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Abstract. In this paper, we present the results of an application of
attribute space morphological filters for tracking sub-atomic particles
in magnetic fields. For this purpose, we have applied the concept of at-
tribute space and connectivity to the binary images produced by charged
particles passing through the tracking detector for the future experiment
PANDA. This detector could be considered as an undirected graph with
irregular neighbourhood relations. For this project, we rely only on the
detector geometry. In addition, we have extended the graph to estimate
the z-coordinates of the particle paths. The result is an O(n2), proof
of concept algorithm with a total error of approximately 0.17. The re-
sults look promising; however, more work needs to be done to make this
algorithm applicable for the real-life case.

Keywords: Attribute space connectivity · Orientation based segmenta-
tion · Irregular graph · Sub-atomic particle tracking · Graph morphology

1 Introduction

Many image-analysis problems involve the recognition of thin, line-shaped, ori-
ented structures. When some elongated thin, bright structure needs to be seg-
mented, one possible approach is to remove parts of the image that are neither
elongated nor thin. A standard approach is to use of a supremum of openings,
where line-shaped structuring elements in different directions could be used [1].
A direct application of this idea will lead to an inefficient implementation of
such an operator. One solution to this was proposed by Talbot et al. in [2].
They propose an ordered algorithm for implementing path operators for both
complete and incomplete paths with logarithmic complexity as a function of the
length of the flexible structuring element used. Most of the proposed solutions
to solve the path recognition problems cannot deal with overlapping structures
and are not directly capable of grouping pixels into disjoint paths. To solve the
problem of overlapping structures, Wilkinson proposed in [3] a new concept of
connectivity in higher dimensional spaces, referred to as attribute spaces. It is
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shown that a transformation of an image into a higher dimensional space, for
example in an orientation based attribute space, using new computed attributes
could be a solution to segment overlapping structures in disjoint segments.

A systematic theory for the construction of morphological operators on graphs
was introduced by Toet et al. [4] where structural information could be ex-
tracted from graphs using pre-defined probes (structuring graphs). Dilations
and erosions were constructed using the graphs neighborhood function and in
combination with the probes one could define openings and closings operators
on graphs [5].

Here, we present the results of an application of attribute space connected
filtering, inspired by graph morphology for recognizing charged particle tracks
through the Straw Tube Tracker (STT) for the future experiment PANDA (anti-
Proton ANnihilations at DArmstadt). PANDA is one of the experiments at the
future Facility for Antiproton and Ion Research (FAIR), which is currently under
construction in Darmstadt, Germany. One of the objectives of this experiment
is to study the structure of hadronic matter via the annihilation of antipro-
tons with protons at interaction rates up to 20 MHz. During these collisions,
various particles with a large momentum range are produced. The trajectories
of charged particles are reconstructed using tracking detectors placed inside a
solenoid magnetic field. The curvatures of the reconstructed tracks are used to
obtain the momenta of the corresponding particles. The PANDA tracking system
consists of central and forward trackers. Here, we consider only one of the central
tracker detectors, namely the STT. To cope with the high event rate, the data
are processed at runtime and reduced by a factor of about 103. To achieve such a
reduction factor, intelligent and fast algorithms need to be used that are capable
of reconstructing the particle tracks in-situ. There are a number of conventional
methods with high precision being used for the recognition of the particle paths
through the space [6], but at present none of them is suited for online applications
because of their computational complexity. These methods rely on transform-
ing the image points into other spaces (Riemann space, Hough transformation),
recognizing the structures, back transformation and fitting curves through the
collected space-points where one needs to rely on drift times and corresponding
calibrations. In our approach, we use only the geometrical information of the
detector. One of the major advantages of our method is that it does not depend
on the drift time of the charge through the tubes. Moreover, our algorithm is
conceptually easy to implement on embedded architectures such as FPGAs and
GPUs with O(n2) complexity in the number of active pixels.

