
Efficient Computation of Attributes and Saliency
Maps on Tree-Based Image Representations

Yongchao Xu1,2(�), Edwin Carlinet1,2, Thierry Géraud1, and Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE), Lekremlin-Bicetne, France
{yongchao.xu,edwin.carlinet,thierry.geraud}@lrde.epita.fr
2 Université Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, France

l.najman@esiee.fr

Abstract. Tree-based image representations are popular tools for many
applications in mathematical morphology and image processing. Classi-
cally, one computes an attribute on each node of a tree and decides
whether to preserve or remove some nodes upon the attribute function.
This attribute function plays a key role for the good performance of
tree-based applications. In this paper, we propose several algorithms to
compute efficiently some attribute information. The first one is incremen-
tal computation of information on region, contour, and context. Then we
show how to compute efficiently extremal information along the contour
(e.g., minimal gradient’s magnitude along the contour). Lastly, we depict
computation of extinction-based saliency map using tree-based image
representations. The computation complexity and the memory cost of
these algorithms are analyzed. To the best of our knowledge, except in-
formation on region, none of the other algorithms is presented explicitly
in any state-of-the-art paper.

Keywords: Min/Max-tree · Tree of shapesa · Algorithm · Attribute ·
Saliency map

1 Introduction

In a large number of applications, processing relies on objects or areas of interest.
Therefore, region-based image representations have received much attention. In
mathematical morphology, several region-based image representations have been
popularized by attribute filters [2,17] or connected operators [13,14], which are
filtering tools that act by merging flat zones. Such operators rely on transforming
an image into an equivalent region-based representation, generally a tree of com-
ponents (e.g., the Min/Max-trees [13] or the tree of shapes [9]). Such trees are
equivalent to the original image in the sense that the image can be reconstructed
from the associated tree. Filtering then involves the design of an attribute func-
tion that weighs how important/meaningful a node of the tree is or how much a
node of the tree fits a given shape. The filtering is achieved by preserving and re-
moving some nodes of the tree according to the attribute function. This filtering
process is either performed classically by thresholding the attribute function [14]

c© Springer International Publishing Switzerland 2015
J.A. Benediktsson et al. (Eds.): ISMM 2015, LNCS 9082, pp. 693–704, 2015.
DOI: 10.1007/978-3-319-18720-4_58

694 Y. Xu et al.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

0 20 40 60 80 100 120 140 160

En
er

gy

Nodes

(a) Illustration on a synthetical image. Green: exterior region; Blue: interior region.

(b) Illustration of cerebrospinal fluid detection on MRI images of a newborn’s brain.

Fig. 1. Examples of object detection using the context-based energy estimator [21]
relying on contour and context information. An evolution of this attribute along a
branch starting from the yellow point to the root is depicted on the right side of (a).

or by considering the tree-based image representations as graphs and applying
some filters on this graph representation [23,20].

There exist many applications in image processing and computer vision that
rely on tree-based image representations (see [20] for a short review). All these
applications share a common scheme: one computes a tree representation and
an attribute function upon which the tree analysis is performed. The choice of
tree representation and the adequacy of attribute function mainly determine the
success of the corresponding applications.

Many algorithms for computing different trees have been proposed (see
Section 2.2 for a short review). In this paper, we focus on attribute computation,
which is also an important step for the tree-based applications. To the best of our
knowledge, only the algorithms for information computed on region have been
presented [19] so far, none of the existing papers gives explicitly the algorithms
computing the other attribute information employed in tree-based applications.
In this paper, firstly, we detail explicitly how to incrementally compute some
information on region, contour, and context. These informations form the ba-
sis for many classical attribute functions (e.g., area, compactness, elongation).
Let us remark that contextual information is very adequate for object detec-
tion, such as the context-based energy estimator [21] that relies on information
computed on contour and context. Two examples of object detection using this
attribute are shown in Fig. 1. Another type of interesting information is ex-
tremal information along the contour (e.g., the minimal gradient’s magnitude
along the boundary). An example employing this information is the number of
false alarms (NFA) for meaningful level lines extraction [7,3]. Here we propose

Efficient Computation of Attributes and Saliency Maps 695

(a) Extinction-based saliency map using color tree of shapes [5]

(b) Circular object oriented extinction-based saliency map

Fig. 2. Illustrations of extinction-based saliency maps from the tree of shapes

an efficient algorithm that does not require much memory to compute this kind
of information. Lastly, we depict an algorithm computing the extinction-based
saliency map [20] representing a hierarchical morphological segmentation using
tree-based image representations (two examples are illustrated in Fig. 2). These
algorithms form the main contribution of this paper.

