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Abstract The emergence of Smart Grids is posing a wide range of challenges for
electric utility companies and network operators: Integration of non-dispatchable
power from renewable energy sources (e.g., photovoltaics, hydro and wind),
fundamental changes in the way energy is consumed (e.g., due to dynamic pricing,
demand response and novel electric appliances), and more active operations of the
networks to increase efficiency and reliability. A key in managing these challenges
is the ability to forecast network loads at low levels of locality, e.g., counties, cities,
or neighbourhoods. Accurate load forecasts improve the efficiency of supply as
they help utilities to reduce operating reserves, act more efficiently in the electricity
markets, and provide more effective demand-response measures. In order to prepare
for the Smart Grid era, there is a need for a scalable simulation environment
which allows utilities to develop and validate their forecasting methodology under
various what-if-scenarios. This paper presents a massive-scale simulation platform
which emulates electrical load in an entire electrical network, from Smart Meters
at individual households, over low- to medium-voltage network assets, up to the
national level. The platform supports the simulation of changes in the customer
portfolio and the consumers’ behavior, installment of new distributed generation
capacity at any network level, and dynamic reconfigurations of the network. The
paper explains the underlying statistical modeling approach based on Generalized
Additive Models, outlines the system architecture, and presents a number of realistic
use cases that were generated using this platform.
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1 Introduction

The French electrical grid is currently being fundamentally modernized by deploy-
ing Information and Communication Technology at a massive scale. The emerging
“Smart Grid” is designed to meet multiple objectives: (i) optimizing the control
of the grid and the quality of the electricity supply, despite the fact that power
generation is becoming more decentralized; (ii) scheduling the production of energy
while taking into account the uncertainty related to renewable energy sources (e.g.,
photovoltaics, hydro and wind); (iii) coordinating and shaping the energy demand
to flatten consumption peaks and limit their impact on the networks and on the
electricity markets.

“Smart Meters” constitute the fundamental building block of the Smart Grid
architecture. Within the next few years, these digital meters are expected to be
installed at all French households.1 Smart Meters record the individual power
consumptions in real time, and send this information to a data center through a
communication network. The expected volume of Smart Meter data (in France:
35 millions signals sampled every 30 min) poses a significant challenge for utility
companies. In France, one year of Smart Meter data amounts to more than 600 bil-
lion data points, which is equivalent to 4.4 Terabytes.2 Electricité de France (EDF),
the main French provider of electricity, needs to anticipate managing such amounts
of data in terms of storage, querying and data analysis capabilities. Currently, only
a small subset of the 35 million Smart Meters has already been deployed, mostly
through pilot studies in specific geographic areas. In order to prepare for the full
deployment and test different types of distributed data management systems, EDF
needs to simulate consumption data for individual households at a massive scale.

Previous studies on massive-scale processing of electrical load time series have
been carried out using the Hadoop framework [8]. Also the data storage and
querying aspects have been investigated in this context. The present paper describes
a platform for more realistic simulations of electricity consumption in order to
validate forecasting approaches at different levels of the electrical grid. The platform
also supports the generation of what-if-scenarios to foresee the impact of changes
in electricity usage on the quality of the forecasts. Note that electricity consumption
data at the level of individual households have several distinctive features: (i) the
overall number of time series is very large; (ii) the diversity of individual behavior
induces a wide variety of shapes; (iii) the volatility of these time series is very high;
(iv) the sum of these time series is a smooth time series with cyclical patterns. The
upper time series in Fig. 1 shows the total consumption in France during 1 week,
and the lower time series gives an example of an individual consumption time
series during the same period of time. As can be seen, the characteristics of the
load profiles at these different aggregation levels are very different.

1More details are available at http://www.erdfdistribution.fr/linky/
2Assuming that each data point requires 8 bytes memory.
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Fig. 1 Example of an
individual consumption
signal during 1 week (lower
time series), in comparison
with the sum of individual
consumption signals during
the same period of time
(upper time series)

This paper is organized as follows. After a review of related work on the
simulation of electrical networks in Sect. 2, Sect. 3 introduces the statistical mod-
eling approach for simulating and forecasting electrical load based on Generalized
Additive Models. Section 4 describes the architecture of the simulation platform.
Use cases demonstrating applications of the simulation platform are presented in
Sect. 5. Finally, Sect. 6 proposes a benchmark method to evaluate how realistic are
the simulations generated by the platform at different aggregation levels. Section 7
concludes with an outlook on directions for future work.

