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Abstract. The aim of this paper is to study an optimal opening in
the sense of minimize the relationship perimeter over area. We analyze
theoretical properties of this opening by means of classical results from
variational calculus. Firstly, we explore the optimal radius as attribute in
morphological attribute filtering for grey scale images. Secondly, an ap-
plication of this optimal opening that yields a decomposition into mean-
ingful parts in the case of binary image is explored. We provide different
examples of 2D, 3D images and mesh-points datasets.
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1 Introduction

Many of the methods in mathematical morphology study the relationship be-
tween size/shape of objects via max-plus convolution by structuring elements
(SE) [1]. One can realize that openings and closings with square, disk or hexagon
SEs, are often good enough for some filtering tasks. However, if the structuring
elements are able to adapt their shapes and sizes to the image content, some
enhancement properties are improved [2,3]. This intuition leads to propose area
openings [4], and more generally, to introduce attributes openings [5] . Recently
many other attribute filters have been proposed to more specific problems [6,7,8].
In this paper, we introduce a new attribute named “Inner-Cheeger opening”
which is, for a binary shape S, the size t, such that an opening by a disk of t
minimize the relationship perimeter over area: t is named the Cheeger constant
of S in the theory of Variational Calculus [9]. Additionally, we explore the ap-
plication of this operator in the context of decomposition for two-dimensional
(2D) and three dimensional (3D) shapes into meaningful parts, which is a chal-
lenging problem in image processing [10], pattern recognition [11,12], remote
sensing [13], and computer vision [14]. Thus, we propose a new shape decompo-
sition method, called Inner-Cheeger shape decomposition, denoted by ICSD. This
method is characterized by a sequence of Inner-Cheeger openings. Finally, the
experimental section includes some examples of 2D, 3D images and mesh-points
datasets to illustrate the interest of our method.

2 Inner-Cheeger Opening

The theory of sets of finite perimeter provides a particularlywell-suited framework
for studying the existence, symmetry, regularity, and structure of minimizers in
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those geometric variational problems in which surface area is minimized under a
volume constraint [9]. In this paper, we consider the follow variational problemand
its application to image processing and shape characterization.

2.1 Formulation

Given a domain S of Rd, with d ≥ 2, one is asked to find the Cheeger constant
of S, defined as:

h(S) := min
X⊂S

Per(X)

Area(X)
, (1)

where Area(X) is the (d)-dimensional volume of X and Per(X) is the perimeter
ofX or (d−1)-dimensional measure. It is important to note that the minimum in
(1) is taken over all nonempty sets of finite perimeter contained in S. Thus, any
minimiser of (1) is named Cheeger set of S and it is denoted by Ch(S). Despite
this simple formulation of (1), many no trivial questions arise, for instance,
the computation, and estimation of h(S) and the characterization of Cheeger
sets of S. They have been the main subject of many recent research papers
[15,16]. The following are some of the basic properties which are well-known
about the Cheeger problem in (1), the proofs of them can be found for instance
in [15,16,17,18].

Proposition 1. Let S1,S2 ⊆ R
d be bounded, open sets. Then the following

properties hold.

1. (Existence) There exists a (possibly non-unique) Cheeger set X ⊆ S.
2. (Decreasing) If S1 ⊂ S2 then h(S1) ≥ h(S2)
3. (Isometry) For any λ > 0 and any isometry T : Rd → R

d, one has h(T (S)) =
1
λh(S)

4. (Intersection with the boundary) The minimum in (1) is attained at a subset
X ⊆ S such that ∂X intersect ∂S.

5. (Closure with union and intersection) If X1 and X2 are Cheeger in S, then
X1 ∪X2 and X1 ∩X2 (if it is not empty) are also Cheeger in S.

Many other properties can be found in [16,18]. However, we have included only
the most relevant for our work.

2.2 Convex Case

In the case of S is convex, we can add to the list of properties in Proposition
1, the uniqueness and convexity of Cheeger sets, which has been proved in [16].
However, finding the Cheeger set of a given S is a difficult task. This task is
simplified if S is a convex set and d = 2. In this situation is follows from [17],
Theorem 3.32 that Cheeger = Ch(S) is convex and uniquely defined as the union
of a set of disks of suitable radius [15]. Thus, the Cheeger set in S is unique and
is identified by the following theorem.
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Theorem 1. [15,19] Let S ⊆ R
2 be a nonempty bounded convex set. There

exist a unique value t > 0 such that Area(St) = πt2. Then h(S) = 1
t and the

Ch(S) = δB(t)(S
t), where B(t) denotes a ball of radius t and St = {x ∈ S :

dist(x, ∂S) > t} is called the inner Cheeger set of S.

The proof of Theorem 1 is basically based on the Steiner’s formulae in the case
of d = 2 [5] and it is included in Appendix 1.

Corollary 1. For a nonempty bounded convex set S ∈ R
2, the Cheegger set

Ch(S) is an opening with a disk of radius given by the Theorem 1 as structuring
element.

In the sequel, we use the name “Inner-Cheeger opening” to the opening defined
in Corollary 1.

