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Abstract The estimation of baseline electricity consumptions for energy efficiency
and load management measures is an essential issue. When implementing real-time
energy management platforms for Automatic Monitoring and Targeting (AMT) of
energy consumption, baselines shall be calculated previously and must be adaptive
to sudden changes. Short Term Load Forecasting (STLF) techniques can be a
solution to determine a pertinent frame of reference. In this study, two different
forecasting methods are implemented and assessed: a first method based on load
curve clustering and a second one based on signal decomposition using Principal
Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods
were applied to three different sets of data corresponding to three different industrial
sites from different sectors across France. For the evaluation of the methods, a
specific criterion adapted to the context of energy management is proposed. The
obtained results are satisfying for both of the proposed approaches but the clustering
based method shows a better performance. Perspectives for exploring different
forecasting methods for these applications are considered for future works, as well
as their application to different load curves from diverse industrial sectors and
equipments.
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1 Introduction

Establishing a baseline is the starting point to evaluate the potential as well
as the results of different climate change mitigation related programs [31]. A
baseline is the point of comparison to evaluate the behavior of different systems or
procedures and allows to determine over or under performances. Thus, determining
an energy consumption baseline is a key issue when implementing energy efficiency
measures, deploying energy management programs, analyzing energy performance,
and evaluating demand side management programs [8, 24, 31, 32].

When trying to determine if an industrial site or equipment is working under
normal conditions, it is important to be able to compare their energy consumption
with a “business as usual” forecasted one. This business as usual energy con-
sumption is considered as the baseline scenario for comparison. This concept is
particularly important in energy performance and efficiency contracts. The baseline
allows the detection of abnormal consumption behaviors and/or overconsumption of
equipments. Real-time monitoring of energy consumption helps an industrial site to
optimize its energy consumption, reduce its costs, and adapt to changing electricity
prices.

Energy efficiency has become a key parameter to be monitored by plant operators
and managers aiming at optimizing their costs and reducing their energy losses
[11]. Nowadays, most of the existing energy management platforms in the industry
have a rather static nature, not adapting to real-time variability and having fixed
thresholds, alarms and follow-up procedures. Energy management platforms should
allow industrials to monitor their energy consumption and thus optimize their costs
and detect abnormal behaviors on a real-time basis [16, 30].

Industrial sites are eager to implement energy efficiency recommendations.
However, industry consumption may vary enormously from site to site and from
sector to sector, and companies may deal with energy efficiency measures differently
[1]. Added to this, there is a lack of relevant scientific literature for integrating
energy performance in production management [4]. Baselines need to be consis-
tently defined [31] and data analysis shall be as close as possible to standardized
procedures in order to deploy energy management protocols faster and thus, reach
as much industries as possible to increase the economical impacts due to energy
efficiency [24].

Real-time energy consumption follow-up belongs to Automatic Monitoring and
Targeting (AMT) techniques. AMT can be improved by the enhancement of the
capabilities of the intrinsic data analysis methods used within an energy manage-
ment platform. Adaptive methods for real-time energy consumption monitoring
and analysis will lead to new methods of forecasting for establishing consumption
baselines and thus, better energy consumption follow-up.

The main objective of this research study is to propose two different Short
Term Load Forecasting (STLF) approaches for establishing a specific electricity
consumption baseline on industrial data. The proposed techniques are applied for
forecasting the power consumption of three different industrial sites from France,
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from different sectors, at different moments of the day, and for short term forecasting
horizons (2 h).

2 Materials and Data

For the purpose of this study, electricity consumption data was collected from three
industrial sites from different regions in France (hereafter identified as sites A,
B, and C). The three industrial sites belong to three different sectors and present
different consumption patterns that are described below.

A big issue when implementing energy management programs is data avail-
ability. Generally speaking, energy consumption data at an industrial site level is
monitored for billing and accounting purposes. This is not always the case with
disaggregated data at workshop or equipment level, where metering instruments
may be scarce. Other influential parameters are also not always monitored and thus
not available on a first approach.