2 Related Work

There exists a wide body of literature and software tools for simulating electrical
networks. Most of these tools focus on physical properties of the grid (e.g., power
flows, voltage drops), typically under steady-state conditions and for a limited part
of the network (e.g., transmission or distribution), and with a great level of detail in
modeling the physical assets of the grid (lines, transformers, etc.). The purpose of
the simulation platform presented in this paper is to emulate statistical properties
of electrical load. In this context, bottom-up and top-down approaches have been
proposed in the literature (see [19] for a detailed review). Bottom-up methods start
by modeling the usage of individual electrical appliances (e.g., by a Multi-Agent
System) and then compute the aggregated load, e.g., at the household or neigh-
borhood level. While those approaches yield detailed and realistic simulations at a
high temporal resolution, they are computationally expensive, require considerable
modeling effort, and typically rely on assumptions about the usage of appliances
that are difficult to justify empirically. Typically, bottom-up methods are used for
loads only at low-level aggregations, e.g., to simulate Microgrids.

Top-down methods start by modeling aggregated load curves which are then
iteratively disaggregated using statistical methods to obtain the consumption at
lower levels. The main advantage of this approach is that a variety of models can be
used to accurately represent features of aggregated load, and usually high-quality
data for fitting those models is available at the top aggregation levels. However, top-
down approaches often fail to reproduce distinctive features of disaggregated loads,
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e.g., the volatility of loads at lower aggregation levels, and the localized effects of
meteorological and socio-economic variables.

The simulation platform presented in this paper is designed to emulate loads
throughout the entire electrical network (from individual households over low-
to medium-voltage network assets up to the transmission and national level) for
a country the size of France, over multiple years and under various what-if-
scenarios. To the best of the authors’ knowledge, there exists no previous solution
for simulation studies of this scale. Another special feature of the platform presented
in this paper is the modeling approach based on Generalized Additive Models,
which will be discussed in the following section. As will be shown in Sect. 6, while
this approach does not capture all the distinctive features of loads at individual
households, it reflects well the characteristics of aggregates of 70 households or
more. Hence, it can be argued that the modeling approach proposed in this paper
offers a good compromise between top-down and bottom-up methods.

3 Generalized Additive Models

3.1 Background

Generalized Additive Models (GAMs) are a class of semi-parametric regression
models introduced in [12] and [13]. Originally, the learning of GAMs was done
using the backfitting algorithm, but recently more efficient methodologies have been
introduced, among them boosting procedures (see [3]) and penalized regression
methods (see [22]). GAMs have been successfully applied to electrical load
forecasting at different geographical scales and network aggregation levels. For
example, [18] uses GAMs to forecast the French load at the national level, achieving
a Mean Absolute Percentage Error (MAPE) of less than 2 %. Ba et al. [1] studies the
same data set and proposes an online learning algorithm for GAMs which is shown
to further improve the forecasting accuracy. Fan and Hyndman [9] applies GAMs to
regional data in the National Electricity Market of Australia, [16] shows results on
data from a US utility company, and [11] demonstrates forecasting at the substation
level in France. Experiments in Sect. 6 of the present paper suggest that GAMs are
applicable to small aggregates of down to 70 households.

GAMs have properties which make them useful both for simulation and fore-
casting: They are able to capture complex non-linear relationships (e.g., between
electrical load and temperature), and their estimation and prediction are straightfor-
ward. Another interesting feature of GAMs is their simplicity due to their additive
structure, which makes them easy to use and understand by practitioners. This
property is of particular importance in the simulation context, because it allows
domain experts to design specific what-if-scenarios.
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Mathematically, GAMs have the following form:

yi D f1.x1;i/ C f2.x2;i/ C : : : C fp.xp;i/ C "i

where yi is a univariate response variable (here the electrical load), xq;i are the
covariates that shape yi (e.g., meteorological conditions, the time of day, the day
of week, etc.). "i denotes the model error at time i, also called “noise” in this paper.
The simulation platform presented in this paper supports different types of noise:
White noise, Autoregressive noise, and Heteroscedastic noise where the variance of
"i at time i could depend on the covariates xq;i. The functions fq, called “transfer
functions” in this paper, are centered around 0 to achieve model identifiability and
represented using splines (in particular, they can be non-linear). A penalization
term in the model estimation enforces smoothness of the transfer functions. More
specifically, using the spline representation each transfer function can be written as
follows:

