ` be a loss function meeting
Assumption (L) and X D .Xt/t2Z a process satisfying Assumption (M). For all
T � 2, any f f� ; � 2 �Tg satisfying Assumption (P-1), �T such that dT, defined
in (6), is at most T=2, any truncation level C > 0,  � 0 and � 2 �T we have,

E
�
exp

�

� QR.�/ � QrT

�
�
ˇ
ˇ QX ���� � exp

�
42k2.T; C/

T

	

; (19)

and

E
�
exp

�

�QrT

�
�
ˇ
ˇ QX � � QR.�/

��� � exp

�
42k2.T; C/

T

	

; (20)

where k.T; C/ D 21=2CK.1 C LT/
�
A� C QA�

�
. The constants QA� and A� are defined

in (4) and (5) respectively, K and LT in Assumptions (L) and (P-1) respectively.

The following lemma is a slight modification of [2, Lemma 6.5]. It links the two
versions of the empirical risk: original and truncated.

Lemma 3 Suppose that Assumption (L) holds for the loss function `, Assump-
tion (P-1) holds for X D .Xt/t2Z and Assumption (I) holds for the innovations
with 	 D A�; A� is defined in (5). For all T � 2, any f f� ; � 2 �Tg meeting
Assumption (P-1) with �T such that dT , defined in (6), is at most T=2, any truncation
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level C > 0 and any 0 �  � T=4 .1 C LT/ we have,

E

"

exp

 

 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#

� exp .' .T; C; // ;

where

'.T; C; / D 2K.1 C LT/
.A�/

�
A�C

exp .A�C/ � 1
C 

4K.1 C LT/

T

	

;

with K and LT defined in Assumptions (L) and (P-1) respectively.

Finally we present a result on the aggregated predictor defined in (7). The proof
is partially inspired by that of [2, Theorem 3.2].

Lemma 4 Let ` be a loss function such that Assumption (L) holds and let
X D .Xt/t2Z a process satisfying Assumption (M) with probability distribution
�0. For each T � 2 let f f� ; � 2 �Tg be a set of predictors and �T 2 M1C .�T / any
prior probability distribution on �T . We build the predictor Of ;T .� jX / following (7)
with any  > 0. For any " > 0 and any truncation level C > 0, with �0-probability
at least 1 � " we have,

R
� Of ;T .� jX /

�
� inf

�2M1
C

.�T /




� ŒR� C 2K .�; �T/



�

C
2 log

�
2

"

	



C 1

2
log

�
E
�
exp

�
2
� QR � QrT

����C 1

2
log

�
E
�
exp

�
2
�QrT � QR����

C 2


log

 

E

"

exp

 

2 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#!

:

Proof We use Tonelli’s theorem and Jensen’s inequality with the convex function g

to obtain an upper bound for R
� Of ;T .� jX /

�

R
� Of ;T .� jX /

�
D
Z

XZ

g

0

@
Z

�T

�
f�
�
. yt�i/i�1

�� yt
�

�T f�rT .� jX /g .d�/

1

A�0 .dy/

�
Z

XZ

2

4
Z

�T

g
�

f�
�
. yt�i/i�1

� � yt
�

�T f�rT .� jX /g .d�/

3

5�0 .dy/

D
Z

�T

2

6
4

Z

XZ

g
�

f�
�
. yt�i/i�1

� � yt
�

�0 .y/

3

7
5�T f�rT .� jX /g .d�/ D �T f�rT .� jX /g ŒR� :

In the remainder of this proof we search for upper bounding �T f�rT .� jX /g ŒR�.
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First, we use the relationship:

R � rT .� jX / D � QR � QrT
�� ˇˇ QX ��C �

R � QR� � �
rT .� jX / � QrT

�� ˇˇ QX �� : (21)