The only available monitored variable for the three sites is electricity consump-
tion issued from historical billing data. The collected data is a 10 min interval
load curve (each value being the average power consumption over a fixed 10 min
interval). Each one of these intervals corresponds to each 10 min of the day from
12:00 am to 11:50 pm, which means 144 power consumption values for every
available day. For the implementation of the different methods, the R software is
used (N.B.: Due to confidentiality issues, orders of magnitude of the load curves
have been omitted).

Site A

This particular site operates on an 8-h shift mainly from Monday to Friday, and
in some occasions, on Saturdays. Not all weekdays present an operating electrical
consumption activity, due to operational constraints of the site. Data is available for
almost 2 years of electricity consumption. Figure 1 shows a 4-week interval of the
load curve. Three main electricity consumption equipments are present at this site,
which are turned on once the site is operating. Different equipment arrangements
are operated as reflected in the load curve. For site A, 702 days of electricity
consumption are available for analysis.

Site B

The second industrial site operates in a continuous 24 h cover, comprising three
8-h shifts. As it can be observed in Fig. 1, the consumption level might have big
variations, since different workshops and equipments are engaged at different times
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Fig. 1 Four weeks of electricity consumption for sites A, B and C
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of the day. The load curve shape is significantly different than that of site A. For site
B, 665 days of electricity consumption are available for analysis.

Site C

Site C is also a continuous 24 h cover industrial site. The consumption pattern is
dependent on a daily activity as it is reflected in the load curve, shown in Fig. 1.
During weekends, energy consumption is different than during weekdays. However,
the electricity consumption base represents the biggest part of the consumed energy.
Equipments keep consuming electricity during the night and during weekends in
order to ensure certain operations at the site. For site C, 770 days of electricity
consumption are available for analysis.

3 Forecasting Characteristics and Methods

Current electricity consumption forecasts are generally performed at a regional or
national level, since their main interest is to ensure the efficient management of
existing electrical power systems. National electricity loads have been at the core of
electricity load forecasting for many years, and many techniques and methods have
been proposed and assessed, as reviewed by many different authors [13, 15, 26, 27].
The different existing load forecasting methods can be classified into three main
families: time-series analysis, multivariate analysis, and data-mining techniques
[19]. However, when forecasting electricity consumption of industrial sites, the
consumption may differ enormously in form, variability and influencing parameters
for every single different site.

There is a lack of scientific literature focused on applying forecasting methods for
establishing consumption baselines at lower consumption levels. Typical forecasting
methods tend to be not well adapted when applied at an industrial site level.
Seasonality, calendar events, and weather dependency are parameters usually taken
into account when modeling a national electricity consumption curve [3]. However,
due to the radically different nature of industrial sites, these parameters are
inconsistent from site to site and may not be reflected in the consumption curve.
Innovative approaches shall be followed to standardize the methods and have a
larger reach and impact, as it was previously discussed.

When deploying energy management platforms in the industry, one of the main
assumptions shall be that predictive models shall work with as little parameters as
possible. As previously discussed, for industrial sites A, B, and C, the only available
variable is historical electricity consumption. This section presents two different
proposed forecasting techniques as well as the methods chosen to evaluate their
relevance.

Table 1 lists all the symbols and parameters used in the text.
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Table 1 List of symbols used in the text

Symbol Definition

Generic symbols

� Gross energy deviations of the forecasted energy baseline with respect to the real
energy consumption during the evaluation period (2 h)

i Time period identifier

n Time period at which a forecast is launched

tn Starting time of the forecast

Pi Real power consumption at time period i
OPi Forecasted power consumption at time period i

� Forecast evaluation period (2 h)

N Number of power consumption values during the evaluation periods (12)

TVn Truncated test vector up to the nth interval.

p Dimension size of the individuals (144 power consumption points)

v Number of intervals used to construct the adjustment factor

FAJv Adjustment factor using v intervals

Method 1

M1,M2 Dimensions of the SOM grid

m Number of neurons

k Identifier of the neuron

Clk Coordinate vectors of the different neurons

Clk;h Coordinate of the hth element of the kth neuron

Clk;n Coordinates vector of the truncated cluster vectors up to the nth interval.