fq.x/ D
kqX

jD1

ˇq;jb
q
j .x/

where kq is the dimension of the spline basis, and bq
j .x/ are the corresponding basis

functions (e.g., cubic B-splines) with the spline coefficients ˇq;j. In order to estimate
the spline coefficients of all the transfer functions while enforcing smoothness, the
following objective is minimized:

nX

iD1
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qD1
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Here � D .�1; : : : ; �p/ is a vector of penalty parameters controlling the degree of
smoothness of each transfer function (the higher �q, the smoother fq). This param-
eter is optimized through a model selection criterion, e.g., see the methodology in
[21] and [23] which minimizes the Generalized Cross Validation criterion proposed
in [7]. For practical computations in this paper, the implementation in the R package
mgcv (see [20] and [22]) is used.

3.2 Load and Wind Farm Modeling

This subsection provides examples of GAMs which will be used in Sect. 5 to
configure different use cases running on the simulation platform. The data set
used for learning the load models was compiled by the Irish Commission for
Energy Regulation (CER) in a Smart Metering trial (see the reports [5] and [6]).
The data were collected half-hourly for every meter participating in the trial from
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July 14th, 2009, to December 31st, 2010. In this paper, meters with missing values
or replications were discarded; the resulting cleaned data set consisted of 4,623 m
(residential customers and small-to-medium enterprises), each with 48 half-hourly
meter readings per day over 536 days. For simplicity, days corresponding to daylight
savings were dropped: October 25th, 2009, March 28th and October 31st, 2010. As
the location of the individual meters is anonymized for confidentiality reasons, the
weather data from the Dublin airport (downloaded from wunderground.com) were
used as the meteorological covariates in the load models.

As part of the CER Smart Metering trial, one out of five different tariff classes
was offered to each residential household. For the experiments in this paper, the
load of households using the same tariff was aggregated, and one GAM per class
was estimated. Figure 2 shows 2 weeks of data for each of the five classes. The
GAM learned for each class is given by

yi D
7X

kD1

sk.TimeOfDayi/IWeekDayiDk C s.Temperaturei/Cs.TimeOfYeari/C"i (1)

where yi is the electrical load, TimeOfDayi is the time of day (ranging from 0 to 47,
corresponding to the half-hourly measurements at 0:30, 1:00, . . . , 24:00), WeekDayi

is the day of week (1 = Sunday, 2 = Monday, . . . , 7 = Saturday), Temperaturei is the
temperature at the Dublin airport, and TimeOfYeari is the time in the year (ranging
between 0 on January 1st and 1 on December 31st). Note that IWeekDayiDk denotes
the indicator function which evaluates to 1 if WeekDayi D k, and to 0, otherwise.
Hence, the model includes a transfer function depending on the time of day which
is specific for each week day. The transfer functions are represented using cubic
B-splines, and cyclic splines for the TimeOfYear effect which enforces continuity
between December 31st and January 1st. In the simulations, the noise term "i

is sampled from a normal distribution with zero mean and a standard deviation
proportional to 1 % of the signal, i.e., as explained in the previous subsection,
the variance also depends on the model covariates (here: TimeOfDayi, WeekDayi,
Temperaturei and TimeOfYeari).

Fig. 2 Irish CER data set: Electricity consumption of residential customers signed up to five
different tariff classes (represented by the curves in different colors)

wunderground.com
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For the learning of a wind farm model, a public data set from the wind
power forecasting track of the GEFcom competition (see [16]) was used. In the
experiments of this paper, this model was standardized and, in order to simulate
wind farms of different sizes, scaled to the desired level. The GAM model is given
by

yi D
12X

kD1

sk.WindSpeedi/IWindDirectioniDk C "i (2)

where yi is the wind power, WindSpeedi is the wind speed, and WindDirectioni

the wind direction (1 = N, 2 = NNE, 3 = NE, . . . , 12 = NNW). Note that the wind
direction was discretized into 12 sectors (instead of using a bivariate transfer
function) for parsimony reasons. In the simulations, the noise term "i is sampled
from a normal distribution with zero mean and a standard deviation proportional
to 5 % of the signal (to simulate higher uncertainty of production data), i.e.,
the variance again also depends on the model covariates (here: WindSpeedi and
WindDirectioni).