For the sake of simplicity and while it does not disrupt the clarity, we lighten the
notation of rT and QrT . We now suppose that in the place of � we have a random
variable distributed as �T 2 M1C .�T/. This is taken into account in the following
expectations. The identity (21) and the Cauchy-Schwarz inequality lead to

E

h
exp

�

2
.R � rT /

�i
D E

h
exp

�

2

� QR � QrT
��

exp
�

2

��
R � QR� � .rT � QrT/

��i

� �
E
�
exp

�

� QR � QrT

���
E
�
exp

�

��

R � QR�� .rT � QrT/
����1=2

�
 

E
�
exp

�

� QR � QrT

���
E

"

exp

 

 sup
�2�T

ˇ
ˇ
�
R � QR� .�/ � .rT � QrT/ .�/

ˇ
ˇ

!#!1=2

:

(22)

Observe now that R .�/ D E ŒrT .� jX /� and QR .�/ D EŒQrT .�j QX/�. Jensen’s
inequality for the exponential function gives that

exp

 

 sup
�2�T

ˇ
ˇR .�/ � QR .�/

ˇ
ˇ

!

� exp

 

E

"

sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

#!

� E

"

exp

 

 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#

:

(23)

From (23) we see that

E

"

exp

 

 sup
�2�T

ˇ
ˇ
�
R � QR� .�/ � .rT � QrT/ .�/

ˇ
ˇ

!#

� E

"

exp

 

 sup
�2�T

ˇ
ˇR .�/ � QR .�/

ˇ
ˇ

!

exp

 

 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#

�
 

E

"

exp

 

 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#!2

: (24)
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Combining (22) and (24) we obtain

E

h
exp

�

2
.R � rT .� jX //

�i
� �

E
�
exp

�

� QR � QrT

����1=2

E

"

exp

 

 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#

: (25)

Let L;T;C D log..EŒexp.. QR� QrT//�/1=2
EŒexp. sup�2�T

jrT.�jX/� QrT.� j QX/j/�/.
Remark that the left term of (25) is equal to the integral of the expression enclosed
in brackets with respect to the measure �0 � �T . Changing  by 2 and thanks to
Lemma 1 we get

�0

2

4exp

0

@ sup
�2M1

C
.�T /

.�ŒR � rT .� jX /� � K .�; �T//

1

A

3

5 � exp
�
L2;T;C

�
:

Markov’s inequality implies that for all " > 0, with �0- probability at least 1 � "

sup
�2M1

C
.�T /

.� ŒR � rT .� jX /� � K .�; �T// � log

�
1

"

	

� L2;T;C � 0 :

Hence, for any �T 2 M1C .�T/ and  > 0, with �0- probability at least 1 � ", for
all � 2 M1C .�T /

� ŒR � rT .� jX /� � 1


K .�; �T / � 1


log

�
1

"

	

� L2;T;C


� 0 : (26)

By setting � D �Tf�rT .� jX /g and relying on Lemma 1, we have

K .�T f�rTg ; �T/ D �T f�rTg
�

log
d�T f�rTg

d�T



D �T f�rT g
�

log
exp .�rT/

�T Œexp .�rT /�



D �T f�rTg Œ�rT � � log .�T Œexp .�rT/�/

D �T f�rTg Œ�rT � C inf
�2M1

C
.�T /

f� ŒrT � C K .�; �T/g

Using (26) with � D �T f�rT .� jX /g it follows that, with �0- probability at least
1 � ",

�T f�rT .� jX /g ŒR� � inf
�2M1

C
.�T /




� ŒrT .� jX /� CK .�; �T/



�

C
log

�
1

"

	


C L2;T;C


:
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To upper bound �ŒrT .�jX/� we use an upper bond on � ŒrT.�jX/ � R�. We obtain
an inequality similar to (26) with � ŒR � rT.�jX/� replaced by � ŒrT.�jX/ � R� and
L;T;C replaced by L0