WN Reference vector corresponding to the winning neuron (Also known as the BMU)

Xtr Vector corresponding to the chosen element from the training data

� Number of iterations of the SOM algorithm

s Current iteration step of the SOM algorithm

˛ Learning rate of the SOM algorithm

� Radius of the neighborhood of the SOM algorithm

Dk Distance of the updated node to the winning unit

ClW Winning reference vector

Method 2

� Eigenvectors matrix

U Eigenvalues matrix of the principal components

A Covariance matrix

j Number of principal components explaining 90 % of the data variability

q Principal component identifier

Uq Coordinates of the qth principal component
OCq MLR coefficients for the qth principal component

O" MLR disturbance coefficient

Unq Coordinates vector of the truncated principal component up to the nth interval
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3.1 Forecasting Characteristics

For constructing the different models, every day is considered as an independent
element (a vector) composed of 144 values of power consumption. Days can
be considered to be independent for practical purposes: forecasts are performed
intra-day and consumption cycles present daily patterns in most of the cases,
corresponding to different consumption modes. Simple data splitting [22] is used
for model validation. Eighty-five percent of the data (85 % of the available days for
analysis) is used as the training dataset. The remaining 15 % (test dataset) is used to
test the models and compare the performance of both methods. Data sampling of the
days is performed randomly on a stratified manner at two levels, in order to obtain a
distribution of different seasonal variabilities related to time parameters: day of the
week and month of the year.

In order to test the different methods for power consumption forecasting at
the site level and at different moments of the day, different parameters and
characteristics for the forecasts have to be defined. For each test day, the baseline
load is estimated at each hour from 9:00 am to 5:00 pm for site A and from 9:00 am
to 9:00 pm for sites B and C. In order to evaluate the performance of the forecasting
methods, the forecasting periods are fixed to be the following 2 h (called forecast
evaluation period, identified by � , composed of 12 power consumption intervals),
considered as short term load forecasting (STLF). In short the different methods
will forecast the power and energy consumption from a specific time-step (called
tn, which will be varied from 9:00 am to 5:00 pm or 9:00 pm, depending on the site)
for a specific number of time intervals (called N, which has been defined as 12) that
corresponds to 2 h.

In total, for site A, 882 simulations will be performed (98 test days, 9 simulations
per day from 9:00 am to 5:00 pm), 1,170 for site B (90 test days, 13 simulations per
day from 9:00 am to 9:00 pm), and 1,339 for site C (103 test days, 13 simulations
per day, similar as for site B). The simulation results will be compared according to
the performance indicator defined further on.

3.2 Proposed Forecasting Methods

If the objective is to analyze as many sites as possible, methods shall be easy to
deploy and should not require much human input or expertise. Also, they shall
demand low calculation times in order to easily standardize the procedures. To
overcome these problems, two different approaches for electricity consumption
forecasting are proposed, based on the nature of the examined data:

• A first method using load curves clustering in order to detect consumption
patterns that will be used as electricity consumption forecasts.
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• A second method based on signal decomposition in order to detect the variability
of the daily behavior of the curves, using the eigenvectors issued from a Principal
Component Analysis (PCA) of the training dataset.

3.2.1 Method 1: Electricity Consumption Forecasting by Pattern
Recognition Using Load Curve Clustering

Electrical load curve clustering has attracted much attention in recent years for
its application in client profiling and electricity pricing [6, 10, 20]. The capacity
of clustering techniques for handling large amounts of time-series data has been
assessed in the past [23]. Diverse clustering techniques have been used in the past,
as reviewed by Chicco in [5]. From the different assessed clustering techniques,
K-means and Self-organizing Maps (SOM) are the best performing ones. SOM is
not a direct clustering method, as explained in [6], however, it produces a visually
understandable projection of the original data into a map. In this study, SOM has
been chosen as the clustering technique due to its prior application for forecasting
purposes, as proposed by different authors [7, 18, 25]. Nevertheless, these previous
work were focused in forecasting national electricity demand.