4 Simulator Platform Architecture

This section describes the architecture and design of the Smart Grid simulation
platform, with particular emphasis on the modeling of the electrical network, the
representation of load at the Meter level, and design considerations related to the
scalability of the platform.

4.1 Network Modeling

Simulating the load at each level of an electrical grid requires a model of the
network. The simulation platform presented in this paper models the initial network
structure, and dynamic changes (e.g., reconfiguration events) applied to it. The
initial network structure is a tree of depth six, with the nodes – from the lowest
level to the root – representing Meters, Low-Voltage Stations (LVS), High-Voltage
Stations (HVS), Source Substations, Regional Agencies, and the National Level.
An example of a subtree, up to the Regional Agency level, is shown in Fig. 3. The
numbers on the right hand side correspond to the number of nodes per network
level for a country the size of France. Note that the tree structure only allows for
the representation of radial networks; modeling meshed networks is a direction for
future work.

To ensure the resilience and security, numerous backup lines exist in real
electrical networks that enable to redirect the electrical flow from one element to
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Fig. 3 Tree-based representation of the network structure grid with the approximate number of
nodes per network level for a country the size of France

another. The simulation platform can take into account dynamic reconfigurations
where, at a given point in time, a leaf node or an internal node (with its subtree)
connect to a different parent node at the upper level. This can also be used to emulate
mobile network elements like electric vehicles which might change their connection
point to the grid depending on their location. In most networks, backup lines only
exist between few, but not all the nodes. The simulation platform is able to enforce
“can connect/cannot connect” constraints to ensure that dynamic reconfigurations
only connect network elements that are physically linked with each other.

The aggregated load at any internal node in the network structure is obtained by
simply taking the sum of the loads from all children elements in the tree. Electricity
production (e.g., from distributed renewable energy sources) can also be taken into
account and modeled as negative load. The simulation platform supports separate
aggregation of load, production and net load (i.e., the difference between load and
production); moreover, load can be aggregated separately for different customer
classes. Note that the simulation platform does not model physical properties and
only aggregates active powers. In particular, line losses are neglected, and there is
no calculation of currents, voltages and other physical quantities in the network.

4.2 Representation of Load at the Meter Level

The simulation platform uses two attributes for characterizing load at the Meter
level in the network: The statistical model which is used for simulating the load
at a particular Meter, and the geographical location of the Meter. Typically, the
simulation model is chosen from a set of “customer classes”, e.g., representing
the behavior of customers signed up to different tariffs as shown in Sect. 3.2.3

Similarly, also simulation models for energy production (e.g., from wind farms)

3It is important to note that the GAMs learned on aggregated load data do not really represent load
at the individual Meter level, but more an “average consumer”. As will be shown in Sect. 6, GAMs
fit well for aggregates of 70 households or more. The purpose for using GAMs, nevertheless, at



Massive-Scale Simulation of Electrical Load 201

Fig. 4 Bayesian Belief Network representing the dependencies among the simulation models and
covariates based on localization, time and customer type information

can be deployed at the Meter level. The geographic location of the Meter allows the
simulation platform to retrieve the relevant covariates for the simulation model, e.g.,
the temperature data from the nearest weather station.

By taking into account the location of Meters, the simulation platform can rep-
resent complex spatial correlations among the simulated time series. In particular,
by using the meteorological information from the nearest weather station, nearby
Meters will use similar covariates in their simulation models. Another way to induce
correlations between Meters is via the customer class, i.e., the type of model that is
used for simulation. Figure 4 shows a Bayesian Belief Network representing the
dependencies among the simulation models and covariates based on localization,
time and customer type information.

Finally, the simulation platform allows for changes in the simulation model
assigned to a particular Meter at given points in time. This capability can be used
to represent consumers changing their behavior (e.g., due to dynamic pricing or
the usage of novel electrical appliances such as electric vehicles or heat pumps),
to model changes in the customer portfolio of an energy supplier, and to simulate
installment of new wind farms and solar systems. Use cases illustrating this
capability are described in Sects. 5.1 and 5.2.

the Meter level, is to represent shifts in the customer portfolio and changes in the consumers’
behaviors, as will be explained at the end of this subsection.
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4.3 Scalability Aspects

An important aspect in the design of the architecture of the simulation platform was
scalability to enable massive-scale simulations of extended time periods much faster
than realtime (e.g., simulate one year of half-hourly data from 35 millions Meters in
less than 30 h). A key paradigm to achieve scalability was to use parallel processing
for streaming data. Streams processing is a computational model designed for
handling large amounts of data flows in a parallel and distributed manner. The
rationale is similar to assembly-lines for manufacturing: each data element goes
through different processing units, is processed and then forwarded to the next unit.
Storage of the processed elements is avoided throughout the processing pipeline and
performed only for the finished end product of the computations. IBM InfoSphere
Streams [14] is a computing platform designed to enable high-performance, parallel
and distributed processing of data streams. The challenge in designing a streaming
application is to carefully design the processing line to take maximal advantage
of distributed computing resources while keeping the volume of communication
among these resources at a reasonable level.

