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Abstract. The intrinsic volumes or their densities are versatile struc-
tural characteristics that can be estimated efficiently from digital image
data, given a segmentation yielding the structural component of interest
as foreground. In this contribution, Ohser’s algorithm is generalized to
operate on integer gray value images. The new algorithm derives the in-
trinsic volumes for each possible global gray value threshold in the image.
It is highly efficient since it collects all neccesary structural information
in a single pass through the image.

The novel algorithm is well suited for computing the Minkowski func-
tions of the parallel body if combined with the Euclidean distance trans-
formation. This application scenario is demonstrated by means of com-
puted tomography image data of polar ice samples. Moreover, the al-
gorithm is applied to the problem of threshold selection in computed
tomography images of material microstructures.

Keywords: Intrinsic volumes · Gray value images · Minkowsi functions ·
Connectivity analysis · Segmentation ·Microstructure analysis

1 Introduction

The possibilites and the demand to spatially image materials microstructures
has grown tremendiously during the last decade. Image sizes, complexity of the
imaged structures, and detail of the analysis tasks grow at even higher speed,
increasing the demand for time and memory efficient algorithms yielding quan-
titative structural information.

One very general image analysis tool are the intrinsic volumes. The intrinsic
volumes, also known as Minkowski functionals or quermass integrals [1], are in
some sense a basic set of geometric structural characteristics [2]. In 3D, they
yield information about the volume, surface, mean and Gaussian curvatures
of analyzed structures. Various other characteristics describing e.g. shape [3]
or structure specific features e. g. for open cell foams [4] can be derived. The
densities of the intrinsic volumes, combined with erosions and dilations of the
structure under consideration have been studied, e. g. to quantify connectivity
[5]. Mecke [6] called them Minkowski functions.
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For a given segmentation of the gray value image into the component of in-
terest (foreground) and its complement (background), the intrinsic volumes can
be efficiently derived from the resulting binary image by Ohser’s algorithm [7,8].
In this paper, we generalize Ohser’s approach to gray value images. That is, we
introduce an algorithm for fast simultaneous calculation of the intrinsic volumes
for all possible threshold values in an integer gray value image.

The usefulness of the new algorithm is proved by applying it to X-ray com-
puted tomography images of materials microstructures: In the first scenario, we
apply our new algorithm to the Euclidean distance transformed image. This
yields immediately the Minkowski functions widely used in physical applications
[6]. For polar ice, they reveal structural differences of the multiply connected
pore system.

In the second scenario, we exploit our new algorithm to find the optimal
global gray value threshold: Segmentation remains a notorius problem, even in
the simplest case of porous materials consisting of one homogeneous solid com-
ponent with a clear contrast to the air filled pore space. Identification of the solid
phase in the image data is an essential prerequisite for the majority of geometric
analyses as well as for numerical simulation of macroscopic materials properties
using the segmented image data as computational domain. In engineering, fast,
objective segmentation methods are sought after. Global gray value thresholding
is the easiest choice and competes well as long as global gray value fluctuations
have been avoided or removed. It remains to devise a strategy to determine
the threshold. There is a variety of threshold selection schemes, most prominent
Otsu’s [9] and the isodata method [10].

Here, we pursue the obvious idea of choosing the threshold such that previ-
ously known characteristics of the imaged structure are met. Examples for such
characteristics range from simple prior knowledge such as the solid volume frac-
tion of the component of interest to more complex properties of microstructures
such as surface density or mean thickness. Of course, this approach is endan-
gered by noise, porosity on a scale finer than the image resolution and imaging
artefacts. Discretization effects further complicate matters, in the case of X-ray
computed tomography in particular the partial volume effect. Nevertheless, one
could hope for a range of possible thresholds, where essential geometric charac-
teristics do not change drastically. This could be identified by monitoring the
dependence of these characteristics on the gray value threshold. This idea is
pursued for a glass fiber reinforced composite.