The rest of the paper is organized as follows: A short review of some tree-
based image representations and their computations using immersion algorithm
are provided in Section 2. Our proposed algorithms to compute some attribute
information and saliency maps are detailed in Section 3, and we analyze in Sec-
tion 4 the complexity and the memory cost of the proposed algorithms. Finally,
we conclude and give some perspectives in Section 5.

2 Review of Morphological Trees and Their
Computations

Region-based image representations are composed of a set of regions of the original
image. Those regions are either disjoint or nested, and they are organized into a tree
structure thanks to the inclusion relationship. There are two types of such repre-
sentations: fine to coarse hierarchical segmentations and threshold decomposition-
based trees. In this paper, we only consider the threshold decomposition-based
trees.

2.1 Tree-Based Image Representations

Let f be an image defined on domain Ω and with values on ordered set V
(typically R or Z). For any λ ∈ V , the upper level sets Xλ and lower level sets
Xλ of an image f are respectively defined by Xλ(f) = {p ∈ Ω | f(p) ≥ λ}
and Xλ(f) = {p ∈ Ω | f(p) ≤ λ}. Both the upper and lower level sets have
a natural inclusion structure: ∀λ1 ≤ λ2, Xλ1 ⊇ Xλ2 and X λ1 ⊆ Xλ2 , which

696 Y. Xu et al.

D

E
B

A
C

F

O

(a) Input image.

B

A, F

C D E

O3

2

0

1

(b) Max-tree.

3

2

0

1 B

A, F , C

D

E

O

(c) Min-tree.

D

E

B

A C

F O
> 2 >2> 2

> 2

> 0

>2

>1

>4

(d) Tree of shapes.

Fig. 3. Tree-based image representations relying on threshold decompositions

leads to two distinct and dual representations of the image: Max-tree and Min-
tree [13]. The tree of shapes is a fusion of the Max-tree and Min-tree via the
notion of shapes [9]. A shape is defined as a connected component of an upper
or lower level set with its holes filled in. Thanks to the inclusion relationship of
both kinds of level sets, the set of shapes can be structured into a tree structure,
called the tree of shapes. An example of these trees is depicted in Fig. 3.

2.2 Tree Computation and Representation

There exist three types of algorithms to compute the Min/Max-tree (see [4] for a
complete review): flooding algorithms [13,18,11], merge-based algorithms [19,12],
and immersion algorithms [1,10]. In this paper, we employ the immersion algo-
rithm to construct the Min/Max-tree. Concerning the tree of shapes [9], there
are four different algorithms [9,15,6,8]. We use the one proposed by Géraud et
al. [8]. It is similar to the immersion algorithms used for the Min/Max-tree com-
putation. All these trees feature a common scheme of process: they start with
considering each pixel as a singleton and sorting the pixels in decreasing tree
order (i.e., root to leaves order), followed by an union-find process (in reverse
order) to merge disjoint sets to form a tree structure.

Let R be the vector of the N sorted pixels, and N (p) be neighbors (e.g.,
4- or 8-connectivity) of the pixel p. The union-find process is then depicted in
Fig. 4 (a), where parent and zpar are respectively the parenthood image and
the root path compression image. The whole process of tree computation is
given in Fig. 4 (b), where SORT PIXELS is a decreasing tree order sorting. The
algorithms for computing the Min/Max-tree and the tree of shapes differ in this
pixel sorting step. For the Min/Max-tree, they are either sorted in decreasing
order (Min-tree) or increasing order (Max-tree). If the image f is low quantized,
we can use the Bucket sort algorithm to sort the pixels. Concerning the tree
of shapes, the sorting step is more complicated. It first interpolates the scalar
image to an image of range using a simplicial version of the 2D discrete grid:
the Khalimsky grid as shown in Fig. 5. We note KΩ, the domain Ω immersed
on this grid. In Fig. 5 (a), the original points of the image are the 2-faces, the
boundaries are materialized with 0-faces and 1-faces. The algorithm in [8] ensures
that shapes are open connected sets (e.g., the purple shape in Fig. 5 (a)) and
that shapes’ borders are composed of 0-faces and 1-faces only (e.g., the dark
curve in Fig. 5 (a)). We refer the interested reader to the work of Géraud et
al. [8] for more details on this pixel sorting step.