A full description of the design is beyond the scope of this paper. The most
important consideration was that, in the simulation platform, most of the data
volume is generated at the lowest levels of the network (the Mete’ and LVS levels
in Fig. 3). In the case of very large networks, this requires to heavily distribute the
computation at those levels. Also the volume of communication between network
elements at those low levels is significant (in particular, when aggregating loads
from the Meter to the LVS level), which requires to fuse Streams operators into
single processing elements in order to avoid impractical communication overhead.

Scalability results from experiments with the simulation platform are shown in
Fig. 5. The horizontal axis shows the number of parallel processing elements used

Fig. 5 Scalability of the
simulation platform: The
horizontal axis shows the
number of parallel processing
elements used in the
simulation, the vertical axis
the number of simulated data
points per second. As can be
seen, the platform scales
almost perfectly linearly until
the number of parallel
processing elements reaches
the number of physical CPUs
(which was 12 in this
experiment)
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in the simulation, the vertical axis the number of simulated data points per second.
As can be seen, the platform scales almost perfectly linearly until the number of
parallel processing elements reaches the number of physical Central Processing
Units (CPUs) which was 12 in this experiment. Approximately 140,000 data points
can be simulated per CPU in one second. Based on this experiment, it can be
estimated that 40 cores are sufficient to simulate one year of half-hourly data from
35 millions Meters (corresponding to 613.2 billion data points) in approximately
30 h.

5 Use Cases

This section presents three different use cases generated with the simulation
platform presented in this paper, each of them addressing a specific challenge for
utility companies from the emerging Smart Grids.

5.1 Forecasting a Time-Varying Portfolio

The first use case studies the impact of losses and gains of customers in a
utility company’s portfolio on the aggregated consumption. It is motivated by
the deregulation and competition in retail electricity markets which will allow
customers to change their electricity provider. Another goal of this use case is to
illustrate the effectiveness of the online learning algorithm for GAMs introduced in
[1] to forecast the aggregated consumption.

To simulate the changes in the portfolio, the five different customer classes
learned from the Irish CER data set (see Sect. 3.2) are used. Two different kinds
of changes are simulated in this use case: abrupt and gradual changes. Let Pt D
.pt;k/kD1;:::;5 denote the proportion of customers in the portfolio belonging to each
class at a given time t. An abrupt change occurs at time t0 if there is a significant
difference between Pt0 and Pt0C1. A gradual change is a linear transition of Pt

between two points in time t0 and t1. Losses and gains of customers can be
simulated by introducing a sixth “void” class which represents zero consumption,
and simulating customers switching from/to this class to/from any of the five tariff
options in the portfolio.

Figure 6 shows an example: Here, a portfolio of residential customers was
simulated, uniformly distributed over the five tariff classes, with a loss of 20 % of
the customers over the course of two years. The black line in the left plot shows a
simulated abrupt change, while the blue line depicts a gradual, linear loss over the
two years. The right plot illustrates the performance of forecasting algorithms in the
gradual loss scenario. Here the black line shows the actual loads, the blue line shows
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Fig. 6 Left: Simulation of a customer portfolio with a loss of 20 % of the customers over two years.
The black line shows an abrupt loss after the first year, the blue line a gradual, linear loss over the
two years. Right: Performance of forecasting algorithms in the gradual loss scenario. Here the
black line shows the actual loads, the blue line shows the forecasts obtained by a GAM with online
learning, and the red line the forecasts obtained by a GAM without online learning. As can be seen,
the online learning is able to track some of the losses, resulting in a higher forecasting accuracy

the forecasts obtained by a GAM with online learning (using the algorithm proposed
in [1]), and the red line the forecasts obtained by a GAM without online learning.
As can be seen, the online learning is able to track some of the losses, resulting
in a higher forecasting accuracy than the non-adaptive method. More generally,
this example shows the usefulness of the simulation platform for comparing the
performance of forecasting algorithms under different what-if-scenarios.