2 Estimation of Intrinsic Volumes in 3D Binary Images

The intrinsic volumes (or their densities) are a system of basic geometric charac-
teristics for microstructures. In 3D, there are four intrinsic volumes – the volume
V , the surface area S, the integral of mean curvature M and the Euler num-
ber χ. For a convex object, M is up to a constant the mean width. The Euler
number is a topological characteristic alternately counting the connected com-
ponents, the tunnels, and the holes. For a convex body, we have χ = 1, for a
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torus χ = 1− 1 = 0, and for a sphere χ = 1+ 1 = 2. For macroscopically homo-
geneous structures, the densities of the intrinsic volumes are considered instead
– the volume fraction VV , the specific surface area SV , the density of the integral
of mean curvature MV , and the density of the Euler number χV . That is, the
respective quantities are divided by the total sample volume measured. These
characteristics can be estimated based on observations restricted to a compact
window.

An efficient algorithm for the simultaneous measurement of all intrinsic vol-
umes from 3D image data is based on weighted local 2×2×2 pixel configurations
in a binary 3D image [8, Chapter 5]. The restriction to these small configura-
tions allows to code them in an 8bit gray value image of the same size using
the convolution with the mask shown in Figure 1. All further steps of the algo-
rithm are based solely on the gray value histogram h of this image whose size
does not depend on image size or content. Thus it is simple and fast to compute
the intrinsic volumes. The algorithm is deduced from a discrete version of the

Fig. 1. Mask used for coding the 2×2×2 pixel configurations. Here, the black colored
pixels are set resulting in configuration code c(p) = 182

integral geometric Crofton formulae [8,11] boiling down computing the intrinsic
volumes to computing Euler numbers in lower dimensional intersections. The
Euler numbers in turn can be estimated efficiently in the discrete setting by the
Euler-Poincaré formula as the alternating sum of numbers of cells, faces, edges,
and vertices. We shortly summarize the algorithm:

1. Given the 3D image of a microstructure, binarize it, e. g. using a global gray
value threshold.

2. Convolve the binary image with the following 2× 2× 2 mask:

((
1 2
4 8

)
,

(
16 32
64 128

))
. (1)

3. Compute the gray value histogram h of the convolution result.

4. Calculate the intrinsic volumes as scalar products of h with tabulated weight
vectors v(k), k = 0, . . . , 3 derived from discretizing the Crofton formulae, [8,
Section 5.3.5].

Note that the specific choice of a weight vector v in step 4 depends on the discrete
connectivities assumed for foreground and background of the image.
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3 Estimation of Intrinsic Volumes as Function of Gray
Value Threshold

In this section, we generalize the algorithm sketched in the previous section to
gray value images. As before, the actual calculation of the intrinsic volumes
consists of scalar multiplication of suitable weight vectors with the vector h of
frequencies of 2× 2× 2 black-or-white pixel configurations. The generalization is
achieved by an algorithm for efficiently collecting and coding the local black-or-
white pixel configurations induced by thresholding the local pixel configurations
in gray value images.

The naive generalization of the algorithm from Section 2 would loop through
the image’s gray value range R = {0, . . . , 255} for 8bit gray values or R =
{0, . . . , 216 − 1} for 16bit gray values, use each value t ∈ R as global gray value
threshold, and apply the algorithm sketched above to each of the resulting binary
images. Clearly, this is not practical. Instead, the matrix of the frequency vectors
h(t), t ∈ R, is created and exploited. The main observation yielding an efficient
algorithm is the following: For each local 2 × 2 × 2 pixel configuration p =
(p1, . . . , p8), only those eight pixels’ gray values are threshold values, for which
the contribution of p changes. Here, thresholding with t ≥ 0 means the following:
The gray value of pixel pi is set to 1 if it was larger or equal to t and to 0 else.

Before describing details of the algorithm, we introduce some notation: Let
M = max{R} be the maximal gray value in the image. Write c(p, t) for the code
of pixel configuration p after thresholding with threshold t. Without loss of gen-
erality, we assume the structures of interest to be represented by bright values,
i.e., with larger gray values. Then, in particular, c(p, 0) = 255 and c(p,M+1) = 0
for all p as thresholding by 0 creates the configuration completely contained in
the foreground and thresholding by more than the maximal possible gray value
creates the configuration completely contained in the background. For all re-
maining threshold values, c(p, t) represents the result of the convolution with
the mask from (1) if the image has been thresholded at t.

1. All changes are stored in the difference matrix Δ(c, t), c = 0, . . . , 255, t =
0, . . . ,M + 1 initialized with 0.

2. For local pixel configuration p do

(a) Sort the current eight gray values t1, . . . , t8 and let 0 = t0 ≤ t1 ≤ . . . ≤
t8 ≤ M .