In this paper, in sec. 2 the geometry of the STT subsystem is discussed, sec. 3
will give a brief summary of the basic concepts of filtering and connectivity, in
sec. 3.1 the attribute space and attribute space filters are briefly described. In
sec. 4 we present our method and finally we discuss the results and future works
in sec. 5.
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2 Geometry of the STT

The STT subsystem is the main tracking detector for charged particles and
contains 4542 single straw tubes, arranged in a cylindrical volume around the
beam-target interaction point. The straws are mounted in the system in two
different ways. The axial straws which are parallel to the z-axis (the beam line)
and skewed straws which are skewed by a few degrees (+2.9◦ or −2.9◦) to the
axial direction and are meant to measure the z information of the track. All
straws have the same inner diameter of 10 mm and a length of 1500 mm, except
for a few outer straws in the border region of each skewed layer, which have a
reduced length. The read-out system is designed such that all tubes are read
from one side. Figure 1 left shows a schematic view of the STT in the xy−plane
and the right panel the 3D layout of the STT subsystem [6].
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Fig. 1. Left: the front view (along beam direction) of the STT in the xy-plane. The
skewed straws are shown in red and blue and green dots represent the axial straws.
Right: a 3D view of the STT subsystem.

4A simulation, digitization and reconstruction software package has been de-
veloped for this detector. The digitization software provides a realistic model of
the hardware readout of the foreseen detector. Here, we use only the data from
simulation and digitization parts of this software package. For further details,
we refer to the STT technical design report [6].

2.1 STT Graph

The geometry of the STT detector contains the three dimensional coordinates of
the center-point of each tube, its half length, the list of its direct neighbors and a
direction-vector which describes the slope of the read-out wire; the read-out wire
has the same length as the tube itself and passes through the center of the tube.
Because of the skewed tubes, the number of neighbors is not equal for all nodes
in the graph; it varies between two and 22 neighbours. This way, the detector
could be considered as a graph of pixels with varying neighborhood relations.
The nodes are described by the tubes and the edges by the neighbouring relations
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Fig. 2. The position of the STT tubes is shown in blue. Left: the true hit positions
(red points) of the particles. Right: red points show the position of the reconstructed
hits.

between the nodes. When a charged particle travels through space in a magnetic
field, it hits a number of tubes which are turned on while the remaining nodes
remain off. This pattern could be considered as a binary image of a number of
thin, curved, path-shaped patterns. The curvature, path lengths and multiplicity
of the paths depend on the particle type, its momentum and the strength of
the magnetic field. An example of such paths is shown in fig. 2. One can see
that the axial (z-parallel) straws produce an accurate position in the xy-plane
and the skewed nodes have a maximum displacement of ±3 cm based on their
lengths and direction. The latter is due to the fact that the exact hit positions,
along the tubes, are not defined. Further, as a consequence of the readout and
detector efficiency, the generated paths might have gaps of one or more missing
pixels (tubes). These effects are visible in the right panel of fig. 2.

To have a better gradual transition between the layers with a different slope,
we have extended the STT-grid by 20398 virtual nodes. These nodes are po-
sitioned between the tubes with different slopes at the center of the “virtual”
intersection volumes. The virtual nodes have exactly two neighbours and have
well defined xyz-coordinates. They are turned on if and only if both parent
tubes are hit. Adding these nodes reduces the size of the hit displacements in

z

y

Fig. 3. A schematic view of a number of axial and skewed tubes. Axials are shown
in blue, skewed in green. Virtual nodes are represented by red dots. The y and z
coordinates of the virtual nodes are determined from the intersection points of the
skewed tubes projected onto the plane of the axial tubes. The x coordinate of the
virtual nodes is midway between the two planes.
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Fig. 4. The structure of the STT graph extended by the virtual nodes. Virtual nodes
are shown in red and the center points of the original nodes in blue; the blue dots in the
left panel are also the only available information in the z-direction. Left: STT graph
in the xy−plain. Right: STT graph in the yz−plain.

the xy-plane and provides a better estimate of the z-coordinates of the nodes
participating in a path. Figure 3 illustrates the positioning of virtual nodes and
fig. 4 shows the structure of the grid after the extension.

3 Basic Concepts Filtering and Connections

Consider a universal set E (usually E = Z
n), a binary image X is defined as a

subset of E. Define P(E) to be the power set of E. Connectivity can be defined
using the connectivity classes [3,7,8]. Each connectivity class C ⊆ P(E) is a set of
sets for which holds that the empty set and singletons are connected and for all
connected sets with non-empty intersection their union is connected. Using this
definition, each image X is a set of connected components Ci with i from some
index set I with {∀Ci, �(C ⊃ Ci) : C ⊆ X ∧C ∈ C}. A connected component of
X is denoted by �. A binary connected opening operator Γx on X at the point
x could be defined as:

Γx(X) =

{
Ci : x ∈ Ci ∧ (Ci �X) if x ∈ X
∅ else.