5.2 Impact of Wind Power Generation on the Distribution Grid

Managing the injection of power from renewable energy sources into the electrical
grid, particularly wind power, raises high levels of concern for utility companies.
Electricity providers and network operators need to optimize their production and
grid management, respectively, to cope with those intermittent energy sources. Due
to the high variability of wind power and its localized properties, simulations are an
important tool for making decisions in this context.

Figure 7 shows examples of the simulations generated by the platform. The blue
curves represent actual loads, generated using the same models as in the previous
use case. The green curves show the simulated amount of wind power injected into
the distribution network. For the simulation of wind power, the GAM introduced at
the end of Sect. 3.2 was used. The difference between the two curves (i.e., the net
load) is shown by the red curves. The plot on the left-hand-side displays a detail
of 1 week, while the right plot shows the evolution over one year with an increase
of 20 % in wind power capacity, corresponding to the installment and connection
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Fig. 7 Simulation of actual loads (blue), power from distributed wind farms (green), and the
resulting difference, i.e., the net loads (red). The left graph shows a detail of 1 week, the right
graph the daily averages over one year, with a simulated 20 % increase in wind power capacity

of new wind farms to the grid.4 Note that, similarly, the simulation platform also
supports the simulation of distributed power generation from photovoltaic systems.

5.3 Network Reconfigurations

In the last use case, the effect of network reconfiguration events is simulated. Such
events, where loads are transferred over alternative lines or to different substations,
become increasingly important in the operation of distribution networks where
the trend is towards a more active management of the grid in order to increase
the efficiency while coping with the challenges, e.g., due to power injections
from distributed renewable energy sources. In this paper, only reconfigurations
between the LVS and HVS network levels (see Sect. 4.1) are considered, where
an LVS node connects to a different HVS parent node. In general, however, the
simulation platform can represent reconfiguration events at any level in the network.
Interestingly, the same logic can be applied to simulate electric vehicles (nodes at
the Meters level) connecting to different charging stations (nodes at the LVS level),
e.g., related to changes in location. Note that the platform presented in this paper
can read reconfiguration events either from static files (e.g., generated by the user
based on statistical assumptions and/or historical data), or dynamically receive them
via a web server interface.

Figure 8 shows an example. The graph on the left shows how network entities
and their current status (load, outside temperature etc.) are displayed on a map.
The same interface can be used to dynamically introduce reconfiguration events by
selecting a new HVS parent node for a particular LVS node. Typically, the new

4The installment of new wind power capacity can be represented by network nodes which, at
specified time points, change their simulation model from a “void” GAM (producing zero values)
to a GAM model simulating wind farm output. Compare with the remark at the end of Sect. 4.2.
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Fig. 8 Dynamic reconfiguration events simulated by the platform. The left picture displays LVS
and HVS network elements on a map. By using the menu options in the white balloon, the
user can manually connect the LVS element to a new parent at the HVS level. Changes in the
connectivity will be reflected by the red lines displayed on the map. The right hand side shows
how reconfiguration events impact the load signal and forecasts at the parent node. Here the blue
line represents the actual load, the red line the forecasts at the parent node, and the green line the
sum of forecasts from all children nodes. After approximately half of the displayed time period,
one of the children is connected to a different parent node at the HVS level, resulting in a significant
decrease in load (blue line). While the forecasts at the parent node (red line) are unable to quickly
adapt to this change, taking the sum of forecasts from all children nodes (green line) reflects the
actual configuration. Shortly before the end of the displayed time period, the children node is
reconnected to its original parent, hence the load goes back to the original level

parent node is chosen from a list of candidates to which physical connections exist.
The blue curve in the right graph shows the load at an HVS node. As can be seen,
there is a significant load decrease after 2 weeks, which is due to a child of this
node connecting to a different parent at the HVS level. After 2 weeks, the child
reconnects to its original parent, and the load reaches the previous level. The red
curve shows the load forecasts for the HVS node using an adaptive GAM model.
While these adaptive models are very effective in tracking long-term trends and
changes (see Sect. 5.1), they are not capable to adapt to such sudden shifts. The
green curve represents the load forecasts obtained by taking the sum of the load
forecasts for the children of this HVS node. Clearly, this approach is favorable in
the presence of reconfiguration events.