The tree structure is encoded through the image parent : Ω → Ω or KΩ →
KΩ that states the parenthood relationship between nodes. In parent, a node is

Efficient Computation of Attributes and Saliency Maps 697

1 FIND ROOT(zpar,x)
2 if zpar(x) = x then return x
3 else
4 zpar(x) ←

FIND ROOT(zpar, zpar(x));
5 return zpar(x)

6 UNION FIND(R)
7 for all p do zpar(p) ← undef;
8 for i ← N − 1 to 0 do
9 p ← R[i], parent(p) ← p,

zpar(p) ← p;
10 for all n ∈ N (p) if

zpar(n) �= undef do
11 r ←

FIND ROOT(zpar,n);
12 if r �= p then
13 parent(r) ← p,

zpar(r) ← p;
14 return parent

(a) Union-find process.

1 CANONIZE T(f,R, parent)
2 for i ← 0 to N − 1 do
3 p ← R[i];
4 q ← parent(p);
5 if f(parent(q)) = f(q)

then
6 parent(p) ← parent(q);

7 return parent

8 COMPUTE TREE(f)
9 R ← SORT PIXELS(f);

10 parent ← UNION FIND(R);
11 parent ←

CANONIZE T(f,R, parent);
12 return parent

(b) Complete tree construction.

Fig. 4. Tree construction relying on union-find process

represented by a single pixel (a 2-face of the Khalimsky grid in the case of the
tree of shapes) called the canonical element, and each non-canonical element is
attached to the canonical element representing the node it belongs to. In the
following, we denote by getCanonical : Ω → Ω or KΩ → KΩ, the routine that
returns the canonical element of each point in the image.

(a) Khalimsky grid.

union and update

(b) Updating contour. (c) Regional context.

Fig. 5. (a): A point in a 2D image is materialized with 0-faces (blue disks), 1-faces
(green strips), and 2-faces (red squares). (b): Updating contour information when an
union between two components (yellow and blue) occurs thanks to a pixel (gray).
(c): The approximated interior and exterior regional context of the red level line is
respectively the dark gray region and the light gray region.

698 Y. Xu et al.

3 Proposed Algorithms

In this section, we detail several algorithms related to some applications
using tree-based image representations, including computation of some classi-
cal information used in many attribute functions (accumulated information in
Section 3.1, and extremal information along the contour in Section 3.2), and com-
putation of extinction-based saliency maps [20] in Section 3.3. For the sake of
simplicity, we consider the Min-tree or Max-tree representation. The algorithms
for the tree of shapes construction share the same principle.

3.1 Incremental Computation of Some Accumulated Information

There are three main types of accumulated information: computed on region A
(e.g., area), on contour L (e.g., length), and on context X (interior context X i

or exterior context Xe).

Attributes Computed on Regions. During the tree construction process,
the algorithm starts with the pixels lying on the leaves, and the union-find acts
as a region merging process. The connected components in the tree are built
during this region growing process. We are able to handle information computed
on region efficiently, such as its size, the sum of gray level or sum of square of
gray level that can be used to compute the mean and the variance inside each
region, the moments of each region based on which we can compute some shape
attribute that measures how much a node fits a specific pattern. The algorithm
for computing these information is depicted in Fig. 6 by adding some additional
operations (red lines) to the union-find process during the tree construction,
where iA encodes information on pixels (i.e., 2-faces). For example if A is the
size or the sum of gray level, then iA would be 1 (size of a pixel) or the pixel
value. The operator ̂+ is a binary commutative and associative operator having
a neutral element ̂0 [19]. For example, if A is the size, then the operator ̂+ and
̂0 would be the classical operator + and 0 for the initialization.

Attributes Computed on Contours. Attribute functions relying on contour-
related information are also very common, such as average of gradient’s magni-
tude along the contour. Information accumulated on contour canbemanaged in the
same way as information computed on region. The basic idea is that
during the union-find process, every time a pixel p is added to the current region to
form a parent region, process the four 1-faces which are the four neighbors
(4-connectivity) of the current pixel (i.e., 2-face in the Khalimsky grid in
Fig. 5 (a)). If a 1-face e is already added to the current region (i.e., belongs to its
boundary), then remove e after adding p, since that 1-face e will be inside the par-
ent region, consequently it is no longer on the boundary. Otherwise, add this 1-face
e. This process is illustrated in Fig. 5 (b). It relies on an image is boundary defined
on the 1-faces that indicates if the 1-face belongs to the boundary of some region.
Information on contour is computed by adding some supplementary process (green
and gray lines in Fig. 6) to the union-find process, where iL encodes information
defined on 1-faces. For example if L is the contour length or the sum of gradient’s