;T;C D log..EŒexp..QrT � QR//�/1=2
EŒexp. sup�2�T

jrT.�jX/ �
QrT.�j QX/j/�/. This provides us another inequality satisfied with �0- probability at
least 1 � ". To obtain a �0- probability of the intersection larger than 1 � " we apply
previous computations with "=2 instead of " and hence,

�T f�rT .� jX /g ŒR� � inf
�2M1

C
.�T /




� ŒR� C 2K .�; �T/



�

C
2 log

�
2

"

	



C 1

2
log

�
E
�
exp

�
2
� QR � QrT

����C 1

2
log

�
E
�
exp

�
2
�QrT � QR����

C 2


log

 

E

"

exp

 

2 sup
�2�T

ˇ
ˇrT .� jX / � QrT

�
�
ˇ
ˇ QX �ˇˇ

!#!

:

We can now proof Theorem 1.

Proof Let �0;C denote the distribution on X Z � X Z of the couple .X; QX/. Fubini’s
theorem and (19) of Lemma 2 imply that

E
�
exp

�
2
� QR � QrT

��� D �0;C ��T

�
exp

�
2
� QR � QrT

��� D �T ��0;C

�
exp

�
2
� QR � QrT

���

� exp

�
162k2.T; C/

T

	

: (27)

Using (20), we analogously get

E
�
exp

�
2
�QrT � QR��� � exp

�
162k2.T; C/

T

	

: (28)

Consider the set of probability measures f��T ;�; T � 2; 0 � � � �Tg � M1C .�T/,
where �T is the parameter defined by Assumption (P-4) and ��T ;� .�/ /
�T .�/�B.�T ;�/\�T .�/. Lemma 4, together with Lemma 3, (27) and (28) guarantee
that for all 0 <  � T=8 .1 C LT/

R
� Of ;T .� jX /

�
� inf

0����T




��T ;� ŒR� C 2K .��T ;�; �T/



�

C 16k2.T; C/

T
C

2 log

�
2

"

	


C

4'.T; C; 2/ : (29)
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Thanks to Assumptions (L) and (P-3), for any T � 2 and � 2 B .�T ; �/

R .�/ � R .�T/ � K�0

�ˇ
ˇ
ˇ
ˇ f�

�
.Yt�i/i�1

� � f�T

�
.Yt�i/i�1

�ˇ
ˇ
ˇ
ˇ
� � KDd1=2

T � :

(30)

For T � 4 Assumption (P-4) gives

K .��T ;�; �T / D log

�
1

�T ŒB .�T ; �/ \ �T �

	

� �n1=�
T log .�/ � log .C2/ :

(31)

Plugging (30) and (31) into (29) and using again Assumption (P-4)

R
� Of ;T .� jX /

�
� R .�T / C inf

0����T

(

E1d1=2
T � � 2n1=�

T log .�/



)

C E2 .1 C LT /2 C2

T

C E3 .1 C LT/ C

exp .A�C/ � 1
C

2 log
�

2

"

	

� 2 log .C2/


C E4 .1 C LT /2 

T
(32)

where E1 D KD, E2 D 32K2
�
A� C QA�

�2
, E3 D 8K
.A�/A� and E4 D 32K2
.A�/.

We upper bound dT by T=2, nT by log� T and substitute �T D C3=T. Since it is
difficult to minimize the right term of (32) with respect to  and C at the same time,
we evaluate them in certain values to obtain a convenient upper bound.

At a fixed ", the convergence rate of Œ2 log .2="/ � 2 log .C2/� = C
E4 .1 C LT /2 =T is at best log T=T1=2, and we get it doing  / T1=2= log T.
As  � T=8.1 C LT/ we set  D T D T1=2=.4 log T/.

The order of the already chosen terms is log3 T=T1=2, doing C D log T=A� we
preserve it. Taking into account that R .�T/ � inf�2�T R .�/ C C1 log3 T=T1=2 the
result follows.