(1)

The group of attribute filters is one of the classes of the connected filters. We
can define an attribute filter as:

Γ T (X) =
⋃
x∈X

ΓT (Γx(X)). (2)

Here, T is a criterion with the property of being increasing. T is usually of the
form: T (C) = Attr(C) ≥ λ. Attr(C) is some attribute of C and λ is a threshold
value [9].
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3.1 Attribute Space and Attribute Space Filters

Attribute space connectivity and filters were introduced by Wilkinson as a
method to improve attribute filtering when connectivities fail to perceptually
group correctly [3]. Here, we summarize only the main concept. In this concept,
an image X ⊂ E is transformed into a higher dimensional space “attribute space”
E ×A. Here, A is an encoding of the attributes of pixels in X (for example, the
local width). The operator Ω : P(E) → P(E × A) is defined such that it maps
a binary image X into P(E × A) space. The increasing inverse operator Ω−1

projects Ω(X) back to X (∀X ∈ P(E) : Ω−1(Ω(X)) = X). Using this extension,
the attribute space connectivity class A on a universal set E by the transfor-
mation pair (Ω,Ω−1) and connectivity class CE×A on the transformed image is
defined as:

A = {C ∈ P(E) | Ω(C) ∈ CE×A}. (3)

Using this and the transformation pair, a connected filter ΨA : P(E) → P(E)
could be defined as:

ΨA(X) = Ω−1(Ψ(Ω(X))), (4)

with X ∈ P(E) and Ψ : P(E ×A) → P(E ×A). Using this framework, different
operator-pairs based on, for example width, orientation, even a combination of
different attributes can be defined to transform X into the attribute space where
connected filters could be used for segmentation.

4 Orientation-Based Attribute Space

Using the framework described in sec. 3.1, one can define the operator Ωα :
P(E) → P(E×A) that assigns one or more orientations αi to every active node
x in the graph [3]. This yields a function f(x, α) over E×A. Next, we apply the
operator Ωα on the input image X as:

Ωα(X) = {x ∈ X, α ∈ A | f(x, α) > λfmin ∨ f(x, α) = fmax}. (5)

Here, fmin is minimum value for f(x, α), fmax the maximum value and λ ≥ 1
is a tuneable parameter that determines how strict the selectivity is in assign-
ing a node to an orientation space. Using this concept, the orientation-based
attribute space is computed for all active nodes in each event in two different
ways, namely dynamically and statically. For the static method, a number of an-
gles are predefined to determine the orientation-based attribute space where in
the dynamic method the angles are determined for each instance (binary image)
in a pre-sensing step. We have observed that using both methods lead to similar
results with negligible differences. This could be explained by the fact that all
tubes have a diameter of 1 cm and their relative positions are permanent in the
space. Due to this arrangement of the nodes, the number of possible orientations
is limited and does not have a broad variation.

To determine the attribute space for the STT-graph, we have applied a slightly
modified version of the method proposed in [3] by keeping a record of the partic-
ipating active nodes for all orientations. In this case, we have used the following
method for all active nodes in the STT-graph:
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1. Compute an opening transform Ωα
X using a linear structuring element with

orientation α and keep a record of all participating active nodes. The struc-
turing element is chosen such, that its length is maximal for the given ori-
entation α.

2. This yields the gray-level function f(x, α) over the domain (E ×A).
3. For all active nodes in X determine fmin and fmax.
4. Compute Ωα(X) using eq. 5.

4.1 Analysis of Attribute Space Connected Component

Transforming the binary image X (one STT readout instance) to the orientation-
based Attribute Space using Ωα : P(E) → P(E × A) produces a binary image
with an additional dimension, namely the orientation-based dimension. One can
redefine the neighborhood relation between the points in the graph using the
computed orientation. This way, we can step through the orientation spaces
and collect the participating points in each subspace to construct the connected
components. In this case the following method is used:

1. Sort all active nodes based on their layer, decreasing order. Insert all nodes
in a priority queue (FIFO).

2. For all nodes in the queue: if it is visited for the first time and fmax >= min-
imum required response, create a component candidate and add all members
of the orientation sub-space corresponding with fmax to the current candi-
date. Otherwise the node is added to the list of short response nodes.