Efficient Computation of Attributes and Saliency Maps 699

1 UNION FIND(R)
2 for all p do
3 zpar(p) ← undef;

4 A(p) ← ̂0; //information computed on region (e.g., area, sum of gray level)

5 L(p) ← ̂0; //information computed on contour (e.g., contour length)

6 Xi(p) ← ̂0, Xe(p) ← ̂0; //information computed on context

7 VL(p) ← ̂M ; //extremal information along the contour

8 for all e do is boundary(e) ← false;
9 for i ← N − 1 to 0 do

10 p ← R[i], parent(p) ← p, zpar(p) ← p;

11 A(p) ← A(p) ̂+ iA(p); //iA: information on pixels (i.e., 2-faces)
12 for all n ∈ N (p) such as zpar(n) �= undef do
13 r ← FIND ROOT(zpar,n);
14 if r �= p then
15 parent(r) ← p, zpar(r) ← p;

16 A(p) ← A(p) ̂+ A(r);

17 L(p) ← L(p) ̂+ L(r);

18 Xi(p) ← Xi(p) ̂+ Xi(r), Xe(p) ← Xe(p) ̂+ Xe(r);

19 for all e ∈ N4(p) do
20 if not is boundary(e) then
21 is boundary(e) ← true;

22 L(p) ← L(p) ̂+ iL(e); //iL: information on 1-faces

23 //itrX and idlX : top-right and down-left context of 1-faces
24 if e is above or on the right of p then
25 Xi(p) ← Xi(p) ̂+ idlX (e), Xe(p) ← Xe(p) ̂+ itrX (e);

26 else Xi(p) ← Xi(p) ̂+ itrX(e), Xe(p) ← Xe(p) ̂+ idlX(e);
27 appear(e) ← p;

28 else
29 is boundary(e) ← false;

30 L(p) ← L(p) ̂− iL(e);
31 if e is above or on the right of p then
32 Xi(p) ← Xi(p) ̂− itrX (e), Xe(p) ← Xe(p) ̂− idlX (e);

33 else Xi(p) ← Xi(p) ̂− idlX(e), Xe(p) ← Xe(p) ̂− itrX (e);
34 vanish(e) ← p;

35 for all e do
36 Na ← appear(e),Nv ← vanish(e);
37 while Na �= Nv do
38 VL(Na) ← update

(

VL(Na), iL(e)
)

; //update: either min or max
39 Na ← parent(Na);

40 return parent

Fig. 6. Incremental computation of information on region (in red), contour (in green),
and context (in blue). The computation of extremal information is in magenta. The
black lines represent the original union-find process, and the gray lines are used for the
computation of contour, context, and extremal information.

700 Y. Xu et al.

magnitude, then iL would be 1 (size of a 1-face) or the gradient’s magnitude on the
1-faces. The operator ̂− is the inverse of the operator ̂+.

Attributes Computed on Contexts. In [21], we have presented a context-
based energy estimator that is adequate for object detection (see Fig. 1 for some
examples). It relies on regional context information. The interior and exterior
contextual region of a given region S (e.g., a shape) is defined as the set of
pixels respectively inside and outside the region with a distance to the boundary
less than a given threshold ε. More formally, given a ball Bε of radius ε, the
exterior and interior of the shape S are defined as ExtB(S) = δB(S) \ S and
IntB(S) = S \ εB(S) where δ and ε denote the dilation and erosion.

Anapproximated interior andexterior contextual region is illustrated inFig. 5 (c)
with ε = 2. As shown in this figure, we approximate the interior region and the
exterior region of each level line by only taking into account the pixels which are
aligned perpendicularly to each 1-face of the level line. Note that some pixels may
be counted several times. Information on context can be computed in the sameway
as information on contour. But one has to attend closely to interior and exterior
information while doing the update operation. The algorithm for computing in-
terior (resp. exterior) contextual information X i (resp. Xe) is shown in Fig. 6 by
adding the gray and blue lines to the union-find process. This algorithm relies on
two pre-computed images defined on 1-faces: itrX and idlX that encode information
of ε pixels above (horizontal 1-face) or on the right side (vertical 1-face) of e, and
respectively below (horizontal 1-face) or on the left side (vertical 1-face) of e.