SOM [17, 23, 28] is an unsupervised neural network that projects a p-dimensional
input dataset onto a reduced dimension space (one or two-dimensional in most
cases). SOM is composed of a predefined grid of M1 � M2 elements called
neurons (m number of neurons). Each neuron (identified by k) is also p-dimensional.
Neurons have to be initialized, this means, the p-dimensions of the k neurons have
to be previously defined by a reference vector Clk, as in expression (1), where
1 � k � m, and Pk;i is the value of power consumption for element i of neuron
k, where 1 � i � p. Initialization of the SOM algorithm can be done in different
manners (randomly or data analysis based initialization) as described in [2].

Clk D ŒPk;1; Pk;2; : : : Pk;p� (1)

All neurons are associated to neighboring neurons of the map by a neighborhood
relation, which determines the “area” of influence within the defined space. Neurons
are calculated through a competitive algorithm that recalculates the weights of the
winning neuron and the weights of its neighboring neurons proportionally inverse
to their distance. The neighborhood size will be reduced at each iteration during the
map training process, starting with almost the full topography and ending in single
neurons.

Once all Clk reference vectors have been initialized, SOM training starts. The
algorithm will be run a predefined number of iterations, represented by �. At each
iteration (represented by s � �), an input vector Xtr (as described in formula (2))
issued from the training data set is chosen randomly, where tr goes from 1 to
the number of individuals in the training dataset, and Ptr;i is the value of power
consumption for element i of the tr individual and where 1 � i � p. Euclidean
distances between the chosen Xtr and all the Clk vectors are calculated. The closest
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reference vector is known as the winning neuron .WN/ or best matching unit
(BMU), as in expression (3).

Xtr D ŒPtr;1; Ptr;2; : : : ; Ptr;p� (2)

WN D argmin

8
<

:

v
u
u
t

iDpX

iD1

.Xtr;i � Clk;i/2/

9
=

;
I 1 � k � m (3)

The coordinates of WN and its neighboring neurons are adjusted then towards the
coordinates of the input vector Xtr, as in expression (4), where ˛.s/ is the learning
rate which decays with each iteration, and �.s/ is the neighborhood function,
represented in expression (5). The radius �.s/ is also updated at every iteration,
shrinking over time. Dk is the distance of the updated node to WN (the winning
neuron).

Clk.s C 1/ D Clk.s/ C ˛.s/�.s/ � .Xtr.s/ � Clk.s// (4)

�.s/ D exp.� D2
k

2�2.s/
/ (5)

The proposed methodology based on pattern recognition using SOMs is described
below and divided into three steps:

1. Once the data splitting has been performed as described previously, the training
dataset will be used to construct the reference vectors.

The SOM algorithm is launched considering the daily load curves as individuals for
analysis (p D 144). As defined previously, the SOM algorithm needs a number of
clusters (m) before its initialization. Tsekouras et al. [29] have determined that for
large electricity customers 8–12 clusters are necessary for a satisfactory description
of the daily load curves. Different numbers of clusters will be tested in order to
determine a good description of the different possible load curves. The algorithm is
performed on non-reduced data, as suggested in [10]. For the purpose of this study,
in order to converge to the same solution, a linear initialization is used. A rectangular
configuration of the neighborhood is chosen due to its visualization effectiveness.
The chosen number of iterations is � D 100. The chosen learning rate is a linear
function from 0.05 to 0.01 over the 100 iterations for which it was found that the
algorithm converges rapidly. The neighborhood radius is varied from a value of two
thirds of all unit to unit distances to its negative value, linearly through the different
iterations. Once the neighborhood gets smaller than one individual, only the WN
reference vector is changed.

The resulting Clk reference vectors of each neuron are then kept and assigned
to the neuron according to the described SOM algorithm. Every cluster is then
represented by a vector composed of 144 variables identified as Clk, the identifier of
the cluster. Clk;h contains the value of the hth variable of the kth neuron. Every
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variable represents a specific power consumption point of the day, as defined
previously.

2. Once the SOM algorithm has been performed, the Clk centroid vectors will be
used. At the time (tn) a forecast is simulated for a chosen individual of the test
dataset, the test element is truncated to a vector (identified as TVn) composed of
n elements as shown in expression (6) (where n � p)

TVn D ŒPn;1; Pn;2; : : : ; Pn;n� (6)

The different Clk vectors will be then truncated up to the nth element and called
Clk;n. Euclidean distances will then be calculated for the TVn vector to the different
Clk;n vectors. The vector corresponding to the minimum distance is then considered
the winning vector, identified by ClW as in expression (7).