2.3 Small Perturbations

Additionally, it is important to note that the uniqueness of Cheeger sets holds
up to arbitrary small perturbations of S [20].

Theorem 2. [20] Let S ⊆ R
N be an open set with finite volume. Then for any

compact set K ∈ S, there exist a bounded open set SK ⊂ S such that K ⊂ SK

and SK has a unique Cheeger set.

A visual example of this property is illustrated in Fig. 1.

(a) t = 65 (b) t = 65 (c) t = 67 (d) t = 67

Fig. 1. Example of invariance of Inner-Cheeger opening to small perturbations of the
shape. (b) and (d) are perturbations of (a) and (c) respectively.

2.4 Comparison with Skeleton Transformation

The skeleton transformation is a widely used transformation in the field of im-
age processing. The definition of skeleton was introduced by [21], proposing the
grass fire analysis: the skeleton consists of the points where different forefronts
intersect, or quench points. Later, another formal definition of the skeleton was
proposed by Calibi in 1965 [22] which relies on the concept of maximal ball. The
skeleton is defined as the set of the maximal balls. In [22], it was proved that the
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notion of quench points and centers of maximal balls are equivalent. According
to Chapter one of [1], the notion of maximal ball has been known since the 30s
[23,24]. A skeleton transformation has to obey the following properties to make
its results convenient for the global representation of objects [25]: Homotopy:
the skeleton transform must preserve the topology of the initial object; Rotation
invariance: the skeleton transform of a rotated shape should be the rotated of
the skeleton; Reconstruction: the initial shape should be reconstructed from the
skeleton transform. For continuous images, the skeleton sk(S) of a shape S is
given by the Lantuéjoul’s formulate [26,27] defined as follows:

sk(S) =
⋃

ρ>0

⋂

μ>0

[ερB(S)− (γB(ερB(S)))] (2)

A ball B included in S is said to be maximal if and only if there exist no other
ball included in S and containing B, ∀B′ball, B ⊆ B′ ⊆ S ⇒ B′ = B ,i.e., a ball
is maximal in the shape if it is not included in any single other ball in the shape.
We denote MBT (S) = {x ∈ S; ∃ a maximal ball centered at x}, the set of all
the centers of the maximal balls included in S, and rx the corresponding radius
of it associated maximal ball. The skeleton sk(S) of a set S is then defined as
the set of the centers of its maximal balls:

sk(S) = {x ∈ S, ∃rx ≥ 0, B(x, rx) maximal ball of S}. (3)

This collection of maximal balls MBT (S) is equivalent to the shape S itself since
one has the reconstruction formula:

S =
⋃

x∈MBT (S)

δrx(x) (4)

In this representation, we can easily see that for S ⊆ R
2 the Inner-Cheeger

opening is

Ch(S) =
⋃

x∈MBT (S),rx≥t

δrx(x), (5)

where t is defined by Theorem 1. An example of the collection of maximal balls
and the correspondent Inner-Cheeger set is shown in Fig. 2.

3 Applications

In this section we present some examples to illustrate our methods. We present
two applications: Attribute filtering and shape decomposition in 2D, 3D and
mesh shapes.

3.1 Inner-Cheeger Set as an Attribute Filter

Many works about attribute filters have been presented in the literature [28].
Most of them address the problem of filter-out target objects and preserving the



Inner-Cheeger Opening and Applications 79

(a) S (b) Reconstruction
from the MBT (S)

(c) InnerCh(S) (d) Ch(S)

(e) S (f) Reconstruction
from the MBT (S)

(g) InnerCh(S) (h) Ch(S)

Fig. 2. Comparison of Inner-Cheeger opening and Skeleton transformation for two
images. Colours in (b) and (f) show of the number of balls in the reconstruction of
MBT.

contours of non-interesting objects. In this first application, we start with the
description of a grey scale image I by its upper level set decomposition:

I(x) = sup(i : I(x) ≥ i is true), (6)

where is discrete images i = {0, 1, . . . , tmax} and tmax stands by the maximum
grey scale value of the image. Now, following [5], we can define an attribute filter
on I by the well-known threshold decomposition principle:

ψ(I)(x) = sup(i : Ψ(I(x) ≥ i) is true) (7)

where Ψ is a binary attribute filter. The advantage of this representation is the
fact that most of the properties that are known to hold for Ψ are also true
for its grey-level counterpart ψ. Mainly, if Ψ is an increasing criterion, it was
proved in [5] that ψ is a valid opening in the morphological sense. We propose
to use the optimal value of t is Theorem 1 as attribute to describe connected
components in the threshold decomposition in Eq. 7. In proposition 1, property
2, we have stated that our attribute is increasing, which allows the use a fast
implementation (by reducing the search space in Theorem 1), for instance, by
means of a max-tree structure [29]. Some example of this attribute filter are
illustrated in Fig. 3 for different values of t. This attribute opening preserves
contours of object with largest Cheeger set, i.e., objects with large sphericity.
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(a) Original Image (b) Opening by Cheeger
Atribute(t = 4)

(c) Opening by Cheeger
Atribute(t = 6)

(d) Opening by Cheeger
Atribute(t = 8)

Fig. 3. Inner-Cheeger opening for different values of proposed attribute

3.2 Shape Decomposition

Instead of characterizing an object as a whole, part-based representation deals
with a representation where an object is decompose it into a number of “natural
parts [30]. The aim of this shape decomposition is to simplify a given shape into
meaningful parts to make easier its analysis. Many morphological-based oper-
ators approaches [31,32,33] have been formulated with the intuition of finding
the “best” opening (with a ball as structuring element) by means of an index
considering the size “part/shape” ratio and “part/convex hull” ratio. However,
these methods are often hard to implement and/or do require the solution of
difficult optimization problem.