(b) For i = 0, . . . , 7 do
– Increase Δ(c(p, ti), ti + 1) by one.
– Decrease Δ(c(p, ti), ti+1 + 1) by one.

(c) Increase Δ(0, t8 + 1) by one.

3. Initialize the final matrix h by h(c, t) = 0 for all c ∈ {0, . . . , 255}, t ∈
{0, . . . ,M + 1}.

4. h(c, t) =
∑t

τ=0Δ(c, τ).

This results in h(·, t) being the configuration frequency vector for the image
thresholded at t. Note that in general, for d-dimensional images, Δ(c, t) has
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22
d ×M + 1 elements, independent of the actual size of the image. E.g., for the

case of 3D 8bit gray value images, this amounts to a memory requirement of
256 · 256 = 65536 integers to process any such image, regardless of its size.

Example 1. For the sake of clarity and brevity of the presentation, we just con-
sider a 2D 8bit gray value image, that is, the 2× 2 configurations are coded by
convolution with (

1 2
4 8

)

and the difference matrix Δ(c, t) has dimensions 16 × 256. In the 2D case,
c(p, 0) = 1 + 2 + 4 + 8 = 15 and c(p, 256) = 0 for all p. Let the image con-
sist of just one 2× 2 pixel configuration

(
26 4
128 17

)
.

Sorting yields t1 = 4, t2 = 17, t3 = 26, t4 = 128. Now the algorithm proceeds
as follows

1. Increase Δ(15, 0) by one. Decrease Δ(15, 5) by one.

2. Binarization with threshold t1 = 4 yields the configuration

(
1 0
1 1

)

whose code is 1 + 4 + 8 = 13. Thus increase Δ(13, 5) by one. Decrease
Δ(13, 18) by one.

3. Binarization with threshold t2 = 17 yields the configuration

(
1 0
1 0

)

whose code is 1 + 4 = 5. Thus increase Δ(5, 18) by one. Decrease Δ(5, 27)
by one.

4. Binarization with threshold t3 = 26 yields the configuration

(
0 0
1 0

)

whose code is 4. Thus increase Δ(4, 27) by one. Decrease Δ(4, 129) by one.

5. Binarization with threshold t4 = 128 yields the configuration

(
0 0
0 0

)

whose code is 0. Thus increase Δ(0, 129) by one.
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This results in

Δ(c, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 5 · · · 18 · · · 27 · · · 129 · · · 256

0 0 · · · 0 · · · 0 · · · 0 · · · 1 · · · 0
...
4 0 · · · 0 · · · 0 · · · 1 · · · −1 · · · 0
5 0 · · · 0 · · · 1 · · · −1 · · · 0 · · · 0
...
13 0 · · · 1 · · · −1 · · · 0 · · · 0 · · · 0
...
15 1 · · · −1 · · · 0 · · · 0 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Summing up yields h(·, t) = (0, . . . , 0, 1) for t = 0, . . . , 4. Then, the configu-
ration changes and thus h(·, t) = (0, . . . , 0︸ ︷︷ ︸

13times

, 1, 0, 0) for t = 5, . . . , 17. At thresh-

old 18 the next change happens, resulting in h(·, t) = (0, 0, 0, 0, 0, 1, 0, . . . , 0)
for t = 18, . . . , 26. The configuration changes next at threshold 27 and yields
h(·, t) = (0, 0, 0, 0, 1, 0, . . . , 0) for t = 27, . . . , 128. Finally h(·, t) = (1, 0, . . . , 0)
for t = 129, . . . , 256.

4 Application Examples

In the following, the just derived algorithm is applied to two real 3D images
of microstructures. For the pore system in polar ice samples from two differ-
ent depths, the densities of the intrinsic volumes with respect to dilations and
erosions are derived, revealing structural differences. For a glass fiber reinforced
composite, a suitable global gray value threshold is found using prior knowledge
on the imaged structure.

4.1 Polar Firn: Erosion-Dilation Analysis

Polar ice is a climate information archive and therefore of considerable interest
for climate research. During the last decades a couple of deep polar ice cores
were drilled through the Antarctic and Greenlandic ice sheets. The upper 50 to
100m of these ice sheets are formed by so-called firn – sintered ice grains with
an inter-connected air-filled pore system. Here, we consider samples of firn core
B26 drilled during the the North-Greenland-Traverse in 1993-1995 from depths
between 56m and 72m, first studied in [12]. Volume renderings are shown in
Figure 2.