ClW D argmin

8
<

:

v
u
u
t

iDnX

iD1

.Clk;i � TVn;i/2/

9
=

;
I 1 � k � m (7)

3. The coordinates of the cluster ClW corresponding to that vector will be proposed
as the forecast for the following consumption points. The forecasted power
consumption points OPi will correspond to those the elements with the same index
i of the closest ClW vector, represented by ClW;i as expressed in formula (8).

OPi D ClW;i (8)

3.2.2 Method 2: Electricity Consumption Forecasting by Signal
Decomposition Using Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate analysis technique used in
many different areas for analyzing large sets of data [9, 14]. The pertinence of PCA
coupled with other techniques for forecasting energy consumption has been assessed
by some authors [21, 27]. However, for different applications, the PCA is used as a
tool among others to produce a specific predictor, adapted to the nature of the data.

It can be assumed that the electricity consumption at the site level is a function
composed of different signals. The changes and variability in electricity con-
sumption can be explained by different variables. The PCA allows to obtain the
eigenvalues (matrix �) that explain most of the variability of the data and the
eigenvectors (matrix U) of the principal components which are obtained by the
decomposition of covariance matrix A in tU�U that are uncorrelated to each other.

For the purpose of this study, the PCA is performed on the training data set (on
non-reduced data). The coordinates of the j first eigenvectors explaining 90 % of
the variability are preserved. These coordinates have in fact a meaning according
to a specific power consumption interval of the day, since the reduced variables are
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in fact power consumption time intervals. Uq are the coordinates of the different j
eigenvectors, where 1 � q � j, as expressed in (9).

Uq D ŒPq;1; Pq;2; : : : ; Pq;144� (9)

The preserved principal components are used to build a predictor based on their
linear combination in order to predict the variability of the data. This is done by
using a Multiple Linear Regression (MLR). At the time tn a prediction is launched
for a chosen element of the test dataset, the different Uq vectors are then truncated up
to the point n of the forecast and represented by Unq, as expressed in formula (10).

Unq D ŒPq;1; Pq;2; : : : ; Pq;n� (10)

A multiple linear regression is used in order to find the coefficients for the principal
components, for which the combination of these components fit the data of the
chosen element of the test dataset. For this purpose, an ordinary least squares
model is used. The vector TVn is defined as a function (P.i/) determining the
power consumption value at timestep i. Along with the different j truncated Unq

eigenvectors, P.i/ is used to fit a linear model as in expression (11). The coefficients
OCq and the intercept term O" are obtained through the MLR.

P.i/ D
jX

qD1

OCqUnq.i/ C O" (11)

These coefficients and the eigenvectors coordinates Uq are used for predicting the
power consumption of the site for the rest of the day for every consumption point
OPi, as in expression (12).

OPi D
jX

qD1

OCqUq;i C O" (12)

3.3 Adjustment Factor

An adjustment factor can be used to improve the forecasts of different techniques.
Method 1 is based on pattern recognition, and the proposed forecast is a typical
energy consumption mode. However, even if the a pattern has been correctly
recognized, the forecast may under or over estimate the actual consumption level
corresponding to a specific day. An adjustment factor may deal with this problem
by adjusting the forecast to the correct level of energy consumption. The adjustment
factor deals as well with the issue of trends, in case they exist. Method 2 forecasts



12 J. Blancarte et al.

are issued from a Multiple Linear Regression and thus, the different coefficients fit
a model to the actual consumption level and no adjustment factor is needed.

Different forms of adjustment factors exist, but the most important ones can be
classified in two different categories for univariate methods: scalar and additive,
as described by different authors [8, 12]. Since only electricity consumption
information is available for the concerned industrial sites, weather or other related
adjustment factors will not be considered in this study.

To deal with the mentioned issues, a scalar adjustment factor is used to improve
the forecasts of Method 1. The proposed adjustment factor is calculated as in
expression (13), and corresponds to the average of the ratios of the v previous
real power consumption values to predicted ones. Pi represents the real power
consumption at time interval i, OPi is the forecasted power consumption at time
interval i, and v the number of intervals used to construct the adjustment factor. The
chosen number of intervals (v) for the adjustment factor is one, since better results
are obtained in terms of the chosen performance indicator and since calculation
times are reduced.