Contextual information can be retrieved exactly at cost of a higher computa-
tion complexity. For every point p, we aim at finding all the shapes for which p is
in the interior or the exterior. Given two points p and q such that q ∈ B(p), we
note Sp and Sq their respective shapes (nodes). We also note Anc = LCA(Sp, Sq)
where LCA stands for the least common ancestor of the two nodes and finally,
let [A � B) = {S | A ⊆ S ⊂ B} denotes the path from A to B in the tree. For
all shapes S ∈ [Sp � LCA(Sp, Sq)), we have p ∈ S, but q /∈ S, thus p ∈ IntB(S)
and q ∈ ExtB(S) (see Fig. 7). The algorithms in Fig. 8 use the above-mentioned
idea to compute contextual information, where iX stands for information on pix-
els. A set of nodes DjVu is used to track the shapes for which the current point
has already been considered. If for neighbors q1 and q2, [Sp � LCA(Sp, Sq1))
and [Sp � LCA(Sp, Sq2)) have shapes in common, they will not be processed
twice.

Sp

Sq=
LCA(Sp,Sq)

Sp

Sq

LCA(Sp,Sq)

Sq

Sp=
LCA(Sp,Sq)

Fig. 7. Three cases for contextual computation. p and q are two neighbors (w.r.t. B).
The red path denotes the nodes in [Sp � LCA(Sp, Sq)) for which p is in the interior
and q in the exterior. Left: case Sp ⊂ Sq, middle: case Sp and Sq are in different paths,
right: case Sq ⊂ Sp.

Efficient Computation of Attributes and Saliency Maps 701

1 EXTERNAL CONTEXT(parent)

2 foreach node x do Xe(x) ← ̂0;
3 foreach point q in Ω do
4 DjVu ← ∅;
5 foreach point p in Bε(q) do
6 Np ← getCanonical(p);
7 Nq ← getCanonical(q);
8 Anc ← LCA(Np, Nq);
9 while Np �= Anc do

10 if Np �∈ DjVu then
11 Xe(Np) ←

Xe(Np) ̂+ iX(q);

12 DjVu ← DjVu ∪ {Np};
13 Np ← parent(Np);

14 return Xe

1 INTERNAL CONTEXT(parent)

2 foreach node x do Xi(x) ← ̂0;
3 foreach point p in Ω do
4 DjVu ← ∅;
5 foreach point q in Bε(p) do
6 Np ← getCanonical(p);
7 Nq ← getCanonical(q);
8 Anc ← LCA(Np, Nq);
9 while Np �= Anc do

10 if Np �∈ DjVu then
11 Xi(Np) ←

Xi(Np) ̂+ iX(p);

12 DjVu ← DjVu ∪ {Np};
13 Np ← parent(Np);

14 return Xi

Fig. 8. Algorithms for exact computation of contextual information Xi and Xe

3.2 Computation of Extremal Information along the Contour

Apart from those attributes based on accumulated information, the number of
false alarms (NFA) [7,3] (see [3] for several examples of meaningful level lines
selection using NFA) requires to compute the minimal gradient’s magnitude
along the boundary of each region. Here we propose an efficient algorithm that
requires low memory to handle this extremal information along the contour VL.
It relies on two images appear and vanish defined on the 1-faces. appear(e)
encodes the smallest region Na in the tree for which the 1-face e lies on its
boundary, while appear(e) stands for the smallest region Nv for which e is inside
it. Note that Na and Nv might be equal, e.g., in the case of 1-faces in the interior
of a flat zone. The computation of extremal information along the contour VL is
depicted in Fig. 6 by adding the gray and magenta lines to the union-find process,

where ̂M in the initialization step is the maximal (resp. minimal) value for
minimal (resp. maximal) information computation, and the operator “update” is
a “min” (resp. “max”) operator for the minimal (resp. the maximal) information.

3.3 Computation of the Saliency Map

As shown in [22,20], the saliency map introduced in the framework of shape-based
morphology relies on the extinction values E defined on the local minima [16].
Once the extinction values computed for all the minima (see [16] for details
about the computation of the extinction values COMPUTE EXTINCTION),
we can weigh the extinction values on the region boundaries corresponding to
the minima. Each 1-face takes the maximal extinction value of those minima for
which this 1-face is on their boundaries. This can be achieved via two images
appear and vanish that have been used in the computation of extremal infor-
mation along the contour (as shown in Fig. 6). For each 0-face o, it takes the
maximal value among the four 1-faces e1, e2, e3, and e4 that are neighbors (4-
connectivity) of o in the Khalimsky grid. Finally, the extinction-based saliency
map ME is obtained. The computation of the saliency map is given in Fig. 9.