The Minkowski functions as used e.g. in [6] are the intrinsic volumes of parallel
body X ⊕ Br resp. X � Br of the structure X over the radius r, that is, the
intrinsic volumes of stepwise erosions/dilations of X . From these functions, 3d
structural information can be directly derived. In particular the specific Euler
number as a function of successive erosions was called connectivity function
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(a) Sample from depth 56m. (b) Sample from depth 72m.

Fig. 2. Volume rendering of the pore system of firn core B26 from North Greenland.
Pixel edge length 40μm, visualized are 400×400×400 pixels corresponding to 16mm×
16mm × 16mm

and used to evaluate bond sizes [5]. In [13], the Euler number combined with
successive erosions was used to study the connectivity of firn from the B35 core,
see also [8].

Here, we exploit the algorithm derived in 3 and the fact that erosions and
dilations with a ball can be efficently computed via thresholding the result of
the Euclidean distance transformation (EDT). That is, the Minkowski functions
are computed using the novel algorithm on the EDT image. Edge effects are
avoided by minus-sampling the distance images. Figure 3 shows the results for
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(b) Euler number density function

Fig. 3. Minkowski functions (a) VV (X � Br) and VV (X ⊕ Br), and (b) χV (X � Br)
and χV (X ⊕ Br), where X denotes the pore system of the firn sample. That means,
negative distances correspond to erosions of the pore system or dilations of the ice,
while positive distances correspond to dilations of the pore system or erosions of the
ice.
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the volume fraction and the Euler number density, both applied to the pore
system.

First, obviously, in the deeper sample the porosity is sligtly smaller. This can
be seen from the volume densities for negative distances in Fig. 3a, where the
porosity in the deeper sample (72m) vanishes in earlier erosion steps of the pore
space than in case of 56m.

Recall that isolated pores contribute positively to the Euler number. The
Euler number density of the original pore system in the 72m sample is positive,
indicating a prevelance of isolated pores, while the Euler number density of the
pore system in the 56m sample is negative as the pore system is more strongly
connected (Fig. 3b).

Looking at the maxima of the Euler number densities in both samples for
negative distances, we see that connections between pores are broken by smaller
erosions of the pore space at 72m than at 56m. In other words, the inter-pore
connections appear to be thinner in the lower sample.

The minimum of the Euler number density is reached later for the 72m sample,
showing that the ice grains are isolated in a later dilation step. This indicates
locally thicker ice grains in the deeper sample, ie., larger pore-to-pore distances.

These findings are consistent with the findings in earlier studies of such sys-
tems [12,14,15].

4.2 Glass Fiber Reinforced Composite: Surface Density-Based
Threshold Selection

Here, we briefly summarize an algorithm for threshold selection which incorpo-
rates prior knowledge exploiting the efficiency of the fast estimation of intrinsic
volumes for gray valued data that was proposed in this paper. First, observe that
due to the Steiner formula, for a sufficiently smooth bounded set X we have

lim
r→0

(VV (X ⊕Br)− VV (X))/r =
dVV

dr
(X) = SV (X). (2)

For a rigourous derivation see [2, Section 14.4] or [3].
Moreover, observe that roughly, decreasing or increasing the threshold slightly

is equivalent to a dilation or erosion, respectively. Thus, dVV /dt, where t denotes
the gray value threshold, can be interpreted as an estimator for the specific
surface area SV .

However, our experiments have shown that this estimator is far too sensitive
to noise and discretization effects in order to yield a reliable result for SV . This
relation can nevertheless be successfully exploited in order to find a good gray
value threshold. To this end, our surface density-based threshold selection scheme
exploits that SV (X(t))/(dVV (X(t))/dt) = 1, where X(t) denotes the foreground
set induced through applying threshold t to the input image, when we assume
thatΔt gets infinitesimally small. Thus, we may choose t such that this condition
will be fulfilled. The rationale behind it is that if the foreground structures
depicted in some gray value image fulfill the prerequisites of the Steiner formula,
the ratio should approach one for the correct threshold. Wrong thresholds, on
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the other hand, are expected to destroy the structure (e.g. due to noise), thus
invalidating that ratio.