FAJv D Œ
Pi�1

OPi�1

C � � � C Pi�v

OPi�v

� � 1

v
(13)

3.4 Performance Indicator

The main indicators used in literature to evaluate the performance of forecasting
methods are the Mean Absolute Percentage Error (MAPE) and the Mean Squared
Error (MSE). These parameters are adequate when evaluating the resemblance of a
forecast compared to a real curve. These indicators are adapted to situations where
the goal is to optimize the use of production means to meet an electricity demand,
or residual demand curves calculation in competitive electricity markets. This is not
the case when evaluating the forecasting performance in an industrial site for energy
efficiency purposes. Most energy efficiency programs have an economic constraint
and are rewarded or penalized economically if objectives are met or not [31]. For
this reason, a specific performance criterion is proposed and used which is easily
transformed into an economic indicator.

This criterion is directly linked to the site’s global energy consumption. It is
based on the difference, in energy (kWh), between forecasted energy consumptions
issued from the models and real energy consumptions issued from the data. The
indicator is based on gross energy differences (hereafter referred as Gross Energy
Deviation, GED) through the time period of the forecast (2 h), and represented by
symbol �. GED and its distribution will be used to evaluate the relevance of each
method. Expression (14) formalizes the way of calculating these deviations, where
Pi is the actual power consumption at time-step i, and OPi is the forecasted power
consumption at that same time-step. � and N were previously defined.
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� D
2

4
tnCNX

iDtn

Pi �
tnCNX

iDtn

OPi

3

5 � �

N
(14)

GED allows to evaluate the distribution of the forecasts in terms of how much is the
forecast above or below an energy threshold which is the real energy consumption
during that time period. This approach is useful to set operational parameters and
thresholds in the industry, and to easily translate them into an economic indicator.

4 Results and Discussion

The results for each of the implemented methods are described below. A focus is
made on the evaluation of the performance of both forecasting methods presented
above, according to the defined criteria.

4.1 Method 1: Electricity Consumption Forecasting Using
Self-Organizing Maps

For the implementation of Method 1, different tests were carried out varying the
neurons number from 8 to 12 (as in [29]), selecting the lowest number of neurons for
which the GED distribution is does not vary greatly if another neuron is proposed.
Twelve neurons were selected for site A, 9 for site B, and 12 for site C. The graphical
representation of the different reference vectors for the sites can be seen in Fig. 2.
The different identified patterns correspond to the different typical consumption
modes of the sites. These typical load curves are used for forecasting as explained
previously.

Fig. 2 Resulting curves after applying the SOM algorithm to the test dataset for the three sites
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Fig. 3 Graphical representation of the main principal components coordinates for the three sites

4.2 Method 2: Electricity Consumption Forecasting
Using Principal Component Analysis

For the implementation of Method 2, in order to explain 90 % of the variability
of the data, the first 5 principal components are selected for sites A and B, and 4
principal components are selected for site C. Adding more principal components or
increasing the 90 % threshold would increase calculation times, which is to be taken
into account when monitoring energy consumption in real time. The footprint of the
different components for the different sites can be seen in Fig. 3. These principal
components are the ones used to run the MLR that will determine the coefficients
for the forecasting models.

4.3 Results by Site

Results obtained using both methods for each of the studied sites are presented
below.

Site A

The distribution of the different obtained GED for site A with Method 1 is presented
in Fig. 4. The “y” axis represents the gross energy deviation and the “x” axis is
the energy that was actually consumed during that period, in order to relativize
the error of the forecast in terms of energy. Points outside the dashed lines are
above a 50 % GED threshold, and points outside the solid lines are above a 10 %
threshold. In order to evaluate the performance of the methods at differents times of
the day, different hours were grouped into four different time-spans: from 9:00 am
to 11:00 am (morning), identified by the solid green squares; from 12:00 pm to
2:00 pm (noon), identified by the solid pink circles; from 3:00 pm to 5:00 pm (early
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Fig. 4 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site A

Fig. 5 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site A

afternoon), identified by the solid yellow triangles, and from 6:00 pm to 9:00 pm
(late afternoon), identified by black crosses.