702 Y. Xu et al.

1 COMPUTE SALIENCY MAP(f)
2 (T ,A) ← COMPUTE TREE(f);
3 E ← COMPUTE EXTINCTION(T ,A);
4 for all e do ME(e) ← 0;
5 for all e do
6 Na ← appear(e),Nv ← vanish(e);
7 while Na �= Nv do
8 ME(Na) ← max

(

E(Na),ME(e)
)

, Na ← parent(Na);

9 for all 0-face o do ME(o) ← max
(

ME(e1),ME(e2),ME(e3),ME(e4)
)

;
10 return ME

Fig. 9. Computation of extinction-based saliency map ME

4 Complexity Analysis

We use the algorithms based on the Tarjan’s Union-Find process to construct
the Min-tree and Max-tree [10,1,4] and the tree of shapes [8]. These approaches
would take O(n log(n)) time, where n is the number of pixels of the image f .
For low quantized images (typically 12-bit images or less), the complexity of the
computation of these trees is O(nα(n)), where α is a very slow-growing diagonal
inverse of the Ackermann’s function. In this section, we analyze the additional
complexity and the memory usage of the algorithms proposed in Section 3.

4.1 Accumulated Information on Region, Contour, and Context

As described in Section 3.1 and shown in Fig. 6, information computed on
regions, contours, and contexts (the approximated version) are computed in-
crementally during the union-find process. Consequently, they have the same
complexity as the union-find which is O(nα(n)). Besides, the pre-computed im-
ages (e.g., iL or itrX) can be obtained in linear time, so the O(nα(n)) complexity
is maintained. To compute exactly contextual information as described in Fig. 8,
for each pixel p, we have to compute the least common ancestor Anc of p and
any q ∈ Bε(p) and propagate from Np to Anc. The computation of the least
common ancestor has a O(h) complexity if a depth image is employed, where h
is the height of the tree. Consequently, the total complexity is O(nε2h).

Apart from the necessary memory of the union-find process, the computation
of information on regions does not require auxiliary memory. For information
computed on contours and contexts (approximated), the auxiliary memory usage
is 4n for the intermediate image is boundary (defined on the Khalimsky grid).
For the exact computation of contextual information, we need the depth image
(n pixels) used by the least common ancestor algorithm and the intermediate
set DjVu (O(h) elements). The total auxiliary memory cost is thus n+ h.

4.2 Extremal Information along the Contour

The algorithm computing extremal information along the contour relies on two
auxiliary images appear and vanish. As described in Section 3.2 and shown in

Efficient Computation of Attributes and Saliency Maps 703

Fig. 6, these two images are computed incrementally during the union-find pro-
cess. The complexity of this step isO(nα(n)). Then, to compute the final extremal
information, for each 1-face e, we have to propagate the value to a set of node (from
appear(e) to vanish(e)). In the worst case, we have to traverse the whole branch
of the tree. Consequently, the complexity would be O(nh). In terms of auxiliary
memory cost, it would take 4n for each intermediate image appear, vanish, and
is boundary. So the total additional memory cost would be 12n. Such extra cost is
acceptable for 2D cases, but become prohibitive for very large or 3D images. Actu-
ally, we could avoid the extra-memory used for the storage of appear and vanish as
the information they provide could be computed on the fly in each algorithm.Nev-
ertheless, for the purpose of clarification, we have chosen to compute these infor-
mation one for all to avoid code redoundancy in the algorithms we have proposed.

4.3 Saliency Map

The computation of extinction-based saliency map given in Section 3.3 and de-
picted in Fig. 9 also relies on the two temporary images appear and vanish. Sup-
pose that we have the extinction values E for all the local minima. In the same way
as the computation of extremal information along the contour, for each 1-face e, we
have to propagate from appear(e) to vanish(e). The worst time complexity would
be O(nh). The computation of extinction values E relies on a Max-tree computa-
tion process,which is quasi-linear.The auxiliarymemory cost would be 12n (4n for
each temporary image appear, vanish, and is boundary). Yet, the remark about
the memory usage given in Section 4.2 holds for this complexity analysis.