7.2 Proof of Proposition 1

Considering that Assumption (L) holds we get

ˇ
ˇ
ˇR
� Nf ;T;n .� jX /

� � R
� Of ;T .� jX /

�ˇ
ˇ
ˇ � K

Z

X Z

ˇ
ˇ
ˇ Nf ;T;n .y jX / � Of ;T .y jX /

ˇ
ˇ
ˇ�0 .dy/

Observe that the last expression depends on X1WT and ˚;T .X/. We bound the
expectation to infer a bound in probability.
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Tonelli’s theorem and Jensen’s inequality lead to

�;T

hˇ
ˇ
ˇR
� Nf ;T;n .� jX /

� � R
� Of ;T .� jX /

�ˇ
ˇ
ˇ
i

�

K
Z

X Z

Z

X Z

0

B
@

Z

�N

T

ˇ
ˇ
ˇ Nf ;T;n .y jx / � Of ;T .y jx /

ˇ
ˇ
ˇ
2

�;T .d� jx /

1

C
A

1=2

�0 .dy/ �0 .dx/ :

(33)

We are then interested in upper bounding the expression under the square root.
To that end, we use [16, Theorem 3.1] which implies that for any x

Z

�N

T

ˇ
ˇ
ˇ Nf ;T;n .y jx / � Of ;T .y jx /

ˇ
ˇ
ˇ
2

�;T .d� jx / �

sup
�2�T

�
f� .y/ � Of ;T .y jx /

�2
�

4

ˇ;T .x/
� 3

	�
1

n
C 2

n2ˇ;T .x/

	

:

Plugging this on (33), using that n � 1 and that

��
4 � 3ˇ;T .x/

� �
2 C ˇ;T .x/

��1=2 � 3 ;

we obtain the following

�;T

hˇ
ˇ
ˇR
� Nf ;T;n .� jX /

� � R
� Of ;T .� jX /

�ˇ
ˇ
ˇ
i

�
3K

n1=2

Z

X Z

1

ˇ;T .x/

Z

X Z

sup
�2�T

ˇ
ˇ
ˇ f� .y/ � Of ;T .y jx /

ˇ
ˇ
ˇ�0 .dy/ �0 .dx/ :

The result follows from Markov’s inequality.
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6. Beadle, E. R., & Djurić, P. M. (1999). Uniform random parameter generation of stable
minimum-phase real ARMA (p,q) processes. IEEE Signal Processing Letters, 4(9), 259–261.

7. Brockwell, P. J., & Davis, R. A. (2006). Time series: Theory and methods (Springer series in
statistics). New York: Springer. Reprint of the second (1991) edition.

8. Catoni, O. (2004). Statistical learning theory and stochastic optimization (Volume 1851 of
Lecture notes in mathematics). Berlin: Springer. Lecture notes from the 31st Summer School
on Probability Theory held in Saint-Flour, 8–25 July 2001.

9. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge:
Cambridge University Press.

10. Coulon-Prieur, C., & Doukhan, P. (2000). A triangular central limit theorem under a new weak
dependence condition. Statistics and Probability Letters, 47(1), 61–68.

11. Dalalyan, A. S., & Tsybakov, A. B. (2008). Aggregation by exponential weighting, sharp PAC-
bayesian bounds and sparsity. Machine Learning, 72(1–2), 39–61.

12. Dedecker, J., Doukhan, P., Lang, G., León R, J. R., Louhichi, S., & Prieur, C. (2007). Weak
dependence: With examples and applications (Volume 190 of Lecture notes in statistics).
New York: Springer.

13. Dedecker, J., & Prieur, C. (2005). New dependence coefficients. Examples and applications to
statistics. Probability Theory and Related Fields, 132(2), 203–236.

14. Künsch, H. R. (1995). A note on causal solutions for locally stationary AR-processes. Note
from ETH Zürich, available on line here: ftp://ftp.stat.math.ethz.ch/U/hkuensch/localstat-ar.
pdf.
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