3. If the node was visited: Find the candidate to which it was added, then step
through the neighboring orientation sub-spaces and add the nodes if Ωα.

The result of the application of this method is shown in fig. 5. This procedure
is shown in alg. 4.1. Note that the singletons are kept in a separate set of node
list; this way, those grid points could be accessed if necessary.
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Fig. 5. Left: the digitization output. Right: the composed connected components using
alg. 4.1. Each color represents a different path.
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Algorithm 4.1 Attribute Space Connected Component
Input: The graph of the tubes, minimum required response.
Output: List of sets ”AllCompList” containing all connected components.

1: Sort active nodes based on their layers.
2: Create two FIFOs, ActiveQueue and ShortCompQueue
3: Insert all active nodes in ActiveQueue
4: while (¬ empty(ActiveQueue)) do
5: Fetch first node ”CurentNode”
6: if (CurentNodefmax < MinimumResponse) then

7: Add node to ”ShortCompQueue” and set visited
8: else
9: if (CurentNode was not visited) then
10: Create a new empty set S and add CurentNode to it. Set visited
11: for all nodes active in CurentNodefmax orientation do

12: if (¬ visited) then
13: Add to S; mark as visited
14: end if
15: end for
16: else
17: Create a list of sets CompL where it was added before
18: for all (cmp ∈ CompL) do
19: for all (node ∈ cmp) do
20: if (¬ visited ∧ active in current orientation) then
21: Add nodes from neighboring orientations to cmp
22: end if
23: end for
24: end for
25: end if
26: end if
27: end while
28: if (¬ empty(ShortCompQueue)) then
29: Create an empty set Orph
30: Fetch element sn
31: Find cmp ∈ AllCompList the node nn with the shortest distance to en
32: if (nn and en direct neighbors) then
33: Add en to cmp
34: end if
35: else
36: Add en to the set Orph
37: end if

4.2 Determination of z-coordinate

One of the most important features of each track is the evolution of the path
in the z direction. The full reconstruction of each path is used to determine
the properties of the passing particle. The presence of the skewed tubes helps to
estimate the z−coordinates of the points along the path. To have a more accurate
estimate of the z−coordinates of the points, we introduced virtual nodes as
described in sec. 2.1. Using the assumption that all the tracks passing through the
STT originate from (0, 0, 0), we could estimate the deviations in the z-direction
and generated a rough reconstruction of the whole particle path. Starting from
the origin to the first virtual layer, we apply linear interpolation by using a
constant step size of δz = z1, with z1 being the z-coordinate of the first virtual
node in the track. Between the first and the last virtual layer, an adaptive δz
is computed, when passing the layers. From the most outer virtual layer to the
most outer node we extrapolate linearly and δz remains constant and equal
to the latest determined value. Linear interpolation and extrapolation is used
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Fig. 6. Left: the true hit positions. Right: the determined paths along the z-axis using
linear interpolation, assuming that the paths start at the origin. Because we are not
correcting the coordinates of the skewed nodes in the xy-plane, some of the nodes seem
to be wrongly positioned.

because there are no forces acting in the z-direction. Figure 6 shows an example
of the resulting z reconstruction based on the given description.

5 Results and Discussion

In this section, we present the results of the application of the previously de-
scribed methods. To obtain the sample test data sets, we have used the PANDA
simulation package to produce 103 μ− events with different momenta and a mul-
tiplicity of 6 tracks per event1. The tracks are generated isotropically around the
origin (0, 0, 0). To quantify the segmentation error, we have applied the follow-
ing method: given an image X with a total area of A, let a reference segmen-
tation divide the image into N regions {R1, . . . , RN} with corresponding areas
{A1, . . . , AN}. An example segmentation finds M regions {T1, . . . , TM} with ar-
eas {a1, . . . , aM}. For all regions Tj , we find Rk such that (Tj

⋂
Rk) is maximal.