Given a 3D image, we implement that idea in the following algorithm.

1. Compute the intrinsic volumes of the image for all thresholds t using the
algorithm from above.

2. Apply a backward difference filter on this result to obtain dVV (X(t))/dt.
3. Choose the mode of the ratio of SV (X(t)) and dVV (X(t))/dt to obtain the

surface density-based threshold.

The third and last step of this algorithm is particularly important. First note,
that we cannot get an infinitesimally small ball Br, but we have a difference
quotient in the second step. Therefore, there are remaining terms in the Steiner
formulae, so the ratio may not reach one. So we choose instead the mode of the
ratio. This is necessary since for real data, discretization effects have a major
impact on the results. E.g., increasing the threshold by one can result in quite
strong erosions, thus violating equation 2, where the dilation should be with an
infinitesimally small structuring element.

Nevertheless, we observe that in practice, there will be a pronounced peak in
SV (X(t))/(dVV (X(t))/dt). This phenomenon is caused by the contrast of the
images, which should always be highest around the structures under investiga-
tion. Thus, dVV (X(t))/dt can be expected to be low at the threshold value of
interest, while SV (X(t)) should approach the true value of SV (X) at that point.

We finally consider a glass fiber reinforced polymer sample, more precisely a
polypropylene matrix reinforced by long glass fibers (average length of 7 mm,
diameter of about 16 μm). The sample of size 6 × 4 × 6 mm3 was imaged by
X-ray computed tomography with a pixel edge length of 4 μm. For details on
sample production parameters and μCT imaging see [16], where the local fiber
orientations were analyzed in order to identify the misoriented region in the
central part.

(a) Volume rendering (b) Slice view

Fig. 4. Volume rendering of and section through the glass fiber reinforced polymer
sample. Sample preparation and μCT imaging IVW Kaiserslautern. Pixel edge length
4 μm. Visualized are 1 100× 1 500× 1 500 pixels corresponding to 4mm× 6mm× 6mm.
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Fig. 5. Characteristics as functions of gray value threshold for the glass fiber reinforced
polymer sample. The known fiber thickness d = 16μm and the known fiber volume
fraction VV = 35% yield an interval of reasonable thresholds. Otsu’s threshold (79) lies
left of this interval, while the threshold defined by the mode of the ratio of SV and
dVV /dt (89) lies well within.

The fiber weight content of the material is 60 %, resulting in an expected
fiber volume fraction of 35 %. The image quality is very good, nevertheless it is
impossible to segment the fiber system such that both the known fiber volume
fraction and the known fiber thickness are perfectly fit. We therefore use the
approach introduced above to find a good trade off between these two targets.

Note, that the noise in the plots is caused by the preprocessing of spreading
the original 16bit image data to 8bit data.

Our numerical experiments deviated from the predictions derived from the
Steiner formula, namely that the ratio between specific surface and first deriva-
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(a) Region of slice through image bi-
narized using Otsu’s threshold

(b) Region of slice through image bi-
narized using derived threshold

Fig. 6. Section through the thresholded images of the glass fiber reinforced polymer
sample (detail of 4b). The resulting images are similar, note, that the fibers in some
bundles are slightly better separated in 6b.

tive of the volume density should be one. We attribute this to discretization
effects. Nevertheless, the surface density based threshold selection rule proposed
in the present paper yields very promising results and we expect this method to
be useful for segmentation of a wide range of microstructures.

5 Discussion

In this paper, we described an efficient algorithm for calculating the intrinsic
volumes for each possible gray value threshold in an integer valued image and
demonstrated two of its possible applications. Namely, the method can be used
to derive efficiently the Minkowski functions of parallel body of a structure when
applied to the Euclidean distance transformed image. Also, it can be used to find
the global gray value threshold yielding the best agreement of the segmentation
result with pre-known geometric characteristics of the structure.

Our algorithm is of linear complexity in the number of pixels. Even more
important are the two other features: It works purely locally on the image and
requires fixed memory space, independent of the size of the original image. This
is extremely valuable, as with growing flat-panel detectors, alternative scanning
geometries like helical (or spiral) computed tomography 3D image data reach
sizes larger than 100GB.
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