6 Statistical Evaluation

The goal of this section is to evaluate how realistic are the load simulations
generated by the platform, both at an aggregated and at the individual Meter level.
Most approaches in the literature for this purpose use statistical hypothesis tests
to assess whether the simulated and the real data have the same distribution. For
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instance, in [15] a Mann-Whitney U test is used to test the similarity of the real and
simulated data distributions. In [17], different statistics of the simulated and real
data set are compared to assess how realistic the simulations are. The evaluation
protocol in this paper is based on a classifier which aims at discriminating real and
simulated data. The more difficult it is for the classifier to distinguish these data,
the more realistic the simulations are. This approach is motivated by previous work
which combines supervised and unsupervised approaches in order to evaluate the
quality of the unsupervised task. For instance, the cascade evaluation [4] enriches a
supervised dataset with the cluster id of each example. Then the cluster id is used by
a classifier as an additional explicative variable. The cascade evaluation estimates
the quality of the unsupervised task by measuring the improvement of the classifier
when the cluster id is used. Another example is the use of a classifier to detect
changes in the distribution of a data stream [2]. In this approach, two time windows
are used to capture the “current” and the “normal” behavior of the observed system,
respectively. Changes are quantified by the ability of the classifier to discriminate
the both classes.

6.1 Experimental Protocol

The goal of the first experiment in this section is to assess the accuracy of GAMs
depending on the size of the groups over which the load is aggregated. Same as in
Sect. 3.2, the data set for this experiment is the Irish CER Smart Metering trial, and
the GAM is given by Eq. (1). For aggregation sizes between k D 10 and k D 800,
a random sample of k meters is drawn from the CER data set and then aggregated
into a single time series. A GAM is learned on the first 70 % of this time series,
then the model’s Mean Squared Error (MSE) and standard deviation of the error
(Sd) is calculated on the remaining 30 % of the time series. Overall, this procedure
is repeated n D 1;000 times for each aggregation size k, and the average MSE and
Std are computed for each k.

The results of this experiment are shown in Fig. 9. As to be expected, the models
become more accurate (i.e., the MSE decreases) with increasing sample sizes,
essentially illustrating the Law of Large Numbers which states that aggregating
independent random variables following the same distribution yields stabilized
variables around the mean value. Noteworthy is the inflection point in the Sd curve
around the sample size k D 70: Beyond this point, the standard deviation of the
model errors is slightly increasing. Similarly, the decrease in the MSE beyond this
point is much less pronounced. A possible explanation is that the distributions
of the individual meter signals are not identical, therefore, if too many signals
are aggregated, information specific to some meters is lost while the benefit of
aggregation to reduce noise does not compensate that loss of information. Therefore,
the variance of a model learned on that sample will increase.
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Fig. 9 Accuracy of GAM
depending on the size of
randomly aggregated groups
of meters, measured in terms
of Mean Squared Error
(MSE) and Standard
deviation of the error (Sd)

This experiment suggests two directions how to improve the quality of the
simulations. First, the GAM approach is effective for simulating aggregations of
70 (or more) households, but not suitable for smaller sizes. Hence, for those low-
level aggregations, other modeling approaches will be required. Second, blindly
aggregating meters can lead to an information loss and an increase of variance of the
error. Therefore, clustering meters into similar classes could improve the modeling
accuracy.

Next, the effectiveness of this clustering approach using the k-means algorithm
with the Euclidean distance is investigated. The clustering of the meters is used to
build a generative model which is obtained by learning different GAMs for the
aggregation of meters from each cluster. The k-means algorithm is parameterized in
two different ways:

1. Naive setting: The number of clusters is arbitrarily fixed at k D 10. The
corresponding generative model is used as a base line.

2. Taking into account GAM performance: Using the results from Fig. 9, an
aggregation size of 70 m per cluster is found to be optimal, because it yields
a good performance in terms of the MSE and the minimal standard deviation of
errors. Correspondingly, the number of clusters is fixed at k D 60, leading to an
average group size of 70 m (n.b.: the total number of residential meters in the
data set is approximately 4,000).

For both settings, the k-means algorithm is applied to one year of half-hourly meter
data.
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6.2 Evaluation Protocol

The generative model obtained from the k-means clustering is first evaluated on
simulations of the aggregated consumption. In particular, the sum of the 4,000
simulated individual meter signals is compared with the sum of the 4,000 real
signals from the CER data set over the same time period. The Mean Absolute
Percentage Error (MAPE) and the Root Mean Square Error (RMSE) are calculated
as evaluation criteria.