One can define the “undermerging”(Eum), “overmerging” (Eom) and normalized
total error (Etot) as:

Eum =
1

A

M∑
j=1

{Ak −#(Tj

⋂
Rk)}#(Tj

⋂
Rk)

Ak
, (6)

Eom =
1

A

M∑
j=1

{(aj −#(Tj

⋂
Rk)}, (7)

Etot =
√
E2

um + E2
om (8)

1 The software package ”pandaroot” is available from: subversion.gsi.de (Revision:
26379). To make this analysis reproducible, we have fixed the starting seed.
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in which #C, denotes the cardinality of C. Here, we have slightly modified the
measures described in [10]. The total magnitude of error is obviously equal to
zero if the two error types are equal to zero or vanishingly small compared
to A. Total error does not give much information on the type of the error.
Here, the Monte Carlo (MC) truth particle paths are considered as the reference
segmentations to determine the values for both error types. As expected the
momentum of the passing particle will affect its behavior during travel-time
inside the detector due to a stronger interaction with the magnetic field. Particles
with lower momenta have a more curved path while the ones with a higher
momentum will be straighter. As a consequence of this momentum dependency,
we expect that the value of different error measures will be larger for particles
with a lower momentum; because high curvature tends to break up paths.

Figure 7 shows the distribution of error values for 103 events and table 1
summarises the mean values for a number of arbitrary selected momenta.
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Fig. 7. Distribution of the total error for 103, 0.8 GeV events: (left) linear scale; (right)
log scale

The under-merging error is mainly caused by the missing nodes or when the
paths cross the regions between different sectors where no neighborhood infor-
mation is available. The over-merging is caused when two or more paths are
running through neighboring nodes specially when passing the skewed layers.
Because of the fact that there is no direct and accurate information available on
the z−coordinates when the paths are selected, passing the skewed layers by at
least two close neighboring paths will lead to over-merging. Another observation

Table 1. Error estimates for 103, µ events. One can observe that Etot shows a small
fluctuation and Eum drops steadily as a function of momentum

Momentum Eum Eom Etot

0.4 0.09 0.13 0.18

0.8 0.08 0.12 0.16

1.0 0.08 0.13 0.17

1.5 0.07 0.13 0.16

2.0 0.07 0.12 0.16
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is that the value of the total error shows a small fluctuation when moving from
low to higher energy particle paths whereas Eum drops steadily as momentum
increases. The highest values of error are observed for paths of slower particles.
These results are preliminary and more statistical tests are needed for a more in
depth investigation. Furthermore, we accept a gap-size of zero pixels. Although
accepting a larger gap will solve a part of the under-merging problem, it will
introduce a more frequent over-merging. Figure 8 shows an event where over-
and under-merging effects are visible.
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Fig. 8. Left: the detector read-out. Right: the resulting reconstructed paths in
xy−plain. Each color represents a separate component.

Considering the structure of the graph and the direct available read-out data
based on the detector geometry, the results of the applied method look promising;
both in recognition of the tracks in 2D and determining the z−coordinates for
the track points. The separation of the crossing paths is still one of the challenges
that need to be addressed which will lead into a smaller over-merging error and a
better overall performance. The attribute space framework can handle overlaps
intrinsically. One can design attribute space filters to treat the image, based on
its determined attributes even if there are overlapping structures in the original
image domain. However, the presented results show that the direct application
of the framework does not provide a complete solution for this problem. Note
that it is necessary, in the case of overlap, that a node is a member of at least
two separate paths.
One can estimate the computational complexity of Hough transformation by
PD+PD−1n, with, P transformation space parameter,D the dimension of P and
n is the number of active pixels. We can observe that this method is less sensitive
to n. But when using a sensible number of parameters, the complexity will
become O(n3); improvements could be achieved by parallelization. Our method
in the current state has a O(n2) computational complexity and because of its
structure we foresee a complexity reduction to O(n) in the future. Because these
methods differ intrinsically, we cannot compare them directly; but, we expect
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that for a sound number of parameters and image size, our method will run with
at least the same performance. Future work will consist of a modification of the
current method by the inclusion of mechanisms for node splitting and separating
crossing paths, a better determination of the z-coordinates of the points in each
path and modifying the algorithm to reduce the computational complexity to
O(n). The recognition of the paths displaced from the origin is also one of the
major challenges for our future work.
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