5 Conclusion

In this paper, we have pesented several algorithms related to some applications
using tree-based image representations. First of all, we have shown how to in-
crementally compute information on region, contour, and context which forms
the basis of many widely used attribute functions. Then we have proposed an
algorithm in order to compute extremal information along the contour (required
for some attribute functions, such as the number of false alarms (NFA)), which
requires few extra memory. Finally, we have depicted how to compute extinction-
based saliency maps from tree-based image representations. The time complexity
and the memory cost of these algorithms are also analyzed. To the best of our
knowledge, this is the first time that these algorithms (except for information
computed on region) are explicitly depicted, which allows reproducible research
and facilitates the development of some novel interesting attribute functions. In
the future, extension of these algorithms to 3D images will be studied. And we
would like to study some more attribute functions: learning attribute functions
in particular would be one interesting future work.

References

1. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Ef-
fective component tree computation with application to pattern recognition in
astronomical imaging. In: Proc. of IEEE ICIP., vol. 4, pp. 41–44 (2007)

704 Y. Xu et al.

2. Breen, E., Jones, R.: Attribute openings, thinnings, and granulometries.
CVIU 64(3), 377–389 (1996)

3. Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. JMIV 22,
159–181 (2005)

4. Carlinet, E., Géraud, T.: A comparative review of component tree computation
algorithms. IEEE Transactions on Image Processing 23(9), 3885–3895 (2014)

5. Carlinet, E., Géraud, T.: A color tree of shapes with illustrations on filtering,
simplification, and segmentation (submitted for publication, 2015)

6. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps,
1st edn. Springer Publishing Company, Incorporated (2009)

7. Desolneux, A., Moisan, L., Morel, J.: Edge detection by helmholtz principle.
JMIV 14(3), 271–284 (2001)

8. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to com-
pute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013)

9. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image repre-
sentation. IEEE Trans. on Image Processing 9(5), 860–872 (2000)

10. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Trans. on Image Processing 15(11), 3531–3539 (2006)

11. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303,
pp. 183–196. Springer, Heidelberg (2008)

12. Ouzounis, G.K., Wilkinson, M.H.F.: A parallel implementation of the dual-input
max-tree algorithm for attribute filtering. In: ISMM, pp. 449–460 (2007)

13. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for im-
age and sequence processing. ITIP 7(4), 555–570 (1998)

14. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Processing
Mag. 26(6), 136–157 (2009)

15. Song, Y.: A topdown algorithm for computation of level line trees. IEEE Transac-
tions on Image Processing 16(8), 2107–2116 (2007)

16. Vachier, C., Meyer, F.: Extinction values: A new measurement of persistence. In:
IEEE Workshop on Non Linear Signal/Image Processing, pp. 254–257 (1995)

17. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric at-
tribute filtering and interactive visualization using the max-tree representation.
ITIP 16(12), 2943–2952 (2007)

18. Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range im-
ages and second generation connectivity. In: Proc. of ICIP, pp. 1021–1024 (2011)

19. Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Con-
current computation of attribute filters on shared memory parallel machines.
PAMI 30(10), 1800–1813 (2008)

20. Xu, Y.: Tree-based shape spaces: Definition and applications in image processing
and computer vision. Ph.D. thesis, Université Paris Est, Marne-la-Vallée, France
(December 2013)

21. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to
object segmentation on the tree of shapes. In: ICIP, pp. 1577–1580. IEEE (2012)

22. Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology:
Blood vessels segmentation and a generalization of constrained connectivity. In:
Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883,
pp. 390–401. Springer, Heidelberg (2013)

23. Xu, Y., Géraud, T., Najman, L.: Morphological Filtering in Shape Spaces: Appli-
cations using Tree-Based Image Representations. In: ICPR, pp. 485–488 (2012)

	Efficient Computation of Attributes and Saliency Maps on Tree-Based Image Representations
	1 Introduction
	2 Review of Morphological Trees and Their Computations
	2.1 Tree-Based Image Representations
	2.2 Tree Computation and Representation

	3 Proposed Algorithms
	3.1 Incremental Computation of Some Accumulated Information
	3.2 Computation of Extremal Information along the Contour
	3.3 Computation of the Saliency Map

	4 Complexity Analysis
	4.1 Accumulated Information on Region, Contour, and Context
	4.2 Extremal Information along the Contour
	4.3 Saliency Map

	5 Conclusion