For Method 1, 226 simulation points are inside the solid lines and 642 are
between the dashed lines. The total simulation points for this site are 882. Figure 5
represents the GED distributions for site A using Method 2. Solid lines and dashed
lines represent the same thresholds as in Fig. 4. For Method 2, only 104 simulation
points are inside the solid lines, while 410 are between the dashed lines.

Looking at the dispersion of the points and the number of them outside of the
defined thresholds, of Figs. 4 and 5, Method 1 clearly outperforms Method 2 for
this particular industrial site. Regarding the distribution of the different timespans,
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Fig. 6 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site B

besides a slightly wider distribution for the morning period, no significant difference
can be observed for the different hours of the day.

Site B

Figure 6 shows the GED distribution for site B using Method 1 as in Fig. 4. For
this site, 767 simulation points are inside the solid lines and 1,123 are between the
dashed lines. The total simulation points for this site are 1,170.

Figure 7 represents the GED distributions for site B using Method 2. Solid lines
and dashed lines represent the same thresholds as in previous figures. For Method
2, 467 simulation points are inside the solid lines, and 1,001 are between the dashed
lines.

For this industrial site, Method 1 also outperforms Method 2. As for the
distribution regarding the different timespans, no significant difference can be
observed to conclude a strong influence of the hours of the day for both methods.

Site C

Figure 8 shows the GED distribution for site C using Method 1 as in Fig. 6. For
this site, 1,146 simulation points are inside the solid lines, which represent less than
10 % in error, and 1,334 are between the dashed lines that represent less than 50 %
in energy error. The total simulation points for this site are 1,339. It is important to
notice that only five points are outside the dashed line boundaries in this particular
case.
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Fig. 7 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site B

Fig. 8 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 1 for site C

Figure 9 represents the GED distributions for site C using Method 2. Solid lines
and dashed lines represent the same thresholds as in previous figures. For Method
2, 884 simulation points are inside the solid lines, and 1,319 are below the 50 %
threshold represented by the dashed lines.

Even though results can be considered satisfactory for Method 2 applied to
industrial site C, Method 1 still shows better performances. As well as for sites A
and B, the hour of the day does not seem to influence greatly the performance of the
methods, since the GED distributions are evenly distributed for all of the timespans.
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Fig. 9 GED distribution with respect to real energy consumption over a timeframe of 2 h using
Method 2 for site C

5 Conclusions and Perspectives

Two different methods for establishing short-term electricity consumption baselines
were proposed and assessed. From the obtained results, Method 1 outperforms
Method 2 when forecasting the short term electricity consumption for the three
presented industrial sites, according to the chosen performance indicator. Added
to this, the hour of the day does not significantly influence the performance of the
methods.

Subsequent works will focus on specific industrial equipments that are installed
at the industrial sites and that contribute to most of their power consumption.
The aggregation of industrial equipments allows a more flexible and adaptable
energy consumption follow-up, since information can be lost at the industrial site
level. In order to ensure the validity and repeatability of the obtained results for
their generalisation, future research works will focus on the construction of a
bootstrapping procedure.

Perspectives to improve the forecasting potential for Method 2, could be the
integration of weighing factors for the coefficients and studying the errors obtained
for the different forecasts at different times of the day.

Model combination could be a clue to improve the performance of the forecasts,
since it could integrate different approaches (such as form recognition and Bayesian
inference) in order to overcome the deficiencies of the different methods.

It is important to point out that due to the variability of the data, the differences
from site to site and from sector to sector, standardizing the methods to build energy
consumption baselines can be a hard task. The use of additional variables shall be
considered when possible, which will make the methods more adaptable. Univariate
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methods could rapidly reach a limit of performance. The main problem which may
persist will be data availability.

Energy management can be improved by the utilization of different methods
to calculate energy consumption baselines for the diverse energy management
applications. Performing bottom-up approaches provides more precise information
and makes energy consumption flexibility fast and reactive.
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