In this section we propose to use the Inner-Cheeger decomposition to perform
shape decomposition. For a given shape S, we firstly compute the Ch(S) and
successively the same transformation is applied to each connected component
of the difference between S and Ch(S). We note that many of the connected
components can have small areas, so a threshold parameter is included to ob-
tain only meaningful parts of the object. We use the term Inner-Cheeger shape
decomposition (ICSD) to refer this sequential separation, due to the fact that in
the case of non-convex shapes, one cannot say that this procedure find a valid
Cheeger set. However, as it is illustrated in Fig.4, the decomposition determines
relevant parts and as in most of the distance based transformation, the result
is robust to articulate transformations. In addition, in our case it is robust to
small perturbations of the original shape.
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(a) (b) (c) (d) (e)

Fig. 4. Example of decomposition by Iterative Cheeger Openings (2 Levels). Color are
associated with the order of discovery in the iteration of ICSD. Note that results are
robust to modification in the human shape.

(a) (b) (c)

Fig. 5. Three examples of proposed decomposition for 3D shapes. Colour are associated
with the order of discovery in the iteration of ICSD. Note that results are robust to
changes in the pose of the human shape.

At this point, we can use a similar approach to 3D shapes in Fig. 5 and 3D
points clouds in Fig. 6. However, the optimal value of t in Theorem 1 cannot
be applied directly for 3D shapes. Thus, assuming that the inner set of a con-
vex 3D shape if composed by the union of balls, we can obtain an equivalent
expression for three dimensional objects by using the Steiner‘s formula as it is
shown in Appendix. Accordingly, in 3D shape, we should look for the radius t

that Vol(St) + MeanB(St)t2
[

1
2π − 1

]
= 8πr3

3 , where MeanB(S) stands for mean
breadth of the binary shape S. A Fig. 5 illustrates the results of ICSD for three
postures for the same 3D human model. Additionally, we explore the applica-
tion of our approach in mesh of points in three different frames of “Ben Walking
Scene”1.

1 http://4drepository.inrialpes.fr/pages/home

<http://4drepository.inrialpes.fr/pages/home>
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(a) Frame 103 (b) Frame 118 (c) Frame 134

Fig. 6. In red the points identified as part of the Cheeger opening for meshes (black
lines) in some frames of “Ben Walking” 4D dataset. The Inner-Cheeger set in this case
is the thorax of “Ben”. The results are quite robust considering that the input data
includes the presence of the “chair” and different postures of “Ben”

4 Conclusion

We have defined an optimal opening via Inner-Cheeger sets. We have explored
some important morphological properties including the robustness against small
perturbations. Finally, we have illustrated the interest and behavior of such
operators in some problems of image processing and shape decomposition. Future
work includes the analysis of similar problem in shapes with holes as it is the
case of [34] and compare our results with the space of shapes from [35].

A Appendix

We follow the results from [15,19] for 2D shapes to obtain:

h(S) =
1

r
=

Per(δrB(S))

Area(δrB(S))
=

Per(S) + 2πr

Area(S) + Per(S)r + πr2

Area(S) + Per(S)r + πr2 = Per(S)r + 2πr2

Area(S) = πr2

In the case of d = 3, the Steiner’s formula gives explicitly for a compact convex:

Vol(δrB(S)) = Vol(S) + Sur(S)r + MeanCurv(S)r2 +
4π

3
r3 (8)

Sur(δrB(S)) = Sur(S) + 2πMeanCurv(S)r + 4πr2 (9)

MeanCurv(δrB(S)) = MeanCurv(S) + 4πr (10)
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Additionally, it is important to note that the mean breadth, denoted by MeanB(I),
connects the integral of the mean curvature MeanCurv(S) for an object I whose
boundary is of class C2 by the formula, MeanB(I) = 2πMeanCurv(S).

h(S) =
1

r
=

Sur(δrB(S))

Vol(δrB(S))
=

Sur(S) + 2πMeanCurv(S)r + 4πr2

Vol(S) + Sur(S)r + MeanCurv(S)r2 + 4πr3

3

and after simplification, we obtain 8πr3

3 = Vol(S) + MeanB(S)r2
[

1
2π − 1

]
. We

remark that the percolation analysis in three-dimensional objects in [36] uses
similar results in random models with spheres and Poisson polyhedra as primary
grains.
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