In order to assess how realistic the simulated individual meter signals are, a
classifier for discriminating real and simulated signals is used. The classification
task is defined as follows: the data set consists of 8,000 time series (4,000 simulated
and 4,000 real ones), each described by 336 numerical explicative variables (denoted
by vi), corresponding to 48 data points per day over 7 days. The target class variable
c is equal to “0” for the simulated signals, and equal to “1” for the real ones. The data
set is split into two disjoint parts: 70 % of the data are used for training, and 30 % for
testing. For the classification, a simple Naive Bayes classifier is used. In particular,
the range of each explicative variable vi is discretized into 10 intervals, such that the
numbers of training observations lying in each interval are equal. The conditional
probabilities P.vijc/ for i D 1; 2; : : : ; 336 are estimated by the corresponding
sample frequencies, and then P.cjv1 : : : v336/ is computed by applying Bayes’ rule.
The classifier is evaluated by using the Area Under Curve (AUC) metric [10]. Recall
that a perfect classifier reaches an AUC equal to 1, and a random classifier an AUC
equal to 0:5.

6.3 Results

Table 1 reports the RMSE and MAPE of the GAMs for the two different numbers
of clusters k D 10 and k D 60. These two metrics assess the ability of the
simulator to fit aggregated individual load signals. In both cases, the value of k has
an insignificant impact on the RMSE and the MAPE. Note that a MAPE of 10 %
is relatively high, however, it needs to be taken into account that the GAMs were
learned on small aggregates and not at the national level.

Table 1 also reports the AUC score of the Naive Bayes classifier for the generative
models with k D 10 and k D 60. In both cases the classifier is able to separate
almost perfectly the simulated signals from the real signals, which underlines the
difficulty of building a realistic simulator for individual load signals. This result
can be intuitively explained by the fact that the GAMs in this experiment were
learned on aggregated loads, which are much smoother than the individual signals.
The Gaussian noise added to the simulated signals fails to exactly reproduce the
characteristics of individual consumption signals. Alternative approaches will be
discussed in the conclusions of this paper. Nevertheless, a significant drop in the
classifier accuracy from AUC 0:927 for k D 10 to 0:806 for k D 60 can be observed.
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Table 1 Comparative evaluation of generative models based on k D 10 and k D 60 clusters. The
MAPE and RMSE measure how accurately the models are fitting the real data, while the AUC
indicates how difficult it is for a classifier to distinguish between real and simulated data (hence,
how realistic the simulations are). Note the drop in the classifier accuracy from AUC 0:927 for
k D 10 to 0:806 for k D 60, which indicates that optimizing the granularity of the generative
model can significantly improve the authenticity of simulations

Criterion k D 10 k D 60

How accurate? Mean Absolute Percentage Error (MAPE) 10.81 % 10.73 %

Root Mean Squared Error (RMSE) 283.21 283.05

How realistic? Area Under Curve (AUC) 0.927 0.806

This means that using the clustering of consumer signals in the generative model can
significantly improve the authenticity of the simulated signals.

7 Conclusion

In this paper, a platform for massive-scale simulation of electrical load in Smart
Grids has been presented. The paper has provided details on the underlying statisti-
cal methodology, based on Generalized Additive Models (GAMs), and explained
the architecture of the platform, with particular emphasis on scalability aspects.
Experiments have shown the scalability and computational power of the platform,
which is able to simulate one year of half-hourly load data for the entire electrical
network in a country the size of France. The paper has presented three different use
cases generated by the simulation platform, illustrating the value of the platform for
power system engineers, statisticians and econometricians to study various what-
if-scenarios, e.g., related to dynamic reconfigurations of the electrical network,
changes in the customer portfolio and consumers’ behavior, and increasing capacity
of distributed renewable energy sources such as solar and wind.

In an evaluation study, the paper has shown that GAMs provide realistic
simulations for aggregated load signals of at least 70 individual households.
However, it has been demonstrated that novel modeling approaches are needed
for simulating lower-level aggregates. Possible ideas for future research in this
direction are: (i) using point processes (e.g., non-homogeneous Poisson); (ii) taking
into account ancillary information (e.g., higher-resolution meteorological data and
socio-economic indicators); (iii) considering GAMs with random effects and spatio-
temporal correlations.
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